Sample records for microbially promoted solubilization

  1. Microbial solubilization of coal

    DOEpatents

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  2. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  3. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  4. Fluidized-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  5. Fixed-bed bioreactor system for the microbial solubilization of coal

    DOEpatents

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

  6. Microbial solubilization of coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal hadmore » been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.« less

  7. Microbial solubilization of coal

    DOEpatents

    Strandberg, Gerald W.; Lewis, Susan N.

    1990-01-01

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  8. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture

    PubMed Central

    Alori, Elizabeth T.; Glick, Bernard R.; Babalola, Olubukola O.

    2017-01-01

    The use of excess conventional Phosphorus (P) fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM) is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide. PMID:28626450

  9. Research and engineering assessment of biological solubilization of phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidationmore » of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.« less

  10. Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities.

    PubMed

    Ordoñez, Yuli Marcela; Fernandez, Belen Rocio; Lara, Lidia Susana; Rodriguez, Alia; Uribe-Vélez, Daniel; Sanders, Ian R

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing Pseudomonas bacteria (PSB) could potentially interact synergistically because PSB solubilize phosphate into a form that AMF can absorb and transport to the plant. However, very little is known about the interactions between these two groups of microorganisms and how they influence the growth of each other. We tested whether different strains of bacteria, that have the capacity to solubilize phosphate, are able to grow along AMF hyphae and differentially influence the growth of AMF both outside the roots of carrot in in vitro conditions and inside the roots of potato in the presence of a microbial community. We found strong effects of AMF on the growth of the different bacterial strains. Different bacterial strains also had very strong effects on the growth of AMF extraradical hyphae outside the roots of carrot and on colonization of potato roots by AMF. The differential effects on colonization occurred in the presence of a microbial community. Our results show that these two important groups of rhizosphere microorganisms indeed interact with each other. Such interactions could potentially lead to synergistic effects between the two groups but this could depend on whether the bacteria truly solubilize phosphate in the rhizosphere in the presence of microbial communities.

  11. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  12. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions.

    PubMed

    Mehta, Preeti; Walia, Abhishek; Kulshrestha, Saurabh; Chauhan, Anjali; Shirkot, Chand Karan

    2015-01-01

    P-solubilizing bacterial isolate CB7 isolated from apple rhizosphere soil of Himachal Pradesh, India was identified as Bacillus circulans on the basis of phenotypic characteristics, biochemical tests, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The isolate exhibited plant growth-promoting traits of P-solubilization, auxin, 1-aminocyclopropane-1-carboxylate deaminase activity, siderophore, nitrogenase activity, and antagonistic activity against Dematophora necatrix. In vitro studies revealed that P-solubilization and other plant growth-promoting traits were dependent on the presence of glucose in PVK medium and removal of yeast extract had no significant effect on plant growth-promoting traits. Plant growth-promoting traits of isolate CB7 were repressed in the presence of KH2 PO4 . P-solubilization activity was associated with the release of organic acids and a drop in the pH of the Pikovskaya's medium. HPLC analysis detected gluconic and citric acid as major organic acids in the course of P-solubilization. Remarkable increase was observed in seed germination (22.32%), shoot length (15.91%), root length (25.10%), shoot dry weight (52.92%) and root dry weight (31.4%), nitrogen (18.75%), potassium (57.69%), and phosphorus (22.22%) content of shoot biomass over control. These results demonstrate that isolate CB7 has the promising PGPR attributes to be developed as a biofertilizer to enhance soil fertility and promote plant growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Colonization and Maize Growth Promotion Induced by Phosphate Solubilizing Bacterial Isolates.

    PubMed

    Li, Yongbin; Liu, Xiaomeng; Hao, Tianyi; Chen, Sanfeng

    2017-06-29

    Phosphorus (P) limits the production of maize, one of the major food crops in China. Phosphate-solubilizing bacteria (PSB) have the capacity to solubilize phosphate complexes into plant absorbable and utilizable forms by the process of acidification, chelation, and exchange reactions. In this study, six bacteria, including one Paenibacillus sp. B1 strain, four Pseudomonas sp. strains (B10, B14, SX1, and SX2) and one Sphingobium sp. SX14 strain, were those isolated from the maize rhizosphere and identified based on their 16S rRNA sequences. All strains could solubilize inorganic P (Ca₃(PO₄)₂, FePO₄ and AlPO₄), and only B1 and B10 organic P (lecithin). All strains, except of SX1, produced IAA, and SX14 and B1 showed the highest level. B1 incited the highest increase in root length and the second increase in shoot and total dry weight, shoot length, and total P and nitrogen (N), along with increased root length. In addition, by confocal laser scanning microscopy (CLSM), we found that green fluorescent protein (GFP)-labeled B1 mainly colonized root surfaces and in epidermal and cortical tissue. Importantly, B1 can survive through forming spores under adverse conditions and prolong quality guarantee period of bio-fertilizer. Therefore, it can act as a good substitute for bio-fertilizer to promote agricultural sustainability.

  14. Influence of biochar application on potassium-solubilizing Bacillus mucilaginosus as potential biofertilizer.

    PubMed

    Liu, Sainan; Tang, Wenzhu; Yang, Fan; Meng, Jun; Chen, Wenfu; Li, Xianzhen

    2017-01-02

    Biochar can enhance soil fertility to increase agricultural productivity, whereas its improvement in soil microbial activity is still unclear. In this article, the influence of biochar on the cell growth and the potassium-solubilizing activity of Bacillus mucilaginosus AS1153 was examined. The impact on cell growth is related to the biochar-derived feedstocks and the particle size of biochar. Both intrinsic features and inner component fraction can promote the cell growth of B. mucilaginosus AS1153. The potassium-solubilizing activity was increased by 80% when B. mucilaginosus was incubated in conjunction with the biochar derived from corn stover. The survival time of B. mucilaginosus also was prolonged by adsorption in biochar. The experimental results suggested that the biochar containing B. mucilaginosus could be used as a potential biofertilizer to sustain crop production.

  15. The solubilization of low-ranked coals by microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strandberg, G.W.

    1987-07-09

    Late in 1984, our Laboratory was funded by the Pittsburgh Energy Technology Center, US Department of Energy, to investigate the potential utility of microorganisms for the solubilization of low-ranked coals. Our approach has been multifacited, including studies of the types of microorganisms involved, appropriate conditions for their growth and coal-solubilization, the suceptibility of different coals to microbial action, the chemical and physical nature of the product, and potential bioprocess designs. A substantial number of fungal species have been shown to be able to solubilize coal. Cohen and Gabrielle reported that two lignin-degrading fungi, Polyporous (Trametes) versicolor and Poria monticola couldmore » solubilize lignite. Ward has isolated several diverse fungi from nature which are capable of degrading different lignites, and our Laboratory has isolated three coal-solubilizing fungi which were found growing on a sample of Texas lignite. The organisms we studied are shown in Table 1. The perceived significance of lignin degradation led us to examine two lignin-degrading strains of the genus Streptomyces. As discussed later, these bacteria were capable of solubilizing coal; but, in the case of at least one, the mechanism was non-enzymatic. The coal-solubilizing ability of other strains of Streptomyces was recently reported. Fakoussa and Trueper found evidence that a strain of Pseudomonas was capble of solubizing coal. It would thus appear that a diverse array of microorganisms possess the ability to solubilize coal. 16 refs.« less

  16. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    DOEpatents

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  17. Inhibition of Aspergillus niger Phosphate Solubilization by Fluoride Released from Rock Phosphate

    PubMed Central

    Mendes, Gilberto de Oliveira; Vassilev, Nikolay Bojkov; Bonduki, Victor Hugo Araújo; da Silva, Ivo Ribeiro; Ribeiro, José Ivo

    2013-01-01

    The simultaneous release of various chemical elements with inhibitory potential for phosphate solubilization from rock phosphate (RP) was studied in this work. Al, B, Ba, Ca, F, Fe, Mn, Mo, Na, Ni, Pb, Rb, Si, Sr, V, Zn, and Zr were released concomitantly with P during the solubilization of Araxá RP (Brazil), but only F showed inhibitory effects on the process at the concentrations detected in the growth medium. Besides P solubilization, fluoride decreased fungal growth, citric acid production, and medium acidification by Aspergillus niger. At the maximum concentration found during Araxá RP solubilization (22.9 mg F− per liter), fluoride decreased P solubilization by 55%. These findings show that fluoride negatively affects RP solubilization by A. niger through its inhibitory action on the fungal metabolism. Given that fluoride is a common component of RPs, the data presented here suggest that most of the microbial RP solubilization systems studied so far were probably operated under suboptimal conditions. PMID:23770895

  18. Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil.

    PubMed

    Jeong, Seulki; Moon, Hee Sun; Shin, Doyun; Nam, Kyoungphile

    2013-12-15

    This study was conducted to investigate whether or not phosphate-solubilizing bacteria (PSB) as a kind of plant growth promoting rhizobacteria enhance the uptake of Cd by plants. In addition, the effect of PSB augmentation during phytoextraction on the microbial community of indigenous soil bacteria was also studied. In the initial Cd-contaminated soil, the major phyla were Proteobacteria (35%), Actinobacteria (38%) and Firmicutes (8%). While Proteobacteria were dominant at the second and sixth week (41 and 54%, respectively) in inoculated soil, Firmicutes (mainly belonging to the Bacilli class-61%), dramatically increased in the eight-week soil. For the uninoculated soil, the proportion of α-Proteobacteria increased after eight weeks (32%). Interestingly, Actinobacteria class, which was originally present in the soil (37%), seemed to disappear during phytoremediation, irrespective of whether PSB was inoculated or not. Cluster analysis and Principal Component Analysis revealed that the microbial community of eight-week inoculated soil was completely separated from the other soil samples, due to the dramatic increase of Bacillus aryabhattai. These findings revealed that it took at least eight weeks for the inoculated Bacillus sp. to functionally adapt to the introduced soil, against competition with indigenous microorganisms in soil. An ecological understanding of interaction among augmented bacteria, plant and indigenous soil bacteria is needed, for proper management of phytoextraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions.

    PubMed

    Vassileva, Maria; Serrano, Mercedes; Bravo, Vicente; Jurado, Encarnación; Nikolaeva, Iana; Martos, Vanessa; Vassilev, Nikolay

    2010-02-01

    One of the most studied approaches in solubilization of insoluble phosphates is the biological treatment of rock phosphates. In recent years, various techniques for rock phosphate solubilization have been proposed, with increasing emphasis on application of P-solubilizing microorganisms. The P-solubilizing activity is determined by the microbial biochemical ability to produce and release metabolites with metal-chelating functions. In a number of studies, we have shown that agro-industrial wastes can be efficiently used as substrates in solubilization of phosphate rocks. These processes were carried out employing various technologies including solid-state and submerged fermentations including immobilized cells. The review paper deals critically with several novel trends in exploring various properties of the above microbial/agro-wastes/rock phosphate systems. The major idea is to describe how a single P-solubilizing microorganism manifests wide range of metabolic abilities in different environments. In fermentation conditions, P-solubilizing microorganisms were found to produce various enzymes, siderophores, and plant hormones. Further introduction of the resulting biotechnological products into soil-plant systems resulted in significantly higher plant growth, enhanced soil properties, and biological (including biocontrol) activity. Application of these bio-products in bioremediation of disturbed (heavy metal contaminated and desertified) soils is based on another important part of their multifunctional properties.

  20. Effects of humic acid concentration on the microbially-mediated reductive solubilization of Pu(IV) polymers.

    PubMed

    Xie, Jinchuan; Han, Xiaoyuan; Wang, Weixian; Zhou, Xiaohua; Lin, Jianfeng

    2017-10-05

    The role of humic acid concentration in the microbially-mediated reductive solubilization of Pu(IV) polymers remains unclear until now. The effects of humic concentration (0-150.5mg/L) on the rate and extent of reduction of polymeric Pu(IV) were studied under anaerobic and pH 7.2 conditions. The results show that Shewanella putrefaciens, secreting flavins as endogenous electron shuttles, cannot notably stimulate the reduction of polymeric Pu(IV). In the presence of humic acids, the reduction rate of polymeric Pu(IV) increased with increasing humic concentrations (0-15.0mg/L): e.g., a 102-fold increase from 4.1×10 -15 (HA=0) to 4.2×10 -13 mol Pu(III) aq /h (HA=15.0mg/L). The bioreduced humic acids by S. putrefaciens facilitated the extracellular electron transfer to Pu(IV) polymers and thus the reduction of polymeric Pu(IV) to Pu(III) aq became thermodynamically favorable. However, the reduction rate did not increase but decrease with increasing humic concentrations from 15.0 to 150.5mg/L. Humic coatings formed on the polymer surfaces at relatively high humic concentrations limited the electron transfer to the polymers and thus decreased the reduction rate. The finding of the dynamic role of humic acids in the bioreductive solubilization may be helpful in evaluating Pu mobility in the geosphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Investigating substrate use efficiency across different microbial physiologies in soil-extracted, solubilized organic matter (SESOM)

    NASA Astrophysics Data System (ADS)

    Cyle, K. T.; Martinez, C. E.

    2017-12-01

    Recent experimental work has elevated the importance of microbial processing for the stabilization of fresh carbon inputs within the soil mineral matrix. Enhancing our understanding of soil carbon and nitrogen dynamics therefore requires a better understanding of how efficiently microbial metabolism can process low molecular weight carbon substrates (carbon use efficiency, CUE) under environmentally relevant conditions. One approach to better understanding microbial uptake rates and CUE is the ecophysiological study of soil isolates in liquid media culture consisting of soil-extracted solubilized organic matter (SESOM). We are using SESOM from an Oa horizon under hemlock hardwood vegetation in upstate New York as liquid media for the growth of 12 isolates from the Oa and B horizon of the same site. Here we seek to test the uptake rates as well as CUE of 5 different low molecular weight substrates spanning compound class and nominal oxidation state (glucose, acetate, formate, glycine, valine) by isolates differing in phylogeny and physiology. The use of a spike of each of the 13C-labeled substrates into SESOM, along with a 0.2 μm filtration step, allows accurate partitioning of labeled carbon between biomass, gaseous CO2 as well as the exometabolome. Coupled UHPLC-MS measurements are being used to identify and determine uptake rates of over 80 potential C substrates present in the extract as well as our labeled substrate of interest along the course of the isolate growth curve. This work seeks to utilize a gradient in substrate class as well as microbial physiologies to inform our understanding of C and N cycling under relevant soil solution conditions. Future experiments may also use labeled biomass from stationary phase to investigate the stabilization potential of anabolic products formed from each substrate with a clay fraction isolated from the same site.

  2. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    PubMed

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.

  3. Biochar Enhances Aspergillus niger Rock Phosphate Solubilization by Increasing Organic Acid Production and Alleviating Fluoride Toxicity

    PubMed Central

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo

    2014-01-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F−) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F− adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F− released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F− while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F− measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F− per liter can be removed from solution by biochar when added at 3 g liter−1 to the culture medium. Thus, biochar acted as an F− sink during RP solubilization and led to an F− concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F− and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F−, the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP. PMID:24610849

  4. Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities.

    PubMed

    Wang, Xiaohui; Wang, Changdong; Sui, Junkang; Liu, Zhaoyang; Li, Qian; Ji, Chao; Song, Xin; Hu, Yurong; Wang, Changqian; Sa, Rongbo; Zhang, Jiamiao; Du, Jianfeng; Liu, Xunli

    2018-04-20

    Rhizospheric microorganisms can increase phosphorus availability in the soil. In this regard, the ability of phosphofungi to dissolve insoluble phosphorus compounds is greater than that of phosphate-solubilizing bacteria. The aim of the current study was to identify efficient phosphofungi that could be developed as commercial microbial agents. Among several phosphate-solubilizing fungal isolates screened, strain CS-1 showed the highest phosphorus-solubilization ability. Based on phylogenetic analysis of the internal transcribed spacer region sequence, it was identified as Aspergillus niger. High-performance liquid chromatography analysis revealed that the mechanism of phosphorus solubilization by CS-1 involved the synthesis and secretion of organic acids, mainly oxalic, tartaric, and citric acids. Furthermore, strain CS-1 exhibited other growth-promoting abilities, including efficient potassium release and degradation of crop straw cellulose. These properties help to returning crop residues to the soil, thereby increasing nutrient availability and sustaining organic matter concentration therein. A pot experiment revealed that CS-1 apparently increased the assessed biometric parameters of wheat seedlings, implying the potential of this strain to be developed as a commercial microbial agent. We used Illumina MiSeq sequencing to investigate the microbial community composition in the rhizosphere of uninoculated wheat plants and wheat plants inoculated with the CS-1 strain to obtain insight into the effect of the CS-1 strain inoculation. The data clearly demonstrated that CS-1 significantly reduced the content of pathogenic fungi, including Gibberella, Fusarium, Monographella, Bipolaris, and Volutella, which cause soil-borne diseases in various crops. Strain CS-1 may hence be developed into a microbial agent for plant growth improvement.

  5. Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum.

    PubMed

    Faramarzi, Mohammad A; Stagars, Marion; Pensini, Enrico; Krebs, Walter; Brandl, Helmut

    2004-09-30

    Different cyanogenic bacterial strains (Chromobacterium violaceum, Pseudomonas fluorescens, Bacillus megaterium) were cultivated under cyanide-forming conditions in the presence of metal-containing solids such as nickel powder or electronic scrap. All microorganisms were able to form water-soluble metal cyanides, however, with different efficiencies. C. violaceum was able to mobilize nickel as tetracyanonickelate [Ni(CN)4(2-)] from fine-grained nickel powder. Gold was microbially solubilized as dicyanaoaurate [Au(CN)2-] from electronic waste. Additionally, cyanide-complexed copper was detected during biological treatment of shredded printed circuit boards scrap. Regarding the formation of tetracyanonickelate, C. violaceum was more effective than P. fluorescens or B. megaterium. Besides a few previous reports on gold solubilization from gold-containing ores or native gold by C. violaceum, the findings demonstrate for the first time the microbial mobilization of metals other than gold from solid materials and represent a novel type of microbial metal mobilization based on the ability of certain microbes to form HCN. The results might have the potential for industrial applications (biorecovery, bioremediation) regarding the treatment of metal-containing solids since metal cyanides can easily be separated by chromatographic means and be recovered by sorption onto activated carbon.

  6. Field studies on two rock phosphate solubilizing actinomycete isolates as biofertilizer sources

    NASA Astrophysics Data System (ADS)

    Mba, Caroline C.

    1994-03-01

    Recently biotechnology is focusing attention on utilization of biological resources to solve a number of environmental problems such as soil fertility management. Results of microbial studies on earthworm compost in the University of Nigeria farm identified a number of rock phosphate solubilizing actinomycetes. Two of these, isclates 02 and 13, were found to be efficient rock phosphate (RP) solubilizers and fast-growing cellulolytic microbes producing extracellular hydrolase enzymes. In this preliminary field study the two microbial isolates were investigated with respect to their effects on the growth of soybean and egusi as well as their effect on the incidence of toxicity of poultry droppings. Application of these isolates in poultry manure-treated field plots, as microbial fertilizers, brought about yield increases of 43% and 17% with soybeans and 19% and 33% with egusi, respectively. Soil properties were also improved. With isolates 02 and 13, the soil available phosphorus increased at the five-leaf stage, while N-fixation in the soil increased by 45% or 11% relative to control. It was further observed that air-dried poultry manure after four days of incubation was still toxic to soybean. The toxic effect of the applied poultry manure was reduced or eliminated with microbial fertilizers 02 or 13, respectively. The beneficial effects of the microbial organic fertilizer are discussed. Justification for more intensive research on rock phosphate organic fertilizer is highlighted.

  7. Mild-temperature thermochemical pretreatment of green macroalgal biomass: Effects on solubilization, methanation, and microbial community structure.

    PubMed

    Jung, Heejung; Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    The effects of mild-temperature thermochemical pretreatments with HCl or NaOH on the solubilization and biomethanation of Ulva biomass were assessed. Within the explored region (0-0.2M HCl/NaOH, 60-90°C), both methods were effective for solubilization (about 2-fold increase in the proportion of soluble organics), particularly under high-temperature and high-chemical-dose conditions. However, increased solubilization was not translated into enhanced biogas production for both methods. Response surface analysis statistically revealed that HCl or NaOH addition enhances the solubilization degree while adversely affects the methanation. The thermal-only treatment at the upper-limit temperature (90°C) was estimated to maximize the biogas production for both methods, suggesting limited potential of HCl/NaOH treatment for enhanced Ulva biomethanation. Compared to HCl, NaOH had much stronger positive and negative effects on the solubilization and methanation, respectively. Methanosaeta was likely the dominant methanogen group in all trials. Bacterial community structure varied among the trials according primarily to HCl/NaOH addition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium.

    PubMed

    Gupta, Pratishtha; Kumar, Vipin

    2017-01-01

    The presence of heavy metals in the soil is a matter of growing concern due to their toxic and non-biodegradable nature. Lack of effectiveness of various conventional methods due to economic and technical constraints resulted in the search for an eco-friendly and cost-effective biological techniques for heavy metal removal from the environment. Until now, phytoremediation has emerged as an innovative technique to address the problem. However, the efficiency of phytoremediation process is hindered under the high metal concentration conditions. Hence, phosphate solubilizing microbes (PSM) assisted phytoremediation technique is gaining more insight as it can reduce the contamination load even under elevated metal stressed conditions. These microbes convert heavy metals into soluble and bioavailable forms, which consequently facilitate phytoremediation. Several studies have reported that the use of microbial consortium for remediation is considered more effective as compared to single strain pure culture. Therefore, this review paper focuses on the current trends in research related to PSM mediated uptake of heavy metal by plants. The efficiency of PSM consortia in enhancing the phytoremediation process has also been reviewed. Moreover, the role of phosphatase enzymes in the mineralization of organic forms of phosphate in soil is further discussed. Biosurfactant mediated bioremediation of metal polluted soils is a matter of extensive research nowadays. Hence, the recent advancement of using biosurfactants in enhanced phytoremediation of metal stressed soils is also described.

  9. Cocrystal solubilization in biorelevant media and its prediction from drug solubilization

    PubMed Central

    Lipert, Maya P.; Roy, Lilly; Childs, Scott L.

    2015-01-01

    This work examines cocrystal solubility in biorelevant media, (FeSSIF, fed state simulated intestinal fluid), and develops a theoretical framework that allows for the simple and quantitative prediction of cocrystal solubilization from drug solubilization. The solubilities of four hydrophobic drugs and seven cocrystals containing these drugs were measured in FeSSIF and in acetate buffer at pH 5.00. In all cases, the cocrystal solubility (Scocrystal) was higher than the drug solubility (Sdrug) in both buffer and FeSSIF; however, the solubilization ratio of drug, SRdrug = (SFeSSIF/Sbuffer)drug, was not the same as the solubilization ratio of cocrystal, SRcocrystal = (SFeSSIF/Sbuffer)cocrystal, meaning drug and cocrystal were not solubilized to the same extent in FeSSIF. This highlights the potential risk of anticipating cocrystal behavior in biorelevant media based on solubility studies in water. Predictions of SRcocrystal from simple equations based only on SRdrug were in excellent agreement with measured values. For 1:1 cocrystals, the cocrystal solubilization ratio can be obtained from the square root of the drug solubilization ratio. For 2:1 cocrystals, SRcocrystal is found from (SRdrug)2/3. The findings in FeSSIF can be generalized to describe cocrystal behavior in other systems involving preferential solubilization of a drug such as surfactants, lipids, and other drug solubilizing media. PMID:26390213

  10. Cocrystal Solubilization in Biorelevant Media and its Prediction from Drug Solubilization.

    PubMed

    Lipert, Maya P; Roy, Lilly; Childs, Scott L; Rodríguez-Hornedo, Naír

    2015-12-01

    This work examines cocrystal solubility in biorelevant media (FeSSIF, fed-state simulated intestinal fluid), and develops a theoretical framework that allows for the simple and quantitative prediction of cocrystal solubilization from drug solubilization. The solubilities of four hydrophobic drugs and seven cocrystals containing these drugs were measured in FeSSIF and in acetate buffer at pH 5.00. In all cases, the cocrystal solubility (Scocrystal ) was higher than the drug solubility (Sdrug ) in both buffer and FeSSIF; however, the solubilization ratio of drug, SRdrug = (SFeSSIF /Sbuffer )drug , was not the same as the solubilization ratio of cocrystal, SRcocrystal = (SFeSSIF /Sbuffer )cocrystal , meaning drug and cocrystal were not solubilized to the same extent in FeSSIF. This highlights the potential risk of anticipating cocrystal behavior in biorelevant media based on solubility studies in water. Predictions of SRcocrystal from simple equations based only on SRdrug were in excellent agreement with measured values. For 1:1 cocrystals, the cocrystal solubilization ratio (SR) can be obtained from the square root of the drug SR. For 2:1 cocrystals, SRcocrystal is found from (SRdrug )(2/3) . The findings in FeSSIF can be generalized to describe cocrystal behavior in other systems involving preferential solubilization of a drug such as surfactants, lipids, and other drug solubilizing media. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility.

    PubMed

    Enright, Elaine F; Joyce, Susan A; Gahan, Cormac G M; Griffin, Brendan T

    2017-04-03

    In recent years, the gut microbiome has gained increasing appreciation as a determinant of the health status of the human host. Bile salts that are secreted into the intestine may be biotransformed by enzymes produced by the gut bacteria. To date, bile acid research at the host-microbe interface has primarily been directed toward effects on host metabolism. The aim of this work was to investigate the effect of changes in gut microbial bile acid metabolism on the solubilization capacity of bile salt micelles and consequently intraluminal drug solubility. First, the impact of bile acid metabolism, mediated in vivo by the microbial enzymes bile salt hydrolase (BSH) and 7α-dehydroxylase, on drug solubility was assessed by comparing the solubilization capacity of (a) conjugated vs deconjugated and (b) primary vs secondary bile salts. A series of poorly water-soluble drugs (PWSDs) were selected as model solutes on the basis of an increased tendency to associate with bile micelles. Subsequently, PWSD solubility and dissolution was evaluated in conventional biorelevant simulated intestinal fluid containing host-derived bile acids, as well as in media modified to contain microbial bile acid metabolites. The findings suggest that deconjugation of the bile acid steroidal core, as dictated by BSH activity, influences micellar solubilization capacity for some PWSDs; however, these differences appear to be relatively minor. In contrast, the extent of bile acid hydroxylation, regulated by microbial 7α-dehydroxylase, was found to significantly affect the solubilization capacity of bile salt micelles for all nine drugs studied (p < 0.05). Subsequent investigations in biorelevant media containing either the trihydroxy bile salt sodium taurocholate (TCA) or the dihydroxy bile salt sodium taurodeoxycholate (TDCA) revealed altered drug solubility and dissolution. Observed differences in biorelevant media appeared to be both drug- and amphiphile (bile salt/lecithin) concentration

  12. [Combination of phosphorus solubilizing and mobilizing fungi with phosphate rocks and volcanic materials to promote plant growth of lettuce (Lactuca sativa L.)].

    PubMed

    Velázquez, María S; Cabello, Marta N; Elíades, Lorena A; Russo, María L; Allegrucci, Natalia; Schalamuk, Santiago

    Arbuscular mycorrhizal fungi (AMF) increase the uptake of soluble phosphates, while phosphorus solubilizing fungi (S) promote solubilization of insoluble phosphates complexes, favoring plant nutrition. Another alternative to maintaining crop productivity is to combine minerals and rocks that provide nutrients and other desirable properties. The aim of this work was to combine AMF and S with pyroclastic materials (ashes and pumices) from Puyehue volcano and phosphate rocks (PR) from Rio Chico Group (Chubut) - to formulate a substrate for the production of potted Lactuca sativa. A mixture of Terrafertil®:ashes was used as substrate. Penicillium thomii was the solubilizing fungus and Rhizophagus intraradices spores (AMF) was the P mobilizer (AEGIS® Irriga). The treatments were: 1) Substrate; 2) Substrate+AMF; 3) Substrate+S; 4) Substrate+AMF+S; 5) Substrate: PR; 6) Substrate: PR+AMF; 7) Substrate: PR+S and 8) Substrate: PR+AMF+S. Three replicates were performed per treatment. All parameters evaluated (total and assimilable P content in substrate, P in plant tissue and plant dry biomass) were significantly higher in plants grown in substrate containing PR and inoculas with S and AMF. This work confirms that the combination of S/AMF with Puyehue volcanic ashes, PR from the Río Chico Group and a commercial substrate promote the growth of L. sativa, thus increasing the added value of national geomaterials. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect.

    PubMed

    Chauhan, Anjali; Guleria, Shiwani; Balgir, Praveen P; Walia, Abhishek; Mahajan, Rishi; Mehta, Preeti; Shirkot, Chand Karan

    Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260mg/L), nitrogen fixation (202.91nmolethylenemL -1 h -1 ), indole-3-acetic acid (IAA) (8.1μg/mL), siderophores (61.60%), HCN (hydrogen cyanide) production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC) study showed that isolate CKMV1 produced mainly gluconic (1.34%) and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh) gene and pyrroloquinoline quinone synthase (pqq) gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H) gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58%) followed by Fusarium oxysporum (64.3%), Dematophora necatrix (52.71%), Rhizoctonia solani (91.58%), Alternaria sp. (71.08%) and Phytophthora sp. (71.37%). Remarkable increase was observed in seed germination (27.07%), shoot length (42.33%), root length (52.6%), shoot dry weight (62.01%) and root dry weight (45.7%) along with NPK (0.74, 0.36, 1.82%) content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Bacteria as growth-promoting agents for citrus rootstocks.

    PubMed

    Giassi, Valdionei; Kiritani, Camila; Kupper, Katia Cristina

    2016-09-01

    The microbial community plays an essential role in maintaining the ecological balance of soils. Interactions between microorganisms and plants have a major influence on the nutrition and health of the latter, and growth-promoting rhizobacteria can be used to improve plant development through a wide range of mechanisms. Therefore, the objective of the present study was to evaluate bacteria as growth-promoting agents for citrus rootstocks. A total of 30 bacterial isolates (11 of Bacillus spp., 11 actinobacteria, and 8 lactic acid bacteria) were evaluated in vitro for indoleacetic acid production, phosphate solubilization, and nitrogen (N) fixation. In vivo testing consisted of growth promotion trials of the bacterial isolates that yielded the best results on in vitro tests with three rootstocks: Swingle citrumelo [Citrus×paradisi Macfad cv. Duncan×Poncirus trifoliata (L.) Raf.], Sunki mandarin (Citrus sunki Hort. ex Tan), and rangpur (Citrus×limonia Osbeck). The parameters of interest were height, number of leaves, stem diameter, shoot and root dry mass, and total dry mass at 150days after germination. The results showed that most bacterial isolates were capable of IAA production. Only one lactic acid bacterium isolate (BL06) solubilized phosphate, with a high solubilization index (PSI>3). In the actinobacteria group, isolates ACT01 (PSI=2.09) and ACT07 (PSI=2.01) exhibited moderate phosphate-solubilizing properties. Of the Bacillus spp. isolates, only CPMO6 and BM17 solubilized phosphate. The bacterial isolates that most fixated nitrogen were BM17, ACT11, and BL24. In the present study, some bacteria were able to promote growth of citrus rootstocks; however, this response was dependent on plant genotype and isolate. Bacillus spp. BM16 and CPMO4 were able to promote growth of Swingle citrumelo. In Sunki mandarin plants, the best treatment results were obtained with BM17 (Bacillus sp.) and ACT11 (actinobacteria). For Rangpur lime rootstock, only BM05 (Bacillus sp

  15. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize.

    PubMed

    Mumtaz, Muhammad Zahid; Ahmad, Maqshoof; Jamil, Moazzam; Hussain, Tanveer

    2017-09-01

    Bioaugmentation of Zn solubilizing rhizobacteria could be a sustainable intervention to increase bioavailability of Zn in soil which can be helpful in mitigation of yield loss and malnutrition of zinc. In present study, a number of pure rhizobacterial colonies were isolated from maize rhizosphere and screened for their ability to solubilize zinc oxide. These isolates were screened on the basis of zinc and phosphate solubilization, IAA production, protease production, catalase activity and starch hydrolysis. All the selected isolates were also positive for oxidase activity (except ZM22), HCN production (except ZM27) and utilization of citrate. More than 70% of isolates produces ammonia, hydrogen cyanide, siderophores, exopolysaccharides and cellulase. More than half of isolates also showed potential for urease activity and production of lipase. The ZM31 and S10 were the only isolates which showed the chitinase activity. All these isolates were evaluated in a jar trial for their ability to promote growth of maize under axenic conditions. Results revealed that inoculation of selected zinc solubilizing rhizobacterial isolates improved the growth of maize. In comparison, isolates ZM20, ZM31, ZM63 and S10 were best compared to other tested isolates in stimulating the growth attributes of maize like shoot length, root length, plant fresh and dry biomass. These strains were identified as Bacillus sp. (ZM20), Bacillus aryabhattai (ZM31 and S10) and Bacillus subtilis (ZM63) through 16S rRNA sequencing. This study indicated that inoculation of Zn solubilizing strains have potential to promote growth and can be the potential bio-inoculants for biofortification of maize to overcome the problems of malnutrition. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. A non-toxic microbial surfactant from Marinobacter hydrocarbonoclasticus SdK644 for crude oil solubilization enhancement.

    PubMed

    Zenati, Billal; Chebbi, Alif; Badis, Abdelmalek; Eddouaouda, Kamel; Boutoumi, Hocine; El Hattab, Mohamed; Hentati, Dorra; Chelbi, Manel; Sayadi, Sami; Chamkha, Mohamed; Franzetti, Andrea

    2018-06-15

    This study aims to investigate the ability of a biosurfactant produced by Marinobacter hydrocarbonoclasticus strain SdK644 isolated from hydrocarbon contaminated sediment to enhance the solubilization rate of crude oil contaminated seawater. Phylogenetic analysis shows that strain SdK644 was very closely related to M. hydrocarbonoclasticus with 16S rRNA gene sequence similarity of 97.44%. Using waste frying oil as inducer carbon source, the producing biosurfactant by strain SdK644 was applied to improve crude oil solubilization in seawater. The preliminary characterization of the produced biosurfactant by FT-IR analysis indicates its possible classification in a glycolipids group. Results from crude oil solubilization assay showed that SdK644 strain biosurfactant was 2-fold greater than Tween 80 surfactant in crude oil solubilization and 12-fold higher than seawater control, as shown by GC-MS analysis of aliphatic compounds. Furthermore, this bioactive compound was shown to be nontoxic against Artemia larvae in short-term acute toxicity bioassay. Generally, the results showed the possible use of M. hydrocarbonoclasticus strain SdK644 biosurfactant in bioremediation processes of the marine environments. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119.

    PubMed

    Ludueña, Liliana M; Anzuay, Maria S; Magallanes-Noguera, Cynthia; Tonelli, Maria L; Ibañez, Fernando J; Angelini, Jorge G; Fabra, Adriana; McIntosh, Matthew; Taurian, Tania

    2017-10-01

    The mineral phosphate-solubilizing phenotype in bacteria is attributed predominantly to secretion of gluconic acid produced by oxidation of glucose by the glucose dehydrogenase enzyme and its cofactor, pyrroloquinoline quinone. This study analyzes pqqE gene expression and pqq promoter activity in the native phosphate-solubilizing bacterium Serratia sp S119 growing under P-limitation, and in the presence of root exudates obtained from peanut plants, also growing under P-limitation. Results indicated that Serratia sp. S119 contains a pqq operon composed of six genes (pqqA,B,C,D,E,F) and two promoters, one upstream of pqqA and other between pqqA and pqqB. PqqE gene expression and pqq promoter activity increased under P-limiting growth conditions and not under N-deficient conditions. In the plant-bacteria interaction assay, the activity of the bacterial pqq promoter region varied depending on the concentration and type of root exudates and on the bacterial growth phase. Root exudates from peanut plants growing under P-available and P-limiting conditions showed differences in their composition. It is concluded from this study that the response of Serratia sp. S119 to phosphorus limitation involves an increase in expression of pqq genes, and that molecules exuded by peanut roots modify expression of these phosphate-solubilizing bacterial genes during plant-bacteria interactions. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Kinetics of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willumsen, P.A.; Arvin, E.

    To achieve a better quantitative understanding of the stimulating or inhibiting effect of surfactants on the metabolism of polycyclic aromatic hydrocarbons (PAHs), a biodegradation model describing solubilization, bioavailability, and biodegradation of crystalline fluoranthene is proposed and used to model experimental data. The degradation was investigated in batch systems containing the PAH-degrading bacterium Sphingomonas paucimobilis strain EPA505, the nonionic surfactant Triton X-100, and a fluoranthene-amended liquid mineral salts medium. Surfactant-enhanced biodegradation is complex; however, the biodegradation model predicted fluoranthene disappearance and the initial mineralization well. Surfactant-amendment did increase fluoranthene mineralization rates by strain EPA505; however, the increases were not proportional tomore » the rates of fluoranthene solubilization. The surfactant clearly influenced the microbial PAH metabolism as indicated by a rapid accumulation of colored products and by a surfactant -related decreased in the overall extent of fluoranthene mineralization. Model estimations of the bioavailability of micelle-solubilized fluoranthene, the relatively fast fluoranthene disappearance, and the accumulation of extracellular compounds in the degradation system suggest that low availability of micellar fluoranthene is not the only factor controlling surfactant-enhanced biodegradation. Also factors such as the extent of accumulation and bioavailability of the PAH metabolites and the crystalline solubilization rate in the presence of surfactants may determine the overall effect of surfactant-enhanced biodegradation of high molecular weight PAHs.« less

  19. Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media

    NASA Astrophysics Data System (ADS)

    Yang, X.; Zhong, H.; Zhang, H.; Brusseau, M. L.

    2016-12-01

    Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous mediaXin Yang1,Hua Zhong1, 2, 3 *, Hui Zhang1, Mark L Brusseau31 College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;2 School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China;3 Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721;*Corresponding author, E-mail: zhonghua@hnu.edu.cn, Tel: +86-731-88664182Purpose: Investigate solubilization of dodecane by monorhamnolipid at sub-CMC concentrations in porous media under dynamic flow conditions. Testify aggregate formation mechanism for the solubilization. Methods:One-dimension column experiment was implemented to test dodecane solubilization in glass beads by rhamnolipid at sub-CMC concentrations, and the effect of solubilization on the residual NAPL morphology was examined using X-ray tomography. A two-dimension flow cell was used to examine mobilization and solubilization of dodecane in quartz sand by sub-CMC rhamnolipid. The result of solubilization was compared to that of two synthetic surfactants, SDBS and Triton X-100, and a solvent, ethanol. Size, zeta potential and the morphology of particles in the effluent were also examined. Results: Results of the column and 2-D flow cell studies show enhancement of dodecane solubility by sub-CMC monorhamnolipid in the porous medium. Retention of rhamnolipid and detection of nano-size aggregates show that the solubilization is based on a sub-CMC aggregate-formation mechanism. The rhamnolipid is more efficient for the solubilization compared to the synthetic surfactants and ethanol, and significant solubilization could occur at a rhamnolipid concentration that did not cause mobilization. Conclusions:Results of the study demonstrate the aggregate-based solubilization of dodecane in porous media by rhamnolipid at sub-CMC concentrations. These results indicate a strategy of employing low

  20. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat.

    PubMed

    Kamran, Sana; Shahid, Izzah; Baig, Deeba N; Rizwan, Muhammad; Malik, Kauser A; Mehnaz, Samina

    2017-01-01

    Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 ( Pseudomonas fragi) , EPS 6 ( Pantoea dispersa) , EPS 13 ( Pantoea agglomerans) , PBS 2 ( E. cloacae) and LHRW1 ( Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO 3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS

  1. Improvement of Arbuscular Mycorrhiza Development by Inoculation of Soil with Phosphate-Solubilizing Rhizobacteria To Improve Rock Phosphate Bioavailability ((sup32)P) and Nutrient Cycling

    PubMed Central

    Toro, M.; Azcon, R.; Barea, J.

    1997-01-01

    The interactive effect of phosphate-solubilizing bacteria and arbuscular mycorrhizal (AM) fungi on plant use of soil P sources of low bioavailability (endogenous or added as rock phosphate [RP] material) was evaluated by using soil microcosms which integrated (sup32)P isotopic dilution techniques. The microbial inocula consisted of the AM fungus Glomus intraradices and two phosphate-solubilizing rhizobacterial isolates: Enterobacter sp. and Bacillus subtilis. These rhizobacteria behaved as "mycorrhiza helper bacteria" promoting establishment of both the indigenous and the introduced AM endophytes despite a gradual decrease in bacterial population size, which dropped from 10(sup7) at planting to 10(sup3) CFU g(sup-1) of dry rhizosphere soil at harvest. Dual inoculation with G. intraradices and B. subtilis significantly increased biomass and N and P accumulation in plant tissues. Regardless of the rhizobacterium strain and of the addition of RP, AM plants displayed lower specific activity ((sup32)P/(sup31)P) than their comparable controls, suggesting that the plants used P sources not available in their absence. The inoculated rhizobacteria may have released phosphate ions ((sup31)P), either from the added RP or from the less-available indigenous P sources, which were effectively taken up by the external AM mycelium. Soluble Ca deficiency in the test soil may have benefited P solubilization. At least 75% of the P in dually inoculated plants derived from the added RP. It appears that these mycorrhizosphere interactions between bacterial and fungal plant associates contributed to the biogeochemical P cycling, thus promoting a sustainable nutrient supply to plants. PMID:16535730

  2. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil.

    PubMed

    Park, Jin Hee; Bolan, Nanthi; Megharaj, Mallavarapu; Naidu, Ravi

    2011-01-30

    Lead (Pb), a highly toxic heavy metal forms stable compounds with phosphate (P). The potential of phosphate solubilizing bacteria (PSB) to immobilize Pb by enhancing solubilization of insoluble P compounds was tested in this research. Eighteen different PSB strains isolated from P amended and Pb contaminated soils were screened for their efficiency in P solubilization. The PSB isolated from P amended soils solubilized 217-479 mg/L of P while the PSB from Pb contaminated soil solubilized 31-293 mg/L of P. Stepwise multiple regression analysis and P solubility kinetics indicated that the major mechanism of P solubilization by PSB is the pH reduction through the release of organic acids. From the isolated bacteria, two PSB were chosen for Pb immobilization and these bacteria were identified as Pantoea sp. and Enterobacter sp., respectively. The PSB significantly increased P solubilization by 25.0% and 49.9% in the case of Pantoea sp., and 63.3% and 88.6% in the case of Enterobacter sp. for 200 and 800 mg/kg of rock phosphate (RP) addition, respectively, thereby enhancing the immobilization of Pb by 8.25-13.7% in the case of Pantoea sp. and 14.7-26.4% in the case of Enterobacter sp. The ability of PSB to solubilize P, promote plant growth, and immobilize Pb can be used for phytostabilization of Pb contaminated soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion.

    PubMed

    Zhang, Jian; Wang, Peng Cheng; Fang, Ling; Zhang, Qi-An; Yan, Cong Sheng; Chen, Jing Yi

    2017-03-30

    Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.

  4. Soluble arabinoxylan enhances large intestinal microbial health biomarkers in pigs fed a red meat-containing diet.

    PubMed

    Williams, Barbara A; Zhang, Dagong; Lisle, Allan T; Mikkelsen, Deirdre; McSweeney, Christopher S; Kang, Seungha; Bryden, Wayne L; Gidley, Michael J

    2016-04-01

    The aim of this study was to investigate how moderately increased dietary red meat combined with a soluble fiber (wheat arabinoxylan [AX]) alters the large intestinal microbiota in terms of fermentative end products and microbial community profiles in pigs. Four groups of 10 pigs were fed Western-type diets containing two amounts of red meat, with or without a solubilized wheat AX-rich fraction for 4 wk. After euthanasia, fermentative end products (short-chain fatty acids, ammonia) of digesta from four sections of large intestine were measured. Di-amino-pimelic acid was a measure of total microbial biomass, and bacterial profiles were determined using a phylogenetic microarray. A factorial model determined effects of AX and meat content. Arabinoxylan was highly fermentable in the cecum, as indicated by increased concentrations of short-chain fatty acids (particularly propionate). Protein fermentation end products were decreased, as indicated by the reduced ammonia and branched-chain ratio although this effect was less prominent distally. Microbial profiles in the distal large intestine differed in the presence of AX (including promotion of Faecalibacterium prausnitzii), consistent with an increase in carbohydrate versus protein fermentation. Increased di-amino-pimelic acid (P < 0.0001) suggested increased microbial biomass for animals fed AX. Solubilized wheat AX has the potential to counteract the effects of dietary red meat by reducing protein fermentation and its resultant toxic end products such as ammonia, as well as leading to a positive shift in fermentation end products and microbial profiles in the large intestine. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  5. Solubilization of active opiate receptors.

    PubMed Central

    Simonds, W F; Koski, G; Streaty, R A; Hjelmeland, L M; Klee, W A

    1980-01-01

    Receptors that reversibly bind opiates and opioid peptides have been solubilized from brain and neuroblastoma-glioma hybrid cell NG108-15 membranes. Active receptors are specifically solubilized with a new type of detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, which is a zwitterionic derivative of cholic acid. The solubilized receptor complexes behave as large molecules with a Stokes radius of 70 A and contain protein as an essential constituent. PMID:6254034

  6. Allele Surfing Promotes Microbial Adaptation from Standing Variation

    PubMed Central

    Gralka, Matti; Stiewe, Fabian; Farrell, Fred; Möbius, Wolfram; Waclaw, Bartek; Hallatschek, Oskar

    2016-01-01

    The coupling of ecology and evolution during range expansions enables mutations to establish at expanding range margins and reach high frequencies. This phenomenon, called allele surfing, is thought to have caused revolutions in the gene pool of many species, most evidently in microbial communities. It has remained unclear, however, under which conditions allele surfing promotes or hinders adaptation. Here, using microbial experiments and simulations, we show that, starting with standing adaptive variation, range expansions generate a larger increase in mean fitness than spatially uniform population expansions. The adaptation gain results from ‘soft’ selective sweeps emerging from surfing beneficial mutations. The rate of these surfing events is shown to sensitively depend on the strength of genetic drift, which varies among strains and environmental conditions. More generally, allele surfing promotes the rate of adaptation per biomass produced, which could help developing biofilms and other resource-limited populations to cope with environmental challenges. PMID:27307400

  7. Biological solubilization of low-rank coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, M.S.

    1991-07-01

    Low-ranked coals have been solubilized using cell-free extracts derived from liquid cultures of the white-rot fungus Trametes versicolor. The coal solubilizing agent (CSA) has been separated from the broth components and purified by several analytical techniques including rotary evaporation, reverse osmosis, and solvent extraction. The recrystallized CSA retains coal solubilizing activity. Results from polarography, FTIR, and x-ray crystallography confirm that the purified CSA crystals responsible for coal-solubilization are ammonium oxalate monohydrate. The mechanism of solubilization has been deduced to involve removal of divalent cations (particularly iron FE(III)) from low-rank coals. This is followed by dissolution of the macromolecular coal structure.more » 38 figs., 9 tabs.« less

  8. The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation.

    PubMed

    Maspolim, Yogananda; Zhou, Yan; Guo, Chenghong; Xiao, Keke; Ng, Wun Jern

    2015-08-01

    Sludge fermentation between pH 4 and 11 was investigated to generate volatile fatty acids (VFA). Despite the highest sludge solubilization of 25.9% at pH 11, VFA accumulation was optimized at pH 8 (12.5% out of 13.1% sludge solubilization). 454 pyrosequencing identified wide diversity of acidogens in bioreactors operated at the various pHs, with Tissierella, Petrimonas, Proteiniphilum, Levilinea, Proteiniborus and Sedimentibacter enriched and contributing to the enhanced fermentation at pH 8. Hydrolytic enzymatic assays determined abiotic effect to be the leading cause for improved solubilization under high alkaline condition but the environmental stress at pH 9 and above might lead to disrupt biological activities and eventually VFA production. Furthermore, molecular weight (MW) characterization of the soluble fractions found large MW aromatic substances at pH 9 and above, that is normally associated with poor biodegradability, making them disadvantageous for subsequent bioprocesses. The findings provided information to better understand and control sludge fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya.

    PubMed

    Pandey, Anita; Trivedi, Pankaj; Kumar, Bhavesh; Palni, Lok Man S

    2006-08-01

    The morphological, biochemical, and physiological characteristics of a phosphate solubilizing and antagonistic bacterial strain, designated as B0, isolated from a sub-alpine Himalayan forest site have been described. The isolate is gram negative, rod shaped, 0.8 x 1.6 microm in size, and psychrotrophic in nature that could grow from 0 to 35 degrees C (optimum temp. 25 degrees C). It exhibited tolerance to a wide pH range (3-12; optimum 8.0) and salt concentration up to 4% (w/v). Although it was sensitive to kanamycin, gentamicin, and streptomycin (<10 microg mL(-1)), it showed resistance to higher concentrations of ampicillin, penicillin, and carbenicillin (>1000 microg mL(-1)). The isolate showed maximum similarity with Pseudomonas putida based on 16S rRNA analysis. It solubilized tricalcium phosphate under in vitro conditions. The phosphate solubilization was estimated along a temperature range (4-28 degrees C), and maximum activity (247 microg mL(-1)) was recorded at 21 degrees C after 15 days of incubation. The phosphate solubilizing activity coincided with a concomitant decrease in pH of the medium. The isolate also exhibited antifungal activity against phytopathogenic fungi in Petri dish assays and produced chitinase, ss-l,3-glucanase, salicylic acid, siderophore, and hydrogen cyanide. The plant growth promotion and antifungal properties were demonstrated through a maize-based bioassay under greenhouse conditions. Although the bacterial inoculation was found to result in significant increment in plant biomass, it stimulated bacterial and suppressed fungal counts in the rhizosphere. The present study is important with respect to enumerating microbial diversity of the colder regions as well as understanding the potential biotechnological applications of native microbes.

  10. [Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing bacteria strain D2 (Pantoea sp.)in rhizosphere of Pinus tabuliformis in iron tailings yard.

    PubMed

    Wang, Jun Juan; Yan, Ai Hua; Wang, Wei; Li, Ji Quan; Li, Yu Ling

    2016-11-18

    Two strains of phosphate-solubilizing bacteria were isolated from the rhizosphere of Pinus tabuliformis in iron tailings vegetation restoration areas in Malan Town, Qianan City, Hebei Pro-vince. The bacterial strain D2 with strong phosphate-solubilizing capacity was obtained via screening with plate and shake flask. Based on the morphology, physiology and biochemistry, and the sequence analysis of 16S rDNA, the D2 was identified as a member of Pantoea sp. A fermentation experiment was conducted to investigate the effect of carbon and nitrogen sources on the phosphate-solubilizing capacity of the strain D2; under different nitrogen sources, the organic acids in liquid culture, as well as their types and contents were determined by high performance liquid chromatography. The results showed that the strain D2 was capable of efficiently solubilizing tricalcium phosphate, and the highest value of available phosphorus was up to 392.13 mg·L -1 in liquid culture. The strain D2 displayed the strongest phosphate-solubilizing capability when glucose and ammonium sulfate were used as carbon and nitrogen sources in the culture media, respectively. Under varied nitrogen sources, the resulting organic acids and their types and contents were different. When the nitrogen source in culture media was ammonium sulfate, ammonium chloride, potassium nitrate, sodium nitrate or ammonium nitrate, all four organic acids, including oxalic acid, formic acid, acetic acid and citric acid, were produced. In addition, malic acid was uniquely produced when ammonium sulfate, ammonium chloride or ammonium nitrate was used as the nitrogen source. By Pearson's correlation analysis, a significant positive correlation between the acetic acid content and the available phosphorus content was found (r=0.886, P<0.05), suggesting that acetic acid produced by strain D2 played an important role in promoting inorganic phosphorus dissolution, which was most likely to be one of the important phosphate-solubilizing

  11. High-Melting Lipid Mixtures and the Origin of Detergent-Resistant Membranes Studied with Temperature-Solubilization Diagrams

    PubMed Central

    Sot, Jesús; Manni, Marco M.; Viguera, Ana R.; Castañeda, Verónica; Cano, Ainara; Alonso, Cristina; Gil, David; Valle, Mikel; Alonso, Alicia; Goñi, Félix M.

    2014-01-01

    The origin of resistance to detergent solubilization in certain membranes, or membrane components, is not clearly understood. We have studied the solubilization by Triton X-100 of binary mixtures composed of egg sphingomyelin (SM) and either ceramide, diacylglycerol, or cholesterol. Solubilization has been assayed in the 4–50°C range, and the results are summarized in a novel, to our knowledge, form of plots, that we have called temperature-solubilization diagrams. Despite using a large detergent excess (lipid/detergent 1:20 mol ratio) and extended solubilization times (24–48 h) certain mixtures were not amenable to Triton X-100 solubilization at one or more temperatures. DSC of all the lipid mixtures, and of all the lipid + detergent mixtures revealed that detergent resistance was associated with the presence of gel domains at the assay temperature. Once the system melted down, solubilization could occur. In general adding high-melting lipids limited the solubilization, whereas the addition of low-melting lipids promoted it. Lipidomic analysis of Madin-Darby canine kidney cell membranes and of the corresponding detergent-resistant fraction indicated a large enrichment of the nonsolubilized components in saturated diacylglycerol and ceramide. SM-cholesterol mixtures were special in that detergent solubilization was accompanied, for certain temperatures and compositions, by an independent phenomenon of reassembly of the partially solubilized lipid bilayers. The temperature at which lysis and reassembly prevailed was ∼25°C, thus for some SM-cholesterol mixtures solubilization occurred both above and below 25°C, but not at that temperature. These observations can be at the origin of the detergent resistance effects observed with cell membranes, and they also mean that cholesterol-containing detergent-resistant membrane remnants cannot correspond to structures existing in the native membrane before detergent addition. PMID:25517149

  12. Preparation and Cyclodextrin Solubilization of the Antibacterial Agent Benzoyl Metronidazole

    PubMed Central

    Yang, Shuo

    2013-01-01

    A one-pot method for the preparation of benzoyl metronidazole was achieved by using N,N′-carbonyldiimidazole as a coupling reagent. Moreover, it was found that the byproduct imidazole as the catalyst promoted the reaction. In addition, the β-cyclodextrin solubilization of benzoyl metronidazole was investigated by phase-solubility method. The phase-solubility studies indicated that the solubility of benzoyl metronidazole (S = 0.1435 g/L) was substantially increased 9.7-fold (S′ = 1.3881 g/L) by formation of 1 : 1 benzoyl metronidazole/β-cyclodextrin complexes in water, and the association constant K a value was determined to be 251 (±23) dm3/mol. Therefore, β-cyclodextrin can work as a pharmaceutical solubilizer for benzoyl metronidazole and may improve its oral bioavailability. PMID:23970831

  13. Sewage sludge solubilization by high-pressure homogenization.

    PubMed

    Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Fang, Wei; Ma, Boqiang; Xu, Xiangzhe

    2013-01-01

    The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.

  14. Microbial liquefaction of peat for the production of synthetic fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunasekaran, M.

    1988-01-01

    Objectives of this study were: to evaluate the potential of using various microorganisms to hydrolyse and liquify peat; to determine the optimal conditions for peat hydrolysis and liquefaction; to study the co-metabolizable substances; to separate the compounds present in liquified peat by alumina and silica acid chromatography and capillary gas chromatography; and to identify the compounds in liquified peat by capillary GC-Mass spectrometry. Organisms used in the study include: Coprinus comatus, Coriolus hirsutus, Ganoderma lucidum, Lentinus edodes, Lenzites trabea, Phanerochaete chrysosporium, Pleurotus ostreatus, P. sapidus, Polyporus adjustus, Neurospora sitophila, Rhizophus arrhizus, Bacillus subtilis, Acinetobacter sp. and Alcaligenes sp. The fungimore » were maintained and cultivated in potato dextrose agar at 30 C. The bacteria were maintained in nutrient agar at 30 C. We have also initiated work on coal solubilization in addition to the studies on peat liquefaction. A relatively new substratum or semi-solid base for culture media called Pluronic F-127, or Polyol (BASF, New Jersey). Objectives of this study were: (1) to study the growth patterns of Candida ML 13 on pluronic as substratum; (2) to determine the rate of microbial coal solubilization on pluronic F-127 amended in different growth media; (3) to separate the mycelial mat of Candida ML 13 from unsolubilized coal particles and solubilized coal products from pluronic F-127; (4) to determine the effects of pH on microbial coal solubilization in pluronic F-127 media; (5) the effect of concentration of pluronic F-127 in media on coal solubilization; and, (6) to study the role of extracellular factors secreted by Candida ML 13 on coal solubilization in pluronic F-127 media. Results are discussed. 4 refs.« less

  15. Long-Term Rock Phosphate Fertilization Impacts the Microbial Communities of Maize Rhizosphere

    PubMed Central

    Silva, Ubiana C.; Medeiros, Julliane D.; Leite, Laura R.; Morais, Daniel K.; Cuadros-Orellana, Sara; Oliveira, Christiane A.; de Paula Lana, Ubiraci G.; Gomes, Eliane A.; Dos Santos, Vera L.

    2017-01-01

    Phosphate fertilization is a common practice in agriculture worldwide, and several commercial products are widely used. Triple superphosphate (TSP) is an excellent soluble phosphorus (P) source. However, its high cost of production makes the long-term use of crude rock phosphate (RP) a more attractive alternative in developing countries, albeit its influence on plant-associated microbiota remains unclear. Here, we compared long-term effects of TSP and RP fertilization on the structure of maize rhizosphere microbial community using next generation sequencing. Proteobacteria were dominant in all conditions, whereas Oxalobacteraceae (mainly Massilia and Herbaspirillum) was enriched in the RP-amended soil. Klebsiella was the second most abundant taxon in the RP-treated soil. Burkholderia sp. and Bacillus sp. were enriched in the RP-amended soil when compared to the TSP-treated soil. Regarding fungi, Glomeromycota showed highest abundance in RP-amended soils, and the main genera were Scutellospora and Racocetra. These taxa are already described as important for P solubilization/acquisition in RP-fertilized soil. Maize grown on TSP and RP-treated soil presented similar productivity, and a positive correlation was detected for P content and the microbial community of the soils. The results suggest changes of the microbial community composition associated to the type of phosphate fertilization. Whilst it is not possible to establish causality relations, our data highlights a few candidate taxa that could be involved in RP solubilization and plant growth promotion. Moreover, this can represent a shorter path for further studies aiming the isolation and validation of the taxa described here concerning P release on the soil plant system and their use as bioinoculants. PMID:28744264

  16. Liquefaction/solubilization of low-rank Turkish coals by white-rot fungus (Phanerochaete chrysosporium)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.

    2006-08-15

    Microbial coal liquefaction/solubilization of three low-rank Turkish coals (Bursa-Kestelek, Kutahya-Seyitomer and Mugla-Yatagan lignite) was attempted by using a white-rot fungus (Phanerochaete chrysosporium DSM No. 6909); chemical compositions of the products were investigated. The lignite samples were oxidized by nitric acid under moderate conditions and then oxidized samples were placed on the agar medium of Phanerochaete chrysosporium. FTIR spectra of raw lignites, oxidized lignites and liquid products were recorded, and the acetone-soluble fractions of these samples were identified by GC-MS technique. Results show that the fungus affects the nitro and carboxyl/carbonyl groups in oxidized lignite sample, the liquid products obtained bymore » microbial effects are the mixture of water-soluble compounds, and show limited organic solubility.« less

  17. Efficient solubilization of inclusion bodies.

    PubMed

    Freydell, Esteban J; Ottens, Marcel; Eppink, Michel; van Dedem, Gijs; van der Wielen, Luuk

    2007-06-01

    The overexpression of recombinant proteins in Escherichia coli leads in most cases to their accumulation in the form of insoluble aggregates referred to as inclusion bodies (IBs). To obtain an active product, the IBs must be solubilized and thereafter the soluble monomeric protein needs to be refolded. In this work we studied the solubilization behavior of a model-protein expressed as IBs at high protein concentrations, using a statistically designed experiment to determine which of the process parameters, or their interaction, have the greatest impact on the amount of soluble protein and the fraction of soluble monomer. The experimental methodology employed pointed out an optimum balance between maximum protein solubility and minimum fraction of soluble aggregates. The optimized conditions solubilized the IBs without the formation of insoluble aggregates; moreover, the fraction of soluble monomer was approximately 75% while the fraction of soluble aggregates was approximately 5%. Overall this approach guarantees a better use of the solubilization reagents, which brings an economical and technical benefit, at both large and lab scale and may be broadly applicable for the production of recombinant proteins.

  18. Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.

    1996-01-01

    The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.

  19. Pretreatment of piggery wastewater by a stable constructed microbial consortium for improving the methane production.

    PubMed

    Cai, Jian; Mo, Xiwei; Cheng, Guojun; Du, Dongyun

    2015-01-01

    A stable aerobic microbial consortium, established by successive subcultivation, was employed to solubilize the solid organic fraction in swine wastewater. In the 30 days' successive biological pretreatments, 30-38% of volatile solids and 19-28% total solids in raw slurry were solubilized after 10 hours at 37 °C. Meanwhile, soluble chemical oxygen demand (COD) and volatile fatty acid increased by 48%-56% and 600%-750%, respectively. Furthermore, the molecular microbial profile of the consortium in successive pretreatment was conducted by denaturing gradient gel electrophoresis (DGGE). The results indicated that bacterial species of the consortium rapidly overgrew the indigenous microbial community of raw water, and showed a stable predominance at the long-term treatment. As a consequence of biological pretreatment, pretreatment shortened digestion time by 50% and increased biogas production by 45% compared to raw water in the anaerobic process. The microbial consortium constructed herein is a potential candidate consortium for biological pretreatment of swine wastewater to enhance biogas production.

  20. Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil.

    PubMed

    Gupta, Pratishtha; Kumar, Vipin; Usmani, Zeba; Rani, Rupa; Chandra, Avantika

    2018-02-01

    In this study, an effort was made to identify an efficient phosphate solubilizing bacterial strain from chromium contaminated agricultural soils. Based on the formation of a solubilized halo around the colonies on Pikovskaya's agar amended with chromium (VI), 10 strains were initially screened out. Out of 10, strain CPSB4, which showed significantly high solubilization zone at different chromium concentrations, was selected for further study. The strain CPSB4 showed significant plant growth promotion traits with chromium (VI) stress under in-vitro conditions in broth. The plant growth promotion activities of the strain decreased regularly, but were not completely lost with the increase in concentration of chromium up to 200 mg L -1 . On subjected to FT-IR analysis, the presence of the functional group, indicating the organic acid aiding in phosphate solubilization was identified. At an optimal temperature of 30  ° C and pH 7.0, the strain showed around 93% chromium (VI) reduction under in-vitro conditions in broth study. In soil condition, the maximum chromium (VI) reduction obtained was 95% under in-vitro conditions. The strain CPSB4 was identified as Klebsiella sp. on the basis of morphological, biochemical and 16S rRNA gene sequencing. This study shows that the diverse role of the bacterial strain CPSB4 would be useful in the chromium contaminated soil as a good bioremediation and plant growth promoting agent as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Reductive solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and temperature.

    PubMed

    Simmler, Michael; Bommer, Jérôme; Frischknecht, Sarah; Christl, Iso; Kotsev, Tsvetan; Kretzschmar, Ruben

    2017-12-01

    Mining activities have contaminated many riverine floodplains with arsenic (As). When floodplain soils become anoxic under water-saturated conditions, As can be released from the solid phase. Several microbially-driven As solubilization processes and numerous influential factors were recognized in the past. However, the interplay and relative importance of soil properties and the influence of environmental factors such as temperature remain poorly understood, especially considering the (co)variation of soil properties in a floodplain. We conducted anoxic microcosm experiments at 10, 17.5, and 25 °C using 65 representative soils from the mining-impacted Ogosta River floodplain in Bulgaria. To investigate the processes of As solubilization and its quantitative variation we followed the As and Fe redox dynamics in the solid and the dissolved phase and monitored a range of other solution parameters including pH, Eh, dissolved organic C, and dissolved Mn. We related soil properties to dissolved As observed after 20 days of microcosm incubation to identify key soil properties for As solubilization. Our results evidenced reductive dissolution of As-bearing Fe(III)-oxyhydroxides as the main cause for high solubilization. The availability of nutrients, most likely organic C as the source of energy for microorganisms, was found to limit this process. Following the vertical nutrient gradient common in vegetated soil, we observed several hundred μM dissolved As after 1-2 weeks for some topsoils (0-20 cm), while for subsoils (20-40 cm) with comparable total As levels only minor solubilization was observed. While high Mn contents were found to inhibit As solubilization, the opposite applied for higher temperature (Q 10 2.3-6.1 for range 10-25 °C). Our results suggest that flooding of nutrient-rich surface layers might be more problematic than water-saturation of nutrient-poor subsoil layers, especially in summer floodings when soil temperature is higher than in winter or

  2. Pesticide tolerant and phosphorus solubilizing Pseudomonas sp. strain SGRAJ09 isolated from pesticides treated Achillea clavennae rhizosphere soil.

    PubMed

    Rajasankar, R; Manju Gayathry, G; Sathiavelu, A; Ramalingam, C; Saravanan, V S

    2013-05-01

    In this study, an attempt was made to identify an effective phosphate solubilizing bacteria from pesticide polluted field soil. Based on the formation of solubilization halo on Pikovskaya's agar, six isolates were selected and screened for pesticide tolerance and phosphate (P) solubilization ability through liquid assay. The results showed that only one strain (SGRAJ09) obtained from Achillea clavennae was found to tolerate maximum level of the pesticides tested and it was phylogenetically identified as Pseudomonas sp. It possessed a wide range of pesticide tolerance, ranging from 117 μg mL(-1) for alphamethrin to 2,600 μg mL(-1) for endosulfan. The available P concentrations increased with the maximum and double the maximum dose of monocrotophos and imidacloprid, respectively. On subjected to FT-IR and HPLC analysis, the presence of organic acids functional group in the culture broth and the production of gluconic acid as dominant acid aiding the P solubilization were identified. On comparison with control broth, monocrotophos and imidacloprid added culture broth showed quantitatively high organic acids production. In addition to gluconic acid production, citric and acetic acids were also observed in the pesticide amended broth. Furthermore, the Pseudomonas sp. strain SGRAJ09 possessed all the plant growth promoting traits tested. In presence of monocrotophos and imidacloprid, its plant growth promoting activities were lower than that of the pesticides unamended treatment.

  3. Recent progress in cell-free solubilization of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, M.S.; Aronson, H.; Feldman, K.

    1988-01-01

    Low rank coal has been solubilized using cell-free filtrates separated from cultures of Polyporus versicolor. Solubilization has been obtained with neat filtrates and with fractions collected from the neat filtrates after gel permeation chromatography. The coal solubilizing enzymes have been collected in enriched fractions with gpc. This increased relative purity has allowed the determination of the average molecular weight of this enzyme by gel permeation chromatography and by polyacrylamide gel electrophoresis. Rates of coal solubilization are dependent on the size of coal particles, mass of coal, temperature, pH, concentration of the cell-free filtrate, and the concentration of several inorganic ions.

  4. Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system.

    PubMed

    Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei

    2017-06-01

    A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.

  5. Solubilization and purification of melatonin receptors from lizard brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.

    Melatonin receptors in lizard brain were identified and characterized using {sup 125}I-labeled melatonin (({sup 125}I)MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resultedmore » in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.« less

  6. Solubilization and purification of melatonin receptors from lizard brain.

    PubMed

    Rivkees, S A; Conron, R W; Reppert, S M

    1990-09-01

    Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.

  7. Solubilization of poorly water-soluble drug carbamezapine in pluronic micelles: effect of molecular characteristics, temperature and added salt on the solubilizing capacity.

    PubMed

    Kadam, Yogesh; Yerramilli, Usha; Bahadur, Anita

    2009-08-01

    The solubilization of a poorly water-soluble antiepileptic drug, carbamazepine (CBZ), in a series of micelle-forming PEO-PPO-PEO block copolymers with combinations of blocks having different molecular weight was studied. The drug solubility and micelle-water partition coefficient (P) were determined using UV-vis spectroscopy. Dynamic light scattering on copolymer solutions was used to measure size and polydispersity of nanoaggregates. Solubilization of carbamezapine increased with the rise in temperature and concentration of block copolymers, but no significant increase was observed with added salt (NaCl). The solubilization is also discussed from a thermodynamics viewpoint, by considering the standard free energy of solubilization (DeltaG degrees ).

  8. Haloarchaea Endowed with Phosphorus Solubilization Attribute Implicated in Phosphorus Cycle

    PubMed Central

    Yadav, Ajar Nath; Sharma, Divya; Gulati, Sneha; Singh, Surender; Dey, Rinku; Pal, Kamal Krishna; Kaushik, Rajeev; Saxena, Anil Kumar

    2015-01-01

    Archaea are unique microorganisms that are present in ecological niches of high temperature, pH and salinity. A total of 157 archaea were obtained from thirteen sediment, water and rhizospheric soil samples collected from Rann of Kutch, Gujarat, India. With an aim to screen phosphate solubilizing archaea, a new medium was designed as Haloarchaea P Solubilization (HPS) medium. The medium supported the growth and P solubilization activity of archaea. Employing the HPS medium, twenty isolates showed the P-solubilization. Phosphate solubilizing archaea were identified as seventeen distinct species of eleven genera namely Haloarcula, Halobacterium, Halococcus, Haloferax, Halolamina, Halosarcina, Halostagnicola, Haloterrigena, Natrialba, Natrinema and Natronoarchaeum. Natrinema sp. strain IARI-WRAB2 was identified as the most efficient P-solubilizer (134.61 mg/L) followed by Halococcus hamelinensis strain IARI-SNS2 (112.56 mg/L). HPLC analysis detected seven different kinds of organic acids, namely: gluconic acid, citric acid, formic acid, fumaric acid succinic acid, propionic acid and tartaric acid from the cultures of these isolates. These phosphate solubilizing halophilic archaea may play a role in P nutrition to vegetation growing in these hypersaline soils. This is the first report for these haloarchaea to solubilize considerable amount of P by production of organic acids and lowering of pH. PMID:26216440

  9. Survival of Escherichia coli after isoelectric solubilization and precipitation of fish protein.

    PubMed

    Lansdowne, L R; Beamer, S; Jaczynski, J; Matak, K E

    2009-07-01

    Protein recovery for fish processing by-products utilizes extreme pH shifts for isoelectric solubilization and precipitation. The purpose of this study was to determine if Escherichia coli would survive exposure to the extreme pH shifts during the protein recovery process. Fresh rainbow trout were beheaded, gutted, and minced and then inoculated with approximately 10(9) CFU of E. coli ATCC 25922 per g, homogenized, and brought to the target pH of 2.0, 3.0, 11.5, or 12.5 by the addition of concentrated hydrochloric acid or sodium hydroxide to solubilize muscle proteins. The homogenate was blended and centrifuged to separate the lipid and insoluble components (bones, skin, insoluble protein, etc.) from the protein solution. The protein solution was subjected to a second pH shift (pH 5.5) resulting in protein precipitation that was recovered with centrifugation. Microbial analysis was conducted on each fraction (i.e., lipid, insoluble components, protein, and water) with selective and nonselective media. The sums of the surviving E. coli in these fractions were compared with the initial inoculum. The greatest total microbial reduction occurred when the pH was shifted to 12.5 (P < 0.05), i.e., a 4.4-log reduction of cells on nonselective media and a 6.0-log reduction of cells on selective media. The use of selective and nonselective media showed that there was significant (P < 0.05) injury sustained by cells exposed to alkaline treatment (pH 11.5 and 12.5) in all fractions except the insoluble fraction at pH 11.5. Increasing the exposure time or the pH may result in greater bacterial reductions in the recovered protein.

  10. Limiting solubilizing capacity of some nonionic surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, L.S.C.

    1980-12-01

    This report gives an account of the attempts to solubilize corn oil. A fixed quantity of corn oil or oily dispersion containing corn oil and a sorbitan ester was added to a series of 25 ml of polysorbate solutions of increasing concentration. This investigation showed that corn oil is not solubilized by either aqueous solutions of polyoxyethylene sorbitan esters or by a combination of these surfactants with sorbitan esters. The findings suggest that nonionic surfactants of the polyoxyethylene sorbitan ester type as well as the sorbitan esters have limiting capacities to solubilize extremely hydrophobic substances such as corn oil. 19more » references.« less

  11. Effect of the herbicides oxadiazon and oxyfluorfen on phosphates solubilizing microorganisms and their persistence in rice fields.

    PubMed

    Das, Amal Chandra; Debnath, Anjan; Mukherjee, Debatosh

    2003-10-01

    A field experiment has been conducted with two herbicides viz. oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at rates of 0.4 and 0.12 kg a.i. ha(-1), respectively, to investigate their effect on the growth and activities of phosphate solubilizing microorganisms in relation to availability of phosphorus as well as persistence of the herbicides in the rhizosphere soil of wetland rice (Oryza sativa L. variety IR-36). Application of herbicides stimulated the population and activities of phosphate solubilizing microorganisms and also the availability of phosphorus in the rhizosphere soil. Oxyfluorfen provided greater microbial stimulation than oxadiazon. Dissipation of oxyfluorfen and oxadiazon followed first order reaction kinetics with half-life (T(1/2)) of 8.8 and 12 days, respectively. Sixty days after application 0.5% and 3% of the applied oxadiazon and oxyfluorfen residues persisted, respectively, in the rhizosphere soil of rice.

  12. Potential of wheat bran to promote indigenous microbial enhanced oil recovery.

    PubMed

    Zhan, Yali; Wang, Qinghong; Chen, Chunmao; Kim, Jung Bong; Zhang, Hongdan; Yoza, Brandon A; Li, Qing X

    2017-06-01

    Microbial enhanced oil recovery (MEOR) is an emerging oil extraction technology that utilizes microorganisms to facilitate recovery of crude oil in depleted petroleum reservoirs. In the present study, effects of wheat bran utilization were investigated on stimulation of indigenous MEOR. Biostimulation conditions were optimized with the response surface methodology. The co-application of wheat bran with KNO 3 and NH 4 H 2 PO 4 significantly promoted indigenous MEOR (IMEOR) and exhibited sequential aerobic (O-), facultative (A n -) and anaerobic (A 0 -) metabolic stages. The surface tension of fermented broth decreased by approximately 35%, and the crude oil was highly emulsified. Microbial community structure varied largely among and in different IMEOR metabolic stages. Pseudomonas sp., Citrobacter sp., and uncultured Burkholderia sp. dominated the O-, A n - and early A 0 -stages. Bacillus sp., Achromobacter sp., Rhizobiales sp., Alcaligenes sp. and Clostridium sp. dominated the later A 0 -stage. This study illustrated occurrences of microbial community succession driven by wheat bran stimulation and its industrial potential.

  13. Enhancement of maize growth and alteration of the rhizosphere microbial community by phosphate-solubilizing fungus Aspergillus aculeatus P93

    USDA-ARS?s Scientific Manuscript database

    Over-application of phosphatic fertilizers has adversely impacted agricultural sustainability and the environment in China and other regions of the world resulting in the need for alternative strategies, such as the use of phosphate-solubilizing microbes. Aspergillus aculeatus P93, isolated from th...

  14. Phosphate Solubilization Potentials of Rhizosphere Isolates from Central Anatolia (Turkey)

    NASA Astrophysics Data System (ADS)

    Ogut, M.; Er, F.

    2009-04-01

    Plant available-phosphorus (P) is usually low in Anatolian soils due mainly to the precipitation as calcium (Ca) and magnesium (Mg) phosphates in alkaline conditions. Phosphate solubilizing microorganisms (PSM) can enhance plant P-availability by dissolving the hardly soluble-P within the rhizosphere, which is the zone that surrounds the plant roots. PSM's can be used as seed- or soil-inocula to increase plant P-uptake and the overall growth. A total of 162 PSM's were isolated from the rhizosphere of wheat plants excavated from different fields located along a 75 km part of a highway in Turkey. The mean, the standart deviation, and the median for solubilized-P (ppm) in a 24 h culture in a tricalcium phosphate broth were 681, 427, and 400 for glucose; 358, 266, and 236 for sucrose; and 102, 117, and 50 for starch, respectively. There was not a linear relationship between the phosphate solubilized in the liquid cultures and the solubilization index obtained in the Pikovskaya's agar. Nine isolates representing both weak and strong solubilizers [Bacillus megaterium (5), Bacillus pumilis (1), Pseudomonas syringae pv. phaseolica (1), Pseudomonas fluorescens (1), Arthrobacter aurescens (1) as determined by the 16S rRNA gene sequence analysis] were further studied in a five day incubation. Pseudomonas syringae pv. phaseolica solubilized statistically (P<0.05) higher phosphate (409 ppm) than all the other strains did. There was not a statistically significant (P<0.05) difference in solubilized-P among the Bacillus strains. The pH of the medium fell to the levels between 4 and 5 from the initial neutrality. The phosphate solubilizing strains variably produced gluconic, 2-keto-D-gluconic, glycolic, acetic and butyric acids. The organic acids produced by these microorganisms seem to be the major source of phosphate solubilization in vitro.

  15. Physical characterization and antioxidant activity of thymol solubilized Tween 80 micelles

    PubMed Central

    Deng, Ling-Li; Taxipalati, Maierhaba; Que, Fei; Zhang, Hui

    2016-01-01

    Attempts were made to solubilize thymol in Tween 80 micelle to study the solubilization mechanism of thymol and the effect of solubilization on its antioxidant activity. The maximum solubilized concentration of thymol in a 2.0% (w/v) Tween 80 micelle solution is 0.2 wt%. There was no significant difference in Z-average diameter between the empty micelles and thymol solubilized micelles. 1H NMR spectra indicated that 3-H and 4-H on the benzene ring of thymol interacted with the ester group between the hydrophilic head group and the hydrophobic tail group of Tween 80 by Van der Waals’ force. Ferric reducing antioxidant potential (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) assays showed that the reducing antioxidant activity of free thymol did not change after solubilized in Tween 80 micelles. Compared to free thymol, the solubilized thymol showed higher activities to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radicals. The present study suggested a possible preparation of thymol-carrying micelles with enhanced antioxidant activities that could be applied in food beverages. PMID:27905567

  16. Physical characterization and antioxidant activity of thymol solubilized Tween 80 micelles.

    PubMed

    Deng, Ling-Li; Taxipalati, Maierhaba; Que, Fei; Zhang, Hui

    2016-12-01

    Attempts were made to solubilize thymol in Tween 80 micelle to study the solubilization mechanism of thymol and the effect of solubilization on its antioxidant activity. The maximum solubilized concentration of thymol in a 2.0% (w/v) Tween 80 micelle solution is 0.2 wt%. There was no significant difference in Z-average diameter between the empty micelles and thymol solubilized micelles. 1 H NMR spectra indicated that 3-H and 4-H on the benzene ring of thymol interacted with the ester group between the hydrophilic head group and the hydrophobic tail group of Tween 80 by Van der Waals' force. Ferric reducing antioxidant potential (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) assays showed that the reducing antioxidant activity of free thymol did not change after solubilized in Tween 80 micelles. Compared to free thymol, the solubilized thymol showed higher activities to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radicals. The present study suggested a possible preparation of thymol-carrying micelles with enhanced antioxidant activities that could be applied in food beverages.

  17. Physical characterization and antioxidant activity of thymol solubilized Tween 80 micelles

    NASA Astrophysics Data System (ADS)

    Deng, Ling-Li; Taxipalati, Maierhaba; Que, Fei; Zhang, Hui

    2016-12-01

    Attempts were made to solubilize thymol in Tween 80 micelle to study the solubilization mechanism of thymol and the effect of solubilization on its antioxidant activity. The maximum solubilized concentration of thymol in a 2.0% (w/v) Tween 80 micelle solution is 0.2 wt%. There was no significant difference in Z-average diameter between the empty micelles and thymol solubilized micelles. 1H NMR spectra indicated that 3-H and 4-H on the benzene ring of thymol interacted with the ester group between the hydrophilic head group and the hydrophobic tail group of Tween 80 by Van der Waals’ force. Ferric reducing antioxidant potential (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) assays showed that the reducing antioxidant activity of free thymol did not change after solubilized in Tween 80 micelles. Compared to free thymol, the solubilized thymol showed higher activities to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radicals. The present study suggested a possible preparation of thymol-carrying micelles with enhanced antioxidant activities that could be applied in food beverages.

  18. PCE solubilization and mobilization by commercial humic acid

    NASA Astrophysics Data System (ADS)

    Johnson, William P.; John, W. Wynn

    1999-01-01

    In this paper, comparison is made of terms describing solubilization of hydrophobic organic compounds (HOC) by dissolved humic substances (DHS) and commercial non-ionic surfactants. This paper examines the ability of a commercial humic acid (Aldrich humic acid) to solubilize and mobilize tetrachlorothene (PCE) residual in porous media. The constant for solubilization of PCE by Aldrich humic acid is shown to be a factor of two to thirty times less than that published for dodecyl alcohol ethoxylate surfactants, showing that Aldrich humic acid is less capable than some non-ionic surfactants at solubilizing residual PCE. The depression of PCE-water interfacial tension in the presence of DHS is shown to be significantly less than published values for a non-ionic surfactant, and surfactant mixtures, indicating that the DHS used in this study is less prone to cause mobilization of non-aqueous phase liquids relative to surfactants. Several possible advantages of DHS use in the remediation of subsurface media contaminated with HOC are described, including the ability of DHS to solubilize HOC irrespective of the DHS concentration, and potential lesser tendency of DHS to depress the interfacial tension between non-aqueous phases and water relative to surfactants (an advantage when mobilization is undesired).

  19. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin

    PubMed Central

    Kim, Hyeun Bum; Borewicz, Klaudyna; White, Bryan A.; Singer, Randall S.; Sreevatsan, Srinand; Tu, Zheng Jin; Isaacson, Richard E.

    2012-01-01

    Antimicrobials have been used extensively as growth promoters (AGPs) in agricultural animal production. However, the specific mechanism of action for AGPs has not yet been determined. The work presented here was to determine and characterize the microbiome of pigs receiving one AGP, tylosin, compared with untreated pigs. We hypothesized that AGPs exerted their growth promoting effect by altering gut microbial population composition. We determined the fecal microbiome of pigs receiving tylosin compared with untreated pigs using pyrosequencing of 16S rRNA gene libraries. The data showed microbial population shifts representing both microbial succession and changes in response to the use of tylosin. Quantitative and qualitative analyses of sequences showed that tylosin caused microbial population shifts in both abundant and less abundant species. Our results established a baseline upon which mechanisms of AGPs in regulation of health and growth of animals can be investigated. Furthermore, the data will aid in the identification of alternative strategies to improve animal health and consequently production. PMID:22955886

  20. Cocrystal Transition Points: Role of Cocrystal Solubility, Drug Solubility, and Solubilizing Agents.

    PubMed

    Lipert, Maya P; Rodríguez-Hornedo, Naír

    2015-10-05

    In this manuscript we bring together concepts that are relevant to the solubilization and thermodynamic stability of cocrystals in the presence of drug solubilizing agents. Simple equations are derived that allow calculation of cocrystal solubilization and transition point solubility. Analysis of 10 cocrystals in 6 different solubilizing agents shows that cocrystal solubilization is quantitatively predicted from drug solubilization. Drug solubilizing agents such as surfactants and lipid-based media are also shown to induce cocrystal transition points, where drug and cocrystal solubilities are equal, and above which the cocrystal solubility advantage over drug is eliminated. We have discovered that cocrystal solubility at the transition point (S*) is independent of solubilizing agent, and can be predicted from knowledge of only the aqueous solubilities of drug and cocrystal. For 1:1 cocrystals, S* = (Scocrystal,aq)(2)/Sdrug,aq. S* is a key indicator of cocrystal thermodynamic stability and establishes the upper solubility limit below which cocrystal is more soluble than the constituent drug. These findings have important implications to tailor cocrystal solubility and stability in pharmaceutical formulations from commonly available drug solubility descriptors.

  1. Solubilization of bovine corpus-luteum adenylate cyclase in lubrol-PX, triton X-100 or digitonin and the stabilizing effect of sodium fluoride present in the solubilization medium.

    PubMed

    Young, J L; Stansfield, D A

    1978-09-01

    1. Adenylate cyclase activity of the washed 600g sediment of bovine corpus-luteum homogenate was solubilized by Lubrol-PX, Triton X-100 and digitonin. Digitonin was the least destructive of NaF-stimulated activity. 2. NaF, present in the solubilization medium together with MgSO4, increased the percentage yields of soluble activity from untreated 600g sediment and 600g sediment which had been preincubated with p[NH]ppG (guanosine 5'-[betagamma-imido]triphosphate). The stabilizing influence of NaF was most marked with digitonin. However, the highest specific activities of soluble enzyme were obtained with Lubrol-PX as solubilizing agent, since digitonin solubilized more membrane protein than does Lubrol-PX, and less of the activity of the digitonin-dispersed 600g sediment was recovered in the 105000g supernatant. 3. p[NH]ppG also has a stabilizing effect when present during the solubilization, but less so than NaF. 4. Both NaF and MgSO4 alone have a stabilizing effect during solubilization. The greatest amounts of soluble activity were obtained with both agents present in the solubilization medium, there being a synergistic effect.

  2. Solubilization of bovine corpus-luteum adenylate cyclase in lubrol-PX, triton X-100 or digitonin and the stabilizing effect of sodium fluoride present in the solubilization medium.

    PubMed Central

    Young, J L; Stansfield, D A

    1978-01-01

    1. Adenylate cyclase activity of the washed 600g sediment of bovine corpus-luteum homogenate was solubilized by Lubrol-PX, Triton X-100 and digitonin. Digitonin was the least destructive of NaF-stimulated activity. 2. NaF, present in the solubilization medium together with MgSO4, increased the percentage yields of soluble activity from untreated 600g sediment and 600g sediment which had been preincubated with p[NH]ppG (guanosine 5'-[betagamma-imido]triphosphate). The stabilizing influence of NaF was most marked with digitonin. However, the highest specific activities of soluble enzyme were obtained with Lubrol-PX as solubilizing agent, since digitonin solubilized more membrane protein than does Lubrol-PX, and less of the activity of the digitonin-dispersed 600g sediment was recovered in the 105000g supernatant. 3. p[NH]ppG also has a stabilizing effect when present during the solubilization, but less so than NaF. 4. Both NaF and MgSO4 alone have a stabilizing effect during solubilization. The greatest amounts of soluble activity were obtained with both agents present in the solubilization medium, there being a synergistic effect. PMID:568467

  3. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    PubMed

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  4. Application of Potential Phosphate-Solubilizing Bacteria and Organic Acids on Phosphate Solubilization from Phosphate Rock in Aerobic Rice

    PubMed Central

    Jusop, Shamshuddin; Naher, Umme Aminun; Othman, Radziah; Razi, Mohd Ismail

    2013-01-01

    A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB) and organic acids (oxalic & malic) on phosphate (P) solubilization from phosphate rock (PR) and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM), and PSB strain (Bacillus sp.) were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg−1), plant P uptake (0.78 P pot−1), and plant biomass (33.26 mg). Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g−1) compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH. PMID:24288473

  5. Visualization of Detergent Solubilization of Membranes: Implications for the Isolation of Rafts

    PubMed Central

    Garner, Ashley E.; Smith, D. Alastair; Hooper, Nigel M.

    2008-01-01

    Although different detergents can give rise to detergent-resistant membranes of different composition, it is unclear whether this represents domain heterogeneity in the original membrane. We compared the mechanism of action of five detergents on supported lipid bilayers composed of equimolar sphingomyelin, cholesterol, and dioleoylphosphatidylcholine imaged by atomic force microscopy, and on raft and nonraft marker proteins in live cells imaged by confocal microscopy. There was a marked correlation between the detergent solubilization of the cell membrane and that of the supported lipid bilayers. In both systems Triton X-100 and CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) distinguished between the nonraft liquid-disordered (ld) and raft liquid ordered (lo) lipid phases by selectively solubilizing the ld phase. A higher concentration of Lubrol was required, and not all the ld phase was solubilized. The solubilization by Brij 96 occurred by a two-stage mechanism that initially resulted in the solubilization of some ld phase and then progressed to the solubilization of both ld and lo phases simultaneously. Octyl glucoside simultaneously solubilized both lo and ld phases. These data show that the mechanism of membrane solubilization is unique to an individual detergent. Our observations have significant implications for using different detergents to isolate membrane rafts from biological systems. PMID:17933878

  6. Phosphate Solubilization and Gene Expression of Phosphate-Solubilizing Bacterium Burkholderia multivorans WS-FJ9 under Different Levels of Soluble Phosphate.

    PubMed

    Zeng, Qingwei; Wu, Xiaoqin; Wang, Jiangchuan; Ding, Xiaolei

    2017-04-28

    Phosphate-solubilizing bacteria (PSB) have the ability to dissolve insoluble phosphate and enhance soil fertility. However, the growth and mineral phosphate solubilization of PSB could be affected by exogenous soluble phosphate and the mechanism has not been fully understood. In the present study, the growth and mineral phosphate-solubilizing characteristics of PSB strain Burkholderia multivorans WS-FJ9 were investigated at six levels of exogenous soluble phosphate (0, 0.5, 1, 5, 10, and 20 mM). The WS-FJ9 strain showed better growth at high levels of soluble phosphate. The phosphate-solubilizing activity of WS-FJ9 was reduced as the soluble phosphate concentration increased, as well as the production of pyruvic acid. Transcriptome profiling of WS-FJ9 at three levels of exogenous soluble phosphate (0, 5, and 20 mM) identified 446 differentially expressed genes, among which 44 genes were continuously up-regulated when soluble phosphate concentration was increased and 81 genes were continuously down-regulated. Some genes related to cell growth were continuously up-regulated, which would account for the better growth of WS-FJ9 at high levels of soluble phosphate. Genes involved in glucose metabolism, including glycerate kinase, 2-oxoglutarate dehydrogenase, and sugar ABC-type transporter, were continuously down-regulated, which indicates that metabolic channeling of glucose towards the phosphorylative pathway was negatively regulated by soluble phosphate. These findings represent an important first step in understanding the molecular mechanisms of soluble phosphate effects on the growth and mineral phosphate solubilization of PSB.

  7. [Phosphate-solubilizing activity of aerobic methylobacteria].

    PubMed

    Agafonova, N V; Kaparullina, E N; Doronina, N V; Trotsenko, Iu A

    2014-01-01

    Phosphate-solubilizing activity was found in 14 strains of plant-associated aerobic methylobacteria belonging to the genera Methylophilus, Methylobacillus, Methylovorus, Methylopila, Methylobacterium, Delftia, and Ancyclobacter. The growth of methylobacteria on medium with methanol as the carbon and energy source and insoluble tricalcium phosphate as the phosphorus source was accompanied by a decrease in pH due to the accumulation of up to 7 mM formic acid as a methanol oxidation intermediate and by release of 120-280 μM phosphate ions, which can be used by both bacteria and plants. Phosphate-solubilizing activity is a newly revealed role of methylobacteria in phytosymbiosis.

  8. Visualization of detergent solubilization of membranes: implications for the isolation of rafts.

    PubMed

    Garner, Ashley E; Smith, D Alastair; Hooper, Nigel M

    2008-02-15

    Although different detergents can give rise to detergent-resistant membranes of different composition, it is unclear whether this represents domain heterogeneity in the original membrane. We compared the mechanism of action of five detergents on supported lipid bilayers composed of equimolar sphingomyelin, cholesterol, and dioleoylphosphatidylcholine imaged by atomic force microscopy, and on raft and nonraft marker proteins in live cells imaged by confocal microscopy. There was a marked correlation between the detergent solubilization of the cell membrane and that of the supported lipid bilayers. In both systems Triton X-100 and CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) distinguished between the nonraft liquid-disordered (l(d)) and raft liquid ordered (l(o)) lipid phases by selectively solubilizing the l(d) phase. A higher concentration of Lubrol was required, and not all the l(d) phase was solubilized. The solubilization by Brij 96 occurred by a two-stage mechanism that initially resulted in the solubilization of some l(d) phase and then progressed to the solubilization of both l(d) and l(o) phases simultaneously. Octyl glucoside simultaneously solubilized both l(o) and l(d) phases. These data show that the mechanism of membrane solubilization is unique to an individual detergent. Our observations have significant implications for using different detergents to isolate membrane rafts from biological systems.

  9. Successive range expansion promotes diversity and accelerates evolution in spatially structured microbial populations.

    PubMed

    Goldschmidt, Felix; Regoes, Roland R; Johnson, David R

    2017-09-01

    Successive range expansions occur within all domains of life, where one population expands first (primary expansion) and one or more secondary populations then follow (secondary expansion). In general, genetic drift reduces diversity during range expansion. However, it is not clear whether the same effect applies during successive range expansion, mainly because the secondary population must expand into space occupied by the primary population. Here we used an experimental microbial model system to show that, in contrast to primary range expansion, successive range expansion promotes local population diversity. Because of mechanical constraints imposed by the presence of the primary population, the secondary population forms fractal-like dendritic structures. This divides the advancing secondary population into many small sub-populations and promotes intermixing between the primary and secondary populations. We further developed a mathematical model to simulate the formation of dendritic structures in the secondary population during succession. By introducing mutations in the primary or dendritic secondary populations, we found that mutations are more likely to accumulate in the dendritic secondary populations. Our results thus show that successive range expansion can promote intermixing over the short term and increase genetic diversity over the long term. Our results therefore have potentially important implications for predicting the ecological processes and evolutionary trajectories of microbial communities.

  10. An ability of endophytic bacteria from nutgrass (cyperus rotundus) from lafau beach of north nias in producing indole acetic acid and in solubilizing phosphate

    NASA Astrophysics Data System (ADS)

    Zega, Atriani; Suryanto, Dwi; Yurnaliza

    2018-03-01

    Endophytic bacteria have taken much attention for their potency to promote plant growth. This study was aimed to isolate endophytic bacteria from nutgrass (Cyperus rotundus) and to examine their potency in producing indole acetic acid (IAA) and in solubilizing phosphate. Isolation of endophytic bacteria was done by slicing and sterilizing root, stem, and leaf sample surface with alcohol 70% and sodium hypochlorite 2%, followed by incubation of the sliced samples in nutrient agar medium. Morphological characterization and simple biochemical tests were performed on bacterial isolates. All bacterial isolates were examined for their ability to produce indole acetic acid and to solubilize phosphate. Three isolates (AZ5, AZ12 and AZ6) out of fifteen indicated the ability to produce indole acetic acid and to solubilize phosphate. IAA producing test using spectrophotometry method showed that AZ5, AZ12,and AZ6 produce more IAA with concentration of 49,91, 48,18, and 44,45 ppm, respectively. Phosphate solubilizing test using Pikovskaya agar medium showed that the three isolates were able to solubilize phosphate with index of 6.27, 3,31, and 3.41 respectively.

  11. Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita.

    PubMed

    Saravanan, V S; Kalaiarasan, P; Madhaiyan, M; Thangaraju, M

    2007-03-01

    To examine the zinc (Zn) solubilization potential and nematicidal properties of Gluconacetobacter diazotrophicus. Atomic Absorption Spectrophotometer, Differential Pulse Polarography and Gas Chromatography Coupled Mass Spectrometry were used to estimate the total Zn and Zn(2+) ions and identify the organic acids present in the culture supernatants. The effect of culture filtrate of Zn-amended G. diazotrophicus PAl5 on Meloidogyne incognita in tomato was examined under gnotobiotic conditions. Gluconacetobacter diazotrophicus PAl5 effectively solubilized the Zn compounds tested and 5-ketogluconic acid was identified as the major organic acid aiding the solubilization of zinc oxide. The presence of Zn compounds in the culture filtrates of G. diazotrophicus enhanced the mortality and reduced the root penetration of M. incognita under in vitro conditions. 5-ketogluconic acid produced by G. diazotrophicus mediated the solubilization process and the available Zn(2+) ions enhanced the nematicidal activity of G. diazotrophicus against M. incognita. Zn solubilization and enhanced nematicidal activity of Zn-amended G. diazotrophicus provides the possibility of exploiting it as a plant growth promoting bacteria.

  12. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation.

    PubMed

    Wei, Yuquan; Zhao, Yue; Shi, Mingzi; Cao, Zhenyu; Lu, Qian; Yang, Tianxue; Fan, Yuying; Wei, Zimin

    2018-01-01

    Enriched phosphate-solubilizing bacteria (PSB) agent were acquired by domesticated cultivation, and inoculated into kitchen waste composting in different stages. The effect of different treatments on organic acids production, tricalcium phosphate (TCP) solubilization and their relationship with bacterial community were investigated during composting. Our results pointed out that inoculation affected pH, total acidity and the production of oxalic, lactic, citric, succinic, acetic and formic acids. We also found a strong advantage in the solubilization of TCP and phosphorus (P) availability for PSB inoculation especially in the cooling stage. Redundancy analysis and structural equation models demonstrated inoculation by different methods changed the correlation of the bacterial community composition with P fractions as well as organic acids, and strengthened the cooperative function related to P transformation among species during composting. Finally, we proposed a possible mechanism of P solubilization with enriched PSB inoculation, which was induced by bacterial community and organic acids production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes.

    PubMed

    Kandel, Shyam L; Firrincieli, Andrea; Joubert, Pierre M; Okubara, Patricia A; Leston, Natalie D; McGeorge, Kendra M; Mugnozza, Giuseppe S; Harfouche, Antoine; Kim, Soo-Hyung; Doty, Sharon L

    2017-01-01

    Microbial communities in the endosphere of Salicaceae plants, poplar ( Populus trichocarpa ) and willow ( Salix sitchensis ), have been demonstrated to be important for plant growth promotion, protection from biotic and abiotic stresses, and degradation of toxic compounds. Our study aimed to investigate bio-control activities of Salicaceae endophytes against various soil borne plant pathogens including Rhizoctonia solani AG-8, Fusarium culmorum, Gaeumannomyces graminis var. tritici , and Pythium ultimum . Additionally, different plant growth promoting traits such as biological nitrogen fixation (BNF), indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, and siderophore production were assessed in all bio-control positive strains. Burkholderia, Rahnella, Pseudomonas , and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays. The bio-control activities of Burkholderia strains were stronger across all tested plant pathogens as compared to other stains. Genomes of sequenced Burkholderia strains WP40 and WP42 were surveyed to identify the putative genes involved in the bio-control activities. The ocf and hcnABC gene clusters responsible for biosynthesis of the anti-fungal metabolites, occidiofungin and hydrogen cyanide, are present in the genomes of WP40 and WP42. Nearly all endophyte strains showing the bio-control activities produced IAA, solubilized tricalcium phosphate, and synthesized siderophores in the culture medium. Moreover, some strains reduced acetylene into ethylene in the acetylene reduction assay, a common assay used for BNF. Salicaceae endophytes could be useful for bio-control of various plant pathogens, and plant growth promotion possibly through the mechanisms of BNF, IAA production, and nutrient acquisition.

  14. Recovery of bioactive protein from bacterial inclusion bodies using trifluoroethanol as solubilization agent.

    PubMed

    Upadhyay, Vaibhav; Singh, Anupam; Jha, Divya; Singh, Akansha; Panda, Amulya K

    2016-06-08

    Formation of inclusion bodies poses a major hurdle in recovery of bioactive recombinant protein from Escherichia coli. Urea and guanidine hydrochloride have routinely been used to solubilize inclusion body proteins, but many times result in poor recovery of bioactive protein. High pH buffers, detergents and organic solvents like n-propanol have been successfully used as mild solubilization agents for high throughput recovery of bioactive protein from bacterial inclusion bodies. These mild solubilization agents preserve native-like secondary structures of proteins in inclusion body aggregates and result in improved recovery of bioactive protein as compared to conventional solubilization agents. Here we demonstrate solubilization of human growth hormone inclusion body aggregates using 30% trifluoroethanol in presence of 3 M urea and its refolding into bioactive form. Human growth hormone was expressed in E. coli M15 (pREP) cells in the form of inclusion bodies. Different concentrations of trifluoroethanol with or without addition of low concentration (3 M) of urea were used for solubilization of inclusion body aggregates. Thirty percent trifluoroethanol in combination with 3 M urea was found to be suitable for efficient solubilization of human growth hormone inclusion bodies. Solubilized protein was refolded by dilution and purified by anion exchange and size exclusion chromatography. Purified protein was analyzed for secondary and tertiary structure using different spectroscopic tools and was found to be bioactive by cell proliferation assay. To understand the mechanism of action of trifluoroethanol, secondary and tertiary structure of human growth hormone in trifluoroethanol was compared to that in presence of other denaturants like urea and guanidine hydrochloride. Trifluoroethanol was found to be stabilizing the secondary structure and destabilizing the tertiary structure of protein. Finally, it was observed that trifluoroethanol can be used to solubilize

  15. Effects of L-arginine on solubilization and purification of plant membrane proteins.

    PubMed

    Arakawa, Junji; Uegaki, Masamichi; Ishimizu, Takeshi

    2011-11-01

    Biochemical analysis of membrane proteins is problematic at the level of solubilization and/or purification because of their hydrophobic nature. Here, we developed methods for efficient solubilization and purification of membrane proteins using L-arginine. The addition of 100 mM of basic amino acids (L-arginine, L-lysine, and L-ornithine) to a detergent-containing solubilization buffer enhanced solubilization (by 2.6-4.3 fold) of a model membrane protein-polygalacturonic acid synthase. Of all the amino acids, arginine was the most effective additive for solubilization of this membrane protein. Arginine addition also resulted in the best solubilization of other plant membrane proteins. Next, we examined the effects of arginine on purification of a model membrane protein. In anion-exchange chromatography, the addition of arginine to the loading and elution buffers resulted in a greater recovery of a membrane protein. In ultrafiltration, the addition of arginine to a protein solution significantly improved the recovery of a membrane protein. These results were thought to be due to the properties of arginine that prevent aggregation of hydrophobic proteins. Taken together, the results of our study showed that arginine is useful for solubilization and purification of aggregate-prone membrane proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer.

    PubMed

    Dominguez Pardo, Juan J; Dörr, Jonas M; Iyer, Aditya; Cox, Ruud C; Scheidelaar, Stefan; Koorengevel, Martijn C; Subramaniam, Vinod; Killian, J Antoinette

    2017-01-01

    A promising tool in membrane research is the use of the styrene-maleic acid (SMA) copolymer to solubilize membranes in the form of nanodiscs. Since membranes are heterogeneous in composition, it is important to know whether SMA thereby has a preference for solubilization of either specific types of lipids or specific bilayer phases. Here, we investigated this by performing partial solubilization of model membranes and analyzing the lipid composition of the solubilized fraction. We found that SMA displays no significant lipid preference in homogeneous binary lipid mixtures in the fluid phase, even when using lipids that by themselves show very different solubilization kinetics. By contrast, in heterogeneous phase-separated bilayers, SMA was found to have a strong preference for solubilization of lipids in the fluid phase as compared to those in either a gel phase or a liquid-ordered phase. Together the results suggest that (1) SMA is a reliable tool to characterize native interactions between membrane constituents, (2) any solubilization preference of SMA is not due to properties of individual lipids but rather due to properties of the membrane or membrane domains in which these lipids reside and (3) exploiting SMA resistance rather than detergent resistance may be an attractive approach for the isolation of ordered domains from biological membranes.

  17. The effect of steroids and nucleotides on solubilized bilirubin uridine diphosphate glucuronyltransferase

    PubMed Central

    Adlard, B. P. F.; Lathe, G. H.

    1970-01-01

    1. It was confirmed that bilirubin glucuronyltransferase can be obtained in solubilized form from rat liver microsomes. 2. Michaelis–Menten kinetics were not followed by the enzyme with bilirubin as substrate when the bilirubin/albumin ratio was varied. High concentrations of bilirubin were inhibitory. 3. The Km for UDP-glucuronic acid at the optimum bilirubin concentration was 0.46mm. 4. Low concentrations of Ca2+ were inhibitory in the absence of Mg2+ but stimulatory in its presence; the converse applied for EDTA. 5. UDP-N-acetylglucosamine and UDP-glucose enhanced conjugation by untreated, but not by solubilized microsomes. 6. The apparent 9.5-fold increase in activity after solubilization was probably due to the absence of UDP-glucuronic acid pyrophosphatase activity in the solubilized preparation. 7. The activation of solubilized enzyme activity by ATP was considered to be a result of chelation of inhibitory metal ions. 8. The solubilized enzyme activity was inhibited by UMP and UDP. The effect of UMP was not competitive with respect to UDP-glucuronic acid. 9. A number of steroids inhibited the solubilized enzyme activity. The competitive effects of stilboestrol, oestrone sulphate and 3β-hydroxyandrost-5-en-17-one, with respect to UDP-glucuronic acid, may be explained on an allosteric basis. PMID:4251180

  18. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides.

    PubMed

    Anzuay, María Soledad; Ciancio, María Gabriela Ruiz; Ludueña, Liliana Mercedes; Angelini, Jorge Guillermo; Barros, Germán; Pastor, Nicolás; Taurian, Tania

    2017-06-01

    The aims of this study were, to analyze in vitro phosphate solubilization activity of six native peanut bacteria and to determine the effect of single and mixed inoculation of these bacteria on peanut and maize plants. Ability to produce organic acids and cofactor PQQ, to solubilize FePO 4 and AlPO 4 and phosphatase activity were analyzed. Also, the ability to solubilize phosphate under abiotic stress and in the presence of pesticides of the selected bacteria was determined. The effect of single and mixed bacterial inocula was analyzed on seed germination, maize plant growth and in a crop rotation plant assay with peanut and maize. The six strains produced gluconic acid and five released cofactor PQQ into the medium. All bacteria showed ability to solubilize phosphate from FePO 4 and AlPO 4 and phosphatase activity. The ability of the bacteria to solubilize tricalcium phosphate under abiotic stress and in presence of pesticides indicated encouraging results. Bacterial inoculation on peanut and maize increased seed germination, plant́s growth and P content. Phosphate solubilizing bacteria used in this study showed efficient phosphate mineralizing and solubilization ability and would be potential P-biofertilizers for peanut and maize. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. High Microbial Diversity Promotes Soil Ecosystem Functioning.

    PubMed

    Maron, Pierre-Alain; Sarr, Amadou; Kaisermann, Aurore; Lévêque, Jean; Mathieu, Olivier; Guigue, Julien; Karimi, Battle; Bernard, Laetitia; Dequiedt, Samuel; Terrat, Sébastien; Chabbi, Abad; Ranjard, Lionel

    2018-05-01

    In soil, the link between microbial diversity and carbon transformations is challenged by the concept of functional redundancy. Here, we hypothesized that functional redundancy may decrease with increasing carbon source recalcitrance and that coupling of diversity with C cycling may change accordingly. We manipulated microbial diversity to examine how diversity decrease affects the decomposition of easily degradable (i.e., allochthonous plant residues) versus recalcitrant (i.e., autochthonous organic matter) C sources. We found that a decrease in microbial diversity (i) affected the decomposition of both autochthonous and allochthonous carbon sources, thereby reducing global CO 2 emission by up to 40%, and (ii) shaped the source of CO 2 emission toward preferential decomposition of most degradable C sources. Our results also revealed that the significance of the diversity effect increases with nutrient availability. Altogether, these findings show that C cycling in soil may be more vulnerable to microbial diversity changes than expected from previous studies, particularly in ecosystems exposed to nutrient inputs. Thus, concern about the preservation of microbial diversity may be highly relevant in the current global-change context assumed to impact soil biodiversity and the pulse inputs of plant residues and rhizodeposits into the soil. IMPORTANCE With hundreds of thousands of taxa per gram of soil, microbial diversity dominates soil biodiversity. While numerous studies have established that microbial communities respond rapidly to environmental changes, the relationship between microbial diversity and soil functioning remains controversial. Using a well-controlled laboratory approach, we provide empirical evidence that microbial diversity may be of high significance for organic matter decomposition, a major process on which rely many of the ecosystem services provided by the soil ecosystem. These new findings should be taken into account in future studies aimed at

  20. Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization.

    PubMed

    Spernath, Aviram; Yaghmur, Anan; Aserin, Abraham; Hoffman, Roy E; Garti, Nissim

    2002-11-06

    Water-dilutable food-grade microemulsions consisting of ethoxylated sorbitan esters, and in some cases blended with other emulsifiers, water, (R)-(+)-limonene, ethanol, and propylene glycol, have been prepared. These microemulsions are of growing interest to the food industry as vehicles for delivering and enhancing solubilization of natural food supplements with nutritional and health benefits. Lycopene, an active natural lipophilic antioxidant from tomato, has solubilized in water-in-oil, bicontinuous, and oil-in-water types of microemulsions up to 10 times the oil [(R)-(+)-limonene] dissolution capacity. The effects of aqueous-phase dilution, nature of surfactant (hydrophilic-lypophilic balance), and mixed surfactant on solubilization capacity and solubilization efficiency were studied. Structural aspects studied by self-diffusion NMR were correlated to the solubilization capacity, and transformational structural changes were identified.

  1. Solubilization of octane in cationic surfactant-anionic polymer complexes: Effect of ionic strength.

    PubMed

    Zhang, Hui; Deng, Lingli; Sun, Ping; Que, Fei; Weiss, Jochen

    2016-01-01

    Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effect of ionic strength on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results indicated that the CTAB binding capacity of carboxymethyl cellulose increased with increasing NaCl concentrations up to 100 mM, and the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to have a strong dependence on ionic strength. The increasing ionic strength caused the solubilization in CTAB micelles to be less endothermic or even exothermic, but increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be driven by enthalpy. It is indicated that increasing ionic strength gave rise to a larger Gibbs energy decrease but a smaller unfavorable entropy increase for octane solubilization in cationic surfactant micelles. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Solubilization of cyclohexane in aqueous solutions of sodium. cap alpha. -alkyl alkanoates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagitani, H.; Suzuki, T.; Nagai, M.

    1982-01-01

    The effect of branched alkyl chain length and the position of the COONa group on the solubilizing power of n-alkane sodium carboxylates was studied. The lipophilic property and the amount of solubilized cyclohexane increased with the branched chain length of branched soaps, and with the change of the position of the -COONa group from 3 to 7 in the alkyl chain of pentadecane -3, -5, and -7 sodium carboxylates. Alpha-branched soaps having proper branched alkyl chains were better solubilizers for cyclohexane than straight chain compounds. The amount of cyclohexane solublized by C/sub 10/ H/sub 21/ CH(C/sub 6/H/sub 13/) COONa wasmore » about three times greater than the amount solubilized by C/sub 17/ H/sub 35/ COONa. There was a marked increase in the solubilization of cyclohexane replacing ..cap alpha..-branched fatty acid soaps with optimum amount of cosurfactants such as C/sub 8/H/sub 17/ (OCH/sub 2/CH/sub 2/)/sub 2/OH. Namely, solubilization increased markedly at the optimum hydrophile-lipophile balance of mixed surfactant. 21 references.« less

  3. Solubilization of a membrane protein by combinatorial supercharging.

    PubMed

    Hajduczki, Agnes; Majumdar, Sudipta; Fricke, Marie; Brown, Isola A M; Weiss, Gregory A

    2011-04-15

    Hydrophobic and aggregation-prone, membrane proteins often prove too insoluble for conventional in vitro biochemical studies. To engineer soluble variants of human caveolin-1, a phage-displayed library of caveolin variants targeted the hydrophobic intramembrane domain with substitutions to charged residues. Anti-selections for insolubility removed hydrophobic variants, and positive selections for binding to the known caveolin ligand HIV gp41 isolated functional, folded variants. Assays with several caveolin binding partners demonstrated the successful folding and functionality by a solubilized, full-length caveolin variant selected from the library. This caveolin variant allowed assay of the direct interaction between caveolin and cavin. Clustered along one face of a putative helix, the solubilizing mutations suggest a structural model for the intramembrane domain of caveolin. The approach provides a potentially general method for solubilization and engineering of membrane-associated proteins by phage display.

  4. Solubilization and Upgrading of High Polyethylene Terephthalate Loadings in a Low-Costing Bifunctional Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jian; Liu, Dajiang; Young, Robert P.

    Polyethylene terephthalate (PET) is of significant commercial importance, but is difficult to recycle. Chemical inertness and resistance to biodegradation make the recycling of PET challenging and most solvents for PET are highly toxic. In this work, we demonstrate for the first time that a low cost (~$1.2/kg) and biocompatible ionic liquid (IL), cholinium phosphate ([Ch]3[PO4]) can play bifunctional roles in PET solubilization and glycolytic degradation. High loading of PET (10 wt%) is readily dissolved in [Ch]3[PO4] at relatively low temperatures (120 °C, 1h) and even in water-rich conditions. Tandem in situ confocal microscopy and Fourier Transform Infrared (FTIR) spectroscopy studiesmore » give detailed information on the solubilization mechanism in terms of morphological and chemical changes that occur. In depth analysis of PET-IL solution reveals that the high PET solubilization in [Ch]3[PO4] can be ascribed to significant PET depolymerization. Acid precipitation yields terephthalic acid as the dominant depolymerized monomer with a theoretical yield of ~95%. Further exploration shows that in the presence of ethylene glycol, [Ch]3[PO4] catalyzed glycolysis of PET can efficiently occur with ~100% PET conversion and ~60.6% bis(2-hydroxyethyl)terephthalate (BHET) yield under metal free conditions. The IL can be reused at least three times without an apparent decrease in activity. NMR analysis reveals that strong hydrogen bond interactions between EG and the IL play an important role for EG activation and promotion of the glycolysis reaction. This study opens up avenues for exploring environmentally benign and efficient technology of ILs for solubilizing and recycling postconsumer polyester plastics.« less

  5. Purple corn-associated rhizobacteria with potential for plant growth promotion.

    PubMed

    Castellano-Hinojosa, A; Pérez-Tapia, V; Bedmar, E J; Santillana, N

    2018-05-01

    Purple corn (Zea mays var. purple amylaceum) is a native variety of the Peruvian Andes, cultivated at 3000 m since the pre-Inca times without N fertilization. We aimed to isolate and identify native plant growth-promoting rhizobacteria (PGPR) for future microbial-based inoculants. Eighteen strains were isolated from the rhizosphere of purple corn plants grown without N fertilization in Ayacucho (Peru). The 16S rRNA gene clustered the 18 strains into nine groups that contained species of Bacillus, Stenotrophomonas, Achromobacter, Paenibacillus, Pseudomonas and Lysinibacillus. A representative strain from each group was selected and assayed for N 2 fixation, phosphate solubilization, indole acetic and siderophore production, 1-aminocyclopropane-1-carboxylic acid deaminase activity and biocontrol abilities. Inoculation of purple corn plants with single and combined strains selected after a principal component analysis caused significant increases in root and shoot dry weight, total C and N contents of the plants. PGPRs can support growth and crop production of purple corn in the Peruvian Andes and constitute the base for microbial-based inoculants. This study enlarges our knowledge on plant-microbial interactions in high altitude mountains and provides new applications for PGPR inoculation in purple amylaceum corn, which is part of the staple diet for the native Quechua communities. © 2018 The Society for Applied Microbiology.

  6. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Shamshuddin, Jusop; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  7. Biochemical and Molecular Characterization of Potential Phosphate-Solubilizing Bacteria in Acid Sulfate Soils and Their Beneficial Effects on Rice Growth

    PubMed Central

    Panhwar, Qurban Ali; Naher, Umme Aminun; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmolc kg−1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

  8. Vesicle solubilization by bile salts: comparison of macroscopic theory and simulation.

    PubMed

    Haustein, M; Wahab, M; Mögel, H-J; Schiller, P

    2015-04-14

    Lipid metabolism is accompanied by the solubilization of lipid bilayer membranes by bile salts. We use Brownian dynamics simulations to study the solubilization of model membranes and vesicles by sodium cholate. The solubilization pathways of small and large vesicles are found to be different. Both results for small and large vesicles can be compared with predictions of a macroscopic theoretical description. The line tension of bilayer edges is an important parameter in the solubilization process. We propose a simple method to determine the line tension by analyzing the shape fluctuations of planar membrane patches. Macroscopic mechanical models provide a reasonable explanation for processes observed when a spherical vesicle consisting of lipids and adsorbed bile salt molecules is transformed into mixed lipid-bile salt micelles.

  9. Isolation and characterization of phosphate-solubilizing bacteria from seagrass rhizosphere soil

    NASA Astrophysics Data System (ADS)

    Ghosh, Upasana; Subhashini, Ponnambalam; Dilipan, Elangovan; Raja, Subramanian; Thangaradjou, Thirunavukarassu; Kannan, Lakshmanan

    2012-03-01

    Phosphate-solubilizing bacterial strains (6 Nos.) were isolated from the rhizosphere soils of two seagrasses ( Halophila ovalis (R. Br.) Hook and Halodule pinifolia (Miki) Hartog) in the Vellar estuary. Experimental studies found that the strain PSSG6 was effective in phosphate solubilization with Phosphate Solubilization efficiency index E = 375 ± 8.54, followed by the strain PSSG5 with Phosphate Solubilization efficiency index E = 275 ± 27.3. Of the 6 strains isolated, the strains PSSG4 and PSSG5 belonged to the genus Bacillus, and PSSG1, PSSG2 and PSSG3 were identified as Citrobacter sp., Shigella sp., and Klebsiella sp., respectively, by conventional method, and PSSG6 was identified as Bacillus circulans using conventional and molecular methods.

  10. Microbial oxidation and solubilization of precipitated elemental selenium in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Losi, M.E.; Frankenberger, W.T. Jr.

    1998-07-01

    Oxidation of elemental selenium (Se{sup 0}) leads to increased solubilization and enhanced bioavailability. In this work, laboratory microcosm experiments were conducted to study oxidation of Se{sup 0} in soil and liquid cultures. Major objectives were to examine the oxidation rates of four San Joaquin Valley, California soils, and to assess the contribution of biological vs. chemical processes. For these experiments, red, crystalline Se{sup 0} was prepared by both chemical and biological synthesis, and its presence was confirmed by synchrotron-based x-ray absorption spectroscopy. The amount of Se{sup 0} oxidized over 125 d was from 1 to 10% of Se{sup 0} inmore » soils spiked to 250 mg Se{sup 0} kg{sup {minus}1} and approximately half that in soils spiked to 100 mg Se{sup 0} kg{sup {minus}1}. First order rate constants for oxidation of Se{sup 0} were from 0.05 to 0.32 yr{sup {minus}1} and 0.04 to 0.39 yr{sup {minus}1} at 250 and 100 mg Se{sup 0} kg{sup {minus}1} soil, respectively. The amount of Se{sup 0} oxidized was generally correlated with prior exposure of the soil to Se. Products included either selenite (SeO{sub 3}{sup 2{minus}}), or both (SeO{sub 3}{sup 2{minus}}) and selenate (SeO{sub 4}{sup 2{minus}}). Biotic processes were shown to be of major importance. Both heterotrophic and autotrophic oxidation were observed, and an inorganic C source (NaHCO{sub 3}) was favored relative to glucose. This study demonstrates that Se{sup 0} oxidation in soils is largely biotic in nature, occurs at relatively slow rates and yields both SeO{sub 3}{sup 2{minus}} and SeO{sub 4}{sup 2{minus}}.« less

  11. Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction

    PubMed Central

    Hernandez, Maria E.; Kappler, Andreas; Newman, Dianne K.

    2004-01-01

    Natural products with important therapeutic properties are known to be produced by a variety of soil bacteria, yet the ecological function of these compounds is not well understood. Here we show that phenazines and other redox-active antibiotics can promote microbial mineral reduction. Pseudomonas chlororaphis PCL1391, a root isolate that produces phenazine-1-carboxamide (PCN), is able to reductively dissolve poorly crystalline iron and manganese oxides, whereas a strain carrying a mutation in one of the phenazine-biosynthetic genes (phzB) is not; the addition of purified PCN restores this ability to the mutant strain. The small amount of PCN produced relative to the large amount of ferric iron reduced in cultures of P. chlororaphis implies that PCN is recycled multiple times; moreover, poorly crystalline iron (hydr)oxide can be reduced abiotically by reduced PCN. This ability suggests that PCN functions as an electron shuttle rather than an iron chelator, a finding that is consistent with the observation that dissolved ferric iron is undetectable in culture fluids. Multiple phenazines and the glycopeptidic antibiotic bleomycin can also stimulate mineral reduction by the dissimilatory iron-reducing bacterium Shewanella oneidensis MR1. Because diverse bacterial strains that cannot grow on iron can reduce phenazines, and because thermodynamic calculations suggest that phenazines have lower redox potentials than those of poorly crystalline iron (hydr)oxides in a range of relevant environmental pH (5 to 9), we suggest that natural products like phenazines may promote microbial mineral reduction in the environment. PMID:14766572

  12. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions.

    PubMed

    Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E

    2016-12-01

    Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Solubilization of Australian lignites by microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catcheside, D.E.A.; Mallett, K.J.; Cox, R.E.

    1988-01-01

    Australia has substantial lignite deposits, particularly in the Latrobe Valley in Victoria where 4.10/sup 10/ tons are accessible with available technologies. The authors have investigated the susceptibility of these coal to solubilization by microorganisms, including species additional to those already identified as active on North American lignites. The data presented here show that acid oxidized lignites from the Latrobe Valley are solubilized by each of seven species of microorganisms previously found to be active on Leonardite and oxidized North American lignites. These are the wood rot fungi: Trametes versicolor, Poria placenta and Phanerochaete chrysosporium, the lignin degrading prokaryote Streptomyces viridosporusmore » and three fungi isolated from lignite in Mississippi: Candida ML-13, Cunninghamelia YML-1 and Penicillium waksmanii.« less

  14. Solubilization and other studies on adenylate cyclase of baker's yeast.

    PubMed Central

    Varimo, K; Londesborough, J

    1976-01-01

    1. Adenylate cyclase of Saccharomyces cerevisiae was sedimented from mechanically disintegrated preparations of yeast over an unusually wide range of centrifugal forces. 2. The enzyme was readily solubilized by Ficoll and by Lubrol PX. Lubrol caused a 2-fold activation. 3. Both particle-bound and Lubrol-solubilized enzyme had an apparent Km for ATP of 1.6 mM in the presence of 0.4 mM-cyclic AMP and 5 mM-MnCl2 at pH 6.2 and 30 degrees C. 4. The Lubrol-solubilized enzyme behaved on gel filtration as a monodisperse protein with an apparent mol.wt. of about 450000. PMID:793584

  15. Sucrose dependent mineral phosphate solubilization in Enterobacter asburiae PSI3 by heterologous overexpression of periplasmic invertases.

    PubMed

    Kumar, Chanchal; Wagh, Jitendra; Archana, G; Naresh Kumar, G

    2016-12-01

    Enterobacter asburiae PSI3 solubilizes mineral phosphates in the presence of glucose by the secretion of gluconic acid generated by the action of a periplasmic pyrroloquinoline quinone dependent glucose dehydrogenase. In order to achieve mineral phosphate solubilization phenotype in the presence of sucrose, plasmids pCNK4 and pCNK5 containing genes encoding the invertase enzyme of Zymomonas mobilis (invB) and of Saccharomyces cerevisiae (suc2) under constitutive promoters were constructed with malE signal sequence (in case of invB alone as the suc2 is secreted natively). When introduced into E. asburiae PSI3, E. a. (pCNK4) and E. a. (pCNK5) transformants secreted 21.65 ± 0.94 and 22 ± 1.3 mM gluconic acid, respectively, in the presence of 75 mM sucrose and they also solubilized 180 ± 4.3 and 438 ± 7.3 µM P from the rock phosphate. In the presence of a mixture of 50 mM sucrose and 25 mM glucose, E. a. (pCNK5) secreted 34 ± 2.3 mM gluconic acid and released 479 ± 8.1 µM P. Moreover, in the presence of a mixture of eight sugars (10 mM each) in the medium, E. a. (pCNK5) released 414 ± 5.3 µM P in the buffered medium. Thus, this study demonstrates incorporation of periplasmic invertase imparted P solubilization ability to E. asburiae PSI3 in the presence of sucrose and mixture of sugars.

  16. Binding of (/sup 3/H)forskolin to solubilized preparations of adenylate cyclase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.A.; Seamon, K.B.

    1988-01-01

    The binding of (/sup 3/H)forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating (/sup 3/H)forskolin bound to protein from free (/sup 3/H)forskolin by rapid filtration. The K/sub d/ for (/sup 3/H)forskolin binding to solubilized proteins was 14 nM which was similar to that for (/sup 3/H)forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for (/sup 3/H)forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. (/sup 3/H)forskolin bound to proteins solubilized from membranes with a Bmaxmore » of 38 fmolmg protein which increased to 94 fmolmg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on (/sup 3/H)forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmolmgmin which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmolmgmin which was not stimulated by GppNHp or forskolin« less

  17. Biomineralization of U(VI) phosphate promoted by microbially-mediated phytate hydrolysis in contaminated soils

    NASA Astrophysics Data System (ADS)

    Salome, Kathleen R.; Beazley, Melanie J.; Webb, Samuel M.; Sobecky, Patricia A.; Taillefert, Martial

    2017-01-01

    The bioreduction of uranium may immobilize a significant fraction of this toxic contaminant in reduced environments at circumneutral pH. In oxic and low pH environments, however, the low solubility of U(VI)-phosphate minerals also makes them good candidates for the immobilization of U(VI) in the solid phase. As inorganic phosphate is generally scarce in soils, the biomineralization of U(VI)-phosphate minerals via microbially-mediated organophosphate hydrolysis may represent the main immobilization process of uranium in these environments. In this study, contaminated sediments were incubated aerobically in two pH conditions to examine whether phytate, a naturally-occurring and abundant organophosphate in soils, could represent a potential phosphorous source to promote U(VI)-phosphate biomineralization by natural microbial communities. While phytate hydrolysis was not evident at pH 7.0, nearly complete hydrolysis was observed both with and without electron donor at pH 5.5, suggesting indigenous microorganisms express acidic phytases in these sediments. While the rate of hydrolysis of phytate generally increased in the presence of uranium, the net rate of inorganic phosphate production in solution was decreased and inositol phosphate intermediates were generated in contrast to similar incubations conducted without uranium. These findings suggest uranium stress enhanced the phytate-metabolism of the microbial community, while simultaneously inhibiting phosphatase production and/or activity by the indigenous population. Finally, phytate hydrolysis drastically decreased uranium solubility, likely due to formation of ternary sorption complexes, U(VI)-phytate precipitates, and U(VI)-phosphate minerals. Overall, the results of this study provide evidence for the ability of natural microbial communities to liberate phosphate from phytate in acidic sediments, possibly as a detoxification mechanism, and demonstrate the potential utility of phytate-promoted uranium

  18. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  19. Properties of bovine erythrocyte acetylcholinesterase solubilized by phosphatidylinositol-specific phospholipase C1.

    PubMed

    Taguchi, R; Ikezawa, H

    1987-10-01

    The properties of acetylcholinesterase solubilized from bovine erythrocyte membrane by phosphatidylinositol (PI)-specific phospholipase C of Bacillus thuringiensis or with a detergent, Lubrol-PX, were studied. The activity of Lubrol-PX-solubilized acetylcholinesterase was broadly distributed in the fractions having Ve/Vo = 1.0-2.0 in gel filtration on a Sepharose 6B column. The intermediary fractions (Ve/Vo = 1.3-1.7) were collected as "the middle active Sepharose 6B eluate" and characterized on the basis of enzymology and protein chemistry. When this eluate was treated with PI-specific phospholipase C, the major activity peak was obtained in the later fractions with Ve/Vo = 1.75-2.0 on the same column chromatography. Lubrol-solubilized and phospholipase C-treated acetylcholinesterase preparations were different in the thermostability, the elution profiles of chromatography on Mono Q, butyl-Toyopearl and phenyl-Sepharose columns, and the affinity to phospholipid micelles. On treatment with PI-specific phospholipase C, Lubrol-solubilized acetylcholinesterase became more thermostable. The phospholipase C-treated enzyme was eluted at lower NaCl concentration from the Mono Q column than the Lubrol-solubilized enzyme. The most important difference was observed in the hydrophobicity of these two enzyme preparations. The Lubrol-solubilized enzyme shows high affinity to phospholipid micelles and hydrophobic adsorbents such as butyl-Toyopearl and phenyl-Sepharose. However, this hydrophobicity was lost when acetylcholinesterase was solubilized from bovine erythrocyte membrane by PI-specific phospholipase C. The presence of myo-inositol was confirmed in the purified preparation of acetylcholinesterase by gas chromatography (GC)-mass spectrometry (MS).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Solubilization of bovine gelatin using power ultrasound: gelation without heating.

    PubMed

    Farahnaky, Asgar; Zendeboodi, Fatemeh; Azizi, Rezvan; Mesbahi, Gholamreza; Majzoobi, Mahsa

    2017-04-01

    The aim of this study was to investigate the efficacy of power ultrasound without using any heating stage in solubilizeing gelatin dispersions, and to characterize the mechanical and microstructural properties of the resulting gels using texture analysis and scanning electron microscopy, respectively. Usually to prepare a gel from gelatin, a primary heating stage of at about 40C or above is required to solubilize gelatin macromolecules. In this study solubilizing gelatin dispersions using power ultrasound without any heating was successfully performed. For solubilising gelatin, an ultrasound equipment with a frequency of 20 kHz, amplitude of 100% and power range of 50-150 W was used. Aqueous gelatin dispersions (4% w/v) were subjected to ultrasound for different times (40-240 s) at a constant temperature of 13C. Applying ultrasound to gelatin dispersions caused increases in water absorption and water solubility of the hydrocolloid. The textural parameters of the resulting gelatin gels, increased with increasing time and power of ultrasound. Moreover, a generalized Maxwell model with three elements was used for calculating relaxation times of the gels. The microstructural observations by SEM showed that the structural cohesiveness of the gels increased by increasing ultrasonication time. Ultrasound-assisted solubilization of gelatin can have emerging implications for industrial uses in pharmaceuticals, food and non-food systems. Usually to prepare a gel from gelatin, a primary heating stage of at about 40C or above is required to solubilize gelatin macromolecules. Therefore, the use of gelatin as a hydrocolloid in food processings or pharmaceutical formulations which lack a heating step has been a technological and practical challenge. In this study solubilizing gelatin dispersions using power ultrasound without any heating was successfully performed. Ultrasound-assisted solubilisation of gelatin can have emerging implications for industrial uses in pharmaceuticals

  1. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

  2. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process.

    PubMed

    Singh, Anupam; Upadhyay, Vaibhav; Upadhyay, Arun Kumar; Singh, Surinder Mohan; Panda, Amulya Kumar

    2015-03-25

    Formation of inclusion bodies in bacterial hosts poses a major challenge for large scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive and the yields of recombinant protein are often low. Here we review the developments in the field that are targeted at improving the yield, as well as quality of the recombinant protein by optimizing the individual steps of the process, especially solubilization of the inclusion bodies and refolding of the solubilized protein. Mild solubilization methods have been discussed which are based on the understanding of the fact that protein molecules in inclusion body aggregates have native-like structure. These methods solubilize the inclusion body aggregates while preserving the native-like protein structure. Subsequent protein refolding and purification results in high recovery of bioactive protein. Other parameters which influence the overall recovery of bioactive protein from inclusion bodies have also been discussed. A schematic model describing the utility of mild solubilization methods for high throughput recovery of bioactive protein has also been presented.

  3. Techno-economic evaluation of an inclusion body solubilization and recombinant protein refolding process.

    PubMed

    Freydell, Esteban J; van der Wielen, Luuk A M; Eppink, Michel H M; Ottens, Marcel

    2011-01-01

    Expression of recombinant proteins in Escherichia coli is normally accompanied by the formation of inclusion bodies (IBs). To obtain the protein product in an active (native) soluble form, the IBs must be first solubilized, and thereafter, the soluble, often denatured and reduced protein must be refolded. Several technically feasible alternatives to conduct IBs solubilization and on-column refolding have been proposed in recent years. However, rarely these on-column refolding alternatives have been evaluated from an economical point of view, questioning the feasibility of their implementation at a preparative scale. The presented study assesses the economic performance of four distinct process alternatives that include pH induced IBs solubilization and protein refolding (pH_IndSR); IBs solubilization using urea, dithiothreitol (DTT), and alkaline pH followed by batch size-exclusion protein refolding; inclusion bodies (IBs) solubilization using urea, DTT, and alkaline pH followed by simulated moving bed (SMB) size-exclusion protein refolding, and IBs solubilization using urea, DTT and alkaline pH followed by batch dilution protein refolding. The economic performance was judged on the basis of the direct fixed capital, and the production cost per unit of product (P(C)). This work shows that (1) pH_IndSR system is a relatively economical process, because of the low IBs solubilization cost; (2) substituting β-mercaptoethanol for dithiothreithol is an attractive alternative, as it significantly decreases the product cost contribution from the IBs solubilization; and (3) protein refolding by size-exclusion chromatography becomes economically attractive by changing the mode of operation of the chromatographic reactor from batch to continuous using SMB technology. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  4. Aggregate-based sub-CMC Solubilization of n-Alkanes by Monorhamnolipid Biosurfactant.

    PubMed

    Zhong, Hua; Yang, Xin; Tan, Fei; Brusseau, Mark L; Yang, Lei; Liu, Zhifeng; Zeng, Guangming; Yuan, Xingzhong

    2016-03-01

    Solubilization of n -decane, dodecane, tetradecane and hexadecane by monorhamnolipid biosurfactant (monoRL) at concentrations near the critical micelle concentration (CMC) was investigated. The apparent solubility of all the four alkanes increases linearly with increasing monoRL concentration either below or above CMC. The capacity of solubilization presented by the molar solubilization ratio (MSR), however, is stronger at monoRL concentrations below CMC than above CMC. The MSR decreases following the order dodecane > decane > tetradecane > hexadecane at monoRL concentration below CMC. Formation of aggregates at sub-CMC monoRL concentrations was demonstrated by dynamic light scattering (DLS) and cryo-transmission electron microscopy examination. DLS-based size ( d ) and zeta potential of the aggregates decrease with increasing monoRL concentration. The surface excess ( Γ ) of monoRL calculated based on alkane solubility and aggregate size data increases rapidly with increasing bulk monoRL concentration, and then asymptotically approaches the maximum surface excess ( Γ max ). Relation between Γ and d indicates that the excess of monoRL molecules at the aggregate surface greatly impacts the surface curvature. The results demonstrate formation of aggregates for alkane solubilization at monoRL concentrations below CMC, indicating the potential of employing low-concentration rhamnolipid for enhanced solubilization of hydrophobic organic compounds.

  5. Visualization of surfactant enhanced NAPL mobilization and solubilization in a two-dimensional micromodel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHONG,LIRONG; MAYER,ALEX; GLASS JR.,ROBERT J.

    Surfactant-enhanced aquifer remediation is an emerging technology for aquifers contaminated with nonaqueous phase liquids (NAPLs). A two-dimensional micromodel and image capture system were applied to observe NAPL mobilization and solubilization phenomena. In each experiment, a common residual NAPL field was established, followed by a series of mobilization and solubilization experiments. Mobilization floods included pure water floods with variable flow rates and surfactant floods with variations in surfactant formulations. At relatively low capillary numbers (N{sub ca}<10{sup {minus}3}), the surfactant mobilization floods resulted in higher NAPL saturations than for the pure water flood, for similar N{sub ca}.These differences in macroscopic saturations aremore » explained by differences in micro-scale mobilization processes. Solubilization of the residual NAPL remaining after the mobilization stage was dominated by the formation of dissolution fingers, which produced nonequilibrium NAPL solubilization. A macroemulsion phase also as observed to form spontaneously and persist during the solubilization stage of the experiments.« less

  6. Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs.

    PubMed

    Raina, Shweta A; Zhang, Geoff G Z; Alonzo, David E; Wu, Jianwei; Zhu, Donghua; Catron, Nathaniel D; Gao, Yi; Taylor, Lynne S

    2015-10-01

    Many enabling formulations give rise to supersaturated solutions wherein the solute possesses higher thermodynamic activity gradients than the solute in a saturated solution. Since flux across a membrane is driven by solute activity rather than concentration, understanding how solute thermodynamic activity varies with solution composition, particularly in the presence of solubilizing additives, is important in the context of passive absorption. In this study, a side-by-side diffusion cell was used to evaluate solute flux for solutions of nifedipine and felodipine in the absence and presence of different solubilizing additives at various solute concentrations. At a given solute concentration above the equilibrium solubility, it was observed that the solubilizing additives could reduce the membrane flux, indicating that the extent of supersaturation can be reduced. However, the flux could be increased back to the same maximum value (which was determined by the concentration where liquid-liquid phase separation (LLPS) occurred) by increasing the total solute concentration. Qualitatively, the shape of the curves of solute flux through membrane as a function of total solute concentration is the same in the absence and presence of solubilizing additives. Quantitatively, however, LLPS occurs at higher solute concentrations in the presence of solubilizing additives. Moreover, the ratios of the LLPS onset concentration and equilibrium solubility vary significantly in the absence and presence of additives. These findings clearly point out the flaws in using solute concentration in estimating solute activity or supersaturation, and reaffirm the use of flux measurements to understand supersaturated systems. Clear differentiation between solubilization and supersaturation, as well as thorough understanding of their respective impacts on membrane transport kinetics is important for the rational design of enabling formulations for poorly soluble compounds.

  7. Aggregate-based sub-CMC Solubilization of Hexadecane by Surfactants.

    PubMed

    Zhong, Hua; Yang, Lei; Zeng, Guangming; Brusseau, Mark L; Wang, Yake; Li, Yang; Liu, Zhifeng; Yuan, Xingzhong; Tan, Fei

    Solubilization of hexadecane by two surfactants, SDBS and Triton X-100, at concentrations near the critical micelle concentration (CMC) and the related aggregation behavior was investigated in this study. Solubilization was observed at surfactant concentrations lower than CMC, and the apparent solubility of hexadecane increased linearly with surfactant concentration for both surfactants. The capacity of SDBS to solubilize hexadecane is stronger at concentrations below CMC than above CMC. In contrast, Triton X-100 shows no difference. The results of dynamic light scattering (DLS) and cryogenic TEM analysis show aggregate formation at surfactant concentrations lower than CMC. DLS-based size of the aggregates ( d ) decreases with increasing surfactant concentration. Zeta potential of the SDBS aggregates decreases with increasing SDBS concentration, whereas it increases for Triton X-100. The surface excess (Γ) of SDBS calculated based on hexadecane solubility and aggregate size data increases rapidly with increasing bulk concentration, and then asymptotically approaches the maximum surface excess (Γ max ). Conversely, there is only a minor increase in Γ for Triton X-100. Comparison of Γ and d indicates that excess of surfactant molecules at aggregate surface has great impact on surface curvature. The results of this study demonstrate formation of aggregates at surfactant concentrations below CMC for hexadecane solubilization, and indicate the potential of employing low-concentration strategy for surfactant application such as remediation of HOC contaminated sites.

  8. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy.

    PubMed

    Dörr, Jonas M; van Coevorden-Hameete, Marleen H; Hoogenraad, Casper C; Killian, J Antoinette

    2017-11-01

    Extracting membrane proteins from biological membranes by styrene-maleic acid copolymers (SMAs) in the form of nanodiscs has developed into a powerful tool in membrane research. However, the mode of action of membrane (protein) solubilization in a cellular context is still poorly understood and potential specificity for cellular compartments has not been investigated. Here, we use fluorescence microscopy to visualize the process of SMA solubilization of human cells, exemplified by the immortalized human HeLa cell line. Using fluorescent protein fusion constructs that mark distinct subcellular compartments, we found that SMA solubilizes membranes in a concentration-dependent multi-stage process. While all major intracellular compartments were affected without a strong preference, plasma membrane solubilization was found to be generally slower than the solubilization of organelle membranes. Interestingly, some plasma membrane-localized proteins were more resistant against solubilization than others, which might be explained by their presence in specific membrane domains with differing properties. Our results support the general applicability of SMA for the isolation of membrane proteins from different types of (sub)cellular membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil.

    PubMed

    Yin, Zhongwei; Shi, Fachao; Jiang, Hongmei; Roberts, Daniel P; Chen, Sanfeng; Fan, Bingquan

    2015-12-01

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere, as the overapplication of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in China that had been exposed to excessive application of phosphatic fertilizer for decades. Each isolate excreted a number of organic acids into, acidified, and solubilized phosphorus in a synthetic broth containing insoluble tricalcium phosphate or rock phosphate. Isolate P4, applied as a seed treatment, increased maize fresh mass per plant when rock phosphate was added to the calcareous soil in greenhouse pot studies. Isolate P85 did not increase maize fresh mass per plant but did significantly increase total phosphorus per plant when rock phosphate was added. Significant increases in 7 and 4 organic acids were detected in soil in association with isolates P4 and P85, respectively, relative to the soil-only control. The quantity and (or) number of organic acids produced by these isolates increased when rock phosphate was added to the soil. Both isolates also significantly increased available phosphorus in soil in the presence of added rock phosphate and effectively colonized the maize rhizosphere. Studies reported here indicate that isolate P4 is adapted to and capable of promoting maize growth in a calcareous soil. Plant-growth promotion by this isolate is likely due, at least in part, to increased phosphorus availability resulting from the excretion of organic acids into, and the resulting acidification of, this soil.

  10. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1.

    PubMed

    Xiao, Chunqiao; Zhang, Huaxiang; Fang, Yujuan; Chi, Ruan

    2013-01-01

    A strain WHAK1, identified as Aspergillus niger, was isolated from Yichang phosphate mines in Hubei province of China. The fungus developed a phosphate solubilization zone on modified National Botanical Research Institute's phosphate growth (NBRIP) agar medium, supplemented with tricalcium phosphate. The fungus was applied in a repeated-batch fermentation process in order to test its effect on solubilization of rock phosphate (RP). The results showed that A. niger WHAK1 could effectively solubilize RP in NBRIP liquid medium and released soluble phosphate in the broth, which can be illustrated by the observation of scanning electron microscope, energy-dispersive X-ray microanalysis, and Fourier transform infrared spectroscopy. Acidification of the broth seemed to be the major mechanism for RP solubilization by the fungus. Indeed, multiple organic acids (mainly gluconic acid) were detected in the broth by high-performance liquid chromatography analysis. These organic acids caused a significant drop of pH and an obvious rise of titratable acidity in the broth. The fungus also exhibited high levels of tolerance against temperature, pH, salinity, and desiccation stresses, although a significant decline in the fungal growth and release of soluble phosphate was marked under increasing intensity of stress parameters. Further, the fungus was introduced into the soil supplemented with RP to analyze its effect on plant growth and phosphate uptake of wheat plants. The result revealed that inoculation of A. niger WHAK1 significantly increased the growth and phosphate uptake of wheat plants in the RP-amended soil compared to the control soil.

  11. Detergent effects on enzyme activity and solubilization of lipid bilayer membranes.

    PubMed

    Womack, M D; Kendall, D A; MacDonald, R C

    1983-09-07

    Over 50 detergents were tested to establish which would be most effective in releasing proteins from membrane-bounded compartments without denaturing them. Various concentrations each of detergent were tested for two activities: (1) solubilization of egg phospholipid liposomes as measured by reduction of turbidity and (2) effect of detergent concentration on the activities of soluble, hydrolytic enzymes. Those detergents most effective in solubilizing 0.2% lipid and least detrimental to enzymes were five pure, synthetic compounds recently introduced: CHAPS, CHAPSO, Zwittergents 310 and 312, and octylglucoside. Industrial detergents were generally much inferior, insofar as they solubilized membranes inefficiently and/or inactivated certain hydrolytic enzymes readily. The five detergents were characterized by (a) an unusually high critical micelle concentration and (b) a preference for forming mixed micelles with lipids instead of forming pure micelles, as indicated by an ability to solubilize lipid at concentrations of detergent significantly below the critical micelle concentration. This characteristic permits solubilization of high concentrations of membrane below the critical micelle concentration of the detergent so that protein denaturation is minimized. A generally applicable guideline that emerged from this study is that detergents should be used at approximately their critical micelle concentration which should not be exceeded by the concentration of membrane. Similar considerations should apply to the use of detergents in purifying and reconstituting intrinsic membrane proteins.

  12. [Solubilization Specificities Interferon beta-1b from Inclusion Bodies].

    PubMed

    Zhuravko, A S; Kononova, N V; Bobruskin, A I

    2015-01-01

    A new solubilization method of recombinant interferon beta-1b (IFNβ-1b) from the inclusion bodies was developed. This method allows to extract the target protein selectively in the solutions of different alcohols, such as ethanol, propanol and isopropanol. It was shown that the more effective IFNβ-1b solubilization was achieved in the 55% propanol solution. This method allowed to extract the target protein from inclusion bodies around 85-90%, and significantly reduced Escherichia coli content in the solubilizate, in comparison with standard methods.

  13. Siderophore-promoted dissolution of smectite by fluorescent Pseudomonas.

    PubMed

    Ferret, Claire; Sterckeman, Thibault; Cornu, Jean-Yves; Gangloff, Sophie; Schalk, Isabelle J; Geoffroy, Valérie A

    2014-10-01

    Siderophores are organic chelators produced by microorganisms to fulfil their iron requirements. Siderophore-promoted dissolution of iron-bearing minerals has been clearly documented for some siderophores, but few studies have addressed metabolizing siderophore-producing bacteria. We investigated iron acquisition from clays by fluorescent Pseudomonads, bacteria that are ubiquitous in the environment. We focused on the interactions between smectite and Pseudomonas aeruginosa, a bacterium producing two structurally different siderophores: pyoverdine and pyochelin. The presence of smectite in iron-limited growth media promoted planktonic growth of P. aeruginosa and biofilm surrounding the smectite aggregates. Chemical analysis of the culture media indicated increases in the dissolved silicon, iron and aluminium concentrations following smectite supplementation. The use of P. aeruginosa mutants unable to produce either one or both of the two siderophores indicated that pyoverdine, the siderophore with the higher affinity for iron, was involved in iron and aluminium solubilization by the wild-type strain. However, in the absence of pyoverdine, pyochelin was also able to solubilize iron but with a twofold lower efficiency. In conclusion, pyoverdine and pyochelin, two structurally different siderophores, can solubilize structural iron from smectite and thereby make it available for bacterial growth.

  14. Solubilization of Genistein in Poly(Ethylene Glycol) via Eutectic Crystal Melting

    NASA Astrophysics Data System (ADS)

    Buddhiranon, Sasiwimon; Kyu, Thein

    2012-02-01

    Genistein (5,7,4'-trihydroxyisoflavone) is a phytoestrogen found in soybean. It possesses various biological/pharmacological functions, e.g., tyrosine kinase inhibitory, anticarcinogenic, antioxidant, anti-inflammatory, and anti-microbial activities. However, genistein has poor water solubility and skin permeability, which have seemingly prohibited the progress to preclinical evaluation. Eutectic melting approach has been performed as a means of solubilizing genistein in poly(ethylene glycol) (PEG). Eutectic phase diagrams of blends containing genistein and PEG having three different molecular weights, i.e., 44k, 7k, and 500 g/mol, were established by means of DSC and compared with the theoretical liquidus and solidus lines, calculated self-consistently by taking into consideration all interactions including amorphous-amorphous, crystal-amorphous, amorphous-crystal, and crystal-crystal interactions. The eutectic temperatures were found to decrease with decreasing molecular weight of PEG. Guided by the phase diagram, it was found that genistein can be dissolved in PEG500 up to ˜7 wt% at room temperature. More importantly, the solubility of genistein in PEG can be improved to meet the end-use criteria of the PEG/genistein mixtures.

  15. Solubilization of benomyl for xylem injection in vascular wilt disease control

    Treesearch

    Percy McWain; Garold F. Gregory; Garold F. Gregory

    1971-01-01

    Benomyl, in varying amounts, was solubilized in several solvents, thus allowing injection into trees for fungus disease prevention and therapy. A large amount of benomyl can be solubilized in diluted lactic acid. The resulting solution can be infinitely diluted with water without pre-cipitation. These characteristics make it the current solution of choice for our tree...

  16. Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea.

    PubMed

    Dastager, Syed G; Deepa, C K; Pandey, Ashok

    2010-12-01

    A phosphate-solubilizing bacterial strain NII-0909 isolated from the Western ghat forest soil in India was identified as Micrococcus sp on the basis of phenotypic characteristics, carbon source utilization pattern, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The strain exhibited the plant growth-promoting attributes of phosphate solubilization, auxin production, 1-aminocyclopropane-1-carboxylate deaminase activity, and siderophore production. It was able to solubilize (122.4μg of Ca(3)PO(4) ml(-1)), and produce IAA (109μgml(-1)) at 30°C. P-solubilizing activity of the strain NII-0909 was associated with the release of organic acids and a drop in the pH of the NBRIP medium. HPLC analysis detected two organic acids in the course of P-solubilization. A significant increase in the growth of cow pea was recorded for inoculations under controlled conditions. Scanning electron microscopic study revealed the root colonization of strain on cow pea seedlings. These results demonstrate that isolates NII-0909 has the promising PGPR attributes to be develop as a biofertilizer to enhance soil fertility and promote the plant growth. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  17. Exploring the Arabidopsis proteome: influence of protein solubilization buffers on proteome coverage.

    PubMed

    Marondedze, Claudius; Wong, Aloysius; Groen, Arnoud; Serrano, Natalia; Jankovic, Boris; Lilley, Kathryn; Gehring, Christoph; Thomas, Ludivine

    2014-12-31

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  18. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    PubMed Central

    Marondedze, Claudius; Wong, Aloysius; Groen, Arnoud; Serrano, Natalia; Jankovic, Boris; Lilley, Kathryn; Gehring, Christoph; Thomas, Ludivine

    2014-01-01

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins. PMID:25561235

  19. Amphiphiles for protein solubilization and stabilization

    DOEpatents

    Gellman, Samuel Helmer; Chae, Pil Seok; Laible, Philip D.; Wander, Marc J.

    2012-09-11

    The invention provides amphiphiles for manipulating membrane proteins. The amphiphiles can feature carbohydrate-derived hydrophilic groups and branchpoints in the hydrophilic moiety and/or in a lipophilic moiety. Such amphiphiles are useful as detergents for solubilization and stabilization of membrane proteins, including photosynthetic protein superassemblies obtained from bacterial membranes.

  20. Amphiphiles for protein solubilization and stabilization

    DOEpatents

    Gellman, Samuel Helmer; Chae, Pil Seok; Laible, Phillip D; Wander, Marc J

    2014-11-04

    The invention provides amphiphiles for manipulating membrane proteins. The amphiphiles can feature carbohydrate-derived hydrophilic groups and branchpoints in the hydrophilic moiety and/or in a lipophilic moiety. Such amphiphiles are useful as detergents for solubilization and stabilization of membrane proteins, including photosynthetic protein superassemblies obtained from bacterial membranes.

  1. Phosphate Solubilization Potential and Phosphatase Activity Of Rhizospheric Trichoderma Spp.

    PubMed Central

    Anil, Kapri; Lakshmi, Tewari

    2010-01-01

    Trichoderma sp., a well known biological control agent against several phytopathogens, was tested for its phosphate (P) solubilizing potential. Fourteen strains of Trichoderma sp. were isolated from the forest tree rhizospheres of pinus, deodar, bamboo, guava and oak on Trichoderma selective medium. The isolates were tested for their in-vitro P-solubilizing potential using National Botanical Research Institute Phosphate (NBRIP) broth containing tricalcium phosphate (TCP) as the sole P source, and compared with a standard culture of T. harzianum. All the cultures were found to solubilize TCP but with varying potential. The isolate DRT-1 showed maximum amount of soluble phosphate (404.07 εg.ml-1), followed by the standard culture of T. harzianum (386.42 εg.ml-1) after 96 h of incubation at 30±10C. Extra-cellular acid and alkaline phosphatases of the fungus were induced only in the presence of insoluble phosphorus source (TCP). High extra-cellular alkaline phosphatase activity was recorded for the isolate DRT-1 (14.50 U.ml-1) followed by the standard culture (13.41 U.ml-1) at 72h. The cultures showed much lesser acid phosphatase activities. Under glasshouse conditions, Trichoderma sp. inoculation increased chickpea (Cicer arietinum) growth parameters including shoot length, root length, fresh and dry weight of shoot as well as roots, in P-deficient soil containing only bound phosphate (TCP). Shoot weight was increased by 23% and 33% by inoculation with the isolate DRT-1 in the soil amended with 100 and 200 mg TCP kg-1 soil, respectively, after 60 d of sowing. The study explores high P-solubilizing potential of Trichoderma sp., which can be exploited for the solubilization of fixed phosphates present in the soil, thereby enhancing soil fertility and plant growth. PMID:24031556

  2. Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media.

    PubMed

    Zhong, Hua; Zhang, Hui; Liu, Zhifeng; Yang, Xin; Brusseau, Mark L; Zeng, Guangming

    2016-09-13

    Experiments were conducted with a two-dimensional flow cell to examine the effect of monorhamnolipid surfactant at sub-CMC concentrations on solubilization of dodecane in porous media under dynamic flow conditions. Quartz sand was used as the porous medium and artificial groundwater was used as the background solution. The effectiveness of the monorhamnolipid was compared to that of SDBS, Triton X-100, and ethanol. The results demonstrated the enhancement of dodecane solubility by monorhamnolipid surfactant at concentrations lower than CMC. The concentrations (50-210 μM) are sufficiently low that they do not cause mobilization of the dodecane. Retention of rhamnolipid in the porous medium and detection of nano-size aggregates in the effluent show that the solubilization is based on a sub-CMC aggregate-formation mechanism, which is significantly stronger than the solubilization caused by the co-solvent effect. The rhamnolipid biosurfactant is more efficient for the solubilization compared to the synthetic surfactants. These results indicate a strategy of employing low concentrations of rhamnolipid for surfactant-enhanced aquifer remediation (SEAR), which may overcome the drawbacks of using surfactants at hyper-CMC concentrations.

  3. Microbial community related to lysozyme digestion process for boosting waste activated sludge biodegradability.

    PubMed

    Xin, Xiao-Dong; He, Jun-Guo; Qiu, Wei; Tang, Jian; Liu, Tian-Tian

    2015-01-01

    Waste activated sludge from a lab-scale sequencing batch reactor was used to investigate the potential relation of microbial community with lysozyme digestion process for sludge solubilization. The results showed the microbial community shifted conspicuously as sludge suffered lysozyme digestion. Soluble protein and polysaccharide kept an increasing trend in solution followed with succession of microbial community. The rise of lysozyme dosage augmented the dissimilarity among communities in various digested sludge. A negative relationship presented between community diversity and lysozyme digestion process under various lysozyme/TS from 0 to 240min (correlation coefficient R(2) exceeded 0.9). Pareto-Lorenz curves demonstrated that microbial community tended to be even with sludge disintegration process by lysozyme. Finally, with diversity (H) decrease and community distribution getting even, the SCOD/TCOD increased steadily in solution which suggested the sludge with high community diversity and uneven population distribution might have tremendous potential for improving their biodegradability by lysozyme digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization.

    PubMed

    Jayashree, Shanmugam; Vadivukkarasi, Ponnusamy; Anand, Kirupanithi; Kato, Yuko; Seshadri, Sundaram

    2011-08-01

    Thirteen pink-pigmented facultative methylotrophic (PPFM) strains isolated from Adyar and Cooum rivers in Chennai and forest soil samples in Tamil Nadu, India, along with Methylobacterium extorquens, M. organophilum, M. gregans, and M. komagatae were screened for phosphate solubilization in plates. P-solubilization index of the PPFMs grown on NBRIP-BPB plates for 7 days ranged from 1.1 to 2.7. The growth of PPFMs in tricalcium phosphate amended media was found directly proportional to the glucose concentration. Higher phosphate solubilization was observed in four strains MSF 32 (415 mg l(-l)), MDW 80 (301 mg l(-l)), M. komagatae (279 mg l(-l)), and MSF 34 (202 mg l(-l)), after 7 days of incubation. A drop in the media pH from 6.6 to 3.4 was associated with an increase in titratable acidity. Acid phosphatase activity was more pronounced in the culture filtrate than alkaline phosphatase activity. Adherence of phosphate to densely grown bacterial surface was observed under scanning electron microscope after 7-day-old cultures. Biochemical characterization and screening for methanol dehydrogenase gene (mxaF) confirmed the strains as methylotrophs. The mxaF gene sequence from MSF 32 clustered towards M. lusitanum sp. with 99% similarity. This study forms the first detailed report on phosphate solubilization by the PPFMs.

  5. Solubilization of coal in organic media

    NASA Technical Reports Server (NTRS)

    Lahaye, P.; Decroocq, D.

    1977-01-01

    The use of solvent extraction to solubilize coal is discussed. Simple extractions are described which are conducted at moderate temperatures to exclude extraneous chemical reactions which would lead to uncontrolled changes in the components of the treated coal. Sample preparation, extraction apparatus, and the determination of extract yield for different experiments are also described.

  6. Hydrotropic Solubilization of Lipophilic Drugs for Oral Delivery: The Effects of Urea and Nicotinamide on Carbamazepine Solubility–Permeability Interplay

    PubMed Central

    Beig, Avital; Lindley, David; Miller, Jonathan M.; Agbaria, Riad; Dahan, Arik

    2016-01-01

    Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs’ permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility–permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility–permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ∼30-fold). A concomitant permeability decrease was evident both in vitro and in vivo (∼17-fold for nicotinamide and ∼9-fold for urea), revealing a solubility–permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility–permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility–permeability balance may promote the overall goal of the formulation to maximize oral drug exposure. PMID:27826241

  7. Influence of alkyl chain length compatibility on microemulsion structure and solubilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, V.K.; O'Connell, J.P.; Shah, D.O.

    1980-06-01

    The water solubilization capacity of water/oil microemulsions is studied as a function of alkyl chain length of oil (C/sub 8/ to C/sub 16/), surfactant (C/sub 14/ and C/sub 18/ fatty acid soaps), and alcohol (C/sub 4/ to C/sub 7/). Sodium stearate and sodium myristate were used as surfactants. For n-butanol microemulsions the maximum amount of water solubilized in the microemulsion decreased continuously with increasing oil chain length; for n-heptanol it increased continuously. For n-pentanol and n-hexanol systems, water solubilization reached a maximum when the oil chain length plus alcohol chain length was equal to that of the surfactant. The electricmore » resistance and dielectric constant of the microemulsions also are measured as a function of alkyl chain length of the oil. 48 references.« less

  8. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation.

    PubMed

    Nandimath, Arusha P; Karad, Dilip D; Gupta, Shantikumar G; Kharat, Arun S

    2017-10-01

    Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4 th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml -1 . As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting.

  9. Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution.

    PubMed

    Anjanadevi, Indira Parameswaran; John, Neetha Soma; John, Kuzhivilayil Susan; Jeeva, Muthulekshmi Lajapathy; Misra, Raj Shekhar

    2016-01-01

    The role of rock inhabiting bacteria in potassium (K) solubilization from feldspar and their application in crop nutrition through substitution of fertilizer K was explored through the isolation of 36 different bacteria from rocks of a major hill station at Ponmudi in Thiruvananthapuram, Kerala, India. A comprehensive characterization of K solubilization from feldspar was achieved with these isolates which indicated that the K solubilizing efficiency increases with decrease in pH and increase in viscosity and viable cell count. Based on the level of K solubilization, two potent isolates were selected and identified as Bacillus subtilis ANctcri3 and Bacillus megaterium ANctcri7. Exopolysaccharide production, scanning electron microscopic and fourier transform infrared spectroscopic studies with these efficient strains conclusively depicted the role of low pH, increase in viscosity, and bacterial attachment in K solubilization. They were also found to be efficient in phosphorus (P) solubilization, indole acetic acid production as well as tolerant to wide range of physiological conditions. Moreover, the applicability of K containing rock powder as a carrier for K solubilizing bacteria was demonstrated. A field level evaluation on the yield of a high K demanding tuberous vegetable crop, elephant foot yam (Amorphophallus paeoniifolius (dennst.) nicolson) established the possibility of substituting chemical K fertilizer with these biofertilizer candidates successfully. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Solubilization and Stabilization of Isolated Photosystem I Complex with Lipopeptide Detergents

    PubMed Central

    Wang, Xiaoqiang; Huang, Guihong; Yu, Daoyong; Ge, Baosheng; Wang, Jiqian; Xu, Fengxi; Huang, Fang; Xu, Hai; Lu, Jian R.

    2013-01-01

    It is difficult to maintain a target membrane protein in a soluble and functional form in aqueous solution without biological membranes. Use of surfactants can improve solubility, but it remains challenging to identify adequate surfactants that can improve solubility without damaging their native structures and biological functions. Here we report the use of a new class of lipopeptides to solubilize photosystem I (PS-I), a well known membrane protein complex. Changes in the molecular structure of these surfactants affected their amphiphilicity and the goal of this work was to exploit a delicate balance between detergency and biomimetic performance in PS-I solubilization via their binding capacity. Meanwhile, the effects of these surfactants on the thermal and structural stability and functionality of PS-I in aqueous solution were investigated by circular dichroism, fluorescence spectroscopy, SDS-PAGE analysis and O2 uptake measurements, respectively. Our studies showed that the solubility of PS-I depended on both the polarity and charge in the hydrophilic head of the lipopeptides and the length of its hydrophobic tail. The best performing lipopeptides in favour of PS-I solubility turned out to be C14DK and C16DK, which were comparable to the optimal amphiphilicity of the conventional chemical surfactants tested. Lipopeptides showed obvious advantages in enhancing PS-I thermostability over sugar surfactant DDM and some full peptide amphiphiles reported previously. Fluorescence spectroscopy along with SDS-PAGE analysis demonstrated that lipopeptides did not undermine the polypeptide composition and conformation of PS-I after solubilization; instead they showed better performance in improving the structural stability and integrity of this multi-subunit membrane protein than conventional detergents. Furthermore, O2 uptake measurements indicated that PS-I solubilized with lipopeptides maintained its functionality. The underlying mechanism for the favorable actions of

  11. Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer.

    PubMed

    Mendes, Gilberto de Oliveira; da Silva, Nina Morena Rêgo Muniz; Anastácio, Thalita Cardoso; Vassilev, Nikolay Bojkov; Ribeiro, José Ivo; da Silva, Ivo Ribeiro; Costa, Maurício Dutra

    2015-11-01

    A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil-plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Microbial conversion of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bean, R.M.

    1989-10-01

    The objectives of this project were to describe in detail the degradation of coals by fungi and microbes, to expand the range of applicability of the process to include new microbes and other coal types, to identify the means by which biosolubilization of coal is accomplished, and to explore means to enhance the rates and extent of coal bioconversion. The project was initiated in a response to the discovery by Dr. Martin Cohen at the University of Hartford, of a fungal strain of Coriolus versicolor that would render a solid coal substance, leonardite, into a liquid product. The project hasmore » identified the principal agent of leonardite solubilization as a powerful metal chelator, most likely a fungal-produced siderophore. Another nonlaccase enzyme has also been identified as a unique biosolubilizing agent produced by C. versicolor. Assays were developed for the quantitative determination of biological coal conversion, and for the determination of potency of biosolubilizing agent. Screening studies uncovered several microbial organisms capable of coal biodegradation, and led to the discovery that prolonged heating in air at the moderate temperature of 150{degree}C allowed the biodegradation of Illinois {number sign}6 coal to material soluble in dilute base. Chemical studies showed that leonardite biosolubilization was accompanied by relatively small change in composition, while solubilization of Illinois {number sign}6 coal involves considerable oxidation of the coal. 24 refs., 32 figs., 27 tabs.« less

  13. Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro.

    PubMed

    Loneker, Abigail E; Faulk, Denver M; Hussey, George S; D'Amore, Antonio; Badylak, Stephen F

    2016-04-01

    Whole organ engineering and cell-based regenerative medicine approaches are being investigated as potential therapeutic options for end-stage liver failure. However, a major challenge of these strategies is the loss of hepatic specific function after hepatocytes are removed from their native microenvironment. The objective of the present study was to determine if solubilized liver extracellular matrix (ECM), when used as a media supplement, can better maintain hepatocyte phenotype compared to type I collagen alone or solubilized ECM harvested from a non-liver tissue source. Liver extracellular matrix (LECM) from four different species was isolated via liver tissue decellularization, solubilized, and then used as a media supplement for primary rat hepatocytes (PRH). The four species of LECM investigated were human, porcine, canine and rat. Cell morphology, albumin secretion, and ammonia metabolism were used to assess maintenance of hepatocyte phenotype. Biochemical and mechanical characterization of each LECM were also conducted. Results showed that PRH's supplemented with canine and porcine LECM maintained their phenotype to a greater extent compared to all other groups. PRH's supplemented with canine and porcine LECM showed increased bile production, increased albumin production, and the formation of multinucleate cells. The findings of the present study suggest that solubilized liver ECM can support in-vitro hepatocyte culture and should be considered for therapeutic and diagnostic techniques that utilize hepatocytes. © 2016 Wiley Periodicals, Inc.

  14. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation

    PubMed Central

    Nandimath, Arusha P.; Karad, Dilip D.; Gupta, Shantikumar G.; Kharat, Arun S.

    2017-01-01

    Background and Objectives: Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. Materials and Methods: In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Results: Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml−1. Conclusion: As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting. PMID:29296275

  15. Synthetic microbial ecology and the dynamic interplay between microbial genotypes.

    PubMed

    Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R

    2016-11-01

    Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.

  16. Effect of hydrostatic pressure on gas solubilization in micelles.

    PubMed

    Meng, Bin; Ashbaugh, Henry S

    2015-03-24

    Molecular dynamics simulations of anionic sodium decylsulfate and nonionic pentaethylene glycol monodecyl ether micelles in water have been performed to examine the impact of hydrostatic pressure on argon solubilization as a function of pressure. The potential-of-mean force between the micelles and argon demonstrates that nonpolar gases are attracted to the interiors of both micelles. The affinity of argon for micelle interiors, however, decreases with increasing pressure as a result of the comparatively higher molar volume of argon inside assemblies. We evaluate solubility enhancement coefficients, which describe the drop in the solute chemical potential as a function of the micellized surfactant concentration, to quantify the impact of micellization on gas solubilization. While argon is similarly attracted to the hydrophobic cores of both micelles, the gas is more effectively sequestered within nonionic micelles compared with anionic micelles as a result of salting out by charged head groups and accompanying counterions. The solubility enhancement coefficients of both micelles decrease with increasing pressure, reflecting the changing forces observed in the potentials-of-mean force. An analytical liquid drop model is proposed to describe the pressure dependence of argon solubilization within micelles that captures the simulation solubility enhancement coefficients after fitting an effective micelle radius for each surfactant.

  17. Effects of temperature and glucose limitation on coal solubilization by Candida ML13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, B.

    1991-04-01

    Biological processing has received considerable attention in recent years as a technology for the utilization of low-ranked coals. Several fungi and actinomycetes have been shown to liquefy highly oxidized coal in pure culture under aerobic conditions. This report describes the optimization of cultural conditions for coal solubilization by Candida sp. ML13, an organism originally isolated from a naturally weathered coal seam. Coal solubilization by surface cultures of Candida sp. has previously been demonstrated. The author describes here the elicitation of the activity in submerged cultures as well as the effect of carbohydrate concentration, carbon source, temperature, and agitation rate onmore » coal solubilization by this organism.« less

  18. The solubilization of bone and dentin collagens by pepsin. Effect of cross-linkages and non-collagen components.

    PubMed

    Carmichael, D J; Dodd, C M; Veis, A

    1977-03-28

    Bone and dentin collagen are less susceptible to solubilization by pepsin digestion then is skin collagen. Digestion at 4 degrees C for 72 h solubilized only 35.3% of bovine cortical bone and 5.6% of bovine dentin compared with nearly 100% dissolution of bovine skin. Sodium dodecyl sulfate-acrylamide gel electrophoresis and molecular sieve chromatography showed that, for bone and dentin, intact alpha chains and cross-linked aggregates of beta, gamma and higher weight remained intact after pepsin solubilization but lower molecular weight fragments also were prevalent indicating chain scission in helical regions. Electron microscopic examination of segment long spacing precipitates of the soluble collagens confirmed the presence of solubilized polymerized collagen. The principal reducible cross-link in both bone and dentin was the precursor of dihydroxylsinonorleucine and this cross-link was also present in the solubilized collagens. Small amounts of non-collagenous proteins and glycosaminoglycans of different compositions in dentin and bone resisted extraction before pepsin digestion. However, the differences in solubilization of the collagens have been related to differences in cross-linkage placement.

  19. [Promoting efficiency of microbial extracellular electron transfer by synthetic biology].

    PubMed

    Li, Feng; Song, Hao

    2017-03-25

    Electroactive bacteria, including electrigenic bacteria (exoelectrogens) and electroautotrophic bacteria, implement microbial bioelectrocatalysis processes via bi-directional exchange of electrons and energy with environments, enabling a wide array of applications in environmental and energy fields, including microbial fuel cells (MFC), microbial electrolysis cells (MEC), microbial electrosynthesis (MES) to produce electricity and bulk fine chemicals. However, the low efficiency in the extracellular electron transfer (EET) of exoelectrogens and electrotrophic microbes limited their industrial applications. Here, we reviewed synthetic biology approaches to engineer electroactive microorganisms to break the bottleneck of their EET pathways, to achieve higher efficiency of EET of a number of electroactive microorganisms. Such efforts will lead to a breakthrough in the applications of these electroactive microorganisms and microbial electrocatalysis systems.

  20. New spectrophotometric estimation of indomethacin capsules with niacinamide as hydrotropic solubilizing agent.

    PubMed

    Maheshwari, R K; Rathore, Amit; Agrawal, Archana; Gupta, Megha A

    2011-07-01

    Hydrotropic solubilization process involves cooperative intermolecular interaction with several balancing molecular forces, rather than either a specific complexation event or a process dominated by a medium effect, such as co-solvency or salting-in. In the present investigation, hydrotropic solution of 2 M niacinamide was employed as the solubilizing agent to solubilize the poorly water-soluble drug, indomethacin, from the capsule dosage form for spectrophotometric determination in ultraviolet region. Hydrotropic agent used did not interfere in the spectrophotometric analysis. In preliminary solubility studies, it was found that there was more than fivefold enhancement in the aqueous solubility of indomethacin (poorly water-soluble drug) in 2 M niacinamide solution as compared to its aqueous solubility at 28 ± 1°C. The proposed method is new, simple, safe, environmentally friendly, economic, accurate and cost-effective and can be successfully employed in routine analysis.

  1. Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India.

    PubMed

    Ghosh, Ranjan; Barman, Soma; Mukherjee, Rajib; Mandal, Narayan C

    2016-02-01

    Profuse growth of Lycpodium cernuum L. was found in phosphate deficient red lateritic soil of West Bengal, India. Interaction of vesicular-arbuscular mycorrhiza (VAM) with Lycopodium rhizoids were described earlier but association of PGPR with their rhizoids were not studied. Three potent phosphate solubilizing bacterial strains (P4, P9 and P10) associated with L. cernuum rhizoids were isolated and identified by 16S rDNA homologies on Ez-Taxon database as Burkholderia tropica, Burkholderia unamae and Burkholderia cepacia respectively. Day wise kinetics of phosphate solubilization against Ca3(PO4)2 suggested P4 (580.56±13.38 μg ml(-1)) as maximum mineral phosphate solubilizer followed by P9 (517.12±17.15 μg ml(-1)) and P10 (485.18±14.23 μg ml(-1)) at 28 °C. Release of bound phosphates by isolated strains from ferric phosphate (FePO4), aluminum phosphate (AlPO4) and four different complex rock phosphates indicated their very good phosphate solubilizng efficacy. Nitrogen independent solubilizition also supports their nitrogen fixing capabilities. Inhibition of P solubilization by calcium salts and induction by EDTA suggested pH dependent chelation of metal cations by all of the isolates. Rhizoidal colonization potentials of Burkholderia spp. were confirmed by in planta experiment and also using scanning electron microscope (SEM). Increases of total phosphate content in Lycopodium plants upon soil treatment with these isolates were also recorded. In addition siderophore production on CAS agar medium, tryptophan dependent IAA production and antifungal activities against pathogenic fungi by rhizospheric isolates deep-rooted that they have definite role in nutrient mobilization for successful colonization of L. cernuum in nutrient deficient lateritic soil. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Detergent solubilization of the EGF receptor from A431 cells

    NASA Technical Reports Server (NTRS)

    Dayanidhi, R.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Functional reconstitution of purified preparations of human epidermal growth factor receptor (EGFR) requires dissociation of the protein from its plasma membrane lipid environment. Solubilization of membrane proteins in this manner requires the use of detergents, which are known to disrupt plasma membrane lipid/protein interactions. We have investigated the ability of three nonionic detergents to solubilize the human EGFR selectively, and have also analyzed the effect of these various treatments on the intrinsic tyrosyl kinase activity of the receptor. The nonionic detergent known as n-octyl glucoside (n-octyl beta-D-glucopyranoside) was found to give the best combination of selectivity, yield, and maintenance of enzymatic activity of the human EGFR.

  3. Solubilization Behavior of Polyene Antibiotics in Nanomicellar System: Insights from Molecular Dynamics Simulation of the Amphotericin B and Nystatin Interactions with Polysorbate 80.

    PubMed

    Mobasheri, Meysam; Attar, Hossein; Rezayat Sorkhabadi, Seyed Mehdi; Khamesipour, Ali; Jaafari, Mahmoud Reza

    2015-12-24

    -core compatibility in detergent micelles. Based on the obtained results, the dearth of water at interior sites of micelle and the large lateral occupation space of PAs lead to shallow insertion, broad radial distribution, and lack of core interactions of the amphiphilic drugs. Hence, controlled promotion of micelle permeability and optimization of chain crowding in palisade layer may help to achieve more efficient solubilization of the PAs.

  4. Solubilization of Therapeutic Agents in Micellar Nanomedicines

    PubMed Central

    Vuković, Lela; Madriaga, Antonett; Kuzmis, Antonina; Banerjee, Amrita; Tang, Alan; Tao, Kevin; Shah, Neil; Král, Petr; Onyuksel, Hayat

    2014-01-01

    We use atomistic molecular dynamics simulations to reveal the binding mechanisms of therapeutic agents in PEG-ylated micellar nanocarriers (SSM). In our experiments, SSM in buffer solutions can solubilize either ≈ 11 small bexarotene molecules or ≈ 6 (2 in low ionic strength buffer) human vasoactive intestinal peptide (VIP) molecules. Free energy calculations reveal that molecules of the poorly water soluble drug bexarotene can reside at the micellar ionic interface of the PEG corona, with their polar ends pointing out. Alternatively, they can reside in the alkane core center, where several bexarotene molecules can self-stabilize by forming a cluster held together by a network of hydrogen bonds. We also show that highly charged molecules, such as VIP, can be stabilized at the SSM ionic interface by Coulombic coupling between their positively charged residues and the negatively charged phosphate head-groups of the lipids. The obtained results illustrate that atomistic simulations can reveal drug solubilization character in nanocarriers and be used in efficient optimization of novel nanomedicines. PMID:24283508

  5. High pH solubilization and chromatography-based renaturation and purification of recombinant human granulocyte colony-stimulating factor from inclusion bodies.

    PubMed

    Li, Ming; Fan, Hua; Liu, Jiahua; Wang, Minhong; Wang, Lili; Wang, Chaozhan

    2012-03-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is a very efficient therapeutic protein drug which has been widely used in human clinics to treat cancer patients suffering from chemotherapy-induced neutropenia. In this study, rhG-CSF was solubilized from inclusion bodies by using a high-pH solution containing low concentration of urea. It was found that solubilization of the rhG-CSF inclusion bodies greatly depended on the buffer pH employed; alkalic pH significantly favored the solubilization. In addition, when small amount of urea was added to the solution at high pH, the solubilization was further enhanced. After solubilization, the rhG-CSF was renatured with simultaneous purification by using weak anion exchange, strong anion exchange, and hydrophobic interaction chromatography, separately. The results indicated that the rhG-CSF solubilized by the high-pH solution containing low concentration of urea had much higher mass recovery than the one solubilized by 8 M urea when using anyone of the three refolding methods employed in this work. In the case of weak anion exchange chromatography, the high pH solubilized rhG-CSF could get a mass recovery of 73%. The strategy of combining solubilization of inclusion bodies at high pH with refolding of protein using liquid chromatography may become a routine method for protein production from inclusion bodies.

  6. Microbial activity promotes carbon storage in temperate soils

    NASA Astrophysics Data System (ADS)

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos; Gleixner, Gerd

    2014-05-01

    Soils are one of the most important carbon sink and sources. Soils contain up to 3/4 of all terrestrial carbon. Beside physical aspects of soil properties (e.g. soil moisture and texture) plants play an important role in carbon sequestration. The positive effect of plant diversity on carbon storage is already known, though the underlying mechanisms remain still unclear. In the frame of the Jena Experiment, a long term biodiversity experiment, we are able to identify these processes. Nine years after an land use change from an arable field to managed grassland the mean soil carbon concentrations increased towards the concentrations of permanent meadows. The increase was positively linked to a plant diversity gradient. High diverse plant communities produce more biomass, which in turn results in higher amounts of litter inputs. The plant litter is transferred to the soil organic matter by the soil microbial community. However, higher plant diversity also causes changes in micro-climatic condition. For instance, more diverse plant communities have a more dense vegetation structure, which reduced the evaporation of soils surface and thus, increases soil moisture in the top layer. Higher inputs and higher soil moisture lead to an enlarged respiration of the soil microbial community. Most interestingly, the carbon storage in the Jena Experiment was much more related to microbial respiration than to plant root inputs. Moreover, using radiocarbon, we found a significant younger carbon age in soils of more diverse plant communities than in soils of lower diversity, indicating that more fresh carbon is integrated into the carbon pool. Putting these findings together, we could show, that the positive link between plant diversity and carbon storage is due to a higher microbial decomposition of plant litter, pointing out that carbon storage in soils is a function of the microbial community.

  7. Cationic Antimicrobial Peptides Promote Microbial Mutagenesis and Pathoadaptation in Chronic Infections

    PubMed Central

    Limoli, Dominique H.; Rockel, Andrea B.; Host, Kurtis M.; Jha, Anuvrat; Kopp, Benjamin T.; Hollis, Thomas; Wozniak, Daniel J.

    2014-01-01

    Acquisition of adaptive mutations is essential for microbial persistence during chronic infections. This is particularly evident during chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients. Thus far, mutagenesis has been attributed to the generation of reactive species by polymorphonucleocytes (PMN) and antibiotic treatment. However, our current studies of mutagenesis leading to P. aeruginosa mucoid conversion have revealed a potential new mutagen. Our findings confirmed the current view that reactive oxygen species can promote mucoidy in vitro, but revealed PMNs are proficient at inducing mucoid conversion in the absence of an oxidative burst. This led to the discovery that cationic antimicrobial peptides can be mutagenic and promote mucoidy. Of specific interest was the human cathelicidin LL-37, canonically known to disrupt bacterial membranes leading to cell death. An alternative role was revealed at sub-inhibitory concentrations, where LL-37 was found to induce mutations within the mucA gene encoding a negative regulator of mucoidy and to promote rifampin resistance in both P. aeruginosa and Escherichia coli. The mechanism of mutagenesis was found to be dependent upon sub-inhibitory concentrations of LL-37 entering the bacterial cytosol and binding to DNA. LL-37/DNA interactions then promote translesion DNA synthesis by the polymerase DinB, whose error-prone replication potentiates the mutations. A model of LL-37 bound to DNA was generated, which reveals amino termini α-helices of dimerized LL-37 bind the major groove of DNA, with numerous DNA contacts made by LL-37 basic residues. This demonstrates a mutagenic role for antimicrobials previously thought to be insusceptible to resistance by mutation, highlighting a need to further investigate their role in evolution and pathoadaptation in chronic infections. PMID:24763694

  8. Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis

    PubMed Central

    Midura-Kiela, Monica T.; Ramalingam, Rajalakshmy; Larmonier, Claire B.; Chase, John H.; Caporaso, J. Gregory; Besselsen, David G.; Ghishan, Fayez K.; Kiela, Pawel R.

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community. PMID:27050757

  9. Engineering cocrystal solubility, stability, and pH(max) by micellar solubilization.

    PubMed

    Huang, Neal; Rodríguez-Hornedo, Naír

    2011-12-01

    Cocrystals offer great promise in enhancing drug aqueous solubilities, but face the challenge of conversion to a less soluble drug when in contact with solvent. This manuscript shows that differential solubilization of cocrystal components by micelles can impart thermodynamic stability to otherwise unstable cocrystals. The theoretical foundation for controlling cocrystal solubility and stability is presented by considering the contributions of micellar solubilization and ionization of cocrystal components. A surfactant critical stabilization concentration (CSC) and a solution pH (pH(max)) where cocrystal and drug are thermodynamically stable are shown to characterize cocrystal stability in micellar solutions. The solubility, CSC, and pH(max) of carbamazepine cocrystals in micellar solutions of sodium lauryl sulfate predicted by the models are in very good agreement with experimental measurements. The findings from this work demonstrate that cocrystal CSC and pH(max) can be tailored from the selection of coformer and solubilizing additives such as surfactants, thus providing an unprecedented level of control over cocrystal stability and solubility via solution phase chemistry. Copyright © 2011 Wiley-Liss, Inc.

  10. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB.

    PubMed

    Malki, Abderrahim; Le, Hai-Tuong; Milles, Sigrid; Kern, Renée; Caldas, Teresa; Abdallah, Jad; Richarme, Gilbert

    2008-05-16

    The acid stress chaperones HdeA and HdeB of Escherichia coli prevent the aggregation of periplasmic proteins at acidic pH. We show in this report that they also form mixed aggregates with proteins that have failed to be solubilized at acidic pH and allow their subsequent solubilization at neutral pH. HdeA, HdeB, and HdeA and HdeB together display an increasing efficiency for the solubilization of protein aggregates at pH 3. They are less efficient for the solubilization of aggregates at pH 2, whereas HdeB is the most efficient. Increasing amounts of periplasmic proteins draw increasing amounts of chaperone into pellets, suggesting that chaperones co-aggregate with their substrate proteins. We observed a decrease in the size of protein aggregates in the presence of HdeA and HdeB, from very high molecular mass aggregates to 100-5000-kDa species. Moreover, a marked decrease in the exposed hydrophobicity of aggregated proteins in the presence of HdeA and HdeB was revealed by 1,1'-bis(4-anilino)naphtalene-5,5'-disulfonic acid binding experiments. In vivo, during the recovery at neutral pH of acid stressed bacterial cells, HdeA and HdeB allow the solubilization and renaturation of protein aggregates, including those formed by the maltose receptor MalE, the oligopeptide receptor OppA, and the histidine receptor HisJ. Thus, HdeA and HdeB not only help to maintain proteins in a soluble state during acid treatment, as previously reported, but also assist, both in vitro and in vivo, in the solubilization at neutral pH of mixed protein-chaperone aggregates formed at acidic pH, by decreasing the size of protein aggregates and the exposed hydrophobicity of aggregated proteins.

  11. Isolation and Characterization of a Phosphorus-Solubilizing Bacterium from Rhizosphere Soils and Its Colonization of Chinese Cabbage (Brassica campestris ssp. chinensis)

    PubMed Central

    Wang, Zhen; Xu, Guoyi; Ma, Pengda; Lin, Yanbing; Yang, Xiangna; Cao, Cuiling

    2017-01-01

    Phosphate-solubilizing bacteria (PSB) can promote the dissolution of insoluble phosphorus (P) in soil, enhancing the availability of soluble P. Thus, their application can reduce the consumption of fertilizer and aid in sustainable agricultural development. From the rhizosphere of Chinese cabbage plants grown in Yangling, we isolated a strain of PSB (YL6) with a strong ability to dissolve P and showed that this strain promoted the growth of these plants under field conditions. However, systematic research on the colonization of bacteria in the plant rhizosphere remains deficient. Thus, to further study the effects of PSB on plant growth, in this study, green fluorescent protein (GFP) was used to study the colonization of YL6 on Chinese cabbage roots. GFP expression had little effect on the ability of YL6 to grow and solubilize P. In addition, the GFP-expressing strain stably colonized the Chinese cabbage rhizosphere (the number of colonizing bacteria in the rhizosphere soil was 4.9 lg CFU/g). Using fluorescence microscopy, we observed a high abundance of YL6-GFP bacteria at the Chinese cabbage root cap and meristematic zone, as well as in the root hairs and hypocotyl epidermal cells. High quantities of GFP-expressing bacteria were recovered from Chinese cabbage plants during different planting periods for further observation, indicating that YL6-GFP had the ability to endogenously colonize the plants. This study has laid a solid and significant foundation for further research on how PSB affects the physiological processes in Chinese cabbage to promote plant growth. PMID:28798725

  12. β-Cyclodextrin-dextran polymers for the solubilization of poorly soluble drugs.

    PubMed

    di Cagno, Massimiliano; Terndrup Nielsen, Thorbjørn; Lambertsen Larsen, Kim; Kuntsche, Judith; Bauer-Brandl, Annette

    2014-07-01

    The aim of this study was to assess the potential of novel β-cyclodextrin (βCD)-dextran polymers for drug delivery. The size distribution of βCD-dextrans (for eventual parenteral administration), the influence of the dextran backbones on the stability of the βCD/drug complex, the solubilization efficiency of poorly soluble drugs and drug release properties were investigated. Size analysis of different βCD-dextrans was measured by size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4). Stability of drug/βCD-dextrans was assessed by isothermal titration calorimetry (ITC) and molar enthalpies of complexation and equilibrium constants compared to some commercially available βCD derivatives. For evaluation of the solubilization efficiency, phase-solubility diagrams were made employing hydrocortisone (HC) as a model of poorly soluble drugs, whereas reverse dialysis was used to detect potential drug supersaturation (increased molecularly dissolved drug concentration) as well as controlled release effects. Results indicate that all investigated βCD-polymers are of appropriate sizes for parenteral administration. Thermodynamic results demonstrate that the presence of the dextran backbone structure does not affect the stability of the βCD/drug complex, compared to native βCD and commercially available derivatives. Solubility studies evidence higher solubilizing abilities of these new polymers in comparison to commercially available βCDs, but no supersaturation states were induced. Moreover, drug release studies evidenced that diffusion of HC was influenced by the solubilization induced by the βCD-derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Characterization of (/sup 3/H)pirenzepine binding to muscarinic cholinergic receptors solubilized from rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthin, G.R.; Wolfe, B.B.

    Membranes prepared from rat cerebral cortex were solubilized in buffer containing 1% digitonin. Material present in the supernatant after centrifugation at 147,000 X g was shown to contain binding sites for both (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) and (/sup 3/H)pirenzepine ((/sup 3/H)PZ). Recovery of binding sites was approximately 25% of the initial membrane-bound (/sup 3/H)QNB binding sites. The Kd values for (/sup 3/H)QNB and (/sup 3/H)PZ binding to solubilized receptors were 0.3 nM and 0.1 microM, respectively. As has been observed previously in membrane preparations, (/sup 3/H)PZ appeared to label fewer solubilized binding sites than did (/sup 3/H)QNB. Maximum bindingmore » values for (/sup 3/H)PZ and (/sup 3/H)QNB binding to solubilized receptors were approximately 400 and 950 fmol/mg of protein, respectively. Competition curves for PZ inhibiting the binding of (/sup 3/H)QNB, however, had Hill slopes of 1, with a Ki value of 0.24 microM. The k1 and k-1 for (/sup 3/H)PZ binding were 3.5 X 10(6) M-1 min-1 and 0.13 min-1, respectively. The muscarinic receptor antagonists atropine, scopolamine and PZ inhibited the binding of (/sup 3/H)QNB and (/sup 3/H)PZ to solubilized receptors with Hill slopes of 1, as did the muscarinic receptor agonist oxotremorine. The muscarinic receptor agonist carbachol competed for (/sup 3/H)QNB and (/sup 3/H)PZ binding with a Hill slope of less than 1 in cerebral cortex, but not in cerebellum. GTP did not alter the interactions of carbachol or oxotremorine with the solubilized receptor. Together, these data suggest that muscarinic receptor sites solubilized from rat brain retain their abilities to interact selectively with muscarinic receptor agonists and antagonists.« less

  14. Cyclodextrin-enhanced solubilization and removal of residual-phase chlorinated solvents from porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boving, T.B.; Wang, X.; Brusseau, M.L.

    1999-03-01

    The development of improved methods for remediation of contaminated aquifers has emerged as a significant environmental priority. One technology that appears to have considerable promise involves the use of solubilization agents such as surfactants and cosolvents for enhancing the removal of residual phase immiscible liquids. The authors examined the use of cyclodextrin, a glucose-based molecule, for solubilizing and removing residual-phase immiscible liquid from porous media. Batch experiments were conducted to measure the degree of trichloroethene (TCE) and tetrachloroethene (PCE) solubilization induced by hydroxypropyl-{beta}-cyclodextrin (HPCD) and methyl-{beta}-cyclodextrin (MCD). These studies revealed that the solubilities of TCE and PCE were enhanced bymore » up to 9.5 and 36.0 times, respectively. Column experiments were conducted to compare water and cyclodextrin-enhanced flushing of Borden sand containing residual saturations of TCE and PCE. The results indicate that solubilization and mass removal were enhanced substantially with the use of cyclodextrins. The effluent concentrations during the steady-state phase of the HPCD and MCD flushing experiments were close to the apparent solubilities measured with the batch experiments, indicating equilibrium concentrations were maintained during the initial phase of cyclodextrin flushing. Mobilization was observed for only the TCE-MCD and PCE-5%MCD experiments.« less

  15. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review.

    PubMed

    Malik, Nisar Ahmad

    2016-05-01

    In this review, bile salt, bile salt-surfactant, and bile salt-drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings.

  16. Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste.

    PubMed

    Lim, J W; Chen, C-L; Ho, I J R; Wang, J-Y

    2013-11-01

    The objective of this work was to study the microbial community and reactor performance for the anaerobic co-digestion of brown water and food waste in single- and two-phase continuously stirred tank reactors (CSTRs). Bacterial and archaeal communities were analyzed after 150 days of reactor operation. As compared to single-phase CSTR, methane production in two-phase CSTR was found to be 23% higher. This was likely due to greater extent of solubilization and acidification observed in the latter. These findings could be attributed to the predominance of Firmicutes and greater bacterial diversity in two-phase CSTR, and the lack of Firmicutes in single-phase CSTR. Methanosaeta was predominant in both CSTRs and this correlated to low levels of acetate in their effluent. Insights gained from this study would enhance the understanding of microorganisms involved in co-digestion of brown water and food waste as well as the complex biochemical interactions promoting digester stability and performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal.

    PubMed

    Das, Amal Chandra; Debnath, Anjan

    2006-11-01

    A field experiment has been conducted with four systemic herbicides viz., butachlor [N-(butoxymethyl)-2-chloro-2',6'-diethyl-acetanilide], fluchloralin [N-(2-chloroethyl)-(2,6-dinitro-N-propyl-4-trifluoromethyl) aniline], oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopro poxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at their recommended field rates (2.0, 1.5, 0.4 and 0.12kga.i.ha(-1), respectively) to investigate their effects on growth and activities of aerobic non-symbiotic N(2)-fixing bacteria and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in the rhizosphere soils as well as yield of the rice crop (Oryza sativa L cv. IR-36). Application of herbicides, in general, highly stimulated the population and activities of the target microorganisms, which resulted in a greater amount of atmospheric nitrogen fixation and phosphate solubilization in the rhizosphere soils of the test crop. The greater microbial activities subsequently augmented the mineralization and availability of nitrogen and phosphorus in the soil solution, which in turn increased the yield of the crop. Among the herbicides, oxyfluorfen was most stimulative followed by fluchloralin and oxadiazon in augmenting the microbial activities in soil. Butachlor also accentuated the mineralization and availability of nitrogen due to higher incitement of non-symbiotic N(2)-fixing bacteria in paddy soil. The grain and straw yields of the crop were also significantly increased due to the application of oxyfluorfen (20.2% and 21%) followed by fluchloralin (13.1% and 15.4%) and butachlor (9.1% and 10.2%), respectively.

  18. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production.

    PubMed

    Scervino, J M; Papinutti, V L; Godoy, M S; Rodriguez, M A; Della Monica, I; Recchi, M; Pettinari, M J; Godeas, A M

    2011-05-01

    To study phosphate solubilization in Penicillium purpurogenum as function of medium pH, and carbon and nitrogen concentrations. Tricalcium phosphate (CP) solubilization efficiency of P. purpurogenum was evaluated at acid or alkaline pH using different C and N sources. Glucose- and (NH(4) )(2) SO(4) -based media showed the highest P solubilization values followed by fructose. P. purpurogenum solubilizing ability was higher in cultures grown at pH 6·5 than cultures at pH 8·5. Organic acids were detected in both alkaline and neutral media, but the relative percentages of each organic acid differed. Highest P release coincided with the highest organic acids production peak, especially gluconic acid. When P. purpurogenum grew in alkaline media, the nature and concentration of organic acids changed at different N and C concentrations. A factorial categorical experimental design showed that the highest P-solubilizing activity, coinciding with the highest organic acid production, corresponded to the highest C concentration and lowest N concentration. The results described in the present study show that medium pH and carbon and nitrogen concentrations modulate the P solubilization efficiency of P. purpurogenum through the production of organic acids and particularly that of gluconic acid. In the P solubilization optimization studies, glucose and (NH(4) )(2) SO(4) as C and N sources allowed a higher solubilization efficiency at high pH. This organism is a potentially proficient soil inoculant, especially in P-poor alkaline soils where other P solubilizers fail to release soluble P. Further work is necessary to elucidate whether these results can be extrapolated to natural soil ecosystems, where different pH values are present. Penicillium purpurogenum could be used to develop a bioprocess for the manufacture of phosphatic fertilizer with phosphate calcium minerals. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  19. An Economic Framework of Microbial Trade

    PubMed Central

    Mee, Michael T.

    2015-01-01

    A large fraction of microbial life on earth exists in complex communities where metabolic exchange is vital. Microbes trade essential resources to promote their own growth in an analogous way to countries that exchange goods in modern economic markets. Inspired by these similarities, we developed a framework based on general equilibrium theory (GET) from economics to predict the population dynamics of trading microbial communities. Our biotic GET (BGET) model provides an a priori theory of the growth benefits of microbial trade, yielding several novel insights relevant to understanding microbial ecology and engineering synthetic communities. We find that the economic concept of comparative advantage is a necessary condition for mutualistic trade. Our model suggests that microbial communities can grow faster when species are unable to produce essential resources that are obtained through trade, thereby promoting metabolic specialization and increased intercellular exchange. Furthermore, we find that species engaged in trade exhibit a fundamental tradeoff between growth rate and relative population abundance, and that different environments that put greater pressure on group selection versus individual selection will promote varying strategies along this growth-abundance spectrum. We experimentally tested this tradeoff using a synthetic consortium of Escherichia coli cells and found the results match the predictions of the model. This framework provides a foundation to study natural and engineered microbial communities through a new lens based on economic theories developed over the past century. PMID:26222307

  20. Physicochemical investigation of mixed surfactant microemulsions: water solubilization, thermodynamic properties, microstructure, and dynamics.

    PubMed

    Bardhan, Soumik; Kundu, Kaushik; Saha, Swapan K; Paul, Bidyut K

    2013-12-01

    In this contribution, we report on a systematic investigation of phase behavior and solubilization of water in water-in-heptane or decane aggregates stabilized by mixtures of polyoxyethylene (20) cetyl ether (Brij-58) and cetyltrimethylammonium bromide (CTAB) surfactants with varying compositions in conjugation with 1-pentanol (Pn) at fixed surfactant(s)/Pn ratio and temperature. Synergism in water solubilization was evidenced by the addition of CTAB to Brij-58 stabilized system in close proximity of equimolar composition in both oils. An attempt has been made to correlate composition dependent water solubilization and volume induced conductivity studies to provide insight into the solubilization mechanism of these mixed systems. Conductivity studies reveal the ascending curve in water solubilization capacity-(Brij-58:CTAB, w/w) profile as the interdroplet interaction branch indicating percolation of conductance and the descending curve is a curvature branch due to the rigidity of the interface in these systems. The microstructure of these systems as a function of surfactant composition has been determined by dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR) measurements. FTIR study reveals increase and decrease in relative population of bound and bulk-like water, respectively, with increase in Brij-58:CTAB (w/w). DLS measurements showed that the droplet hydrodynamic diameter (Dh) decreases significantly with the increase in Brij-58:CTAB (w/w). Further, the interfacial composition and energetic parameters for the transfer of Pn from bulk oil to the interface were evaluated by the dilution method. Formation of temperature-insensitive microemulsions and temperature invariant droplet sizes are evidenced in the vicinity of the equimolar composition. The results are interpreted in terms of a proposed mechanism. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A novel solubilization technique for poorly soluble drugs through the integration of nanocrystal and cocrystal technologies.

    PubMed

    Karashima, Masatoshi; Kimoto, Kouya; Yamamoto, Katsuhiko; Kojima, Takashi; Ikeda, Yukihiro

    2016-10-01

    The aim of the present study was to develop a novel solubilization technique consisting of a nano-cocrystal suspension by integrating cocrystal and nanocrystal formulation technologies to maximize solubilization over current solubilizing technologies. Monodisperse carbamazepine-saccharin, indomethacin-saccharin, and furosemide-caffeine nano-cocrystal suspensions, as well as a furosemide-cytosine nano-salt suspension, were successfully prepared with particle sizes of less than 300nm by wet milling with the stabilizers hydroxypropyl methylcellulose and sodium dodecyl sulfate. Interestingly, the properties of resultant nano-cocrystal suspensions were dramatically changed depending on the physicochemical and structural properties of the cocrystals. In the formulation optimization, the concentration and ratio of the stabilizers also influenced the zeta potentials and particles sizes of the resultant nano-cocrystal suspensions. Raman spectroscopic analysis revealed that the crystalline structures of the cocrystals were maintained in the nanosuspensions, and were physically stable for at least one month. Furthermore, their dissolution profiles were significantly improved over current solubilization-enabling technologies, nanocrystals, and cocrystals. In the present study, we demonstrated that nano-cocrystal formulations can be a new promising option for solubilization techniques to improve the absorption of poorly soluble drugs, and can expand the development potential of poorly soluble candidates in the pharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cytotoxic and anti-angiogenic paclitaxel solubilized and permeation-enhanced by natural product nanoparticles

    PubMed Central

    Liu, Zhijun; Zhang, Fang; Koh, Gar Yee; Dong, Xin; Hollingsworth, Javoris; Zhang, Jian; Russo, Paul S.; Yang, Peiying; Stout, Rhett W.

    2014-01-01

    Paclitaxel (PTX) is one of the most potent intravenous chemotherapeutic agents to date, yet an oral formulation has been problematic due to its low solubility and permeability. Using the recently discovered solubilizing properties of rubusoside (RUB), we investigated this unique PTX-RUB formulation. Paclitaxel was solubilized by RUB in water to levels of 1.6 to 6.3 mg/mL at 10 to 40% weight/volume. These, nanomicellar, PTX-RUB complexes were dried to a powder which was subsequently reconstituted in physiologic solutions. After 2.5 hrs in gastric fluid 85 to 99% of PTX-RUB remained soluble, while 79 to 96% remained soluble in intestinal fluid. The solubilization of PTX was mechanized by the formation of water-soluble spherical nanomicelles between PTX and RUB with an average diameter of 6.6 nm. Compared with Taxol®, PTX-RUB nanoparticles were nearly four times more permeable in Caco-2 cell monocultures. In a side-by-side comparison with DMSO-solubilized PTX, PTX-RUB maintained the same level of cytotoxicity against three human cancer cell lines with IC50 values ranging from 4 nM to 20 nM. Additionally, tubular formation and migration of HUVECs were inhibited at levels as low as 5 nM. These chemical and biological properties demonstrated by the PTX-RUB nanoparticles may improve oral bioavailability and enable further pharmacokinetic, toxicologic, and efficacy investigations. PMID:25243454

  3. Solubilization of Tea Seed Oil in a Food-Grade Water-Dilutable Microemulsion

    PubMed Central

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40–45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line. PMID:25996147

  4. Solubilization of tea seed oil in a food-grade water-dilutable microemulsion.

    PubMed

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40-45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line.

  5. Microbial Reduction of Structural Fe3+ in Nontronite by a Thermophilic Bacterium and its Role in Promoting the Smectite to Illite Reaction

    DTIC Science & Technology

    2007-01-01

    role in promoting the smectite to Hike reaction GENGXIN ZHANG,’ HAIUANG DONG, 1 * JINWOOK KIM,2 AND D.D. EBERL3 ’Department of Geology, Miami...Geological Survey, Boulder, Colorado 80303, USA. ABSTRACT The illitization process of Fe-rich smectite (nontronite NAu-2) promoted by microbial reduction of...layers of illite/ smectite or highly charged smectite were detected under other conditions. The morphology of biogenic illite evolved from lath and flake

  6. Solubilization and characterization of haloperidol-sensitive (+)-( sup 3 H)SKF-10,047 binding sites (sigma sites) from rat liver membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, D.J.; Su, T.P.

    1991-05-01

    The zwitterionic detergent 3-((3-cholamidopropyl)dimethylamino)-1-propanesulfonate (CHAPS) produced optimal solubilization of (+)-({sup 3}H)SKF-10,047 binding sites from rat liver membranes at a concentration of 0.2%, well below the critical micellular concentration of the detergent. The pharmacological selectivity of the liver (+)-({sup 3}H)SKF-10,047 binding sites corresponds to that of sigma sites from rat and guinea pig brain. When the affinities of 18 different drugs at (+)-({sup 3}H)SKF-10,047 binding sites in membranes and solubilized preparations were compared, a correlation coefficient of 0.99 and a slope of 1.03 were obtained, indicating that the pharmacological selectivity of rat liver sigma sites is retained after solubilization. In addition,more » the binding of 20 nM ({sup 3}H)progesterone to solubilized rat liver preparations was found to exhibit a pharmacological selectivity appropriate for sigma sites. A stimulatory effect of phenytoin on (+)-({sup 3}H)SKF-10,047 binding to sigma sites persisted after solubilization. When the solubilized preparation was subjected to molecular sizing chromatography, a single peak exhibiting specific (+)-({sup 3}H)SKF-10,047 binding was obtained. The binding activity of this peak was stimulated symmetrically when assays were performed in the presence of 300 microM phenytoin. The molecular weight of the CHAPS-solubilized sigma site complex was estimated to be 450,000 daltons. After solubilization with CHAPS, rat liver sigma sites were enriched to 12 pmol/mg of protein. The present results demonstrate a successful solubilization of sigma sites from rat liver membranes and provide direct evidence that the gonadal steroid progesterone binds to sigma sites. The results also suggest that the anticonvulsant phenytoin binds to an associated allosteric site on the sigma site complex.« less

  7. Is artificial recharge promoting microbial activity and biodegradation processes in groundwater systems?

    NASA Astrophysics Data System (ADS)

    Barba Ferrer, Carme; Folch, Albert; Gaju, Núria; Martínez-Alonso, Maira; Carrasquilla, Marc; Grau-Martínez, Alba; Sanchez-Vila, Xavier

    2016-04-01

    Managed Artificial Recharge (MAR) represents a strategic tool for managing water resources, especially during scarce periods. On one hand, it can increase water stored in aquifers and extract it when weather conditions do not permit exclusive exploitation of surface resources. On the other, it allows improve water quality due the processes occurring into the soil whereas water crosses vadose zone. Barcelona (Catalonia, Spain) conurbation is suffering significant quantitative and qualitative groundwater disturbances. For this reason, Sant Vicenç MAR system, constituted by a sedimentation and an infiltration pond, was constructed in 2009 as the strategic water management infrastructure. Compared with other MAR facilities, this infiltration pond has a reactive bed formed by organic compost and local material. The objective is to promote different redox states allowing more and different degradation of chemical compounds than regular MAR systems. In previous studies in the site, physical and hydrochemical parameters demonstrated that there was indeed a degradation of different pollutants. However, to go a step further understanding the different biogeochemical processes and the related degradation processes occurring in the system, we studied the existing microbial communities. So, molecular techniques were applied in water and soil samples in two different scenarios; the first one, when the system was fully operating and the second when the system was not operating during some months. We have specifically compared microbial diversity and richness indexes and both cluster dendrograms obtained from DGGEs analysis made in each sampling campaign.

  8. Solubilization of poorly water-soluble compounds using amphiphilic phospholipid polymers with different molecular architectures.

    PubMed

    Mu, Mingwei; Konno, Tomohiro; Inoue, Yuuki; Ishihara, Kazuhiko

    2017-10-01

    To achieve stable and effective solubilization of poorly water-soluble bioactive compounds, water-soluble and amphiphilic polymers composed of hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) units and hydrophobic n-butyl methacrylate (BMA) units were prepared. MPC polymers having different molecular architectures, such as random-type monomer unit sequences and block-type sequences, formed polymer aggregates when they were dissolved in aqueous media. The structure of the random-type polymer aggregate was loose and flexible. On the other hand, the block-type polymer formed polymeric micelles, which were composed of very stable hydrophobic poly(BMA) cores and hydrophilic poly(MPC) shells. The solubilization of a poorly water-soluble bioactive compound, paclitaxel (PTX), in the polymer aggregates was observed, however, solubilizing efficiency and stability were strongly depended on the polymer architecture; in other words, PTX stayed in the poly(BMA) core of the polymer micelle formed by the block-type polymer even when plasma protein was present in the aqueous medium. On the other hand, when the random-type polymer was used, PTX was transferred from the polymer aggregate to the protein. We conclude that water-soluble and amphiphilic MPC polymers are good candidates as solubilizers for poorly water-soluble bioactive compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Enhancement of clover growth by inoculation of P-solubilizing fungi and arbuscular mycorrhizal fungi.

    PubMed

    Souchie, Edson L; Azcón, Rosario; Barea, Jose M; Silva, Eliane M R; Saggin-Júnior, Orivaldo J

    2010-09-01

    This study evaluated the synergism between several P-solubilizing fungi isolates and arbuscular mycorrhizal fungi to improve clover ( Trifolium pratense) growth in the presence of Araxá apatite. Clover was sown directly in plastic pots with 300g of sterilized washed sand, vermiculite and sepiolite 1:1:1 (v:v:v) as substrate, and grown in a controlled environment chamber. The substrate was fertilized with 3 g L(-1) of Araxá apatite. A completely randomized design, in 8×2 factorial scheme (eight P-solubilizing fungi treatments with or without arbuscular mycorrhizal fungi)and four replicates were used. The P-solubilizing fungi treatments consisted of five Brazilian P-solubilizing fungi isolates (PSF 7, 9, 20, 21 and 22), two Spanish isolates ( Aspergillus niger and the yeast Yarowia lipolytica) and control (non-inoculated treatment). The greatest clover growth rate was recorded when Aspergillus niger and PSF 21 were co-inoculated with arbuscular mycorrhizal fungi. Aspergillus niger, PSF 7 and PSF 21 were the most effective isolates on increasing clover growth in the presence of arbuscular mycorrhizal fungi. Greater mycorrhizal colonization resulted in greater clover growth rate in most PSF treatments. PSF 7 was the best isolate to improve the establishment of mycorrhizal and rhizobia symbiosis.

  10. Solubilization of phencyclidine receptors from rat cerebral cortex in an active ligand binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McVittie, L.D.; Sibley, D.R.

    1989-01-01

    A phencyclidine (PCP) receptor binding site has been solubilized in an active ligand-binding state from rat cerebral cortical membranes with sodium deoxycholate. Optimal receptor solubilization occurs at a detergent/protein ratio of 0.5 (w/w); for 5 mg protein/ml solubilized with 0.25% sodium deoxycholate, about 60% of the protein and 25% of the receptor is solubilized. Specific binding of either (/sup 3/H)-N-(1-(2-thienyl)cyclohexyl)piperidine ((/sup 3/H)TCP) or (/sup 3/H)MK-801 is measurable by filtration through Sephadex G-50 columns or glass fiber filters; more than 60% of the binding activity is stable after 48 h at 4/degrees/C. In the presence of detergent, (/sup 3/H)TCP binding exhibitsmore » a K/sub d/ of 250 nM, a B/sub max/ of 0.56 pmol/mg protein, and a pharmacological profile consistent with that of the membrane-bound PCP receptor, although most drugs bind with affinities 2 to 8 fold lower than in membranes. Upon reduction of detergent concentration, binding parameters approximate those for the membrane-bound receptor (/sup 3/H)TCP binding: K/sub d/ = 48 nM, M/sub max/ = 1.13 pmol/mg protein.« less

  11. Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction

    USGS Publications Warehouse

    Zhang, G.; Dong, H.; Kim, J.; Eberl, D.D.

    2007-01-01

    The illitization process of Fe-rich smectite (nontronite NAu-2) promoted by microbial reduction of structural Fe3+ was investigated by using a thermophilic metal-reducing bacterium, Thermoanaerobacter ethanolicus, isolated from the deep subsurface. T. ethanolicus was incubated with lactate as the sole electron donor and structural Fe3+ in nontronite as the sole electron acceptor, and anthraquinone-2, 6-disulfonate (AQDS) as an electron shuttle in a growth medium (pH 6.2 and 9.2, 65 ??C) with or without an external supply of Al and K sources. With an external supply of Al and K, the extent of reduction of Fe3+ in NAu-2 was 43.7 and 40.4% at pH 6.2 and 9.2, respectively. X-ray diffraction and scanning and transmission electron microscopy revealed formation of discrete illite at pH 9.2 with external Al and K sources, while mixed layers of illite/smectite or highly charged smectite were detected under other conditions. The morphology of biogenic illite evolved from lath and flake to pseudo-hexagonal shape. An external supply of Al and K under alkaline conditions enhances the smectite-illite reaction during microbial Fe3+ reduction of smectite. Biogenic SiO2 was observed as a result of bioreduction under all conditions. The microbially promoted smectite-illite reaction proceeds via dissolution of smectite and precipitation of illite. Thermophilic iron reducing bacteria have a significant role in promoting the smectite to illite reaction under conditions common in sedimentary basins.

  12. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent-A Study Using Soybean Plants.

    PubMed

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; LeBihan, Yann; Buelna, Gerardo

    2016-03-01

    With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60-70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33-100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.

  13. An optimized regulating method for composting phosphorus fractions transformation based on biochar addition and phosphate-solubilizing bacteria inoculation.

    PubMed

    Wei, Yuquan; Zhao, Yue; Wang, Huan; Lu, Qian; Cao, Zhenyu; Cui, Hongyang; Zhu, Longji; Wei, Zimin

    2016-12-01

    The study was conducted to investigate the influence of biochar and/or phosphate-solubilizing bacteria (PSB) inoculants on microbial biomass, bacterial community composition and phosphorus (P) fractions during kitchen waste composting amended with rock phosphate (RP). There were distinct differences in the physic-chemical parameters, the proportion of P fractions and bacterial diversity in different treatments. The contribution of available P fractions increased during composting especially in the treatment with the addition of PSB and biochar. Redundancy analysis showed that bacterial compositions were significantly influenced by P content, inoculation and biochar. Variance partitioning further showed that synergy of inoculated PSB and indigenous bacterial communities and the joint effect between biochar and bacteria explained the largest two proportion of the variation in P fractions. Therefore, the combined application of PSB and biochar to improve the inoculation effect and an optimized regulating method were suggested based on the distribution of P fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effects of microwave and alkali induced pretreatment on sludge solubilization and subsequent aerobic digestion.

    PubMed

    Chang, Chia-Jung; Tyagi, Vinay Kumar; Lo, Shang-Lien

    2011-09-01

    Individual and combined effects of microwave (MW) and alkali pretreatments on sludge disintegration and subsequent aerobic digestion of waste activated sludge (WAS) were studied. Pretreatments with MW (600W-85°C-2 min), conventional heating (520 W-80°C-12 min) and alkali (1.5 g NaOH/L - pH 12-30 min) achieved 8.5%, 7% and 18% COD solubilization, respectively. However, combined MW-alkali pretreatment synergistically enhanced sludge solubilization and achieved 46% COD solubilization, 20% greater than the additive value of MW alone and alkali alone (8.5+18%=26.5%). Moreover, the results of the batch aerobic digestion study on MW-alkali pretreated sludge showed 93% and 63% reductions in SCOD and VSS concentrations, respectively, at 16 days of SRT. The VSS reduction was 20% higher than that of WAS without pretreatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Sodium deoxycholate mediated enhanced solubilization and stability of hydrophobic drug Clozapine in pluronic micelles

    NASA Astrophysics Data System (ADS)

    Singla, Pankaj; Singh, Onkar; Chabba, Shruti; Aswal, V. K.; Mahajan, Rakesh Kumar

    2018-02-01

    In this report, the solubilization behaviour of a hydrophobic drug Clozapine (CLZ) in micellar suspensions of pluronics having different hydrophilic lipophilic balance (HLB) ratios viz. P84, F127 and F108 in the absence and presence of bile salt sodium deoxycholate (SDC) has been studied. UV-Vis spectroscopy has been exploited to determine the solubilization capacity of the investigated micellar systems in terms of drug loading efficiency, average number of drug molecules solubilized per micelle (ns), partition coefficient (P) and standard free energy of solubilization (Δ G°). The morphological and structural changes taking place in pluronics in different concentration regimes of SDC and with the addition of drug CLZ has been explored using dynamic light scattering (DLS) and small angle neutron scattering (SANS) measurements. The SANS results revealed that aggregation behaviour of pluronic-SDC mixed micelles gets improved in the presence of drug. The micropolarity measurements have been performed to shed light on the locus of solubilization of the drug in pure and mixed micellar systems. The compatibility between CLZ and drug carriers (pluronics and SDC) was confirmed using powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Among the investigated systems, P84-SDC mixed system was found to be highly efficient for CLZ loading. The long term stability data indicated that CLZ loaded P84-SDC mixed micellar formulation remained stable for 3 months at room temperature. Further, it was revealed that the CLZ loaded P84-SDC mixed micelles are converted into CLZ loaded pure P84 micelles at 30-fold dilutions which remain stable up to 48-fold dilutions. The results from the present studies suggest that P84-SDC mixed micelles can serve as suitable delivery vehicles for hydrophobic drug CLZ.

  16. Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers.

    PubMed

    Lu, Shih-Chin; Lin, Sung-Chyr

    2012-01-05

    Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Removal of mercury from coal via a microbial pretreatment process

    DOEpatents

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  18. Water solubilization capacity of pharmaceutical microemulsions based on Peceol®, lecithin and ethanol.

    PubMed

    Mouri, Abdelkader; Diat, Olivier; Lerner, Dan Alain; El Ghzaoui, Abdeslam; Ajovalasit, Alessia; Dorandeu, Christophe; Maurel, Jean-Claude; Devoisselle, Jean-Marie; Legrand, Philippe

    2014-11-20

    Biocompatible microemulsions composed of Peceol(®), lecithin, ethanol and water developed for encapsulation of hydrophilic drugs were investigated. The binary mixture Peceol(®)/ethanol was studied first. It was shown that the addition of ethanol to pure Peceol(®) has a significant fluidifying and disordering effect on the Peceol(®) supramolecular structure with an enhancement in water solubilization. The water solubilization capacity was improved by adding lecithin as a third component. It was then demonstrated that the ethanol/lecithin weight ratio played an important role in determining the optimal composition in term of water solubilization efficiency, a necessary property for a nutraceutical or pharmaceutical application. The optimal ethanol/lecithin weight ratio in the Peceol(®) rich region was found to be 40/60. Combination different techniques such as SAXS, fluorimetry, rheology and conductivity, we analyzed the water uptake within the microemulsion taking into account the partitioning of ethanol between polar and apolar domains. This ethanol distribution quantified along a water dilution line has a major effect on microemulsion properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater.

    PubMed

    Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge

    2014-07-01

    Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.

  20. Decreased solubilization of Pu(IV) polymers by humic acids under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Xie, Jinchuan; Lin, Jianfeng; Liang, Wei; Li, Mei; Zhou, Xiaohua

    2016-11-01

    Pu(IV) polymer has a very low solubility (log[Pu(IV)aq]total = -10.4 at pH 7.2 and I = 0). However, some aspects of their environmental fate remain unclear. Humic acids are able to complex with Pu4+ ions and their dissolved species (<10 kD) in the groundwater (neutral to alkaline pH) may cause solubilization of the polymers. Also, humic acids have the native reducing capacity and potentially reduce the polymeric Pu(IV) to Pu(III)aq (log[Pu(III)aq]total = -5.3 at pH 7.2 and I = 0). Solubilization and reduction of the polymers can enhance their mobility in subsurface environments. Nevertheless, humic acids readily coat the surfaces of metal oxides via electrostatic interaction and ligand exchange mechanisms. The humic coatings are expected to prevent both solubilization and reduction of the polymers. Experiments were conducted under anoxic and slightly alkaline (pH 7.2) conditions in order to study whether humic acids have effects on stability of the polymers. The results show that the polymeric Pu(IV) was almost completely transformed into aqueous Pu(IV) in the presence of EDTA ligands. In contrast, the dissolved humic acids did not solubilize the polymers but in fact decreased their solubility by one order of magnitude. The humic coatings were responsible for the decreased solubilization. Such coatings limited the contact between the polymers and EDTA ligands, especially at the relatively high concentrations of humic acids (>0.57 mg/L). Solubilization of the humic-coated polymers was thus inhibited to a significant extent although EDTA, having the great complexation ability, was present in the humic solutions. Reduction of Pu(IV) polymers by the humic acids was also not observed in the absence of EDTA. In the presence of EDTA, the polymers were partially reduced to Pu(III)aq by the humic acids of 0.57 mg/L and the percentage of Pu(III)aq accounted for 51.7% of the total aqueous Pu. This demonstrates that the humic acids were able to reduce the aqueous Pu

  1. Cyclodextrin-enhanced solubilization of organic contaminants with implications for aquifer remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, J.E.; Boving, T.B.; Brusseau, M.L.

    2000-12-31

    Reagents that enhance the aqueous solubility of nonaqueous phase organic liquid (NAPL) contaminants are under investigation for use in enhanced subsurface remediation technologies. Cyclodextrin, a glucose-based molecule, is such a reagent. In this paper, laboratory experiments and numerical model simulations are used to evaluate and understand the potential remediation performance of cyclodextrin. Physical properties of cyclodextrin solutions such as density, viscosity, and NAPL-aqueous interfacial tension are measured. Their analysis indicates that no serious obstacles exist related to fluid properties that would prevent the use of cyclodextrin solutions for subsurface NAPL remediation. Cyclodextrin-enhanced solubilization for a large suite of typical groundmore » water contaminants is measured in the laboratory, and the results are related to the physiochemical properties of the organic compounds. The most-hydrophobic contaminants experience a larger relative solubility enhancement than the less-hydrophobic contaminants but have lower aqueous-phase apparent solubilities. Numerical model simulations of enhanced-solubilization flushing of NAPL-contaminated soil demonstrate that the more-hydrophilic compounds exhibit the greatest mass-removal relates due to their greater apparent solubilities, and thus are initially more effectively removed from soil by enhanced-solubilization-flushing reagents. However, the relatively more hydrophobic contaminants exhibit a greater improvement in contaminant mass-removal (compared with water flushing) than that exhibited for the relatively hydrophilic contaminants.« less

  2. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland

    PubMed Central

    de Vries, Franciska T.; Bloem, Jaap; Quirk, Helen; Stevens, Carly J.; Bol, Roland; Bardgett, Richard D.

    2012-01-01

    Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages

  3. Solubilization of phenanthrene above cloud point of Brij 30: a new application in biodegradation.

    PubMed

    Pantsyrnaya, T; Delaunay, S; Goergen, J L; Guseva, E; Boudrant, J

    2013-06-01

    In the present study a new application of solubilization of phenanthrene above cloud point of Brij 30 in biodegradation was developed. It was shown that a temporal solubilization of phenanthrene above cloud point of Brij 30 (5wt%) permitted to obtain a stable increase of the solubility of phenanthrene even when the temperature was decreased to culture conditions of used microorganism Pseudomonas putida (28°C). A higher initial concentration of soluble phenanthrene was obtained after the cloud point treatment: 200 against 120μM without treatment. All soluble phenanthrene was metabolized and a higher final concentration of its major metabolite - 1-hydroxy-2-naphthoic acid - (160 against 85μM) was measured in the culture medium in the case of a preliminary cloud point treatment. Therefore a temporary solubilization at cloud point might have a perspective application in the enhancement of biodegradation of polycyclic aromatic hydrocarbons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. [Characterization of growth-promoting rhizobacteria in Eucalyptus nitens seedlings].

    PubMed

    Angulo, Violeta C; Sanfuentes, Eugenio A; Rodríguez, Francisco; Sossa, Katherine E

    2014-01-01

    Rhizospheric and endophytic bacteria were isolated from the rizosphere and root tissue of Eucalyptus nitens. The objective of this work was to evaluate their capacity to promote growth in seedlings of the same species under greenhouse conditions. The isolates that improved seedling growth were identified and characterized by their capacity to produce indoleacetic acid (IAA), solubilize phosphates and increase 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. One hundred and five morphologically different strains were isolated, 15 of which promoted E. nitens seedling growth, significantly increasing the height (50%), root length (45%) as well as the aerial and root dry weight (142% and 135% respectively) of the plants. Bacteria belonged to the genus Arthrobacter, Lysinibacillus, Rahnella and Bacillus. Isolates A. phenanthrenivorans 21 and B. cereus 113 improved 3.15 times the emergence of E. nitens after 12 days, compared to control samples. Among isolated R. aquatilis, 78 showed the highest production of IAA (97.5±2.87 μg/ml) in the presence of tryptophan and the highest solubilizer index (2.4) for phosphorus, while B. amyloliquefaciens 60 isolate was positive for ACC deaminase activity. Our results reveal the potential of the studied rhizobacteria as promoters of emergence and seedling growth of E. nitens, and their possible use as PGPR inoculants, since they have more than one mechanism associated with plant growth promotion. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  5. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.

    PubMed

    Li, Shudong; Pi, Yongrui; Bao, Mutai; Zhang, Cong; Zhao, Dongwei; Li, Yiming; Sun, Peiyan; Lu, Jinren

    2015-12-15

    Rhamnolipid biosurfactant-producing bacteria, Bacillus Lz-2, was isolated from oil polluted water collected from Dongying Shengli oilfield, China. The factors that influence PAH solubilization such as biosurfactant concentration, pH, ionic strength and temperature were discussed. The results showed that the solubilities of naphthalene, phenanthrene and pyrene increased linearly with the rise of rhamnolipid biosurfactant dose above the biosurfactant critical micelle concentration (CMC). Furthermore, the molar solubilization ratio (MSR) values decreased in the following order: naphthalene>phenanthrene>pyrene. However, the solubility percentage increased and followed the opposite order: pyrene>phenanthrene>naphthalene. The solubilities of PAHs in rhamnolipid biosurfactant solution increased with the rise of pH and ionic strength, and reached the maximum values under the conditions of pH11 and NaCl concentration 8 g · L(-1). The solubility of phenanthrene and pyrene increased with the rise of temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization.

    PubMed

    Zhang, Ai; Wang, Jie; Li, Yongmei

    2015-03-15

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using calcium peroxide (CaO2) oxidation. Effects of initial pH and CaO2 dosage were investigated. The impacts of CaO2 treatment on sludge solubilization and anaerobic digestion were also evaluated. Specifically, the role of reactive oxygen species (ROS) in EDC degradation during CaO2 oxidation was tested. Effects of 6 metal ions contained in the sludge matrix on EDC degradation were also evaluated. The results showed that CaO2 treatment can be a promising technology for EDC removal and facilitating sludge reuse. The EDC removal efficiencies increased with the increase in CaO2 dosage. At CaO2 doses of more than 0.34 g per gram of total solid (g g(-1) TS), more than 50% of EDCs were removed in a wide pH range of 2-12. Higher removal efficiencies were achieved at initial pH values of 12 and 2. The products of EDCs during CaO2 oxidation had less estrogenic activity than the originals. Under the conditions of neutral pH and CaO2 dosage = 0.34 g g(-1) TS, the sludge solubilization can be improved by increasing the soluble total organic carbon (STOC) and volatile suspended solids (VSS) reduction by 25% and 27% in 7 d, respectively; the volatile fatty acid (VFA) production was enhanced by 96% in the 15 d following anaerobic digestion. The ROS released by CaO2 are the main factors contributing to EDC removal, among which, hydroxyl radicals (OH) play the most important role. Metal ions contained in the sludge matrix also affected EDC removal. For most cases, Fe, Cu, and Zn had positive effects; Mn and Ag had negative effects; and Mg had an insignificant effect on EDC removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    PubMed

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. The performance and microbial diversity of temperature-phased hyperthermophilic and thermophilic anaerobic digestion system fed with organic waste.

    PubMed

    Lee, M Y; Cheon, J H; Hidaka, T; Tsuno, H

    2008-01-01

    The objective of this study was to evaluate the performances and microbial diversities for development of the effective hyperthermophilic digester system that consists of a hyperthermophilic reactor and hyperthermophilic or thermophilic reactor in series. Lab-scale reactors were operated continuously fed with artificial kitchen garbage. The effect of temperature on the acidification step was firstly investigated. Results indicated that 20.8% of COD solubilization was achieved at 70 degrees C, with 12.6% at 80 degrees C. The average protein solubilization reached 31% at 80 degrees C. Methane conversion efficiency following the acidification was around 85% on average at 55 degrees C, but decreased with increasing temperature and methane gas was not produced over 73 degrees C. As well, bacteria affiliated with the methanogens dominated the population below 65 degrees C, while those affiliated with acidogens were predominant over 73 degrees C. These results indicated that the hyperthermophilic process has considerable benefits to treat wastewater or waste containing high concentration of protein.

  9. Localized Metal Solubilization in the Rhizosphere of Salix smithiana upon Sulfur Application

    PubMed Central

    2015-01-01

    A metal-accumulating willow was grown under greenhouse conditions on a Zn/Cd-polluted soil to investigate the effects of sulfur (S0) application on metal solubility and plant uptake. Soil porewater samples were analyzed 8 times during 61 days of growth, while DGT-measured metal flux and O2 were chemically mapped at selected times. Sulfur oxidation resulted in soil acidification and related mobilization of Mn, Zn, and Cd, more pronounced in the rooted compared to bulk soil. Chemical imaging revealed increased DGT-measured Zn and Cd flux at the root-soil interface. Our findings indicated sustained microbial S0 oxidation and associated metal mobilization close to root surfaces. The localized depletion of O2 along single roots upon S0 addition indicated the contribution of reductive Mn (oxy)hydoxide dissolution with Mn eventually becoming a terminal electron acceptor after depletion of O2 and NO3–. The S0 treatments increased the foliar metal concentrations (mg kg–1 dwt) up to 10-fold for Mn, (5810 ± 593), 3.3-fold for Zn (3850 ± 87.0), and 1.7-fold for Cd (36.9 ± 3.35), but had no significant influence on biomass production. Lower metal solubilization in the bulk soils should translate into reduced leaching, offering opportunities for using S0 as environmentally favorable amendment for phytoextraction of metal-polluted soils. PMID:25782052

  10. The removal characteristics of natural organic matter in the recycling of drinking water treatment sludge: Role of solubilized organics.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Ji, Siyang; Zhang, Hao; Wang, Shuai; Zeng, Qingping; Han, Xinghang

    2016-01-01

    To clarify the role of solubilized organics derived from drinking water treatment sludge (DWTS) in the elimination of natural organic matter (NOM) in the DWTS recycling process, a probe sonoreactor at a frequency of 25 kHz was used to solubilize the organics at varied specific energies. The coagulation behavior related to NOM removal in recycling the sonicated DWTS with and without solubilized organics was evaluated, and the effect on organic fractionations in coagulated water was determined. The study results could provide useful implications in designing DWTS recycling processes that avoid the enrichment of organic matter. Our results indicate that DWTS was disrupted through a low release of soluble chemical oxygen demand (SCOD) and proteins, which could deteriorate the coagulated water quality under the specific energy of 37.87-1212.1 kW h/kg TS. The optimal coagulation behavior for NOM removal was achieved by recycling the sonicated DWTS without solubilized organics at 151.5 kW h/kg TS specific energy. Recycling the sonicated DWTS could increase the enrichment potential of weakly hydrophobic acid, hydrophilic matter, and <3 kDa fractions; the enrichment risks could be reduced by discharging the solubilized organics. Fluorescent characteristic analysis indicated that when recycling the sonicated DWTS without solubilized organics, the removal of humic-like substances was limited, whereas removal of protein-like substances was enhanced, lowering the enrichment potential of protein-like substances. Copyright © 2015. Published by Elsevier B.V.

  11. Microbial Mineral Weathering for Nutrient Acquisition Releases Arsenic

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Alexandrova, E.; Keimowitz, A.; Wovkulich, K.; Freyer, G.; Stolz, J.; Kenna, T.; Pichler, T.; Polizzotto, M.; Dong, H.; Radloff, K. A.; van Geen, A.

    2008-12-01

    Tens of millions of people in Southeast Asia drink groundwater contaminated with naturally occurring arsenic. The process of arsenic release from the sediment to the groundwater remains poorly understood. Experiments were performed to determine if microbial mineral weathering for nutrient acquisition can serve as a potential mechanism for arsenic mobilization. We performed microcosm experiments with Burkholderia fungorum, phosphate free artificial groundwater, and natural apatite. Controls included incubations with no cells and with killed cells. Additionally, samples were treated with two spikes - an arsenic spike, to show that arsenic release is independent of the initial arsenic concentration, and a phosphate spike to determine whether release occurs at field relevant phosphate conditions. We show in laboratory experiments that phosphate-limited cells of Burkholderia fungorum mobilize ancillary arsenic from apatite as a by-product of mineral weathering for nutrient acquisition. The released arsenic does not undergo a redox transformation but appears to be solubilized from the apatite mineral lattice as arsenate during weathering. Apatite has been shown to be commonly present in sediment samples from Bangladesh aquifers. Analysis of apatite purified from the Ganges, Brahamputra, Meghna drainage basin shows 210 mg/kg of arsenic, which is higher than the average crustal level. Finally, we demonstrate the presence of the microbial phenotype that releases arsenic from apatite in Bangladesh sediments. These results suggest that microbial weathering for nutrient acquisition could be an important mechanism for arsenic mobilization.

  12. Effect of Hydrotropic Compounds on the Self-Organization and Solubilization Properties of Cationic Surfactants

    NASA Astrophysics Data System (ADS)

    Gaynanova, G. A.; Valeeva, F. G.; Kushnazarova, R. A.; Bekmukhametova, A. M.; Zakharov, S. V.; Mirgorodskaya, A. B.; Zakharova, L. Ya.

    2018-07-01

    The effect hydrotropic additives (salts of aromatic acids and choline chloride) have on the micelle-forming properties (the critical concentrations of micelle formation and the Krafft temperature) of cationic surfactants, and on the solubilization capability of mono- and dicationic surfactants toward such hydrophobic compounds as a Sudan I spectral probe and curcumin natural dye, is considered. The factors that govern solubilization capacity, e.g., the structure of the head group of surfactants, the nature of the solubilizate and hydrotropic additives, and the pH of the medium are determined.

  13. The solubilization of fatty acids in systems based on block copolymers and nonionic surfactants

    NASA Astrophysics Data System (ADS)

    Mirgorodskaya, A. B.; Yatskevich, E. I.; Zakharova, L. Ya.

    2010-12-01

    The solubilizing action of micellar, microemulsion, and polymer-colloid systems formed on the basis of biologically compatible amphiphilic polymers and nonionic surfactants on capric, lauric, palmitic, and stearic acids was characterized quantitatively. Systems based on micelle forming oxyethyl compounds increased the solubility of fatty acids by more than an order of magnitude. Acid molecules incorporated into micelles increased their size and caused structural changes. Solubilization was accompanied by complete or partial destruction of intrinsic acid associates and an increase in their p K a by 1.5-2 units compared with water.

  14. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii

    PubMed Central

    Zurawski, Jeffrey V.; Khatibi, Piyum A.; Akinosho, Hannah O.; Straub, Christopher T.; Compton, Scott H.; Conway, Jonathan M.; Lee, Laura L.; Ragauskas, Arthur J.; Davison, Brian H.; Adams, Michael W. W.

    2017-01-01

    ABSTRACT Improving access to the carbohydrate content of lignocellulose is key to reducing recalcitrance for microbial deconstruction and conversion to fuels and chemicals. Caldicellulosiruptor bescii completely solubilizes naked microcrystalline cellulose, yet this transformation is impeded within the context of the plant cell wall by a network of lignin and hemicellulose. Here, the bioavailability of carbohydrates to C. bescii at 70°C was examined for reduced lignin transgenic switchgrass lines COMT3(+) and MYB Trans, their corresponding parental lines (cultivar Alamo) COMT3(−) and MYB wild type (WT), and the natural variant cultivar Cave-in-Rock (CR). Transgenic modification improved carbohydrate solubilization by C. bescii to 15% (2.3-fold) for MYB and to 36% (1.5-fold) for COMT, comparable to the levels achieved for the natural variant, CR (36%). Carbohydrate solubilization was nearly doubled after two consecutive microbial fermentations compared to one microbial step, but it never exceeded 50% overall. Hydrothermal treatment (180°C) prior to microbial steps improved solubilization 3.7-fold for the most recalcitrant line (MYB WT) and increased carbohydrate recovery to nearly 50% for the least recalcitrant lines [COMT3(+) and CR]. Alternating microbial and hydrothermal steps (T→M→T→M) further increased bioavailability, achieving carbohydrate solubilization ranging from 50% for MYB WT to above 70% for COMT3(+) and CR. Incomplete carbohydrate solubilization suggests that cellulose in the highly lignified residue was inaccessible; indeed, residue from the T→M→T→M treatment was primarily glucan and inert materials (lignin and ash). While C. bescii could significantly solubilize the transgenic switchgrass lines and natural variant tested here, additional or alternative strategies (physical, chemical, enzymatic, and/or genetic) are needed to eliminate recalcitrance. IMPORTANCE Key to a microbial process for solubilization of plant biomass is the

  15. Effect of solubilizing agents on mupirocin loading into and release from PEGylated nanoliposomes.

    PubMed

    Cern, Ahuva; Nativ-Roth, Einat; Goldblum, Amiram; Barenholz, Yechezkel

    2014-07-01

    Mupirocin was identified by quantitative structure property relationship models as a good candidate for remote liposomal loading. Mupirocin is an antibiotic that is currently restricted to topical administration because of rapid hydrolysis in vivo to its inactive metabolite. Formulating mupirocin in PEGylated nanoliposomes may potentially expand its use to parenteral administration by protecting it from degradation in the circulation and target it (by the enhanced permeability effect) to the infected tissue. Mupirocin is slightly soluble in aqueous medium and its solubility can be increased using solubilizing agents. The effect of the solubilizing agents on mupirocin remote loading was studied when the solubilizing agents were added to the drug loading solution. Propylene glycol was found to increase mupirocin loading, whereas polyethylene glycol 400 showed no effect. Hydroxypropyl-β-cyclodextrin (HPCD) showed a concentration-dependent effect on mupirocin loading; using the optimal HPCD concentration increased loading, but higher concentrations inhibited it. The inclusion of HPCD in the liposome aqueous phase while forming the liposomes resulted in increased drug loading and substantially inhibited drug release in serum. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Advanced Chemical Design for Efficient Lignin Bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shangxian; Sun, Qining; Pu, Yunqiao

    Here, lignin depolymerization mainly involves redox reactions relying on the effective electron transfer. Even though electron mediators were previously used for delignification of paper pulp, no study has established a bioprocess to fragment and solubilize the lignin with an effective laccase–mediator system, in particular, for subsequent microbial bioconversion. Efficient lignin depolymerization was achieved by screening proper electron mediators with laccase to attain a nearly 6-fold increase of kraft lignin solubility compared to the control kraft lignin without laccase treatment. Chemical analysis suggested the release of a low molecular weight fraction of kraft lignin into the solution phase. Moreover, NMR analysismore » revealed that an efficient enzyme–mediator system can promote the lignin degradation. More importantly, the fundamental mechanisms guided the development of an efficient lignin bioconversion process, where solubilized lignin from laccase–HBT treatment served as a superior substrate for bioconversion by Rhodococcus opacus PD630. The cell growth was increased by 10 6 fold, and the lipid titer reached 1.02 g/L. Overall, the study has manifested that an efficient enzyme–mediator–microbial system can be exploited to establish a bioprocess to solubilize lignin, cleave lignin linkages, modify the structure, and produce substrates amenable to bioconversion.« less

  17. Advanced Chemical Design for Efficient Lignin Bioconversion

    DOE PAGES

    Xie, Shangxian; Sun, Qining; Pu, Yunqiao; ...

    2017-01-30

    Here, lignin depolymerization mainly involves redox reactions relying on the effective electron transfer. Even though electron mediators were previously used for delignification of paper pulp, no study has established a bioprocess to fragment and solubilize the lignin with an effective laccase–mediator system, in particular, for subsequent microbial bioconversion. Efficient lignin depolymerization was achieved by screening proper electron mediators with laccase to attain a nearly 6-fold increase of kraft lignin solubility compared to the control kraft lignin without laccase treatment. Chemical analysis suggested the release of a low molecular weight fraction of kraft lignin into the solution phase. Moreover, NMR analysismore » revealed that an efficient enzyme–mediator system can promote the lignin degradation. More importantly, the fundamental mechanisms guided the development of an efficient lignin bioconversion process, where solubilized lignin from laccase–HBT treatment served as a superior substrate for bioconversion by Rhodococcus opacus PD630. The cell growth was increased by 10 6 fold, and the lipid titer reached 1.02 g/L. Overall, the study has manifested that an efficient enzyme–mediator–microbial system can be exploited to establish a bioprocess to solubilize lignin, cleave lignin linkages, modify the structure, and produce substrates amenable to bioconversion.« less

  18. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    NASA Astrophysics Data System (ADS)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  19. Macrophage Solubilization and Cytotoxicity of Indium-Containing Particles In Vitro

    PubMed Central

    Morgan, Daniel L.

    2013-01-01

    Indium-containing particles (ICPs) are used extensively in the microelectronics industry. Pulmonary toxicity is observed after inhalation exposure to ICPs; however, the mechanism(s) of pathogenesis is unclear. ICPs are insoluble at physiological pH and are initially engulfed by alveolar macrophages (and likely airway epithelial cells). We hypothesized that uptake of ICPs by macrophages followed by phagolysosomal acidification results in the solubilization of ICPs into cytotoxic indium ions. To address this, we characterized the in vitro cytotoxicity of indium phosphide (InP) or indium tin oxide (ITO) particles with macrophages (RAW cells) and lung-derived epithelial (LA-4) cells at 24h using metabolic (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and membrane integrity (lactate dehydrogenase) assays. InP and ITO were readily phagocytosed by RAW and LA-4 cells; however, the particles were much more cytotoxic to RAW cells and cytotoxicity was dose dependent. Treatment of RAW cells with cytochalasin D (CytoD) blocked particle phagocytosis and reduced cytotoxicity. Treatment of RAW cells with bafilomycin A1, a specific inhibitor of phagolysosomal acidification, also reduced cytotoxicity but did not block particle uptake. Based on direct indium measurements, the concentration of ionic indium was increased in culture medium from RAW but not LA-4 cells following 24-h treatment with particles. Ionic indium derived from RAW cells was significantly reduced by treatment with CytoD. These data implicate macrophage uptake and solubilization of InP and ITO via phagolysosomal acidification as requisite for particle-induced cytotoxicity and the release of indium ions. This may apply to other ICPs and strongly supports the notion that ICPs require solubilization in order to be toxic. PMID:23872580

  20. Improved solubilization of activated sludge by ozonation in pressure cycles.

    PubMed

    Cheng, Chia-Jung; Hong, P K Andy; Lin, Cheng-Fang

    2012-05-01

    The generation of a large volume of activated sludge (AS) from wastewater treatment has increasingly become a great burden on the environment. Anaerobic digestion is routinely practiced for excess waste sludge; however, the process retention time is long because of kinetic limitation in the hydrolysis step. We tested the feasibility of applying ozone in pressure cycles to enhance the disintegration and solubilization of AS with the goal to prepare them for digestion using reduced ozone dose and contact time. The AS was subjected to repetitive pressure cycles in a closed vessel in which an ozone gas mixture was compressed into the slurry to reach 1040 kPa in the headspace to be followed by rapid venting. For a returned AS with total COD (tCOD) of 8200 mg L(-1), a dose of 0.01 gO(3)g(-1) total suspended solids (TSS) delivered via 20 pressure cycles within 16 min resulted in a 37-fold increase of the sCOD/tCOD ratio (due to increased soluble COD, i.e. sCOD) and a 25% reduction of TSS, in comparison to a dose of 0.08 gO(3)g(-1) TSS via bubbling contact over 15 min that resulted in a 15-fold increase of the sCOD/tCOD ratio and a 12% reduction of TSS. Sludge solubilization was evidenced by increased dissolved contents of total phosphorous (from 10 to 64 mg L(-1)), total nitrogen (from 14 to 120 mg L(-1)), and protein (from <15 to 39 mg L(-1)) in the sludge suspension after treatment, indicating significant solubilization of AS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Isolation and Molecular Characterization of a Model Antagonistic Pseudomonas aeruginosa Divulging In Vitro Plant Growth Promoting Characteristics.

    PubMed

    Uzair, Bushra; Kausar, Rehana; Bano, Syeda Asma; Fatima, Sammer; Badshah, Malik; Habiba, Ume; Fasim, Fehmida

    2018-01-01

    The use of microbial technologies in agriculture is currently expanding quite rapidly with the identification of new bacterial strains, which are more effective in promoting plant growth. In the present study 18 strains of Pseudomonas were isolated from soil sample of Balochistan coastline. Among isolated Pseudomonas strains four designated as SP19, SP22, PS24, and SP25 exhibited biocontrol activities against phytopathogenic fungi, that is, Rhizopus microsporus, Fusarium oxysporum, Aspergillus niger, Alternaria alternata, and Penicillium digitatum ; PS24 identified as Pseudomonas aeruginosa by 16srRNA gene bank accession number EU081518 was selected on the basis of its antifungal activity to explore its potential as plant growth promotion. PS24 showed multiple plant growth promoting attributes such as phosphate solubilization activity, indole acetic acid (IAA), siderophore, and HCN production. In order to determine the basis for antifungal properties, antibiotics were extracted from King B broth of PS24 and analyzed by TLC. Pyrrolnitrin antibiotic was detected in the culture of strain PS24. PS24 exhibited antifungal activities found to be positive for hydrogen cyanide synthase Hcn BC gene. Sequencing of gene of Hcn BC gene of strain PS24 revealed 99% homology with the Pseudomonas aeruginosa strain PA01 . The sequence of PS24 had been submitted in gene bank accession number KR605499. Ps. aeruginosa PS24 with its multifunctional biocontrol possessions can be used to bioprotect the crop plants from phytopathogens.

  2. Effects of solubilization on the inhibition of the p-type ATPase from maize roots by N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline.

    PubMed

    Brauer, D K; Gurriel, M; Tu, S I

    1992-12-01

    The biochemical events utilized by transport proteins to convert the chemical energy from the hydrolysis of ATP into an electro-chemical gradient are poorly understood. The inhibition of the plasma membrane ATPase from corn (Zea mays L.) roots by N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) was compared to that of ATPase solubilized with N-tetradecyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate (3-14) to provide insight into the minimal functional unit. The chromatographic behavior of the 3-14-solubilized ATPase activity during size exclusion chromatography and glycerol gradient centrifugation indicated that the solubilized enzyme was in a monomeric form. Both plasma membrane-bound and solubilized ATPase were inhibited by EEDQ in a time- and concentration-dependent manner consistent with a first-order reaction. When the log of the reciprocal of the half-time for inhibition was plotted as a function of the log of the EEDQ concentration, straight lines were obtained with slopes of approximately 0.5 and 1.0 for membrane-bound and 3-14-solubilized ATPase, respectively, indicating a change in the number of polypeptides per functional ATPase complex induced by solubilization with 3-14.

  3. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurawski, Jeffrey V.; Khatibi, Piyum A.; Akinosho, Hannah O.

    ABSTRACT Improving access to the carbohydrate content of lignocellulose is key to reducing recalcitrance for microbial deconstruction and conversion to fuels and chemicals. Caldicellulosiruptor bescii completely solubilizes naked microcrystalline cellulose, yet this transformation is impeded within the context of the plant cell wall by a network of lignin and hemicellulose. Here, the bioavailability of carbohydrates toC. bescii at 70°C was examined for reduced lignin transgenic switchgrass lines COMT3(+) and MYB Trans, their corresponding parental lines (cultivar Alamo) COMT3(–) and MYB wild type (WT), and the natural variant cultivar Cave-in-Rock (CR). Transgenic modification improved carbohydrate solubilization by C. bescii to 15%more » (2.3-fold) for MYB and to 36% (1.5-fold) for COMT, comparable to the levels achieved for the natural variant, CR (36%). Carbohydrate solubilization was nearly doubled after two consecutive microbial fermentations compared to one microbial step, but it never exceeded 50% overall. Hydrothermal treatment (180°C) prior to microbial steps improved solubilization 3.7-fold for the most recalcitrant line (MYB WT) and increased carbohydrate recovery to nearly 50% for the least recalcitrant lines [COMT3(+) and CR]. Alternating microbial and hydrothermal steps (T→M→T→M) further increased bioavailability, achieving carbohydrate solubilization ranging from 50% for MYB WT to above 70% for COMT3(+) and CR. Incomplete carbohydrate solubilization suggests that cellulose in the highly lignified residue was inaccessible; indeed, residue from the T→M→T→M treatment was primarily glucan and inert materials (lignin and ash). While C. bescii could significantly solubilize the transgenic switchgrass lines and natural variant tested here, additional or alternative strategies (physical, chemical, enzymatic, and/or genetic) are needed to eliminate recalcitrance.« less

  4. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii

    DOE PAGES

    Zurawski, Jeffrey V.; Khatibi, Piyum A.; Akinosho, Hannah O.; ...

    2017-06-16

    ABSTRACT Improving access to the carbohydrate content of lignocellulose is key to reducing recalcitrance for microbial deconstruction and conversion to fuels and chemicals. Caldicellulosiruptor bescii completely solubilizes naked microcrystalline cellulose, yet this transformation is impeded within the context of the plant cell wall by a network of lignin and hemicellulose. Here, the bioavailability of carbohydrates toC. bescii at 70°C was examined for reduced lignin transgenic switchgrass lines COMT3(+) and MYB Trans, their corresponding parental lines (cultivar Alamo) COMT3(–) and MYB wild type (WT), and the natural variant cultivar Cave-in-Rock (CR). Transgenic modification improved carbohydrate solubilization by C. bescii to 15%more » (2.3-fold) for MYB and to 36% (1.5-fold) for COMT, comparable to the levels achieved for the natural variant, CR (36%). Carbohydrate solubilization was nearly doubled after two consecutive microbial fermentations compared to one microbial step, but it never exceeded 50% overall. Hydrothermal treatment (180°C) prior to microbial steps improved solubilization 3.7-fold for the most recalcitrant line (MYB WT) and increased carbohydrate recovery to nearly 50% for the least recalcitrant lines [COMT3(+) and CR]. Alternating microbial and hydrothermal steps (T→M→T→M) further increased bioavailability, achieving carbohydrate solubilization ranging from 50% for MYB WT to above 70% for COMT3(+) and CR. Incomplete carbohydrate solubilization suggests that cellulose in the highly lignified residue was inaccessible; indeed, residue from the T→M→T→M treatment was primarily glucan and inert materials (lignin and ash). While C. bescii could significantly solubilize the transgenic switchgrass lines and natural variant tested here, additional or alternative strategies (physical, chemical, enzymatic, and/or genetic) are needed to eliminate recalcitrance.« less

  5. A Complex Inoculant of N2-Fixing, P- and K-Solubilizing Bacteria from a Purple Soil Improves the Growth of Kiwifruit (Actinidia chinensis) Plantlets

    PubMed Central

    Shen, Hong; He, Xinhua; Liu, Yiqing; Chen, Yi; Tang, Jianming; Guo, Tao

    2016-01-01

    Limited information is available if plant growth promoting bacteria (PGPB) can promote the growth of fruit crops through improvements in soil fertility. This study aimed to evaluate the capacity of PGPB, identified by phenotypic and 16S rRNA sequencing from a vegetable purple soil in Chongqing, China, to increase soil nitrogen (N), phosphorus (P), and potassium (K) availability and growth of kiwifruit (Actinidia chinensis). In doing so, three out of 17 bacterial isolates with a high capacity of N2-fixation (Bacillus amyloliquefaciens, XD-N-3), P-solubilization (B. pumilus, XD-P-1) or K-solubilization (B. circulans, XD-K-2) were mixed as a complex bacterial inoculant. A pot experiment then examined its effects of this complex inoculant on soil microflora, soil N2-fixation, P- and K-solubility and kiwifruit growth under four treatments. These treatments were (1) no-fertilizer and no-bacterial inoculant (Control), (2) no-bacterial inoculant and a full-rate of chemical NPK fertilizer (CF), (3) the complex inoculant (CI), and (4) a half-rate CF and full CI (1/2CF+CI). Results indicated that significantly greater growth of N2-fixing, P- and K-solubilizing bacteria among treatments ranked from greatest to least as under 1/2CF+CI ≈ CI > CF ≈ Control. Though generally without significant treatment differences in soil total N, P, or K, significantly greater soil available N, P, or K among treatments was, respectively, patterned as under 1/2CF+CI ≈ CI > CF ≈ Control, under 1/2CF+CI > CF > CI > Control or under 1/2CF+CI > CF ≈ CI > Control, indicating an improvement of soil fertility by this complex inoculant. In regards to plant growth, significantly greater total plant biomass and total N, P, and K accumulation among treatments were ranked as 1/2CF+CI ≈ CI > CF > Control. Additionally, significantly greater leaf polyphenol oxidase activity ranked as under CF > 1/2CF+CI ≈ Control ≈ CI, while leaf malondialdehyde contents as under Control > CI ≈ CF > 1/2CF

  6. A Complex Inoculant of N2-Fixing, P- and K-Solubilizing Bacteria from a Purple Soil Improves the Growth of Kiwifruit (Actinidia chinensis) Plantlets.

    PubMed

    Shen, Hong; He, Xinhua; Liu, Yiqing; Chen, Yi; Tang, Jianming; Guo, Tao

    2016-01-01

    Limited information is available if plant growth promoting bacteria (PGPB) can promote the growth of fruit crops through improvements in soil fertility. This study aimed to evaluate the capacity of PGPB, identified by phenotypic and 16S rRNA sequencing from a vegetable purple soil in Chongqing, China, to increase soil nitrogen (N), phosphorus (P), and potassium (K) availability and growth of kiwifruit (Actinidia chinensis). In doing so, three out of 17 bacterial isolates with a high capacity of N2-fixation (Bacillus amyloliquefaciens, XD-N-3), P-solubilization (B. pumilus, XD-P-1) or K-solubilization (B. circulans, XD-K-2) were mixed as a complex bacterial inoculant. A pot experiment then examined its effects of this complex inoculant on soil microflora, soil N2-fixation, P- and K-solubility and kiwifruit growth under four treatments. These treatments were (1) no-fertilizer and no-bacterial inoculant (Control), (2) no-bacterial inoculant and a full-rate of chemical NPK fertilizer (CF), (3) the complex inoculant (CI), and (4) a half-rate CF and full CI (1/2CF+CI). Results indicated that significantly greater growth of N2-fixing, P- and K-solubilizing bacteria among treatments ranked from greatest to least as under 1/2CF+CI ≈ CI > CF ≈ Control. Though generally without significant treatment differences in soil total N, P, or K, significantly greater soil available N, P, or K among treatments was, respectively, patterned as under 1/2CF+CI ≈ CI > CF ≈ Control, under 1/2CF+CI > CF > CI > Control or under 1/2CF+CI > CF ≈ CI > Control, indicating an improvement of soil fertility by this complex inoculant. In regards to plant growth, significantly greater total plant biomass and total N, P, and K accumulation among treatments were ranked as 1/2CF+CI ≈ CI > CF > Control. Additionally, significantly greater leaf polyphenol oxidase activity ranked as under CF > 1/2CF+CI ≈ Control ≈ CI, while leaf malondialdehyde contents as under Control > CI ≈ CF > 1/2CF

  7. Evaluation of the effect of temperature, NaOH concentration and time on solubilization of palm oil mill effluent (POME) using response surface methodology (RSM).

    PubMed

    Chou, K W; Norli, I; Anees, A

    2010-11-01

    In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME.

  8. Membrane preparation and solubilization.

    PubMed

    Roy, Ankita

    2015-01-01

    Membrane proteins play an essential role in several biological processes like ion transport, signal transduction, and electron transfer to name a few. For structural and functional studies of integral membrane proteins, it is critically important to isolate proteins from the membrane using biological detergents. Detergents disrupt the native lipid components of the native membrane and encase the membrane protein in an unnatural environment in aqueous solution. However, a particular membrane protein is best solubilized in a specific detergent; therefore, screening for the optimal detergent is essential. Apart from keeping the membrane protein monodispered in solution, the detergent has to be compatible with downstream processes to isolate and characterize a membrane protein. Over the past several years, a number of membrane proteins have been successfully isolated for structural and functional studies that allowed an outline of general strategies for isolating a novel membrane protein of interest. © 2015 Elsevier Inc. All rights reserved.

  9. Solubilization of menthol by platycodin D in aqueous solution: an integrated study of classical experiments and dissipative particle dynamics simulation.

    PubMed

    Ding, Haiou; Yin, Qianqian; Wan, Guang; Dai, Xingxing; Shi, Xinyuan; Qiao, Yanjiang

    2015-03-01

    Menthol (M) and platycodin D (PD) are the main active ingredients in Mentha haplocalyx and Platycodon grandiflorum A. DC., respectively. They are commonly used in combination in traditional Chinese medicine. In this study, laboratory experiments and computer simulations were used to investigate the solubilization of M by PD, which was believed to be one of the main causes of the synergistic effect of M. haplocalyx and P. grandiflorum A. DC. Results showed that both the method by which M was added and the concentration of PD had significant effects on the solubilization efficiency of M, and these influences were closely associated with each other. Temperature, an important environmental condition, was also found to have a significant effect on the solubilization effect of PD. These findings not only clarify the molecular basis of the solubilization effect, including amount solubilized at the macroscale and the structures of the micelles, and the drug loading mechanisms and processing at the mesoscale. This work may provide some guidance for the further development of saponins and fundamental research in the drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effective solubilization of chalcones in micellar phase: Conductivity and voltammetric study

    NASA Astrophysics Data System (ADS)

    Ahmed, Safeer; Khan, Gul Tiaz; Shah, Syed Sakhawat

    2013-12-01

    The solubilization of four chalcones, between aqueous and micellar phases of ionic surfactants (SDS and CTAB), was investigated by conductivity and cyclic voltammetry (CV) techniques. From conductivity data, a decrease in the critical micellar concentration (CMC) of the surfactants, in presence of the chalcones was ascribed to the decreased charge density over the surfactants. The results were seconded by thermodynamic parameters including degree of ionization (α), counter ion binding (β), and standard Gibbs free energy of micellization (Δ G {m/○}). The added surfactant decreased the peak current of the oxidized chalcone and shifted the peak potential either positively (in presence of SDS) or negatively (in presence of CTAB). The effect is rationalized as chalcone-surfactant interaction and quantitated as binding constant ( K b) assorting values from 8.78 to 552.97 M-1. The preferred solubilization of the chalcones in the micellar phase has been inferred.

  11. Response surface methodology for the optimization of sludge solubilization by ultrasonic pre-treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Mingyue; Zhang, Xiaohui; Lu, Peng; Cao, Qiguang; Yuan, Yuan; Yue, Mingxing; Fu, Yiwei; Wu, Libin

    2018-02-01

    The present study examines the optimization of the ultrasonic pre-treatment conditions with response surface experimental design in terms of sludge disintegration efficiency (solubilisation of organic components). Ultrasonic pre-treatment for the maximum solubilization with residual sludge enhanced the SCOD release. Optimization of the ultrasonic pre-treatment was conducted through a Box-Behnken design (three variables, a total of 17 experiments) to determine the effects of three independent variables (power, residence time and TS) on COD solubilization of sludge. The optimal COD was obtained at 17349.4mg/L, when the power was 534.67W, the time was 10.77, and TS was 2%, while the SE of this condition was 28792J/kg TS.

  12. Solubilization of phosphorus from phosphate rocks with Acidithiobacillus thiooxidans following a growing-then-recovery process.

    PubMed

    Calle-Castañeda, Susana M; Márquez-Godoy, Marco A; Hernández-Ortiz, Juan P

    2017-12-29

    Phosphorus is an essential nutrient for the synthesis of biomolecules and is particularly important in agriculture, as soils must be constantly supplemented with its inorganic form to ensure high yields and productivity. In this paper, we propose a process to solubilize phosphorus from phosphate rocks, where Acidithiobacillus thiooxidans cultures are pre-cultivated to foster the acidic conditions for bioleaching-two-step "growing-then-recovery"-. Our method solubilizes 100% of phosphorus, whereas the traditional process without pre-cultivation-single-step "growing-and-recovery"-results in a maximum of 56% solubilization. As a proof of principle, we demonstrate that even at low concentrations of the phosphate rock, 1% w/v, the bacterial culture is unviable and biological activity is not observed during the single-step process. On the other hand, in our method, the bacteria are grown without the rock, ensuring high acid production. Once pH levels are below 0.7, the mineral is added to the culture, resulting in high yields of biological solubilization. According to the Fourier Transform Infrared Spectroscopy spectrums, gypsum is the dominant phosphate phase after both the single- and two-step methods. However, calcite and fluorapatite, dominant in the un-treated rock, are still present after the single-step, highlighting the differences between the chemical and the biological methods. Our process opens new avenues for biotechnologies to recover phosphorus in tropical soils and in low-grade phosphate rock reservoirs.

  13. Sodium-potassium-activated adenosine triphosphatase of electrophorus electric organ. X. Immunochemical properties of the Lubrol-solubilized enzume and its constituent polypeptides.

    PubMed

    Jean, D H; Albers, R W; Koval, G J

    1975-02-10

    Detergent (Lubrol WX)-solubilized sodium-potassium-activated adenosine triphosphatase ((Na+ + K+)-ATPase) of electrophorus electric organ contains two major constituent polypeptides with molecular weights of 96,000 and 58,000 which can be readily demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These two polypeptides can be clearly separated and can be obtained in milligram quantities by preparative sodium dodecyl sulfate gel electrophoresis. The separated polypeptides, after removal of sodium dodecyl sulfate, and Lubrol-solubilized (Na+ + K+)-ATPase activity to some degree. Moreover, the degree of inhibition is directly proportional to the increasing amounts of antisera. The inhibition is maximal 4 weeks after the first injection. Immunodiffusion in 1% agar gel indicated that only Lubrol-solubilized enzyme antiserum, but not 58,000-dalton or 96,00-dalton polypeptide antiserum, gives one major precipitin band. However, specific complex formation between each polypeptide antiserum and Lubrol-solubilized enzyme occurs. This was demonstrated indirectly. After incubating Lubrol-solubilized enzyme with increasing amounts of polypeptide antisera at 37 degrees for 15 min, they were placed in the side wells of an immunodiffusion plate with antiserum against Lubrol-solubilized enzyme in the central well. The intensity of the precipitin band decreased with increasing amounts of polypeptide antisera. Thus, the results indicate that both 96,000-dalton and 58,000-dalton polypeptides are integral subunits of (Na+ + K+)-ATPase.

  14. [Rice endogenous nitrogen fixing and growth promoting bacterium Herbaspirillum seropedicae DX35].

    PubMed

    Wang, Xiucheng; Cao, Yanhua; Tang, Xue; Ma, Xiaotong; Gao, Jusheng; Zhang, Xiaoxia

    2014-03-04

    To screen efficient nitrogen fixation endophytes from rice and to analyze their growth-promoting properties. We isolated strains from the roots of rice in the field where it has a rice-rice-green manure rotation system for 30 years. Efficient strains were screened by acetylene reduction assay. Phylogenetic analysis is based on 16S rRNA gene, nifH gene and the composition of fatty acid. In addition, we also detected the ability of indole acetic acid secretion through the Salkowski colorimetric method, measured the production of siderophore through the blue plate assay and detected phosphate solubilization, to analyze the growth-promoting properties. A total of 48 strains were isolated, in which DX35 has the highest nitrogenase activity. It belongs to Herbaspirillum seropedicae after identification. Its nitrogenase activity (181.21 nmol C2H4/(mg protein x h)) was 10 times as much as the reference strain Azotobacter chroococcum ACCC10006. In addition, it also can secrete siderophore and solubilize phosphorus. Strain DX35, belonging to Herbaspirillum seropedicae, is an efficient nitrogen fixation endophytes.

  15. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments.

    PubMed

    Nadeem, Sajid Mahmood; Ahmad, Maqshoof; Zahir, Zahir Ahmad; Javaid, Arshad; Ashraf, Muhammad

    2014-01-01

    Both biotic and abiotic stresses are major constrains to agricultural production. Under stress conditions, plant growth is affected by a number of factors such as hormonal and nutritional imbalance, ion toxicity, physiological disorders, susceptibility to diseases, etc. Plant growth under stress conditions may be enhanced by the application of microbial inoculation including plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi. These microbes can promote plant growth by regulating nutritional and hormonal balance, producing plant growth regulators, solubilizing nutrients and inducing resistance against plant pathogens. In addition to their interactions with plants, these microbes also show synergistic as well as antagonistic interactions with other microbes in the soil environment. These interactions may be vital for sustainable agriculture because they mainly depend on biological processes rather than on agrochemicals to maintain plant growth and development as well as proper soil health under stress conditions. A number of research articles can be deciphered from the literature, which shows the role of rhizobacteria and mycorrhizae alone and/or in combination in enhancing plant growth under stress conditions. However, in contrast, a few review papers are available which discuss the synergistic interactions between rhizobacteria and mycorrhizae for enhancing plant growth under normal (non-stress) or stressful environments. Biological interactions between PGPR and mycorrhizal fungi are believed to cause a cumulative effect on all rhizosphere components, and these interactions are also affected by environmental factors such as soil type, nutrition, moisture and temperature. The present review comprehensively discusses recent developments on the effectiveness of PGPR and mycorrhizal fungi for enhancing plant growth under stressful environments. The key mechanisms involved in plant stress tolerance and the effectiveness of microbial inoculation for

  16. Assessment of solubilization characteristics of different surfactants for carvedilol phosphate as a function of pH.

    PubMed

    Chakraborty, Subhashis; Shukla, Dali; Jain, Achint; Mishra, Brahmeshwar; Singh, Sanjay

    2009-07-15

    The effect of surfactants on the solubility of a new phosphate salt of carvedilol was investigated at different biorelevent pH to evaluate their solubilization capacity. Solutions of different classes of surfactants viz., anionic-sodium dodecyl sulfate (SDS) and sodium taurocholate (STC), cationic-cetyltrimethylammonium bromide (CTAB) and non-ionic-Tween 80 (T80) were prepared in the concentration range of 5-35 mmol dm(-3) in buffer solutions of pH 1.2, 3.0, 4.5, 5.8, 6.8 and 7.2. The solubility data were used to calculate the solubilization characteristics viz. molar solubilization capacity, water micelle partition coefficient, free energy of solubilization and binding constant. Solubility enhancement in basic pH was in following order: CTAB>T80>SDS>STC. CTAB and T80 showed remarkable solubility enhancement in acidic pH as well. Among the anionic surfactants, solubility in acidic medium was retarded except at pH 1.2 in case of SDS. Cationic and non-ionic surfactants were found to be suitable for enhancing the solubility of CP which can be employed for maintaining the in vitro sink condition in the basic dissolution medium. While anionic surfactants showed solubility retardant behavior which may be exploited in increasing the drug entrapment efficiency of a colloidal drug delivery system formulated by emulsification technique.

  17. Solubilizing properties of new surface-active agents, products of catalytic oxyethylation of cholic acid.

    PubMed

    Kołodziejczyk, Michał Krzysztof; Nachajski, Michal Jakub; Lukosek, Marek; Zgoda, Marian Mikołaj

    2013-01-01

    Solubilizing properties of aqueous solutions of a series of surface-active agents, products of oxyethylation of cholic acid, were examined in the present study. The content of oxyethylated segments determined by means of the 1H NMR method enabled the verification of the molecular mass of surfactants along with the calculation of the structural hydrophilic-lipophilic balance (HLB), the solubility parameter delta1/2, and the required solubility level of balance HLB(R). Viscosimetric measurements enabled the calculation of the limiting viscosity number, the content-average molecular mass, the effective volume, the hydrodynamic radius of the surfactant micelle and their equilibrium adducts with rutin, diclofenac and loratadine (BCS Class II and III). By means of the spectrophotometric method (UV) the amount of the solubilized diclofenac, loratadine and rutin (rutoside) was determined in the equilibrium system (saturated solution) in the environment of aqueous solutions of cholic acid derivatives of n(TE) = 20-70. The obtained results serve as a basis for determining the solubilization mechanism of lipophilic therapeutic products and indirectly for estimating the influence of the above process on pharmaceutical as well as biological availability of a micellar adduct from model drug forms (Lindbladt lithogenolitic index).

  18. Large scale solubilization of coal and bioconversion to utilizable energy. Eleventh quarterly technical progress report, April 1, 1996--June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, N.C.

    1996-10-01

    Neurospora has the capability to solubilize coal and the protein fraction accounting for this ability has been isolated. During this period the cola solubilizing activity (CSA) was fractionated and partially sequenced. The activity has been determined to be a tyrosinase and/or a phenol oxidase. The amino acid sequence of the protein was used to prepare oligonucleotides to identify the clone carrying Neurospora CSA. It is intended to clone the Neurospora gene into yeast, since yeast cannot solubilize coal, to further characterize the CSA.

  19. SURFACTANT-ENHANCED SOLUBILIZATION OF RESIDUAL DODECANE IN SOIL COLUMNS - 1. EXPERIMANTAL INVESTIGATION

    EPA Science Inventory

    The solubilization of dodecane by polyoxyethylene (20) sorbitan monooleate, a nonionic surfactant, was investigated as a potential means of recoveringnonaqueous-phase liquids from contaminated aquifers. Residual saturations of dodecane were established by injecting 14C...

  20. Macrophage Solubilization and Cytotoxicity of Indium-Containing Particles as in vitro Correlates to Pulmonary Toxicity in vivo

    PubMed Central

    Gwinn, William M.; Qu, Wei; Bousquet, Ronald W.; Price, Herman; Shines, Cassandra J.; Taylor, Genie J.; Waalkes, Michael P.; Morgan, Daniel L.

    2015-01-01

    Macrophage-solubilized indium-containing particles (ICPs) were previously shown in vitro to be cytotoxic. In this study, we compared macrophage solubilization and cytotoxicity of indium phosphide (InP) and indium-tin oxide (ITO) with similar particle diameters (∼1.5 µm) and then determined if relative differences in these in vitro parameters correlated with pulmonary toxicity in vivo. RAW 264.7 macrophages were treated with InP or ITO particles and cytotoxicity was assayed at 24 h. Ionic indium was measured in 24 h culture supernatants. Macrophage cytotoxicity and particle solubilization in vitro were much greater for InP compared with ITO. To correlate changes in vivo, B6C3F1 mice were treated with InP or ITO by oropharyngeal aspiration. On Days 14 and 28, bronchoalveolar lavage (BAL) and pleural lavage (PL) fluids were collected and assayed for total leukocytes. Cell differentials, lactate dehydrogenase activity, and protein levels were also measured in BAL. All lavage parameters were greatly increased in mice treated with InP compared with ITO. These data suggest that macrophage solubilization and cytotoxicity of some ICPs in vitro are capable of predicting pulmonary toxicity in vivo. In addition, these differences in toxicity were observed despite the two particulate compounds containing similar amounts of indium suggesting that solubilization, not total indium content, better reflects the toxic potential of some ICPs. Soluble InCl3 was shown to be more cytotoxic than InP to macrophages and lung epithelial cells in vitro further suggesting that ionic indium is the primary cytotoxic component of InP. PMID:25527823

  1. A general path for large-scale solubilization of cellular proteins: From membrane receptors to multiprotein complexes

    PubMed Central

    Pullara, Filippo; Guerrero-Santoro, Jennifer; Calero, Monica; Zhang, Qiangmin; Peng, Ye; Spåhr, Henrik; Kornberg, Guy L.; Cusimano, Antonella; Stevenson, Hilary P.; Santamaria-Suarez, Hugo; Reynolds, Shelley L.; Brown, Ian S.; Monga, Satdarshan P.S.; Van Houten, Bennett; Rapić-Otrin, Vesna; Calero, Guillermo; Levine, Arthur S.

    2014-01-01

    Expression of recombinant proteins in bacterial or eukaryotic systems often results in aggregation rendering them unavailable for biochemical or structural studies. Protein aggregation is a costly problem for biomedical research. It forces research laboratories and the biomedical industry to search for alternative, more soluble, non-human proteins and limits the number of potential “druggable” targets. In this study we present a highly reproducible protocol that introduces the systematic use of an extensive number of detergents to solubilize aggregated proteins expressed in bacterial and eukaryotic systems. We validate the usefulness of this protocol by solubilizing traditionally difficult human protein targets to milligram quantities and confirm their biological activity. We use this method to solubilize monomeric or multimeric components of multi-protein complexes and demonstrate its efficacy to reconstitute large cellular machines. This protocol works equally well on cytosolic, nuclear and membrane proteins and can be easily adapted to a high throughput format. PMID:23137940

  2. Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer

    PubMed Central

    Mendes, Gilberto de Oliveira; da Silva, Nina Morena Rêgo Muniz; Anastácio, Thalita Cardoso; Vassilev, Nikolay Bojkov; Ribeiro, José Ivo; da Silva, Ivo Ribeiro; Costa, Maurício Dutra

    2015-01-01

    A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil–plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials. PMID:26112323

  3. Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities.

    PubMed

    Chen, Xing; Tume, Ron K; Xu, Xinglian; Zhou, Guanghong

    2017-10-13

    The qualitative characteristics of meat products are closely related to the functionality of muscle proteins. Myofibrillar proteins (MPs), comprising approximately 50% of total muscle proteins, are generally considered to be insoluble in solutions of low ionic strength (< 0.2 M), requiring high concentrations of salt (> 0.3 M) for solubilization. These soluble proteins are the ones which determine many functional properties of meat products, including emulsification and thermal gelation. In order to increase the utilization of meat and meat products, many studies have investigated the solubilization of MPs in water or low ionic strength media and determining their functionality. However, there still remains a lack of systematic information on the functional properties of MPs solubilized in this manner. Hence, this review will explore some typical techniques that have been used. The main procedures used for their solubilization, the fundamental principles and their functionalities in water (low ionic strength medium) are comprehensively discussed. In addition, advantages and disadvantages of each technique are summarized. Finally, future considerations are presented to facilitate progress in this new area and to enable water soluble muscle MPs to be utilized as novel meat ingredients in the food industry.

  4. Contribution of native phosphorous-solubilizing bacteria of acid soils on phosphorous acquisition in peanut (Arachis hypogaea L.).

    PubMed

    Pradhan, Madhusmita; Sahoo, Ranjan Kumar; Pradhan, Chinmay; Tuteja, Narendra; Mohanty, Santanu

    2017-11-01

    The present investigation analyzes the in vitro P solubilization [Ca-P, Al-P, Fe(II)-P, and Fe(III)-P] efficiency of native PSB strains from acid soils of Odisha and exploitation of the same through biofertilization in peanut (Arachis hypogaea L.) growth and P acquisition. One hundred six numbers of soil samples with pH ≤ 5.50 were collected from five districts of Odisha viz., Balasore, Cuttack, Khordha, Keonjhar, and Mayurbhanj. One bacterial isolate from each district were selected and analyzed for their P solubilization efficiency in National Botanical Research Institute Phosphate broths with Ca, Al, and Fe-complexed phosphates. CTC12 and KHD08 transformed more amount of soluble P from Ca-P (CTC12 393.30 mg/L; KHD08 465.25 mg/L), Al-P (CTC12 40.00 mg/L; KHD08 34.50 mg/L), Fe(III)-P (CTC12 175.50 mg/L; KHD08 168.75 mg/L), and Fe(II)-P (CTC12 47.40 mg/L; KHD08 42.00 mg/L) after 8 days of incubation. The bioconversion of P by all the five strains in the broth medium followed the order Ca-P > Fe(III)-P > Fe(II)-P > Al-P. The identified five strains were Bacillus cereus BLS18 (KT582541), Bacillus amyloliquefaciens CTC12 (KT633845), Burkholderia cepacia KHD08 (KT717633), B. cepacia KJR03 (KT717634), and B. cepacia K1 (KM030037) and further studied for biofertilization effects on peanut. CTC12 and KHD08 enhanced the soil available P around 65 and 58% and reduced the amount of each Al 3+ about 79 and 81%, respectively, over the uninoculated control pots in the peanut rhizosphere. Moreover, all tested PSB strains could be able to successfully mobilize P from inorganic P fractions (non-occluded Al-P and Fe-P). The strains CTC12 and KHD08 increased the pod yield (114 and 113%), shoot P (92 and 94%), and kernel P (100 and 101%), respectively, over the control. However, B. amyloliquefaciens CTC12 and B. cepacia KHD08 proved to be the potent P solubilizers in promoting peanut growth and yield.

  5. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    PubMed

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  6. Preservation in microbial mats: mineralization by a talc-like phase of a fish embedded in a microbial sarcophagus

    NASA Astrophysics Data System (ADS)

    Iniesto, Miguel; Zeyen, Nina; López-Archilla, Ana; Bernard, Sylvain; Buscalioni, Ángela; Guerrero, M. Carmen; Benzerara, Karim

    2015-09-01

    Microbial mats have been repeatedly suggested to promote early fossilization of macroorganisms. Yet, experimental simulations of this process remain scarce. Here, we report results of 5 year-long experiments performed onfish carcasses to document the influence of microbial mats on mineral precipitation during early fossilization. Carcasses were initially placed on top of microbial mats. After two weeks, fishes became coated by the mats forming a compact sarcophagus, which modified the microenvironment close to the corpses. Our results showed that these conditions favoured the precipitation of a poorly crystalline silicate phase rich in magnesium. This talc-like mineral phase has been detected in three different locations within the carcasses placed in microbial mats for more than 4 years: 1) within inner tissues, colonized by several bacillary cells; 2) at the surface of bones of the upper face of the corpse buried in the mat; and 3) at the surface of several bones such as the dorsal fin which appeared to be gradually replaced by the Mg-silicate phase. This mineral phase has been previously shown to promote bacteria fossilization. Here we provide first experimental evidence that such Mg-rich phase can also be involved in exceptional preservation of animals.

  7. Dietary fibers solubilized in water or an oil emulsion induce satiation through CCK-mediated vagal signaling in mice.

    PubMed

    Rasoamanana, Rojo; Chaumontet, Catherine; Nadkarni, Nachiket; Tomé, Daniel; Fromentin, Gilles; Darcel, Nicolas

    2012-11-01

    This study focused on the fate of the satiating potency of dietary fibers when solubilized in a fat-containing medium. Fourteen percent of either guar gum (GG) or fructo-oligosaccharide (FOS) or a mixture of the 2 (GG-FOS, 5% GG and 9% FOS) were solubilized in water or an oil emulsion (18-21% rapeseed oil in water, v:v) and administered by gavage to mice before their food intake was monitored. When compared with water (control), only GG-FOS solubilized in water or in the oil emulsion reduced daily energy intake by 21.1 and 14.1%, respectively. To further describe this effect, the meal pattern was characterized and showed that GG-FOS increased satiation without affecting satiety by diminishing the size and duration of meals for up to 9 h after administration independently of the solubilization medium. The peripheral blockade of gut peptide receptors showed that these effects were dependent on the peripheral signaling of cholecystokinin but not of glucagon-like peptide 1, suggesting that anorectic signals emerge from the upper intestine rather than from distal segments. Measurements of neuronal activation in the nucleus of solitary tract supported the hypothesis of vagal satiation signaling because a 3-fold increase in c-Fos protein expression was observed in that nucleus after the administration of GG-FOS, independently of the solubilization medium. Taken together, these data suggest that a mixture of GG and FOS can maintain its appetite suppressant effect in fatty media. Adding these dietary fibers to fat-containing foods might therefore be useful in managing food intake.

  8. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.

    PubMed

    Burger, Alexa; Lindsay, Helen; Felker, Anastasia; Hess, Christopher; Anders, Carolin; Chiavacci, Elena; Zaugg, Jonas; Weber, Lukas M; Catena, Raul; Jinek, Martin; Robinson, Mark D; Mosimann, Christian

    2016-06-01

    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo. © 2016. Published by The Company of Biologists Ltd.

  9. Microbial control in Asia: a bellwether for the future?

    PubMed

    Gelernter, Wendy D

    2007-07-01

    Advances and barriers faced by microbial control efforts in Asia offer instructive insights for microbial control in general. The papers in this series, which are based on plenary lectures given at the Society for Invertebrate Pathology 2006 meeting in Wuhan, China, explore the history and current status of microbial control in China, Japan, and Southeast Asia, and in doing so, bring to light the following key assumptions that deserve further examination; (1) the adoption rate of microbial control is well documented; (2) microbial control agents can compete directly with conventional insecticides; (3) microbial control agents are relatively easy and inexpensive to produce and develop; (4) patents will promote innovation and investor interest in microbial control. Alternative viewpoints are presented that can hopefully aid in future efforts to develop more safe and effective microbial control agents.

  10. SURFACTANT-ENHANCED SOLUBILIZATION OF RESIDUAL DODECANE IN SOIL COLUMNS - 2. MATHEMATICAL MODELING

    EPA Science Inventory

    A mathematical model is developed to describe surfactant-enhanced solubilization of nonaqueous-phase liquids (NAPLs) in porous media. The model incorporates aqueous-phase transport equations for organic and surfactant components as well as a mass balance for the organic phase. Ra...

  11. SURFACTANT ENHANCED SOLUBILIZATION OF RESIDUAL DODECANE IN SOIL COLUMNS 1. MATHEMATICAL MODELING

    EPA Science Inventory

    A mathematical model is developed to describe surfactant enhanced solubilization of nonaqueous phase liquids (NAPLS) in porous media. he model incorporates aqueous phase transport equations for organic and surfactant components as well as a mass balance on the organic phase. ate-...

  12. Solubilization of docetaxel in poly(ethylene oxide)-block-poly(butylene/styrene oxide) micelles.

    PubMed

    Elsabahy, Mahmoud; Perron, Marie-Eve; Bertrand, Nicolas; Yu, Ga-Er; Leroux, Jean-Christophe

    2007-07-01

    Poly(ethylene oxide)-block-poly(styrene oxide) (PEO-b-PSO) and PEO-b-poly(butylene oxide) (PEO-b-PBO) of different chain lengths were synthesized and characterized for their self-assembling properties in water by dynamic/static light scattering, spectrofluorimetry, and transmission electron microscopy. The resulting polymeric micelles were evaluated for their ability to solubilize and protect the anticancer drug docetaxel (DCTX) from degradation. The drug release kinetics as well as the cytotoxicity of the loaded micelles were assessed in vitro. All polymers formed micelles with a highly viscous core at low critical association concentrations (<10 mg/L). Micelle morphology depended on the nature of the hydrophobic block, with PBO- and PSO-based micelles yielding monodisperse spherical and cylindrical nanosized aggregates, respectively. The maximum solubilization capacity for DCTX ranged from 0.7 to 4.2% and was the highest for PSO micelles exhibiting the longest hydrophobic segment. Despite their high affinity for DCTX, PEO-b-PSO micelles were not able to efficiently protect DCTX against hydrolysis under accelerated stability testing conditions. Only PEO-b-PBO bearing 24 BO units afforded significant protection against degradation. In vitro, DCTX was released slower from the latter micelles, but all formulations possessed a similar cytotoxic effect against PC-3 prostate cancer cells. These data suggest that PEO-b-P(SO/BO) micelles could be used as alternatives to conventional surfactants for the solubilization of taxanes.

  13. Microbial biosurfactants as additives for food industries.

    PubMed

    Campos, Jenyffer Medeiros; Stamford, Tânia Lúcia Montenegro; Sarubbo, Leonie Asfora; de Luna, Juliana Moura; Rufino, Raquel Diniz; Banat, Ibrahim M

    2013-01-01

    Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro-industrial wastes as alternative substrates for their production are discussed. © 2013 American Institute of Chemical Engineers.

  14. A Model to Explain Plant Growth Promotion Traits: A Multivariate Analysis of 2,211 Bacterial Isolates

    PubMed Central

    da Costa, Pedro Beschoren; Granada, Camille E.; Ambrosini, Adriana; Moreira, Fernanda; de Souza, Rocheli; dos Passos, João Frederico M.; Arruda, Letícia; Passaglia, Luciane M. P.

    2014-01-01

    Plant growth-promoting bacteria can greatly assist sustainable farming by improving plant health and biomass while reducing fertilizer use. The plant-microorganism-environment interaction is an open and complex system, and despite the active research in the area, patterns in root ecology are elusive. Here, we simultaneously analyzed the plant growth-promoting bacteria datasets from seven independent studies that shared a methodology for bioprospection and phenotype screening. The soil richness of the isolate's origin was classified by a Principal Component Analysis. A Categorical Principal Component Analysis was used to classify the soil richness according to isolate's indolic compound production, siderophores production and phosphate solubilization abilities, and bacterial genera composition. Multiple patterns and relationships were found and verified with nonparametric hypothesis testing. Including niche colonization in the analysis, we proposed a model to explain the expression of bacterial plant growth-promoting traits according to the soil nutritional status. Our model shows that plants favor interaction with growth hormone producers under rich nutrient conditions but favor nutrient solubilizers under poor conditions. We also performed several comparisons among the different genera, highlighting interesting ecological interactions and limitations. Our model could be used to direct plant growth-promoting bacteria bioprospection and metagenomic sampling. PMID:25542031

  15. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in wastestreams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled.

  16. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-10-24

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3more » km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.« less

  17. Isolation and characterization of Chilembwe and Sinda Rock Phosphate solubilizing soil microorganisms

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to isolate and characterize soil microorganisms capable of solubilizing Chilembwe and Sinda rock phosphates readily available in Zambia. Single isolates were obtained by direct plating and enrichment cultures with succinate, cellulose and glucose as the carbon sources. Isola...

  18. Heat-solubilized curry spice curcumin inhibits antibody-antigen interaction in in vitro studies: a possible therapy to alleviate autoimmune disorders.

    PubMed

    Kurien, Biji T; D'Souza, Anil; Scofield, R Hal

    2010-08-01

    Chronic and complex autoimmune diseases, currently treated palliatively with immunosuppressives, require multi-targeted therapy for greater effectiveness. The naturally occurring polyphenol curcumin has emerged as a powerful "nutraceutical" that interacts with multiple targets to regress diseases safely and inexpensively. Up to 8 g/day of curcumin for 18 months was non-toxic to humans. However, curcumin's utility is limited by its aqueous insolubility. We have demonstrated a heat-mediated 12-fold increase in curcumin's aqueous solubility. Here, we show by SDS-PAGE and surface plasmon resonance that heat-solubilized curcumin binds to proteins. Based on this binding we hypothesized that heat-solubilized curcumin or turmeric would prevent autoantibody targeting of cognate autoantigens. Heat-solubilized curcumin/turmeric significantly decreased binding of autoantibodies from Sjögren's syndrome (up to 43/70%, respectively) and systemic lupus erythematosus (up to 52/70%, respectively) patients as well as an animal model of Sjögren's syndrome (up to 50/60%, respectively) to their cognate antigens. However, inhibition was not specific to autoimmunity. Heat-solubilized curcumin/turmeric also inhibited binding of commercial polyclonal anti-spectrin to spectrin (50/56%, respectively). Thus, we suggest that the multifaceted heat-solubilized curcumin can ameliorate autoimmune disorders. In addition, the non-toxic curcumin could serve as a new protein stain in SDS-PAGE even though it is less sensitive than the Coomassie system which involves toxic chemicals.

  19. Copper-tolerant rhizosphere bacteria-characterization and assessment of plant growth promoting factors.

    PubMed

    Rathi, Manohari; Nandabalan, Yogalakshmi Kadapakkam

    2017-04-01

    Remediation of heavy metal contaminated soil is a major problem or concern worldwide. Heavy metal accumulation in the soil is increasing day by day by industries, mines, agriculture, fuel combustion and municipal waste discharge. Such contaminated soils harbour a large number of resistant microbial populations. Screening and isolation of such microbes would be utilized for natural remediation of metal contaminated soils. Therefore, in the present study, highly copper-tolerant bacteria from rhizosphere soil of Cynodon dactylon grown in brass effluent contaminated soil were isolated and assessed for plant growth promoting factors. A total of 61 isolates were isolated from the rhizosphere of three contaminated sites. Six highly copper-tolerant isolates named as MYS1, MYS2, MYS3, MYS4, MYS5 and MYS6 were isolated through enrichment in copper containing nutrient broth. 16S rRNA analysis revealed that the isolates were from genera Stenotrophomonas and Brevundimonas and belong to classes Alpha Proteobacteriacea and Gamma Proteobacteriacea, respectively. Strain MYS1, MYS2 and MYS4 showed 95-99% similarity with Stenotrophomonas acidaminiphila, strain MYS3 and MYS5 showed 99 and 97% similarity with Stenotrophomonas maltophilia and Stenotrophomonas sp. Strain MYS6 showed 94% similarity with Brevundimonas diminuta. All the rhizobacteria showed plant growth promoting traits such as production of siderophores, indole acetic acid (IAA), phosphate solubilization and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. From this study, we can conclude that all the isolates possess copper resistance and potential for phytoremediation of copper polluted soils.

  20. Intestinal solubilization of particle-associated organic and inorganic mercury as a measure of bioavailability to benthic invertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, A.L.; McAloon, K.M.; Mason, R.P.

    1999-06-01

    The bioavailability of particle-associated inorganic mercury (Hg{sub I}) and monomethylmercury (MMHg) was evaluated in vitro using digestive fluid of the deposit feeding lugworm, Arenicola marina. Digestive fluid, removed from the midgut of the polychaete, was incubated with contaminated sediment, and the proportion of Hg{sub I} or MMHg solubilized by the digestive fluid was determined. Digestive fluid was found to be a more effective solvent than seawater in solubilizing particle-associated Hg{sub I} or MMHg. A greater percentage of MMHg than Hg{sub I} was solubilized from most sediments, suggesting that sediment-associated MMHg is generally more readily available from sediment for biological uptake.more » The proportion of MMHg released from the sediment was inversely correlated with sediment organic matter content, decreasing exponentially with increasing organic matter content of the sediment. The results for Hg{sub I} were equivocal. MMHg bioaccumulation factors (BAFs) from previous studies showed a similar trend with organic content of sediment, suggesting that solubilization may be the process limiting the bioaccumulation of particle-bound MMHg. It is concluded that in vitro extraction with a deposit feeder`s digestive fluid provides a potential tool to study the process of Hg bioaccumulation via ingestion routes, although its application to various sediments and organisms needs further investigation.« less

  1. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.A.; Luthy, R.G.; Liu, Zhongbao

    1991-01-01

    Experimental data are presented on the enhanced apparent solubilities of naphthalene, phenanthrene, and pyrene resulting from solubilization in aqueous solutions of four commercial, nonionic surfactants: an alkyl polyoxyethylene (POE) type, two octylphenol POE types, and a nonylphenol POE type. Apparent solubilities of the polycyclic aromatic hydrocarbon (PAH) compounds in surfactant solutions were determined by radiolabeled techniques. Solubilization of each PAH compound commenced at the surfactant critical micelle concentration and was proportional to the concentration of surfactant in micelle form. The partitioning of organic compounds between surfactant micelles and aqueous solution is characterized by a mole fraction micelle-phase/aqueous-phase partition coefficient, K{submore » m}. Values of log K{sub m} for PAH compounds in surfactant solutions of this study range from 4.57 to 6.53. Log K{sub m} appears to be a linear function of log K{sub ow} for a given surfactant solution. A knowledge of partitioning in aqueous surfactant systems is a prerequisite to understanding mechanisms affecting the behavior of hydrophobic organic compounds in soil-water systems in which surfactants play a role in contaminant remediation or facilitated transport.« less

  2. Multimeric species in equilibrium in detergent-solubilized Na,K-ATPase.

    PubMed

    Yoneda, Juliana Sakamoto; Scanavachi, Gustavo; Sebinelli, Heitor Gobbi; Borges, Júlio Cesar; Barbosa, Leandro R S; Ciancaglini, Pietro; Itri, Rosangela

    2016-08-01

    In this work, we find an equilibrium between different Na,K-ATPase (NKA) oligomeric species solubilized in a non-ionic detergent C12E8 by means of Dynamic Light Scattering (DLS), Analytical Ultracentrifugation (AUC), Small Angle X-ray Scattering (SAXS), Spectrophotometry (absorption at 280/350nm) and enzymatic activity assay. The NKA sample after chromatography purification presented seven different populations as identified by AUC, with monomers and tetramers amounting to ∼55% of the total protein mass in solution. These two species constituted less than 40% of the total protein mass after increasing the NKA concentration. Removal of higher-order oligomer/aggregate species from the NKA solution using 220nm-pore filter resulted in an increase of the specific enzymatic activity. Nevertheless, the enzyme forms new large aggregates over an elapsed time of 20h. The results thus point out that C12E8-solubilized NKA is in a dynamic equilibrium of monomers, tetramers and high-order oligomers/subunit aggregates. These latter have low or null activity. High amount of detergent leads to the dissociation of NKA into smaller aggregates with no enzymatic activity. Copyright © 2016. Published by Elsevier B.V.

  3. Superactivity of peroxidase solubilized in reversed micellar systems.

    PubMed

    Setti, L; Fevereiro, P; Melo, E P; Pifferi, P G; Cabral, J M; Aires-Barros, M R

    1995-12-01

    Vaccinium mirtyllus peroxidase solubilized in reversed micelles was used for the oxidation of guaiacol. Some relevant parameters for the enzymatic activity, such as pH, w(o) (molar ratio water/surfactant), surfactant type and concentration, and cosurfactant concentration, were investigated. The peroxidase showed higher activities in reversed micelles than in aqueous solution. The stability of the peroxidase in reversed micelles was also studied, namely, the effect of w(o) and temperature on enzyme deactivation. The peroxidase displayed higher stabilities in CTAB/hexanol in isooctane reversed micelles, with half-life times higher than 500 h.

  4. [Filamentous and phosphate solubilizing fungi relationships with some edaphic parameters and coffee plantations management].

    PubMed

    Posada, Raúl Hernando; Sánchez de Prager, Marina; Sieverding, Ewald; Aguilar Dorantes, Karla; Heredia-Abarca, Gabriela Patricia

    2012-09-01

    Soil properties and the environment have multiple outcomes on fungal communities. Although, the interaction effects between management intensity, pH, available phosphorus, organic carbon, soil texture and different fractions of water stable macro-aggregates on the communities of microscopic filamentous fungi (MFF), iron phosphate solubilizing fungi (PSF-Fe), and iron and calcium phosphate solubilizing fungi (PSF-(Fe+Ca)), have been previously evaluated in field conditions, this has never been performed in terms of their combined effects, neither with phosphate solubilizing fungi. To assess this, we collected 40 composite soil samples from eight Mexican and Colombian coffee plantations, with different management intensities and physico-chemical edaphic parameters, during 2008-2009. We isolated different communities of MFF, PSF-Fe and PSF-(Fe+Ca), by wet sieving and soil particles culture in Potato-Dextrose-Agar from soil samples, and we classified isolates in terms of their phosphate solubilizing ability. Following the principal component analysis results, we decided to analyze fungal communities and abiotic factors interactions for each country separately. Structural Equation Models revealed that organic carbon was positively associated to MFF richness and number of isolates (lambda>0.58), but its relationship with PSF-Fe and PSF-(Fe+Ca) were variable; while the available phosphorus, pH and water stable macro-aggregate fractions did not show a clear pattern. Management intensity was negatively related to PSF-Fe (lambda < or = -0.21) morphotype richness and the number of isolates in Colombian coffee plantations. We found that the relationships of clay and organic carbon content, and available phosphorus and soil pH, with the species richness and number of isolates of MFF, PSF-Fe and PSF-(Fe+Ca) were highly variable; this made impossible to generalize the responses between saprotrophic fungal groups and geographic zones. The management intensity was not related to

  5. Solubilization of adenylyl cyclase from human myometrium in a alphas-coupled form.

    PubMed

    Bajo, Ana M; Prieto, Juan C; Valenzuela, Pedro; Martinez, Pilar; Guijarro, Luis G

    2003-08-01

    Adenylyl cyclase (AC) was extracted from human myometrium with either non-ionic (Lubrol-PX or Triton X-100) or zwitterionic (3-[3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, CHAPS) detergents. The soluble enzyme was stimulated by forskolin, a hydrophobic activator, in the presence of Mg2+ indicating that the catalytic subunit had not been damaged after solubilization. The enzyme was also activated by 5'-guanylyl imidodiphosphate (Gpp(NH)p) showing that the catalytic unit was not separated from stimulatory guanine nucleotide binding protein (Gs) during the extraction. Both activators showed different effects on the stimulatory efficacy and potency of AC activity solobulized with detergents. Gel filtration of Lubrol-PX and CHAPS extracts over a Sepharose CL-2B column partially resolved AC and its complexes. The chromatographic profile for Lubrol-solubilized AC presented a main peak of about 200 kDa whereas CHAPS-solubilized AC showed a dominant peak of about 1100 kDa. The heterodisperse peaks obtained revealed that the catalytic AC subunit was not separated from Gs proteins after gel filtration, and that AC could be associated with other cellular proteins. When Lubrol extract was submitted to anionic-exchange chromatography, the enzyme was purified about 7.5 fold (enzymatic activity of 48.1 pmol/min/mg of protein). The catalytic subunit was co-eluted with both AC-activating proteins Galphas large (52.2 kDa) and Galphas small (48.7 kDa). This is the first demonstration of the stable physical association of AC with both alphas subunits of G proteins in human myometrium.

  6. HemX is required for production of 2-ketogluconate, the predominant organic anion required for inorganic phosphate solubilization by Burkholderia sp. Ha185.

    PubMed

    Hsu, Pei-Chun Lisa; Condron, Leo; O'Callaghan, Maureen; Hurst, Mark R H

    2015-12-01

    The bacterium Burkholderia sp. Ha185 readily solubilizes inorganic phosphate by releasing the low molecular weight organic anion, 2-ketogluconate. Using random transposon mutagenesis and in silico analysis, a mutation that caused almost complete abolition of phosphate solubilization was located within hemX, which is part of the hem operon. Burkholderia sp. Ha185 HemX is a multidomain protein, predicted to encode a bifunctional uroporphyrinogen-III synthetase/uroporphyrin-III C-methyltransferase, which has not previously been implicated in phosphate solubilization. Complementation of hemX restored the ability of the mutant to solubilize phosphate in both plate and liquid cultures. Based on a combination of organic-anion profiling, quantitative polymerase chain reaction and in silico analyses, hemX was confirmed to be solely responsible for hydroxyapatite solubilization in Burkholderia sp. Ha185. It is proposed that the biosynthesis of a yet to be determined redox cofactor by HemX is the main pathway for generating 2-ketogluconate via a haem-dependent gluconate 2-dehydrogenase in Burkholderia sp. Ha185. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation.

    PubMed

    Nazari, Laleh; Yuan, Zhongshun; Santoro, Domenico; Sarathy, Siva; Ho, Dang; Batstone, Damien; Xu, Chunbao Charles; Ray, Madhumita B

    2017-04-15

    The present study examines the relationship between the degree of solubilization and biodegradability of wastewater sludge in anaerobic digestion as a result of low-temperature thermal pre-treatment. The main effect of thermal pre-treatment is the disintegration of cell membranes and thus solubilization of organic compounds. There is an established correlation between chemical oxygen demand (COD) solubilization and temperature of thermal pre-treatment, but results of thermal pre-treatment in terms of biodegradability are not well understood. Aiming to determine the impact of low temperature treatments on biogas production, the thermal pre-treatment process was first optimized based on an experimental design study on waste activated sludge in batch mode. The optimum temperature, reaction time and pH of the process were determined to be 80 °C, 5 h and pH 10, respectively. All three factors had a strong individual effect (p < 0.001), with a significant interaction effect for temp. pH 2 (p = 0.002). Thermal pre-treatments, carried out on seven different municipal wastewater sludges at the above optimum operating conditions, produced increased COD solubilization of 18.3 ± 7.5% and VSS reduction of 27.7 ± 12.3% compared to the untreated sludges. The solubilization of proteins was significantly higher than carbohydrates. Methane produced in biochemical methane potential (BMP) tests, indicated initial higher rates (p = 0.0013) for the thermally treated samples (k hyd up to 5 times higher), although the ultimate methane yields were not significantly affected by the treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Anaerobic microbial remobilization of coprecipitated metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.

    1994-10-11

    A process is provided for solubilizing coprecipitated metals. Metals in waste streams are concentrated by treatment with an iron oxide coprecipitating agent. The coprecipitated metals are solubilized by contacting the coprecipitate with a bacterial culture of a Clostridium species ATCC 53464. The remobilized metals can then be recovered and recycled. 4 figs.

  9. Photoacoustic analysis of the solubilization kinetics of pulmonary secretions from cystic fibrosis patients - secretor and non-secretor phenotypes

    NASA Astrophysics Data System (ADS)

    Barja, P. R.; Coelho, C. C.; Paiva, R. F.; Barboza, M. A.; Matos, L. C.; Matos, C. C. B.; Oliveira, L. V. F.

    2010-03-01

    Cystic fibrosis (CF) is an autosomal recessive inherited disease that increases viscoelasticity of pulmonary secretions. Affected patients are required to use therapeutic aerosols continuously. The expression of ABH glycoconjugates in exocrine secretions determines the nature of part of the carbohydrates present in these secretions, allowing the classification of individuals into the so-called "secretor" and "non secretor" phenotypes. The aim of this work was to employ photoacoustic (PA) measurements to monitor the solubilization kinetics of pulmonary secretions from CF patients, analyzing the influence of the secretor status in the solubilization kinetics of samples nebulized with different therapeutic aerosols. Sputum samples were obtained by spontaneous expectoration from positive and negative secretor CF patients. Each sample was nebulized with i) tobramycin, ii) alpha dornase, and iii) N-acetylcysteine in a PA cell; fitting of the data with the Boltzmann equation led to the determination of t0 (typical interaction time) and Δt (solubilization interval) for each curve. Differences between the secretor and non-secretor phenotypes were statistically significant in the groups for tobramycin and alpha dornase, but not for N-acetylcysteine. Results show that the secretor status influences the solubilization of pulmonary mucus of CF patients nebulized with tobramycin and alpha dornase.

  10. Modified denatured lysozyme effectively solubilizes fullerene c60 nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Siepi, Marialuisa; Politi, Jane; Dardano, Principia; Amoresano, Angela; De Stefano, Luca; Monti, Daria Maria; Notomista, Eugenio

    2017-08-01

    Fullerenes, allotropic forms of carbon, have very interesting pharmacological effects and engineering applications. However, a very low solubility both in organic solvents and water hinders their use. Fullerene C60, the most studied among fullerenes, can be dissolved in water only in the form of nanoparticles of variable dimensions and limited stability. Here the effect on the production of C60 nanoparticles by a native and denatured hen egg white lysozyme, a highly basic protein, has been systematically studied. In order to obtain a denatured, yet soluble, lysozyme derivative, the four disulfides of the native protein were reduced and exposed cysteines were alkylated by 3-bromopropylamine, thus introducing eight additional positive charges. The C60 solubilizing properties of the modified denatured lysozyme proved to be superior to those of the native protein, allowing the preparation of biocompatible highly homogeneous and stable C60 nanoparticles using lower amounts of protein, as demonstrated by dynamic light scattering, transmission electron microscopy and atomic force microscopy studies. This lysozyme derivative could represent an effective tool for the solubilization of other carbon allotropes.

  11. Bacteria isolated from soils of the western Amazon and from rehabilitated bauxite-mining areas have potential as plant growth promoters.

    PubMed

    de Oliveira-Longatti, Silvia Maria; Marra, Leandro Marciano; Lima Soares, Bruno; Bomfeti, Cleide Aparecida; da Silva, Krisle; Avelar Ferreira, Paulo Ademar; de Souza Moreira, Fatima Maria

    2014-04-01

    Several processes that promote plant growth were investigated in endophytic and symbiotic bacteria isolated from cowpea and siratro nodules and also in bacterial strains recommended for the inoculation of cowpea beans. The processes verified in 31 strains were: antagonism against phytopathogenic fungi, free-living biological nitrogen fixation, solubilization of insoluble phosphates and indole acetic acid (IAA) production. The resistance to antibiotics was also assessed. Sequencing of the partial 16S rRNA gene was performed and the strains were identified as belonging to different genera. Eight strains, including some identified as Burkholderia fungorum, fixed nitrogen in the free-living state. Eighteen strains exhibited potential to solubilize calcium phosphate, and 13 strains could solubilize aluminum phosphate. High levels of IAA production were recorded with L-tryptophan addition for the strain UFLA04-321 (42.3 μg mL⁻¹). Strains highly efficient in symbiosis with cowpea bean, including strains already approved as inoculants showed the ability to perform other processes that promote plant growth. Besides, these strains exhibited resistance to several antibiotics. The ability of the nitrogen-fixing bacteria to perform other processes and their adaptation to environmental conditions add value to these strains, which could lead to improved inoculants for plant growth and environmental quality.

  12. Microbial culture collections as pillars for promoting fungal diversity, conservation and exploitation.

    PubMed

    Sette, Lara Durães; Pagnocca, Fernando Carlos; Rodrigues, André

    2013-11-01

    Fungi are a diverse group of organisms with an overall global number of 1.5M up to 3.3M species on Earth. Besides their ecological roles as decomposers, fungi are important in several aspects of applied research. Here, we review how culture collections may promote the knowledge on diversity, conservation and biotechnological exploitation of fungi. The impact of fungi diversity on biotechnological studies is discussed. We point out the major roles of microbial repositories, including fungal preservation, prospecting, identification, authentication and supply. A survey on the World Data Center for Microorganisms (WDCM) powered by the World Federation for Culture Collections and on the Genetic Heritage Management Council (CGEN) database revealed that 46 Brazilian culture collections registered in these databases are dedicate to preserving fungi. Most of these culture collections are located in the Southeast of Brazil. This scenario also demonstrates that Brazil has many collections focused on fungal strains, but the lack of up-to-date information in WDCM as well as of a solid national platform for culture collections registration do not allow accurate assessment of fungal preservation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.).

    PubMed

    Mukhtar, Salma; Shahid, Izzah; Mehnaz, Samina; Malik, Kauser A

    2017-12-01

    Biofertilizers are usually carrier-based inoculants containing beneficial microorganisms. Incorporation of microorganisms in carrier material enables easy-handling, long-term storage and high effectiveness of biofertilizers. Objective of the present study was to assess enriched biogas sludge and soil as biofertilizer carriers on growth and yield of wheat. Six phosphate solubilizing strains were used in this study. Three phosphate solubilizing strains, 77-NS2 (Bacillus endophyticus), 77-CS-S1 (Bacillus sphaericus) and 77-NS5 (Enterobacter aerogenes) were isolated from the rhizosphere of sugarcane, two strains, PSB5 (Bacillus safensis) and PSB12 (Bacillus megaterium) from the rhizosphere of wheat and one halophilic phosphate solubilizing strain AT2RP3 (Virgibacillus sp.) from the rhizosphere of Atriplex amnicola, were used as bioinoculants. Phosphate solubilization ability of these strains was checked in vitro in Pikovskaya medium, containing rock phosphate (RP) as insoluble P source, individually supplemented with three different carbon sources, i.e., glucose, sucrose and maltose. Maximum phosphate solubilization; 305.6μg/ml, 217.2μg/ml and 148.1μg/ml was observed in Bacillus strain PSB12 in Pikovskaya medium containing sucrose, maltose and glucose respectively. A field experiment and pot experiments in climate control room were conducted to study the effects of biogas sludge and enriched soil based phosphorous biofertilizers on growth of wheat. Bacillus strain PSB12 significantly increased root and shoot dry weights and lengths using biogas sludge as carrier material in climate control room experiments. While in field conditions, significant increase in root and shoot dry weights, lengths and seed weights was seen by PSB12 and PSB5 (Bacillus) and Enterobacter strain 77-NS5 using biogas sludge as carrier. PSB12 also significantly increased both root and shoot dry weights and lengths in field conditions when used as enriched soil based inoculum. These results

  14. Screening of detergents for solubilization, purification and crystallization of membrane proteins: a case study on succinate:ubiquinone oxidoreductase from Escherichia coli.

    PubMed

    Shimizu, Hironari; Nihei, Coh-ichi; Inaoka, Daniel Ken; Mogi, Tatushi; Kita, Kiyoshi; Harada, Shigeharu

    2008-09-01

    Succinate:ubiquinone oxidoreductase (SQR) was solubilized and purified from Escherichia coli inner membranes using several different detergents. The number of phospholipid molecules bound to the SQR molecule varied greatly depending on the detergent combination that was used for the solubilization and purification. Crystallization conditions were screened for SQR that had been solubilized and purified using 2.5%(w/v) sucrose monolaurate and 0.5%(w/v) Lubrol PX, respectively, and two different crystal forms were obtained in the presence of detergent mixtures composed of n-alkyl-oligoethylene glycol monoether and n-alkyl-maltoside. Crystallization took place before detergent phase separation occurred and the type of detergent mixture affected the crystal form.

  15. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. Published by Elsevier Ltd.

  16. Solubilization of pyrene by anionic-nonionic mixed surfactants.

    PubMed

    Zhou, Wenjun; Zhu, Lizhong

    2004-06-18

    Surfactant-enhanced remediation (SER) is an effective approach for the removal of sorbed hydrophobic organic compounds from contaminated soils. The solubilization of pyrene by four anionic-nonionic mixed surfactants, sodium dodecyl sulfate (SDS) with Triton X-405 (TX405), Brij35, Brij58, and Triton X-100 (TX100), has been studied from measurements of the molar solubilization ratio (MSR), the micelle-water partition coefficient (Kmc), and the critical micelle concentration (CMC). The MSRs of pyrene in mixed surfactants are found to be larger than those predicted according to an ideal mixing rule. The mixing effect of anionic and nonionic surfactants on MSR for pyrene follows the order of SDS-TX405 > SDS-Brij35 > SDS-Brij58 > SDS-TX100 and increases with an increase in the hydrophile-lipophile balance (HLB) value of nonionic surfactant in mixed systems. In addition, the mixture of anionic and nonionic surfactants cause the Kmc value for pyrene to be greater than the ideal value in SDS-TX405 mixed system, but to be smaller than the ideal value in SDS-Brij35, SDS-Brij58, and SDS-TX100 mixed systems. Meanwhile, in the four mixed systems, the experimental CMCs are lower than the ideal CMCs at almost all mixed surfactant solution compositions. The mixing effect of anionic and nonionic surfactants on MSR for pyrene can be attributed to the conjunct or the net result of the negative deviation of the CMCs from ideal mixture and the increasing or decreasing Kmc.

  17. High temperature flow-through device for rapid solubilization and analysis

    DOEpatents

    West, Jason A. A. [Castro Valley, CA; Hukari, Kyle W [San Ramon, CA; Patel, Kamlesh D [Dublin, CA; Peterson, Kenneth A [Albuquerque, NM; Renzi, Ronald F [Tracy, CA

    2009-09-22

    Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.

  18. High temperature flow-through device for rapid solubilization and analysis

    DOEpatents

    West, Jason A. A.; Hukari, Kyle W.; Patel, Kamlesh D.; Peterson, Kenneth A.; Renzi, Ronald F.

    2013-04-23

    Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.

  19. Comparison of the Solubilization Properties of Polysorbate 80 and Isopropanol/Water Solvent Systems for Organic Compounds Extracted from Three Pharmaceutical Packaging Configurations.

    PubMed

    Zdravkovic, Steven A

    2016-10-10

    It has been reported that the presence of polysorbate 80 in a pharmaceutical product's formulation may increase the number and/or amount of impurities leached from materials used during its manufacture, storage, and/or administration. However, it is uncertain if/how the solubilization properties of this surfactant compare to non-surfactant solvent systems. The goal of this study is to provide insight into this area of uncertainty by comparing the solubilization properties of polysorbate 80 to those of isopropanol/water solutions while in contact with a plasticized polyvinylchloride parenteral delivery bag, a single-use type manufacturing bag, and a polypropylene bottle. These properties were determined via a binding experiment, in which a set of model compounds was introduced into the solutions, and via an extraction experiment, in which compounds were extracted from the packaging material by the solutions. In both experiments, the amount of each compound present at equilibrium was assayed to determine the extent they were solubilized by the solution from the packaging material. Results from these experiments illustrate differences in the magnitude of solubilization obtained from solutions containing polysorbate 80 as compared to those composed of isopropanol/water. However, it was also demonstrated that their solubilization properties can be linked via a mathematical model. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The effect of switchgrass loadings on feedstock solubilization and biofuel production by Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, Tobin J.; Garcia, Gabriela M.; Elkins, James G.

    High solids loading fermentations are necessary for the industrialization of lignocellulosic ethanol. To date, only a few studies have investigated the effect of solids loadings on microorganisms of interest for consolidated bioprocessing (CBP). Here, the effect that various switchgrass loadings have on Clostridium thermocellum solubilization and bioconversion are investigated. C. thermocellum was grown for ten days on 10, 25 or 50 g/L switchgrass or Avicel at equivalent glucan loadings. Avicel was completely consumed at all loadings, but total cellulose solubilization decreased from 63% to 37% as switchgrass loadings increased from 10 g/L to 50 g/L. Washed, spent switchgrass could bemore » additionally hydrolyzed and fermented in second-round fermentations suggesting access to fermentable substrates was not the limiting factor at higher feedstock loadings. Fermentations of Avicel or cellobiose using culture medium supplemented with 50% spent fermentation broth identified that compounds present in the samples collected from the 25 or 50 g/L switchgrass loadings were the most inhibitory to continued fermentation. Finally, recalcitrance alone cannot fully account for differences in solubilization and end-production formation between switchgrass and Avicel at increased substrate loadings. Effort to decouple metabolic inhibition from inhibition of hydrolysis suggest that C. thermocellum’s hydrolytic machinery is more vulnerable to inhibition from switchgrass-derived inhibitors than is the bacterium’s metabolism.« less

  1. Deep Eutectic Solvent Aqueous Solutions as Efficient Media for the Solubilization of Hardwood Xylans.

    PubMed

    Morais, Eduarda S; Mendonça, Patrícia V; Coelho, Jorge F J; Freire, Mara G; Freire, Carmen S R; Coutinho, João A P; Silvestre, Armando J D

    2018-02-22

    This work contributes to the development of integrated lignocellulosic-based biorefineries by the pioneering exploitation of hardwood xylans by solubilization and extraction in deep eutectic solvents (DES). DES formed by choline chloride and urea or acetic acid were initially evaluated as solvents for commercial xylan as a model compound. The effects of temperature, molar ratio, and concentration of the DES aqueous solutions were evaluated and optimized by using a response surface methodology. The results obtained demonstrated the potential of these solvents, with 328.23 g L -1 of xylan solubilization using 66.7 wt % DES in water at 80 °C. Furthermore, xylans could be recovered by precipitation from the DES aqueous media in yields above 90 %. The detailed characterization of the xylans recovered after solubilization in aqueous DES demonstrated that 4-O-methyl groups were eliminated from the 4-O-methylglucuronic acids moieties and uronic acids (15 %) were cleaved from the xylan backbone during this process. The similar M w values of both pristine and recovered xylans confirmed the success of the reported procedure. DES recovery in four additional extraction cycles was also demonstrated. Finally, the successful extraction of xylans from Eucalyptus globulus wood by using aqueous solutions of DES was demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The effect of switchgrass loadings on feedstock solubilization and biofuel production by Clostridium thermocellum

    DOE PAGES

    Verbeke, Tobin J.; Garcia, Gabriela M.; Elkins, James G.

    2017-11-30

    High solids loading fermentations are necessary for the industrialization of lignocellulosic ethanol. To date, only a few studies have investigated the effect of solids loadings on microorganisms of interest for consolidated bioprocessing (CBP). Here, the effect that various switchgrass loadings have on Clostridium thermocellum solubilization and bioconversion are investigated. C. thermocellum was grown for ten days on 10, 25 or 50 g/L switchgrass or Avicel at equivalent glucan loadings. Avicel was completely consumed at all loadings, but total cellulose solubilization decreased from 63% to 37% as switchgrass loadings increased from 10 g/L to 50 g/L. Washed, spent switchgrass could bemore » additionally hydrolyzed and fermented in second-round fermentations suggesting access to fermentable substrates was not the limiting factor at higher feedstock loadings. Fermentations of Avicel or cellobiose using culture medium supplemented with 50% spent fermentation broth identified that compounds present in the samples collected from the 25 or 50 g/L switchgrass loadings were the most inhibitory to continued fermentation. Finally, recalcitrance alone cannot fully account for differences in solubilization and end-production formation between switchgrass and Avicel at increased substrate loadings. Effort to decouple metabolic inhibition from inhibition of hydrolysis suggest that C. thermocellum’s hydrolytic machinery is more vulnerable to inhibition from switchgrass-derived inhibitors than is the bacterium’s metabolism.« less

  3. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts

    DOE PAGES

    Yu, Chaowei; Simmons, Blake A.; Singer, Steven W.; ...

    2016-11-12

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have beenmore » discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. Here, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.« less

  4. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts.

    PubMed

    Yu, Chaowei; Simmons, Blake A; Singer, Steven W; Thelen, Michael P; VanderGheynst, Jean S

    2016-12-01

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.

  5. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chaowei; Simmons, Blake A.; Singer, Steven W.

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have beenmore » discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. Here, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.« less

  6. Acyclic cucurbit[n]uril-type molecular containers: influence of glycoluril oligomer length on their function as solubilizing agents.

    PubMed

    Gilberg, Laura; Zhang, Ben; Zavalij, Peter Y; Sindelar, Vladimir; Isaacs, Lyle

    2015-04-07

    We present the synthesis of a series of six new glycoluril derived molecular clips and acyclic CB[n]-type molecular containers (1–3) that all feature SO3(−) solubilizing groups but differ in the number of glycoluril rings between the two terminal dialkoxyaromatic sidewalls. We report the X-ray crystal structure of 3b which shows that its dialkoxynaphthalene sidewalls actively define a hydrophobic cavity with high potential to engage in π–π interactions with insoluble aromatic guests. Compounds 1–3 possess very good solubility characteristics (≥38 mM) and undergo only very weak self-association (Ks < 92 M(−1)) in water. The weak self-association is attributed to unfavorable SO3(−)···SO3(−) electrostatic interactions in the putative dimers 12–42. Accordingly, we created phase solubility diagrams to study their ability to act as solubilizing agents for four water insoluble drugs (PBS-1086, camptothecin, β-estradiol, and ziprasidone). We find that the containers 3a and 3b which feature three glycoluril rings between the terminal dialkoxy-o-xylylene and dialkoxynaphthalene sidewalls are less efficient solubilizing agents than 4a and 4b because of their smaller hydrophobic cavities. Containers 1 and 2 behave as molecular clip type receptors and therefore possess the ability to bind to and thereby solubilize aromatic drugs like camptothecin, ziprasidone, and PBS-1086.

  7. Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production.

    PubMed

    Zarenejad, F; Yakhchali, B; Rasooli, I

    2012-01-01

    Mushrooms such as Agaricus bisporus, are cultivated for food worldwide. Fruit body initiation in Agaricus bisporus is a phase change from the vegetative to the reproductive stage which depends on the presence of a casing layer with particular physical, chemical and microbiological properties. The phase change is achieved practically by environmental manipulation and the presence of naturally occurring bacteria such as Pseuodomonas putida. In this study, 274 individual bacterial isolates were collected by screening the casing layer of 14 edible mushroom farms. The isolates were analysed with respect to biochemical properties, organic and inorganic phosphate solubilization, production of siderophore and growth in the presence of volatile compound of 1-octen-3-ol. It was found that approximately 97% of the strains were able to grow in the presence of 1-octen-3-ol and 36% were able to solubilize phosphorus. Among the isolates, 23 strains were selected as potent mushroom growth promoting bacteria (MGPB) for inoculation of the casing layer. Field experiments using these strains showed various promoting effects on production of mushroom. Finally, 2 strains (strains Bt4 and Ps7) showing the highest increase in A. bisporus production, were characterized as Pseuodomonas putida by molecular methods and identified as the best suited growth promoting inoculants for application in production farms for increasing the mushroom yield.

  8. Microbial enhanced oil recovery: Entering the log phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, R.S.

    1995-12-31

    Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research andmore » development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.« less

  9. Screening of detergents for solubilization, purification and crystallization of membrane proteins: a case study on succinate:ubiquinone oxidoreductase from Escherichia coli

    PubMed Central

    Shimizu, Hironari; Nihei, Coh-ichi; Inaoka, Daniel Ken; Mogi, Tatushi; Kita, Kiyoshi; Harada, Shigeharu

    2008-01-01

    Succinate:ubiquinone oxidoreductase (SQR) was solubilized and purified from Escherichia coli inner membranes using several different detergents. The number of phospholipid molecules bound to the SQR molecule varied greatly depending on the detergent combination that was used for the solubilization and purification. Crystallization conditions were screened for SQR that had been solubilized and purified using 2.5%(w/v) sucrose monolaurate and 0.5%(w/v) Lubrol PX, respectively, and two different crystal forms were obtained in the presence of detergent mixtures composed of n-alkyl-oligoethylene glycol monoether and n-alkyl-maltoside. Crystallization took place before detergent phase separation occurred and the type of detergent mixture affected the crystal form. PMID:18765923

  10. A survey of the microbial community in the rhizosphere of two dominant shrubs of the Negev Desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods.

    PubMed

    Kaplan, Drora; Maymon, Maskit; Agapakis, Christina M; Lee, Andrew; Wang, Andrew; Prigge, Barry A; Volkogon, Mykola; Hirsch, Ann M

    2013-09-01

    Plant roots comprise more than 50% of the plant's biomass. Part of that biomass includes the root microbiome, the assemblage of bacteria and fungi living in the 1-3 mm region adjacent to the external surface of the root, the rhizosphere. We hypothesized that the microorganisms living in the rhizosphere and in bulk soils of the harsh environment of the Negev Desert of Israel had potential for use as plant-growth-promoting bacteria (PGPB) to improve plant productivity in nutrient-poor, arid soils that are likely to become more common as the climate changes. • We used cultivation-dependent methods including trap experiments with legumes to find nitrogen-fixing rhizobia, specialized culture media to determine iron chelation via siderophores and phosphate-solubilizing and cellulase activities; cultivation-independent methods, namely 16S rDNA cloning and sequencing; and also community-level physiological profiling to discover soil microbes associated with the Negev desert perennials Zygophyllum dumosum and Atriplex halimus during the years 2009-2010. • We identified a number of PGPB, both epiphytes and endophytes, which fix nitrogen, chelate iron, solubilize phosphate, and secrete cellulase, as well as many other bacteria and some fungi, thereby providing a profile of the microbiomes that support the growth of two desert perennials. • We generated a snapshot of the microbial communities in the Negev Desert, giving us an insight in its natural state. This desert, like many arid environments, is vulnerable to exploitation for other purposes, including solar energy production and dry land farming.

  11. Effects of ethanol addition on micellar solubilization and plume migration during surfactant enhanced recovery of tetrachloroethene.

    PubMed

    Taylor, Tammy P; Rathfelder, Klaus M; Pennell, Kurt D; Abriola, Linda M

    2004-03-01

    Alcohol addition has been suggested for use in combination with surfactant flushing to enhance solubilization kinetics and permit density control of dense non-aqueous phase liquid (DNAPL)-laden surfactant plumes. This study examined the effects of adding ethanol (EtOH) to a 4% Tween 80 (polyoxyethylene (20) sorbitan monooleate) solution used to flush tetrachloroethene (PCE)-contaminated porous media. The influence of EtOH concentration, subsurface layering and scale on flushing solution delivery and PCE recovery was investigated through a combination of experimental and mathematical modeling studies. Results of batch experiments demonstrated that the addition of 2.5%, 5% and 10% (wt.) EtOH incrementally increased the PCE solubilization capacity and viscosity of the surfactant solution, while reducing solution density from 1.002 to 0.986 g/cm3. Effluent concentration data obtained from one-dimensional (1-D) column experiments were used to characterize rate-limited micellar solubilization of residual PCE, which was strongly dependent upon flow velocity and weakly dependent upon EtOH concentration. Two-dimensional (2-D) box studies illustrated that minor differences (0.008 g/cm3) between flushing and resident solution density can strongly influence surfactant front propagation. A two-dimensional multiphase simulator, MISER, was used to model the influence of EtOH composition on the aqueous flow field and PCE mass recovery. The ability of the numerical simulator to predict effluent concentrations and front propagation was demonstrated for both 1-D columns and 2-D boxes flushed with EtOH-amended Tween 80 solutions. Results of this study quantify the potential influence of alcohol addition on surfactant solution properties and solubilization capacity, and demonstrate the importance of considering small density variations in remedial design.

  12. PCB126 modulates fecal microbial fermentation of the dietary fiber inulin

    USDA-ARS?s Scientific Manuscript database

    Exposure to environmental pollutants can alter gut microbial populations. Short-chain fatty acids (SCFAs), produced from gut microbial fermentation of dietary fibers such as inulin, exert numerous effects on host energy metabolism. SCFAs are also linked to health promoting effects, including a red...

  13. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, Dani; Tecon, Robin; Ebrahimi, Ali; Kleyer, Hannah; Ilie, Olga; Wang, Gang

    2015-04-01

    Microbial life in soil occurs within fragmented aquatic habitats formed in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools

  14. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, D.; Tecon, R.; Ebrahimi, A.; Kleyer, H.; Ilie, O.; Wang, G.

    2014-12-01

    Microbial life in soil occurs within fragmented aquatic habitats in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that

  15. Role of the CipA Scaffoldin Protein in Cellulose Solubilization, as Determined by Targeted Gene Deletion and Complementation in Clostridium thermocellum

    PubMed Central

    Olson, Daniel G.; Giannone, Richard J.; Hettich, Robert L.

    2013-01-01

    The CipA scaffoldin protein plays a key role in the Clostridium thermocellum cellulosome. Previous studies have revealed that mutants deficient in binding or solubilizing cellulose also exhibit reduced expression of CipA. To confirm that CipA is, in fact, necessary for rapid solubilization of crystalline cellulose, the gene was deleted from the chromosome using targeted gene deletion technologies. The CipA deletion mutant exhibited a 100-fold reduction in cellulose solubilization rate, although it was eventually able to solubilize 80% of the 5 g/liter cellulose initially present. The deletion mutant was complemented by a copy of cipA expressed from a replicating plasmid. In this strain, Avicelase activity was restored, although the rate was 2-fold lower than that in the wild type and the duration of the lag phase was increased. The cipA coding sequence is located at the beginning of a gene cluster containing several other genes thought to be responsible for the structural organization of the cellulosome, including olpB, orf2p, and olpA. Tandem mass spectrometry revealed a 10-fold reduction in the expression of olpB, which may explain the lower growth rate. This deletion experiment adds further evidence that CipA plays a key role in cellulose solubilization by C. thermocellum, and it raises interesting questions about the differential roles of the anchor scaffoldin proteins OlpB, Orf2p, and SdbA. PMID:23204466

  16. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae.

    PubMed

    Senthil Kumar, C M; Jacob, T K; Devasahayam, S; Thomas, Stephy; Geethu, C

    2018-03-01

    An entomopathogenic fungus, Lecanicillium psalliotae strain IISR-EPF-02 previously found infectious to cardamom thrips, Sciothrips cardamomi promoted plant growth in cardamom, Elettaria cardamomum. The isolate exhibited direct plant growth promoting traits by production of indole-3-acetic acid and ammonia and by solubilizing inorganic phosphate and zinc. It also showed indirect plant growth promoting traits by producing siderophores and cell wall-degrading enzymes like, α-amylases, cellulases and proteases. In pot culture experiments, application of the fungus at the root zone of cardamom seedlings significantly increased shoot and root length, shoot and root biomass, number of secondary roots and leaves and leaf chlorophyll content compared to untreated plants. This is the first report on the plant growth promoting traits of this fungus. The entomopathogenic and multifarious growth promoting traits of L. psalliotae strain IISR-EPF-02 suggest that it has great potential for exploitation in sustainable agriculture. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

    PubMed

    Ravindran, Anita; Yang, Shang-Shyng

    2015-08-01

    Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.

  18. Phylloplane bacteria of Jatropha curcas: diversity, metabolic characteristics, and growth-promoting attributes towards vigor of maize seedling.

    PubMed

    Dubey, Garima; Kollah, Bharati; Ahirwar, Usha; Mandal, Asit; Thakur, Jyoti Kumar; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2017-10-01

    The complex role of phylloplane microorganisms is less understood than that of rhizospheric microorganisms in lieu of their pivotal role in plant's sustainability. This experiment aims to study the diversity of the culturable phylloplane bacteria of Jatropha curcas and evaluate their growth-promoting activities towards maize seedling vigor. Heterotrophic bacteria were isolated from the phylloplane of J. curcas and their 16S rRNA genes were sequenced. Sequences of the 16S rRNA gene were very similar to those of species belonging to the classes Bacillales (50%), Gammaproteobacteria (21.8%), Betaproteobacteria (15.6%), and Alphaproteobacteria (12.5%). The phylloplane bacteria preferred to utilize alcohol rather than monosaccharides and polysaccharides as a carbon source. Isolates exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase, phosphatase, potassium solubilization, and indole acetic acid (IAA) production activities. The phosphate-solubilizing capacity (mg of PO 4 solubilized by 10 8 cells) varied from 0.04 to 0.21. The IAA production potential (μg IAA produced by 10 8 cells in 48 h) of the isolates varied from 0.41 to 9.29. Inoculation of the isolates to maize seed significantly increased shoot and root lengths of maize seedlings. A linear regression model of the plant-growth-promoting activities significantly correlated (p < 0.01) with the growth parameters. Similarly, a correspondence analysis categorized ACC deaminase and IAA production as the major factors contributing 41% and 13.8% variation, respectively, to the growth of maize seedlings.

  19. Pressure injection of solubilized benomyl for prevention and cure of oak wilt

    Treesearch

    Thomas W. Jones; Garold F. Gregory; Percy McWain

    1973-01-01

    A preliminary evaluation of the effectiveness of injecting solubilized benomyl into oaks for prevention or cure of oak wilt disease is presented. Symptom development was greatly reduced or prevented in trees injected with fungicide before inoculation. Symptom development was markedly arrested in diseased trees by fungicide injected before more than 10 percent of the...

  20. Acyclic Cucurbit[n]uril-Type Molecular Containers: Influence of Glycoluril Oligomer Length on their Function as Solubilizing Agents

    PubMed Central

    Gilberg, Laura; Zhang, Ben; Zavalij, Peter Y.; Sindelar, Vladimir; Isaacs, Lyle

    2015-01-01

    We present the synthesis of a series of six new glycoluril derived molecular clips and acyclic CB[n]-type molecular containers (1 – 3) that all feature SO3− solubilizing groups but differ in the number of glycoluril rings between the two terminal dialkoxyaromatic sidewalls. We report the x-ray crystal structure of 3b which shows that its dialkoxynaphthalene sidewalls actively define a hydrophobic cavity with high potential to engage in π–π interactions with insoluble aromatic guests. Compounds 1 – 3 possess very good solubility characteristics (≥ 38 mM) and undergo only very weak self-association (Ks < 92 M−1) in water. The weak self-association is attributed to unfavorable SO3−•••SO3− electrostatic interactions in the putative dimers 12 – 42. Accordingly, we created phase solubility diagrams to study their ability to act as solubilizing agents for four water insoluble drugs (PBS-1086, camptothecin, β-estradiol, and ziprasidone). We find that the containers 3a and 3b which feature three glycoluril rings between the terminal dialkoxy-o-xylylene and dialkoxynaphthalene sidewalls are less efficient solubilizing agents than 4a and 4b because of their smaller hydrophobic cavities. Containers 1 and 2 behave as molecular clip type receptors and therefore possess the ability to bind to and thereby solubilize aromatic drugs like camptothecin and ziprasidone, and PBS-1086. PMID:25731639

  1. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkay, T.; Navon-Venezia, S.; Ron, E.Z.

    Alasan, a high-molecular-weight bioemulsifier complex of an anionic polysaccharide and proteins that is produced by Acinetobacter radioresistent KA53 enhanced the aqueous solubility and biodegradation rates of polyaromatic hydrocarbons (PAHs). In the presence of 500 {micro}g of alasan ml{sup {minus}1}, the apparent aqueous solubilities of phenanthrene, fluoranthene, and pyrene were increased 6.6-, 25.7-, and 19.8-fold, respectively. Physicochemical characterization of the solubilization activity suggested that alasan solubilizes PAHs by a physical interaction, most likely of a hydrophobic nature, and that this interaction is slowly reversible. Moreover, the increase in apparent aqueous solubility of PAHs does not depend on the conformation of alasanmore » and is not affected by the formation of multimolecular aggregates of alasan above its saturation concentration. The presence of alasan more than doubled the rate of [{sup 14}C]fluoranthene mineralization and significantly increased the rate of [{sup 14}C]phenanthrene mineralization by Sphingomonas paucimobilis EPA505. The results suggest that alasan-enhanced solubility of hydrophobic compounds has potential applications in bioremediation.« less

  2. DIRECT AND PHOTOACTIVATED TOXICITY OF A COMPLEX PETROLEUM MIXTURE: A COMPARISON OF SOLUBILIZATION METHODS

    EPA Science Inventory

    This work addresses several issues associated with the toxicity of a complex petroleum mixture (combined kerosene/diesel and crude oil), including developmental effects and early lifestage mortality, method of solubilization, and potential photo-activated and photo-modified toxic...

  3. Using Microbial Genome Annotation as a Foundation for Collaborative Student Research

    ERIC Educational Resources Information Center

    Reed, Kelynne E.; Richardson, John M.

    2013-01-01

    We used the Integrated Microbial Genomes Annotation Collaboration Toolkit as a framework to incorporate microbial genomics research into a microbiology and biochemistry course in a way that promoted student learning of bioinformatics and research skills and emphasized teamwork and collaboration as evidenced through multiple assessment mechanisms.…

  4. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors

    USGS Publications Warehouse

    Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  5. Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue

    DOE PAGES

    Shao, Xiongjun; DiMarco, Kay; Richard, Tom L.; ...

    2015-02-27

    We report that winter annual crops such as winter rye (Secale cereale L) can produce biomass feedstock on seasonally fallow land that continues to provide high-value food and feed from summer annuals such as corn and soybeans. As energy double crops, winter grasses are likely to be harvested while still immature and thus structurally different from the fully senesced plant material typically used for biofuels. This study investigates the dynamic trends in biomass yield, composition, and biological solubilization over the course of a spring harvest season. The water soluble fraction decreased with increasing maturity while total carbohydrate content stayed roughlymore » constant at about 65%. The protein mass fraction decreased with increasing maturity, but was counterbalanced by increasing harvest yield resulting in similar total protein across harvest dates. Winter rye was ground and autoclaved then fermented at 15 g/L total solids by either (1) Clostridium thermocellum or (2) simultaneous saccharification and cofermentation (SSCF) using commercial cellulases (CTec2 and HTec2) and a xylose-fermenting Saccharomyces cerevisiae strain. Solubilization of total carbohydrate dropped significantly as winter rye matured for both C. thermocellum (from approximately 80% to approximately 50%) and SSCF (from approximately 60% to approximately 30%). C. thermocellum achieved total solubilization 33% higher than that of SSCF for the earliest harvest date and 50% higher for the latest harvest date. Potential revenue from protein and bioethanol was stable over a range of different harvest dates, with most of the revenue due to ethanol. In a crop rotation with soybean, recovery of the soluble protein from winter rye could increase per hectare protein production by 20 to 35%. Double-cropping winter rye can produce significant biomass for biofuel production and feed protein as coproduct without competing with the main summer crop. During a 24-day harvest window, the total

  6. Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Xiongjun; DiMarco, Kay; Richard, Tom L.

    We report that winter annual crops such as winter rye (Secale cereale L) can produce biomass feedstock on seasonally fallow land that continues to provide high-value food and feed from summer annuals such as corn and soybeans. As energy double crops, winter grasses are likely to be harvested while still immature and thus structurally different from the fully senesced plant material typically used for biofuels. This study investigates the dynamic trends in biomass yield, composition, and biological solubilization over the course of a spring harvest season. The water soluble fraction decreased with increasing maturity while total carbohydrate content stayed roughlymore » constant at about 65%. The protein mass fraction decreased with increasing maturity, but was counterbalanced by increasing harvest yield resulting in similar total protein across harvest dates. Winter rye was ground and autoclaved then fermented at 15 g/L total solids by either (1) Clostridium thermocellum or (2) simultaneous saccharification and cofermentation (SSCF) using commercial cellulases (CTec2 and HTec2) and a xylose-fermenting Saccharomyces cerevisiae strain. Solubilization of total carbohydrate dropped significantly as winter rye matured for both C. thermocellum (from approximately 80% to approximately 50%) and SSCF (from approximately 60% to approximately 30%). C. thermocellum achieved total solubilization 33% higher than that of SSCF for the earliest harvest date and 50% higher for the latest harvest date. Potential revenue from protein and bioethanol was stable over a range of different harvest dates, with most of the revenue due to ethanol. In a crop rotation with soybean, recovery of the soluble protein from winter rye could increase per hectare protein production by 20 to 35%. Double-cropping winter rye can produce significant biomass for biofuel production and feed protein as coproduct without competing with the main summer crop. During a 24-day harvest window, the total

  7. DNA-Assisted Solubilization of Carbon Nanotubes and Construction of DNA-MWCNT Cross-Linked Hybrid Hydrogels

    PubMed Central

    Zinchenko, Anatoly; Taki, Yosuke; Sergeyev, Vladimir G.; Murata, Shizuaki

    2015-01-01

    A simple method for preparation of DNA-carbon nanotubes hybrid hydrogel based on a two-step procedure including: (i) solubilization of multi-walled carbon nanotubes (MWCNT) in aqueous solution of DNA, and (ii) chemical cross-linking between solubilized MWCNT via adsorbed DNA and free DNA by ethylene glycol diglycidyl ether is reported. We show that there exists a critical concentration of MWCNT below which a homogeneous dispersion of MWCNT in hybrid hydrogel can be achieved, while at higher concentrations of MWCNT the aggregation of MWCNT inside hydrogel occurs. The strengthening effect of carbon nanotube in the process of hydrogel shrinking in solutions with high salt concentration was demonstrated and significant passivation of MWCNT adsorption properties towards low-molecular-weight aromatic binders due to DNA adsorption on MWCNT surface was revealed. PMID:28347011

  8. DNA-Assisted Solubilization of Carbon Nanotubes and Construction of DNA-MWCNT Cross-Linked Hybrid Hydrogels.

    PubMed

    Zinchenko, Anatoly; Taki, Yosuke; Sergeyev, Vladimir G; Murata, Shizuaki

    2015-03-03

    A simple method for preparation of DNA-carbon nanotubes hybrid hydrogel based on a two-step procedure including: (i) solubilization of multi-walled carbon nanotubes (MWCNT) in aqueous solution of DNA, and (ii) chemical cross-linking between solubilized MWCNT via adsorbed DNA and free DNA by ethylene glycol diglycidyl ether is reported. We show that there exists a critical concentration of MWCNT below which a homogeneous dispersion of MWCNT in hybrid hydrogel can be achieved, while at higher concentrations of MWCNT the aggregation of MWCNT inside hydrogel occurs. The strengthening effect of carbon nanotube in the process of hydrogel shrinking in solutions with high salt concentration was demonstrated and significant passivation of MWCNT adsorption properties towards low-molecular-weight aromatic binders due to DNA adsorption on MWCNT surface was revealed.

  9. Thermodynamic study on competitive solubilization of cholesterol and beta-sitosterol in bile salt micelles.

    PubMed

    Matsuoka, Keisuke; Hirosawa, Takashi; Honda, Chikako; Endo, Kazutoyo; Moroi, Yoshikiyo; Shibata, Osamu

    2007-07-01

    Differences in the preferential solubilization of cholesterol and competitive solubilizates (beta-sitosterol and aromatic compounds) in bile salt micelles was systematically studied by changing the molar ratio of cholesterol to competitive solubilizates. The cholesterol solubility in a mixed binary system (cholesterol and beta-sitosterol) was almost half that of the cholesterol alone system, regardless of the excess beta-sitosterol quantity added. On the other hand, the mutual solubilities of cholesterol and pyrene were not inhibited by their presence in binary mixed crystals. Finally, the cholesterol solubility was measured by changing the alkyl chain length of n-alkylbenzenes. When tetradecylbenzene was added to the bile solution, the cholesterol solubility decreased slightly and was below the original cholesterol solubility. Based on Gibbs energy change (DeltaG degrees ) for solubilization, chemicals that inhibit cholesterol solubility in their combined crystal systems showed a larger negative DeltaG degrees value than cholesterol alone.

  10. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate.

    PubMed

    Tahir, Muhammad; Khalid, Umaira; Ijaz, Muhammad; Shah, Ghulam Mustafa; Naeem, Muhammad Asif; Shahid, Muhammad; Mahmood, Khalid; Ahmad, Naveed; Kareem, Fazal

    2018-04-24

    This study was aimed to investigate the effect of bio-organic phosphate either alone or in combination with phosphorus solubilizing bacteria strain (Bacillus MWT-14) on the growth and productivity of two wheat cultivars (Galaxy-2013 and Punjab-2011) along with recommended (150-100NPkgha -1 ) and half dose (75-50NPkgha -1 ) of fertilizers. The combined application of bio-organic phosphate and the phosphorous solubilizing bacteria strain at either fertilizer level significantly improved the growth, yield parameters and productivity of both wheat cultivars compared to non-inoculated control treatments. The cultivar Punjab-2011 produced the higher chlorophyll contents, crop growth rate, and the straw yield at half dose of NP fertilizer; while Galaxy-2013, with the combined application of bio-organic phosphate and phosphorous solubilizing bacteria under recommended NP fertilizer dose. Combined over both NP fertilizer levels, the combined use of bio-organic phosphate and phosphorous solubilizing bacteria enhanced the grain yield of cultivar Galaxy-2013 by 54.3% and that of cultivar Punjab-2011 by 83.3%. The combined application of bio-organic phosphate and phosphorous solubilizing bacteria also increased the population of phosphorous solubilizing bacteria, the soil organic matter and phosphorous contents in the soil. In conclusion, the combined application of bio-organic phosphate and phosphorous solubilizing bacteria offers an eco-friendly option to harvest the better wheat yield with low fertilizer input under arid climate. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics.

    PubMed

    Bergauer, Kristin; Fernandez-Guerra, Antonio; Garcia, Juan A L; Sprenger, Richard R; Stepanauskas, Ramunas; Pachiadaki, Maria G; Jensen, Ole N; Herndl, Gerhard J

    2018-01-16

    The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted for 23% of identified protein sequences in the lower euphotic and ∼39% in the bathypelagic layer, indicating the central role of heterotrophy in the dark ocean. In the bathypelagic layer, substrate affinities of expressed transporters suggest that, in addition to amino acids, peptides and carbohydrates, carboxylic acids and compatible solutes may be essential substrates for the microbial community. Key players with highest expression of solute transporters were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria, accounting for 40%, 11%, and 10%, respectively, of relative protein abundances. The in situ expression of solute transporters indicates that the heterotrophic prokaryotic community is geared toward the utilization of similar organic compounds throughout the water column, with yet higher abundances of transporters targeting aromatic compounds in the bathypelagic realm. Copyright © 2018 the Author(s). Published by PNAS.

  12. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics

    PubMed Central

    Bergauer, Kristin; Fernandez-Guerra, Antonio; Garcia, Juan A. L.; Sprenger, Richard R.; Stepanauskas, Ramunas; Pachiadaki, Maria G.; Herndl, Gerhard J.

    2018-01-01

    The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted for 23% of identified protein sequences in the lower euphotic and ∼39% in the bathypelagic layer, indicating the central role of heterotrophy in the dark ocean. In the bathypelagic layer, substrate affinities of expressed transporters suggest that, in addition to amino acids, peptides and carbohydrates, carboxylic acids and compatible solutes may be essential substrates for the microbial community. Key players with highest expression of solute transporters were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria, accounting for 40%, 11%, and 10%, respectively, of relative protein abundances. The in situ expression of solute transporters indicates that the heterotrophic prokaryotic community is geared toward the utilization of similar organic compounds throughout the water column, with yet higher abundances of transporters targeting aromatic compounds in the bathypelagic realm. PMID:29255014

  13. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hao, Liting; Zhang, Baogang; Tian, Caixing; Liu, Ye; Shi, Chunhong; Cheng, Ming; Feng, Chuanping

    2015-08-01

    Bioelectricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly to enhance microbial reduction of vanadium (V) (V(V)) in groundwater. With the maximum power density of 543.4 mW m-2 from the MFC, V(V) removal is accelerated with efficiency of 93.6% during 12 h operation. Higher applied voltage can facilitate this process. V(V) removals decrease with the increase of initial V(V) concentration, while extra addition of chemical oxygen demand (COD) has little effect on performance improvement. Microbial V(V) reduction is enhanced and then suppressed with the increase of conductivity. High-throughput 16S rRNA gene pyrosequencing analysis implies the accumulated Enterobacter and Lactococcus reduce V(V) with products from fermentative microorganisms such as Macellibacteroides. The presentation of electrochemically active bacteria as Enterobacter promotes electron transfers. This study indicates that application of bioelectricity from MFCs is a promising strategy to improve the efficiency of in-situ bioremediation of V(V) polluted groundwater.

  14. SOLUBILIZATION OF DODECANE, TETRACHLOROETHYLENE, AND 1,2-DICHLOROBENZENE IN MICELLAR SOLUTIONS OF ETHOXYLATED NONIONIC SURFACTANTS

    EPA Science Inventory

    Although surfactants have received considerable attention as a potential means for enhancing the recovery of organic compounds from the subsurface, only limited information is available regarding the micellar solubilization of common groundwater contaminants by nonionic surfactan...

  15. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.

    PubMed

    Sheridan, C; Depuydt, P; De Ro, M; Petit, C; Van Gysegem, E; Delaere, P; Dixon, M; Stasiak, M; Aciksöz, S B; Frossard, E; Paradiso, R; De Pascale, S; Ventorino, V; De Meyer, T; Sas, B; Geelen, D

    2017-02-01

    Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.

  16. [Effects of biochar on microbial ecology in agriculture soil: a review].

    PubMed

    Ding, Yan-Li; Liu, Jie; Wang, Ying-Ying

    2013-11-01

    Biochar, as a new type of soil amendment, has been obtained considerable attention in the research field of environmental sciences worldwide. The studies on the effects of biochar in improving soil physical and chemical properties started quite earlier, and already covered the field of soil microbial ecology. However, most of the studies considered the soil physical and chemical properties and the microbial ecology separately, with less consideration of their interactions. This paper summarized and analyzed the interrelationships between the changes of soil physical and chemical properties and of soil microbial community after the addition of biochar. Biochar can not only improve soil pH value, strengthen soil water-holding capacity, increase soil organic matter content, but also affect soil microbial community structure, and alter the abundance of soil bacteria and fungi. After the addition of biochar, the soil environment and soil microorganisms are interacted each other, and promote the improvement of soil microbial ecological system together. This review was to provide a novel perspective for the in-depth studies of the effects of biochar on soil microbial ecology, and to promote the researches on the beneficial effects of biochar to the environment from ecological aspect. The methods to improve the effectiveness of biochar application were discussed, and the potential applications of biochar in soil bioremediation were further analyzed.

  17. Binding of (/sup 3/H)forskolin to platelet membranes and solubilized proteins from bovine brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.A.; Seamon, K.B.

    1986-05-01

    (/sup 3/H)Forskolin ((/sup 3/H)FSK) bound to platelet membranes with a Kd of 20 nM and a Bmax of 125 fmol/mg protein. The Bmax was increased to 400 fmol/mg protein in the presence of GppNHp (or NaF) and MgCl/sub 2/ with no change in Kd. PGE/sub 1/ decreased the EC50 of GppNHp to increase the Bmax for (/sup 3/H)FSK binding from 600 nM to 35 nM. In contrast, PGE/sub 1/ had no effect on the EC50 of NaF to increase (/sup 3/H)FSK binding. (/sup 3/H)FSK binding increased slowly over 60 min when forskolin and GppNHp were added to membranes simultaneously atmore » 20/sup 0/C. Preincubation of membranes with GppNHp at 20/sup 5/C also caused a linear increase in adenylate cyclase specific activity over 60 minutes. (/sup 3/H)FSK bound to solubilized protein from bovine brain membrane with a Kd of 22 nM. GppNHp increased the number of binding sites in solubilized proteins only if membranes were not preincubated with GppNHp prior to solubilization. In conclusion the number of binding sites for (/sup 3/H)FSK is increased by agents that activate adenylate cyclase through the Ns protein. These sites appear to be associated with an activated complex of the Ns protein and adenylate cyclase.« less

  18. Assessment of Culturable Tea Rhizobacteria Isolated from Tea Estates of Assam, India for Growth Promotion in Commercial Tea Cultivars

    PubMed Central

    Dutta, Jintu; Handique, Pratap J.; Thakur, Debajit

    2015-01-01

    In the present study, 217 rhizobacterial isolates were obtained from six different tea estates of Assam, India and subjected to preliminary in vitro plant growth promotion (PGP) screening for indole acetic acid (IAA) production, phosphate solubilization, siderophore production and ammonia production. Fifty isolates showed all the PGP traits and five isolates did not exhibit any PGP traits. These 50 potential isolates were further analyzed for quantitative estimation of the PGP traits along with the aminocyclopropane-1-carboxylate (ACC) deaminase, protease and cellulose production. After several rounds of screening, four rhizobacteria were selected based on their maximum ability to produce in vitro PGP traits and their partial 16S rRNA gene sequence analysis revealed that they belong to Enterobacter lignolyticus strain TG1, Burkholderia sp. stain TT6, Bacillus pseudomycoides strain SN29 and Pseudomonas aeruginosa strain KH45. To evaluate the efficacy of these four rhizobacteria as plant growth promoters, three different commercially important tea clones TV1, TV19, and TV20 plants were inoculated with these rhizobacteria in greenhouse condition and compared to the uninoculated control plants. Though, all the rhizobacterial treatments showed an increase in plant growth compared to control but the multivariate PCA analysis confirmed more growth promotion by TG1 and SN29 strains than the other treatments in all three clones. To validate this result, the fold change analysis was performed and it revealed that the tea clone TV19 plants inoculated with the E. lignolyticus strain TG1 showed maximum root biomass production with an increase in 4.3-fold, shoot biomass with increase in 3.1-fold, root length by 2.2-fold and shoot length by 1.6-fold. Moreover, two way ANOVA analysis also revealed that rhizobacterial treatment in different tea clones showed the significant increase (P < 0.05) in growth promotion compared to the control. Thus, this study indicates that the

  19. FIELD DEMONSTRATION STUDIES OF SURFACTANT-ENHANCED SOLUBILIZATION AND MOBILIZATION AT HILL AIR FORCE BASE, UTAH

    EPA Science Inventory

    Surfactant-enhanced subsurface remediation can dramatically improve contaminant removal rates compared to the traditional pump-and-treat technology. Surfactants can be used to significantly enhance the solubilization of non-aqueous phase liquids (NAPL) constituents, or they can b...

  20. A class-A GPCR solubilized under high hydrostatic pressure retains its ligand binding ability

    USDA-ARS?s Scientific Manuscript database

    The effect of high hydrostatic pressure (HHP) on the solubilization of a class-A G protein-coupled receptor, the silkmoth pheromone biosynthesis-activating neuropeptide receptor (PBANR), was investigated. PBANR was expressed in expresSF+ insect cells as a C-terminal fusion protein with EGFP. The mem...

  1. Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization

    PubMed Central

    2016-01-01

    The purpose of this work is to provide a mechanistic understanding of the dissolution behavior of cocrystals under the influence of ionization and micellar solubilization. Mass transport models were developed by applying Fick’s law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface to predict the pH at the dissolving solid–liquid interface (i.e., interfacial pH) and the flux of cocrystals. To evaluate the predictive power of these models, dissolution studies of carbamazepine–saccharin (CBZ-SAC) and carbamazepine–salicylic acid (CBZ-SLC) cocrystals were performed at varied pH and surfactant concentrations above the critical stabilization concentration (CSC), where the cocrystals were thermodynamically stable. The findings in this work demonstrate that the pH dependent dissolution behavior of cocrystals with ionizable components is dependent on interfacial pH. This mass transport analysis demonstrates the importance of pH, cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals. PMID:26877267

  2. Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization.

    PubMed

    Cao, Fengjuan; Amidon, Gordon L; Rodriguez-Hornedo, Nair; Amidon, Gregory E

    2016-03-07

    The purpose of this work is to provide a mechanistic understanding of the dissolution behavior of cocrystals under the influence of ionization and micellar solubilization. Mass transport models were developed by applying Fick's law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface to predict the pH at the dissolving solid-liquid interface (i.e., interfacial pH) and the flux of cocrystals. To evaluate the predictive power of these models, dissolution studies of carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) cocrystals were performed at varied pH and surfactant concentrations above the critical stabilization concentration (CSC), where the cocrystals were thermodynamically stable. The findings in this work demonstrate that the pH dependent dissolution behavior of cocrystals with ionizable components is dependent on interfacial pH. This mass transport analysis demonstrates the importance of pH, cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals.

  3. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency.

    PubMed

    Buch, Aditi; Archana, G; Naresh Kumar, G

    2008-01-01

    Most phosphate-solubilizing bacteria (PSB), including the Pseudomonas species, release P from sparingly soluble mineral phosphates by producing high levels of gluconic acid from extracellular glucose, in a reaction catalyzed by periplasmic glucose dehydrogenase, which is an integral component of glucose catabolism of pseudomonads. To investigate the differences in the glucose metabolism of gluconic acid-producing PSB pseudomonads and low gluconic acid-producing/non-PSB strains, several parameters pertaining to growth and glucose utilization under P-sufficient and P-deficient conditions were monitored for the PSB isolate Pseudomonas aeruginosa P4 (producing approximately 46 mM gluconic acid releasing 437 microM P) and non-PSB P. fluorescens 13525. Our results show interesting differences in the channeling of glucose towards gluconate and other catabolic end-products like pyruvate and acetate with respect to P status for both strains. However, PSB strain P. aeruginosa P4, apart from exhibiting better growth under both low and high Pi conditions, differed from P. fluorescens 13525 in its ability to accumulate gluconate under P-solubilizing conditions. These alterations in growth, glucose utilization and acid secretion are correlated with glucose dehydrogenase, glucose-6-phosphate dehydrogenase and pyruvate carboxylase activities. The ability to shift glucose towards a direct oxidative pathway under P deficiency is speculated to underlie the differential gluconic acid-mediated P-solubilizing ability observed amongst pseudomonads.

  4. The role of glycerol and phosphatidylcholine in solubilizing and enhancing insulin stability in reverse hexagonal mesophases.

    PubMed

    Amar-Yuli, Idit; Azulay, Doron; Mishraki, Tehila; Aserin, Abraham; Garti, Nissim

    2011-12-15

    The potential of reverse hexagonal mesophases based on monoolein (GMO) and glycerol (as cosolvent) to facilitate the solubilization of proteins, such as insulin was explored. H(II) mesophases composed of GMO/decane/water were compared to GMO/decane/glycerol/water and GMO/phosphatidylcholine (PC)/decane/glycerol/water systems. The stability of insulin was tested, applying external physical modifications such as low pH and heat treatment (up to 70°C), in which insulin is known to form ordered amyloid-like aggregates (that are associated with several neurodegenerative diseases) with a characteristic cross β-pleated sheet structure. The impact of insulin confinement within these carriers on its stability, unfolding, and aggregation pathways was studied by combining SAXS, FTIR, and AFM techniques. These techniques provided a better insight into the molecular level of the "component interplay" in solubilizing and stabilizing insulin and its conformational modifications that dictate its final aggregate morphology. PC enlarged the water channels while glycerol shrank them, yet both facilitated insulin solubilization within the channels. The presence of glycerol within the mesophase water channels led to the formation of stronger hydrogen bonds with the hosting medium that enhanced the thermal stability of the protein and remarkably affected the unfolding process even after heat treatment (at 70°C for 60 min). Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Relative stability of DNA as a generic criterion for promoter prediction: whole genome annotation of microbial genomes with varying nucleotide base composition.

    PubMed

    Rangannan, Vetriselvi; Bansal, Manju

    2009-12-01

    The rapid increase in genome sequence information has necessitated the annotation of their functional elements, particularly those occurring in the non-coding regions, in the genomic context. Promoter region is the key regulatory region, which enables the gene to be transcribed or repressed, but it is difficult to determine experimentally. Hence an in silico identification of promoters is crucial in order to guide experimental work and to pin point the key region that controls the transcription initiation of a gene. In this analysis, we demonstrate that while the promoter regions are in general less stable than the flanking regions, their average free energy varies depending on the GC composition of the flanking genomic sequence. We have therefore obtained a set of free energy threshold values, for genomic DNA with varying GC content and used them as generic criteria for predicting promoter regions in several microbial genomes, using an in-house developed tool PromPredict. On applying it to predict promoter regions corresponding to the 1144 and 612 experimentally validated TSSs in E. coli (50.8% GC) and B. subtilis (43.5% GC) sensitivity of 99% and 95% and precision values of 58% and 60%, respectively, were achieved. For the limited data set of 81 TSSs available for M. tuberculosis (65.6% GC) a sensitivity of 100% and precision of 49% was obtained.

  6. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    PubMed

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Plant growth-promoting potential of bacteria isolated from active volcano sites of Barren Island, India.

    PubMed

    Amaresan, N; Kumar, K; Sureshbabu, K; Madhuri, K

    2014-02-01

    To elucidate the biodiversity of plant growth-promoting (PGP) bacteria in active volcano sites of Barren Island, India, a total of 102 bacteria were isolated and screened for their multifunctional PGP properties. The results revealed that 21 isolates (20.6%) survived heat shock at 72°C and 11 (10.8%) isolates were able to grow exposed to 25% NaCl (w/v). In assaying for PGP properties, 59 (57.8%) isolates shown indole acetic acid (IAA) like substances production, 57 isolates (55.9%) produced siderophore and 34 (33.3%) solubilized inorganic phosphate qualitatively. Whereas in the production of extracellular enzymes, 42 isolates (41.2%) produced protease and amylase, 26 (25.5%) isolates produced lipase and 24 (23.5%) isolates produced cellulase. In antagonistic activity, 30 isolates (29.4%) were found antagonistic against Macrophomina sp., 20 isolates (19.6%) against Rhizoctonia solani and 15 isolates (14.7%) against Sclerotium rolfsii. The results based on 16 rRNA gene sequencing revealed that the PGP bacteria belonged to 22 different species comprising 13 genera. Based on multifunctional properties, nine isolates were further selected to determine the PGP in brinjal and chilli seeds. Of the bacteria tested, the isolate BAN87 showed increased root and shoot length of both the crops followed in plant growth promotion by BAN86 and BAN43. The outcome of this research proves plausible practical applicability of these PGPB for crop production in soils of saline and arid environments. The present research shows diverse plant growth-promoting (PGP) bacteria could be isolated from the active volcano site and suggests that volcano sites represent an ecological niche, which harbours a diverse and hitherto largely uncharacterized microbial population with yet unknown and untapped potential biotechnological applications, for example, plant growth promoters, as evidenced from this study. The outcome of this research may have a practical effect on crop production methodologies in

  8. Preliminary characterization of Thy-1.1 and Ag-B antigens from rat tissues solubilized in detergents

    PubMed Central

    Letarte-Muirhead, Michelle; Acton, Ronald T.; Williams, Alan F.

    1974-01-01

    1. A radioactive binding assay for Thy-1.1 alloantigen which functions in the presence of detergents was established by using glutaraldehyde-fixed thymocytes as target cells. Thy-1.1 activity in detergent extracts was then assayed by measuring inhibition of the binding assay. 2. Solubilization of Thy-1.1 from whole thymocytes, and their membranes by a large number of non-ionic detergents and deoxycholate was studied. In the same extracts Ag-B(4) histocompatibility antigenic activities were measured. With the exception of Nonidet P-40, the detergents did not affect the antigenicity of Thy-1.1, but only Lubrol-PX and deoxycholate gave effective solubilization as measured by activity remaining in the supernatant after centrifugation at 200000g for 40min. With Ag-B(4) antigen, Triton X-100, Triton X-67 and Nonidet P-40 gave effective solubilization as well as Lubrol-PX and deoxycholate. Solubilization of Thy-1.1 activity from leukaemia cells and a brain homogenate was also studied, but none of the non-ionic detergents gave satisfactory results with these tissues. 3. Extracts from thymocyte membranes were further examined by gel filtration and sucrose gradient centrifugation. The Thy-1.1 activity behaved as a single component in deoxycholate with a density similar to that of a globular protein, but in Lubrol-PX the antigen was contained in a low-density complex. In Lubrol-PX extracts Ag-B(4) was also found in aggregates not observed in deoxycholate. 4. The s20,w values for Thy-1.1 and Ag-B(4) antigens in deoxycholate were 2.4 and 4.4, and v̄ values were 0.70 and 0.75 respectively. The Stokes radius observed for Thy-1.1 was 3.1nm and for Ag-B(4) 5.3nm. By using these values the molecular weights for the antigen–detergent complexes were calculated to be 28000 for Thy-1.1 and 100000 for Ag-B(4). PMID:4219284

  9. Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production.

    PubMed

    Leaungvutiviroj, Chaveevan; Ruangphisarn, Pimtida; Hansanimitkul, Pikul; Shinkawa, Hidenori; Sasaki, Ken

    2010-01-01

    Biofertilizers that possess a high capacity for N(2) fixation (Azotobacter tropicalis), and consist of phosphate solubilizing bacteria (Burkhoderia unamae), and potassium solubilizing bacteria (Bacillus subtilis) and produce auxin (KJB9/2 strain), have a high potential for growth and yield enhancement of corn and vegetables (Chinese kale). For vegetables, the addition of biofertilizer alone enhanced growth 4 times. Moreover, an enhancement of growth by 7 times was observed due to the addition of rock phosphate and K-feldspar, natural mineral fertilizers, in combination with the biofertilizer.

  10. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hoo-Kyun; Pokharel, Yuba Raj; Lim, Sung Chul

    2009-11-01

    Coenzyme Q10 (CoQ10), an endogenous antioxidant, is important in oxidative phosphorylation in mitochondria. It has anti-diabetic and anti-cardiovascular disease effects, but its ability to protect against liver fibrosis has not been studied. Here, we assessed the ability of solubilized CoQ10 to improve dimethylnitrosamine (DMN)-induced liver fibrogenesis in mice. DMN treatments for 3 weeks produced a marked liver fibrosis as assessed by histopathological examination and tissue 4-hydroxyproline content. Solubilized CoQ10 (10 and 30 mg/kg) significantly inhibited both the increases in fibrosis score and 4-hydroxyproline content induced by DMN. Reverse transcription-polymerase chain reaction and Western blot analyses revealed that solubilized CoQ10 inhibitedmore » increases in the transforming growth factor-beta1 (TGF-beta1) mRNA and alpha-smooth muscle actin (alpha-SMA) protein by DMN. Interestingly, hepatic glutamate-cysteine ligase (GCL) and glutathione S-transferase A2 (GSTA2) were up-regulated in mice treated with CoQ10. Solubilized CoQ10 also up-regulated antioxidant enzymes such as catalytic subunits of GCL and GSTA2 via activating NF-E2 related factor2 (Nrf2)/antioxidant response element (ARE) in H4IIE hepatoma cells. Moreover, CoQ10's inhibition of alpha-SMA and TGF-beta1 expressions disappeared in Nrf2-null MEF cells. In contrast, Nrf2 overexpression significantly decreased the basal expression levels of alpha-SMA and TGF-beta1 in Nrf2-null MEF cells. These results demonstrated that solubilized CoQ10 inhibited DMN-induced liver fibrosis through suppression of TGF-beta1 expression via Nrf2/ARE activation.« less

  11. Phytoremediation of a nitrogen-contaminated desert soil by native shrubs and microbial processes

    DOE PAGES

    Glenn, Edward P.; Jordan, Fiona; Waugh, W. Joseph

    2016-02-24

    Here, we combined phytoremediation and soil microbial nitrification and denitrification cycles to reduce nitrate and ammonium levels at a former uranium mill site near Monument Valley, Arizona. Ammonia used in uranium extraction was present throughout the soil profile. Sulfate,applied as sulfuric acid to solubilize uranium, was also present in the soil. These contaminants were leaching from a denuded area where a tailings pile had been removed and were migrating away from the site in groundwater. We planted the source area with two deep-rooted native shrubs, Atriplex cansescens and Sarcobatus vermiculatus, and irrigated transplants for 11 years at 20% the ratemore » of potential evapotranspiration to stimulate growth, then discontinued irrigation for 4 years. Over 15 years, total nitrogen levels dropped 82%, from 347 to 64 mg kg –1. Analysis of δ 15N supported our hypothesis that coupled microbial nitrification and denitrification processes were responsible for the loss of N. Soil sulfate levels changed little; however, evapotranspiration reduced sulfate leaching into the aquifer. For arid sites where traditional pump-and-treat methods are problematic, the Monument Valley data suggest that alternatives that incorporate native plants and rely on vadose zone biogeochemistry and hydrology could be a sustainable remediation for nitrogen contaminated soil.« less

  12. Phytoremediation of a nitrogen-contaminated desert soil by native shrubs and microbial processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn, Edward P.; Jordan, Fiona; Waugh, W. Joseph

    Here, we combined phytoremediation and soil microbial nitrification and denitrification cycles to reduce nitrate and ammonium levels at a former uranium mill site near Monument Valley, Arizona. Ammonia used in uranium extraction was present throughout the soil profile. Sulfate,applied as sulfuric acid to solubilize uranium, was also present in the soil. These contaminants were leaching from a denuded area where a tailings pile had been removed and were migrating away from the site in groundwater. We planted the source area with two deep-rooted native shrubs, Atriplex cansescens and Sarcobatus vermiculatus, and irrigated transplants for 11 years at 20% the ratemore » of potential evapotranspiration to stimulate growth, then discontinued irrigation for 4 years. Over 15 years, total nitrogen levels dropped 82%, from 347 to 64 mg kg –1. Analysis of δ 15N supported our hypothesis that coupled microbial nitrification and denitrification processes were responsible for the loss of N. Soil sulfate levels changed little; however, evapotranspiration reduced sulfate leaching into the aquifer. For arid sites where traditional pump-and-treat methods are problematic, the Monument Valley data suggest that alternatives that incorporate native plants and rely on vadose zone biogeochemistry and hydrology could be a sustainable remediation for nitrogen contaminated soil.« less

  13. Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Li, Jianguo; Garg, Manju; Shah, Dhawal; Rajagopalan, Raj

    2010-08-01

    Experiments hold intriguing, circumstantial clues to the mechanisms behind arginine-mediated solubilization of small organic drugs and suppression of protein aggregation driven by hydrophobic or aromatic associations, but how exactly arginine's molecular structure and interactions contribute to its function remains unclear since attention has focused so far on the thermodynamics of the preferential exclusion or binding of arginine. Here, we examine, through molecular dynamics simulations, how arginine solubilizes nanoscale particles with hydrophobic surfaces or aromatic-ring-type surface interactions. We show that preferential, hydrophobic, and dispersion interactions of arginine's guanidinium group with the particles lead to a surfactant-like behavior of arginine around the particles and to a solvation layer with a protective polar mask creating a hydrophilic shell. Additionally, arginine-arginine association around the solvation layer further prevents aggregative contacts. The results shed some light on the mechanistic basis of arginine's function as a suppressant of protein aggregation, although the complex energy landscapes and kinetic pathways of aggregation are protein-dependent and pose formidable challenges to developing comprehensive mechanistic pictures. Our results suggest arginine's mode of interaction with hydrophobic patches and aromatic residues could reduce aggregation-prone intermediate states of proteins and shield protein-protein aggregative contacts. The approach used here offers a systematic way of exploring implications of other amino acid/excipient interactions by studying interactions of the excipient with particles grafted with amino acids.

  14. Anaerobic microbial dissolution of lead and production of organic acids

    DOEpatents

    Francis, A.J.; Dodge, C.; Chendrayan, K.

    1986-02-28

    The present invention relates to a method of solubilizing lead, in the form of lead oxide, found in industrial wastes, before these wastes are dumped into the environment. The lead is solubilized by dissolving the lead oxide in the wastes through contact with an anaerobic bacterial culture containing the bacterium ATCC No. 53464. The solubilized lead can then be removed from the wastes by chemical separation. It could also be removed by extending the contact period with the bacterial culture. As the culture grows, the solubilized lead is removed from the wastes by bioaccumulation by the microorganism or by immobilization by a polymer-like material produced by the microorganism. At this point, the lead is then removed from the wastes when the waste material is separated from the bacterial culture. If desired, the bacterial culture could be digested at this point to yield relatively pure lead for further industrial use.

  15. Expression, purification, and DNA-binding activity of the solubilized NtrC protein of Herbaspirillum seropedicae.

    PubMed

    Twerdochlib, Adriana L; Chubatsu, Leda S; Souza, Emanuel M; Pedrosa, Fábio O; Steffens, M Berenice R; Yates, M Geoffrey; Rigo, Liu U

    2003-07-01

    NtrC is a bacterial enhancer-binding protein (EBP) that activates transcription by the sigma54 RNA polymerase holoenzyme. NtrC has a three domain structure typical of EBP family. In Herbaspirillum seropedicae, an endophytic diazotroph, NtrC regulates several operons involved in nitrogen assimilation, including glnAntrBC. In order to over-express and purify the NtrC protein, DNA fragments containing the complete structural gene for the whole protein, and for the N-terminal+Central and Central+C-terminal domains were cloned into expression vectors. The NtrC and NtrC(N-terminal+Central) proteins were over-expressed as His-tag fusion proteins upon IPTG addition, solubilized using N-lauryl-sarcosyl and purified by metal affinity chromatography. The over-expressed His-tag-NtrC(Central+C-terminal) fusion protein was partially soluble and was also purified by affinity chromatography. DNA band-shift assays showed that the NtrC protein and the Central+C-terminal domains bound specifically to the H. seropedicae glnA promoter region. The C-terminal domain is presumably necessary for DNA-protein interaction and DNA-binding does not require a phosphorylated protein.

  16. Chlorine stress mediates microbial surface attachment in drinking water systems.

    PubMed

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  17. Biological lignocellulose solubilization: Comparative evaluation of biocatalysts and enhancement via cotreatment

    DOE PAGES

    Paye, Julie M. D.; Guseva, Anna; Hammer, Sarah K.; ...

    2016-01-12

    Feedstock recalcitrance is the most important barrier impeding cost-effective production of cellulosic biofuels. Pioneer commercial cellulosic ethanol facilities employ thermochemical pretreatment and addition of fungal cellulase, reflecting the main research emphasis in the field. However, it has been suggested that it may be possible to process cellulosic biomass without thermochemical pretreatment using thermophilic, cellulolytic bacteria. Thus, to further explore this idea, we examine the ability of various biocatalysts to solubilize autoclaved but otherwise unpretreated cellulosic biomass under controlled but not industrial conditions.

  18. Effects of phosphate-solubilizing bacteria, native microorganisms, and rock dust on Jatropha curcas L. growth.

    PubMed

    Santana, E B; Marques, E L S; Dias, J C T

    2016-10-05

    Microorganisms with the ability to release nutrients to the soil from insoluble sources may be useful for plant cultivation. We evaluated the growth-promoting effect on Jatropha curcas L. of phosphate-solubilizing bacteria (PSB) and the native microbiota in soil with or without rock dust. J. curcas L. is important for biodiesel production. The experiments were performed in a greenhouse under a random-statistical design with 14 replicates. The soil received increasing dosages of rock dust. The presence of resident microorganisms and PSB inoculum was correlated with plant height, biomass production, and phosphorus content in plants for 120 days. Native soil microorganisms were detected and identified using denaturing gradient gel electrophoresis and DNA sequence analysis. Several bacterial populations belonged to the genus Bacillus. Populations associated with the phyla Chytridiomycota and Ascomycota were detected among the fungi. The best results for the variable plant height were correlated with the presence of resident microbiota and rock dust until the end of the experiment. The largest biomass production and the highest content of phosphorus occurred in the presence of soil-resident microbiota only up to 120 days. No significant effects were observed for biomass production with the use of PSB combined with rock dust. J. curcas L. under the influence of only resident microbiota showed the best plant growth results. Future research will focus on the specificity of resident microbiota activity in plant growth promotion and the isolation of these microorganisms to produce a new inoculum to be tested in various plants.

  19. Bio-control and plant growth promotion potential of Salicaceae endophytes

    USDA-ARS?s Scientific Manuscript database

    Microbial endophytes are important for growth benefits in a variety of plant species. Microbial communities of the poplar (Populus sp.) and willow (Salix sp.) endosphere have been demonstrated to be important for plant growth promotion, protection from abiotic stresses, and degradation of toxic subs...

  20. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  1. Solubilization of poorly soluble photosensitizer hypericin by polymeric micelles and polyethylene glycol.

    PubMed

    Búzová, Diana; Kasák, Peter; Miškovský, Pavol; Jancura, Daniel

    2013-06-01

    Hypericin (Hyp) is a promising photosensitizer for photodiagnostic and photodynamic therapy of cancer. However, Hyp has a large conjugated system and in aqueous solutions forms insoluble aggregates which do not possess biological activity. This makes intravenous injection of Hyp problematic and restricts its medical applications. To overcome this problem, Hyp is incorporated into drug delivery systems which can increase its solubility and bioavailability. One of the possibilities is utilization of polymeric micelles. The most used hydrophilic block for preparation of polymeric micelles is polyethylen glycol (PEG). PEG is a polymer which for its lack of immunogenicity, antigenicity and toxicity obtained approval for use in human medicine. In this work we have studied the solubilization of Hyp aggregates in the presence of PEG-PE and PEG-cholesterol micelles. The concentration of polymeric micelles which allows total monomerization of Hyp corresponds to the critical micellar concentration of these micelles (~10(-6) M). We have also investigated the effect of the molecular weight and concentration of PEG on the transition of aggregated Hyp to its monomeric form. PEGs with low molecular weight (< 1000 g/mol) do not significantly contribute to the solubilization of Hyp. However, PEGs with molecular weight > 2000 g/mol efficiently transform Hyp aggregates to the monomeric state of this photosensitizer.

  2. Microbial populations and activities of mangrove, restinga and Atlantic forest soils from Cardoso Island, Brazil.

    PubMed

    Pupin, B; Nahas, E

    2014-04-01

    Mangroves provide a distinctive ecological environment that differentiates them from other ecosystems. This study deal to evaluate the frequency of microbial groups and the metabolic activities of bacteria and fungi isolated from mangrove, restinga and Atlantic forest soils. Soil samples were collected during the summer and winter at depths of 0-2, 2-5 and 5-10 cm. Except for fungi, the counts of the total, sporulating, Gram-negative, actinomycetes, nitrifying and denitrifying bacteria decreased significantly in the following order: Atlantic forest >mangrove > restinga. The counts of micro-organisms decreased by 11 and 21% from the surface to the 2-5 and 5-10 cm layers, but denitrifying bacteria increased by 44 and 166%, respectively. A larger growth of micro-organisms was verified in the summer compared with the winter, except for actinomycetes and fungi. The average frequency of bacteria isolated from mangrove, restinga and Atlantic forest soils was 95, 77 and 78%, and 93, 90 and 95% for fungi, respectively. Bacteria were amylolytic (33%), producers of acid phosphatase (79%) and solubilizers (18%) of inorganic phosphate. The proportions of fungi were 19, 90 and 27%. The mangrove soil studied had higher chemical characteristics than the Atlantic forest, but the high salinity may have restricted the growth of microbial populations. Estimates of the microbial counts and activities were important to elucidate the differences of mangrove ecosystem from restinga and Atlantic forest. © 2013 The Society for Applied Microbiology.

  3. Active Detergent-solubilized H+,K+-ATPase Is a Monomer*

    PubMed Central

    Dach, Ingrid; Olesen, Claus; Signor, Luca; Nissen, Poul; le Maire, Marc; Møller, Jesper V.; Ebel, Christine

    2012-01-01

    The H+,K+-ATPase pumps protons or hydronium ions and is responsible for the acidification of the gastric fluid. It is made up of an α-catalytic and a β-glycosylated subunit. The relation between cation translocation and the organization of the protein in the membrane are not well understood. We describe here how pure and functionally active pig gastric H+,K+-ATPase with an apparent Stokes radius of 6.3 nm can be obtained after solubilization with the non-ionic detergent C12E8, followed by exchange of C12E8 with Tween 20 on a Superose 6 column. Mass spectroscopy indicates that the β-subunit bears an excess mass of 9 kDa attributable to glycosylation. From chemical analysis, there are 0.25 g of phospholipids and around 0.024 g of cholesterol bound per g of protein. Analytical ultracentrifugation shows one main complex, sedimenting at s20,w = 7.2 ± 0.1 S, together with minor amounts of irreversibly aggregated material. From these data, a buoyant molecular mass is calculated, corresponding to an H+,K+-ATPase α,β-protomer of 147.3 kDa. Complementary sedimentation velocity with deuterated water gives a picture of an α,β-protomer with 0.9–1.4 g/g of bound detergent and lipids and a reasonable frictional ratio of 1.5, corresponding to a Stokes radius of 7.1 nm. An α2,β2 dimer is rejected by the data. Light scattering coupled to gel filtration confirms the monomeric state of solubilized H+,K+-ATPase. Thus, α,β H+,K+-ATPase is active at least in detergent and may plausibly function as a monomer, as has been established for other P-type ATPases, Ca2+-ATPase and Na+,K+-ATPase. PMID:23055529

  4. Geochemical hosts of solubilized radionuclides in uranium mill tailings

    USGS Publications Warehouse

    Landa, E.R.; Bush, C.A.

    1990-01-01

    The solubilization and subsequent resorption of radionuclides by ore components or by reaction products during the milling of uranium ores may have both economic and environmental consequences. Particle-size redistribution of radium during milling has been demonstrated by previous investigators; however, the identification of sorbing components in the tailings has received little experimental attention. In this study, uranium-bearing sandstone ore was milled, on a laboratory scale, with sulfuric acid. At regular intervals, filtrate from this suspension was placed in contact with mixtures of quartz sand and various potential sorbents which occur as gangue in uranium ores; the potential sorbents included clay minerals, iron and aluminum oxides, feldspar, fluorspar, barite, jarosite, coal, and volcanic glass. After equilibration, the quartz sand-sorbent mixtures were separated from the filtrate and radioassayed by gamma-spectrometry to determine the quantities of 238U, 230Th, 226Ra, and 210Pb sorbed, and the radon emanation coefficients. Sorption of 238U was low in all cases, with maximal sorptions of 1-2% by the bentonite- and coal-bearing samples. 230Th sorption also was generally less than 1%; maximal sorption here was observed in the fluorspar-bearing sample and appears to be associated with the formation of gypsum during milling. 226Ra and 210 Pb generally showed higher sorption than the other nuclides - more than 60% of the 26Ra solubilized from the ore was sorbed on the barite-bearing sample. The mechanism (s) for this sorption by a wide variety of substrates is not yet understood. Radon emanation coefficients of the samples ranged from about 5 to 30%, with the coal-bearing samples clearly demonstrating an emanating power higher than any of the other materials. ?? 1990.

  5. Solubilization of water in water-in-oil microemulsions of kerosene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andheria, A.P.; Bhagwat, S.S.

    1995-04-01

    The incorporation of water into fuels formulated as microemulsions can offer several advantages such as fire resistance, increased flash point, and improved air-fuel contact. To this end, phase equilibria of kerosene microemulsions employing ionic and nonionic surfactants such as sodium di-(2-ethylhexyl) sulfosuccinate (AOT), lauryl diethanolamide (LDEA), nonylphenol EO-4.5 (NPEO-4.5), sorbitan monolaurate (Span-20), and cetyltrimethylammonium bromide (CTAB), as well as cosurfactants such as n-pentanol, n-hexanol, and n-heptanol, were studied. The effect of the aromaticity of the oil phase on the solubilization of water was also investigated.

  6. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell.

    PubMed

    Xiao, Benyi; Yang, Fang; Liu, Junxin

    2013-06-15

    Electricity production from alkaline pretreated sludge was evaluated using a two-chamber microbial fuel cell (MFC). The electricity production was found to be stable over a long period of time (approximately 17 d) with voltage outputs and power densities of 0.47-0.52 V and 46.80-55.88 mW/m(2), respectively. The anode resistance was the main internal resistance (73.2%) of MFC in the stable stage. Most soluble organic matters (proteins and carbohydrates) in the anode chamber were first degraded and converted into volatile fatty acids (0-15 d), which were then degraded and converted into electricity and methane (15-29 d). The insoluble organics were solubilized thereby decreasing the sludge concentration and reducing the sludge mass. Methane was produced in the anode chamber owing to the growth of methanogens, which did not obviously affect the electricity production. The change in humic-like substances displayed a positive correlation with the electricity production of the MFC. Microbial analysis showed that methanogens and electricity-producing bacteria co-existed mostly on the surface as well as inside the anode. Decreasing the anode resistance and increasing the anode utilization could enhance the electricity production. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  7. Isolation of Plant Photosystem II Complexes by Fractional Solubilization

    PubMed Central

    Haniewicz, Patrycja; Floris, Davide; Farci, Domenica; Kirkpatrick, Joanna; Loi, Maria C.; Büchel, Claudia; Bochtler, Matthias; Piano, Dario

    2015-01-01

    Photosystem II (PSII) occurs in different forms and supercomplexes in thylakoid membranes. Using a transplastomic strain of Nicotiana tabacum histidine tagged on the subunit PsbE, we have previously shown that a mild extraction protocol with β-dodecylmaltoside enriches PSII characteristic of lamellae and grana margins. Here, we characterize residual granal PSII that is not extracted by this first solubilization step. Using affinity purification, we demonstrate that this PSII fraction consists of PSII-LHCII mega- and supercomplexes, PSII dimers, and PSII monomers, which were separated by gel filtration and functionally characterized. Our findings represent an alternative demonstration of different PSII populations in thylakoid membranes, and they make it possible to prepare PSII-LHCII supercomplexes in high yield. PMID:26697050

  8. Effects of Lipid-Analog Detergent Solubilization on the Functionality and Lipidic Cubic Phase Mobility of the Torpedo californica Nicotinic Acetylcholine Receptor

    PubMed Central

    Padilla-Morales, Luis F.; Morales-Pérez, Claudio L.; De La Cruz-Rivera, Pamela C.; Asmar-Rovira, Guillermo; Báez-Pagán, Carlos A.

    2011-01-01

    Over the past three decades, the Torpedo californica nicotinic acetylcholine receptor (nAChR) has been one of the most extensively studied membrane protein systems. However, the effects of detergent solubilization on nAChR stability and function are poorly understood. The use of lipid-analog detergents for nAChR solubilization has been shown to preserve receptor stability and functionality. The present study used lipid-analog detergents from phospholipid-analog and cholesterol-analog detergent families for solubilization and affinity purification of the receptor and probed nAChR ion channel function using planar lipid bilayers (PLBs) and stability using analytical size exclusion chromatography (A-SEC) in the detergent-solubilized state. We also examined receptor mobility on the lipidic cubic phase (LCP) by measuring the nAChR mobile fraction and diffusion coefficient through fluorescence recovery after photobleaching (FRAP) experiments using lipid-analog and non-lipid-analog detergents. Our results show that it is possible to isolate stable and functional nAChRs using lipid-analog detergents, with characteristic ion channel currents in PLBs and minimal aggregation as observed in A-SEC. Furthermore, fractional mobility and diffusion coefficient values observed in FRAP experiments were similar to the values observed for these parameters in the recently LCP-crystallized β2-adrenergic receptor. The overall results show that phospholipid-analog detergents with 16 carbon acyl-chains support nAChR stability, functionality and LCP mobility. PMID:21922299

  9. Soil microbial diversity, site conditions, shelter forest land, saline water drip-irrigation, drift desert.

    PubMed

    Jin, Zhengzhong; Lei, Jiaqiang; Li, Shengyu; Xu, Xinwen

    2013-10-01

    Soil microbes in forest land are crucial to soil development in extreme areas. In this study, methods of conventional culture, PLFA and PCR-DGGE were utilized to analyze soil microbial quantity, fatty acids and microbial DNA segments of soils subjected to different site conditions in the Tarim Desert Highway forest land. The main results were as follows: the soil microbial amount, diversity indexes of fatty acid and DNA segment differed significantly among sites with different conditions (F < F0.05 ). Specifically, the values were higher in the middle and base of dunes than the top part of dunes and hardened flat sand, but all values for dunes were higher than for drift sand. Bacteria was dominant in the soil microbial community (>84%), followed by actinomycetes and then fungi (<0.05%). Vertical differences in the soil microbial diversity were insignificant at 0-35 cm. Correlation analysis indicated that the forest trees grew better as the soil microbial diversity index increased. Therefore, construction of the Tarim Desert Highway shelter-forest promoted soil biological development; however, for enhancing sand control efficiency and promoting sand development, we should consider the effects of site condition in the construction and regeneration of shelter-forest ecological projects. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comparison of electrochemical performances and microbial community structures of two photosynthetic microbial fuel cells.

    PubMed

    Zheng, Wei; Cai, Teng; Huang, Manhong; Chen, Donghui

    2017-11-01

    Microbial fuel cells (MFCs) have attracted intensive interest for their power generation and pollutants removal characteristics. Electrochemical performances and community structures of two algae cathode photosynthetic MFCs were investigated and compared. Microbial consortia of these two MFCs were taken from wetland sediment (named SMFC) and an up-flow anaerobic wastewater treatment reactor (named UMFC). Maximum power density of the SMFC and UMFC achieved 202.9 ± 18.1 mW/m 2 and 158.2±15.1 mW/m 2 , respectively. The SMFC displayed higher columbic efficiency but lower chemical oxygen demand (COD) removal efficiency than that of UMFC. The results also revealed the addition of riboflavin (RF) and neutral red (NR) decreased the redox current of the SMFC but promoted that of UMFC. Community structure analysis showed the SMFC was dominated by photosynthetic genus Rhodopseudomonas (61.25%), while bacterial genera in the UMFC were more evenly distributed. The difference of electrochemical activities of the two MFCs was caused by the different roles of exoelectrogens such as Rhodopseudomonas spp. and Citrobacter spp. in the electron transfer process. Newly developed photosynthetic microbial fuel cells (PMFCs) provide a suitable process to generate power and remove pollutants. The consortia have a significant role in the performance and microbial community of the system. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Creating Drug Solubilization Compartments via Phase Separation in Multicomponent Buccal Patches Prepared by Direct Hot Melt Extrusion-Injection Molding.

    PubMed

    Alhijjaj, Muqdad; Bouman, Jacob; Wellner, Nikolaus; Belton, Peter; Qi, Sheng

    2015-12-07

    Creating in situ phase separation in solid dispersion based formulations to allow enhanced functionality of the dosage form, such as improving dissolution of poorly soluble model drug as well as being mucoadhesive, can significantly maximize the in vitro and in vivo performance of the dosage form. This formulation strategy can benefit a wide range of solid dosage forms for oral and alternative routes of delivery. This study using buccal patches as an example created separated phases in situ of the buccal patches by selecting the excipients with different miscibility with each other and the model drug. The quaternary dispersion based buccal patches containing PEG, PEO, Tween 80, and felodipine were prepared by direct hot melt extrusion-injection molding (HME-IM). The partial miscibility between Tween 80 and semicrystalline PEG-PEO led to the phase separation after extrusion. The Tween phases acted as drug solubilization compartments, and the PEG-PEO phase had the primary function of providing mucoadhesion and carrier controlled dissolution. As felodipine was preferably solubilized in the amorphous regions of PEG-PEO, the high crystallinity of PEG-PEO resulted in an overall low drug solubilizing capacity. Tween 80 was added to improve the solubilization capacity of the system as the model drug showed good solubility in Tween. Increasing the drug loading led to the supersaturation of drug in Tween compartments and crystalline drug dispersed in PEG-PEO phases. The spatial distribution of these phase-separated compartments was mapped using X-ray micro-CT, which revealed that the domain size and heterogeneity of the phase separation increased with increasing the drug loading. The outcome of this study provides new insights into the applicability of in situ formed phase separation as a formulation strategy for the delivery of poorly soluble drugs and demonstrated the basic principle of excipient selection for such technology.

  12. Metagenomics and Bioinformatics in Microbial Ecology: Current Status and Beyond.

    PubMed

    Hiraoka, Satoshi; Yang, Ching-Chia; Iwasaki, Wataru

    2016-09-29

    Metagenomic approaches are now commonly used in microbial ecology to study microbial communities in more detail, including many strains that cannot be cultivated in the laboratory. Bioinformatic analyses make it possible to mine huge metagenomic datasets and discover general patterns that govern microbial ecosystems. However, the findings of typical metagenomic and bioinformatic analyses still do not completely describe the ecology and evolution of microbes in their environments. Most analyses still depend on straightforward sequence similarity searches against reference databases. We herein review the current state of metagenomics and bioinformatics in microbial ecology and discuss future directions for the field. New techniques will allow us to go beyond routine analyses and broaden our knowledge of microbial ecosystems. We need to enrich reference databases, promote platforms that enable meta- or comprehensive analyses of diverse metagenomic datasets, devise methods that utilize long-read sequence information, and develop more powerful bioinformatic methods to analyze data from diverse perspectives.

  13. Solubilization of glycoproteins of envelope viruses by detergents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezin, V.E.; Zaides, V.M.; Artamsnov, A.F.

    1986-11-20

    The action of a number of known ionic and nonionic detergents, as well as the new nonionic detergent MESK, on envelope viruses was investigated. It was shown that the nonionic detergents MESK, Triton X-100, and octyl-..beta..-D-glucopyranoside selectively solubilize the outer glycoproteins of the virus particles. The nonionic detergent MESK has the mildest action. Using MESK, purified glycoproteins of influenza, parainfluenza, Venezuelan equine encephalomyelitis, vesicular stomatitis, rabies, and herpes viruses were obtained. The procedure for obtaining glycoproteins includes incubation of the virus suspension with the detergent MESK, removal of subvirus structures by centrifuging, and purification of glycoproteins from detergents by dialysis.more » Isolated glycoproteins retain a native structure and biological activity and possess high immunogenicity. The detergent MESK is promising for laboratory tests and with respect to the production of subunit vaccines.« less

  14. Expression and solubilization of insect cell-based rabies virus glycoprotein and assessment of its immunogenicity and protective efficacy in mice.

    PubMed

    Ramya, R; Mohana Subramanian, B; Sivakumar, V; Senthilkumar, R L; Sambasiva Rao, K R S; Srinivasan, V A

    2011-10-01

    Rabies is a fatal zoonotic disease of serious public health and economic significance worldwide. The rabies virus glycoprotein (RVG) has been the major target for subunit vaccine development, since it harbors domains responsible for induction of virus-neutralizing antibodies, infectivity, and neurovirulence. The glycoprotein (G) was cloned using the baculovirus expression vector system (BEVS) and expressed in Spodoptera frugiperda (Sf-9) cells. In order to obtain a soluble form of G suitable for experimentation in mice, 18 different combinations of buffers and detergents were evaluated for their ability to solubilize the insect cell membrane-associated G. The combination that involved 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) detergent in lysis buffer 1, formulated with Tris, NaCl, 10% dimethyl sulfoxide (DMSO), and EDTA, gave the highest yield of soluble G, as evidenced by the experimental data. Subsequently, several other parameters, such as the concentration of CHAPS and the duration and temperature of the treatment for the effective solubilization of G, were optimized. The CHAPS detergent, buffered at a concentration of 0.4% to 0.7% (wt/vol) at room temperature (23 to 25°C) for 30 min to 1 h using buffer 1, containing 10% DMSO, resulted in consistently high yields. The G solubilized using CHAPS detergent was found to be immunogenic when tested in mice, as evidenced by high virus-neutralizing antibody titers in sera and 100% protection upon virulent intracerebral challenge with the challenge virus standard (CVS) strain of rabies virus. The results of the mice study indicated that G solubilized with CHAPS detergent retained the immunologically relevant domains in the native conformation, thereby paving the way for producing a cell-free and efficacious subunit vaccine.

  15. Microbial mineral illization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery.

    PubMed

    Cui, Kai; Sun, Shanshan; Xiao, Meng; Liu, Tongjing; Xu, Quanshu; Dong, Honghong; Wang, Di; Gong, Yejing; Sha, Te; Hou, Jirui; Zhang, Zhongzhi; Fu, Pengcheng

    2018-05-11

    Microbial mineral illization has been investigated for its role in the extraction and recovery of metals from ores. Here we report our application of mineral bioillization for the microbial enhanced oil recovery in low-permeability oil reservoirs. It aimed to reveal the etching mechanism of the four Fe (III)-reducing microbial strains under anaerobic growth conditions on the Ca-montmorillonite. The mineralogical characterization of the Ca-montmorillonite was performed by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and energy dispersive spectrometer. Results showed that the microbial strains could efficiently reduce Fe (III) at an optimal rate of 71 %, and alter the crystal lattice structure of the lamella to promote the interlayer cation exchange, and to efficiently inhibit the Ca-montmorillonite swelling at an inhibitory rate of 48.9 %. Importance Microbial mineral illization is ubiquitous in the natural environment. Microbes in low-permeability reservoirs are able to enable the alteration of the structure and phase of the Fe-poor minerals by reducing Fe (III) and inhibiting clay swelling which is still poorly studied. This study aimed to reveal the interaction mechanism between Fe (III)-reducing bacterial strains and Ca-montmorillonite under anaerobic atmosphere, and to investigate the extent and rates of Fe (III) reduction and phase changes with their activities. Application of Fe (III)-reducing bacteria will provide a new way to inhibit clay swelling, to elevate reservoir permeability, and to reduce pore throat resistance after water flooding for enhanced oil recovery in low-permeability reservoirs. Copyright © 2018 American Society for Microbiology.

  16. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health.

    PubMed

    Köberl, Martina; Müller, Henry; Ramadan, Elshahat M; Berg, Gabriele

    2011-01-01

    To convert deserts into arable, green landscapes is a global vision, and desert farming is a strong growing area of agriculture world-wide. However, its effect on diversity of soil microbial communities, which are responsible for important ecosystem services like plant health, is still not known. We studied the impact of long-term agriculture on desert soil in one of the most prominent examples for organic desert farming in Sekem (Egypt). Using a polyphasic methodological approach to analyse microbial communities in soil as well as associated with cultivated plants, drastic effects caused by 30 years of agriculture were detected. Analysing bacterial fingerprints, we found statistically significant differences between agricultural and native desert soil of about 60%. A pyrosequencing-based analysis of the 16S rRNA gene regions showed higher diversity in agricultural than in desert soil (Shannon diversity indices: 11.21/7.90), and displayed structural differences. The proportion of Firmicutes in field soil was significantly higher (37%) than in the desert (11%). Bacillus and Paenibacillus play the key role: they represented 96% of the antagonists towards phytopathogens, and identical 16S rRNA sequences in the amplicon library and for isolates were detected. The proportion of antagonistic strains was doubled in field in comparison to desert soil (21.6%/12.4%); disease-suppressive bacteria were especially enriched in plant roots. On the opposite, several extremophilic bacterial groups, e.g., Acidimicrobium, Rubellimicrobium and Deinococcus-Thermus, disappeared from soil after agricultural use. The N-fixing Herbaspirillum group only occurred in desert soil. Soil bacterial communities were strongly driven by the a-biotic factors water supply and pH. After long-term farming, a drastic shift in the bacterial communities in desert soil was observed. Bacterial communities in agricultural soil showed a higher diversity and a better ecosystem function for plant health but a

  17. Desert Farming Benefits from Microbial Potential in Arid Soils and Promotes Diversity and Plant Health

    PubMed Central

    Köberl, Martina; Müller, Henry; Ramadan, Elshahat M.; Berg, Gabriele

    2011-01-01

    Background To convert deserts into arable, green landscapes is a global vision, and desert farming is a strong growing area of agriculture world-wide. However, its effect on diversity of soil microbial communities, which are responsible for important ecosystem services like plant health, is still not known. Methodology/Principal Findings We studied the impact of long-term agriculture on desert soil in one of the most prominent examples for organic desert farming in Sekem (Egypt). Using a polyphasic methodological approach to analyse microbial communities in soil as well as associated with cultivated plants, drastic effects caused by 30 years of agriculture were detected. Analysing bacterial fingerprints, we found statistically significant differences between agricultural and native desert soil of about 60%. A pyrosequencing-based analysis of the 16S rRNA gene regions showed higher diversity in agricultural than in desert soil (Shannon diversity indices: 11.21/7.90), and displayed structural differences. The proportion of Firmicutes in field soil was significantly higher (37%) than in the desert (11%). Bacillus and Paenibacillus play the key role: they represented 96% of the antagonists towards phytopathogens, and identical 16S rRNA sequences in the amplicon library and for isolates were detected. The proportion of antagonistic strains was doubled in field in comparison to desert soil (21.6%/12.4%); disease-suppressive bacteria were especially enriched in plant roots. On the opposite, several extremophilic bacterial groups, e.g., Acidimicrobium, Rubellimicrobium and Deinococcus-Thermus, disappeared from soil after agricultural use. The N-fixing Herbaspirillum group only occurred in desert soil. Soil bacterial communities were strongly driven by the a-biotic factors water supply and pH. Conclusions/Significance After long-term farming, a drastic shift in the bacterial communities in desert soil was observed. Bacterial communities in agricultural soil showed a higher

  18. The selective solubilization of different murine splenocyte membrane fractions with lubrol WX and triton X-100 distinguishes two forms of Ia antigens. A cell surface (alpha, beta) and an intracellular (alpha, Ii, beta).

    PubMed

    Moosic, J P; Sung, E; Nilson, A; Jones, P P; McKean, D J

    1982-08-25

    The selective solubilization of different murine lymphocyte membrane compartments with several nonionic detergents was used to study the subcellular distribution of two distinct forms of lymphocyte cell recognition structures (Ia antigens). Ia antigens were isolated with a monoclonal anti-Ia immunoadsorbent from murine splenocytes that had been solubilized with four different nonionic detergents. Analyses of the immunoprecipitates indicated that Lubrol WX was selectively solubilizing a subpopulation of Ia consisting of mature highly glycosylated alpha and beta polypeptides which were not associated with Ii polypeptide. A second Ia subpopulation consisting of less glycosylated cytoplasmic precursor alpha and beta polypeptides associated with Ii polypeptide was immunoprecipitated from the Lubrol WX-insoluble material after solubilizing this material with Triton X-100. Comparable results were obtained when HLA-DR antigens were similarly isolated from cultured human lymphoblastoid cells. This selective solubilization phenomenon was not unique to Ia antigens. Only mature highly glycosylated H-2K molecules were immunoprecipitated from the Lubrol WX-soluble material while the less glycosylated precursor H-2K molecules were immunoprecipitated from the Triton X-100-solubilized Lubrol-insoluble material. These data directly demonstrate that the Ii polypeptide is exclusively associated with the intracellular Ia antigen cytoplasmic precursor molecules. These data also indicate that, under the conditions used in these experiments, Lubrol WX does not completely solubilize integral membrane proteins that have previously been shown to be associated with the rough endoplasmic reticulum.

  19. Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi.

    PubMed

    Dang, Fei; Zhao, Jie; Greenfield, Ben K; Zhong, Huan; Wang, Yujun; Yang, Zhousheng; Zhou, Dongmei

    2015-07-15

    Mercury presents a potential risk to soil organisms, yet our understanding of mercury bioaccumulation in soil dwelling organisms is limited. The influence of soil geochemistry and digestive processes on both methylmercury (MeHg) and total mercury (THg) bioavailability to earthworms (Pheretima guillemi) was evaluated in this study. Earthworms were exposed to six mercury-contaminated soils with geochemically contrasting properties for 36 days, and digestive fluid was concurrently collected to solubilize soil-associated mercury. Bioaccumulation factors were 7.5-31.0 and 0.2-0.6 for MeHg and THg, respectively, and MeHg accounted for 17-58% of THg in earthworm. THg and MeHg measured in soils and earthworms were negatively associated with soil total organic carbon (TOC). Earthworm THg and MeHg also increased with increasing soil pH. The proportion of MeHg and THg released into the digestive fluid (digestive solubilizable mercury, DSM) was 8.3-18.1% and 0.4-1.3%, respectively. The greater solubilization of MeHg by digestive fluid than CaCl2, together with a biokinetic model-based estimate of dietary MeHg uptake, indicated the importance of soil ingestion for MeHg bioaccumulation in earthworms. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

    PubMed Central

    2011-01-01

    Background In soils with a low phosphorus (P) supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results Root exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrometry in the range of mass-to-charge ratio (m/z) from 100 to 1000. Eight mass spectrometric signals were enhanced at least 5-fold by low P availability at all harvest times. Among these signals, negative ions with an m/z of 137 and 147 were shown to originate from salicylic acid and citramalic acid. The ability of both compounds to mobilize soil P was demonstrated by incubation of pure substances with Oxisol soil fertilized with calcium phosphate. Conclusions Root exudates of sugar beet contain salicylic acid and citramalic acid, the latter of which has rarely been detected in plants so far. Both metabolites solubilize soil P and their exudation by roots is stimulated by P deficiency. These results provide the first assignment of a biological function to citramalic acid of plant origin. PMID:21871058

  1. Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen

    DOE PAGES

    Qian, Linping; Wang, Zhen; Beletskiy, Evgeny V.; ...

    2017-03-28

    Here, the ability of Au catalysts to effect the challenging task of utilizing molecular oxygen for the selective epoxidation of cyclooctene is fascinating. Although supported nanometre-size Au particles are poorly active, here we show that solubilized atomic Au clusters, present in ng ml –1 concentrations and stabilized by ligands derived from the oxidized hydrocarbon products, are active. They can be formed from various Au sources. They generate initiators and propagators to trigger the onset of the auto-oxidation reaction with an apparent turnover frequency of 440 s –1, and continue to generate additional initiators throughout the auto-oxidation cycle without direct participationmore » in the cycle. Spectroscopic characterization suggests that 7–8 atom clusters are effective catalytically. Extension of work based on these understandings leads to the demonstration that these Au clusters are also effective in selective oxidation of cyclohexene, and that solubilized Pt clusters are also capable of generating initiators for cyclooctene epoxidation.« less

  2. Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Linping; Wang, Zhen; Beletskiy, Evgeny V.

    Here, the ability of Au catalysts to effect the challenging task of utilizing molecular oxygen for the selective epoxidation of cyclooctene is fascinating. Although supported nanometre-size Au particles are poorly active, here we show that solubilized atomic Au clusters, present in ng ml –1 concentrations and stabilized by ligands derived from the oxidized hydrocarbon products, are active. They can be formed from various Au sources. They generate initiators and propagators to trigger the onset of the auto-oxidation reaction with an apparent turnover frequency of 440 s –1, and continue to generate additional initiators throughout the auto-oxidation cycle without direct participationmore » in the cycle. Spectroscopic characterization suggests that 7–8 atom clusters are effective catalytically. Extension of work based on these understandings leads to the demonstration that these Au clusters are also effective in selective oxidation of cyclohexene, and that solubilized Pt clusters are also capable of generating initiators for cyclooctene epoxidation.« less

  3. Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgold, J.

    1986-05-01

    Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and themore » remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.« less

  4. Promoting fertilizer use via controlled release of a bacteria-encapsulated film bag.

    PubMed

    Wu, Chin-San

    2010-05-26

    A phosphate-solubilizing bacterium ( Burkholderia cepacia isolate) encapsulated in maleic anhydride (MA) grafted onto poly(butylene succinate adipate) (PBSA) and then combined with starch as film bag material (PBSA-g-MA/starch) incubated in a saline solution required approximately 20 days to deplete the starch in the film bags. Thereafter, the cell concentration in the saline solution increased significantly because of the release of cells from the severely destroyed film bags and also their growth by use of depolymerized PBSA-g-MA fragments as a substrate. The incubation proceeded for 60 days, by which time the PBSA-g-MA/starch composite had suffered a >80% weight loss. For practical application, effectiveness of the above-mentioned film bags was demonstrated because it could improve the absorbability of a fertilizer for plants and promote the growth of plants. As a result, it can avoid the accumulation of the phosphate in excess fertilizer that lead to the phenomenon of poor soils. These results demonstrate that PBSA-g-MA/starch can be used to encapsulate cells of an indigenous phosphate-solubilizing bacterium ( B. cepacia isolate) to form a controlled release of bacteria-encapsulated film bag (BEFB). The B. cepacia isolate was able to degrade the film bags material, causing cell release. Biodegradability of the film bags depended upon the type of material used, because the PBSA film bags were also degraded but to a lesser degree. The addition of starch made the film bags more biodegradable. The decrease in intrinsic viscosity was also higher for the starch composite, suggesting a strong connection between the biodegradability and these characteristics. The results suggest that the release of fertilizer-promoted bacteria might be controllable via a suitable film bag material formulation. In addition, this work adopted live bacteria to promote the absorption of phosphate, which is superior to the phosphate used in the traditional way.

  5. Nanolipoprotein particles and related methods and systems for protein capture, solubilization, and/or purification

    DOEpatents

    Chromy, Brett A; Henderson, Paul; Hoeprich, Jr., Paul D

    2014-12-09

    Provided herein are methods and systems for assembling, solubilizing and/or purifying a membrane associated protein in a nanolipoprotein particle, which comprise a temperature transition cycle performed in presence of a detergent, wherein during the temperature transition cycle the nanolipoprotein components are brought to a temperature above and below the gel to liquid crystalling transition temperature of the membrane forming lipid of the nanolipoprotein particle.

  6. Nanolipoprotein particles and related methods and systems for protein capture, solubilization, and/or purification

    DOEpatents

    Chromy, Brett A.; Henderson, Paul; Hoeprich, Jr, Paul D.

    2016-10-04

    Provided herein are methods and systems for assembling, solubilizing and/or purifying a membrane associated protein in a nanolipoprotein particle, which comprise a temperature transition cycle performed in presence of a detergent, wherein during the temperature transition cycle the nanolipoprotein components are brought to a temperature above and below the gel to liquid crystalling transition temperature of the membrane forming lipid of the nanolipoprotein particle.

  7. Application of peptide gemini surfactants as novel solubilization surfactants for photosystems I and II of cyanobacteria.

    PubMed

    Koeda, Shuhei; Umezaki, Katsunari; Noji, Tomoyasu; Ikeda, Atsushi; Kawakami, Keisuke; Kondo, Masaharu; Yamamoto, Yasushi; Shen, Jian-Ren; Taga, Keijiro; Dewa, Takehisa; Ito, Shigeru; Nango, Mamoru; Tanaka, Toshiki; Mizuno, Toshihisa

    2013-09-17

    We designed novel peptide gemini surfactants (PG-surfactants), DKDKC12K and DKDKC12D, which can solubilize Photosystem I (PSI) of Thermosynecoccus elongatus and Photosystem II (PSII) of Thermosynecoccus vulcanus in an aqueous buffer solution. To assess the detailed effects of PG-surfactants on the original supramolecular membrane protein complexes and functions of PSI and PSII, we applied the surfactant exchange method to the isolated PSI and PSII. Spectroscopic properties, light-induced electron transfer activity, and dynamic light scattering measurements showed that PSI and PSII could be solubilized not only with retention of the original supramolecular protein complexes and functions but also without forming aggregates. Furthermore, measurement of the lifetime of light-induced charge-separation state in PSI revealed that both surfactants, especially DKDKC12D, displayed slight improvement against thermal denaturation below 60 °C compared with that using β-DDM. This degree of improvement in thermal resistance still seems low, implying that the peptide moieties did not interact directly with membrane protein surfaces. By conjugating an electron mediator such as methyl viologen (MV(2+)) to DKDKC12K (denoted MV-DKDKC12K), we obtained derivatives that can trap the generated reductive electrons from the light-irradiated PSI. After immobilization onto an indium tin oxide electrode, a cathodic photocurrent from the electrode to the PSI/MV-DKDKC12K conjugate was observed in response to the interval of light irradiation. These findings indicate that the PG-surfactants DKDKC12K and DKDKC12D provide not only a new class of solubilization surfactants but also insights into designing other derivatives that confer new functions on PSI and PSII.

  8. Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil.

    PubMed

    Park, Ki-Hyun; Lee, O-Mi; Jung, Ho-Il; Jeong, Jin-Ha; Jeon, Young-Dong; Hwang, Dae-Youn; Lee, Chung-Yeol; Son, Hong-Joo

    2010-04-01

    We isolated and characterized novel insoluble phosphate (P)-solubilizing bacteria tolerant to environmental factors like high salt, low and high pHs, and low temperature. A bacterium M6 was isolated from a ginseng rhizospheric soil and confirmed to belong to Burkholderia vietnamiensis by BIOLOG system and 16S rRNA gene analysis. The optimal cultural conditions for the solubilization of P were 2.5% (w/v) glucose, 0.015% (w/v) urea, and 0.4% (w/v) MgCl(2).6H(2)O along with initial pH 7.0 at 35 degrees C. High-performance liquid chromatography analysis showed that B. vietnamiensis M6 produced gluconic and 2-ketogluconic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with P solubilization. Insoluble P solubilization in the optimal medium was about 902 mg l(-1), which was approximately 1.6-fold higher than the yield in NBRIP medium (580 mg l(-1)). B. vietnamiensis M6 showed resistance against different environmental stresses like 10-45 degrees C, 1-5% (w/v) salt, and 2-11 pH range. The maximal concentration of soluble P produced by B. vietnamiensis M6 from Ca(3)(PO(4))(2), CaHPO(4), and hydroxyapatite was 1,039, 2,132, and 1,754 mg l(-1), respectively. However, the strain M6 produced soluble P with 20 mg l(-1) from FePO(4) after 2 days and 100 mg l(-1) from AlPO(4) after 6 days, respectively. Our results indicate that B. vietnamiensis M6 could be a potential candidate for the development of biofertilizer applicable to environmentally stressed soil.

  9. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut.

    PubMed Central

    Pasti, M B; Pometto, A L; Nuti, M P; Crawford, D L

    1990-01-01

    The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of [14C]lignin- and [14C]cellulose-labeled phloem of Abies concolor to 14CO2 and 14C-labeled water-soluble products, (ii) determining lignocellulose, lignin, and carbohydrate losses resulting from growth on a lignocellulose substrate prepared from corn stalks (Zea mays), and (iii) quantifying production of a water-soluble lignin degradation intermediate (acid-precipitable polymeric lignin). The actinomycetes were all Streptomyces strains and could be placed into three groups, including a group of five strains that appear superior to S. viridosporus T7A in lignocellulose-degrading ability, three strains of approximately equal ability, and three strains of lesser ability. Strain A2 was clearly the superior and most effective lignocellulose decomposer of those tested. Of the assays used, total lignocellulose weight loss was most useful in determining overall bioconversion ability but not in identifying the best lignin-solubilizing strains. A screening procedure based on 14CO2 evolution from [14C-lignin]lignocellulose combined with measurement of acid-precipitable polymeric lignin yield was the most effective in identifying lignin-solubilizing strains. For the termite gut strains, the pH of the medium showed no increase after 3 weeks of growth on lignocellulose. This is markedly different from the pattern observed with S. viridosporus T7A, which raises the medium pH considerably. Production of extracellular peroxidases by the 11 strains and S. viridosporus T7A was followed for 5 days in liquid cultures.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167628

  10. Intra-tumor heterogeneity: lessons from microbial evolution and clinical implications

    PubMed Central

    2013-01-01

    Multiple subclonal populations of tumor cells can coexist within the same tumor. This intra-tumor heterogeneity will have clinical implications and it is therefore important to identify factors that drive or suppress such heterogeneous tumor progression. Evolutionary biology can provide important insights into this process. In particular, experimental evolution studies of microbial populations, which exist as clonal populations that can diversify into multiple subclones, have revealed important evolutionary processes driving heterogeneity within a population. There are transferrable lessons that can be learnt from these studies that will help us to understand the process of intra-tumor heterogeneity in the clinical setting. In this review, we summarize drivers of microbial diversity that have been identified, such as mutation rate and environmental influences, and discuss how knowledge gained from microbial experimental evolution studies may guide us to identify and understand important selective factors that promote intra-tumor heterogeneity. Furthermore, we discuss how these factors could be used to direct and optimize research efforts to improve patient care, focusing on therapeutic resistance. Finally, we emphasize the need for longitudinal studies to address the impact of these potential tumor heterogeneity-promoting factors on drug resistance, metastatic potential and clinical outcome. PMID:24267946

  11. Biotic and abiotic reduction and solubilization of Pu(IV)O₂•xH₂O(am) as affected by anthraquinone-2,6-disulfonate (AQDS) and ethylenediaminetetraacetate (EDTA).

    PubMed

    Plymale, Andrew E; Bailey, Vanessa L; Fredrickson, James K; Heald, Steve M; Buck, Edgar C; Shi, Liang; Wang, Zheming; Resch, Charles T; Moore, Dean A; Bolton, Harvey

    2012-02-21

    This study measured reductive solubilization of plutonium(IV) hydrous oxide (Pu(IV)O(2)·xH(2)O((am))) with hydrogen (H(2)) as electron donor, in the presence or absence of dissimilatory metal-reducing bacteria (DMRB), anthraquinone-2,6-disulfonate (AQDS), and ethylenediaminetetraacetate (EDTA). In PIPES buffer at pH 7 with excess H(2), Shewanella oneidensis and Geobacter sulfurreducens both solubilized <0.001% of 0.5 mM Pu(IV)O(2)·xH(2)O((am)) over 8 days, with or without AQDS. However, Pu((aq)) increased by an order of magnitude in some treatments, and increases in solubility were associated with production of Pu(III)((aq)). The solid phase of these treatments contained Pu(III)(OH)(3(am)), with more in the DMRB treatments compared with abiotic controls. In the presence of EDTA and AQDS, PuO(2)·xH(2)O((am)) was completely solubilized by S. oneidensis and G. sulfurreducens in ∼24 h. Without AQDS, bioreductive solubilization was slower (∼22 days) and less extensive (∼83-94%). In the absence of DMRB, EDTA facilitated reductive solubilization of 89% (without AQDS) to 98% (with AQDS) of the added PuO(2)·xH(2)O((am)) over 418 days. An in vitro assay demonstrated electron transfer to PuO(2)·xH(2)O((am)) from the S. oneidensis outer-membrane c-type cytochrome MtrC. Our results (1) suggest that PuO(2)·xH(2)O((am)) reductive solubilization may be important in reducing environments, especially in the presence of complexing ligands and electron shuttles, (2) highlight the environmental importance of polynuclear, colloidal Pu, (3) provide additional evidence that Pu(III)-EDTA is a more likely mobile form of Pu than Pu(IV)-EDTA, and (4) provide another example of outer-membrane cytochromes and electron-shuttling compounds facilitating bioreduction of insoluble electron acceptors in geologic environments.

  12. Electroanalysis of microbial anodes for bioelectrochemical systems: basics, progress and perspectives.

    PubMed

    Rimboud, M; Pocaznoi, D; Erable, B; Bergel, A

    2014-08-21

    Over about the last ten years, microbial anodes have been the subject of a huge number of fundamental studies dealing with an increasing variety of possible application domains. Out of several thousands of studies, only a minority have used 3-electrode set-ups to ensure well-controlled electroanalysis conditions. The present article reviews these electroanalytical studies with the admitted objective of promoting this type of investigation. A first recall of basics emphasises the advantages of the 3-electrode set-up compared to microbial fuel cell devices if analytical objectives are pursued. Experimental precautions specifically relating to microbial anodes are then noted and the existing experimental set-ups and procedures are reviewed. The state-of-the-art is described through three aspects: the effect of the polarisation potential on the characteristics of microbial anodes, the electroanalytical techniques, and the electrode. We hope that the final outlook will encourage researchers working with microbial anodes to strengthen their engagement along the multiple exciting paths of electroanalysis.

  13. Microbial exudate promoted dissolution and transformation of chromium containing minerals

    NASA Astrophysics Data System (ADS)

    Saad, E. M.; Sun, J.; Tang, Y.

    2015-12-01

    Because of its utility in many industrial processes, chromium has become the second most common metal contaminant in the United States. The two most common oxidation states of chromium in nature are Cr(III), which is highly immobile, and Cr(VI), which is highly mobile and toxic. In both natural and engineered environments, the most common remediation of Cr(VI) is through reduction, which results in chromium sequestration in the low solubility mixed Cr(III)-Fe(III) (oxy)hydroxide phases. Consequently, the stability of these minerals must be examined to assess the fate of chromium in the subsurface. We examined the dissolution of mixed Cr(III)-Fe(III) (oxy)hydroxides in the presence of common microbial exudates, including the siderophore desferrioxamine B (DFOB; a common organic ligand secreted by most microbes with high affinity for ferric iron and other trivalent metal ions) and oxalate (a common organic acid produced by microbes). The solids exhibited incongruent dissolution with preferential leaching of Fe from the solid phase. Over time, this leads to a more Cr rich mineral, which is known to be more soluble than the corresponding mixed mineral phase. We are currently investigating the structure of the reacted mineral phases and soluble Cr(III) species, as well as the potential oxidation and remobilization of the soluble Cr species. Results from this study will provide insights regarding the long term transport and fate of chromium in the natural environment in the presence of microbial activities.

  14. Sequential hydrophile and lipophile solubilization as an efficient method for decellularization of porcine aortic valve leaflets: Structure, mechanical property and biocompatibility study.

    PubMed

    Qiao, Wei-Hua; Liu, Peng; Hu, Dan; Al Shirbini, Mahmoud; Zhou, Xian-Ming; Dong, Nian-Guo

    2018-02-01

    Antigenicity of xenogeneic tissues is the major obstacle to increased use of these materials in clinical medicine. Residual xenoantigens in decellularized tissue elicit the immune response after implantation, causing graft failure. With this in mind, the potential use is proposed of three protein solubilization-based protocols for porcine aortic valve leaflets decellularization. It was demonstrated that hydrophile solubilization alone achieved incomplete decellularization; lipophile solubilization alone (LSA) completely removed all cells and two most critical xenoantigens - galactose-α(1,3)-galactose (α-Gal) and major histocompatibility complex I (MHC I) - but caused severe alterations of the structure and mechanical properties; sequential hydrophile and lipophile solubilization (SHLS) resulted in a complete removal of cells, α-Gal and MHC I, and good preservation of the structure and mechanical properties. In contrast, a previously reported method using Triton X-100, sodium deoxycholate and IGEPAL CA-630 resulted in a complete removal of all cells and MHC I, but with remaining α-Gal epitope. LSA- and SHLS-treated leaflets showed significantly reduced leucocyte activation (polymorphonuclear elastase) upon interaction with human blood in vitro. When implanted subdermally in rats for 6 weeks, LSA- or SHLS-treated leaflets were presented with more biocompatible implants and all four decellularized leaflets were highly resistant to calcification. These findings illustrate that the SHLS protocol could be considered as a promising decellularization method for the decellularization of xenogeneic tissues in tissue engineering and regenerative medicine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Characterization of plant-growth promoting diazotrophic bacteria isolated from field grown Chinese cabbage under different fertilization conditions.

    PubMed

    Yim, Woo-Jong; Poonguzhali, Selvaraj; Madhaiyan, Munusamy; Palaniappan, Pitchai; Siddikee, M A; Sa, Tongmin

    2009-04-01

    Diazotrophic bacteria isolated from the rhizosphere of Chinese cabbage were assessed for other plant growth promoting characteristics viz., production of IAA, ethylene, ACC deaminase, phosphate solubilization, and gnotobiotic root elongation. Their effect on inoculation to Chinese cabbage was also observed under growth chamber conditions. A total of 19 strains that showed higher nitrogenase activity identified by 16S rRNA gene sequence analysis were found to be the members of the genera Pseudomonas and Agrobacterium belonging to alpha- and gamma-Proteobacteria groups. These strains were also efficient in producing IAA and ACC deaminase though they produced low levels of ethylene and no phosphate solubilization. In addition, inoculation of selected diazotrophic bacterial strains significantly increased seedling length, dry weight, and total nitrogen when compared to uninoculated control. The colonization of crop plants by diazotrophic bacteria can be affected by many biotic and abiotic factors, and further studies are oriented towards investigating the factors that could influence the establishment of a selected bacterial community.

  16. Potential of Finger Millet Indigenous Rhizobacterium Pseudomonas sp. MSSRFD41 in Blast Disease Management-Growth Promotion and Compatibility With the Resident Rhizomicrobiome.

    PubMed

    Sekar, Jegan; Raju, Kathiravan; Duraisamy, Purushothaman; Ramalingam Vaiyapuri, Prabavathy

    2018-01-01

    Finger millet [ Eleusine coracona (L). Gaertner] "Ragi" is a nutri-cereal with potential health benefits, and is utilized solely for human consumption in semi-arid regions of Asia and Africa. It is highly vulnerable to blast disease caused by Pyricularia grisea , resulting in 50-100% yield loss. Chemical fungicides are used for the management of blast disease, but with great safety concern. Alternatively, bioinoculants are widely used in promoting seedling efficiency, plant biomass, and disease control. Little is known about the impact of introduced indigenous beneficial rhizobacteria on the rhizosphere microbiota and growth promotion in finger millet. Strain MSSRFD41 exhibited a 22.35 mm zone of inhibition against P. grisea , produces antifungal metabolites, siderophores, hydrolytic enzymes, and IAA, and solubilizes phosphate. Environmental SEM analysis indicated the potential of MSSRFD41 to inhibit the growth of P. grisea by affecting cellular functions, which caused deformation in fungal hyphae. Bioprimed finger millet seeds exhibited significantly higher levels of germination, seedling vigor index, and enhanced shoot and root length compared to control seeds. Cross streaking and RAPD analysis showed that MSSRFD41 is compatible with different groups of rhizobacteria and survived in the rhizosphere. In addition, PLFA analysis revealed no significant difference in microbial biomass between the treated and control rhizosphere samples. Field trials showed that MSSRFD41 treatment significantly reduced blast infestation and enhanced plant growth compared to other treatments. A liquid formulated MSSRFD41 product maintained shelf life at an average of 10 8 CFU ml -1 over 150 days of storage at 25°C. Overall, results from this study demonstrated that Pseudomonas sp. MSSRFD41, an indigenous rhizobacterial strain, is an alternative, effective, and sustainable resource for the management of P. grisea infestation and growth promotion of finger millet.

  17. Potential of Finger Millet Indigenous Rhizobacterium Pseudomonas sp. MSSRFD41 in Blast Disease Management—Growth Promotion and Compatibility With the Resident Rhizomicrobiome

    PubMed Central

    Sekar, Jegan; Raju, Kathiravan; Duraisamy, Purushothaman; Ramalingam Vaiyapuri, Prabavathy

    2018-01-01

    Finger millet [Eleusine coracona (L). Gaertner] “Ragi” is a nutri-cereal with potential health benefits, and is utilized solely for human consumption in semi-arid regions of Asia and Africa. It is highly vulnerable to blast disease caused by Pyricularia grisea, resulting in 50–100% yield loss. Chemical fungicides are used for the management of blast disease, but with great safety concern. Alternatively, bioinoculants are widely used in promoting seedling efficiency, plant biomass, and disease control. Little is known about the impact of introduced indigenous beneficial rhizobacteria on the rhizosphere microbiota and growth promotion in finger millet. Strain MSSRFD41 exhibited a 22.35 mm zone of inhibition against P. grisea, produces antifungal metabolites, siderophores, hydrolytic enzymes, and IAA, and solubilizes phosphate. Environmental SEM analysis indicated the potential of MSSRFD41 to inhibit the growth of P. grisea by affecting cellular functions, which caused deformation in fungal hyphae. Bioprimed finger millet seeds exhibited significantly higher levels of germination, seedling vigor index, and enhanced shoot and root length compared to control seeds. Cross streaking and RAPD analysis showed that MSSRFD41 is compatible with different groups of rhizobacteria and survived in the rhizosphere. In addition, PLFA analysis revealed no significant difference in microbial biomass between the treated and control rhizosphere samples. Field trials showed that MSSRFD41 treatment significantly reduced blast infestation and enhanced plant growth compared to other treatments. A liquid formulated MSSRFD41 product maintained shelf life at an average of 108 CFU ml−1 over 150 days of storage at 25°C. Overall, results from this study demonstrated that Pseudomonas sp. MSSRFD41, an indigenous rhizobacterial strain, is an alternative, effective, and sustainable resource for the management of P. grisea infestation and growth promotion of finger millet. PMID:29875748

  18. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity

    PubMed Central

    Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-01-01

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. PMID:26337878

  19. Evaluation of the plant-growth-promoting abilities of endophytic bacteria from the psammophyte Ammodendron bifolium.

    PubMed

    Zhu, Yanlei; She, Xiaoping

    2018-04-01

    The objective of this study was to assess the plant-growth-promoting abilities of 45 endophytic bacterial isolates from Ammodendron bifolium through physiological characteristics detection and endophytic bacteria-plant interaction. Each of these isolates exhibited 1 or more plant-growth-promoting traits, but only 11 isolates belonging to the genera Bacillus, Staphylococcus, and Kocuria were capable of promoting seed germination and radicle growth. These results together with the results of the correlation analysis revealed that the completion of seed germination may not be due to IAA production, phosphate solubilization, pellicle formation, and ACC deaminase, protease and lipase production by endophytic bacteria, but may be closely related to amylase and cellulase production. Further, endophytic bacterial isolates with plant-growth-promoting traits may also provide beneficial effects to host plants at different growth stages. Thus, these results are of value for understanding the ecological roles of endophytic bacteria in host plant habitats and can serve as a foundation for further studies of their potential in plant regeneration.

  20. The contribution of microbial biotechnology to economic growth and employment creation.

    PubMed

    Timmis, Kenneth; de Lorenzo, Victor; Verstraete, Willy; Ramos, Juan Luis; Danchin, Antoine; Brüssow, Harald; Singh, Brajesh K; Timmis, James Kenneth

    2017-09-01

    Our communication discusses the profound impact of bio-based economies - in particular microbial biotechnologies - on SDG 8: Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all. A bio-based economy provides significant potential for improving labour supply, education and investment, and thereby for substantially increasing the demographic dividend. This, in turn, improves the sustainable development of economies. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Metabolic Network Modeling for Computer-Aided Design of Microbial Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Nelson, William C.; Lee, Joon-Yong

    Interest in applying microbial communities to biotechnology continues to increase. Successful engineering of microbial communities requires a fundamental shift in focus from enhancing metabolic capabilities in individual organisms to promoting synergistic interspecies interactions. This goal necessitates in silico tools that provide a predictive understanding of how microorganisms interact with each other and their environments. In this regard, we highlight a need for a new concept that we have termed biological computer-aided design of interactions (BioCADi). We ground this discussion within the context of metabolic network modeling.

  2. Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.

    PubMed

    Biffinger, Justin C; Byrd, Jacqueline N; Dudley, Breanna L; Ringeisen, Bradley R

    2008-01-18

    Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the presence of oxygen, power densities of 270+/-10, 350+/-20, and 120+/-10 W/m(3) were recorded from the mini-MFC for glucose, fructose, and ascorbic acid electron donors, respectively, while sucrose and acetate produced no response. The power produced from glucose decreased considerably (microbial anolytes under diverse environmental conditions.

  3. Enhanced solubilization of curcumin in mixed surfactant vesicles.

    PubMed

    Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K

    2016-05-15

    Self-assemblies of equimolar double and single chain mixed ionic surfactants, with increasing numbers of carbon atoms of double chain surfactant, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed surfactant systems. Mixed surfactant assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed surfactant formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Present and future medical applications of microbial exopolysaccharides

    PubMed Central

    Moscovici, Misu

    2015-01-01

    Microbial exopolysaccharides (EPS) have found outstanding medical applications since the mid-20th century, with the first clinical trials on dextran solutions as plasma expanders. Other EPS entered medicine firstly as conventional pharmaceutical excipients (e.g., xanthan – as suspension stabilizer, or pullulan – in capsules and oral care products). Polysaccharides, initially obtained from plant or animal sources, became easily available for a wide range of applications, especially when they were commercially produced by microbial fermentation. Alginates are used as anti-reflux, dental impressions, or as matrix for tablets. Hyaluronic acid and derivatives are used in surgery, arthritis treatment, or wound healing. Bacterial cellulose is applied in wound dressings or scaffolds for tissue engineering. The development of drug controlled-release systems and of micro- and nanoparticulated ones, has opened a new era of medical applications for biopolymers. EPS and their derivatives are well-suited potentially non-toxic, biodegradable drug carriers. Such systems concern rating and targeting of controlled release. Their large area of applications is explained by the available manifold series of derivatives, whose useful properties can be thereby controlled. From matrix inclusion to conjugates, different systems have been designed to solubilize, and to assure stable transport in the body, target accumulation and variable rate-release of a drug substance. From controlled drug delivery, EPS potential applications expanded to vaccine adjuvants and diagnostic imaging systems. Other potential applications are related to the bioactive (immunomodulator, antitumor, antiviral) characteristics of EPS. The numerous potential applications still wait to be developed into commercial pharmaceuticals and medical devices. Based on previous and recent results in important medical-pharmaceutical domains, one can undoubtedly state that EPS medical applications have a broad future ahead

  5. Connecting the Dots: Could Microbial Translocation Explain Commonly Reported Symptoms in HIV Disease?

    PubMed Central

    Wilson, Natalie L.; Vance, David E.; Moneyham, Linda D.; Raper, James L.; Mugavero, Michael J.; Heath, Sonya L.; Kempf, Mirjam-Colette

    2017-01-01

    Microbial translocation within the context of HIV disease has been described as one of the contributing causes of inflammation and disease progression in HIV infection. HIV-associated symptoms have been related to inflammatory markers and sCD14, a surrogate marker for microbial translocation, suggesting a plausible link between microbial translocation and symptom burden in HIV disease. Similar pathophysiological responses and symptoms have been reported in inflammatory bowel disease. We provide a comprehensive review of microbial translocation, HIV-associated symptoms, and symptoms connected with inflammation. We identify studies showing a relationship among inflammatory markers, sCD14, and symptoms reported in HIV disease. A conceptual framework and rationale to investigate the link between microbial translocation and symptoms is presented. The impact of inflammation on symptoms supports recommendations to reduce inflammation as part of HIV symptom management. Research in reducing microbial translocation-induced inflammation is limited, but needed, to further promote positive health outcomes among HIV-infected patients. PMID:25305025

  6. Connecting the dots: could microbial translocation explain commonly reported symptoms in HIV disease?

    PubMed

    Wilson, Natalie L; Vance, David E; Moneyham, Linda D; Raper, James L; Mugavero, Michael J; Heath, Sonya L; Kempf, Mirjam-Colette

    2014-01-01

    Microbial translocation within the context of HIV disease has been described as one of the contributing causes of inflammation and disease progression in HIV infection. HIV-associated symptoms have been related to inflammatory markers and sCD14, a surrogate marker for microbial translocation, suggesting a plausible link between microbial translocation and symptom burden in HIV disease. Similar pathophysiological responses and symptoms have been reported in inflammatory bowel disease. We provide a comprehensive review of microbial translocation, HIV-associated symptoms, and symptoms connected with inflammation. We identify studies showing a relationship among inflammatory markers, sCD14, and symptoms reported in HIV disease. A conceptual framework and rationale to investigate the link between microbial translocation and symptoms is presented. The impact of inflammation on symptoms supports recommendations to reduce inflammation as part of HIV symptom management. Research in reducing microbial translocation-induced inflammation is limited, but needed, to further promote positive health outcomes among HIV-infected patients. Published by Elsevier Inc.

  7. Effect of hydrothermal pre-treatment (HTP) on poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion.

    PubMed

    Park, Seyong; Yoon, Young-Man; Han, Seong Kuk; Kim, Daegi; Kim, Ho

    2017-06-01

    This study is an assessment of the hydrothermal pre-treatment (HTP) of poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. This assessment was carried out to ascertain the optimal HTP temperature. The solubilization and physical properties efficacy was investigated by capillary suction time (CST), time to filter (TTF), and particle size. In addition, the anaerobic digestion was investigated through biochemical methane potential (BMP) tests and subsequent statistical analysis using the modified Gompertz model. HTP was found to have improved the solubilization of the PSW sludge with increasing HTP temperature. In addition, the results of the CST, TTF, and particle size decreased with increasing HTP temperature. These results of the assessment that was conducted in this study confirm that the HTP process indeed modifies the physical properties of PSWs to enhance the solubilization of organic solids. Nevertheless, the results of the BMP tests and the modified Gompertz model analysis show that the optimal HTP temperature of PSWs for anaerobic digestion is 190°C. These findings show that to achieve high conversion efficiency, an accurately designed pre-treatment step must be included in the overall anaerobic digestion process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Core element characterization of Rhodococcus promoters and development of a promoter-RBS mini-pool with different activity levels for efficient gene expression.

    PubMed

    Jiao, Song; Yu, Huimin; Shen, Zhongyao

    2018-09-25

    To satisfy the urgent demand for promoter engineering that can accurately regulate the metabolic circuits and expression of specific genes in the Rhodococcus microbial platform, a promoter-ribosome binding site (RBS) coupled mini-pool with fine-tuning of different activity levels was successfully established. Transcriptome analyses of R. ruber TH revealed several representative promoters with different activity levels, e.g., Pami, Pcs, Pnh, P50sl36, PcbiM, PgroE and Pniami. β-Galactosidase (LacZ) reporter measurement demonstrated that different gene expression levels could be obtained with these natural promoters combined with an optimal RBS of ami. Further use of these promoters to overexpress the nitrile hydratase (NHase) gene with RBSami in R. ruber THdAdN produced different expression levels consistent with the transcription analyses. The -35 and -10 core elements of different promoters were further analyzed, and the conserved sequences were revealed to be TTGNNN and (T/C)GNNA(A/C)AAT. By mutating the core elements of the strong promoters, Pnh and Pami, into the above consensus sequence, two even stronger promoters, PnhM and PamiM, were obtained with 2.2-fold and 7.7-fold improvements in transcription, respectively. Integrating several strategies, including transcriptome promoter screening, -35 and -10 core element identification, core element point-mutation, RBS optimization and diverse reporter verification, a fine-tuning promoter-RBS combination mini-pool with different activity levels in Rhodococcus strains was successfully established. This development is significant for broad applications of the Rhodococcus genus as a microbial platform. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Solubilization and partial purification of constituents of acyl-CoA elongase from Lunaria annua.

    PubMed

    Fehling, E; Lessire, R; Cassagne, C; Mukherjee, K D

    1992-06-05

    All the constituent enzymes of acyl-CoA elongase, i.e., beta-ketoacyl-CoA synthase, beta-ketoacyl-CoA reductase, beta-hydroxyacyl-CoA dehydrase and trans-2-enoyl-CoA reductase, have been solubilized from a 15,000 x g particulate fraction from developing seeds of honesty (Lunaria annua) using Triton X-100. All these activities were retained upon subsequent precipitation of the solubilized protein with polyethylene glycol and resuspension of the precipitate followed by ion exchange chromatography of the resulting protein on DEAE-cellulose. A 4.2-fold enrichment of the acyl-CoA elongase was thus obtained. Further chromatography of the DEAE fraction containing all the constituents of acyl-CoA elongase on Ultrogel yielded a major protein fraction exhibiting the activities of beta-ketoacyl-CoA synthase and beta-ketoacyl-CoA reductase only. Almost 30-fold purification of the beta-ketoacyl-CoA synthase was thus achieved. The beta-ketoacyl-CoA synthase was inhibited only at high concentrations of cerulenin, but at very low concentrations of iodoacetamide. Inhibition could be reduced by preincubation with thioesters, indicating that an enzyme thioester intermediate is involved in the condensation reaction of the acyl-CoA elongation.

  10. Structure and characteristics of acid and pepsin-solubilized collagens from the skin of cobia (Rachycentron canadum).

    PubMed

    Zeng, Shaokui; Yin, Juanjuan; Yang, Shuqi; Zhang, Chaohua; Yang, Ping; Wu, Wenlong

    2012-12-01

    Acid-solubilized collagen (ASC) and pepsin-solubilized collagen (PSC) were extracted from the skin of cobia (Rachycentron canadum). The yields of ASC and PSC were 35.5% and 12.3%, respectively. Based on the protein patterns and carboxymethyl-cellulose chromatography, ASC and PSC were composed of α1α2α3 heterotrimers and were characterised as type I collagen with no disulfide bond. Their amounts of imino acids were 203 and 191 residues per 1000 residues, respectively. LC-MS/MS analysis demonstrated the high sequences similarities of ASC and PSC. Fourier transform infrared spectroscopy spectra showed that the amide I, II and III peaks of PSC were obtained at a lower wave number compared with ASC. The thermal denaturation temperatures of ASC and PSC, as measured by viscometry, were 34.62 and 33.97°C, respectively. The transition temperatures (T(max)) were 38.17 and 36.03°C, respectively, as determined by differential scanning calorimetry (DSC). Both collagens were soluble at acidic pH and below 2% (w/v) NaCl concentration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Differential solubilization of inner plasma membrane leaflet components by Lubrol WX and Triton X-100.

    PubMed

    Delaunay, Jean-Louis; Breton, Michelyne; Trugnan, Germain; Maurice, Michèle

    2008-01-01

    A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 degrees C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.

  12. Cigarette Smoke, Bacteria, Mold, Microbial Toxins, and Chronic Lung Inflammation

    PubMed Central

    Pauly, John L.; Paszkiewicz, Geraldine

    2011-01-01

    Chronic inflammation associated with cigarette smoke fosters malignant transformation and tumor cell proliferation and promotes certain nonneoplastic pulmonary diseases. The question arises as to whether chronic inflammation and/or colonization of the airway can be attributed, at least in part, to tobacco-associated microbes (bacteria, fungi, and spores) and/or microbial toxins (endotoxins and mycotoxins) in tobacco. To address this question, a literature search of documents in various databases was performed. The databases included PubMed, Legacy Tobacco Documents Library, and US Patents. This investigation documents that tobacco companies have identified and quantified bacteria, fungi, and microbial toxins at harvest, throughout fermentation, and during storage. Also characterized was the microbial flora of diverse smoking and smokeless tobacco articles. Evidence-based health concerns expressed in investigations of microbes and microbial toxins in cigarettes, cigarette smoke, and smokeless tobacco products are reasonable; they warrant review by regulatory authorities and, if necessary, additional investigation to address scientific gaps. PMID:21772847

  13. Effects of rapeseed meal fiber content on phosphorus and calcium digestibility in growing pigs fed diets without or with microbial phytase.

    PubMed

    Bournazel, M; Lessire, M; Duclos, M J; Magnin, M; Même, N; Peyronnet, C; Recoules, E; Quinsac, A; Labussière, E; Narcy, A

    2018-01-01

    does not largely increase nutrient digestibility although dRSM seems to improve the efficacy of microbial phytase in releasing phosphate in the stomach. Moreover, dietary fiber may affect solubilization process in the cecum which potentiates the effect of microbial phytase on P digestibility.

  14. Specific immunization of mice against Leishmania mexicana amazonensis using solubilized promastigotes

    NASA Technical Reports Server (NTRS)

    Barral-Netto, M.; Sadigursky, M.; Reed, S. G.; Sonnenfeld, G.

    1987-01-01

    In this work, it was demonstrated that mice (BALB/c strain) highly susceptible to Leishmania mexicana amazonensis can be protected against infection by this parasite by being preimmunized with whole solubilized (in a buffer that contained EDTA, NP-40, and SDS) promastigotes; the use of adjuvant or intact inactivated parasite cells is shown to be not necessary. The best immunization schedule consisted of three intravenous injections of 5 x 10 to the 7th parasite equivalents, administered one to eight weeks before infection. Immunized mice exhibited a marked inhibition of primary lesion development, reduced numbers of parasites in the spleen, and reduced death rate.

  15. Microbial community succession in alkaline, saline bauxite residue: a cross-refinery study

    NASA Astrophysics Data System (ADS)

    Santini, T.; Malcolm, L. I.; Tyson, G. W.; Warren, L. A.

    2015-12-01

    Bauxite residue, a byproduct of the Bayer process for alumina refining, is an alkaline, saline tailings material that is generally considered to be inhospitable to microbial life. In situ remediation strategies promote soil formation in bauxite residue by enhancing leaching of saline, alkaline pore water, and through incorporation of amendments to boost organic matter content, decrease pH, and improve physical structure. The amelioration of chemical and physical conditions in bauxite residue is assumed to support diversification of microbial communities from narrow, poorly functioning microbial communities towards diverse, well-functioning communities. This study aimed to characterise microbial communities in fresh and remediated bauxite residues from refineries worldwide, to identify (a) whether initial microbial communities differed between refineries; (b) major environmental controls on microbial community composition; and (c) whether remediation successfully shifts the composition of microbial communities in bauxite residue towards those found in reference (desired endpoint) soils. Samples were collected from 16 refineries and characterised using 16S amplicon sequencing to examine microbial community composition and structure, in conjunction with physicochemical analyses. Initial microbial community composition was similar across refineries but partitioned into two major groups. Microbial community composition changes slowly over time and indicates that alkalinity and salinity inhibit diversification. Microbially-based strategies for in situ remediation should consider the initial microbial community composition and whether the pre-treatment of chemical properties would optimise subsequent bioremediation outcomes. During in situ remediation, microbial communities become more diverse and develop wider functional capacity, indicating progression towards communities more commonly observed in natural grassland and forest soils.

  16. [The plant growth-promoting rhizobacterium Arthrobacter agilis UMCV2 endophytically colonizes Medicago truncatula].

    PubMed

    Aviles-Garcia, Maria Elizabeth; Flores-Cortez, Idolina; Hernández-Soberano, Christian; Santoyo, Gustavo; Valencia-Cantero, Eduardo

    Arthrobacter agilis UMCV2 is a rhizosphere bacterium that promotes legume growth by solubilization of iron, which is supplied to the plant. A second growth promotion mechanism produces volatile compounds that stimulate iron uptake activities. Additionally, A. agilis UMCV2 is capable of inhibiting the growth of phytopathogens. A combination of quantitative polymerase chain reaction and fluorescence in situ hybridization techniques were used here to detect and quantify the presence of the bacterium in the internal tissues of the legume Medicago truncatula. Our results demonstrate that A. agilis UMCV2 behaves as an endophytic bacterium of M. truncatula, particularly in environments where iron is available. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Differential sensitivity of total and active soil microbial communities to drought and forest management.

    PubMed

    Bastida, Felipe; Torres, Irene F; Andrés-Abellán, Manuela; Baldrian, Petr; López-Mondéjar, Rubén; Větrovský, Tomáš; Richnow, Hans H; Starke, Robert; Ondoño, Sara; García, Carlos; López-Serrano, Francisco R; Jehmlich, Nico

    2017-10-01

    Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial

  18. Ileal and cecal microbial populations in broilers given specific essential oil blends and probiotics in two consecutive grow-outs

    USDA-ARS?s Scientific Manuscript database

    Digestive microbial populations (MP) are key components for sustained healthy broiler production. Specific essential oil (EO) blends and probiotics used as feed additives have shown to promote healthy digestive microbials, resulting in improved poultry production. Two consecutive experiments were ...

  19. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production

    PubMed Central

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants. PMID:27014244

  20. System and method for preparing near-surface heavy oil for extraction using microbial degradation

    DOEpatents

    Busche, Frederick D [Highland Village, TX; Rollins, John B [Southlake, TX; Noyes, Harold J [Golden, CO; Bush, James G [West Richland, WA

    2011-04-12

    A system and method for enhancing the recovery of heavy oil in an oil extraction environment by feeding nutrients to a preferred microbial species (bacteria and/or fungi). A method is described that includes the steps of: sampling and identifying microbial species that reside in the oil extraction environment; collecting fluid property data from the oil extraction environment; collecting nutrient data from the oil extraction environment; identifying a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the oil extraction environment.

  1. Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing.

    PubMed

    Pangallo, Domenico; Chovanová, Katarina; Simonovicová, Alexandra; Ferianc, Peter

    2009-03-01

    This study deals with establishing the characteristics of a microbial community isolated from indoor artworks and the surrounding air environment. It is one of the few studies on microbial degradation of indoor artworks. It shows the potential biodegradative risk that can occur if artworks are not exhibited and conserved in an appropriate environment. The microbial community isolated from the indoor artworks and air environment was examined by cultural and molecular methods. Different plate assays were used to screen the biodegradative activity of the isolated microflora: Remazol Brilliant Blue R, phenol red, and Azure B for the ligninolytic properties; Ostazin brilliant red H-3B for cellulose degradation; CaCO3 glucose agar for solubilization activity; and B4 agar for biomineralization. To type the bacterial and fungal isolates, 2 PCR methods, repetitive extragenic palindromes (REP) and random amplified microsatellite polymorphisms (RAMP) were used. The art objects were principally colonized by fungi. The most commonly isolated strains were represented by hyphomycetes of the genera Penicillium, Aspergillus, Cladosporium, and Chaetomium. Members of these genera showed intensive biodegradation activity, both on wood and on stone. Bacteria were predominant in the air, exhibiting complex communities, both in the air and on the artworks. The most frequently isolated genera were Bacillus and Staphylococcus with extensive biodegradation abilities. REP-PCR revealed high variability within strains belonging to the same genus. RAMP is a new PCR-based method, used in this research for the first time to cluster the microfilamentous fungi and to characterize and select especially Penicillium and Aspergillus strains, which were isolated in a large number.

  2. Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67.

    PubMed

    Wagh, Jitendra; Shah, Sonal; Bhandari, Praveena; Archana, G; Kumar, G Naresh

    2014-06-01

    Gluconic acid secretion mediated by the direct oxidation of glucose by pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) is responsible for mineral phosphate solubilization in Gram-negative bacteria. Herbaspirillum seropedicae Z67 (ATCC 35892) genome encodes GDH apoprotein but lacks genes for the biosynthesis of its cofactor PQQ. In this study, pqqE of Erwinia herbicola (in plasmid pJNK1) and pqq gene clusters of Pseudomonas fluorescens B16 (pOK53) and Acinetobacter calcoaceticus (pSS2) were over-expressed in H. seropedicae Z67. Transformants Hs (pSS2) and Hs (pOK53) secreted micromolar levels of PQQ and attained high GDH activity leading to secretion of 33.46 mM gluconic acid when grown on 50 mM glucose while Hs (pJNK1) was ineffective. Hs (pJNK1) failed to solubilize rock phosphate, while Hs (pSS2) and Hs (pOK53) liberated 125.47 μM and 168.07 μM P, respectively, in minimal medium containing 50 mM glucose under aerobic conditions. Moreover, under N-free minimal medium, Hs (pSS2) and Hs (pOK53) not only released significant P but also showed enhanced growth, biofilm formation, and exopolysaccharide (EPS) secretion. However, indole acetic acid (IAA) production was suppressed. Thus, the addition of the pqq gene cluster, but not pqqE alone, is sufficient for engineering phosphate solubilization in H. seropedicae Z67 without compromising growth under nitrogen-fixing conditions.

  3. Plant growth-promoting bacteria as inoculants in agricultural soils

    PubMed Central

    de Souza, Rocheli; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2015-01-01

    Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  4. Color me bad: microbial pigments as virulence factors

    PubMed Central

    Liu, George Y.; Nizet, Victor

    2009-01-01

    A hallmark feature of several pathogenic microbes is the distinctive color of their colonies when propagated in the clinical laboratory. Such pigmentation comes in a variety of hues, and has often proven useful in presumptive clinical diagnosis. Recent advances in microbial pigment biochemistry and the genetic basis of pigment production has sometimes revealed a more sinister aspect to these curious materials that change the color of reflected light by selective light absorbance. In many cases, the microbial pigment contributes to disease pathogenesis by interfering with host immune clearance mechanisms or by exhibiting pro-inflammatory or cytotoxic properties. Here, we review several examples of pigments that promote microbial virulence, including the golden staphyloxanthin of Staphylococcus aureus, the blue-green pyocyanin of Pseudomonas spp., and the dark brown or black melanin pigments of Cryptococcus neoformans and Aspergillus spp. Targeted pigment neutralization may represent a viable concept to enhance treatment of certain difficult infectious disease conditions. PMID:19726196

  5. Signaling in host-associated microbial communities

    PubMed Central

    Fischbach, Michael A.; Segre, Julia A.

    2016-01-01

    Human-associated microbiota form and stabilize communities based on interspecies interactions. We review how these microbe-microbe and microbe-host interactions are communicated to shape communities over a human’s lifespan, including periods of health and disease. Modeling and dissecting signaling in host-associated communities is crucial to understand their function, and will open the door to therapies that prevent or correct microbial community dysfunction to promote health and treat disease. PMID:26967294

  6. Engineering microbial consortia for controllable outputs

    PubMed Central

    Lindemann, Stephen R; Bernstein, Hans C; Song, Hyun-Seob; Fredrickson, Jim K; Fields, Matthew W; Shou, Wenying; Johnson, David R; Beliaev, Alexander S

    2016-01-01

    Much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into robust consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution global measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that, when combined with appropriate modeling frameworks, systems-level knowledge can markedly improve our ability to predict the fate and functioning of consortia. Here we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties. PMID:26967105

  7. Engineering microbial consortia for controllable outputs

    DOE PAGES

    Lindemann, Stephen R.; Bernstein, Hans C.; Song, Hyun -Seob; ...

    2016-03-11

    In this study, much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into robust consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution globalmore » measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that, when combined with appropriate modeling frameworks, systems-level knowledge can markedly improve our ability to predict the fate and functioning of consortia. Here we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties.« less

  8. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity.

    PubMed

    Gulati, Arvind; Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-09-03

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. Copyright © 2015 Gulati et al.

  9. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health

    PubMed Central

    Huang, Jing; Chen, Zhe; Nie, Yuanjun; Wang, Changbiao

    2018-01-01

    Bio-organic fertilizers (BOFs) combine functional microbes with a suitable substrate and have been shown to effectively suppress soil-borne diseases and promote plant growth. Here, we developed a novel bio-organic fertilizer (BOF) by fermentation of a cow plus chicken manure (M) compost using Fen-liquor Daqu (FLD) as a fermentation starter and compared the compositions of bacterial and fungal communities in the rhizosphere soil of watermelon plants after treatment with different fertilizers. Further, we aimed to explore the mechanisms underlying plant-promoting and disease (Fusarium wilt)-suppressing activities of each rhizosphere microbial community. The microbial communities of soil amended with cow plus chicken manure compost (S+M), soil amended with the BOF (S+BOF), and untreated control soil (S) without plants were analyzed through sequence analysis using the Illumina MiSeq platform. The results showed that a new microbial community was formed in the manure compost after fermentation by the Daqu. Application of the BOF to the soil induced remarkable changes in the rhizosphere microbial communities, with increased bacterial diversity and decreased fungal diversity. Most importantly, S+BOF showed the lowest abundance of Fusarium. Moreover, watermelon quality was higher (P < 0.05) in the S+BOF than in the S+M treatment. Thus, application of the BOF favorably altered the composition of the rhizosphere microbial community, suppressing Fusarium wilt disease and promoting plant quality. PMID:29451918

  10. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health.

    PubMed

    Zhao, Jia; Liu, Jiang; Liang, Hong; Huang, Jing; Chen, Zhe; Nie, Yuanjun; Wang, Changbiao; Wang, Yuguo

    2018-01-01

    Bio-organic fertilizers (BOFs) combine functional microbes with a suitable substrate and have been shown to effectively suppress soil-borne diseases and promote plant growth. Here, we developed a novel bio-organic fertilizer (BOF) by fermentation of a cow plus chicken manure (M) compost using Fen-liquor Daqu (FLD) as a fermentation starter and compared the compositions of bacterial and fungal communities in the rhizosphere soil of watermelon plants after treatment with different fertilizers. Further, we aimed to explore the mechanisms underlying plant-promoting and disease (Fusarium wilt)-suppressing activities of each rhizosphere microbial community. The microbial communities of soil amended with cow plus chicken manure compost (S+M), soil amended with the BOF (S+BOF), and untreated control soil (S) without plants were analyzed through sequence analysis using the Illumina MiSeq platform. The results showed that a new microbial community was formed in the manure compost after fermentation by the Daqu. Application of the BOF to the soil induced remarkable changes in the rhizosphere microbial communities, with increased bacterial diversity and decreased fungal diversity. Most importantly, S+BOF showed the lowest abundance of Fusarium. Moreover, watermelon quality was higher (P < 0.05) in the S+BOF than in the S+M treatment. Thus, application of the BOF favorably altered the composition of the rhizosphere microbial community, suppressing Fusarium wilt disease and promoting plant quality.

  11. Temperature-dependent phase behaviour of tetrahydrofuran–water alters solubilization of xylan to improve co-production of furfurals from lignocellulosic biomass

    DOE PAGES

    Smith, Micholas Dean; Cai, Charles M.; Cheng, Xiaolin; ...

    2018-03-06

    Xylose, Xylan, Hemicellulose, CELF, THF, Co-solvent, Pretreatment, Biomass ABSTRACT: Xylan is an important polysaccharide found in the hemicellulose fraction of lignocellulosic biomass that can be hydrolysed to xylose and further dehydrated to the furfural, an important renewable platform fuel precursor. Here, pairing molecular simulation and experimental evidences, we reveal how the unique temperature-dependent phase behaviour of water-tetrahydrofuran (THF) co-solvent can delay xylan solubilization to synergistically improve catalytic co-processing of biomass to furfural and 5-HMF. Our results indicate, based on polymer correlations between polymer conformational behaviour and solvent quality, that both co-solvent and aqueous environments serve as ‘good’ solvents for xylan.more » Interestingly, the simulations also revealed that unlike other cell-wall components (i.e., lignin and cellulose), the make-up of the solvation shell of xylan in THF-water is dependent on the temperature-phase behaviour. At temperatures between 333K and 418K, THF and water become immiscible, and THF is evacuated from the solvation shell of xylan, while above and below this temperature range, THF and water are both present in the polysaccharide’s solvation shell. This suggested that the solubilization of xylan in THF-water may be similar to aqueous-only solutions at temperatures between 333K and 418K and different outside this range. Experimental reactions on beachwood xylan corroborate this hypothesis by demonstrating 2-fold reduction of xylan solubilization in THF-water within a miscible temperature regime (445K) and unchanged solubilization within an immiscible regime (400K). Translating this phase-dependent behaviour to processing of maple wood chips, we demonstrate how the weaker xylan solvation in THF-water under miscible conditions can delay furfural production from xylose, allowing 5-HMF production from cellulose to “catch-up” such that their high yield production from

  12. Temperature-dependent phase behaviour of tetrahydrofuran–water alters solubilization of xylan to improve co-production of furfurals from lignocellulosic biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Micholas Dean; Cai, Charles M.; Cheng, Xiaolin

    Xylose, Xylan, Hemicellulose, CELF, THF, Co-solvent, Pretreatment, Biomass ABSTRACT: Xylan is an important polysaccharide found in the hemicellulose fraction of lignocellulosic biomass that can be hydrolysed to xylose and further dehydrated to the furfural, an important renewable platform fuel precursor. Here, pairing molecular simulation and experimental evidences, we reveal how the unique temperature-dependent phase behaviour of water-tetrahydrofuran (THF) co-solvent can delay xylan solubilization to synergistically improve catalytic co-processing of biomass to furfural and 5-HMF. Our results indicate, based on polymer correlations between polymer conformational behaviour and solvent quality, that both co-solvent and aqueous environments serve as ‘good’ solvents for xylan.more » Interestingly, the simulations also revealed that unlike other cell-wall components (i.e., lignin and cellulose), the make-up of the solvation shell of xylan in THF-water is dependent on the temperature-phase behaviour. At temperatures between 333K and 418K, THF and water become immiscible, and THF is evacuated from the solvation shell of xylan, while above and below this temperature range, THF and water are both present in the polysaccharide’s solvation shell. This suggested that the solubilization of xylan in THF-water may be similar to aqueous-only solutions at temperatures between 333K and 418K and different outside this range. Experimental reactions on beachwood xylan corroborate this hypothesis by demonstrating 2-fold reduction of xylan solubilization in THF-water within a miscible temperature regime (445K) and unchanged solubilization within an immiscible regime (400K). Translating this phase-dependent behaviour to processing of maple wood chips, we demonstrate how the weaker xylan solvation in THF-water under miscible conditions can delay furfural production from xylose, allowing 5-HMF production from cellulose to “catch-up” such that their high yield production from

  13. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.

    PubMed

    Hu, W; Li, W; Chen, J

    2017-10-01

    Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.

  14. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil.

    PubMed

    Al-Enazy, Abdul-Aziz R; Al-Oud, Saud S; Al-Barakah, Fahad N; Usman, Adel Ra

    2017-08-01

    Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg -1 ), cow manure (CM; added at 50 g kg -1 ) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability to maize plants were also investigated. Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. Applying PG with microbial inoculation improved macronutrient uptake and plant growth. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. In Vitro Reactivity of 3-M KC1-Solubilized Murine Histocompatibility (H-2) Antigens

    DTIC Science & Technology

    1974-01-01

    experiment, varying concentra- mice were immunized with DBA/2 spleen tions of cells from day 5 BALB/c sensitized cells and subsequently skin grafted . Syn... skin grafts , spleen in MLC with mitomycin-C treated DBA/2 cells were removed and cultured with spleen cells. As seen in Table 4, increasing DBA/2...was solubilized antigens were assayed for levels produced by spleen cells from animals 5 of lymphotoxin (LT), it was seen that nor- days post skin graft sensitization

  16. Use of an isoelectric solubilization/precipitation process to modify the functional properties of PSE (pale, soft, exudative)-like chicken meat protein: A mechanistic approach.

    PubMed

    Zhao, Xue; Bai, Yun; Xing, Tong; Xu, Xing-Lian; Zhou, Guanghong

    2018-05-15

    The functionality of pale, soft, exudative (PSE)-like chicken protein was improved by isoelectric solubilization/precipitation (ISP) treatment. PSE-like chicken proteins were solubilized at an acidic pH 3.5 or an alkaline pH 11.0, followed by precipitating at pH 5.5 and 6.2. PSE-like meat paste was treated as control (CON). Precipitated at pH 6.2 led to a more elastic gel than at pH 5.5. Water distribution of ISP-isolated protein was affected by precipitation pH. More tryptophan residues exposed and -SH was partially oxidized to disulfide bond after ISP treatment, which led to large aggregates formation and higher viscosity of ISP isolated proteins than of CON. Absolute zeta potential of alkali-treated protein was higher than other counterparts, indicating stronger electric repulsion. ISP treatments could convert α-helix structure to relatively irregular structures. Overall, solubilizing at pH 11.0, combined with a precipitation pH 6.2 ISP treatment offers a potential for enhanced functionality of PSE-like chicken protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Porous Silica-Supported Solid Lipid Particles for Enhanced Solubilization of Poorly Soluble Drugs.

    PubMed

    Yasmin, Rokhsana; Rao, Shasha; Bremmell, Kristen E; Prestidge, Clive A

    2016-07-01

    Low dissolution of drugs in the intestinal fluid can limit their effectiveness in oral therapies. Here, a novel porous silica-supported solid lipid system was developed to optimize the oral delivery of drugs with limited aqueous solubility. Using lovastatin (LOV) as the model poorly water-soluble drug, two porous silica-supported solid lipid systems (SSL-A and SSL-S) were fabricated from solid lipid (glyceryl monostearate, GMS) and nanoporous silica particles Aerosil 380 (silica-A) and Syloid 244FP (silica-S) via immersion/solvent evaporation. SSL particles demonstrated significantly higher rate and extent of lipolysis in comparison with the pure solid lipid, depending on the lipid loading levels and the morphology. The highest lipid digestion was observed when silica-S was loaded with 34% (w/w) solid lipid, and differential scanning calorimeter (DSC) analysis confirmed the encapsulation of up to 2% (w/w) non-crystalline LOV in this optimal SSL-S formulation. Drug dissolution under non-digesting intestinal conditions revealed a three- to sixfold increase in dissolution efficiencies when compared to the unformulated drug and a LOV-lipid suspension. Furthermore, the SSL-S provided superior drug solubilization under simulated intestinal digesting condition in comparison with the drug-lipid suspension and drug-loaded silica. Therefore, solid lipid and nanoporous silica provides a synergistic effect on optimizing the solubilization of poorly water-soluble compound and the solid lipid-based porous carrier system provides a promising delivery approach to overcome the oral delivery challenges of poorly water-soluble drugs.

  18. Digestive solubilization of sediment-associated pollutants: In vitro extraction vs. in vivo bioavailability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weston, D.P.; Mayer, L.M.

    1995-12-31

    A method using polychaete digestive fluids as a more biologically realistic extractant has recent been proposed as a means to quantify this bioavailable fraction. This work was intended to evaluate this approach with polynuclear aromatic hydrocarbons (PAH), and, in particular, to relate in vitro measures of PAH solubilization by digestive fluids to bioavailability as perceived by the whole animal. In tests with a variety of PAH-contaminated sediments, there were dramatic differences among the sediments in the amounts of PAH extracted by digestive fluids. About 50% of a PAH spike was extracted from a low organic carbon sediment during digestive fluidmore » extraction, while only 20% was extracted from a high organic carbon sediment. The relationships between these differences in PAH solubilization and true bioavailability were evaluated in polychaete bioaccumulation tests measuring PAH uptake rate coefficients and steady state body burdens. The work has also shown that desorption of PAH from ingested sediments in the whole animal approximated the quantities extracted in the in vitro tests. Moreover, desorption of PAH from ingested sediments was found to be greatest in that portion of the polychaete gut with the highest enzymatic activity and from which the digestive fluids had been collected. The digestive fluid extraction approach provides a new tool to examine digestive uptake of contaminants by manipulations that would be impossible in vivo, and may help to quantify a bioavailable contaminant fraction.« less

  19. Solubilization of flurbiprofen within non-ionic Tween 20 surfactant micelles: a 19F and 1H NMR study.

    PubMed

    Saveyn, Pieter; Cocquyt, Ellen; Zhu, Wuxin; Sinnaeve, Davy; Haustraete, Katrien; Martins, José C; Van der Meeren, Paul

    2009-07-14

    The solubilization of the poorly water soluble anti-inflammatory drug flurbiprofen in non-ionic Tween 20 surfactant micellar solutions was studied by both (19)F and (1)H NMR spectroscopy in an acidic environment. These non-destructive techniques allowed us to investigate the effect of temperature cycling in situ. Using (19)F NMR, an increased solubilisation capacity was observed as the temperature increased. This effect became more pronounced above the cloud point, which was reduced by more than 30 degrees C in the presence of an excess of flurbiprofen. Upon clouding, peak splitting was observed in the (19)F spectrum, which indicates that two pools of solubilised flurbiprofen exist that are in slow exchange on the NMR frequency timescale. The clouding and solubilization processes were found to be reversible, albeit with slow kinetics. Based on chemical shift differences of both Tween 20 and flurbiprofen, as well as NOESY experiments, the flurbiprofen was found to be accumulated within the palisade layer of the Tween 20 micelles.

  20. Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation.

    PubMed

    Li, Zhaohui; Hanlie, Hong

    2008-02-01

    A combination of surfactant solubilization with permanganate oxidation of trichloroethylene (TCE) was studied in batch, flow-through column, and three-dimensional (3-D) tank tests. Batch results showed that chloride production, an indication of TCE degradation, followed a pseudo-first-order reaction kinetics with respect to KMnO4 in the presence of free-phase TCE. A higher chloride production rate was achieved when anionic surfactants were present. The observed pseudo-first-order reaction rate constant increased as the concentrations of anionic surfactants Ninate 411 and Calfax increased from 0% to 0.1%, 0.3%, and 1.0%. Column experiments on TCE reduction by permanganate in the presence and absence of surfactants were carried out using well-sorted coarse Ottawa sand. The peak effluent TCE concentration reached 1700 mg/L due to enhanced solubilization when both sodium dodecyl sulfate (SDS) and permanganate were used, in contrast to less than 300 mg/L when only permanganate solution was used. In addition, the effluent TCE concentration decreased much faster when SDS was present in the permanganate solution, compared with the case when SDS was absent. With an initial 1 mL of TCE emplaced in the columns, the effluent TCE concentration dropped to <5mg/L after 29-31h of flushing with 1% SDS and 0.1% KMnO4 solution in contrast to 37-73 h when only 0.1% KMnO4 was used. Furthermore, KMnO4 breakthrough occurred after 21-25 h of injection when SDS was present compared with 45-70 h later when SDS was absent. A slightly higher chloride concentration was observed in the earlier stage of the column experiment and the chloride concentration decreased quickly once KMnO4 was seen in the effluent. The 3-D tank test showed that the MnO2 precipitation front formed more quickly when 1% SDS was present, which further confirmed the observation from the column study.

  1. The effect of cyclodextrin-solubilized curcuminoids on amyloid plaques in Alzheimer transgenic mice: brain uptake and metabolism after intravenous and subcutaneous injection

    PubMed Central

    2013-01-01

    Introduction Curcuminoids may improve pathological conditions associated with Alzheimer's disease. However, their therapeutic potential is limited by their exceedingly low bioavailability after oral administration. A method to deliver solubilized curcuminoids by injection was evaluated in Alzheimer transgenic mice. Methods Amyloid protein precursor (APP)SWE, PS1dE9 mice were intravenously or subcutaneously injected at weekly intervals between the ages of 4 and 12 months with serum- or cyclodextrin-solubilized curcuminoids to assess their potential for plaque prevention. Alternatively, mice between the ages of 11 and 12 months were intravenously injected with cyclodextrin-solubilized curcuminoids at biweekly intervals to evaluate their ability to eliminate existing plaques. Plasma and brain levels of curcuminoids and their metabolites were also determined after subcutaneous and intravenous injection. Results Weekly long-term injections did not result in a significant plaque load reduction. However, intravenous injection of cyclodextrin-solubilized curcuminoids at higher curcuminoid concentrations and at a biweekly frequency between the ages of 11 and 12 months reduced the plaque load to approximately 70% of the control value. After intravenous injection, plasma levels of 100 μM curcuminoids and brain levels of 47 nmol/g could initially be achieved that declined to essentially undetectable levels within 20 minutes. The primary curcuminoid metabolites in plasma were the conjugates of glucuronide or sulfate and hexahydrocurcuminoids as reduction products. In the brain, both hexahydrocurcuminoids and octahydrocurcuminoids were detected as major metabolites. After subcutaneous injection, maximal curcuminoid plasma levels of 23 μM and brain levels of 8 nmol/g were observed at 30 minutes after injection and curcuminoids remained detectable for 2 to 3 h. Conclusion Curcuminoids are rapidly metabolized after injection and their effect on reducing plaque load associated

  2. Protein recovery from rainbow trout (Oncorhynchus mykiss) processing byproducts via isoelectric solubilization/precipitation and its gelation properties as affected by functional additives.

    PubMed

    Chen, Yi-Chen; Jaczynski, Jacek

    2007-10-31

    Solubility of rainbow trout proteins was determined between pH 1.5 and 13.0 and various ionic strengths (IS). Minimum solubility occurred at pH 5.5; however, when IS = 0.2, the minimum solubility shifted toward more acidic pH. Isoelectric solubilization/precipitation was applied to trout processing byproducts (fish meat left over on bones, head, skin, etc.), resulting in protein recovery yields (Kjeldahl, dry basis) between 77.7% and 89.0%, depending of the pH used for solubilization and precipitation. The recovered protein contained 1.4-2.1% ash (dry basis), while the trout processing byproducts (i.e., starting material) 13.9%. Typical boneless and skinless trout fillets contain 5.5% ash, and therefore, the isoelectric solubilization/precipitation effectively removed impurities such as bones, scales, skin, etc., from the trout processing byproducts. The recovered proteins retained gel-forming ability as assessed with dynamic rheology, torsion test, and texture profile analysis (TPA). However, the recovered proteins failed to gel unless beef plasma protein (BPP) was added. Even with BPP, the recovered protein showed some proteolysis between 40 and 55 degrees C. Addition of potato starch, transglutaminase, and phosphate to the recovered proteins resulted in good texture of trout gels as confirmed by torsion test and TPA. Higher ( P < 0.05) shear stress and strain were measured for gels developed from basic pH treatments than the acidic counterparts. However, proteins recovered from acidic treatments had higher ( P < 0.05) lipid content than the basic treatments. This is probably why the gels from acidic treatments were whiter ( L* - 3 b*) ( P < 0.05) than those from the basic ones. Our study demonstrates that functional proteins can be efficiently recovered from low-value fish processing byproducts using isoelectric solubilization/precipitation and subsequently be used in value-added human foods.

  3. Carbon input increases microbial nitrogen demand, but not microbial nitrogen mining in boreal forest soils

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Alaei, Saeed; Bengtson, Per; Bodé, Samuel; Boeckx, Pascal; Schnecker, Jörg; Mayerhofer, Werner; Rütting, Tobias

    2016-04-01

    Plant primary production at mid and high latitudes is often limited by low soil N availability. It has been hypothesized that plants can indirectly increase soil N availability via root exudation, i.e., via the release of easily degradable organic compounds such as sugars into the soil. These compounds can stimulate microbial activity and extracellular enzyme synthesis, and thus promote soil organic matter (SOM) decomposition ("priming effect"). Even more, increased C availability in the rhizosphere might specifically stimulate the synthesis of enzymes targeting N-rich polymers such as proteins that store most of the soil N, but are too large for immediate uptake ("N mining"). This effect might be particularly important in boreal forests, where plants often maintain high primary production in spite of low soil N availability. We here tested the hypothesis that increased C availability promotes protein depolymerization, and thus soil N availability. In a laboratory incubation experiment, we added 13C-labeled glucose to a range of soil samples derived from boreal forests across Sweden, and monitored the release of CO2 by C mineralization, distinguishing between CO2 from the added glucose and from the native, unlabeled soil organic C (SOC). Using a set of 15N pool dilution assays, we further measured gross rates of protein depolymerization (the breakdown of proteins into amino acids) and N mineralization (the microbial release of excess N as ammonium). Comparing unamended control samples, we found a high variability in C and N mineralization rates, even when normalized by SOC content. Both C and N mineralization were significantly correlated to SOM C/N ratios, with high C mineralization at high C/N and high N mineralization at low C/N, suggesting that microorganisms adjusted C and N mineralization rates to the C/N ratio of their substrate and released C or N that was in excess. The addition of glucose significantly stimulated the mineralization of native SOC in soils

  4. Fungal Disease Prevention in Seedlings of Rice (Oryza sativa) and Other Grasses by Growth-Promoting Seed-Associated Endophytic Bacteria from Invasive Phragmites australis

    PubMed Central

    Verma, Satish K.; Kingsley, Kathryn L.; Bergen, Marshall S.; White, James F.

    2018-01-01

    Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil borne. Several species of Fusarium, Pythium and other water moulds cause seed rots during germination. Fusarium blights of seedlings are also very common and significantly affect seedling development. In the present study we screened nine endophytic bacteria isolated from the seeds of invasive Phragmites australis by inoculating onto rice, Bermuda grass (Cynodon dactylon), or annual bluegrass (Poa annua) seeds to evaluate plant growth promotion and protection from disease caused by Fusarium oxysporum. We found that three bacteria belonging to genus Pseudomonas spp. (SLB4-P. fluorescens, SLB6-Pseudomonas sp. and SY1-Pseudomonas sp.) promoted seedling development, including enhancement of root and shoot growth, and stimulation of root hair formation. These bacteria were also found to increase phosphate solubilization in in vitro experiments. Pseudomonas sp. (SY1) significantly protected grass seedlings from Fusarium infection. In co-culture experiments, strain SY1 strongly inhibited fungal pathogens with 85.71% growth inhibition of F. oxysporum, 86.33% growth inhibition of Curvularia sp. and 82.14% growth inhibition of Alternaria sp. Seedlings previously treated with bacteria were found much less infected by F. oxysporum in comparison to non-treated controls. On microscopic observation we found that bacteria appeared to degrade fungal mycelia actively. Metabolite products of strain SY1 in agar were also found to inhibit fungal growth on nutrient media. Pseudomonas sp. (SY1) was found to produce antifungal volatiles. Polymerase chain reaction (PCR) amplification using specific primers for pyrrolnitirin synthesis and HCN (hydrogen cyanide) production suggested presence of

  5. Fungal Disease Prevention in Seedlings of Rice (Oryza sativa) and Other Grasses by Growth-Promoting Seed-Associated Endophytic Bacteria from Invasive Phragmites australis.

    PubMed

    Verma, Satish K; Kingsley, Kathryn L; Bergen, Marshall S; Kowalski, Kurt P; White, James F

    2018-03-08

    Non-cultivated plants carry microbial endophytes that may be used to enhance development and disease resistance of crop species where growth-promoting and protective microbes may have been lost. During seedling establishment, seedlings may be infected by several fungal pathogens that are seed or soil borne. Several species of Fusarium , Pythium and other water moulds cause seed rots during germination. Fusarium blights of seedlings are also very common and significantly affect seedling development. In the present study we screened nine endophytic bacteria isolated from the seeds of invasive Phragmites australis by inoculating onto rice, Bermuda grass ( Cynodon dactylon ), or annual bluegrass ( Poa annua ) seeds to evaluate plant growth promotion and protection from disease caused by Fusarium oxysporum . We found that three bacteria belonging to genus Pseudomonas spp. (SLB4- P. fluorescens , SLB6- Pseudomonas sp. and SY1- Pseudomonas sp.) promoted seedling development, including enhancement of root and shoot growth, and stimulation of root hair formation. These bacteria were also found to increase phosphate solubilization in in vitro experiments. Pseudomonas sp. (SY1) significantly protected grass seedlings from Fusarium infection. In co-culture experiments, strain SY1 strongly inhibited fungal pathogens with 85.71% growth inhibition of F. oxysporum , 86.33% growth inhibition of Curvularia sp. and 82.14% growth inhibition of Alternaria sp. Seedlings previously treated with bacteria were found much less infected by F. oxysporum in comparison to non-treated controls. On microscopic observation we found that bacteria appeared to degrade fungal mycelia actively. Metabolite products of strain SY1 in agar were also found to inhibit fungal growth on nutrient media. Pseudomonas sp. (SY1) was found to produce antifungal volatiles. Polymerase chain reaction (PCR) amplification using specific primers for pyrrolnitirin synthesis and HCN (hydrogen cyanide) production suggested

  6. Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge.

    PubMed

    Uma Rani, R; Kaliappan, S; Adish Kumar, S; Rajesh Banu, J

    2012-12-01

    An investigation into the influence of combined alkaline and disperser pretreatment on sludge disintegration was studied. The effects of four variables, alkalines (NaOH, KOH, Ca(OH)(2)), treatment time (15-180 min), pH (8-11) and rpm (4000-24,000) were investigated. The effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. The best performances, in terms of COD solubilization, SS reduction and biogas production, were the ones that occurred for specific energy input of 4544 kJ kg(-1) TS for NaOH at pH10, were found to be 24%, 23.3% and 76%, higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein hydrolysis was also performed successfully by this combined pretreatment even at low specific energy input. Thus, this chemo-mechanical is an effective method for enhancement of biodegradability and it laid the basis to produce higher biogas quantities, to improve clean energy generation from WAS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Proteomic Analysis of Human Tendon and Ligament: Solubilization and Analysis of Insoluble Extracellular Matrix in Connective Tissues.

    PubMed

    Sato, Nori; Taniguchi, Takako; Goda, Yuichiro; Kosaka, Hirofumi; Higashino, Kosaku; Sakai, Toshinori; Katoh, Shinsuke; Yasui, Natsuo; Sairyo, Koichi; Taniguchi, Hisaaki

    2016-12-02

    Connective tissues such as tendon, ligament and cartilage are mostly composed of extracellular matrix (ECM). These tissues are insoluble, mainly due to the highly cross-linked ECM proteins such as collagens. Difficulties obtaining suitable samples for mass spectrometric analysis render the application of modern proteomic technologies difficult. Complete solubilization of them would not only elucidate protein composition of normal tissues but also reveal pathophysiology of pathological tissues. Here we report complete solubilization of human Achilles tendon and yellow ligament, which is achieved by chemical digestion combined with successive protease treatment including elastase. The digestion mixture was subjected to liquid chromatography-mass spectrometry. The low specificity of elastase was overcome by accurate mass analysis achieved using FT-ICR-MS. In addition to the detailed proteome of both tissues, we also quantitatively determine the major protein composition of samples, by measuring peak area of some characteristic peptides detected in tissue samples and in purified proteins. As a result, differences between human Achilles tendon and yellow ligament were elucidated at molecular level.

  8. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    PubMed

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p < 0.01. It was shown that the older and the biologically more stable part of city exhibited higher microbial activity levels than the more recently developed part of the city and the road areas of heavy traffic. It was concluded that the land use patterns in Beijing urban soils influenced the nature and activities of the microbial communities.

  9. Microbial Profiles and Detection Techniques in Peri-Implant Diseases: a Systematic Review

    PubMed Central

    Padial-Molina, Miguel; López-Martínez, Jesús; O’Valle, Francisco

    2016-01-01

    ABSTRACT Objectives To describe the microbial profiles of peri-implant diseases and the main detection methods. Material and Methods A literature search was performed in MEDLINE via PubMed database to identify studies on microbial composition of peri-implant surfaces in humans published in the last 5 years. Studies had to have clear implant status definition for health, peri-implant mucositis and/or peri-implantitis and specifically study microbial composition of the peri-implant sulcus. Results A total of 194 studies were screened and 47 included. Peri-implant sites are reported to be different microbial ecosystems compared to periodontal sites. However, differences between periodontal and peri-implant health and disease are not consistent across all studies, possibly due to the bias introduced by the microbial detection technique. New methods non species-oriented are being used to find ‘unexpected’ microbiota not previously described in these scenarios. Conclusions Microbial profile of peri-implant diseases usually includes classic periodontopathogens. However, correlation between studies is difficult, particularly because of the use of different detection methods. New metagenomic techniques should be promoted for future studies to avoid detection bias. PMID:27833735

  10. Uranium reduction and microbial community development in response to stimulation with different electron donors.

    PubMed

    Barlett, Melissa; Moon, Hee Sun; Peacock, Aaron A; Hedrick, David B; Williams, Kenneth H; Long, Philip E; Lovley, Derek; Jaffe, Peter R

    2012-07-01

    Stimulating microbial reduction of soluble U(VI) to less soluble U(IV) shows promise as an in situ bioremediation strategy for uranium contaminated groundwater, but the optimal electron donors for promoting this process have yet to be identified. The purpose of this study was to better understand how the addition of various electron donors to uranium-contaminated subsurface sediments affected U(VI) reduction and the composition of the microbial community. The simple electron donors, acetate or lactate, or the more complex donors, hydrogen-release compound (HRC) or vegetable oil, were added to the sediments incubated in flow-through columns. The composition of the microbial communities was evaluated with quantitative PCR probing specific 16S rRNA genes and functional genes, phospholipid fatty acid analysis, and clone libraries. All the electron donors promoted U(VI) removal, even though the composition of the microbial communities was different with each donor. In general, the overall biomass, rather than the specific bacterial species, was the factor most related to U(VI) removal. Vegetable oil and HRC were more effective in stimulating U(VI) removal than acetate. These results suggest that the addition of more complex organic electron donors could be an excellent option for in situ bioremediation of uranium-contaminated groundwater.

  11. Microbial production of value-added nutraceuticals.

    PubMed

    Wang, Jian; Guleria, Sanjay; Koffas, Mattheos Ag; Yan, Yajun

    2016-02-01

    Nutraceuticals are important natural bioactive compounds that confer health-promoting and medical benefits to humans. Globally growing demands for value-added nutraceuticals for prevention and treatment of human diseases have rendered nutraceuticals a multi-billion dollar market. However, supply limitations and extraction difficulties from natural sources such as plants, animals or fungi, restrict the large-scale use of nutraceuticals. Metabolic engineering via microbial production platforms has been advanced as an eco-friendly alternative approach for production of value-added nutraceuticals from simple carbon sources. Microbial platforms like the most widely used Escherichia coli and Saccharomyces cerevisiae have been engineered as versatile cell factories for production of diverse and complex value-added chemicals such as phytochemicals, prebiotics, polysaccaharides and poly amino acids. This review highlights the recent progresses in biological production of value-added nutraceuticals via metabolic engineering approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A conceptual framework for invasion in microbial communities.

    PubMed

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin; Hammes, Frederik; Johnson, David; Quintela-Baluja, Marcos; Graham, David; Daffonchio, Daniele; Fodelianakis, Stilianos; Hahn, Nicole; Boon, Nico; Smets, Barth F

    2016-12-01

    There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process.

  13. A conceptual framework for invasion in microbial communities

    PubMed Central

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin; Hammes, Frederik; Johnson, David; Quintela-Baluja, Marcos; Graham, David; Daffonchio, Daniele; Fodelianakis, Stilianos; Hahn, Nicole; Boon, Nico; Smets, Barth F

    2016-01-01

    There is a growing interest in controlling—promoting or avoiding—the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process. PMID:27137125

  14. Comparison of the fluorescence kinetics of detergent-solubilized and membrane-reconstituted LH2 complexes from Rps. acidophila and Rb. sphaeroides.

    PubMed

    Pflock, Tobias; Dezi, Manuela; Venturoli, Giovanni; Cogdell, Richard J; Köhler, Jürgen; Oellerich, Silke

    2008-01-01

    Picosecond time-resolved fluorescence spectroscopy has been used in order to compare the fluorescence kinetics of detergent-solubilized and membrane-reconstituted light-harvesting 2 (LH2) complexes from the purple bacteria Rhodopseudomonas (Rps.) acidophila and Rhodobacter (Rb.) sphaeroides. LH2 complexes were reconstituted in phospholipid model membranes at different lipid:protein-ratios and all samples were studied exciting with a wide range of excitation densities. While the detergent-solubilized LH2 complexes from Rps. acidophila showed monoexponential decay kinetics (tau(f )= 980 ps) for excitation densities of up to 3.10(13) photons/(pulse.cm(2)), the membrane-reconstituted LH2 complexes showed multiexponential kinetics even at low excitation densities and high lipid:protein-ratios. The latter finding indicates an efficient clustering of LH2 complexes in the phospholipid membranes. Similar results were obtained for the LH2 complexes from Rb. sphaeroides.

  15. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    PubMed

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Evaluation of microbial globin promoters for oxygen-limited processes using Escherichia coli.

    PubMed

    Lara, Alvaro R; Jaén, Karim E; Sigala, Juan-Carlos; Regestein, Lars; Büchs, Jochen

    2017-01-01

    Oxygen-responsive promoters can be useful for synthetic biology applications, however, information on their characteristics is still limited. Here, we characterized a group of heterologous microaerobic globin promoters in Escherichia coli . Globin promoters from Bacillus subtilis , Campylobacter jejuni , Deinococcus radiodurans , Streptomyces coelicolor , Salmonella typhi and Vitreoscilla stercoraria were used to express the FMN-binding fluorescent protein (FbFP), which is a non-oxygen dependent marker. FbFP fluorescence was monitored online in cultures at maximum oxygen transfer capacities (OTR max ) of 7 and 11 mmol L -1  h -1 . Different FbFP fluorescence intensities were observed and the OTR max affected the induction level and specific fluorescence emission rate (the product of the specific fluorescence intensity multiplied by the specific growth rate) of all promoters. The promoter from S. typhi displayed the highest fluorescence emission yields (the quotient of the fluorescence intensity divided by the scattered light intensity at every time-point) and rate, and together with the promoters from D. radiodurans and S. coelicolor , the highest induction ratios. These results show the potential of diverse heterologous globin promoters for oxygen-limited processes using E. coli .

  17. Solubilization of poorly water-soluble drugs using solid dispersions.

    PubMed

    Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin

    2013-08-01

    Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.

  18. Microbial Activity and Silica Degradation in Rice Straw

    NASA Astrophysics Data System (ADS)

    Kim, Esther Jin-kyung

    increased. Silicase activity did not change across nitrogen treatments despite a shift in microbial community with varied nitrogen concentration. Samples treated with different nitrogen concentrations had similar levels of diversity, however the microbial community composition differed with added nitrogen. The results demonstrated that adding nitrogen to rice straw during thermophilic decomposition nurtured a more active microbial community and promoted enzyme secretion thus improving the ability to discover enzymes for rice straw deconstruction. These results can inform future experiments for cultivating a unique, thriving compost-derived microbial community that can successfully decompose rice straw. Understanding the silicase activity of microorganisms may alleviate the challenges associated with silica in various feedstocks.

  19. Characterization and Identification of Phosphate Solubilizing Bacteria Isolate GPC3.7 from Limestone Mining Region

    NASA Astrophysics Data System (ADS)

    Fitriyanti, D.; Mubarik, N. R.; Tjahjoleksono, A.

    2017-03-01

    Phosphate (P) are one of major macronutrients needed by plants. P in the soil are present in the organic and inorganic form. The amounts of P in marginal soil can be increased with plant growth promoting rhizobacteria (PGPR). The aim of this study was to characterize and identify P solubilizing bacteria (PSB) isolate GPC3.7 that characteristically could fix N from the soil around limestone mining area. There were 44 PSB isolates found from 15 soil samples around limestone mining area, Blindis mountain, Cirebon. The solubility index of all strain were measured about 0.125 to 2.375 on Pikovskaya media. There were 22 PSB isolates were grown on N-free bromothymol blue (NfB) medium and 19 isolates were grown on Congo Red Agar (CRA) medium. Only 10 isolates were indicated as symbiotic living microorganisms whereas 12 others were categorized as N-free fixing bacteria. Isolate GPC3.7 was chosen to be further observed, based on its P solubility index, N-fixing ability and growth stability. Phosphate quantitative estimation assay of isolate GPC3.7 was unmeasured. The P soluble concentration of GPC3.7 might be lower than 1 mg/L. The colony of GPC3.7 morphologically had round shape, entire margin, raised elevation and white color. Isolate GPC3.7 was Gram negative bacteria with coccus cell shape. Based on 16S rRNA gene, GPC3.7 was closely relative to Acinetobacter baumannii.

  20. Monitoring microbial responses to ocean deoxygenation in a model oxygen minimum zone.

    PubMed

    Hallam, Steven J; Torres-Beltrán, Mónica; Hawley, Alyse K

    2017-10-31

    Today in Scientific Data, two compendia of geochemical and multi-omic sequence information (DNA, RNA, protein) generated over almost a decade of time series monitoring in a seasonally anoxic coastal marine setting are presented to the scientific community. These data descriptors introduce a model ecosystem for the study of microbial responses to ocean deoxygenation, a phenotype that is currently expanding due to climate change. Public access to this time series information is intended to promote scientific collaborations and the generation of new hypotheses relevant to microbial ecology, biogeochemistry and global change issues.

  1. Adaptation of Aquatic Microbial Communities to Hg2+ Stress †

    PubMed Central

    Barkay, Tamar

    1987-01-01

    The mechanism of adaptation to Hg2+ in four aquatic habitats was studied by correlating microbially mediated Hg2+ volatilization with the adaptive state of the exposed communities. Community diversity, heterotrophic activity, and Hg2+ resistance measurements indicated that adaptation of all four communities was stimulated by preexposure to Hg2+. In saline water communities, adaptation was associated with rapid volatilization after an initial lag period. This mechanism, however, did not promote adaptation in a freshwater sample, in which Hg2+ was volatilized slowly, regardless of the resistance level of the microbial community. Distribution of the mer operon among representative colonies of the communities was not related to adaptation to Hg2+. Thus, although volatilization enabled some microbial communities to sustain their functions in Hg2+-stressed environments, it was not mediated by the genes that serve as a model system in molecular studies of bacterial resistance to mercurials. PMID:16347488

  2. Preparing near-surface heavy oil for extraction using microbial degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busche, Frederick D.; Rollins, John B.; Noyes, Harold J.

    In one embodiment, the invention provides a system including at least one computing device for enhancing the recovery of heavy oil in an underground, near-surface crude oil extraction environment by performing a method comprising sampling and identifying microbial species (bacteria and/or fungi) that reside in the underground, near-surface crude oil extraction environment; collecting rock and fluid property data from the underground, near-surface crude oil extraction environment; collecting nutrient data from the underground, near-surface crude oil extraction environment; identifying a preferred microbial species from the underground, near-surface crude oil extraction environment that can transform the heavy oil into a lighter oil;more » identifying a nutrient from the underground, near-surface crude oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the underground, near-surface crude oil extraction environment.« less

  3. Syntrophic exchange in synthetic microbial communities

    PubMed Central

    Mee, Michael T.; Collins, James J.; Church, George M.; Wang, Harris H.

    2014-01-01

    Metabolic crossfeeding is an important process that can broadly shape microbial communities. However, little is known about specific crossfeeding principles that drive the formation and maintenance of individuals within a mixed population. Here, we devised a series of synthetic syntrophic communities to probe the complex interactions underlying metabolic exchange of amino acids. We experimentally analyzed multimember, multidimensional communities of Escherichia coli of increasing sophistication to assess the outcomes of synergistic crossfeeding. We find that biosynthetically costly amino acids including methionine, lysine, isoleucine, arginine, and aromatics, tend to promote stronger cooperative interactions than amino acids that are cheaper to produce. Furthermore, cells that share common intermediates along branching pathways yielded more synergistic growth, but exhibited many instances of both positive and negative epistasis when these interactions scaled to higher dimensions. In more complex communities, we find certain members exhibiting keystone species-like behavior that drastically impact the community dynamics. Based on comparative genomic analysis of >6,000 sequenced bacteria from diverse environments, we present evidence suggesting that amino acid biosynthesis has been broadly optimized to reduce individual metabolic burden in favor of enhanced crossfeeding to support synergistic growth across the biosphere. These results improve our basic understanding of microbial syntrophy while also highlighting the utility and limitations of current modeling approaches to describe the dynamic complexities underlying microbial ecosystems. This work sets the foundation for future endeavors to resolve key questions in microbial ecology and evolution, and presents a platform to develop better and more robust engineered synthetic communities for industrial biotechnology. PMID:24778240

  4. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal.

    PubMed

    Rajkumar, Mani; Ma, Ying; Freitas, Helena

    2008-12-01

    A metal-resistant bacterial strain SM3 isolated from a serpentine soil in the north-east of Portugal was characterized as Bacillus weihenstephanensis based on the morphological and biochemical characteristics and on the comparative analysis of the partial 16S ribosomal DNA sequence. Bacillus weihenstephanensis SM3 showed a high degree of resistance to nickel (1500 mg l(-1)), copper (500 mg l(-1)) and zinc (700 mg l(-1)) and also to antibiotics (ampicillin, penicillin, kanamycin and streptomycin). Strain SM3 has also exhibited the capability of solubilizing phosphate and producing indole-3-acetic acid (IAA) both in the absence and in the presence of metals (Ni, Cu and Zn). A pot experiment was conducted to elucidate the effects of strain SM3 on plant growth and uptake of Ni, Cu or Zn by Helianthus annuus. Inoculation with strain SM3 increased the shoot and root biomass of H. annuus grown in both non-contaminated and contaminated soil. Furthermore, strain SM3 increased the accumulation of Cu and Zn in the root and shoot systems. A batch experiment was also conducted to assess the metal mobilization potential of strain SM3 in soil. Inoculation with this strain increased the concentrations of water soluble Ni, Cu and Zn in soil. Metal solubilization by this bacterial strain may be an important process to promote the uptake of heavy metals by plants. This study elucidates the multifarious role of strain SM3 in plant growth promotion and its metal mobilizing potential.

  5. Photoaffinity labelling and solubilization on the central 5-HT1A receptor binding site.

    PubMed

    Gozlan, H; Emerit, M B; el Mestikawy, S; Cossery, J M; Marquet, A; Besselievre, R; Hamon, M

    1987-01-01

    Two complementary approaches, covalent labelling and solubilization, have been used to study the biochemical properties of the central 5-HT1A receptor binding site. We have first designed a photoaffinity ligand containing the structure of 8-OH-DPAT, a potent and specific agonist of 5-HT1A sites. Thus, 8-methoxy-2[N-n-propyl,N-3-(2-nitro-4-azido-phenyl)- aminopropyl]aminotetralin or 8-methoxy-3'-NAP-amino-PAT, was found to displace, in the dark, [3H]8-OH-DPAT from 5-HT1A sites in rat hippocampal membranes with an IC50 of 6.6 nM. Under two cumulative UV irradiations (366 nm, for 20 min at 4 degrees C), 8-methoxy-3-'-NAP-amino-PAT (30 nM) blocked irreversibly 55-60% of 5-HT1A binding sites. This blockade was specific of 5-HT1A sites since the other serotoninergic sites, 5-HT1B, 5-HT2 and also the presynaptic 5-HT3 sites were not affected by the treatment. In addition, the binding of [3H]Spiperone and [3H]7-OH-DPAT to striatal dopamine sites remained unchanged under similar photolysis conditions. The tritiated derivative of the photoaffinity ligand (92 Ci/mmol) was then synthesized for the identification of the covalently bound protein(s). SDS-PAGE of solubilized membranes irradiated in the presence of 20 nM 3H-8-methoxy-3'-NAP-amino-PAT allowed the detection of a 63 kD protein whose labelling appeared specific. Thus, 3H-incorporation into the 63 kD band could be prevented by microM concentrations of 5-HT, 8-OH-DPAT and other selective 5-HT1A ligands such as isapirone. In contrast, the 5-HT2 antagonist ketanserin, norepinephrine and dopamine-related ligands (including 7-OH-DPAT) were ineffective. Direct solubilization of 5-HT1A receptor binding sites was also attempted from rat hippocampal membranes. The best results were obtained using CHAPS (10 mM) plus NaCl (0.2 M), which led to 50% recovery of 5-HT1A sites in the 100,000 g supernatant. The pharmacological properties and sensitivity to N-ethyl-maleimide and GppNHp of soluble sites appeared near identical to those of

  6. Microbial leaching of toxic metals and arsenic from a heap consisting of heavily polluted soil

    NASA Astrophysics Data System (ADS)

    Groudev, Stoyan; Georgiev, Plamen; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Soil heavily polluted with toxic heavy metals (mainly Cu, Zn, Cd) and arsenic was subjected to microbial cleanup in a heap specially constructed for this purpose. The heap was located on an impermeable geomembrane, had the shape of a truncated pyramid and contained about 240 tons of soil collected mainly from the horizon A. The soil was highly acidic (with an initial pH of about 3.2) and was preliminarily crushed to minus 2.5 cm particle size. The pollutants were present mainly as the relevant sulphide minerals and the soil was inhabited by different microorganisms, including some acidophilic chemolithotrophic bacteria able to oxidize sulphides and to solubilize the relevant toxic elements. The heap possessed systems for irrigation and aeration and was surrounded by ditches to collect the drainage heap effluents containing the dissolved pollutants. The treatment of the soil was carried out by means of interrupted irrigation with leach solutions containing diluted sulphuric acid (to maintain pH in the heap within the range of about 2.5 - 2.8) and ammonium and phosphate ions to maintain the microbial growth. The treatment was carried out for a period of about two years during different climatic seasons. After the end of leaching the soil was subjected to some conventional melioration procedures such as liming, grassing, moulching, addition of fertilizers and animal manure and periodic ploughing and irrigation to increase its quality to levels suitable for agricultural utilization.

  7. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing

    2016-12-01

    sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial metabolic quotient was lower in coarse-sand-sized fractions than in other fractions. Soil respiration was higher in the silt fraction than in other fractions for the rice soils. For the size fractions other than the clay fraction, enzyme activity was increased with prolonged rice cultivation, whereas soil respiration appeared to have a decreasing trend. Only in the coarse-sand fraction was both microbial gene abundance and enzyme activity well correlated to SOC and LOC content, although the chemical stability and respiratory of SOC were similar between coarse-sand and clay fractions. Thus, biological activity was generally promoted with LOC accumulation in the coarse-sand-sized macroaggregates of the rice soils, positively responding to prolonged rice cultivation management. The finding here provides a mechanistic understanding of soil organic carbon turnover and microbial community succession at fine scale of soil aggregates that have evolved along with anthropogenic activity of rice cultivation in the field.

  8. What can microbial genetics teach sociobiology?

    PubMed Central

    Foster, Kevin R.; Parkinson, Katie; Thompson, Christopher R.L.

    2009-01-01

    Progress in our understanding of sociobiology has occurred with little knowledge of the genetic mechanisms that underlie social traits. However, several recent studies have described microbial genes that affect social traits, thereby bringing genetics to sociobiology. A key finding is that simple genetic changes can have marked social consequences, and mutations that affect cheating and recognition behaviors have been discovered. The study of these mutants confirms a central theoretical prediction of social evolution: that genetic relatedness promotes cooperation. Microbial genetics also provides an important new perspective: that the genome-to-phenome mapping of social organisms might be organized to constrain the evolution of social cheaters. This constraint can occur both through pleiotropic genes that link cheating to a personal cost and through the existence of phoenix genes, which rescue cooperative systems from selfish and destructive strategies. These new insights show the power of studying microorganisms to improve our understanding of the evolution of cooperation. PMID:17207887

  9. Engineering chemical interactions in microbial communities.

    PubMed

    Kenny, Douglas J; Balskus, Emily P

    2018-03-05

    Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.

  10. Statistical key factors optimization of conditions for hydrogen production from S-TE (solubilization by thermophilic enzyme) waste sludge.

    PubMed

    Guo, Liang; Zhao, Jun; She, Zonglian; Lu, Mingmin; Zong, Yan

    2013-06-01

    Waste sludge can be solubilized after S-TE (solubilization by thermophilic enzyme) pretreatment as the cryptic growth occurs at the expense of the cell lysate. The hydrogen production from S-TE sludge is greatly influenced by many factors. In this study, factors including pH, C/N, C/P, and Fe(2+) affecting hydrogen production from S-TE sludge were optimized using uniform design. The optimum condition for maximum hydrogen yield of 68.4 ml H2/g VSS (volatile suspended solid) could be predicted from regression model, and the optimum conditions were pH of 6.4, C/N ratio of 38, C/P ratio of 265, and Fe(2+) concentration of 85 mg/L. There was interaction effect of factors on hydrogen production from S-TE sludge. Different pH, C/N, C/P and Fe(2+) conditions could influence the VSS removal rate, carbohydrate and protein utilization. When the highest compositions of acetate and ethanol and lowest propionate were observed in metabolites, effective hydrogen production was also achieved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Environmental Control on Microbial Turnover of Leaf Carbon in Streams – Ecological Function of Phototrophic-Heterotrophic Interactions

    PubMed Central

    Fabian, Jenny; Zlatanović, Sanja; Mutz, Michael; Grossart, Hans-Peter; van Geldern, Robert; Ulrich, Andreas; Gleixner, Gerd; Premke, Katrin

    2018-01-01

    In aquatic ecosystems, light availability can significantly influence microbial turnover of terrestrial organic matter through associated metabolic interactions between phototrophic and heterotrophic communities. However, particularly in streams, microbial functions vary significantly with the structure of the streambed, that is the distribution and spatial arrangement of sediment grains in the streambed. It is therefore essential to elucidate how environmental factors synergistically define the microbial turnover of terrestrial organic matter in order to better understand the ecological role of photo-heterotrophic interactions in stream ecosystem processes. In outdoor experimental streams, we examined how the structure of streambeds modifies the influence of light availability on microbial turnover of leaf carbon (C). Furthermore, we investigated whether the studied relationships of microbial leaf C turnover to environmental conditions are affected by flow intermittency commonly occurring in streams. We applied leaves enriched with a 13C-stable isotope tracer and combined quantitative and isotope analyses. We thereby elucidated whether treatment induced changes in C turnover were associated with altered use of leaf C within the microbial food web. Moreover, isotope analyses were combined with measurements of microbial community composition to determine whether changes in community function were associated with a change in community composition. In this study, we present evidence, that environmental factors interactively determine how phototrophs and heterotrophs contribute to leaf C turnover. Light availability promoted the utilization of leaf C within the microbial food web, which was likely associated with a promoted availability of highly bioavailable metabolites of phototrophic origin. However, our results additionally confirm that the structure of the streambed modifies light-related changes in microbial C turnover. From our observations, we conclude that the

  12. Cooperative microbial tolerance behaviors in host-microbiota mutualism

    PubMed Central

    Ayres, Janelle S.

    2016-01-01

    Animal defense strategies against microbes are most often thought of as a function of the immune system, the primary function of which is to sense and kill microbes through the execution of resistance mechanisms. However, this antagonistic view creates complications for our understanding of beneficial host-microbe interactions. Pathogenic microbes are described as employing a few common behaviors that promote their fitness at the expense of host health and fitness. Here, a complementary framework is proposed to suggest that in addition to pathogens, beneficial microbes have evolved behaviors to manipulate host processes in order to promote their own fitness and do so through the promotion of host health and fitness. In this Perspective, I explore the idea that patterns or behaviors traditionally ascribed to pathogenic microbes are also employed by beneficial microbes to promote host tolerance defense strategies. Such strategies would promote host health without having a negative impact on microbial fitness and would thereby yield cooperative evolutionary dynamics that are likely required to drive mutualistic co-evolution of hosts and microbes. PMID:27259146

  13. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Microbial screening test for lignite degradation: Quarterly progress report No. 9 for the period January-March 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, Teh Fu

    1987-03-01

    Anaerobic fermentation of water soluble fraction of modified lignite was attempted. Solubilized lignite formed bioprecipitate after biodegradation. Fermentation of water solubilized lignite in enrichment media produced gases and organic acids. FT-IR spectra of solubilized lignite after biodegradation showed that the concentration of organic oxygen have decreased and that the concentration of -CH/sub 3/ terminal group have increased. Solubilized lignite may serve as sole carbon source by using selective media. Bacteria was suspected of being able to utilize fulvic-like materials from solubilized lignite. Isolation of anaerobic bacteria was achieved by surface culture, and it indicated morphological differences among isolated colonies. Alginatemore » gel entrapment, an immobilization method, was applied to T. versicolor fungal cells. Active fungal growth was observed from the immobilized spheres on sodium-alginate gel. It seems that the immobilized biocatalysts may be used to enhance the production of bioextract from lignite in a reactor system. Hydroxylation of lignite was accomplished through Fenton reaction at pH 7.5. FT-IR analysis showed that lignite treated with Fenton's reagent exhibits weaker aromatic bending and ether linkage than untreated lignite. 13 refs., 8 figs.« less

  15. Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate.

    PubMed

    Liao, Ping Huang; Wong, Wayne T; Lo, Kwang Victor

    2005-01-01

    An advanced oxidation process (AOP) combining hydrogen peroxide and microwave heating was used for the solubilization of phosphate from secondary municipal sludge from an enhanced biological phosphorus removal process. The microwave irradiation is used as a generator agent of oxidizing radicals as well as a heating source in the process. This AOP process could facilitate the release of a large amount of the sludge-bound phosphorus from the sewage sludge. More than 84% of the total phosphorous could be released at a microwave heating time of 5 min at 170 degrees C. This innovative process has the potential of being applied to simple sludge treatment processes in domestic wastewater treatment and to the recovery of phosphorus from the wastewater.

  16. Improved glucose-neopentyl glycol (GNG) amphiphiles for membrane protein solubilization and stabilization.

    PubMed

    Cho, Kyung Ho; Bae, Hyoung Eun; Das, Manabendra; Gellman, Samuel H; Chae, Pil Seok

    2014-02-01

    Membrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose-neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi-subunit membrane protein assembly. Furthermore, a detergent structure-property relationship that could serve as a useful guideline for the design of novel amphiphiles is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees.

    PubMed

    Etminani, Faegheh; Harighi, Behrouz

    2018-06-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees ( Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas , Stenotrophomonas , Bacillus , Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea , Bacillus , Pseudomonas , Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

  18. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation

  19. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

    PubMed

    Teixeira, Catarina; Almeida, C Marisa R; Nunes da Silva, Marta; Bordalo, Adriano A; Mucha, Ana P

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. An integrated microbial electrolysis-anaerobic digestion process combined with pretreatment of wastewater solids to improve hydrogen production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beegle, Jeff R.; Borole, Abhijeet P.

    A combined anaerobic digestion (AD) and microbial electrolysis cell (MEC) system, named here as ADMEC, was investigated in this paper to evaluate the energy recovery from pretreated wastewater solids. Alkaline and thermal hydrolysis pretreatment methods increased the solubility of organic compounds present in the raw solids by 25% and 20%, respectively. The soluble phase from pretreatment was separated and used for microbial electrolysis, whereas the insoluble fraction was fed into semi-continuous digesters. The digester effluent was later utilized as a second MEC substrate. The pretreatment had variable effects on AD and MEC performance. The methane content in AD biogas wasmore » higher in pretreated groups, 78.29 ± 2.89% and 73.2 ± 1.79%, for alkaline and thermal, than the control, 50.26 ± 0.53%, but the overall biogas production rates were lower than the control, 20 and 30 mL CH 4 gCOD -1 d -1 for alkaline and thermal compared to 80 mL CH 4 gCOD -1 d -1. The effluent streams from thermally pretreated digesters were the best substrate for microbial electrolysis, in terms of hydrogen production and efficiency. The MECs produced 1.7 ± 0.2 L-H 2 per L per day, 0.3 ± 0.1 L-H 2 per L per day, and 0.29 ± 0.1 L-H 2 per L per day, for thermal, alkaline, and control reactors. The productivity was lower compared to acetate and propionate controls, which yielded 5.79 ± 0.03 L-H 2 per L per day and 3.49 ± 0.10 L-H 2 per L per day, respectively. The pretreatment solubilized fractions were not ideal substrates for microbial electrolysis. Finally, a chemical oxygen demand (COD) mass balance showed that pretreatment shifts the electron flux away from methane and biomass sinks towards hydrogen production.« less

  1. An integrated microbial electrolysis-anaerobic digestion process combined with pretreatment of wastewater solids to improve hydrogen production

    DOE PAGES

    Beegle, Jeff R.; Borole, Abhijeet P.

    2017-08-17

    A combined anaerobic digestion (AD) and microbial electrolysis cell (MEC) system, named here as ADMEC, was investigated in this paper to evaluate the energy recovery from pretreated wastewater solids. Alkaline and thermal hydrolysis pretreatment methods increased the solubility of organic compounds present in the raw solids by 25% and 20%, respectively. The soluble phase from pretreatment was separated and used for microbial electrolysis, whereas the insoluble fraction was fed into semi-continuous digesters. The digester effluent was later utilized as a second MEC substrate. The pretreatment had variable effects on AD and MEC performance. The methane content in AD biogas wasmore » higher in pretreated groups, 78.29 ± 2.89% and 73.2 ± 1.79%, for alkaline and thermal, than the control, 50.26 ± 0.53%, but the overall biogas production rates were lower than the control, 20 and 30 mL CH 4 gCOD -1 d -1 for alkaline and thermal compared to 80 mL CH 4 gCOD -1 d -1. The effluent streams from thermally pretreated digesters were the best substrate for microbial electrolysis, in terms of hydrogen production and efficiency. The MECs produced 1.7 ± 0.2 L-H 2 per L per day, 0.3 ± 0.1 L-H 2 per L per day, and 0.29 ± 0.1 L-H 2 per L per day, for thermal, alkaline, and control reactors. The productivity was lower compared to acetate and propionate controls, which yielded 5.79 ± 0.03 L-H 2 per L per day and 3.49 ± 0.10 L-H 2 per L per day, respectively. The pretreatment solubilized fractions were not ideal substrates for microbial electrolysis. Finally, a chemical oxygen demand (COD) mass balance showed that pretreatment shifts the electron flux away from methane and biomass sinks towards hydrogen production.« less

  2. Ecological restoration alters microbial communities in mine tailings profiles

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  3. Ecological restoration alters microbial communities in mine tailings profiles.

    PubMed

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-29

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  4. Ecological restoration alters microbial communities in mine tailings profiles

    PubMed Central

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-01-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064

  5. Multilevel samplers as microcosms to assess microbial response to biostimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, Brett R.; Peacock, Aaron D.; Park, Melora M.

    Passive multilevel samplers (MLS) containing a solid matrix for microbial colonization were used in conjunction with a push-pull biostimulation experiment designed to promote biological U(VI) and Tc(VII) reduction. MLS were deployed at 24 elevations in the injection well and two down gradient wells to investigate the spatial variability in microbial community composition and growth prior to and following biostimulation. The microbial community was characterized by real-time PCR (Q-PCR) quantification of Bacteria, NO3- reducing bacteria (nirS and nirK), δ-proteobacteria, Geobacter sp., and methanogens (mcrA). Pretest cell densities were low overall but varied substantially with significantly greater Bacterial populations detected at circumneutralmore » pH (T-test, α=0.05) suggesting carbon substrate and low pH limitations of microbial activity. Although pretest cell densities were low, denitrifying bacteria were dominant members of the microbial community. Biostimulation with an ethanol amended groundwater resulted in concurrent NO3- and Tc(VII) reduction followed by U(VI) reduction. Q-PCR analysis of MLS revealed significant (1-2 orders of magnitude, T-test, α=0.05) increases in cell densities of Bacteria, denitrifiers, δ-proteobacteria, Geobacter sp., and methanogens in response to biostimulation. Traditionally characterization of sediment samples has been used to investigate the microbial community response to biostimulation, however, collection of sediment samples is expensive and not conducive to deep aquifers or temporal studies. The results presented demonstrate that push-pull tests with passive MLS provide an inexpensive approach to determine the effect of biostimulation on contaminant concentrations, geochemical conditions, and the microbial community composition and function.« less

  6. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2.

    PubMed

    Jin, Qusheng; Kirk, Matthew F

    2016-01-01

    Geological carbon sequestration captures CO 2 from industrial sources and stores the CO 2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO 2 concentration. This study uses biogeochemical modeling to explore the influence of CO 2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO 2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO 2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO 2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO 2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  7. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2

    PubMed Central

    Jin, Qusheng; Kirk, Matthew F.

    2016-01-01

    Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses. PMID:27909425

  8. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA

    PubMed Central

    Tfaily, Malak M.; Steinweg, J. Megan; Chanton, Patrick; Esson, Kaitlin; Yang, Zamin K.; Chanton, Jeffrey P.; Cooper, William; Schadt, Christopher W.

    2014-01-01

    This study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance of Acidobacteria and the Syntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance of Archaea (primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at

  9. Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA.

    PubMed

    Lin, Xueju; Tfaily, Malak M; Steinweg, J Megan; Chanton, Patrick; Esson, Kaitlin; Yang, Zamin K; Chanton, Jeffrey P; Cooper, William; Schadt, Christopher W; Kostka, Joel E

    2014-06-01

    This study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance of Acidobacteria and the Syntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance of Archaea (primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at

  10. Biosynthetic elongation of isolated teichuronic acid polymers via glucosyl- and N-acetylmannosaminuronosyltransferases from solubilized cytoplasmic membrane fragments of Micrococcus luteus.

    PubMed Central

    Hildebrandt, K M; Anderson, J S

    1990-01-01

    Cytoplasmic membrane fragments of Micrococcus luteus catalyze in vitro biosynthesis of teichuronic acid from uridine diphosphate D-glucose (UDP-glucose), uridine diphosphate N-acetyl-D-mannosaminuronic acid (UDP-ManNAcA), and uridine diphosphate N-acetyl-D-glucosamine. Membrane fragments solubilized with Thesit (dodecyl alcohol polyoxyethylene ether) can utilize UDP-glucose and UDP-ManNAcA to effect elongation of teichuronic acid isolated from native cell walls. When UDP-glucose is the only substrate supplied, the detergent-solubilized glucosyltransferase incorporates a single glucosyl residue onto each teichuronic acid acceptor. When both UDP-glucose and UDP-ManNAcA are supplied, the glucosyltransferase and the N-acetylmannosaminuronosyltransferase act cooperatively to elongate the teichuronic acid acceptor by multiple additions of the disaccharide repeat unit. As shown by polyacrylamide gel electrophoresis, low-molecular-weight fractions of teichuronic acid are converted to higher-molecular-weight polymers by the addition of as many as 17 disaccharide repeat units. Images PMID:2118507

  11. Microbial Repopulation Following In Situ STAR Remediation

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Overbeeke, G.; Edwards, E.; Lomheim, L.; Grant, G.

    2016-12-01

    STAR (Self-sustaining Treatment for Active Remediation) is an emerging remediation technology that employs a self-sustaining smouldering reaction to destroy nonaqueous phase liquids (NAPLs) in the subsurface. The reaction front travels outwards from an ignition well at approximately 0.5 per day and subjects the soil to temperatures of 400°C-1000°C. The objectives of this work were to monitor re-saturation of the soil over time and quantify the microbial repopulation of the treated zone. STAR is currently being applied as a full scale, in situ remedy for coal tar beneath a former creosol manufacturing facility in New Jersey, USA. This study analyzed soil cores taken at regular intervals following STAR treatment, allowing time for groundwater to re-infiltrate and for microbial populations to potentially reestablish. Soil and groundwater were analyzed for total number of microorganisms via quantitative Polymerase Chain Reaction (qPCR), as well as microbial diversity via amplicon sequencing. Results demonstrate that microbes rapidly repopulated over a 2 month period to 106 gene copies/g of soil. However, concentrations in the treated zone did not rise above this concentration over 6 months post-STAR, indicating a low carrying capacity of the treated soil. To examine the system in more detail and consider the effects of bio-stimulation, a bench top column study using site soil and artificial groundwater explored the rate at which STAR-treated soil is repopulated with naturally occurring microorganisms in the presence and absence of lactate and a terminal electron acceptor. Results demonstrated that biostimulation did not increase the carrying capacity of the STAR treated sol, but rather shifted the microbial community to reflect the TEA provided, in this case, promoting sulfate reducers. Overall, the work illustrates that microbial populations in STAR treated soil do recover via groundwater infiltration but robust communities will take time to naturally establish.

  12. Ecological feedback in quorum-sensing microbial populations can induce heterogeneous production of autoinducers

    PubMed Central

    Bauer, Matthias; Knebel, Johannes; Lechner, Matthias; Pickl, Peter; Frey, Erwin

    2017-01-01

    Autoinducers are small signaling molecules that mediate intercellular communication in microbial populations and trigger coordinated gene expression via ‘quorum sensing’. Elucidating the mechanisms that control autoinducer production is, thus, pertinent to understanding collective microbial behavior, such as virulence and bioluminescence. Recent experiments have shown a heterogeneous promoter activity of autoinducer synthase genes, suggesting that some of the isogenic cells in a population might produce autoinducers, whereas others might not. However, the mechanism underlying this phenotypic heterogeneity in quorum-sensing microbial populations has remained elusive. In our theoretical model, cells synthesize and secrete autoinducers into the environment, up-regulate their production in this self-shaped environment, and non-producers replicate faster than producers. We show that the coupling between ecological and population dynamics through quorum sensing can induce phenotypic heterogeneity in microbial populations, suggesting an alternative mechanism to stochastic gene expression in bistable gene regulatory circuits. DOI: http://dx.doi.org/10.7554/eLife.25773.001 PMID:28741470

  13. A comparative analysis of microbial profile of Guinea fowl and chicken using metagenomic approach

    PubMed Central

    Bhogoju, Sarayu; Wang, Xiaofei; Darris, Carl; Kilonzo-Nthenge, Agnes

    2018-01-01

    Probiotics are live microbial feed supplements that promote growth and health to the host by minimizing non-essential and pathogenic microorganisms in the host’s gastrointestinal tract (GIT). The campaign to minimize excessive use of antibiotics in poultry production has necessitated development of probiotics with broad application in multiple poultry species. Design of such probiotics requires understanding of the diversity or similarity in microbial profiles among avian species of economic importance. Therefore, the objective of this research was to establish and compare the microbial profiles of the GIT of Guinea fowl and chicken and to establish the microbial diversity or similarity between the two avian species. A metagenomic approach consisting of the amplification and sequence analysis of the hypervariable regions V1-V9 of the 16S rRNA gene was used to identify the GIT microbes. Collectively, we detected more than 150 microbial families. The total number of microbial species detected in the chicken GIT was higher than that found in the Guinea Fowl GIT. Our studies also revealed phylogenetic diversity among the microbial species found in chicken and guinea fowl. The phylum Firmicutes was most abundant in both avian species whereas Phylum Actinobacteria was most abundant in chickens than Guinea fowls. The diversity of the microbial profiles found in broiler chickens and Guinea fowls suggest that the design of effective avian probiotics would require species specificity. PMID:29494648

  14. Spatial P heterogeneity in forest soil: Influence on microbial P uptake and community structure

    NASA Astrophysics Data System (ADS)

    Zilla, Thomas; Angulo-Schipper, Bridith; Méndez, Juan Carlos; Dippold, Michaela A.; Kuzyakov, Yakov; Spielvogel, Sandra

    2017-04-01

    Other than nitrogen, phosphorus (P) is the most important growth limiting nutrient in soils. Yet, little information is available concerning the spatial heterogeneity of P content in forest soils. More so, the effects of a homogeneous vs. heterogeneous soil P distribution on microbial P acquisition and community structure have yet to be determined. Thus, a rhizotron experiment based on a P-deficient forest soil was conducted to investigate competitive P uptake strategies of microbes. F. sylvatica-bearing rhizotrons were labeled with Fe33PO4, a relatively immobile P source native to the study soil. Homogeneous and heterogeneous P patterns were created to study the effects of spatial P heterogeneity on plant and microbial P acquisition. P mobilization by microorganisms was tracked by an improved 33P-PLFA method, linking 33P incorporation in microbes with changes in microbial community structure in soils in situ. The microbial P uptake was enhanced in rhizotrons with high P availability and in those with a patchy P distribution. Characteristic PLFAs indicate a congregation of beech-associated ectomycorrhizal fungi in P-rich patches. These ectomycorrhizal fungi are likely to strongly increase P mobilization from the used Fe33PO4 in high P habitats. In contrast, habitats with low P availability require a more complex microbial community structure without a dominant group to mobilize this inaccessible P source. Therefore, hotspots of P are likely to promote the efforts of fungal hyphae for P mobilization - an effect which decreases with lower P content. Additionally, gram positive and negative bacteria exhibit a vastly higher P uptake under increasingly patchy P distributions. However, they form a smaller portion of the microbial community than in homogeneously P enriched rhizotrons, suggesting that filamentous organisms benefit from the patchy P distribution. Thus, only a heterogeneous P distribution promotes P acquisition of forest microbial communities from mineral P

  15. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    PubMed

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  16. Specific Microbial Communities Associate with the Rhizosphere of Welwitschia mirabilis, a Living Fossil.

    PubMed

    Valverde, Angel; De Maayer, Pieter; Oberholster, Tanzelle; Henschel, Joh; Louw, Michele K; Cowan, Don

    2016-01-01

    Welwitschia mirabilis is an ancient and rare plant distributed along the western coast of Namibia and Angola. Several aspects of Welwitschia biology and ecology have been investigated, but very little is known about the microbial communities associated with this plant. This study reports on the bacterial and fungal communities inhabiting the rhizosphere of W. mirabilis and the surrounding bulk soil. Rhizosphere communities were dominated by sequences of Alphaproteobacteria and Euromycetes, while Actinobacteria, Alphaproteobacteria, and fungi of the class Dothideomycetes jointly dominated bulk soil communities. Although microbial communities within the rhizosphere and soil samples were highly variable, very few "species" (OTUs defined at a 97% identity cut-off) were shared between these two environments. There was a small 'core' rhizosphere bacterial community (formed by Nitratireductor, Steroidobacter, Pseudonocardia and three Phylobacteriaceae) that together with Rhizophagus, an arbuscular mycorrhizal fungus, and other putative plant growth-promoting microbes may interact synergistically to promote Welwitschia growth.

  17. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.

    PubMed

    Zakzeski, Joseph; Weckhuysen, Bert M

    2011-03-21

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compounds and the distribution of products obtained during the lignin aqueous phase reforming revealed that lignin was depolymerized through disruption of the abundant β-O-4 linkages and, to a lesser extent, the 5-5' carbon-carbon linkages to form monomeric aromatic compounds. The alkyl chains contained on these monomeric compounds were readily reformed to produce hydrogen and simple aromatic platform chemicals, particularly guaiacol and syringol, with the distribution of each depending on the lignin source. The methoxy groups present on the aromatic rings were subject to hydrolysis to form methanol, which was also readily reformed to produce hydrogen and carbon dioxide. The composition of the isolated yields of monomeric aromatic compounds and overall lignin conversion based on these isolated yields varied from 10-15% depending on the lignin sample, with the balance consisting of gaseous products and residual solid material. Furthermore, we introduce the use of a high-pressure autoclave with optical windows and an autoclave with ATR-IR sentinel for on-line in situ spectroscopic monitoring of biomass conversion processes, which provides direct insight into, for example, the solubilization process and aqueous phase reforming reaction of lignin. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of cations on the solubilization/deposition of triclosan in sediment-water-rhamnolipid system.

    PubMed

    Chen, Yuanbo; Hu, Yongyou; Guo, Qian; Yan, Jia; Wu, Wenjin

    2016-09-01

    Cations had great influence on the self-assembly of rhamnolipid, which in turn affected the fate of triclosan. The migration of triclosan from sediment to water benefited its biodegradation but it could be transformed into more toxic compounds. To regulate the fate of triclosan and reduce environmental risks extremely, the effect of four common cations in surface water (Na(+)/K(+)/Ca(2+)/Mg(2+)) on the solubilization/deposition of triclosan in sediment-water-rhamnolipid system was investigated. The interaction among cations, triclosan and rhamnolipid was explored based on self-assembly of rhamnolipid and water solubility of triclosan in rhamnolipid solutions. Results showed that cations had little influence on the fate of triclosan in the absence of rhamnolipid. Cations, especially Ca(2+)/Mg(2+), reduced the critical micelle concentration, micellar size and zeta potential of rhamnolipid solutions. The changes in self-assembly of rhamnolipid with different cations led to the difference of residual rhamnolipid concentration in water, which was nearly invariant with 0.01 M Na(+)/K(+) while decreased significantly with 0.01 M Ca(2+)/Mg(2+). Consequently, water solubility of triclosan in rhamnolipid solutions increased with the addition of Na(+)/K(+) whereas decreased with Ca(2+)/Mg(2+). In sediment-water- rhamnolipid system, triclosan was slightly solubilized from sediment to water with Na(+)/K(+) while deposited in sediment with Ca(2+)/Mg(2+). These findings provided an alternative application of rhamnolipid for the remediation of triclosan-polluted sediment. Copyright © 2016. Published by Elsevier Ltd.

  19. Microbial ecology-based engineering of Microbial Electrochemical Technologies.

    PubMed

    Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2018-01-01

    Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Solubilization conditions for bovine heart mitochondrial membranes allow selective purification of large quantities of respiratory complexes I, III, and V.

    PubMed

    Shimada, Satoru; Maeda, Shintaro; Hikita, Masahide; Mieda-Higa, Kaoru; Uene, Shigefumi; Nariai, Yukiko; Shinzawa-Itoh, Kyoko

    2018-04-24

    Ascertaining the structure and functions of mitochondrial respiratory chain complexes is essential to understanding the biological mechanisms of energy conversion; therefore, numerous studies have examined these complexes. A fundamental part of that research involves devising a method for purifying samples with good reproducibility; the samples obtained need to be stable and their constituents need to retain the same structure and functions they possess when in mitochondrial membranes. Submitochondrial bovine heart particles were isolated using differential centrifugation to adjust to a membrane concentration of 46.0% (w/v) or 31.5% (w/v) based on weight. After 0.7% (w/v) deoxycholic acid, 0.4% (w/v) decyl maltoside, and 7.2% (w/v) potassium chloride were added to the mitochondrial membranes, those membranes were solubilized. At a membrane concentration of 46%, complex V was selectively solubilized, whereas at a concentration of 31.5% (w/v), complexes I and III were solubilized. Two steps-sucrose density gradient centrifugation and anion-exchange chromatography on a POROS HQ 20 μm column-enabled selective purification of samples that retained their structure and functions. These two steps enabled complexes I, III, and V to be purified in two days with a high yield. Complexes I, III, and V were stabilized with n-decyl-β-D-maltoside. A total of 200 mg-300 mg of those complexes from one bovine heart (1.1 kg muscle) was purified with good reproducibility, and the complexes retained the same functions they possessed while in mitochondrial membranes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Microbial bebop: creating music from complex dynamics in microbial ecology.

    PubMed

    Larsen, Peter; Gilbert, Jack

    2013-01-01

    In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm.) from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  2. Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge.

    PubMed

    Ruiz-Espinoza, Juan E; Méndez-Contreras, Juan M; Alvarado-Lassman, Alejandro; Martínez-Delgadillo, Sergio A

    2012-01-01

    Treatment of poultry industry effluents produces wastewater sludge with high levels of organic compounds and pathogenic microorganisms. In this research, the thermal pre-treatment of poultry slaughterhouse sludge (PSS) was evaluated for low temperatures in combination with different exposure times as a pre-hydrolysis strategy to improve the anaerobic digestion process. Organic compounds solubilization and inactivation of pathogenic microorganisms were evaluated after treatment at 70, 80 or 90°C for 30, 60 or 90 min. The results showed that 90°C and 90 min were the most efficient conditions for solubilization of the organic compounds (10%). In addition, the bacteria populations and the more resistant structures, such as helminth eggs (HE), were completely inactivated. Finally, the thermal pre-treatment applied to the sludge increased methane yield by 52% and reduced hydraulic retention time (HRT) by 52%.

  3. In vitro digestion testing of lipid-based delivery systems: calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products.

    PubMed

    Devraj, Ravi; Williams, Hywel D; Warren, Dallas B; Mullertz, Anette; Porter, Christopher J H; Pouton, Colin W

    2013-01-30

    In vitro digestion testing is of practical importance to predict the fate of drugs administered in lipid-based delivery systems. Calcium ions are often added to digestion media to increase the extent of digestion of long-chain triglycerides (LCTs), but the effects they have on phase behaviour of the products of digestion, and consequent drug solubilization, are not well understood. This study investigates the effect of calcium and bile salt concentrations on the rate and extent of in vitro digestion of soybean oil, as well as the solubilizing capacity of the digestion products for two poorly water-soluble drugs, fenofibrate and danazol. In the presence of higher concentrations of calcium ions, the solubilization capacities of the digests were reduced for both drugs. This effect is attributed to the formation of insoluble calcium soaps, visible as precipitates during the digestions. This reduces the availability of liberated fatty acids to form mixed micelles and vesicles, thereby reducing drug solubilization. The use of high calcium concentrations does indeed force in vitro digestion of LCTs but may overestimate the extent of drug precipitation that occurs within the intestinal lumen. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS).

    PubMed

    Yong, K J; Scott, D J

    2015-03-01

    Directed evolution is a powerful method for engineering proteins towards user-defined goals and has been used to generate novel proteins for industrial processes, biological research and drug discovery. Typical directed evolution techniques include cellular display, phage display, ribosome display and water-in-oil compartmentalization, all of which physically link individual members of diverse gene libraries to their translated proteins. This allows the screening or selection for a desired protein function and subsequent isolation of the encoding gene from diverse populations. For biotechnological and industrial applications there is a need to engineer proteins that are functional under conditions that are not compatible with these techniques, such as high temperatures and harsh detergents. Cellular High-throughput Encapsulation Solubilization and Screening (CHESS), is a directed evolution method originally developed to engineer detergent-stable G proteins-coupled receptors (GPCRs) for structural biology. With CHESS, library-transformed bacterial cells are encapsulated in detergent-resistant polymers to form capsules, which serve to contain mutant genes and their encoded proteins upon detergent mediated solubilization of cell membranes. Populations of capsules can be screened like single cells to enable rapid isolation of genes encoding detergent-stable protein mutants. To demonstrate the general applicability of CHESS to other proteins, we have characterized the stability and permeability of CHESS microcapsules and employed CHESS to generate thermostable, sodium dodecyl sulfate (SDS) resistant green fluorescent protein (GFP) mutants, the first soluble proteins to be engineered using CHESS. © 2014 Wiley Periodicals, Inc.

  5. Bioaugmentation of half-matured granular sludge with special microbial culture promoted establishment of 2,4-dichlorophenoxyacetic acid degrading aerobic granules.

    PubMed

    Quan, Xiangchun; Ma, Jingyun; Xiong, Weicong; Wang, Xinrui

    2015-06-01

    Aerobic granular sludge degrading recalcitrant compounds are generally hard to be cultivated. This study investigated the feasibility of cultivating 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granules using half-matured sludge granules pre-grown on glucose as the seeds and bioaugmentation with a 2,4-D degrading strain Achromobacter sp. QXH. Results showed that bioaugmentation promoted the steady transformation of glucose-grown granules to 2,4-D degrading sludge granules and fast establishment of 2,4-D degradation ability. The 2,4-D degradation rate of the bioaugmented granules was enhanced by 36-62 % compared to the control at 2,4-D concentrations of 144-565 mg/L on Day 18. The inoculated strain was incorporated into the half-matured granules successfully and survived till the end of operation (220 days). Sludge granules at a mean size of 420 µm and capable of utilizing 500 mg/L 2,4-D as the sole carbon source were finally obtained. Sludge microbial community shifted slightly during the whole operation and the dominant bacteria species belonged to Proteobacteria.

  6. 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy

    PubMed Central

    Vahedi-Faridi, Ardeschir; Jastrzebska, Beata; Palczewski, Krzysztof; Engel, Andreas

    2013-01-01

    Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin. PMID:23267047

  7. Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state.

    PubMed

    Aduri, Nanda G; Ernst, Heidi A; Prabhala, Bala K; Bhatt, Shweta; Boesen, Thomas; Gajhede, Michael; Mirza, Osman

    2018-01-08

    The human proton coupled folic acid transporter PCFT is the major import route for dietary folates. Mutations in the gene encoding PCFT cause hereditary folic acid malabsorption, which manifests itself by compromised folate absorption from the intestine and also in impaired folate transport into the central nervous system. Since its recent discovery, PCFT has been the subject of numerous biochemical studies aiming at understanding its structure and mechanism. One major focus has been its oligomeric state, with some reports supporting oligomers and others a monomer. Here, we report the overexpression and purification of recombinant PCFT. Following detergent screening, n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating a functionally active protein. Size exclusion chromatography showed that PCFT in DDM was polydisperse; the LMNG preparation was clearly monodisperse but with shorter retention time than the major DDM peak. To assess the oligomeric state negative stain electron microscopy was performed which showed a particle with the size of a PCFT dimer. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Scoping the potential use of microbial inoculants in cotton production systems

    NASA Astrophysics Data System (ADS)

    Pereg, Lily

    2014-05-01

    There is a growing body of research showing that beneficial microbes can enhance soil productivity and yield in cropping systems. To appreciate the potential uses of beneficial microbes for increasing yield, it is necessary to understand how the microbes promote the growth of plants in terms of biofertilization and disease control, what are the mechanisms employed, what are the challenges for the isolation and use of plant growth promoting microbes, as well as what might hinder their successful application. This presentation critically reviews information on microbial inoculants, giving ample of examples of identified plant growth promoting microbes (including commercial products) and how they may benefit the plant, with particular focus on cotton and cotton related systems.

  9. Functional diversity of microbial communities in pristine aquifers inferred by PLFA- and sequencing-based approaches

    NASA Astrophysics Data System (ADS)

    Schwab, Valérie F.; Herrmann, Martina; Roth, Vanessa-Nina; Gleixner, Gerd; Lehmann, Robert; Pohnert, Georg; Trumbore, Susan; Küsel, Kirsten; Totsche, Kai U.

    2017-05-01

    Microorganisms in groundwater play an important role in aquifer biogeochemical cycles and water quality. However, the mechanisms linking the functional diversity of microbial populations and the groundwater physico-chemistry are still not well understood due to the complexity of interactions between surface and subsurface. Within the framework of Hainich (north-western Thuringia, central Germany) Critical Zone Exploratory of the Collaborative Research Centre AquaDiva, we used the relative abundances of phospholipid-derived fatty acids (PLFAs) to link specific biochemical markers within the microbial communities to the spatio-temporal changes of the groundwater physico-chemistry. The functional diversities of the microbial communities were mainly correlated with groundwater chemistry, including dissolved O2, Fet and NH4+ concentrations. Abundances of PLFAs derived from eukaryotes and potential nitrite-oxidizing bacteria (11Me16:0 as biomarker for Nitrospira moscoviensis) were high at sites with elevated O2 concentration where groundwater recharge supplies bioavailable substrates. In anoxic groundwaters more rich in Fet, PLFAs abundant in sulfate-reducing bacteria (SRB), iron-reducing bacteria and fungi increased with Fet and HCO3- concentrations, suggesting the occurrence of active iron reduction and the possible role of fungi in meditating iron solubilization and transport in those aquifer domains. In more NH4+-rich anoxic groundwaters, anammox bacteria and SRB-derived PLFAs increased with NH4+ concentration, further evidencing the dependence of the anammox process on ammonium concentration and potential links between SRB and anammox bacteria. Additional support of the PLFA-based bacterial communities was found in DNA- and RNA-based Illumina MiSeq amplicon sequencing of bacterial 16S rRNA genes, which showed high predominance of nitrite-oxidizing bacteria Nitrospira, e.g. Nitrospira moscoviensis, in oxic aquifer zones and of anammox bacteria in more NH4+-rich

  10. Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil

    NASA Astrophysics Data System (ADS)

    Zheng, Bang-Xiao; Hao, Xiu-Li; Ding, Kai; Zhou, Guo-Wei; Chen, Qing-Lin; Zhang, Jia-Bao; Zhu, Yong-Guan

    2017-02-01

    Inorganic phosphate solubilizing bacteria (iPSB) are essential to facilitate phosphorus (P) mobilization in alkaline soil, however, the phylogenetic structure of iPSB communities remains poorly characterized. Thus, we use a reference iPSB database to analyze the distribution of iPSB communities based on 16S rRNA gene illumina sequencing. Additionally, a noval pqqC primer was developed to quantify iPSB abundance. In our study, an alkaline soil with 27-year fertilization treatment was selected. The percentage of iPSB was 1.10~2.87% per sample, and the dominant iPSB genera were closely related to Arthrobacter, Bacillus, Brevibacterium and Streptomyces. Long-term P fertilization had no significant effect on the abundance of iPSB communities. Rather than P and potassium (K) additions, long-term nitrogen (N) fertilization decreased the iPSB abundance, which was validated by reduced relative abundance of pqqC gene (pqqC/16S). The decreased iPSB abundance was strongly related to pH decline and total N increase, revealing that the long-term N additions may cause pH decline and subsequent P releases relatively decreasing the demands of the iPSB community. The methodology and understanding obtained here provides insights into the ecology of inorganic P solubilizers and how to manipulate for better P use efficiency.

  11. Microfluidics and microbial engineering.

    PubMed

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-07

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  12. Biosolubilization of coal by Candida in glucose limited cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitter, J.; Guillory, L.; Bose, N.K.

    1990-01-01

    Coal biodegradation is attracting the attention of many workers because of its significance for efficient bioconversion of coal into useful chemicals. The authors work is based upon the beneficiation of a fungus (candida) on subbituminous coal. Candida was grown on both solid and liquid sabouraud medium and the coal solubilizing activity was studied at varying glucose concentration and temperature. Lower glucose concentration and higher temperature enhanced coal solubilizing activity by this fungus. Preliminary work has begun on analyzing organic extractions (alumina chromatography) of the liquid produced after microbial solubilization, including elemental analysis, solubility, molecular weights and chemical structure. This preliminarymore » work suggests that the candida could metabolize naturally occurring coal as substrate.« less

  13. Responses of microbial respiration in grazed and ungrazed grasslands to glucose addition

    NASA Astrophysics Data System (ADS)

    Xu, Xingliang; Liu, Qianyuan; Pang, Rui

    2017-04-01

    Grazing can change species composition, alter soil properties, and thus modify microbial activities, affecting biogeochemical processes in grasslands. However, it remains unclear how microbial respiration in grazed and ungrazed grasslands responds to glucose addition. Here we hypothesize that microbial respiration in grazed grasslands will respond more strongly to glucose addition than in ungrazed grasslands because moderate grazing can enhance microbial activity. To examine the hypothesis above, we collected the upper 10 cm soil from grazed and ungrazed grasslands at five sites of China. Three sites (Hulunbuir 1, Hulunbuir 2 and Xielingele) were located in Inner Mongolia and two in the Tibet Plateau) Soils were incubated with low glucose input (50% MBC), high glucose input (150% MBC), and water for 60 days in 21oC. CO2 released from soil was trapped with 1 M NaOH. The results showed that the effect of grazing on microbial respiration has two distinct patterns, depending on soil types and addition amount. After glucose addition, cumulative CO2 efflux from grazed soils was significantly higher than from ungrazed soils in two temperate grasslands (Hulunbuir 1 and Xielingele). This may be ascribed to that moderate grazing promoted microbial activity. On the contrary, microbial respirations from grazed soils were lower than ungrazed soils in two alpine meadows of Haibei and Dangxiong and in Hulunbuir 2. This effect of grazing was not obvious in Hulunbeier 2 soils at low carbon addition level. Grazing may decrease soil organic carbon, nitrogen availability and thus microbial activity in alpine grasslands. These findings indicate that soil microorganisms could have different adaptation mechanisms to grazing in temperate and alpine grasslands.

  14. Life in the "plastisphere": microbial communities on plastic marine debris.

    PubMed

    Zettler, Erik R; Mincer, Tracy J; Amaral-Zettler, Linda A

    2013-07-02

    Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the "Plastisphere". Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vibrio that dominated one of our plastic samples. Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean.

  15. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc

    PubMed Central

    Hager, Kevin W.; Fullerton, Heather; Butterfield, David A.; Moyer, Craig L.

    2017-01-01

    The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU) rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity. PMID:28970817

  16. Design and characterization of submicron formulation for a poorly soluble drug: the effect of Vitamin E TPGS and other solubilizers on skin permeability enhancement.

    PubMed

    Ghosh, Indrajit; Michniak-Kohn, Bozena

    2012-09-15

    In transdermal drug delivery systems (TDDS), it is a challenge to achieve stable and prolonged high permeation rates across the skin since the concentrations of the drug dissolved in the matrix have to be high in order to maintain zero order release kinetics. Several attempts have been reported to improve the permeability of poorly soluble drug compounds using supersaturated systems, however, due to thermodynamic challenges, there was a high tendency for the drug to nucleate immediately after formulating or even during storage. The present study focuses on the efficiency of drug crystals at the submicron/nano range in presence of different solubilizers to improve the permeation rate. Effect of several solubilizers, e.g. Pluronic F-127, Vitamin E TPGS, propylene glycol were studied on the submicron suspension systems of ibuprofen as a model drug. Various stabilizers such as hydroxylpropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were examined to evaluate their crystal inhibitory effects on particle growth of the drug compound at submicron range. The overall permeation enhancement process through the skin seems to be influenced by the presence of solubilizers and also the presence of submicron drug crystal. The most promising stable formulation was developed with Vitamin E TPGS+HPMC submicron suspension, which produced higher permeation rate compared to other vehicles. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Specific Microbial Communities Associate with the Rhizosphere of Welwitschia mirabilis, a Living Fossil

    PubMed Central

    De Maayer, Pieter; Oberholster, Tanzelle; Henschel, Joh; Louw, Michele K.; Cowan, Don

    2016-01-01

    Welwitschia mirabilis is an ancient and rare plant distributed along the western coast of Namibia and Angola. Several aspects of Welwitschia biology and ecology have been investigated, but very little is known about the microbial communities associated with this plant. This study reports on the bacterial and fungal communities inhabiting the rhizosphere of W. mirabilis and the surrounding bulk soil. Rhizosphere communities were dominated by sequences of Alphaproteobacteria and Euromycetes, while Actinobacteria, Alphaproteobacteria, and fungi of the class Dothideomycetes jointly dominated bulk soil communities. Although microbial communities within the rhizosphere and soil samples were highly variable, very few “species” (OTUs defined at a 97% identity cut-off) were shared between these two environments. There was a small ‘core’ rhizosphere bacterial community (formed by Nitratireductor, Steroidobacter, Pseudonocardia and three Phylobacteriaceae) that together with Rhizophagus, an arbuscular mycorrhizal fungus, and other putative plant growth-promoting microbes may interact synergistically to promote Welwitschia growth. PMID:27064484

  18. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

    PubMed Central

    Etminani, Faegheh; Harighi, Behrouz

    2018-01-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity. PMID:29887777

  19. Modeling microbial communities: current, developing, and future technologies for predicting microbial community interaction.

    PubMed

    Larsen, Peter; Hamada, Yuki; Gilbert, Jack

    2012-07-31

    Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Multifunctional Coatings to Simultaneously Promote Osseointegration and Prevent Infection of Orthopaedic Implants

    PubMed Central

    Raphel, Jordan; Holodniy, Mark; Goodman, Stuart B.; Heilshorn, Sarah C.

    2016-01-01

    The two leading causes of failure for joint arthroplasty prostheses are aseptic loosening and periprosthetic joint infection. With the number of primary and revision joint replacement surgeries on the rise, strategies to mitigate these failure modes have become increasingly important. Much of the recent work in this field has focused on the design of coatings either to prevent infection while ignoring bone mineralization or vice versa, to promote osseointegration while ignoring microbial susceptibility. However, both coating functions are required to achieve long-term success of the implant; therefore, these two modalities must be evaluated in parallel during the development of new orthopaedic coating strategies. In this review, we discuss recent progress and future directions for the design of multifunctional orthopaedic coatings that can inhibit microbial cells while still promoting osseointegration. PMID:26851394