Sample records for microparticle image velocimetry

  1. Silica nanoparticles for micro-particle imaging velocimetry: fluorosurfactant improves nanoparticle stability and brightness of immobilized iridium(III) complexes.

    PubMed

    Lewis, David J; Dore, Valentina; Rogers, Nicola J; Mole, Thomas K; Nash, Gerard B; Angeli, Panagiota; Pikramenou, Zoe

    2013-11-26

    To establish highly luminescent nanoparticles for monitoring fluid flows, we examined the preparation of silica nanoparticles based on immobilization of a cyclometalated iridium(III) complex and an examination of the photophysical studies provided a good insight into the Ir(III) microenvironment in order to reveal the most suitable silica nanoparticles for micro particle imaging velocimetry (μ-PIV) studies. Iridium complexes covalently incorporated at the surface of preformed silica nanoparticles, [Ir-4]@Si500-Z, using a fluorinated polymer during their preparation, demonstrated better stability than those without the polymer, [Ir-4]@Si500, as well as an increase in steady state photoluminescence intensity (and therefore particle brightness) and lifetimes which are increased by 7-fold compared with nanoparticles with the same metal complex attached covalently throughout their core, [Ir-4]⊂Si500. Screening of the nanoparticles in fluid flows using epi-luminescence microscopy also confirm that the brightest, and therefore most suitable particles for microparticle imaging velocimetry (μ-PIV) measurements are those with the Ir(III) complex immobilized at the surface with fluorosurfactant, that is [Ir-4]@Si500-Z. μ-PIV studies demonstrate the suitability of these nanoparticles as nanotracers in microchannels.

  2. Particle Image Velocimetry Around Swimming Paramecia

    NASA Astrophysics Data System (ADS)

    Giarra, Matthew; Jana, Saikat; Jung, Sunghwan; Vlachos, Pavlos

    2011-11-01

    Microorganisms like paramecia propel themselves by synchronously beating thousands of cilia that cover their bodies. Using micro-particle image velocimetry (μPIV), we quantitatively measured velocity fields created by the movement of Paramecium multimicronucleatum through a thin (~100 μm) film of water. These velocity fields exhibited different features during different swimming maneuvers, which we qualitatively categorized as straight forward, turning, or backward motion. We present the velocity fields measured around organisms during each type of motion, as well as calculated path lines and fields of vorticity. For paramecia swimming along a straight path, we observed dipole-like flow structures that are characteristic of a prolate-spheroid translating axially in a quiescent fluid. Turning and backward-swimming organisms showed qualitatively different patterns of vortices around their bodies. Finally, we offer hypotheses about the roles of these different flow patterns in the organism's ability to maneuver.

  3. Particle-image Velocimetry (PIV)

    NASA Image and Video Library

    2015-05-12

    Particle-image velocimetry (PIV) is performed on the upper surface of a pitching airfoil in the NASA Glenn Icing Research Tunnel. PIV is a laser-based flow velocity measurement technique used widely in wind tunnels. These experiments were conducted as part of a research project focused on enhancing rotorcraft speed, efficiency and maneuverability by suppressing dynamic stall.

  4. Microparticle tracking velocimetry as a tool for microfluidic flow measurements

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven D.; Schmidt, James W.; Wright, John D.

    2017-07-01

    The accurate measurement of flows in microfluidic channels is important for commercial and research applications. We compare the accuracy of flow measurement techniques over a wide range flows. Flow measurements made using holographic microparticle tracking velocimetry (µPTV) and a gravimetric flow standard over the range of 0.5-100 nL/s agree within 0.25%, well within the uncertainty of the two flow systems. Two commercial thermal flow sensors were used as the intermediaries (transfer standards) between the two flow measurement systems. The gravimetric flow standard was used to calibrate the thermal flow sensors by measuring the rate of change of the mass of liquid in a beaker on a micro-balance as it fills. The holographic µPTV flow measurements were made in a rectangular channel and the flow was seeded with 1 µm diameter polystyrene spheres. The volumetric flow was calculated using the Hagen-Pouiseille solution for a rectangular channel. The uncertainty of both flow measurement systems is given. For the gravimetric standard, relative uncertainty increased for decreasing flows due to surface tension forces between the pipette carrying the flow and the free surface of the liquid in the beaker. The uncertainty of the holographic µPTV measurements did not vary significantly over the measured flow range, and thus comparatively are especially useful at low flow velocities.

  5. Acquisition of Stereoscopic Particle Image Velocimetry System for Investigation of Unsteady Flows

    DTIC Science & Technology

    2016-04-30

    SECURITY CLASSIFICATION OF: The objective of the project titled “Acquisition of Stereoscopic Particle Image Velocimetry (S-PIV) System for...Distribution Unlimited UU UU UU UU 30-04-2016 1-Feb-2015 31-Jan-2016 Final Report: Acquisition of Stereoscopic Particle Image Velocimetry System For...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Particle Image Velocimetry REPORT DOCUMENTATION PAGE 11

  6. Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor); Glasgow, Thomas K. (Inventor)

    1999-01-01

    A system and a method for measuring three-dimensional velocities at a plurality of points in a fluid employing at least two cameras positioned approximately perpendicular to one another. The cameras are calibrated to accurately represent image coordinates in world coordinate system. The two-dimensional views of the cameras are recorded for image processing and centroid coordinate determination. Any overlapping particle clusters are decomposed into constituent centroids. The tracer particles are tracked on a two-dimensional basis and then stereo matched to obtain three-dimensional locations of the particles as a function of time so that velocities can be measured therefrom The stereo imaging velocimetry technique of the present invention provides a full-field. quantitative, three-dimensional map of any optically transparent fluid which is seeded with tracer particles.

  7. Photoacoustic imaging velocimetry for flow-field measurement.

    PubMed

    Ma, Songbo; Yang, Sihua; Xing, Da

    2010-05-10

    We present the photoacoustic imaging velocimetry (PAIV) method for flow-field measurement based on a linear transducer array. The PAIV method is realized by using a Q-switched pulsed laser, a linear transducer array, a parallel data-acquisition equipment and dynamic focusing reconstruction. Tracers used to track liquid flow field were real-timely detected, two-dimensional (2-D) flow visualization was successfully reached, and flow parameters were acquired by measuring the movement of the tracer. Experimental results revealed that the PAIV method would be developed into 3-D imaging velocimetry for flow-field measurement, and potentially applied to research the security and targeting efficiency of optical nano-material probes. (c) 2010 Optical Society of America.

  8. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry.

    PubMed

    Headland, Sarah E; Jones, Hefin R; D'Sa, Adelina S V; Perretti, Mauro; Norling, Lucy V

    2014-06-10

    Interest in extracellular vesicle biology has exploded in the past decade, since these microstructures seem endowed with multiple roles, from blood coagulation to inter-cellular communication in pathophysiology. In order for microparticle research to evolve as a preclinical and clinical tool, accurate quantification of microparticle levels is a fundamental requirement, but their size and the complexity of sample fluids present major technical challenges. Flow cytometry is commonly used, but suffers from low sensitivity and accuracy. Use of Amnis ImageStream(X) Mk II imaging flow cytometer afforded accurate analysis of calibration beads ranging from 1 μm to 20 nm; and microparticles, which could be observed and quantified in whole blood, platelet-rich and platelet-free plasma and in leukocyte supernatants. Another advantage was the minimal sample preparation and volume required. Use of this high throughput analyzer allowed simultaneous phenotypic definition of the parent cells and offspring microparticles along with real time microparticle generation kinetics. With the current paucity of reliable techniques for the analysis of microparticles, we propose that the ImageStream(X) could be used effectively to advance this scientific field.

  9. Initial application of stereoscopic particle image velocimetry to transport and boundary phenomena in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Williams, Jeremiah; Silver, Jennifer

    2004-11-01

    Over the past five years, the Auburn Plasma Sciences Laboratory (PSL) has applied two-dimensional particle image velocimetry (2D-PIV) techniques [E. Thomas, Phys. Plasmas, 6, 2672 (1999)] to make measurements of particle transport in dusty plasmas. Although important information was obtained from these earlier studies, the complex behavior of the charged microparticles clearly indicated that three-dimensional velocity information is needed. The PSL has recently acquired and installed a stereoscopic PIV (stereo-PIV) diagnostic tool for dusty plasma investigations [E. Thomas. et al, Phys. Plasmas, L37 (2004)]. It employs a synchronized dual-laser, dual-camera system for measuring particle transport in three dimensions. Results will be presented on the initial application of stereo-PIV to dusty plasma studies. Additional results will be presented on the use of stereo-PIV for measuring the controlled interaction of two dust clouds.

  10. Particle Image Velocimetry During Injection Molding

    NASA Astrophysics Data System (ADS)

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  11. Schlieren image velocimetry measurements in a rocket engine exhaust plume

    NASA Astrophysics Data System (ADS)

    Morales, Rudy; Peguero, Julio; Hargather, Michael

    2017-11-01

    Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.

  12. Some comments on particle image displacement velocimetry

    NASA Technical Reports Server (NTRS)

    Lourenco, L. M.

    1988-01-01

    Laser speckle velocimetry (LSV) or particle image displacement velocimetry, is introduced. This technique provides the simultaneous visualization of the two-dimensional streamline pattern in unsteady flows as well as the quantification of the velocity field over an entire plane. The advantage of this technique is that the velocity field can be measured over an entire plane of the flow field simultaneously, with accuracy and spatial resolution. From this the instantaneous vorticity field can be easily obtained. This constitutes a great asset for the study of a variety of flows that evolve stochastically in both space and time. The basic concept of LSV; methods of data acquisition and reduction, examples of its use, and parameters that affect its utilization are described.

  13. Imaging efficiency of an X-ray contrast agent-incorporated polymeric microparticle.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-01-01

    Biocompatible polymeric encapsulants have been widely used as a delivery vehicle for a variety of drugs and imaging agents. In this study, X-ray contrast agent (iopamidol) is encapsulated into a polymeric microparticle (polyvinyl alcohol) as a particulate flow tracer in synchrotron X-ray imaging system. The physical properties of the designed microparticles are investigated and correlated with enhancement in the imaging efficiency by experimental observation and theoretical interpretation. The X-ray absorption ability of the designed microparticle is assessed by Beer-Lambert-Bouguer law. Particle size, either in dried state or in solvent, primarily dominates the X-ray absorption ability under the given condition, thus affecting imaging efficiency of the designed X-ray contrast flow tracers. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?

    NASA Astrophysics Data System (ADS)

    Tauro, F.; Piscopia, R.; Grimaldi, S.

    2017-12-01

    Image-based methodologies, such as large scale particle image velocimetry (LSPIV) and particle tracking velocimetry (PTV), have increased our ability to noninvasively conduct streamflow measurements by affording spatially distributed observations at high temporal resolution. However, progress in optical methodologies has not been paralleled by the implementation of image-based approaches in environmental monitoring practice. We attribute this fact to the sensitivity of LSPIV, by far the most frequently adopted algorithm, to visibility conditions and to the occurrence of visible surface features. In this work, we test both LSPIV and PTV on a data set of 12 videos captured in a natural stream wherein artificial floaters are homogeneously and continuously deployed. Further, we apply both algorithms to a video of a high flow event on the Tiber River, Rome, Italy. In our application, we propose a modified PTV approach that only takes into account realistic trajectories. Based on our findings, LSPIV largely underestimates surface velocities with respect to PTV in both favorable (12 videos in a natural stream) and adverse (high flow event in the Tiber River) conditions. On the other hand, PTV is in closer agreement than LSPIV with benchmark velocities in both experimental settings. In addition, the accuracy of PTV estimations can be directly related to the transit of physical objects in the field of view, thus providing tangible data for uncertainty evaluation.

  15. Ultrasound Imaging Velocimetry: a review

    NASA Astrophysics Data System (ADS)

    Poelma, Christian

    2017-01-01

    Whole-field velocity measurement techniques based on ultrasound imaging (a.k.a. `ultrasound imaging velocimetry' or `echo-PIV') have received significant attention from the fluid mechanics community in the last decade, in particular because of their ability to obtain velocity fields in flows that elude characterisation by conventional optical methods. In this review, an overview is given of the history, typical components and challenges of these techniques. The basic principles of ultrasound image formation are summarised, as well as various techniques to estimate flow velocities; the emphasis is on correlation-based techniques. Examples are given for a wide range of applications, including in vivo cardiovascular flow measurements, the characterisation of sediment transport and the characterisation of complex non-Newtonian fluids. To conclude, future opportunities are identified. These encompass not just optimisation of the accuracy and dynamic range, but also extension to other application areas.

  16. Real-time image processing for particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Kreizer, Mark; Ratner, David; Liberzon, Alex

    2010-01-01

    We present a novel high-speed particle tracking velocimetry (PTV) experimental system. Its novelty is due to the FPGA-based, real-time image processing "on camera". Instead of an image, the camera transfers to the computer using a network card, only the relevant information of the identified flow tracers. Therefore, the system is ideal for the remote particle tracking systems in research and industrial applications, while the camera can be controlled and data can be transferred over any high-bandwidth network. We present the hardware and the open source software aspects of the PTV experiments. The tracking results of the new experimental system has been compared to the flow visualization and particle image velocimetry measurements. The canonical flow in the central cross section of a a cubic cavity (1:1:1 aspect ratio) in our lid-driven cavity apparatus is used for validation purposes. The downstream secondary eddy (DSE) is the sensitive portion of this flow and its size was measured with increasing Reynolds number (via increasing belt velocity). The size of DSE estimated from the flow visualization, PIV and compressed PTV is shown to agree within the experimental uncertainty of the methods applied.

  17. Weighted least-squares solver for determining pressure from particle image velocimetry data

    NASA Astrophysics Data System (ADS)

    de Kat, Roeland

    2016-11-01

    Currently, most approaches to determine pressure from particle image velocimetry data are Poisson approaches (e.g.) or multi-pass marching approaches (e.g.). However, these approaches deal with boundary conditions in their specific ways which cannot easily be changed-Poisson approaches enforce boundary conditions strongly, whereas multi-pass marching approaches enforce them weakly. Under certain conditions (depending on the certainty of the data or availability of reference data along the boundary) both types of boundary condition enforcement have to be used together to obtain the best result. In addition, neither of the approaches takes the certainty of the particle image velocimetry data (see e.g.) within the domain into account. Therefore, to address these shortcomings and improve upon current approaches, a new approach is proposed using weighted least-squares. The performance of this new approach is tested on synthetic and experimental particle image velocimetry data. Preliminary results show that a significant improvement can be made in determining pressure fields using the new approach. RdK is supported by a Leverhulme Trust Early Career Fellowship.

  18. Properties of iopamidol-incorporated poly(vinyl alcohol) microparticle as an X-ray imaging flow tracer.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-02-10

    We have recently reported on poly(vinyl alcohol) microparticles containing X-ray contrast agent, iopamidol, designed as a flow tracer working in synchrotron X-ray imaging ( Biosens. Bioelectron. 2010 , 25 , 1571 ). Although iopamidol is physically encapsulated in the microparticles, it displays a great contrast enhancement and stable feasibility in in vitro human blood pool. Nonetheless, a direct relation between the absolute amount of incorporated iopamidol and the enhancement in imaging efficiency was not observed. In this study, physical properties of the designed microparticle are systematically investigated experimentally with theoretical interpretation to correlate an enhancement in X-ray imaging efficiency. The compositional ratio of X-ray contrast agent in polymeric microparticle is controlled as 1/1 and 10/1 [contrast agent/polymer microparticle (w/w)] with changed degree of cross-linkings. Flory-Huggins interaction parameter (χ), retractive force (τ) and degree of swelling of the designed polymeric microparticles are investigated. In addition, the hydrodynamic size (D(H)) and ζ-potential are evaluated in terms of environment responsiveness. The physical properties of the designed flow tracer microparticles under a given condition are observed to be strongly related with the X-ray absorption efficiency, which are also supported by the Beer-Lambert-Bouguer law. The designed microparticles are almost nontoxic with a reasonable concentration and time period, enough to be utilized as a flow tracer in various biomedical applications. This study would contribute to the basic understanding on the physical property connected with the imaging efficiency of contrast agents.

  19. Microparticle analysis system and method

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    2007-01-01

    A device for analyzing microparticles is provided which includes a chamber with an inlet and an outlet for respectively introducing and dispensing a flowing fluid comprising microparticles, a light source for providing light through the chamber and a photometer for measuring the intensity of light transmitted through individual microparticles. The device further includes an imaging system for acquiring images of the fluid. In some cases, the device may be configured to identify and determine a quantity of the microparticles within the fluid. Consequently, a method for identifying and tracking microparticles in motion is contemplated herein. The method involves flowing a fluid comprising microparticles in laminar motion through a chamber, transmitting light through the fluid, measuring the intensities of the light transmitted through the microparticles, imaging the fluid a plurality of times and comparing at least some of the intensities of light between different images of the fluid.

  20. Stereo imaging velocimetry for microgravity applications

    NASA Technical Reports Server (NTRS)

    Miller, Brian B.; Meyer, Maryjo B.; Bethea, Mark D.

    1994-01-01

    Stereo imaging velocimetry is the quantitative measurement of three-dimensional flow fields using two sensors recording data from different vantage points. The system described in this paper, under development at NASA Lewis Research Center in Cleveland, Ohio, uses two CCD cameras placed perpendicular to one another, laser disk recorders, an image processing substation, and a 586-based computer to record data at standard NTSC video rates (30 Hertz) and reduce it offline. The flow itself is marked with seed particles, hence the fluid must be transparent. The velocimeter tracks the motion of the particles, and from these we deduce a multipoint (500 or more), quantitative map of the flow. Conceptually, the software portion of the velocimeter can be divided into distinct modules. These modules are: camera calibration, particle finding (image segmentation) and centroid location, particle overlap decomposition, particle tracking, and stereo matching. We discuss our approach to each module, and give our currently achieved speed and accuracy for each where available.

  1. Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles

    NASA Technical Reports Server (NTRS)

    Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.

    2015-01-01

    Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.

  2. Performing particle image velocimetry using artificial neural networks: a proof-of-concept

    NASA Astrophysics Data System (ADS)

    Rabault, Jean; Kolaas, Jostein; Jensen, Atle

    2017-12-01

    Traditional programs based on feature engineering are underperforming on a steadily increasing number of tasks compared with artificial neural networks (ANNs), in particular for image analysis. Image analysis is widely used in fluid mechanics when performing particle image velocimetry (PIV) and particle tracking velocimetry (PTV), and therefore it is natural to test the ability of ANNs to perform such tasks. We report for the first time the use of convolutional neural networks (CNNs) and fully connected neural networks (FCNNs) for performing end-to-end PIV. Realistic synthetic images are used for training the networks and several synthetic test cases are used to assess the quality of each network’s predictions and compare them with state-of-the-art PIV software. In addition, we present tests on real-world data that prove ANNs can be used not only with synthetic images but also with more noisy, imperfect images obtained in a real experimental setup. While the ANNs we present have slightly higher root mean square error than state-of-the-art cross-correlation methods, they perform better near edges and allow for higher spatial resolution than such methods. In addition, it is likely that one could with further work develop ANNs which perform better that the proof-of-concept we offer.

  3. Particle image velocimetry based on wavelength division multiplexing

    NASA Astrophysics Data System (ADS)

    Tang, Chunxiao; Li, Enbang; Li, Hongqiang

    2018-01-01

    This paper introduces a technical approach of wavelength division multiplexing (WDM) based particle image velocimetry (PIV). It is designed to measure transient flows with different scales of velocity by capturing multiple particle images in one exposure. These images are separated by different wavelengths, and thus the pulse separation time is not influenced by the frame rate of the camera. A triple-pulsed PIV system has been created in order to prove the feasibility of WDM-PIV. This is demonstrated in a sieve plate extraction column model by simultaneously measuring the fast flow in the downcomer and the slow vortices inside the plates. A simple displacement/velocity field combination method has also been developed. The constraints imposed by WDM-PIV are limited wavelength choices of available light sources and cameras. The usage of WDM technique represents a feasible way to realize multiple-pulsed PIV.

  4. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    PubMed Central

    Persoons, Tim; O’Donovan, Tadhg S.

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods. PMID:22346564

  5. Particle image velocimetry experiments for the IML-I spaceflight. [International Microgravity Laboratory

    NASA Technical Reports Server (NTRS)

    Trolinger, J. D.; Lal, R. B.; Batra, A. K.; Mcintosh, D.

    1991-01-01

    The first International Microgravity Laboratory (IML-1), scheduled for spaceflight in early 1992 includes a crystal-growth-from-solution experiment which is equipped with an array of optical diagnostics instrumentation which includes transmission and reflection holography, tomography, schlieren, and particle image displacement velocimetry. During the course of preparation for this spaceflight experiment we have performed both experimentation and analysis for each of these diagnostics. In this paper we describe the work performed in the development of holographic particle image displacement velocimetry for microgravity application which will be employed primarily to observe and quantify minute convective currents in the Spacelab environment and also to measure the value of g. Additionally, the experiment offers a unique opportunity to examine physical phenomena which are normally negligible and not observable. A preliminary analysis of the motion of particles in fluid was performed and supporting experiments were carried out. The results of the analysis and the experiments are reported.

  6. Volumetric particle image velocimetry with a single plenoptic camera

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera

  7. Endovascular Device Testing with Particle Image Velocimetry Enhances Undergraduate Biomedical Engineering Education

    ERIC Educational Resources Information Center

    Nair, Priya; Ankeny, Casey J.; Ryan, Justin; Okcay, Murat; Frakes, David H.

    2016-01-01

    We investigated the use of a new system, HemoFlow™, which utilizes state of the art technologies such as particle image velocimetry to test endovascular devices as part of an undergraduate biomedical engineering curriculum. Students deployed an endovascular stent into an anatomical model of a cerebral aneurysm and measured intra-aneurysmal flow…

  8. The NASA Subsonic Jet Particle Image Velocimetry (PIV) Dataset

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2011-01-01

    Many tasks in fluids engineering require prediction of turbulence of jet flows. The present document documents the single-point statistics of velocity, mean and variance, of cold and hot jet flows. The jet velocities ranged from 0.5 to 1.4 times the ambient speed of sound, and temperatures ranged from unheated to static temperature ratio 2.7. Further, the report assesses the accuracies of the data, e.g., establish uncertainties for the data. This paper covers the following five tasks: (1) Document acquisition and processing procedures used to create the particle image velocimetry (PIV) datasets. (2) Compare PIV data with hotwire and laser Doppler velocimetry (LDV) data published in the open literature. (3) Compare different datasets acquired at the same flow conditions in multiple tests to establish uncertainties. (4) Create a consensus dataset for a range of hot jet flows, including uncertainty bands. (5) Analyze this consensus dataset for self-consistency and compare jet characteristics to those of the open literature. The final objective was fulfilled by using the potential core length and the spread rate of the half-velocity radius to collapse of the mean and turbulent velocity fields over the first 20 jet diameters.

  9. Photonic Doppler velocimetry lens array probe incorporating stereo imaging

    DOEpatents

    Malone, Robert M.; Kaufman, Morris I.

    2015-09-01

    A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.

  10. Large scale particle image velocimetry with helium filled soap bubbles

    NASA Astrophysics Data System (ADS)

    Bosbach, Johannes; Kühn, Matthias; Wagner, Claus

    2009-03-01

    The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.

  11. Electrospray of multifunctional microparticles for image-guided drug delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Yan, Yan; Mena, Joshua; Sun, Jingjing; Letson, Alan; Roberts, Cynthia; Zhou, Chuanqing; Chai, Xinyu; Ren, Qiushi; Xu, Ronald

    2012-03-01

    Anti-VEGF therapies have been widely explored for the management of posterior ocular disease, like neovascular age-related macular degeneration (AMD). Loading anti-VEGF therapies in biodegradable microparticles may enable sustained drug release and improved therapeutic outcome. However, existing microfabrication processes such as double emulsification produce drug-loaded microparticles with low encapsulation rate and poor antibody bioactivity. To overcome these limitations, we fabricate multifunctional microparticles by both single needle and coaxial needle electrospray. The experimental setup for the process includes flat-end syringe needles (both single needle and coaxial needle), high voltage power supplies, and syringe pumps. Microparticles are formed by an electrical field between the needles and the ground electrode. Droplet size and morphology are controlled by multiple process parameters and material properties, such as flow rate and applied voltage. The droplets are collected and freezing dried to obtain multifunctional microparticles. Fluorescent beads encapsulated poly(DL-lactide-co-glycolide) acid (PLGA) microparticles are injected into rabbits eyes through intravitreal injection to test the biodegradable time of microparticles.

  12. Plenoptic particle image velocimetry with multiple plenoptic cameras

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Thurow, Brian S.

    2018-07-01

    Plenoptic particle image velocimetry was recently introduced as a viable three-dimensional, three-component velocimetry technique based on light field cameras. One of the main benefits of this technique is its single camera configuration allowing the technique to be applied in facilities with limited optical access. The main drawback of this configuration is decreased accuracy in the out-of-plane dimension. This work presents a solution with the addition of a second plenoptic camera in a stereo-like configuration. A framework for reconstructing volumes with multiple plenoptic cameras including the volumetric calibration and reconstruction algorithms, including: integral refocusing, filtered refocusing, multiplicative refocusing, and MART are presented. It is shown that the addition of a second camera improves the reconstruction quality and removes the ‘cigar’-like elongation associated with the single camera system. In addition, it is found that adding a third camera provides minimal improvement. Further metrics of the reconstruction quality are quantified in terms of a reconstruction algorithm, particle density, number of cameras, camera separation angle, voxel size, and the effect of common image noise sources. In addition, a synthetic Gaussian ring vortex is used to compare the accuracy of the single and two camera configurations. It was determined that the addition of a second camera reduces the RMSE velocity error from 1.0 to 0.1 voxels in depth and 0.2 to 0.1 voxels in the lateral spatial directions. Finally, the technique is applied experimentally on a ring vortex and comparisons are drawn from the four presented reconstruction algorithms, where it was found that MART and multiplicative refocusing produced the cleanest vortex structure and had the least shot-to-shot variability. Filtered refocusing is able to produce the desired structure, albeit with more noise and variability, while integral refocusing struggled to produce a coherent vortex ring.

  13. Fluid Flow Characterization of High Turbulent Intensity Compressible Flow Using Particle Image Velocimetry

    DTIC Science & Technology

    2015-08-01

    completed in order to begin further experimentation. A 10 kHz Time Resolved Particle Image Velocimetry (TR-PIV) system and a 3 kHz Planer Laser ...9 2.3.2 Planar Laser Induced Fluorescence (PLIF...35 Figure 4.4: Solenoid valve (a), proportional control valve (b) and flowmeter (c) ...................................... 36 Figure 4.5

  14. Application of optical correlation techniques to particle imaging velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1988-01-01

    Pulsed laser sheet velocimetry yields nonintrusive measurements of velocity vectors across an extended 2-dimensional region of the flow field. The application of optical correlation techniques to the analysis of multiple exposure laser light sheet photographs can reduce and/or simplify the data reduction time and hardware. Here, Matched Spatial Filters (MSF) are used in a pattern recognition system. Usually MSFs are used to identify the assembly line parts. In this application, the MSFs are used to identify the iso-velocity vector contours in the flow. The patterns to be recognized are the recorded particle images in a pulsed laser light sheet photograph. Measurement of the direction of the partical image displacements between exposures yields the velocity vector. The particle image exposure sequence is designed such that the velocity vector direction is determined unambiguously. A global analysis technique is used in comparison to the more common particle tracking algorithms and Young's fringe analysis technique.

  15. Nanoparticle image velocimetry at topologically structured surfaces

    PubMed Central

    Parikesit, Gea O. F.; Guasto, Jeffrey S.; Girardo, Salvatore; Mele, Elisa; Stabile, Ripalta; Pisignano, Dario; Lindken, Ralph; Westerweel, Jerry

    2009-01-01

    Nanoparticle image velocimetry (nano-PIV), based on total internal reflection fluorescent microscopy, is very useful to investigate fluid flows within ∼100 nm from a surface; but so far it has only been applied to flow over smooth surfaces. Here we show that it can also be applied to flow over a topologically structured surface, provided that the surface structures can be carefully configured not to disrupt the evanescent-wave illumination. We apply nano-PIV to quantify the flow velocity distribution over a polydimethylsiloxane surface, with a periodic gratinglike structure (with 215 nm height and 2 μm period) fabricated using our customized multilevel lithography method. The measured tracer displacement data are in good agreement with the computed theoretical values. These results demonstrate new possibilities to study the interactions between fluid flow and topologically structured surfaces. PMID:20216973

  16. Analysis of Particle Image Velocimetry (PIV) Data for Application to Subsonic Jet Noise Studies

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    Global velocimetry measurements were taken using Particle Image Velocimetry (PIV) in the subsonic flow exiting a 1 inch circular nozzle in an attempt to better understand the turbulence characteristics of its shear layer region. This report presents the results of the PIV analysis and data reduction portions of the test and details the processing that was done. Custom data analysis and data validation algorithms were developed and applied to a data ensemble consisting of over 750 PIV 70 mm photographs taken in the 0.85 mach flow facility. Results are presented detailing spatial characteristics of the flow including ensemble mean and standard deviation, turbulence intensities and Reynold's stress levels, and 2-point spatial correlations.

  17. Development and assessment of transparent soil and particle image velocimetry in dynamic soil-structure interaction

    DOT National Transportation Integrated Search

    2007-02-01

    This research combines Particle Image Velocimetry (PIV) and transparent soil to investigate the dynamic rigid block and soil interaction. In order to get a low viscosity pore fluid for the transparent soil, 12 different types of chemical solvents wer...

  18. Analysis of Particle Image Velocimetry (PIV) Data for Acoustic Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    Acoustic velocity measurements were taken using Particle Image Velocimetry (PIV) in a Normal Incidence Tube configuration at various frequency, phase, and amplitude levels. This report presents the results of the PIV analysis and data reduction portions of the test and details the processing that was done. Estimates of lower measurement sensitivity levels were determined based on PIV image quality, correlation, and noise level parameters used in the test. Comparison of measurements with linear acoustic theory are presented. The onset of nonlinear, harmonic frequency acoustic levels were also studied for various decibel and frequency levels ranging from 90 to 132 dB and 500 to 3000 Hz, respectively.

  19. High-speed Particle Image Velocimetry Near Surfaces

    PubMed Central

    Lu, Louise; Sick, Volker

    2013-01-01

    Multi-dimensional and transient flows play a key role in many areas of science, engineering, and health sciences but are often not well understood. The complex nature of these flows may be studied using particle image velocimetry (PIV), a laser-based imaging technique for optically accessible flows. Though many forms of PIV exist that extend the technique beyond the original planar two-component velocity measurement capabilities, the basic PIV system consists of a light source (laser), a camera, tracer particles, and analysis algorithms. The imaging and recording parameters, the light source, and the algorithms are adjusted to optimize the recording for the flow of interest and obtain valid velocity data. Common PIV investigations measure two-component velocities in a plane at a few frames per second. However, recent developments in instrumentation have facilitated high-frame rate (> 1 kHz) measurements capable of resolving transient flows with high temporal resolution. Therefore, high-frame rate measurements have enabled investigations on the evolution of the structure and dynamics of highly transient flows. These investigations play a critical role in understanding the fundamental physics of complex flows. A detailed description for performing high-resolution, high-speed planar PIV to study a transient flow near the surface of a flat plate is presented here. Details for adjusting the parameter constraints such as image and recording properties, the laser sheet properties, and processing algorithms to adapt PIV for any flow of interest are included. PMID:23851899

  20. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Z.; Richmond, M. C.; Mueller, R. P.

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flowsmore » and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.« less

  1. PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Lee, Yong; Yang, Hua; Yin, Zhouping

    2017-12-01

    Velocity estimation (extracting the displacement vector information) from the particle image pairs is of critical importance for particle image velocimetry. This problem is mostly transformed into finding the sub-pixel peak in a correlation map. To address the original displacement extraction problem, we propose a different evaluation scheme (PIV-DCNN) with four-level regression deep convolutional neural networks. At each level, the networks are trained to predict a vector from two input image patches. The low-level network is skilled at large displacement estimation and the high- level networks are devoted to improving the accuracy. Outlier replacement and symmetric window offset operation glue the well- functioning networks in a cascaded manner. Through comparison with the standard PIV methods (one-pass cross-correlation method, three-pass window deformation), the practicability of the proposed PIV-DCNN is verified by the application to a diversity of synthetic and experimental PIV images.

  2. A Mobile System for Measuring Water Surface Velocities Using Unmanned Aerial Vehicle and Large-Scale Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.

    2015-12-01

    Measurement technologies for velocity of river flow are divided into intrusive and nonintrusive methods. Intrusive method requires infield operations. The measuring process of intrusive methods are time consuming, and likely to cause damages of operator and instrument. Nonintrusive methods require fewer operators and can reduce instrument damages from directly attaching to the flow. Nonintrusive measurements may use radar or image velocimetry to measure the velocities at the surface of water flow. The image velocimetry, such as large scale particle image velocimetry (LSPIV) accesses not only the point velocity but the flow velocities in an area simultaneously. Flow properties of an area hold the promise of providing spatially information of flow fields. This study attempts to construct a mobile system UAV-LSPIV by using an unmanned aerial vehicle (UAV) with LSPIV to measure flows in fields. The mobile system consists of a six-rotor UAV helicopter, a Sony nex5T camera, a gimbal, an image transfer device, a ground station and a remote control device. The activate gimbal helps maintain the camera lens orthogonal to the water surface and reduce the extent of images being distorted. The image transfer device can monitor the captured image instantly. The operator controls the UAV by remote control device through ground station and can achieve the flying data such as flying height and GPS coordinate of UAV. The mobile system was then applied to field experiments. The deviation of velocities measured by UAV-LSPIV of field experiments and handhold Acoustic Doppler Velocimeter (ADV) is under 8%. The results of the field experiments suggests that the application of UAV-LSPIV can be effectively applied to surface flow studies.

  3. Uncertainty quantification in volumetric Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sayantan; Charonko, John; Vlachos, Pavlos

    2016-11-01

    Particle Image Velocimetry (PIV) uncertainty quantification is challenging due to coupled sources of elemental uncertainty and complex data reduction procedures in the measurement chain. Recent developments in this field have led to uncertainty estimation methods for planar PIV. However, no framework exists for three-dimensional volumetric PIV. In volumetric PIV the measurement uncertainty is a function of reconstructed three-dimensional particle location that in turn is very sensitive to the accuracy of the calibration mapping function. Furthermore, the iterative correction to the camera mapping function using triangulated particle locations in space (volumetric self-calibration) has its own associated uncertainty due to image noise and ghost particle reconstructions. Here we first quantify the uncertainty in the triangulated particle position which is a function of particle detection and mapping function uncertainty. The location uncertainty is then combined with the three-dimensional cross-correlation uncertainty that is estimated as an extension of the 2D PIV uncertainty framework. Finally the overall measurement uncertainty is quantified using an uncertainty propagation equation. The framework is tested with both simulated and experimental cases. For the simulated cases the variation of estimated uncertainty with the elemental volumetric PIV error sources are also evaluated. The results show reasonable prediction of standard uncertainty with good coverage.

  4. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    PubMed

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.

  5. Measurement of three-dimensional velocity profiles using forward scattering particle image velocimetry (FSPIV) and neural net pattern recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovryn, B.; Wright, T.; Khaydarov, J.D.

    1995-12-31

    The authors employ Forward Scattering Particle Image Velocimetry (FSPIV) to measure all three components of the velocity of a buoyant polystyrene particle in oil. Unlike conventional particle image velocimetry (PIV) techniques, FSPIV employs coherent or partially coherent back illumination and collects the forward scattered wavefront; additionally, the field-of-view is microscopic. Using FSPIV, it is possible to easily identify the particle`s centroid and to simultaneously obtain the fluid velocity in different planes perpendicular to the viewing direction without changing the collection or imaging optics. The authors have trained a neural network to identify the scattering pattern as function of displacement alongmore » the optical axis (axial defocus) and determine the transverse velocity by tracking the centroid as function of time. They present preliminary results from Mie theory calculations which include the effect of the imaging system. To their knowledge, this is the first work of this kind; preliminary results are encouraging.« less

  6. Developing an ultrasound correlation velocimetry system

    NASA Astrophysics Data System (ADS)

    Surup, Gerrit; White, Christopher; UNH Team

    2011-11-01

    The process of building an ultrasound correlation velocimetry (UCV) system by integrating a commercial medical ultrasound with a PC running commercial PIV software is described and preliminary validation measurements in pipe flow using UCV and optical particle image velocimetry (PIV) are reported. In principles of operation, UCV is similar to the technique of PIV, differing only in the image acquisition process. The benefits of UCV are that it does not require optical access to the flow field and can be used for measuring flows of opaque fluids. While the limitations of UVC are the inherently low frame rates (limited by the imaging capabilities of the commercial ultrasound system) and low spatial resolution, which limits the range of velocities and transient flow behavior that can be measured. The support of the NSF (CBET0846359, grant monitor Horst Henning Winter) is gratefully acknowledged.

  7. Neutron Activated Samarium-153 Microparticles for Transarterial Radioembolization of Liver Tumour with Post-Procedure Imaging Capabilities

    PubMed Central

    Hashikin, Nurul Ab. Aziz; Yeong, Chai-Hong; Abdullah, Basri Johan Jeet; Ng, Kwan-Hoong; Chung, Lip-Yong; Dahalan, Rehir; Perkins, Alan Christopher

    2015-01-01

    Introduction Samarium-153 (153Sm) styrene divinylbenzene microparticles were developed as a surrogate for Yttrium-90 (90Y) microspheres in liver radioembolization therapy. Unlike the pure beta emitter 90Y, 153Sm possess both therapeutic beta and diagnostic gamma radiations, making it possible for post-procedure imaging following therapy. Methods The microparticles were prepared using commercially available cation exchange resin, Amberlite IR-120 H+ (620–830 μm), which were reduced to 20–40 μm via ball mill grinding and sieve separation. The microparticles were labelled with 152Sm via ion exchange process with 152SmCl3, prior to neutron activation to produce radioactive 153Sm through 152Sm(n,γ)153Sm reaction. Therapeutic activity of 3 GBq was referred based on the recommended activity used in 90Y-microspheres therapy. The samples were irradiated in 1.494 x 1012 n.cm-2.s-1 neutron flux for 6 h to achieve the nominal activity of 3.1 GBq.g-1. Physicochemical characterisation of the microparticles, gamma spectrometry, and in vitro radiolabelling studies were carried out to study the performance and stability of the microparticles. Results Fourier Transform Infrared (FTIR) spectroscopy of the Amberlite IR-120 resins showed unaffected functional groups, following size reduction of the beads. However, as shown by the electron microscope, the microparticles were irregular in shape. The radioactivity achieved after 6 h neutron activation was 3.104 ± 0.029 GBq. The specific activity per microparticle was 53.855 ± 0.503 Bq. Gamma spectrometry and elemental analysis showed no radioactive impurities in the samples. Radiolabelling efficiencies of 153Sm-Amberlite in distilled water and blood plasma over 48 h were excellent and higher than 95%. Conclusion The laboratory work revealed that the 153Sm-Amberlite microparticles demonstrated superior characteristics for potential use in hepatic radioembolization. PMID:26382059

  8. Backscatter particle image velocimetry via optical time-of-flight sectioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick

    Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less

  9. Backscatter particle image velocimetry via optical time-of-flight sectioning

    DOE PAGES

    Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick; ...

    2018-01-11

    Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less

  10. Study of flow around model of cooling tower by means of 2D Particle Image Velocimetry measurement

    NASA Astrophysics Data System (ADS)

    Barraclough, Veronika; Novotný, Jan; Šafařík, Pavel

    This paper deals with flow around a bluff body of hyperboloid shape. It combines results gathered in the course of research by means of Particle Image Velocimetry (PIV). The experiments were carried out by means of low-frequency 2D PIV and the Reynolds number was 43 000.

  11. Particle Streak Velocimetry of Supersonic Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Willits, J. D.; Pourpoint, T. L.

    2016-01-01

    A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.

  12. A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet

    NASA Astrophysics Data System (ADS)

    Biswas, Sayan; Qiao, Li

    2017-03-01

    A detailed statistical assessment of seedless velocity measurement using Schlieren Image Velocimetry (SIV) was explored using open source Robust Phase Correlation (RPC) algorithm. A well-known flow field, an axisymmetric turbulent helium jet, was analyzed near and intermediate region (0≤ x/d≤ 20) for two different Reynolds numbers, Re d = 11,000 and Re d = 22,000 using schlieren with horizontal knife-edge, schlieren with vertical knife-edge and shadowgraph technique, and the resulted velocity fields from SIV techniques were compared to traditional Particle Image Velocimetry (PIV) measurements. A novel, inexpensive, easy to setup two-camera SIV technique had been demonstrated to measure high-velocity turbulent jet, with jet exit velocities 304 m/s (Mach = 0.3) and 611 m/s (Mach = 0.6), respectively. Several image restoration and enhancement techniques were tested to improve signal to noise ratio (SNR) in schlieren and shadowgraph images. Processing and post-processing parameters for SIV techniques were examined in detail. A quantitative comparison between self-seeded SIV techniques and traditional PIV had been made using correlation statistics. While the resulted flow field from schlieren with horizontal knife-edge and shadowgraph showed excellent agreement with PIV measurements, schlieren with vertical knife-edge performed poorly. The performance of spatial cross-correlations at different jet locations using SIV techniques and PIV was evaluated. Turbulence quantities like turbulence intensity, mean velocity fields, Reynolds shear stress influenced spatial correlations and correlation plane SNR heavily. Several performance metrics such as primary peak ratio (PPR), peak to correlation energy (PCE), the probability distribution of signal and noise were used to compare capability and potential of different SIV techniques.

  13. Preliminary measurements of kinetic dust temperature using stereoscopic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Williams, Jeremiah; Thomas, Edward

    2004-11-01

    A dusty (or complex) plasma is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of the microparticle (i.e., dust) component alters the plasma environment, giving rise to a wide variety of new plasma phenomena. Recently, the Auburn Plasma Sciences Laboratory (PSL) has acquired and installed a stereoscopic PIV (stereo-PIV) diagnostic tool for dusty plasma investigations [Thomas, et. al., Phys. Plasmas, 11, L37 (2004)]. This presentation discusses the use of the stereo-PIV technique for determining the velocity space distribution function of the microparticle component of a dc glow discharge dusty plasma. These distribution functions are then used to make preliminary estimates of the kinetic temperature of the dust component. The data is compared to a simple energy balance model that relates the dust temperature to the electric field and neutral pressure.

  14. Aeroacoustic analysis of an airfoil with Gurney flap based on time-resolved particle image velocimetry measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqing; Sciacchitano, Andrea; Pröbsting, Stefan

    2018-05-01

    Particle image velocimetry for the experimental assessment of trailing edge noise sources has become focus of research in recent years. The present study investigates the feasibility of the noise prediction for high-lift devices based on time-resolved particle image velocimetry (PIV). The model under investigation is a NACA 0015 airfoil with a Gurney flap with a height of 6% of the chord length. The velocity fields around and downstream of the Gurney flap were measured by PIV and used to compute the corresponding pressure fields by solving the Poisson equation for incompressible flows. The reconstructed pressure fluctuations on the airfoil surface constitute the source term for Curle's aeroacoustic analogy, which was employed in both the distributed and compact formulation to estimate the noise emission from PIV. The results of the two formulations are compared with the simultaneous far-field microphone measurements in the temporal and spectral domains. Both formulations of Curle's analogy yield acoustic sound pressure levels in good agreement with the simultaneous microphone measurements for the tonal component. The estimated far-field sound power spectra (SPL) from the PIV measurements reproduce the peak at the vortex shedding frequency, which also agrees well with the acoustic measurements.

  15. In vitro particle image velocity measurements in a model root canal: flow around a polymer rotary finishing file.

    PubMed

    Koch, Jon D; Smith, Nicholas A; Garces, Daniel; Gao, Luyang; Olsen, F Kris

    2014-03-01

    Root canal irrigation is vital to thorough debridement and disinfection, but the mechanisms that contribute to its effectiveness are complex and uncertain. Traditionally, studies in this area have relied on before-and-after static comparisons to assess effectiveness, but new in situ tools are being developed to provide real-time assessments of irrigation. The aim in this work was to measure a cross section of the velocity field in the fluid flow around a polymer rotary finishing file in a model root canal. Fluorescent microparticles were seeded into an optically accessible acrylic root canal model. A polymer rotary finishing file was activated in a static position. After laser excitation, fluorescence from the microparticles was imaged onto a frame-transfer camera. Two consecutive images were cross-correlated to provide a measurement of a projected, 2-dimensional velocity field. The method reveals that fluid velocities can be much higher than the velocity of the file because of the shape of the file. Furthermore, these high velocities are in the axial direction of the canal rather than only in the direct of motion of the file. Particle image velocimetry indicates that fluid velocities induced by the rotating file can be much larger than the speed of the file. Particle image velocimetry can provide qualitative insight and quantitative measurements that may be useful for validating computational fluid dynamic models and connecting clinical observations to physical explanations in dental research. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry.

    PubMed

    Westerdale, John; Belohlavek, Marek; McMahon, Eileen M; Jiamsripong, Panupong; Heys, Jeffrey J; Milano, Michele

    2011-02-01

    We performed an in vitro study to assess the precision and accuracy of particle imaging velocimetry (PIV) data acquired using a clinically available portable ultrasound system via comparison with stereo optical PIV. The performance of ultrasound PIV was compared with optical PIV on a benchmark problem involving vortical flow with a substantial out-of-plane velocity component. Optical PIV is capable of stereo image acquisition, thus measuring out-of-plane velocity components. This allowed us to quantify the accuracy of ultrasound PIV, which is limited to in-plane acquisition. The system performance was assessed by considering the instantaneous velocity fields without extracting velocity profiles by spatial averaging. Within the 2-dimensional correlation window, using 7 time-averaged frames, the vector fields were found to have correlations of 0.867 in the direction along the ultrasound beam and 0.738 in the perpendicular direction. Out-of-plane motion of greater than 20% of the in-plane vector magnitude was found to increase the SD by 11% for the vectors parallel to the ultrasound beam direction and 8.6% for the vectors perpendicular to the beam. The results show a close correlation and agreement of individual velocity vectors generated by ultrasound PIV compared with optical PIV. Most of the measurement distortions were caused by out-of-plane velocity components.

  17. Surge Flow in a Centrifugal Compressor Measured by Digital Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2000-01-01

    A planar optical velocity measurement technique known as Particle Image Velocimetry (PIV) is being used to study transient events in compressors. In PIV, a pulsed laser light sheet is used to record the positions of particles entrained in a fluid at two instances in time across a planar region of the flow. Determining the recorded particle displacement between exposures yields an instantaneous velocity vector map across the illuminated plane. Detailed flow mappings obtained using PIV in high-speed rotating turbomachinery components are used to improve the accuracy of computational fluid dynamics (CFD) simulations, which in turn, are used to guide advances in state-of-the-art aircraft engine hardware designs.

  18. Image velocimetry and spectral analysis enable quantitative characterization of larval zebrafish gut motility.

    PubMed

    Ganz, J; Baker, R P; Hamilton, M K; Melancon, E; Diba, P; Eisen, J S; Parthasarathy, R

    2018-05-02

    Normal gut function requires rhythmic and coordinated movements that are affected by developmental processes, physical and chemical stimuli, and many debilitating diseases. The imaging and characterization of gut motility, especially regarding periodic, propagative contractions driving material transport, are therefore critical goals. Previous image analysis approaches have successfully extracted properties related to the temporal frequency of motility modes, but robust measures of contraction magnitude, especially from in vivo image data, remain challenging to obtain. We developed a new image analysis method based on image velocimetry and spectral analysis that reveals temporal characteristics such as frequency and wave propagation speed, while also providing quantitative measures of the amplitude of gut motion. We validate this approach using several challenges to larval zebrafish, imaged with differential interference contrast microscopy. Both acetylcholine exposure and feeding increase frequency and amplitude of motility. Larvae lacking enteric nervous system gut innervation show the same average motility frequency, but reduced and less variable amplitude compared to wild types. Our image analysis approach enables insights into gut dynamics in a wide variety of developmental and physiological contexts and can also be extended to analyze other types of cell movements. © 2018 John Wiley & Sons Ltd.

  19. Application of Particle Image Velocimetry and Reference Image Topography to jet shock cells using the hydraulic analogy

    NASA Astrophysics Data System (ADS)

    Kumar, Vaibhav; Ng, Ivan; Sheard, Gregory J.; Brocher, Eric; Hourigan, Kerry; Fouras, Andreas

    2011-08-01

    This paper examines the shock cell structure, vorticity and velocity field at the exit of an underexpanded jet nozzle using a hydraulic analogy and the Reference Image Topography technique. Understanding the flow in this region is important for the mitigation of screech, an aeroacoustic problem harmful to aircraft structures. Experiments are conducted on a water table, allowing detailed quantitative investigation of this important flow regime at a greatly reduced expense. Conventional Particle Image Velocimetry is employed to determine the velocity and vorticity fields of the nozzle exit region. Applying Reference Image Topography, the wavy water surface is reconstructed and when combined with the hydraulic analogy, provides a pressure map of the region. With this approach subtraction of surfaces is used to highlight the unsteady regions of the flow, which is not as convenient or quantitative with conventional Schlieren techniques. This allows a detailed analysis of the shock cell structures and their interaction with flow instabilities in the shear layer that are the underlying cause of jet screech.

  20. Roughness-controlled self-assembly of mannitol/LB agar microparticles by polymorphic transformation for pulmonary drug delivery.

    PubMed

    Zhang, Fengying; Ngoc, Nguyen Thi Quynh; Tay, Bao Hui; Mendyk, Aleksander; Shao, Yu-Hsuan; Lau, Raymond

    2015-01-05

    Novel roughness-controlled mannitol/LB Agar microparticles were synthesized by polymorphic transformation and self-assembly method using hexane as the polymorphic transformation reagent and spray-dried mannitol/LB Agar microparticles as the starting material. As-prepared microparticles were characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction spectra (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and Andersen Cascade Impactor (ACI). The XRD and DSC results indicate that after immersing spray-dried mannitol/LB Agar microparticles in hexane, β-mannitol was completely transformed to α-mannitol in 1 h, and all the δ-mannitol was transformed to α form after 14 days. SEM shows that during the transformation the nanobelts on the spray-dried mannitol/LB Agar microparticles become more dispersed and the contour of the individual nanobelts becomes more noticeable. Afterward, the nanobelts self-assemble to nanorods and result in rod-covered mannitol/LB Agar microparticles. FTIR indicates new hydrogen bonds were formed among mannitol, LB Agar, and hexane. SEM images coupled with image analysis software reveal that different surface morphology of the microparticles have different drug adhesion mechanisms. Comparison of ACI results and image analysis of SEM images shows that an increase in the particle surface roughness can increase the fine particle fractions (FPFs) using the rod-covered mannitol microparticles as drug carriers. Transformed microparticles show higher FPFs than commercially available lactose carriers. An FPF of 28.6 ± 2.4% was achieved by microparticles transformed from spray-dried microparticles using 2% mannitol(w/v)/LB Agar as feed solution. It is comparable to the highest FPF reported in the literature using lactose and spray-dried mannitol as carriers.

  1. Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline.

    PubMed

    Murrie, Rhiannon P; Morgan, Kaye S; Maksimenko, Anton; Fouras, Andreas; Paganin, David M; Hall, Chris; Siu, Karen K W; Parsons, David W; Donnelley, Martin

    2015-07-01

    The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances. A frame rate of 100 frames s(-1) allowed lung motion to be determined using X-ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user-directed display of relevant respiratory anatomy. The ability to perform X-ray velocimetry on live mice at the IMBL was successfully demonstrated. High-quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample-to-detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live-animal imaging and high-resolution micro-tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.

  2. Instantaneous, phase-averaged, and time-averaged pressure from particle image velocimetry

    NASA Astrophysics Data System (ADS)

    de Kat, Roeland

    2015-11-01

    Recent work on pressure determination using velocity data from particle image velocimetry (PIV) resulted in approaches that allow for instantaneous and volumetric pressure determination. However, applying these approaches is not always feasible (e.g. due to resolution, access, or other constraints) or desired. In those cases pressure determination approaches using phase-averaged or time-averaged velocity provide an alternative. To assess the performance of these different pressure determination approaches against one another, they are applied to a single data set and their results are compared with each other and with surface pressure measurements. For this assessment, the data set of a flow around a square cylinder (de Kat & van Oudheusden, 2012, Exp. Fluids 52:1089-1106) is used. RdK is supported by a Leverhulme Trust Early Career Fellowship.

  3. A review on noise suppression and aberration compensation in holographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Rahmatullah, B.

    2016-12-01

    Understanding three-dimensional (3D) fluid flow behaviour is undeniably crucial in improving performance and efficiency in a wide range of applications in engineering and medical fields. Holographic particle image velocimetry (HPIV) is a potential tool to probe and characterize complex flow dynamics since it is a truly three-dimensional three-component measurement technique. The technique relies on the coherent light scattered by small seeding particles that are assumed to faithfully follow the flow for subsequent reconstruction of the same the event afterward. However, extraction of useful 3D displacement data from these particle images is usually aggravated by noise and aberration which are inherent within the optical system. Noise and aberration have been considered as major hurdles in HPIV in obtaining accurate particle image identification and its corresponding 3D position. Major contributions to noise include zero-order diffraction, out-of-focus particles, virtual image and emulsion grain scattering. Noise suppression is crucial to ensure that particle image can be distinctly differentiated from background noise while aberration compensation forms particle image with high integrity. This paper reviews a number of HPIV configurations that have been proposed to address these issues, summarizes the key findings and outlines a basis for follow-on research.

  4. Particle image velocimetry of a flow at a vaulted wall.

    PubMed

    Kertzscher, U; Berthe, A; Goubergrits, L; Affeld, K

    2008-05-01

    The assessment of flow along a vaulted wall (with two main finite radii of curvature) is of general interest; in biofluid mechanics, it is of special interest. Unlike the geometry of flows in engineering, flow geometry in nature is often determined by vaulted walls. Specifically the flow adjacent to the wall of blood vessels is particularly interesting since this is where either thrombi are formed or atherosclerosis develops. Current measurement methods have problems assessing the flow along vaulted walls. In contrast with conventional particle image velocimetry (PIV), this new method, called wall PIV, allows the investigation of a flow adjacent to transparent flexible surfaces with two finite radii of curvature. Using an optical method which allows the observation of particles up to a predefined depth enables the visualization solely of the boundary layer flow. This is accomplished by adding a specific dye to the fluid which absorbs the monochromatic light used to illuminate the region of observation. The obtained images can be analysed with the methods of conventional PIV and result in a vector field of the velocities along the wall. With wall PIV, the steady flow adjacent to the vaulted wall of a blood pump was investigated and the resulting velocity field as well as the velocity fluctuations were assessed.

  5. Digital particle image thermometry/velocimetry: a review

    NASA Astrophysics Data System (ADS)

    Dabiri, Dana

    2009-02-01

    Digital particle image thermometry/velocimetry (DPIT/V) is a relatively new methodology that allows for measurements of simultaneous temperature and velocity within a two-dimensional domain, using thermochromic liquid crystal tracer particles as the temperature and velocity sensors. Extensive research has been carried out over recent years that have allowed the methodology and its implementation to grow and evolve. While there have been several reviews on the topic of liquid crystal thermometry (Moffat in Exp Therm Fluid Sci 3:14-32, 1990; Baughn in Int J Heat Fluid Flow 16:365-375, 1995; Roberts and East in J Spacecr Rockets 33:761-768, 1996; Wozniak et al. in Appl Sci Res 56:145-156, 1996; Behle et al. in Appl Sci Res 56:113-143, 1996; Stasiek in Heat Mass Transf 33:27-39, 1997; Stasiek and Kowalewski in Opto Electron Rev 10:1-10, 2002; Stasiek et al. in Opt Laser Technol 38:243-256, 2006; Smith et al. in Exp Fluids 30:190-201, 2001; Kowalewski et al. in Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 487-561, 2007), the focus of the present review is to provide a relevant discussion of liquid crystals pertinent to DPIT/V. This includes a background on liquid crystals and color theory, a discussion of experimental setup parameters, a description of the methodology’s most recent advances and processing methods affecting temperature measurements, and finally an explanation of its various implementations and applications.

  6. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results

    NASA Astrophysics Data System (ADS)

    Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin

    2008-03-01

    We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.

  7. Laser Doppler Velocimetry Workshop

    NASA Technical Reports Server (NTRS)

    Owen, R. B.

    1979-01-01

    The potential of laser Doppler velocimetry as a technique for use in mapping flows in the several fluid systems under development for doing research on low-gravity processes, is investigated. Laser Doppler velocimetry techniques, equipment, and applications are summarized.

  8. Pyroclast Tracking Velocimetry: A particle tracking velocimetry-based tool for the study of Strombolian explosive eruptions

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Moroni, Monica; Taddeucci, Jacopo; Scarlato, Piergiorgio; Shindler, Luca

    2014-07-01

    Image-based techniques enable high-resolution observation of the pyroclasts ejected during Strombolian explosions and drawing inferences on the dynamics of volcanic activity. However, data extraction from high-resolution videos is time consuming and operator dependent, while automatic analysis is often challenging due to the highly variable quality of images collected in the field. Here we present a new set of algorithms to automatically analyze image sequences of explosive eruptions: the pyroclast tracking velocimetry (PyTV) toolbox. First, a significant preprocessing is used to remove the image background and to detect the pyroclasts. Then, pyroclast tracking is achieved with a new particle tracking velocimetry algorithm, featuring an original predictor of velocity based on the optical flow equation. Finally, postprocessing corrects the systematic errors of measurements. Four high-speed videos of Strombolian explosions from Yasur and Stromboli volcanoes, representing various observation conditions, have been used to test the efficiency of the PyTV against manual analysis. In all cases, >106 pyroclasts have been successfully detected and tracked by PyTV, with a precision of 1 m/s for the velocity and 20% for the size of the pyroclast. On each video, more than 1000 tracks are several meters long, enabling us to study pyroclast properties and trajectories. Compared to manual tracking, 3 to 100 times more pyroclasts are analyzed. PyTV, by providing time-constrained information, links physical properties and motion of individual pyroclasts. It is a powerful tool for the study of explosive volcanic activity, as well as an ideal complement for other geological and geophysical volcano observation systems.

  9. Particle Image Velocimetry studies of bicuspid aortic valve hemodynamics

    NASA Astrophysics Data System (ADS)

    Saikrishnan, Neelakantan; Yap, Choon-Hwai; Yoganathan, Ajit P.

    2010-11-01

    Bicuspid aortic valves (BAVs) are a congenital anomaly of the aortic valve with two fused leaflets, affecting about 1-2% of the population. BAV patients have much higher incidence of valve calcification & aortic dilatation, which may be related to altered mechanical forces from BAV hemodynamics. This study aims to characterize BAV hemodynamics using Particle Image Velocimetry(PIV). BAV models are constructed from normal explanted porcine aortic valves by suturing two leaflets together. The valves are mounted in an acrylic chamber with two sinuses & tested in a pulsatile flow loop at physiological conditions. 2D PIV is performed to obtain flow fields in three planes downstream of the valve. The stenosed BAV causes an eccentric jet, resulting in a very strong vortex in the normal sinus. The bicuspid sinus vortex appears much weaker, but more unstable. Unsteady oscillatory shear stresses are also observed, which have been associated with adverse biological response; characterization of the hemodynamics of BAVs will provide the first step to understanding these processes better. Results from multiple BAV models of varying levels of stenosis will be presented & higher stenosis corresponded to stronger jets & increased aortic wall shear stresses.

  10. Microfabrication of curcumin-loaded microparticles using coaxial electrohydrodynamic atomization

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Si, Ting; Liu, Zhongfa; Xu, Ronald X.

    2014-03-01

    Encapsulation of curcumin in PLGA microparticles is performed by a coaxial electrohydrodynamic atomization device. To optimize the process, the effects of different control parameters on morphology and size distribution of resultant microparticles are studied systemically. Four main flow modes are identified as the applied electric field intensity increases. The stable cone-jet configuration is found to be available for fabricating monodisperse microparticles with core-shell structures. The results are compared with those observed in traditional emulsion. The drug-loading efficiency is also checked. The present system is advantageous for the enhancement of particle size distribution and drug-loading efficiency in various applications such as drug delivery, biomedicine and image-guided therapy.

  11. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow

    PubMed Central

    Sou, In Mei; Layman, Christopher N.; Ray, Chittaranjan

    2013-01-01

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. PMID:24347810

  12. Analysis of propeller-induced ground vortices by particle image velocimetry.

    PubMed

    Yang, Y; Sciacchitano, A; Veldhuis, L L M; Eitelberg, G

    2018-01-01

    The interaction between a propeller and its self-induced vortices originating on the ground is investigated in a scaled experiment. The velocity distribution in the flow field in two different planes containing the self-induced vortices is measured by particle image velocimetry (PIV). These planes are a wall-parallel plane in close proximity to the ground and a wall-normal plane just upstream of the propeller. Based on the visualization of the flow field in these two planes, the occurrence of ground vortices and its domain boundary are analysed. The elevation of the propeller from the ground and the thrust of the propeller are two parameters that determine the occurrence of ground vortices. The main features of the propeller inflow in the presence of the ground vortices are highlighted. Moreover, the analysis of the non-uniform inflow in the azimuthal direction shows that with increasing the propeller thrust coefficient and decreasing the elevation of the propeller above the ground, the variation of the inflow angle of the blade increases.

  13. Real-time dynamics of high-velocity micro-particle impact

    NASA Astrophysics Data System (ADS)

    Veysset, David; Hsieh, Alex; Kooi, Steve; Maznev, Alex A.; Tang, Shengchang; Olsen, Bradley D.; Nelson, Keith A.

    High-velocity micro-particle impact is important for many areas of science and technology, from space exploration to the development of novel drug delivery platforms. We present real-time observations of supersonic micro-particle impacts using multi-frame imaging. In an all optical laser-induced projectile impact test, a monolayer of micro-particles is placed on a transparent substrate coated with a laser absorbing polymer layer. Ablation of a laser-irradiated polymer region accelerates the micro-particles into free space with speeds up to 1.0 km/s. The particles are monitored during the impact on the target with an ultrahigh-speed multi-frame camera that can record up to 16 images with time resolution as short as 3 ns. In particular, we investigated the high-velocity impact deformation response of poly(urethane urea) (PUU) elastomers to further the fundamental understanding of the molecular influence on dynamical behaviors of PUUs. We show the dynamic-stiffening response of the PUUs and demonstrate the significance of segmental dynamics in the response. We also present movies capturing individual particle impact and penetration in gels, and discuss the observed dynamics. The results will provide an impetus for modeling high-velocity microscale impact responses and high strain rate deformation in polymers, gels, and other materials.

  14. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering.

    PubMed

    Gaihre, Bipin; Jayasuriya, Ambalangodage C

    2016-12-01

    In this study we developed carboxymethyl cellulose (CMC) microparticles through ionic crosslinking with the aqueous ion complex of zirconium (Zr) and further complexing with chitosan (CS) and determined the physio-chemical and biological properties of these novel microparticles. In order to assess the role of Zr, microparticles were prepared in 5% and 10% (w/v) zirconium tetrachloride solution. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS) results showed that Zr was uniformly distributed on the surface of the microparticles as a result of which uniform groovy surface was obtained. We found that Zr enhances the surface roughness of the microparticles and stability studies showed that it also increases the stability of microparticles in phosphate buffered saline. The crosslinking of anionic CMC with cationic Zr and CS was confirmed by Fourier transform infrared spectroscopy (FTIR) results. The response of murine pre-osteoblasts (OB-6) when cultured with microparticles was investigated. Live/dead cell assay showed that microparticles did not induce any cytotoxic effects as cells were attaching and proliferating on the well plate as well as along the surface of microparticles. In addition, SEM images showed that microparticles support the attachment of cells and they appeared to be directly interacting with the surface of microparticle. Within 10days of culture most of the top surface of microparticles was covered with a layer of cells indicating that they were proliferating well throughout the surface of microparticles. We observed that Zr enhances the cell attachment and proliferation as more cells were present on microparticles with 10% Zr. These promising results show the potential applications of CMC-Zr microparticles in bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A Globally Optimal Particle Tracking Technique for Stereo Imaging Velocimetry Experiments

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2008-01-01

    An important phase of any Stereo Imaging Velocimetry experiment is particle tracking. Particle tracking seeks to identify and characterize the motion of individual particles entrained in a fluid or air experiment. We analyze a cylindrical chamber filled with water and seeded with density-matched particles. In every four-frame sequence, we identify a particle track by assigning a unique track label for each camera image. The conventional approach to particle tracking is to use an exhaustive tree-search method utilizing greedy algorithms to reduce search times. However, these types of algorithms are not optimal due to a cascade effect of incorrect decisions upon adjacent tracks. We examine the use of a guided evolutionary neural net with simulated annealing to arrive at a globally optimal assignment of tracks. The net is guided both by the minimization of the search space through the use of prior limiting assumptions about valid tracks and by a strategy which seeks to avoid high-energy intermediate states which can trap the net in a local minimum. A stochastic search algorithm is used in place of back-propagation of error to further reduce the chance of being trapped in an energy well. Global optimization is achieved by minimizing an objective function, which includes both track smoothness and particle-image utilization parameters. In this paper we describe our model and present our experimental results. We compare our results with a nonoptimizing, predictive tracker and obtain an average increase in valid track yield of 27 percent

  16. Visualization of Underfill Flow in Ball Grid Array (BGA) using Particle Image Velocimetry (PIV)

    NASA Astrophysics Data System (ADS)

    Ng, Fei Chong; Abas, Aizat; Abustan, Ismail; Remy Rozainy, Z. Mohd; Abdullah, MZ; Jamaludin, Ali b.; Kon, Sharon Melissa

    2018-05-01

    This paper presents the experimental methodology using particle image velocimetry (PIV) to study the underfill process of ball grid array (BGA) chip package. PIV is a non-intrusive approach to visualize the flow behavior of underfill across the solder ball array. The BGA model of three different configurations – perimeter, middle empty and full array – were studied in current research. Through PIV experimental works, the underfill velocity distribution and vector fields for each BGA models were successfully obtained. It is found that perimeter has the shortest filling time resulting to a higher underfill velocity. Therefore, it is concluded that the flow behavior of underfill in BGA can be justified thoroughly with the aid of PIV.

  17. Development of radiopaque, biocompatible, antimicrobial, micro-particle fillers for micro-CT imaging of simulated periodontal pockets.

    PubMed

    Elashiry, M; Meghil, M M; Kalathingal, S; Buchanan, A; Rajendran, M; Elrefai, R; Ochieng, M; Elawady, A; Arce, R M; Sandhage, K H; Cutler, C W

    2018-04-01

    Approximately 10 9 bacteria can be harbored within periodontal pockets (PP) along with inflammatory byproducts implicated in the pathophysiology of systemic diseases linked to periodontitis (PD). Calculation of this inflammatory burden has involved estimation of total pocket surface area using analog data from conventional periodontal probing which is unable to determine the three-dimensional (3-D) nature of PP. The goals of this study are to determine the radiopacity, biocompatibility, and antimicrobial activity of transient micro-particle fillers in vitro and demonstrate their capability for 3-D imaging of artificial PP (U.S. Patent publication number: 9814791 B2). Relative radiopacity values of various metal oxide fillers were obtained from conventional radiography and micro-computed tomography (μCT) using in vitro models. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to measure the biocompatibility of calcium tungstate (CaWO 4 ) particles by determination of viable keratinocytes percentage (%) after exposure. After introducing an antibacterial compound (K21) to the radiopaque agent, antimicrobial tests were conducted using Porphyromonas gingivalis (P. gingivalis) and Streptococcus gordonii (S. gordonii) strains and blood agar plates. CaWO 4 micro-particle-bearing fillers exhibited an X-ray radiopacity distinct from tooth structures that enabled 3-D visualization of an artificial periodontal pocket created around a human tooth. MTT assays indicated that CaWO 4 micro-particles are highly biocompatible (increasing the viability of exposed keratinocytes). Radiopaque micro-particle fillers combined with K21 showed significant antimicrobial activity for P. gingivalis and S. gordonii. The plausibility of visualizing PP with 3-D radiographic imaging using new radiopaque, biocompatible, transient fillers was demonstrated in vitro. Antibacterial (or other) agents added to this formula could provide beneficial therapeutic features

  18. Particle-Image Velocimetry in Microgravity Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Greenberg, P. S.; Urban, D. L.; Wernet, M. P.; Yanis, W.

    1999-01-01

    This paper discusses planned velocity measurements in microgravity laminar jet diffusion flames. These measurements will be conducted using Particle-Image Velocimetry (PIV) in the NASA Glenn 2.2-second drop tower. The observations are of fundamental interest and may ultimately lead to improved efficiency and decreased emissions from practical combustors. The velocity measurements will support the evaluation of analytical and numerical combustion models. There is strong motivation for the proposed microgravity flame configuration. Laminar jet flames are fundamental to combustion and their study has contributed to myriad advances in combustion science, including the development of theoretical, computational and diagnostic combustion tools. Nonbuoyant laminar jet flames are pertinent to the turbulent flames of more practical interest via the laminar flamelet concept. The influence of gravity on these flames is deleterious: it complicates theoretical and numerical modeling, introduces hydrodynamic instabilities, decreases length scales and spatial resolution, and limits the variability of residence time. Whereas many normal-gravity laminar jet diffusion flames have been thoroughly examined (including measurements of velocities, temperatures, compositions, sooting behavior and emissive and absorptive properties), measurements in microgravity gas-jet flames have been less complete and, notably, have included only cursory velocity measurements. It is envisioned that our velocity measurements will fill an important gap in the understanding of nonbuoyant laminar jet flames.

  19. Validation and application of Acoustic Mapping Velocimetry

    NASA Astrophysics Data System (ADS)

    Baranya, Sandor; Muste, Marian

    2016-04-01

    The goal of this paper is to introduce a novel methodology to estimate bedload transport in rivers based on an improved bedform tracking procedure. The measurement technique combines components and processing protocols from two contemporary nonintrusive instruments: acoustic and image-based. The bedform mapping is conducted with acoustic surveys while the estimation of the velocity of the bedforms is obtained with processing techniques pertaining to image-based velocimetry. The technique is therefore called Acoustic Mapping Velocimetry (AMV). The implementation of this technique produces a whole-field velocity map associated with the multi-directional bedform movement. Based on the calculated two-dimensional bedform migration velocity field, the bedload transport estimation is done using the Exner equation. A proof-of-concept experiment was performed to validate the AMV based bedload estimation in a laboratory flume at IIHR-Hydroscience & Engineering (IIHR). The bedform migration was analysed at three different flow discharges. Repeated bed geometry mapping, using a multiple transducer array (MTA), provided acoustic maps, which were post-processed with a particle image velocimetry (PIV) method. Bedload transport rates were calculated along longitudinal sections using the streamwise components of the bedform velocity vectors and the measured bedform heights. The bulk transport rates were compared with the results from concurrent direct physical samplings and acceptable agreement was found. As a first field implementation of the AMV an attempt was made to estimate bedload transport for a section of the Ohio river in the United States, where bed geometry maps, resulted by repeated multibeam echo sounder (MBES) surveys, served as input data. Cross-sectional distributions of bedload transport rates from the AMV based method were compared with the ones obtained from another non-intrusive technique (due to the lack of direct samplings), ISSDOTv2, developed by the US Army

  20. Evaluation of Particle Image Velocimetry Measurement Using Multi-wavelength Illumination

    NASA Astrophysics Data System (ADS)

    Lai, HC; Chew, TF; Razak, NA

    2018-05-01

    In past decades, particle image velocimetry (PIV) has been widely used in measuring fluid flow and a lot of researches have been done to improve the PIV technique. Many researches are conducted on high power light emitting diode (HPLED) to replace the traditional laser illumination system in PIV. As an extended work to the research in PIV illumination system, two high power light emitting diodes (HPLED) with different wavelength are introduced as PIV illumination system. The objective of this research is using dual colours LED to directly replace laser as illumination system in order for a single frame to be captured by a normal camera instead of a high speed camera. Dual colours HPLEDs PIV are capable with single frame double pulses mode which able to plot the velocity vector of the particles after correlation. An illumination system is designed and fabricated and evaluated by measuring water flow in a small tank. The results indicates that HPLEDs promises a few advantages in terms of cost, safety and performance. It has a high potential to be develop into an alternative for PIV in the near future.

  1. Particle image velocimetry investigation of a finite amplitude pressure wave

    NASA Astrophysics Data System (ADS)

    Thornhill, D.; Currie, T.; Fleck, R.; Chatfield, G.

    2006-03-01

    Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.

  2. Development of Hydroxyl Tagging Velocimetry for Low Velocity Flows

    NASA Technical Reports Server (NTRS)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2016-01-01

    Hydroxyl tagging velocimetry (HTV) is a molecular tagging technique that relies on the photo-dissociation of water vapor into OH radicals and their subsequent tracking using laser induced fluorescence. Velocities are then obtained from time-of-flight calculations. At ambient temperature in air, the OH species lifetime is relatively short (<50 µs), making it suited for high speed flows. Lifetime and radicals formation increases with temperature, which allows HTV to also probe low-velocity, high-temperature flows or reacting flows such as flames. The present work aims at extending the domain of applicability of HTV, particularly towards low-speed (<10 m/s) and moderate (<500 K) temperature flows. Results are compared to particle image velocimetry (PIV) measurements recorded in identical conditions. Single shot and averaged velocity profiles are obtained in an air jet at room temperature. By modestly raising the temperature (100-200 degC) the OH production increases, resulting in an improvement of the signal-to-noise ratio (SNR). Use of nitrogen - a non-reactive gas with minimal collisional quenching - extends the OH species lifetime (to over 500 µs), which allows probing of slower flows or, alternately, increases the measurement precision at the expense of spatial resolution. Instantaneous velocity profiles are resolved in a 100degC nitrogen jet (maximum jet-center velocity of 6.5 m/s) with an uncertainty down to 0.10 m/s (1.5%) at 68% confidence level. MTV measurements are compared with particle image velocimetry and show agreement within 2%.

  3. Measurement of Meteor Impact Experiments Using Three-Component Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Heineck, James T.; Schultz, Peter H.

    2002-01-01

    The study of hypervelocity impacts has been aggressively pursued for more than 30 years at Ames as a way to simulate meteoritic impacts. Development of experimental methods coupled with new perspectives over this time has greatly improved the understanding of the basic physics and phenomenology of the impact process. These fundamental discoveries have led to novel methods for identifying impact craters and features in craters on both Earth and other planetary bodies. Work done at the Ames Vertical Gun Range led to the description of the mechanics of the Chicxualub crater (a.k.a. K-T crater) on the Yucatan Peninsula, widely considered to be the smoking gun impact that brought an end to the dinosaur era. This is the first attempt in the world to apply three-component particle image velocimetry (3-D PIV) to measure the trajectory of the entire ejecta curtain simultaneously with the fluid structure resulting from impact dynamics. The science learned in these experiments will build understanding in the entire impact process by simultaneously measuring both ejecta and atmospheric mechanics.

  4. Microvascular Branching as a Determinant of Blood Flow by Intravital Particle Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Vickerman, Mary B.; Wernet, Mark P.; Myers, Jerry G.; Radhakrishnan, Krishnan

    2007-01-01

    The effects of microvascular branching on blood flow were investigated in vivo by microscopic particle imaging velocimetry (micro-PIV). We use micro-PIV to measure blood flow by tracking red blood cells (RBC) as the moving particles. Velocity flow fields, including flow pulsatility, were analyzed for the first four branching orders of capillaries, postcapillary venules and small veins of the microvascular network within the developing avian yolksac at embryonic day 5 (E5). Increasing volumetric flowrates were obtained from parabolic laminar flow profiles as a function of increasing vessel diameter and branching order. Maximum flow velocities increased approximately twenty-fold as the function of increasing vessel diameter and branching order compared to flow velocities of 100 - 150 micron/sec in the capillaries. Results from our study will be useful for the increased understanding of blood flow within anastomotic, heterogeneous microvascular networks.

  5. Particle image and acoustic Doppler velocimetry analysis of a cross-flow turbine wake

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines have advantageous properties for converting kinetic energy in wind and water currents to rotational mechanical energy and subsequently electrical power. A thorough understanding of cross-flow turbine wakes aids understanding of rotor flow physics, assists geometric array design, and informs control strategies for individual turbines in arrays. In this work, the wake physics of a scale model cross-flow turbine are investigated experimentally. Three-component velocity measurements are taken downstream of a two-bladed turbine in a recirculating water channel. Time-resolved stereoscopic particle image and acoustic Doppler velocimetry are compared for planes normal to and distributed along the turbine rotational axis. Wake features are described using proper orthogonal decomposition, dynamic mode decomposition, and the finite-time Lyapunov exponent. Consequences for downstream turbine placement are discussed in conjunction with two-turbine array experiments.

  6. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  7. Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.

    2003-11-01

    Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.

  8. Symmetric Phase-Only Filtering in Particle-Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Wemet, Mark P.

    2008-01-01

    Symmetrical phase-only filtering (SPOF) can be exploited to obtain substantial improvements in the results of data processing in particle-image velocimetry (PIV). In comparison with traditional PIV data processing, SPOF PIV data processing yields narrower and larger amplitude correlation peaks, thereby providing more-accurate velocity estimates. The higher signal-to-noise ratios associated with the higher amplitude correlation peaks afford greater robustness and reliability of processing. SPOF also affords superior performance in the presence of surface flare light and/or background light. SPOF algorithms can readily be incorporated into pre-existing algorithms used to process digitized image data in PIV, without significantly increasing processing times. A summary of PIV and traditional PIV data processing is prerequisite to a meaningful description of SPOF PIV processing. In PIV, a pulsed laser is used to illuminate a substantially planar region of a flowing fluid in which particles are entrained. An electronic camera records digital images of the particles at two instants of time. The components of velocity of the fluid in the illuminated plane can be obtained by determining the displacements of particles between the two illumination pulses. The objective in PIV data processing is to compute the particle displacements from the digital image data. In traditional PIV data processing, to which the present innovation applies, the two images are divided into a grid of subregions and the displacements determined from cross-correlations between the corresponding sub-regions in the first and second images. The cross-correlation process begins with the calculation of the Fourier transforms (or fast Fourier transforms) of the subregion portions of the images. The Fourier transforms from the corresponding subregions are multiplied, and this product is inverse Fourier transformed, yielding the cross-correlation intensity distribution. The average displacement of the

  9. Stereoscopic Particle Image Velocimetry Used to Study the Wake Patterns of an Ideal Anguilliform Swimming Motion

    NASA Astrophysics Data System (ADS)

    Taravella, Brandon; Potts, J. Baker; Stegmeir, Matthew

    2014-11-01

    The University of New Orleans recently acquired a self-contained stereoscopic particle image velocimetry system for use in their 125 ft long towing tank. This system is being used to study the wake flow behind an anguilliform swimming robot that swims with an ideal motion that is theorized not to produce any trailing vortices. The presentation will describe the particulars of the SPIV system along with details of installation of the SPIV system within the towing tank. The calibration routine will be discussed in detail and results of the free-flow runs will be discussed. Preliminary results from the anguilliform swimming motion will also be presented.

  10. Estimating of higher order velocity moments and their derivatives in boundary layer by Smoke Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Mikheev, N. I.; Goltsman, A. E.; Salekhova, I. G.; Saushin, I. I.

    2017-11-01

    The results of an experimental evaluation of the third-order moments profiles of velocity fluctuations and their partial derivatives in a zero pressure-gradient turbulent boundary layer are presented. Profiles of characteristics are estimated on the basis of the dynamics of two-component instantaneous velocity vector fields measured by the optical method Smoke Image Velocimetry (SIV). Comparison SIV-measurements with the results of measurements by a thermoanemometer and DNS data with similar Reθ and Reτ showed good agreement between the profiles of +, +, ∂+/∂y+ и ∂+/∂y+ obtained by SIV and DNS.

  11. A novel method for correction of temporally- and spatially-variant optical distortion in planar particle image velocimetry

    DOE PAGES

    Zha, Kan; Busch, Stephen; Park, Cheolwoong; ...

    2016-06-24

    In-cylinder flow measurements are necessary to gain a fundamental understanding of swirl-supported, light-duty Diesel engine processes for high thermal efficiency and low emissions. Planar particle image velocimetry (PIV) can be used for non-intrusive, in situ measurement of swirl-plane velocity fields through a transparent piston. In order to keep the flow unchanged from all-metal engine operation, the geometry of the transparent piston must adapt the production-intent metal piston geometry. As a result, a temporally- and spatially-variant optical distortion is introduced to the particle images. Here, to ensure reliable measurement of particle displacements, this work documents a systematic exploration of optical distortionmore » quantification and a hybrid back-projection procedure that combines ray-tracing-based geometric and in situ manual back-projection approaches.« less

  12. Delivery and reveal of localization of upconversion luminescent microparticles and quantum dots in the skin in vivo by fractional laser microablation, multimodal imaging, and optical clearing

    NASA Astrophysics Data System (ADS)

    Volkova, Elena K.; Yanina, Irina Yu; Genina, Elina A.; Bashkatov, Alexey N.; Konyukhova, Julia G.; Popov, Alexey P.; Speranskaya, Elena S.; Bucharskaya, Alla B.; Navolokin, Nikita A.; Goryacheva, Irina Yu.; Kochubey, Vyacheslav I.; Sukhorukov, Gleb B.; Meglinski, Igor V.; Tuchin, Valery V.

    2018-02-01

    Delivery and spatial localization of upconversion luminescent microparticles [Y2O3:Yb, Er] (mean size ˜1.6 μm) and quantum dots (QDs) (CuInS2/ZnS nanoparticles coated with polyethylene glycol-based amphiphilic polymer, mean size ˜20 nm) inside rat skin was studied in vivo using a multimodal optical imaging approach. The particles were embedded into the skin dermis to the depth from 300 to 500 μm through microchannels performed by fractional laser microablation. Low-frequency ultrasound was applied to enhance penetration of the particles into the skin. Visualization of the particles was revealed using a combination of luminescent spectroscopy, optical coherence tomography, confocal microscopy, and histochemical analysis. Optical clearing was used to enhance the image contrast of the luminescent signal from the particles. It was demonstrated that the penetration depth of particles depends on their size, resulting in a different detection time interval (days) of the luminescent signal from microparticles and QDs inside the rat skin in vivo. We show that luminescent signal from the upconversion microparticles and QDs was detected after the particle delivery into the rat skin in vivo during eighth and fourth days, respectively. We hypothesize that the upconversion microparticles have created a long-time depot localized in the laser-created channels, as the QDs spread over the surrounding tissues.

  13. Encapsulation in Polymeric Microparticles Improves Daptomycin Activity Against Mature Staphylococci Biofilms-a Thermal and Imaging Study.

    PubMed

    Santos Ferreira, Inês; Kikhney, Judith; Kursawe, Laura; Kasper, Stefanie; Gonçalves, Lídia M D; Trampuz, Andrej; Moter, Annette; Bettencourt, Ana Francisca; Almeida, António J

    2018-05-01

    Eradication of Gram-positive biofilms is a critical aspect in implant-associated infection treatment. Although antibiotic-containing particulate carriers may be a promising strategy for overcoming biofilm tolerance, the assessment of their interaction with biofilms has not been fully explored. In the present work, the antibiofilm activity of daptomycin- and vancomycin-loaded poly(methyl methacrylate) (PMMA) and PMMA-Eudragit RL 100 (EUD) microparticles against methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive S. epidermidis biofilms was investigated using isothermal microcalorimetry (IMC) and fluorescence in situ hybridization (FISH). The minimal biofilm inhibitory concentrations (MBIC) of MRSA biofilms, as determined by IMC, were 5 and 20 mg/mL for daptomycin- and vancomycin-loaded PMMA microparticles, respectively. S. epidermidis biofilms were less susceptible, with a MBIC of 20 mg/mL for daptomycin-loaded PMMA microparticles. Vancomycin-loaded microparticles were ineffective. Adding EUD to the formulation caused a 4- and 16-fold reduction of the MBIC values of daptomycin-loaded microparticles for S. aureus and S. epidermidis, respectively. FISH corroborated the IMC results and provided additional insights on the antibiofilm effect of these particles. According to microscopic analysis, only daptomycin-loaded PMMA-EUD microparticles were causing a pronounced reduction in biofilm mass for both strains. Taken together, although IMC indicated that a biofilm inhibition was achieved, microscopy showed that the biofilm was not eradicated and still contained FISH-positive, presumably viable bacteria, thus indicating that combining the two techniques is essential to fully assess the effect of microparticles on staphylococcal biofilms.

  14. Measuring Flow With Laser-Speckle Velocimetry

    NASA Technical Reports Server (NTRS)

    Smith, C. A.; Lourenco, L. M. M.; Krothapalli, A.

    1988-01-01

    Spatial resolution sufficient for calculation of vorticity.In laser-speckle velocimetry, pulsed or chopped laser beam expanded in one dimension by cylindrical lens to illuminate thin, fan-shaped region of flow measured. Flow seeded by small particles. Lens with optical axis perpendicular to illuminating beam forms image of illuminated particles on photographic plate. Speckle pattern of laser-illuminiated, seeded flow recorded in multiple-exposure photographs and processed to extract data on velocity field. Technique suited for study of vortical flows like those about helicopter rotor blades or airplane wings at high angles of attack.

  15. Biomimetic Molecular Signaling using DNA Walkers on Microparticles.

    PubMed

    Damase, Tulsi Ram; Spencer, Adam; Samuel, Bamidele; Allen, Peter B

    2017-06-22

    We report the release of catalytic DNA walkers from hydrogel microparticles and the detection of those walkers by substrate-coated microparticles. This might be considered a synthetic biology analog of molecular signal release and reception. One type of particles was coated with components of a DNA one-step strand displacement (OSD) reaction to release the walker. A second type of particle was coated with substrate (or "track") for the molecular walker. We distinguish these particle types using fluorescence barcoding: we synthesized and distinguished multiple particle types with multicolor fluorescence microscopy and automated image analysis software. This represents a step toward amplified, multiplex, and microscopically localized detection based on DNA nanotechnology.

  16. Dynamics of liquid slug using particle image velocimetry technique

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. I.; Aziz, A. Rashid A.; Heikal, M. R.

    2016-11-01

    Two phase liquid-gas slug flow is a source of vibration and fatigue on pipe walls and downstream equipment. This paper examines the effect of inlet conditions on the stream-wise velocity profiles and on the shear stresses induced by the liquid phase on the pipe wall during the slug flow. Instantaneous velocity vector fields of the liquid-gas (water-air) slug flow regime were obtained using particle image velocimetry (PIV) technique at various inlet conditions. A 6-m long Plexiglas pipe having an internal diameter 74-mm with a slight inclination of about 1.16° was considered for the visualization of the flow pattern. Test section was employed at a point 3.5m from the inlet, mounted with optical correction box filled with water to minimize the curvature effect of pipe on the PIV snapshots. Stream-wise velocity profiles are obtained at the wake of the liquid slug and the effect of inlet conditions were analyzed. A direct relationship was observed in between superficial gas velocity and the liquid stream-wise velocity at wake section of the slug flow. Further, the lower wall shear stresses were obtained using PIV velocity profiles at liquid film and the slug wake sections in a unit slug. The wall shear stress remained higher in the liquid slugy body as compared to the liquid film. Moreover, an increase in the wall shear stress was observed by increasing the gas superficial velocities.

  17. The development of laser speckle or particle image displacement velocimetry. Part 1: The role of photographic parameters

    NASA Technical Reports Server (NTRS)

    Lourenco, L. M. M.; Krothapalli, A.

    1987-01-01

    One of the difficult problems in experimental fluid dynamics remains the determination of the vorticity field in fluid flows. Recently, a novel velocity measurement technique, commonly known as Laser Speckle or Particle Image Displacement Velocimetry became available. This technique permits the simultaneous visualization of the 2 dimensional streamline pattern in unsteady flows and the quantification of the velocity field. The main advantage of this new technique is that the whole 2 dimensional velocity field can be recorded with great accuracy and spatial resolution, from which the instantaneous vorticity field can be easily obtained. A apparatus used for taking particle displacement images is described. Local coherent illumination by the probe laser beam yielded Young's fringes of good quality at almost every location of the flow field. These fringes were analyzed and the velocity and vorticity fields were derived. Several conclusions drawn are discussed.

  18. A blood-mimicking fluid for particle image velocimetry with silicone vascular models

    NASA Astrophysics Data System (ADS)

    Yousif, Majid Y.; Holdsworth, David W.; Poepping, Tamie L.

    2011-03-01

    For accurate particle image velocimetry measurements in hemodynamics studies, it is important to use a fluid with a refractive index ( n) matching that of the vascular models (phantoms) and ideally a dynamic viscosity matching human blood. In this work, a blood-mimicking fluid (BMF) composed of water, glycerol, and sodium iodide was formulated for a range of refractive indices to match most common silicone elastomers ( n = 1.40-1.43) and with corresponding dynamic viscosity within the average cited range of healthy human blood (4.4 ± 0.5 cP). Both refractive index and viscosity were attained at room temperature (22.2 ± 0.2°C), which eliminates the need for a temperature-control system. An optimally matched BMF, suitable for use in a vascular phantom ( n = 1.4140 ± 0.0008, Sylgard 184), was demonstrated with composition (by weight) of 47.38% water, 36.94% glycerol (44:56 glycerol-water ratio), and 15.68% sodium iodide salt, resulting in a dynamic viscosity of 4 .31 ± 0 .03 cP.

  19. Delivery and reveal of localization of upconversion luminescent microparticles and quantum dots in the skin in vivo by fractional laser microablation, multimodal imaging, and optical clearing.

    PubMed

    Volkova, Elena K; Yanina, Irina Yu; Genina, Elina A; Bashkatov, Alexey N; Konyukhova, Julia G; Popov, Alexey P; Speranskaya, Elena S; Bucharskaya, Alla B; Navolokin, Nikita A; Goryacheva, Irina Yu; Kochubey, Vyacheslav I; Sukhorukov, Gleb B; Meglinski, Igor V; Tuchin, Valery V

    2018-02-01

    Delivery and spatial localization of upconversion luminescent microparticles [Y2O3:Yb, Er] (mean size ∼1.6  μm) and quantum dots (QDs) (CuInS2/ZnS nanoparticles coated with polyethylene glycol-based amphiphilic polymer, mean size ∼20  nm) inside rat skin was studied in vivo using a multimodal optical imaging approach. The particles were embedded into the skin dermis to the depth from 300 to 500  μm through microchannels performed by fractional laser microablation. Low-frequency ultrasound was applied to enhance penetration of the particles into the skin. Visualization of the particles was revealed using a combination of luminescent spectroscopy, optical coherence tomography, confocal microscopy, and histochemical analysis. Optical clearing was used to enhance the image contrast of the luminescent signal from the particles. It was demonstrated that the penetration depth of particles depends on their size, resulting in a different detection time interval (days) of the luminescent signal from microparticles and QDs inside the rat skin in vivo. We show that luminescent signal from the upconversion microparticles and QDs was detected after the particle delivery into the rat skin in vivo during eighth and fourth days, respectively. We hypothesize that the upconversion microparticles have created a long-time depot localized in the laser-created channels, as the QDs spread over the surrounding tissues. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. One-step production of multilayered microparticles by tri-axial electro-flow focusing

    NASA Astrophysics Data System (ADS)

    Si, Ting; Feng, Hanxin; Li, Yang; Luo, Xisheng; Xu, Ronald

    2014-03-01

    Microencapsulation of drugs and imaging agents in the same carrier is of great significance for simultaneous detection and treatment of diseases. In this work, we have developed a tri-axial electro-flow focusing (TEFF) device using three needles with a novel concentric arrangement to one-step form multilayered microparticles. The TEFF process can be characterized as a multi-fluidic compound cone-jet configuration in the core of a high-speed coflowing gas stream under an axial electric field. The tri-axial liquid jet eventually breaks up into multilayered droplets. To validate the method, the effect of main process parameters on characteristics of the cone and the jet has been studied experimentally. The applied electric field can dramatically promote the stability of the compound cone and enhance the atomization of compound liquid jets. Microparticles with both three-layer, double-layer and single-layer structures have been obtained. The results show that the TEFF technique has great benefits in fabricating multilayered microparticles at smaller scales. This method will be able to one-step encapsulate multiple therapeutic and imaging agents for biomedical applications such as multi-modal imaging, drug delivery and biomedicine.

  1. Molecular filter based planar Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Elliott, Gregory S.; Beutner, Thomas J.

    1999-11-01

    Molecular filter based diagnostics are continuing to gain popularity as a research tool for investigations in areas of aerodynamics, fluid mechanics, and combustion. This class of diagnostics has gone by many terms including Filtered Rayleigh Scattering, Doppler Global Velocimetry, and Planar Doppler Velocimetry. The majority of this article reviews recent advances in Planar Doppler Velocimetry in measuring up to three velocity components over a planar region in a flowfield. The history of the development of these techniques is given with a description of typical systems, components, and levels of uncertainty in the measurement. Current trends indicate that uncertainties on the order of 1 m/s are possible with these techniques. A comprehensive review is also given on the application of Planar Doppler Velocimetry to laboratory flows, supersonic flows, and large scale subsonic wind tunnels. The article concludes with a description of future trends, which may simplify the technique, followed by a description of techniques which allow multi-property measurements (i.e. velocity, density, temperature, and pressure) simultaneously.

  2. Subscale Ship Airwake Studies Using Novel Vortex Flow Devices with Smoke, Laser-Vapor-Screen and Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Landman, Drew; Swift, Russell S.; Parikh, Paresh C.

    2007-01-01

    Ships produce vortices and air-wakes while either underway or stationary in a wind. These flow fields can be detrimental to the conduction of air operations in that they can adversely impact the air vehicles and flight crews. There are potential solutions to these problems for both frigates/destroyers and carriers through the use of novel vortex flow or flow control devices. This appendix highlights several devices which may have application and points out that traditional wind-tunnel testing using smoke, laser-vapor screen, and Particle Image Velocimetry can be useful in sorting out the effectiveness of different devices.

  3. Plasma-derived microparticles in polycythaemia vera.

    PubMed

    Ahadon, M; Abdul Aziz, S; Wong, C L; Leong, C F

    2018-04-01

    Microparticles are membrane bound vesicles, measuring less than 1.0 um, which are released during cellular activation or during apoptosis. Studies have shown that these circulating microparticles play a role in coagulation, cell signaling and cellular interactions. Increased levels of circulating microparticles have been observed in a number of conditions where there is vascular dysfunction, thrombosis and inflammation. The objective of this study was to determine the various plasma-derived microparticles in patients with polycythaemia vera (PV) in Universiti Kebangsaan Malaysia Medical Centre and to compare them with normal control. A total of 15 patients with PV and 15 healthy volunteers were included in this cross-sectional descriptive study. Plasma samples from both patients and healthy volunteers were prepared and further processed for isolation of microparticles. Flow cytometry analyses were then carried out in all samples to determine the cellular origin of the microparticles. Full blood count parameters for both groups were also collected. Data collected were analyzed using SPSS version 12.0. Patients with PV had a significantly higher percentage of platelet derived microparticles compared to healthy controls (P <0.05). The control group had a higher level of endothelial derived microparticles but the differences were not statistically significant (P > 0.05). The median percentage of positive events for platelet derived microparticles was higher in patients with PV compared to normal healthy controls.

  4. Microparticles of Aloe vera/vitamin E/chitosan: microscopic, a nuclear imaging and an in vivo test analysis for burn treatment.

    PubMed

    Pereira, Gabriela Garrastazu; Santos-Oliveira, Ralph; Albernaz, Martha S; Canema, Daniel; Weismüller, Gilberto; Barros, Eduardo Bede; Magalhães, Luciana; Lima-Ribeiro, Maria Helena Madruga; Pohlmann, Adriana Raffin; Guterres, Silvia S

    2014-02-01

    The use of drug-loaded nanoparticles and microparticles has been increasing, especially for cosmetic and drug delivery purposes. In this work, a new microparticle formulation was developed for use in the healing process of skin burns in a composition of Aloe vera/vitamin E/chitosan. In order to observe the morphological properties, Raman and atomic force microscopy evaluation were performed. The biodistribution studies were analyzed by using a nuclear methodology, labeling the microparticles with Technetium-99m and in vivo test was procedure to analyzed the cicatrization process. The results of AFM analysis show the formation and the adherence property of the microparticles. Raman analyses show the distribution of each component in the microparticle. The nuclear method used shows that the biodistribution of the microparticles remained in the skin. The in vivo cicatrization test showed that the poloxamer gel containing the microparticles make a better cicatrization in relation to the other formulations tested. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Cell-derived microparticles and the lung.

    PubMed

    Nieri, Dario; Neri, Tommaso; Petrini, Silvia; Vagaggini, Barbara; Paggiaro, Pierluigi; Celi, Alessandro

    2016-09-01

    Cell-derived microparticles are small (0.1-1 μm) vesicles shed by most eukaryotic cells upon activation or during apoptosis. Microparticles carry on their surface, and enclose within their cytoplasm, molecules derived from the parental cell, including proteins, DNA, RNA, microRNA and phospholipids. Microparticles are now considered functional units that represent a disseminated storage pool of bioactive effectors and participate both in the maintenance of homeostasis and in the pathogenesis of diseases. The mechanisms involved in microparticle generation include intracellular calcium mobilisation, cytoskeleton rearrangement, kinase phosphorylation and activation of the nuclear factor-κB. The role of microparticles in blood coagulation and inflammation, including airway inflammation, is well established in in vitro and animal models. The role of microparticles in human pulmonary diseases, both as pathogenic determinants and biomarkers, is being actively investigated. Microparticles of endothelial origin, suggestive of apoptosis, have been demonstrated in the peripheral blood of patients with emphysema, lending support to the hypothesis that endothelial dysfunction and apoptosis are involved in the pathogenesis of the disease and represent a link with cardiovascular comorbidities. Microparticles also have potential roles in patients with asthma, diffuse parenchymal lung disease, thromboembolism, lung cancer and pulmonary arterial hypertension. Copyright ©ERS 2016.

  6. Measurement of fluid rotation, dilation, and displacement in particle image velocimetry using a Fourier–Mellin cross-correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giarra, Matthew N.; Charonko, John J.; Vlachos, Pavlos P.

    Traditional particle image velocimetry (PIV) uses discrete Cartesian cross correlations (CCs) to estimate the displacements of groups of tracer particles within small subregions of sequentially captured images. However, these CCs fail in regions with large velocity gradients or high rates of rotation. In this paper, we propose a new PIV correlation method based on the Fourier–Mellin transformation (FMT) that enables direct measurement of the rotation and dilation of particle image patterns. In previously unresolvable regions of large rotation, our algorithm significantly improves the velocity estimates compared to traditional correlations by aligning the rotated and stretched particle patterns prior to performingmore » Cartesian correlations to estimate their displacements. Furthermore, our algorithm, which we term Fourier–Mellin correlation (FMC), reliably measures particle pattern displacement between pairs of interrogation regions with up to ±180° of angular misalignment, compared to 6–8° for traditional correlations, and dilation/compression factors of 0.5–2.0, compared to 0.9–1.1 for a single iteration of traditional correlations.« less

  7. Measurement of fluid rotation, dilation, and displacement in particle image velocimetry using a Fourier–Mellin cross-correlation

    DOE PAGES

    Giarra, Matthew N.; Charonko, John J.; Vlachos, Pavlos P.

    2015-02-05

    Traditional particle image velocimetry (PIV) uses discrete Cartesian cross correlations (CCs) to estimate the displacements of groups of tracer particles within small subregions of sequentially captured images. However, these CCs fail in regions with large velocity gradients or high rates of rotation. In this paper, we propose a new PIV correlation method based on the Fourier–Mellin transformation (FMT) that enables direct measurement of the rotation and dilation of particle image patterns. In previously unresolvable regions of large rotation, our algorithm significantly improves the velocity estimates compared to traditional correlations by aligning the rotated and stretched particle patterns prior to performingmore » Cartesian correlations to estimate their displacements. Furthermore, our algorithm, which we term Fourier–Mellin correlation (FMC), reliably measures particle pattern displacement between pairs of interrogation regions with up to ±180° of angular misalignment, compared to 6–8° for traditional correlations, and dilation/compression factors of 0.5–2.0, compared to 0.9–1.1 for a single iteration of traditional correlations.« less

  8. Wide-field surface plasmon microscopy of nano- and microparticles: features, benchmarking, limitations, and bioanalytical applications

    NASA Astrophysics Data System (ADS)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    Detection of nano- and micro-particles is an important task for chemical analytics, food industry, biotechnology, environmental monitoring and many other fields of science and industry. For this purpose, a method based on the detection and analysis of minute signals in surface plasmon resonance images due to adsorption of single nanopartciles was developed. This new technology allows one a real-time detection of interaction of single nano- and micro-particles with sensor surface. Adsorption of each nanoparticle leads to characteristic diffraction image whose intensity depends on the size and chemical composition of the particle. The adsorption rate characterizes volume concentration of nano- and micro-particles. Large monitored surface area of sensor enables a high dynamic range of counting and to a correspondingly high dynamic range in concentration scale. Depending on the type of particles and experimental conditions, the detection limit for aqueous samples can be below 1000 particles per microliter. For application of method in complex media, nanoparticle images are discriminated from image perturbations due to matrix components. First, the characteristic SPRM images of nanoparticles (templates) are collected in aqueous suspensions or spiked real samples. Then, the detection of nanoparticles in complex media using template matching is performed. The detection of various NPs in consumer products like cosmetics, mineral water, juices, and wines was shown at sub-ppb level. The method can be applied for ultrasensitive detection and analysis of nano- and micro-particles of biological (bacteria, viruses, endosomes), biotechnological (liposomes, protein nanoparticles for drug delivery) or technical origin.

  9. Particle image velocimetry for the Surface Tension Driven Convection Experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  10. Particle image velocimetry for the surface tension driven convection experiment using a particle displacement tracking technique

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Pline, Alexander D.

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electronic, two-dimensional particle image velocimetry technique called particle displacement tracking (PDT) which uses a simple space domain particle tracking algorithm. The PDT system is successful in producing velocity vector fields from the raw video data. Application of the PDT technique to a sample data set yielded 1606 vectors in 30 seconds of processing time. A bottom viewing optical arrangement is used to image the illuminated plane, which causes keystone distortion in the final recorded image. A coordinate transformation was incorporated into the system software to correct this viewing angle distortion. PDT processing produced 1.8 percent false identifications, due to random particle locations. A highly successful routine for removing the false identifications was also incorporated, reducing the number of false identifications to 0.2 percent.

  11. Particle image velocimetry measurements of Mach 3 turbulent boundary layers at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Brooks, J. M.; Gupta, A. K.; Smith, M. S.; Marineau, E. C.

    2018-05-01

    Particle image velocimetry (PIV) measurements of Mach 3 turbulent boundary layers (TBL) have been performed under low Reynolds number conditions, Re_τ =200{-}1000, typical of direct numerical simulations (DNS). Three reservoir pressures and three measurement locations create an overlap in parameter space at one research facility. This allows us to assess the effects of Reynolds number, particle response and boundary layer thickness separate from facility specific experimental apparatus or methods. The Morkovin-scaled streamwise fluctuating velocity profiles agree well with published experimental and numerical data and show a small standard deviation among the nine test conditions. The wall-normal fluctuating velocity profiles show larger variations which appears to be due to particle lag. Prior to the current study, no detailed experimental study characterizing the effect of Stokes number on attenuating wall-normal fluctuating velocities has been performed. A linear variation is found between the Stokes number ( St) and the relative error in wall-normal fluctuating velocity magnitude (compared to hot wire anemometry data from Klebanoff, Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. Tech. Rep. NACA-TR-1247, National Advisory Committee for Aeronautics, Springfield, Virginia, 1955). The relative error ranges from about 10% for St=0.26 to over 50% for St=1.06. Particle lag and spatial resolution are shown to act as low-pass filters on the fluctuating velocity power spectral densities which limit the measurable energy content. The wall-normal component appears more susceptible to these effects due to the flatter spectrum profile which indicates that there is additional energy at higher wave numbers not measured by PIV. The upstream inclination and spatial correlation extent of coherent turbulent structures agree well with published data including those using krypton tagging velocimetry (KTV) performed at the same facility.

  12. Formation mechanism of human serum albumin monolayers on positively charged polymer microparticles.

    PubMed

    Nattich-Rak, Małgorzata; Sadowska, Marta; Adamczyk, Zbigniew; Cieśla, Michał; Kąkol, Małgorzata

    2017-11-01

    Human serum albumin (HSA) adsorption on positively and negatively charged polystyrene microparticles was studied at various pHs and NaCl concentrations. Thorough electrophoretic mobility measurements were carried out that enabled to monitor in situ the progress of protein adsorption. The maximum coverage of irreversibly adsorbed HSA on microparticles was determined by different concentration depletion methods, one of them involving AFM imaging of residual molecules. An anomalous adsorption of HSA on the positive microparticles was observed at pH 3.5 where the maximum coverage attained 1.0mgm -2 for NaCl concentrations of 0.05M despite that the molecules were on average positively charged. For comparison, the maximum coverage of HSA on negatively charged microparticles was equal to 1.3mgm -2 at this pH and NaCl concentration. At pH 7.4 the maximum coverage on positive microparticles was equal to 2.1mgm -2 for 0.05M NaCl concentration. On the other hand, for negative microparticles, negligible adsorption of HSA was observed at pH 7.4 and 9.7. These experimental data were adequately interpreted in terms of the random sequential adsorption approach exploiting the bead model of the HSA molecule. Different orientations of adsorbed molecules, inert alia, the edge-on orientation prevailing for positively charged microparticles at pH 7.4, were confirmed. This was explained in terms of a heterogeneous charge distribution over the HSA molecule prevailing for a wide range of pHs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Novel injectable, self-gelling hydrogel-microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles.

    PubMed

    Douglas, Timothy E L; Łapa, Agata; Reczyńska, Katarzyna; Krok-Borkowicz, Małgorzata; Pietryga, Krzysztof; Samal, Sangram Keshari; Declercq, Heidi A; Schaubroeck, David; Boone, Marijn; Van der Voort, Pascal; De Schamphelaere, Karel; Stevens, Christian V; Bliznuk, Vitaliy; Balcaen, Lieve; Parakhonskiy, Bogdan V; Vanhaecke, Frank; Cnudde, Veerle; Pamuła, Elżbieta; Skirtach, Andre G

    2016-11-21

    The suitability of hydrogel biomaterials for bone regeneration can be improved by incorporation of an inorganic phase in particle form, thus maintaining hydrogel injectability. In this study, carbonate microparticles containing different amounts of calcium (Ca) and magnesium (Mg) were added to solutions of the anionic polysaccharide gellan gum (GG) to crosslink GG by release of Ca 2+ and Mg 2+ from microparticles and thereby induce formation of hydrogel-microparticle composites. It was hypothesized that increasing Mg content of microparticles would promote GG hydrogel formation. The effect of Mg incorporation on cytocompatibility and cell growth was also studied. Microparticles were formed by mixing Ca 2+ and Mg 2+ and [Formula: see text] ions in varying concentrations. Microparticles were characterized physiochemically and subsequently mixed with GG solution to form hydrogel-microparticle composites. The elemental Ca:Mg ratio in the mineral formed was similar to the Ca:Mg ratio of the ions added. In the absence of Mg, vaterite was formed. At low Mg content, magnesian calcite was formed. Increasing the Mg content further caused formation of amorphous mineral. Microparticles of vaterite and magnesium calcite did not induce GG hydrogel formation, but addition of Mg-richer amorphous microparticles induced gelation within 20 min. Microparticles were dispersed homogeneously in hydrogels. MG-63 osteoblast-like cells were cultured in eluate from hydrogel-microparticle composites and on the composites themselves. All composites were cytocompatible. Cell growth was highest on composites containing particles with an equimolar Ca:Mg ratio. In summary, carbonate microparticles containing a sufficient amount of Mg induced GG hydrogel formation, resulting in injectable, cytocompatible hydrogel-microparticle composites.

  14. Visualization of air flow around soccer ball using a particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Hong, Sungchan; Asai, Takeshi; Seo, Kazuya

    2015-10-01

    A traditional soccer ball is constructed using 32 pentagonal and hexagonal panels. In recent years, however, the likes of the Teamgeist and Jabulani balls, constructed from 14 and 8 panels, respectively, have entered the field, marking a significant departure from conventionality in terms of shape and design. Moreover, the recently introduced Brazuca ball features a new 6-panel design and has already been adopted by many soccer leagues. However, the shapes of the constituent panels of these balls differ substantially from those of conventional balls. Therefore, this study set out to investigate the flight and aerodynamic characteristics of different orientations of the soccer ball, which is constructed from panels of different shapes. A wind tunnel test showed substantial differences in the aerodynamic forces acting on the ball, depending on its orientation. Substantial differences were also observed in the aerodynamic forces acting on the ball in different directions, corresponding to its orientation and rotation. Moreover, two-dimensional particle image velocimetry (2D-PIV) measurements showed that the boundary separation varies depending on the orientation of the ball. Based on these results, we can conclude that the shape of the panels of a soccer ball substantially affects its flight trajectory.

  15. Non-iterative double-frame 2D/3D particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Fuchs, Thomas; Hain, Rainer; Kähler, Christian J.

    2017-09-01

    In recent years, the detection of individual particle images and their tracking over time to determine the local flow velocity has become quite popular for planar and volumetric measurements. Particle tracking velocimetry has strong advantages compared to the statistical analysis of an ensemble of particle images by means of cross-correlation approaches, such as particle image velocimetry. Tracking individual particles does not suffer from spatial averaging and therefore bias errors can be avoided. Furthermore, the spatial resolution can be increased up to the sub-pixel level for mean fields. A maximization of the spatial resolution for instantaneous measurements requires high seeding concentrations. However, it is still challenging to track particles at high seeding concentrations, if no time series is available. Tracking methods used under these conditions are typically very complex iterative algorithms, which require expert knowledge due to the large number of adjustable parameters. To overcome these drawbacks, a new non-iterative tracking approach is introduced in this letter, which automatically analyzes the motion of the neighboring particles without requiring to specify any parameters, except for the displacement limits. This makes the algorithm very user friendly and also offers unexperienced users to use and implement particle tracking. In addition, the algorithm enables measurements of high speed flows using standard double-pulse equipment and estimates the flow velocity reliably even at large particle image densities.

  16. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  17. Method for determining surface properties of microparticles

    DOEpatents

    Eisenthal, Kenneth B.

    2000-01-01

    Second harmonic generation (SHG), sum frequency generation (SFG) and difference frequency generation (DFG) can be used for surface analysis or characterization of microparticles having a non-metallic surface feature. The microparticles can be centrosymmetric or such that non-metallic molecules of interest are centrosymmetrically distributed inside and outside the microparticles but not at the surface of the microparticles where the asymmetry aligns the molecules. The signal is quadratic in incident laser intensity or proportional to the product of two incident laser intensities for SFG, it is sharply peaked at the second harmonic wavelength, quadratic in the density of molecules adsorbed onto the microparticle surface, and linear in microparticles density. In medical or pharmacological applications, molecules of interest may be of drugs or toxins, for example.

  18. Flow Visualization and Laser Velocimetry for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Editor); Foughner, J. T., Jr. (Editor)

    1982-01-01

    The need for flow visualization and laser velocimetry were discussed. The purpose was threefold: (1) provide a state-of-the-art overview; (2) provide a forum for industry, universities, and government agencies to address problems in developing useful and productive flow visualization and laser velocimetry measurement techniques; and (3) provide discussion of recent developments and applications of flow visualization and laser velocimetry measurement techniques and instrumentation systems for wind tunnels including the 0.3-Meter Transonic Cryogenic Tunnel.

  19. Microfluidic production of polymeric functional microparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Kunqiang

    This dissertation focuses on applying droplet-based microfluidics to fabricate new classes of polymeric microparticles with customized properties for various applications. The integration of microfluidic techniques with microparticle engineering allows for unprecedented control over particle size, shape, and functional properties. Specifically, three types of microparticles are discussed here: (1) Magnetic and fluorescent chitosan hydrogel microparticles and their in-situ assembly into higher-order microstructures; (2) Polydimethylsiloxane (PDMS) microbeads with phosphorescent properties for oxygen sensing; (3) Macroporous microparticles as biological immunosensors. First, we describe a microfluidic approach to generate monodisperse chitosan hydrogel microparticles that can be further connected in-situ into higher-order microstructures. Microparticles of the biopolymer chitosan are created continuously by contacting an aqueous solution of chitosan at a microfluidic T-junction with a stream of hexadecane containing a nonionic detergent, followed by downstream crosslinking of the generated droplets by a ternary flow of glutaraldehyde. Functional properties of the microparticles can be easily varied by introducing payloads such as magnetic nanoparticles and/or fluorescent dyes into the chitosan solution. We then use these prepared microparticles as "building blocks" and assemble them into high ordered microstructures, i.e. microchains with controlled geometry and flexibility. Next, we describe a new approach to produce monodisperse microbeads of PDMS using microfluidics. Using a flow-focusing configuration, a PDMS precursor solution is dispersed into microdroplets within an aqueous continuous phase. These droplets are collected and thermally cured off-chip into soft, solid microbeads. In addition, our technique allows for direct integration of payloads, such as an oxygen-sensitive porphyrin dye, into the PDMS microbeads. We then show that the resulting dye

  20. Doppler Global Velocimetry Measurements for Supersonic Flow Fields

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    2005-01-01

    The application of Doppler Global Velocimetry (DGV) to high-speed flows has its origins in the original development of the technology by Komine et al (1991). Komine used a small shop-air driven nozzle to generate a 200 m/s flow. This flow velocity was chosen since it produced a fairly large Doppler shift in the scattered light, resulting in a significant transmission loss as the light passed through the Iodine vapor. This proof-of-concept investigation showed that the technology was capable of measuring flow velocity within a measurement plane defined by a single-frequency laser light sheet. The effort also proved that velocity measurements could be made without resolving individual seed particles as required by other techniques such as Fringe- Type Laser Velocimetry and Particle Image Velocimetry. The promise of making planar velocity measurements with the possibility of using 0.1-micron condensation particles for seeding, Dibble et al (1989), resulted in the investigation of supersonic jet flow fields, Elliott et al (1993) and Smith and Northam (1995) - Mach 2.0 and 1.9 respectively. Meyers (1993) conducted a wind tunnel investigation above an inclined flat plate at Mach 2.5 and above a delta wing at Mach 2.8 and 4.6. Although these measurements were crude from an accuracy viewpoint, they did prove that the technology could be used to study supersonic flows using condensation as the scattering medium. Since then several research groups have studied the technology and developed solutions and methodologies to overcome most of the measurement accuracy limitations:

  1. Effects of red blood cell aggregates dissociation on the estimation of ultrasound speckle image velocimetry.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-08-01

    Ultrasound speckle image of blood is mainly attributed by red blood cells (RBCs) which tend to form RBC aggregates. RBC aggregates are separated into individual cells when the shear force is over a certain value. The dissociation of RBC aggregates has an influence on the performance of ultrasound speckle image velocimetry (SIV) technique in which a cross-correlation algorithm is applied to the speckle images to get the velocity field information. The present study aims to investigate the effect of the dissociation of RBC aggregates on the estimation quality of SIV technique. Ultrasound B-mode images were captured from the porcine blood circulating in a mock-up flow loop with varying flow rate. To verify the measurement performance of SIV technique, the centerline velocity measured by the SIV technique was compared with that measured by Doppler spectrograms. The dissociation of RBC aggregates was estimated by using decorrelation of speckle patterns in which the subsequent window was shifted as much as the speckle displacement to compensate decorrelation caused by in-plane loss of speckle patterns. The decorrelation of speckles is considerably increased according to shear rate. Its variations are different along the radial direction. Because the dissociation of RBC aggregates changes ultrasound speckles, the estimation quality of SIV technique is significantly correlated with the decorrelation of speckles. This degradation of measurement quality may be improved by increasing the data acquisition rate. This study would be useful for simultaneous measurement of hemodynamic and hemorheological information of blood flows using only speckle images. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Dynamics of supersonic microparticle impact on elastomers revealed by real–time multi–frame imaging

    PubMed Central

    Veysset, David; Hsieh, Alex J.; Kooi, Steven; Maznev, Alexei A.; Masser, Kevin A.; Nelson, Keith A.

    2016-01-01

    Understanding high–velocity microparticle impact is essential for many fields, from space exploration to medicine and biology. Investigations of microscale impact have hitherto been limited to post–mortem analysis of impacted specimens, which does not provide direct information on the impact dynamics. Here we report real–time multi–frame imaging studies of the impact of 7 μm diameter glass spheres traveling at 700–900 m/s on elastomer polymers. With a poly(urethane urea) (PUU) sample, we observe a hyperelastic impact phenomenon not seen on the macroscale: a microsphere undergoes a full conformal penetration into the specimen followed by a rebound which leaves the specimen unscathed. The results challenge the established interpretation of the behaviour of elastomers under high–velocity impact. PMID:27156501

  3. The accuracy of tomographic particle image velocimetry for measurements of a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Atkinson, Callum; Coudert, Sebastien; Foucaut, Jean-Marc; Stanislas, Michel; Soria, Julio

    2011-04-01

    To investigate the accuracy of tomographic particle image velocimetry (Tomo-PIV) for turbulent boundary layer measurements, a series of synthetic image-based simulations and practical experiments are performed on a high Reynolds number turbulent boundary layer at Reθ = 7,800. Two different approaches to Tomo-PIV are examined using a full-volume slab measurement and a thin-volume "fat" light sheet approach. Tomographic reconstruction is performed using both the standard MART technique and the more efficient MLOS-SMART approach, showing a 10-time increase in processing speed. Random and bias errors are quantified under the influence of the near-wall velocity gradient, reconstruction method, ghost particles, seeding density and volume thickness, using synthetic images. Experimental Tomo-PIV results are compared with hot-wire measurements and errors are examined in terms of the measured mean and fluctuating profiles, probability density functions of the fluctuations, distributions of fluctuating divergence through the volume and velocity power spectra. Velocity gradients have a large effect on errors near the wall and also increase the errors associated with ghost particles, which convect at mean velocities through the volume thickness. Tomo-PIV provides accurate experimental measurements at low wave numbers; however, reconstruction introduces high noise levels that reduces the effective spatial resolution. A thinner volume is shown to provide a higher measurement accuracy at the expense of the measurement domain, albeit still at a lower effective spatial resolution than planar and Stereo-PIV.

  4. Controlled Electrospray Generation of Nonspherical Alginate Microparticles.

    PubMed

    Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S H

    2017-12-11

    Electrospraying is a technique used to generate microparticles in a high throughput manner. For biomedical applications, a biocompatible electrosprayed material is often desirable. Using polymers, such as alginate hydrogels, makes it possible to create biocompatible and biodegradable microparticles that can be used for cell encapsulation, to be employed as drug carriers, and for use in 3D cell culturing. Evidence in the literature suggests that the morphology of the biocompatible microparticles is relevant in controlling the dynamics of the microparticles in drug delivery and 3D cell culturing applications. Yet, most electrospray-based techniques only form spherical microparticles, and there is currently no widely adopted technique for producing nonspherical microparticles at a high throughput. Here, we demonstrate the generation of nonspherical biocompatible alginate microparticles by electrospraying, and control the shape of the microparticles by varying experimental parameters such as chemical concentration and the distance between the electrospray tip and the particle-solidification bath. Importantly, we show that these changes to the experimental setup enable the synthesis of different shaped particles, and the systematic change in parameters, such as chemical concentration, result in monotonic changes to the particle aspect ratio. We expect that these results will find utility in many biomedical applications that require biocompatible microparticles of specific shapes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Stereo particle image velocimetry set up for measurements in the wake of scaled wind turbines

    NASA Astrophysics Data System (ADS)

    Campanardi, Gabriele; Grassi, Donato; Zanotti, Alex; Nanos, Emmanouil M.; Campagnolo, Filippo; Croce, Alessandro; Bottasso, Carlo L.

    2017-08-01

    Stereo particle image velocimetry measurements were carried out in the boundary layer test section of Politecnico di Milano large wind tunnel to survey the wake of a scaled wind turbine model designed and developed by Technische Universität München. The stereo PIV instrumentation was set up to survey the three velocity components on cross-flow planes at different longitudinal locations. The area of investigation covered the entire extent of the wind turbines wake that was scanned by the use of two separate traversing systems for both the laser and the cameras. Such instrumentation set up enabled to gain rapidly high quality results suitable to characterise the behaviour of the flow field in the wake of the scaled wind turbine. This would be very useful for the evaluation of the performance of wind farm control methodologies based on wake redirection and for the validation of CFD tools.

  6. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery.

    PubMed

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spectroscopy. The functional groups of the starch and gelatin blend matrices were determined from the FTIR spectra. Blend microparticles with a nearly spherical shape and internal porous structure were observed from SEM images. The average particle size of the gelatin microparticles depended on the crosslinker ratio but not on the starch/gelatin blend ratio. The in vitro drug release content significantly decreased as the crosslinker ratio increased and the starch blend ratio decreased. The results demonstrated that the starch/gelatin blend microparticles should be a useful controlled release delivery carrier for water-soluble drugs.

  7. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery

    PubMed Central

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spectroscopy. The functional groups of the starch and gelatin blend matrices were determined from the FTIR spectra. Blend microparticles with a nearly spherical shape and internal porous structure were observed from SEM images. The average particle size of the gelatin microparticles depended on the crosslinker ratio but not on the starch/gelatin blend ratio. The in vitro drug release content significantly decreased as the crosslinker ratio increased and the starch blend ratio decreased. The results demonstrated that the starch/gelatin blend microparticles should be a useful controlled release delivery carrier for water-soluble drugs. PMID:24868207

  8. Microparticle Flow Sensor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2005-01-01

    The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.

  9. Microparticles with hierarchical porosity

    DOEpatents

    Petsev, Dimiter N; Atanassov, Plamen; Pylypenko, Svitlana; Carroll, Nick; Olson, Tim

    2012-12-18

    The present disclosure provides oxide microparticles with engineered hierarchical porosity and methods of manufacturing the same. Also described are structures that are formed by templating, impregnating, and/or precipitating the oxide microparticles and method for forming the same. Suitable applications include catalysts, electrocatalysts, electrocatalysts support materials, capacitors, drug delivery systems, sensors and chromatography.

  10. Intracellular origin and ultrastructure of platelet-derived microparticles.

    PubMed

    Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Rauova, L; Litvinov, R I; Weisel, J W

    2017-08-01

    Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles. Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific

  11. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  12. Chemical release from single-PMMA microparticles monitored by CARS microscopy

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Svedberg, Fredrik; Nordstierna, Lars; Nydén, Magnus

    2011-03-01

    Microparticles loaded with antigens, proteins, DNA, fungicides, and other functional agents emerge as ideal vehicles for vaccine, drug delivery, genetic therapy, surface- and crop protection. The microscopic size of the particles and their collective large specific surface area enables highly active and localized release of the functional substance. In order to develop designs with release profiles optimized for the specific application, it is desirable to map the distribution of the active substance within the particle and how parameters such as size, material and morphology affect release rates at single particle level. Current imaging techniques are limited in resolution, sensitivity, image acquisition time, or sample treatment, excluding dynamic studies of active agents in microparticles. Here, we demonstrate that the combination of CARS and THG microscopy can successfully be used, by mapping the spatial distribution and release rates of the fungicide and food preservative IPBC from different designs of PMMA microparticles at single-particle level. By fitting a radial diffusion model to the experimental data, single particle diffusion coefficients can be determined. We show that release rates are highly dependent on the size and morphology of the particles. Hence, CARS and THG microscopy provides adequate sensitivity and spatial resolution for quantitative studies on how singleparticle properties affect the diffusion of active agents at microscopic level. This will aid the design of innovative microencapsulating systems for controlled release.

  13. Methodology for the Elimination of Reflection and System Vibration Effects in Particle Image Velocimetry Data Processing

    NASA Technical Reports Server (NTRS)

    Bremmer, David M.; Hutcheson, Florence V.; Stead, Daniel J.

    2005-01-01

    A methodology to eliminate model reflection and system vibration effects from post processed particle image velocimetry data is presented. Reflection and vibration lead to loss of data, and biased velocity calculations in PIV processing. A series of algorithms were developed to alleviate these problems. Reflections emanating from the model surface caused by the laser light sheet are removed from the PIV images by subtracting an image in which only the reflections are visible from all of the images within a data acquisition set. The result is a set of PIV images where only the seeded particles are apparent. Fiduciary marks painted on the surface of the test model were used as reference points in the images. By locating the centroids of these marks it was possible to shift all of the images to a common reference frame. This image alignment procedure as well as the subtraction of model reflection are performed in a first algorithm. Once the images have been shifted, they are compared with a background image that was recorded under no flow conditions. The second and third algorithms find the coordinates of fiduciary marks in the acquisition set images and the background image and calculate the displacement between these images. The final algorithm shifts all of the images so that fiduciary mark centroids lie in the same location as the background image centroids. This methodology effectively eliminated the effects of vibration so that unbiased data could be used for PIV processing. The PIV data used for this work was generated at the NASA Langley Research Center Quiet Flow Facility. The experiment entailed flow visualization near the flap side edge region of an airfoil model. Commercial PIV software was used for data acquisition and processing. In this paper, the experiment and the PIV acquisition of the data are described. The methodology used to develop the algorithms for reflection and system vibration removal is stated, and the implementation, testing and

  14. Visualization of air flow around soccer ball using a particle image velocimetry

    PubMed Central

    Hong, Sungchan; Asai, Takeshi; Seo, Kazuya

    2015-01-01

    A traditional soccer ball is constructed using 32 pentagonal and hexagonal panels. In recent years, however, the likes of the Teamgeist and Jabulani balls, constructed from 14 and 8 panels, respectively, have entered the field, marking a significant departure from conventionality in terms of shape and design. Moreover, the recently introduced Brazuca ball features a new 6-panel design and has already been adopted by many soccer leagues. However, the shapes of the constituent panels of these balls differ substantially from those of conventional balls. Therefore, this study set out to investigate the flight and aerodynamic characteristics of different orientations of the soccer ball, which is constructed from panels of different shapes. A wind tunnel test showed substantial differences in the aerodynamic forces acting on the ball, depending on its orientation. Substantial differences were also observed in the aerodynamic forces acting on the ball in different directions, corresponding to its orientation and rotation. Moreover, two-dimensional particle image velocimetry (2D-PIV) measurements showed that the boundary separation varies depending on the orientation of the ball. Based on these results, we can conclude that the shape of the panels of a soccer ball substantially affects its flight trajectory. PMID:26446616

  15. Velocity Measurement in a Dual-Mode Supersonic Combustor using Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Goyne, C. P.; McDaniel, J. C.; Krauss, R. H.; Day, S. W.; Reubush, D. E. (Technical Monitor); McClinton, C. R. (Technical Monitor); Reubush, D. E.

    2001-01-01

    Temporally and spatially-resolved, two-component measurements of velocity in a supersonic hydrogen-air combustor are reported. The combustor had a single unswept ramp fuel injector and operated with an inlet Mach number of 2 and a flow total temperature approaching 1200 K. The experiment simulated the mixing and combustion processes of a dual-mode scramjet operating at a flight Mach number near 5. The velocity measurements were obtained by seeding the fuel with alumina particles and performing Particle Image Velocimetry on the mixing and combustion wake of the ramp injector. To assess the effects of combustion on the fuel air-mixing process, the distribution of time-averaged velocity and relative turbulence intensity was determined for the cases of fuel-air mixing and fuel-air reacting. Relative to the mixing case, the near field core velocity of the reacting fuel jet had a slower streamwise decay. In the far field, downstream of 4 to 6 ramp heights from the ramp base, the heat release of combustion resulted in decreased flow velocity and increased turbulence levels. The reacting measurements were also compared with a computational fluid dynamics solution of the flow field. Numerically predicted velocity magnitudes were higher than that measured and the jet penetration was lower.

  16. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique.

    PubMed

    Mukdadi, Osama; Shandas, Robin

    2004-01-01

    Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.

  17. Microparticles prepared from sulfenamide-based polymers

    PubMed Central

    D’Mello, Sheetal R.; Yoo, Jun; Bowden, Ned B.; Salem, Aliasger K.

    2015-01-01

    Polysulfenamides (PSN), with a SN linkage (RSNR2) along the polymer backbone, are a new class of biodegradable and biocompatible polymers. These polymers were unknown prior to 2012 when their synthesis and medicinally relevant properties were reported. The aim of this study was to develop microparticles as a controlled drug delivery system using polysulfenamide as the matrix material. The microparticles were prepared by a water-in-oil-in-water double emulsion solvent evaporation method. For producing drug-loaded particles, FITC-dextran was used as a model hydrophilic compound. At the optimal formulation conditions, the external morphology of the PSN microparticles was examined by scanning electron microscopy to show the formation of smooth-surfaced spherical particles with low polydispersity. The microparticles had a net negative surface charge (−23 mV) as analyzed by the zetasizer. The drug encapsulation efficiency of the particles and the drug loading were found to be dependent on the drug molecular weight, amount of FITC-dextran used in fabricating FITC-dextran loaded microparticles, concentration of PSN and surfactant, and volume of the internal and external water phases. FITC-dextran was found to be distributed throughout the PSN microparticles and was released in an initial burst followed by more continuous release over time. Confocal laser scanning microscopy was used to qualitatively observe the cellular uptake of PSN microparticles and indicated localization of the particles in both the cytoplasm and the nucleus. PMID:23862723

  18. Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface

    NASA Astrophysics Data System (ADS)

    Yu, Ying-Song; Xia, Xue-Lian; Zheng, Xu; Huang, Xianfu; Zhou, Jin-Zhi

    2017-09-01

    In this paper, evaporation of sessile water droplets containing fluorescent polystyrene (PS) microparticles on polydimethylsiloxane (PDMS) surfaces with different curing ratios was studied experimentally using laser confocal microscopy. At the beginning, there were some microparticles located at the contact line and some microparticles moved towards the line. Due to contact angle hysteresis, at first both the contact line and the microparticles were pinned. With the depinning contact line, the microparticles moved together spontaneously. Using the software ImageJ, the location of contact lines at different time were acquired and the circle centers and radii of the contact lines were obtained via the least square method. Then the average distance of two neighbor contact lines at a certain time interval was obtained to characterize the motion of the contact line. Fitting the distance-time curve at the depinning contact line stage with polynomials and differentiating the polynomials with time, we obtained the velocity and acceleration of both the contact line and the microparticles located at the line. The velocity and the maximum acceleration were, respectively, of the orders of 1 μm/s and 20-200 nm/s2, indicating that the motion of the microparticles located at the depinning contact line was quasi-static. Finally, we presented a theoretical model to describe the quasi-static process, which may help in understanding both self-pinning and depinning of microparticles.

  19. Stereoscopic particle image velocimetry investigations of the mixed convection exchange flow through a horizontal vent

    NASA Astrophysics Data System (ADS)

    Varrall, Kevin; Pretrel, Hugues; Vaux, Samuel; Vauquelin, Olivier

    2017-10-01

    The exchange flow through a horizontal vent linking two compartments (one above the other) is studied experimentally. This exchange is here governed by both the buoyant natural effect due to the temperature difference of the fluids in both compartments, and the effect of a (forced) mechanical ventilation applied in the lower compartment. Such a configuration leads to uni- or bi-directional flows through the vent. In the experiments, buoyancy is induced in the lower compartment thanks to an electrical resistor. The forced ventilation is applied in exhaust or supply modes and three different values of the vent area. To estimate both velocity fields and flow rates at the vent, measurements are realized at thermal steady state, flush the vent in the upper compartment using stereoscopic particle image velocimetry (SPIV), which is original for this kind of flow. The SPIV measurements allows the area occupied by both upward and downward flows to be determined.

  20. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing

    NASA Astrophysics Data System (ADS)

    Aycock, Kenneth I.; Hariharan, Prasanna; Craven, Brent A.

    2017-11-01

    For decades, the study of biomedical fluid dynamics using optical flow visualization and measurement techniques has been limited by the inability to fabricate transparent physical models that realistically replicate the complex morphology of biological lumens. In this study, we present an approach for producing optically transparent anatomical models that are suitable for particle image velocimetry (PIV) using a common 3D inkjet printing process (PolyJet) and stock resin (VeroClear). By matching the index of refraction of the VeroClear material using a room-temperature mixture of water, sodium iodide, and glycerol, and by printing the part in an orientation such that the flat, optical surfaces are at an approximately 45° angle to the build plane, we overcome the challenges associated with using this 3D printing technique for PIV. Here, we summarize our methodology and demonstrate the process and the resultant PIV measurements of flow in an optically transparent anatomical model of the human inferior vena cava.

  1. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry

    PubMed Central

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.

    2015-01-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  2. Holographic diagnostics of biological microparticles

    NASA Astrophysics Data System (ADS)

    Dyomin, Victor V.; Sokolov, Vladimir V.

    1996-05-01

    Problem of studies of biological microojects is actual one for ecology, medicine, biology. Holographic techniques are useful to solve the problem. The above microojects are transparent or semitransparent ones in a visible light rather often. The case of an optically soft particle, (that is of a particle whose substance has the refractive index close to that of the surrounding medium) is quite probable in biological water suspensions. Some peculiarities of holographing optically soft microparticles are analyzed in this paper. We propose a technique to calculate a light intensity distribution in the plane of a hologram and in the plane of a holographic image of a particle of an arbitrary shape at an arbitrary distance from the latter plane. The efficiency of the approach proposed is demonstrated by calculational results obtained analytically for some simple cases. In a more complicated cases the technique can make a basis for numerical computations. The method of determining of refractive index of transparent and semitransparent microparticles is proposed. We also present in this paper some experimental results on holographic detection of the water drops and such optically soft particles as ovums of helmints in human jaundice.

  3. Mucoadhesive Microparticles for Gastroretentive Delivery: Preparation, Biodistribution and Targeting Evaluation

    PubMed Central

    Hou, Jing-Yi; Gao, Li-Na; Meng, Fan-Yun; Cui, Yuan-Lu

    2014-01-01

    The aim of this research was to prepare and characterize alginate-chitosan mucoadhesive microparticles containing puerarin. The microparticles were prepared by an emulsification-internal gelatin method using a combination of chitosan and Ca2+ as cationic components and alginate as anions. Surface morphology, particle size, drug loading, encapsulation efficiency and swelling ratio, in vitro drug released, in vitro evaluation of mucoadhesiveness and Fluorescence imaging of the gastrointestinal tract were determined. After optimization of the formulation, the encapsulation efficiency was dramatically increased from 70.3% to 99.2%, and a highly swelling ratio was achieved with a change in particle size from 50.3 ± 11.2 μm to 124.7 ± 25.6 μm. In ethanol induced gastric ulcers, administration of puerarin mucoadhesive microparticles at doses of 150 mg/kg, 300 mg/kg, 450 mg/kg and 600 mg/kg body weight prior to ethanol ingestion significantly protected the stomach ulceration. Consequently, significant changes were observed in inflammatory cytokines, such as prostaglandin E2 (PGE2), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and interleukin1β (IL-1β), in stomach tissues compared with the ethanol control group. In conclusion, core-shell type pH-sensitive mucoadhesive microparticles loaded with puerarin could enhance puerarin bioavailability and have the potential to alleviate ethanol-mediated gastric ulcers. PMID:25470180

  4. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles.

    PubMed

    Yue, Shuai; Sun, Xiaoting; Wang, Ning; Wang, Yaning; Wang, Yue; Xu, Zhangrun; Chen, Mingli; Wang, Jianhua

    2017-11-15

    A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.

  5. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    van Gent, P. L.; Michaelis, D.; van Oudheusden, B. W.; Weiss, P.-É.; de Kat, R.; Laskari, A.; Jeon, Y. J.; David, L.; Schanz, D.; Huhn, F.; Gesemann, S.; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, D. E.; Schneiders, J. F. G.; Schrijer, F. F. J.

    2017-04-01

    A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences of four subsequent particle images (representing multi-pulse data) as well as continuous time-resolved data which can realistically only be obtained for low-speed flows. Particle images were processed using tomographic PIV processing as well as the LPT algorithm `Shake-The-Box' (STB). Multiple pressure field reconstruction techniques have subsequently been applied to the PIV results (Eulerian approach, iterative least-square pseudo-tracking, Taylor's hypothesis approach, and instantaneous Vortex-in-Cell) and LPT results (FlowFit, Vortex-in-Cell-plus, Voronoi-based pressure evaluation, and iterative least-square pseudo-tracking). All methods were able to reconstruct the main features of the instantaneous pressure fields, including methods that reconstruct pressure from a single PIV velocity snapshot. Highly accurate reconstructed pressure fields could be obtained using LPT approaches in combination with more advanced techniques. In general, the use of longer series of time-resolved input data, when available, allows more accurate pressure field reconstruction. Noise in the input data typically reduces the accuracy of the reconstructed pressure fields, but none of the techniques proved to be critically sensitive to the amount of noise added in the present test case.

  6. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis

    PubMed Central

    Lacroix, Romaric; Plawinski, Laurent; Robert, Stéphane; Doeuvre, Loïc; Sabatier, Florence; Martinez de Lizarrondo, Sara; Mezzapesa, Anna; Anfosso, Francine; Leroyer, Aurelie S.; Poullin, Pascale; Jourde, Noémie; Njock, Makon-Sébastien; Boulanger, Chantal M.; Anglés-Cano, Eduardo; Dignat-George, Françoise

    2012-01-01

    Background We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. Design and Methods Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. Results Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. Conclusions Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium. PMID:22733025

  7. The Young's Modulus, Fracture Stress, and Fracture Strain of Gellan Hydrogels Filled with Whey Protein Microparticles.

    PubMed

    Lam, Cherry Wing Yu; Ikeda, Shinya

    2017-05-01

    Texture modifying abilities of whey protein microparticles are expected to be dependent on pH during heat-induced aggregation of whey protein in the microparticulation process. Therefore, whey protein microparticles were prepared at either pH 5.5 or 6.8 and their effects on small and large deformation properties of gellan gels containing whey protein microparticles as fillers were investigated. The majority of whey protein microparticles had diameters around 2 μm. Atomic force microscopy images showed that whey protein microparticles prepared at pH 6.8 partially collapsed and flatted by air-drying, while those prepared at pH 5.5 did not. The Young's modulus of filled gels adjusted to pH 5.5 decreased by the addition of whey protein microparticles, while those of filled gels adjusted to pH 6.8 increased with increasing volume fraction of filler particles. These results suggest that filler particles were weakly bonded to gel matrices at pH 5.5 but strongly at pH 6.8. Whey protein microparticles prepared at pH 5.5 showed more enhanced increases in the Young's modulus than those prepared at pH 6.8 at volume fractions between 0.2 and 0.4, indicating that microparticles prepared at pH 5.5 were mechanically stronger. The fracture stress of filled gels showed trends somewhat similar to those of the Young's modulus, while their fracture strains decreased by the addition of whey protein microparticles in all examined conditions, indicating that the primary effect of these filler particles was to enhance the brittleness of filled gels. © 2017 Institute of Food Technologists®.

  8. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Xue, Zhenyu; Charonko, John J.; Vlachos, Pavlos P.

    2014-11-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, {{U}68.5} uncertainties are estimated at the 68.5% confidence level while {{U}95} uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements.

  9. Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment.

    PubMed

    Rousseau, Matthieu; Belleannee, Clemence; Duchez, Anne-Claire; Cloutier, Nathalie; Levesque, Tania; Jacques, Frederic; Perron, Jean; Nigrovic, Peter A; Dieude, Melanie; Hebert, Marie-Josee; Gelb, Michael H; Boilard, Eric

    2015-01-01

    Microparticles, also called microvesicles, are submicron extracellular vesicles produced by plasma membrane budding and shedding recognized as key actors in numerous physio(patho)logical processes. Since they can be released by virtually any cell lineages and are retrieved in biological fluids, microparticles appear as potent biomarkers. However, the small dimensions of microparticles and soluble factors present in body fluids can considerably impede their quantification. Here, flow cytometry with improved methodology for microparticle resolution was used to detect microparticles of human and mouse species generated from platelets, red blood cells, endothelial cells, apoptotic thymocytes and cells from the male reproductive tract. A family of soluble proteins, the secreted phospholipases A2 (sPLA2), comprises enzymes concomitantly expressed with microparticles in biological fluids and that catalyze the hydrolysis of membrane phospholipids. As sPLA2 can hydrolyze phosphatidylserine, a phospholipid frequently used to assess microparticles, and might even clear microparticles, we further considered the impact of relevant sPLA2 enzymes, sPLA2 group IIA, V and X, on microparticle quantification. We observed that if enriched in fluids, certain sPLA2 enzymes impair the quantification of microparticles depending on the species studied, the source of microparticles and the means of detection employed (surface phosphatidylserine or protein antigen detection). This study provides analytical considerations for appropriate interpretation of microparticle cytofluorometric measurements in biological samples containing sPLA2 enzymes.

  10. Identification of hydrodynamic forces around 3D surrogates using particle image velocimetry in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Afshar, Sepideh; Nath, Shubhankar; Demirci, Utkan; Hasan, Tayyaba; Scarcelli, Giuliano; Rizvi, Imran; Franco, Walfre

    2018-02-01

    Previous studies have demonstrated that flow-induced shear stress induces a motile and aggressive tumor phenotype in a microfluidic model of 3D ovarian cancer. However, the magnitude and distribution of the hydrodynamic forces that influence this biological modulation on the 3D cancer nodules are not known. We have developed a series of numerical and experimental tools to identify these forces within a 3D microchannel. In this work, we used particle image velocimetry (PIV) to find the velocity profile using fluorescent micro-spheres as surrogates and nano-particles as tracers, from which hydrodynamic forces can be derived. The fluid velocity is obtained by imaging the trajectory of a range of florescence nano-particles (500-800 μm) via confocal microscopy. Imaging was done at different horizontal planes and with a 50 μm bead as the surrogate. For an inlet current rate of 2 μl/s, the maximum velocity at the center of the channel was 51 μm/s. The velocity profile around the sphere was symmetric which is expected since the flow is dominated by viscous forces as opposed to inertial forces. The confocal PIV was successfully employed in finding the velocity profile in a microchannel with a nodule surrogate; therefore, it seems feasible to use PIV to investigate the hydrodynamic forces around 3D biological models.

  11. Effects of Inhalable Microparticles of Seonpyejeongcheon-Tang in an Asthma Mouse Model: - Effects of Microparticles of SJT.

    PubMed

    Yang, Won-Kyung; Lee, Chul-Hwa; Kim, Min-Hee; Kim, Seung-Hyeong; Choi, Hae-Yoon; Yeo, Yoon; Park, Yang-Chun

    2016-12-01

    Allergic asthma generally presents with symptoms of wheezing, coughing, breathlessness, and airway inflammation. Seonpyejeongcheon-tang (SJT) consists of 12 herbs. It originated from Jeongcheon-tang (JT), also known as Ding-chuan-tang, composed of 7 herbs, in She-sheng-zhong-miao-fang. This study aimed to evaluate the effects of local delivery of SJT via inhalable microparticles in an asthma mouse model. Microparticles containing SJT were produced by spray-drying with leucine as an excipient. SJT microparticles were evaluated with respect to their aerodynamic properties, in vitro cytotoxicity, in vivo toxicity, and therapeutic effects on ovalbumin (OVA)-induced asthma in comparison with orally-administered SJT. SJT microparticles provided desirable aerodynamic properties (fine particle fraction of 48.9% ± 6.4% and mass median aerodynamic diameter of 3.7 ± 0.3 μm). SJT microparticles did not show any cytotoxicity against RAW 264.7 macrophages at concentrations of 0.01 - 3 mg/mL. Inhaled SJT microparticles decreased the levels of IL-4, IL-5, IL-13, IL-17A, eotaxin and OVA-IgE in bronchoalveolar lavage fluid (BALF) in mice with OVA-induced asthma. These effects were verified by histological evaluation of the levels of infiltration of inflammatory cells and collagen, destructions of alveoli and bronchioles, and hyperplasia of goblet cells in lung tissues. The effects of SJT microparticles in the asthma model were equivalent to those of orally-administered SJT extract. This study suggests that SJT is a promising agent for inhalation therapy for patients with asthma.

  12. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine.

  13. Marathon running increases circulating endothelial- and thrombocyte-derived microparticles.

    PubMed

    Schwarz, Viktoria; Düsing, Philip; Liman, Thomas; Werner, Christian; Herm, Juliane; Bachelier, Katrin; Krüll, Matthias; Brechtel, Lars; Jungehulsing, Gerhard J; Haverkamp, Wilhelm; Böhm, Michael; Endres, Matthias; Haeusler, Karl Georg; Laufs, Ulrich

    2018-02-01

    Background Acute vascular effects of high intensity physical activity are incompletely characterized. Circulating microparticles are cellular markers for vascular activation and damage. Methods Microparticles were analysed in 99 marathon runners (49 ± 6 years, 22% female) of the prospective Berlin Beat of Running study. Blood samples were taken within three days before, immediately after and within two days after the marathon run. Endothelial-derived microparticles were labelled with CD144, CD31 and CD62E, platelet-derived microparticles with CD62P and CD42b, leukocyte-derived microparticles with CD45 and monocyte-derived microparticles with CD14. Results Marathon running induced leukocytosis (5.9 ± 0.1 to 14.8 ± 0.3 10 9 /l, p < 0.0001) and increased platelet counts (239 ± 4.6 to 281 ± 5.9 10 9 /l, p < 0.0001) immediately after the marathon. Blood monocytes increased and lymphocytes decreased after the run ( p < 0.0001). Endothelial-derived microparticles were acutely increased ( p = 0.008) due to a 23% increase of apoptotic endothelial-derived microparticles ( p = 0.007) and returned to baseline within two days after the marathon. Thrombocyte-derived microparticles acutely increased by 38% accompanied by an increase in activated and apoptotic thrombocyte-derived microparticles ( p ≤ 0.0001) each. Both monocyte- and leukocyte-derived microparticles were decreased immediately after marathon run ( p < 0.0001) and remained below baseline until day 2. Troponin T increased from 12 to 32 ng/l ( p < 0.0001) immediately after the run and returned to baseline after two days. Conclusion Circulating apoptotic endothelial- and thrombocyte-derived microparticles increased after marathon running consistent with an acute pro-thrombotic and pro-inflammatory state. Exercise-induced vascular damage reflected by microparticles could indicate potential mechanisms of post-exertional cardiovascular complications. Further

  14. Barium titanate microparticles as potential carrier platform for lanthanide radionuclides for their use in the treatment of arthritis.

    PubMed

    Chakraborty, Sudipta; Vimalnath, K V; Sharma, Jyothi; Shetty, Priyalata; Sarma, H D; Chakravarty, Rubel; Prakash, Deep; Sinha, P K; Dash, Ashutosh

    2018-06-15

    Since the inception of radiation synovectomy, a host of radioactive colloids and microparticles incorporating suitable therapeutic radionuclides have been proposed for the treatment of arthritis. The present article reports the synthesis and evaluation of barium titanate microparticles as an innovative and effective carrier platform for lanthanide radionuclides in the preparation of therapeutic agents for treatment of arthritis. The material was synthesized by mechanochemical route and characterized by X-ray diffraction, scanning electron microscopy, surface area, and particle size distribution analyses. Loading of lanthanide radionuclides ( 166 Ho, 153 Sm, 177 Lu, and 169 Er) on the microparticles was achieved in high yield (> 95%) resulting in the formulation of loaded particulates with excellent radiochemical purities (> 99%). Radiolanthanide-loaded microparticles exhibited excellent in vitro stability in human serum. In vitro diethylene triamine pentaacetic acid challenge study indicated fairly strong chemical association of lanthanides with barium titanate microparticles. Long-term biodistribution studies carried out after administration of 177 Lu-loaded microparticles into one of the knee joints of normal Wistar rats revealed near-complete retention of the formulation (> 96% of the administered radioactivity) within the joint cavity even 14 days post-administration. The excellent localization of the loaded microparticles was further confirmed by sequential whole-body radio-luminescence imaging studies carried out using 166 Ho-loaded microparticles. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Injectable nanosilica-chitosan microparticles for bone regeneration applications.

    PubMed

    Gaihre, Bipin; Lecka-Czernik, Beata; Jayasuriya, Ambalangodage C

    2018-01-01

    This study was aimed at assessing the effects of silica nanopowder incorporation into chitosan-tripolyphosphate microparticles with the ultimate goal of improving their osteogenic properties. The microparticles were prepared by simple coacervation technique and silica nanopowder was added at 0% (C), 2.5% (S1), 5% (S2) and 10% (S3) (w/w) to chitosan. We observed that this simple incorporation of silica nanopowder improved the growth and proliferation of osteoblasts along the surface of the microparticles. In addition, the composite microparticles also showed the increased expression of alkaline phosphatase and osteoblast specific genes. We observed a significant increase ( p < 0.05) in the expression of alkaline phosphatase by the cells growing on all sample groups compared to the control (C) groups at day 14. The morphological characterization of these microparticles through scanning electron microscopy showed that these microparticles were well suited to be used as the injectable scaffolds with perfectly spherical shape and size. The incorporation of silica nanopowder altered the nano-roughness of the microparticles as observed through atomic force microscopy scans with roughness values going down from C to S3. The results in this study, taken together, show the potential of chitosan-tripolyphosphate-silica nanopowder microparticles for improved bone regeneration applications.

  16. Outlier detection for particle image velocimetry data using a locally estimated noise variance

    NASA Astrophysics Data System (ADS)

    Lee, Yong; Yang, Hua; Yin, ZhouPing

    2017-03-01

    This work describes an adaptive spatial variable threshold outlier detection algorithm for raw gridded particle image velocimetry data using a locally estimated noise variance. This method is an iterative procedure, and each iteration is composed of a reference vector field reconstruction step and an outlier detection step. We construct the reference vector field using a weighted adaptive smoothing method (Garcia 2010 Comput. Stat. Data Anal. 54 1167-78), and the weights are determined in the outlier detection step using a modified outlier detector (Ma et al 2014 IEEE Trans. Image Process. 23 1706-21). A hard decision on the final weights of the iteration can produce outlier labels of the field. The technical contribution is that the spatial variable threshold motivation is embedded in the modified outlier detector with a locally estimated noise variance in an iterative framework for the first time. It turns out that a spatial variable threshold is preferable to a single spatial constant threshold in complicated flows such as vortex flows or turbulent flows. Synthetic cellular vortical flows with simulated scattered or clustered outliers are adopted to evaluate the performance of our proposed method in comparison with popular validation approaches. This method also turns out to be beneficial in a real PIV measurement of turbulent flow. The experimental results demonstrated that the proposed method yields the competitive performance in terms of outlier under-detection count and over-detection count. In addition, the outlier detection method is computational efficient and adaptive, requires no user-defined parameters, and corresponding implementations are also provided in supplementary materials.

  17. Demonstration of motion control of ZrO2 microparticles in uniform/non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Onishi, Genki; Trung, Ngo Nguyen Chi; Matsutani, Naoto; Nakayama, Tadachika; Suzuki, Tsuneo; Suematsu, Hisayuki; Niihara, Koichi

    2018-02-01

    This study aims to elucidate the mechanism that drives dielectric microparticles under an electric field. The driving of microstructures is affected by various electrical phenomena occurring at the same time such as surface potential, polarization, and electrostatic force. It makes the clarification of the driving mechanism challenging. A simple experimental system was used to observe the behavior of spherical ZrO2 microparticles in a nonaqueous solution under an electric field. The results suggest that the mechanism that drives the ZrO2 microparticles under an electric field involved the combination of an electric image force, a gradient force, and the contact charging phenomenon. A method is proposed to control the motion of micro- and nanostructures in further study and applications.

  18. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays

    NASA Astrophysics Data System (ADS)

    Laborde, C.; Pittino, F.; Verhoeven, H. A.; Lemay, S. G.; Selmi, L.; Jongsma, M. A.; Widdershoven, F. P.

    2015-09-01

    Platforms that offer massively parallel, label-free biosensing can, in principle, be created by combining all-electrical detection with low-cost integrated circuits. Examples include field-effect transistor arrays, which are used for mapping neuronal signals and sequencing DNA. Despite these successes, however, bioelectronics has so far failed to deliver a broadly applicable biosensing platform. This is due, in part, to the fact that d.c. or low-frequency signals cannot be used to probe beyond the electrical double layer formed by screening salt ions, which means that under physiological conditions the sensing of a target analyte located even a short distance from the sensor (∼1 nm) is severely hampered. Here, we show that high-frequency impedance spectroscopy can be used to detect and image microparticles and living cells under physiological salt conditions. Our assay employs a large-scale, high-density array of nanoelectrodes integrated with CMOS electronics on a single chip and the sensor response depends on the electrical properties of the analyte, allowing impedance-based fingerprinting. With our platform, we image the dynamic attachment and micromotion of BEAS, THP1 and MCF7 cancer cell lines in real time at submicrometre resolution in growth medium, demonstrating the potential of the platform for label/tracer-free high-throughput screening of anti-tumour drug candidates.

  19. Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio

    NASA Astrophysics Data System (ADS)

    Charonko, John J.; Vlachos, Pavlos P.

    2013-06-01

    Numerous studies have established firmly that particle image velocimetry (PIV) is a robust method for non-invasive, quantitative measurements of fluid velocity, and that when carefully conducted, typical measurements can accurately detect displacements in digital images with a resolution well below a single pixel (in some cases well below a hundredth of a pixel). However, to date, these estimates have only been able to provide guidance on the expected error for an average measurement under specific image quality and flow conditions. This paper demonstrates a new method for estimating the uncertainty bounds to within a given confidence interval for a specific, individual measurement. Here, cross-correlation peak ratio, the ratio of primary to secondary peak height, is shown to correlate strongly with the range of observed error values for a given measurement, regardless of flow condition or image quality. This relationship is significantly stronger for phase-only generalized cross-correlation PIV processing, while the standard correlation approach showed weaker performance. Using an analytical model of the relationship derived from synthetic data sets, the uncertainty bounds at a 95% confidence interval are then computed for several artificial and experimental flow fields, and the resulting errors are shown to match closely to the predicted uncertainties. While this method stops short of being able to predict the true error for a given measurement, knowledge of the uncertainty level for a PIV experiment should provide great benefits when applying the results of PIV analysis to engineering design studies and computational fluid dynamics validation efforts. Moreover, this approach is exceptionally simple to implement and requires negligible additional computational cost.

  20. Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry.

    PubMed

    Umeyama, Motohiko

    2012-04-13

    This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.

  1. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots.

    PubMed

    Zubairova, Laily D; Nabiullina, Roza M; Nagaswami, Chandrasekaran; Zuev, Yuriy F; Mustafin, Ilshat G; Litvinov, Rustem I; Weisel, John W

    2015-12-04

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.

  2. Ca:Mg:Zn:CO3 and Ca:Mg:CO3-tri- and bi-elemental carbonate microparticles for novel injectable self-gelling hydrogel-microparticle composites for tissue regeneration.

    PubMed

    Douglas, Timothy E L; Sobczyk, Katarzyna; Łapa, Agata; Włodarczyk, Katarzyna; Brackman, Gilles; Vidiasheva, Irina; Reczyńska, Katarzyna; Pietryga, Krzysztof; Schaubroeck, David; Bliznuk, Vitaliy; Voort, Pascal Van Der; Declercq, Heidi A; Bulcke, Jan Van den; Samal, Sangram Keshari; Khalenkow, Dmitry; Parakhonskiy, Bogdan V; Van Acker, Joris; Coenye, Tom; Lewandowska-Szumieł, Małgorzata; Pamuła, Elżbieta; Skirtach, Andre G

    2017-03-24

    Injectable composites for tissue regeneration can be developed by dispersion of inorganic microparticles and cells in a hydrogel phase. In this study, multifunctional carbonate microparticles containing different amounts of calcium, magnesium and zinc were mixed with solutions of gellan gum (GG), an anionic polysaccharide, to form injectable hydrogel-microparticle composites, containing Zn, Ca and Mg. Zn and Ca were incorporated into microparticle preparations to a greater extent than Mg. Microparticle groups were heterogeneous and contained microparticles of differing shape and elemental composition. Zn-rich microparticles were 'star shaped' and appeared to consist of small crystallites, while Zn-poor, Ca- and Mg-rich microparticles were irregular in shape and appeared to contain lager crystallites. Zn-free microparticle groups exhibited the best cytocompatibility and, unexpectedly, Zn-free composites showed the highest antibacterial activity towards methicilin-resistant Staphylococcus aureus. Composites containing Zn-free microparticles were cytocompatible and therefore appear most suitable for applications as an injectable biomaterial. This study proves the principle of creating bi- and tri-elemental microparticles to induce the gelation of GG to create injectable hydrogel-microparticle composites.

  3. Field Effects of Buoyancy on a Premixed Turbulent Flame Studied by Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.

    2003-01-01

    Typical laboratory flames for the scientific investigation of flame/turbulence interactions are prone to buoyancy effects. Buoyancy acts on these open flame systems and provides upstream feedbacks that control the global flame properties as well as local turbulence/flame interactions. Consequently the flame structures, stabilization limits, and turbulent reaction rates are directly or indirectly coupled with buoyancy. The objective of this study is to characterize the differences between premixed turbulent flames pointing upwards (1g), pointing downwards (-1g), and in microgravity (mg). The configuration is an inverted conical flame stabilized by a small cone-shaped bluff body that we call CLEAN Flames (Cone-Stabilized Lean Flames). We use two laser diagnostics to capture the velocity and scalar fields. Particle image velocimetry (PIV) measures the mean and root mean square velocities and planar imaging by the flame fronts method outlines the flame wrinkle topology. The results were obtained under typical conditions of small domestic heating systems such as water heaters, ovens, and furnaces. Significant differences between the 1g and -1g flames point to the need for including buoyancy contributions in theoretical and numerical calculations. In Earth gravity, there is a complex coupling of buoyancy with the turbulent flow and heat release in the flame. An investigation of buoyancy-free flames in microgravity will provide the key to discern gravity contributions. Data obtained in microgravity flames will provide the benchmark for interpreting and analyzing 1g and -1g flame results.

  4. Experimental investigation of the dynamics of a hybrid morphing wing: time resolved particle image velocimetry and force measures

    NASA Astrophysics Data System (ADS)

    Jodin, Gurvan; Scheller, Johannes; Rouchon, Jean-François; Braza, Marianna; Mit Collaboration; Imft Collaboration; Laplace Collaboration

    2016-11-01

    A quantitative characterization of the effects obtained by high frequency-low amplitude trailing edge actuation is performed. Particle image velocimetry, as well as pressure and aerodynamic force measurements, are carried out on an airfoil model. This hybrid morphing wing model is equipped with both trailing edge piezoelectric-actuators and camber control shape memory alloy actuators. It will be shown that this actuation allows for an effective manipulation of the wake turbulent structures. Frequency domain analysis and proper orthogonal decomposition show that proper actuating reduces the energy dissipation by favoring more coherent vortical structures. This modification in the airflow dynamics eventually allows for a tapering of the wake thickness compared to the baseline configuration. Hence, drag reductions relative to the non-actuated trailing edge configuration are observed. Massachusetts Institute of Technology.

  5. OCT methods for capillary velocimetry

    PubMed Central

    Srinivasan, Vivek J.; Radhakrishnan, Harsha; Lo, Eng H.; Mandeville, Emiri T.; Jiang, James Y.; Barry, Scott; Cable, Alex E.

    2012-01-01

    To date, two main categories of OCT techniques have been described for imaging hemodynamics: Doppler OCT and OCT angiography. Doppler OCT can measure axial velocity profiles and flow in arteries and veins, while OCT angiography can determine vascular morphology, tone, and presence or absence of red blood cell (RBC) perfusion. However, neither method can quantify RBC velocity in capillaries, where RBC flow is typically transverse to the probe beam and single-file. Here, we describe new methods that potentially address these limitations. Firstly, we describe a complex-valued OCT signal in terms of a static scattering component, dynamic scattering component, and noise. Secondly, we propose that the time scale of random fluctuations in the dynamic scattering component are related to red blood cell velocity. Analysis was performed along the slow axis of repeated B-scans to parallelize measurements. We correlate our purported velocity measurements against two-photon microscopy measurements of RBC velocity, and investigate changes during hypercapnia. Finally, we image the ischemic stroke penumbra during distal middle cerebral artery occlusion (dMCAO), where OCT velocimetry methods provide additional insight that is not afforded by either Doppler OCT or OCT angiography. PMID:22435106

  6. Orodispersible films and tablets with prednisolone microparticles.

    PubMed

    Brniak, Witold; Maślak, Ewelina; Jachowicz, Renata

    2015-07-30

    Orodispersible tablets (ODTs) and orodispersible films (ODFs) are solid oral dosage forms disintegrating or dissolving rapidly when placed in the mouth. One of the main issues related to their preparation is an efficient taste masking of a bitter drug substance. Therefore, the aim of this study was to prepare and evaluate the microparticles intended to mask a bitter taste of the prednisolone and use them in further preparation of two orodispersible dosage forms. Microparticles based on the Eudragit E PO or E 100 as a taste-masking agent were prepared with spray-drying technique. Tablets containing microparticles, co-processed ODT excipient Pharmaburst, and lubricant were directly compressed with single-punch tablet press. Orodispersible films were prepared by casting polymeric solutions of hydroxypropyl methylcellulose containing uniformly dispersed microparticles. Physicochemical properties of microparticles were evaluated, as well as mechanical properties analysis, disintegration time measurements and dissolution tests were performed for prepared dosage forms. Both formulations showed good mechanical resistance while maintaining excellent disintegration properties. The dissolution studies showed good masking properties of microparticles with Eudragit E 100. The amount of prednisolone released during the first minute in phosphate buffer 6.8 was around 0.1%. After incorporation into the orodispersible forms, the amount of released prednisolone increased significantly. It was probably the effect of faster microparticles wetting in orodispersible forms and their partial destruction by compression force during tableting process. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique

    NASA Astrophysics Data System (ADS)

    Shi, Shengxian; Ding, Junfei; New, T. H.; Soria, Julio

    2017-07-01

    This paper presents a dense ray tracing reconstruction technique for a single light-field camera-based particle image velocimetry. The new approach pre-determines the location of a particle through inverse dense ray tracing and reconstructs the voxel value using multiplicative algebraic reconstruction technique (MART). Simulation studies were undertaken to identify the effects of iteration number, relaxation factor, particle density, voxel-pixel ratio and the effect of the velocity gradient on the performance of the proposed dense ray tracing-based MART method (DRT-MART). The results demonstrate that the DRT-MART method achieves higher reconstruction resolution at significantly better computational efficiency than the MART method (4-50 times faster). Both DRT-MART and MART approaches were applied to measure the velocity field of a low speed jet flow which revealed that for the same computational cost, the DRT-MART method accurately resolves the jet velocity field with improved precision, especially for the velocity component along the depth direction.

  8. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*

    PubMed Central

    Dalli, Jesmond; Montero-Melendez, Trinidad; Norling, Lucy V; Yin, Xiaoke; Hinds, Charles; Haskard, Dorian; Mayr, Manuel; Perretti, Mauro

    2013-01-01

    Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions. PMID:23660474

  9. Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots

    PubMed Central

    Zubairova, Laily D.; Nabiullina, Roza M.; Nagaswami, Chandrasekaran; Zuev, Yuriy F.; Mustafin, Ilshat G.; Litvinov, Rustem I.; Weisel, John W.

    2015-01-01

    Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1–0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis. PMID:26635081

  10. Spray-dried chitosan/acid/NaCl microparticles enhance saltiness perception.

    PubMed

    Yi, Cheng; Tsai, Min-Lang; Liu, Tristan

    2017-09-15

    The composition, physicochemical properties and salinity of spray-dried chitosan/acid/NaCl microparticles were tested to ensure a low-sodium and high-salinity salty agent. The spray-dried chitosan/acid/NaCl microparticles were hollow and had a favourable hygroscopicity, and increased NaCl content and decreased organic acid content. Their size of the microparticles was 15.4-32.0μm and increased with NaCl concentration. The microparticles of acetic and lactic acid groups had a NaCl crystal size of 1-2 and 1-4μm, respectively. The NaCl crystals of acetic, lactic and citric acid group microparticles were distributed on the microparticle matrices, mostly on the microparticle surface and mainly on the inner walls of the microparticles walls, respectively. The acetic and lactic acid group microparticles were relatively smaller than general salt, with NaCl crystals distributed on the particle surfaces. Consequently, they were perceived as saltier than general salt and could potentially be regarded as a low-sodium salt for surface-salted foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Laser-induced Microparticle Impact Experiments on Soft Materials

    NASA Astrophysics Data System (ADS)

    Kooi, Steven; Veysset, David; Maznev, Alexei; Yang, Yun Jung; Olsen, Bradley; Nelson, Keith

    High-velocity impact testing is used to study fundamental aspects of materials behavior under high strain rates as well as in applications ranging from armor testing to the development of novel drug delivery platforms. In this work, we study high-velocity impact of micron-size projectiles on soft viscoelastic materials including synthetic hydrogels and gelatin samples. In an all optical laser-induced projectile impact test (LIPIT), a monolayer of microparticles is placed on a transparent substrate coated with a laser absorbing polymer layer. Ablation of a laser-irradiated polymer region accelerates the microparticles which are ejected from the launching pad into free space, reaching controllable speeds up to 1.5 km/s depending on the laser pulse energy and particle characteristics. The particles are monitored while in free space and after impact on the target surface with an ultrahigh-speed multi-frame camera that can record up to 16 images with time resolution of each frame as short as 3 ns. We present images and movies capturing individual particle impact and penetration in gels, and discuss the observed dynamics in the case of high Reynolds and Weber numbers. The results can provide direct input for modeling of high-velocity impact responses and high strain rate deformation in gels and other soft materials..

  12. Increased circulating leukocyte-derived microparticles in ischemic cerebrovascular disease.

    PubMed

    He, Zhangping; Tang, Yanyan; Qin, Chao

    2017-06-01

    Circulating leukocyte-derived microparticles act as proinflammatory mediators that reflect vascular inflammation. In this study, we examined the hypothesis that the quantity of leukocyte-derived microparticles is increased in patients with ischemic cerebrovascular diseases, and investigated utility of various phenotypes of leukocyte-derived microparticles as specific biomarkers of vascular inflammation injury. Additionally we focused on identifying leukocyte-derived microparticles that may be correlated with stroke severity in acute ischemic stroke patients. The plasma concentration of leukocyte-derived microparticles obtained by a series of centrifugations of 76 consecutive patients with ischemic cerebrovascular diseases and 70 age-, sex-, and race-matched healthy controls were determined by flow cytometry. Significantly elevated numbers of leukocyte (CD45+), monocyte (CD14+), lymphocyte (CD4+), granulocyte (CD15+) derived microparticles were found in the plasma samples of patients ischemic cerebrovascular diseases, compared to healthy controls (p<0.05). Furthermore, the plasma levels of CD14+ microparticles were significantly correlated with stroke severity (r=0.355, p=0.019), cerebral vascular stenosis severity (r=0.255, p=0.025) and stroke subtype (r=0.242, p=0.036). No association with stroke was observed for other leukocyte-derived phenotypes. These results demonstrate that circulating leukocyte-derived microparticles amounts are increased in patients with ischemic cerebrovascular diseases, compared with healthy controls. As proinflammatory mediators, leukocyte-derived microparticles may contribute to vascular inflammatory and the inflammatory process in acute ischemic stroke. Levels of CD14+ microparticles may be a promising biomarker of ischemic severity and outcome of stroke in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Digital particle image velocimetry measurements of the downwash distribution of a desert locust Schistocerca gregaria

    PubMed Central

    Bomphrey, Richard J; Taylor, Graham K; Lawson, Nicholas J; Thomas, Adrian L.R

    2005-01-01

    Actuator disc models of insect flight are concerned solely with the rate of momentum transfer to the air that passes through the disc. These simple models assume that an even pressure is applied across the disc, resulting in a uniform downwash distribution. However, a correction factor, k, is often included to correct for the difference in efficiency between the assumed even downwash distribution, and the real downwash distribution. In the absence of any empirical measurements of the downwash distribution behind a real insect, the values of k used in the literature have been necessarily speculative. Direct measurement of this efficiency factor is now possible, and could be used to compare the relative efficiencies of insect flight across the Class. Here, we use Digital Particle Image Velocimetry to measure the instantaneous downwash distribution, mid-downstroke, of a tethered desert locust (Schistocerca gregaria). By integrating the downwash distribution, we are thereby able to provide the first direct empirical measurement of k for an insect. The measured value of k=1.12 corresponds reasonably well with that predicted by previous theoretical studies. PMID:16849240

  14. Measurement potential of laser speckle velocimetry

    NASA Technical Reports Server (NTRS)

    Adrian, R. J.

    1982-01-01

    Laser speckle velocimetry, the measurement of fluid velocity by measuring the translation of speckle pattern or individual particles that are moving with the fluid, is described. The measurement is accomplished by illuminating the fluid with consecutive pulses of Laser Light and recording the images of the particles or the speckles on a double exposed photographic plate. The plate contains flow information throughout the image plane so that a single double exposure may provide data at hundreds or thousands of points in the illuminated region of the fluid. Conventional interrogation of the specklegram involves illuminating the plate to form Young's fringes, whose spacing is inversely proportional to the speckle separation. Subsequently the fringes are digitized and analyzed in a computer to determine their frequency and orientation, yielding the velocity magnitude and orientation. The Young's fringe technique is equivalent to performing a 2-D spatial correlation of the double exposed specklegram intensity pattern, and this observation suggests that correlation should be considered as an alternative processing method. The principle of the correlation technique is examined.

  15. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information

    USGS Publications Warehouse

    Legleiter, Carl; Kinzel, Paul J.; Nelson, Jonathan M.

    2017-01-01

    Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.

  16. An innovative experimental setup for Large Scale Particle Image Velocimetry measurements in riverine environments

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Olivieri, Giorgio; Porfiri, Maurizio; Grimaldi, Salvatore

    2014-05-01

    Large Scale Particle Image Velocimetry (LSPIV) is a powerful methodology to nonintrusively monitor surface flows. Its use has been beneficial to the development of rating curves in riverine environments and to map geomorphic features in natural waterways. Typical LSPIV experimental setups rely on the use of mast-mounted cameras for the acquisition of natural stream reaches. Such cameras are installed on stream banks and are angled with respect to the water surface to capture large scale fields of view. Despite its promise and the simplicity of the setup, the practical implementation of LSPIV is affected by several challenges, including the acquisition of ground reference points for image calibration and time-consuming and highly user-assisted procedures to orthorectify images. In this work, we perform LSPIV studies on stream sections in the Aniene and Tiber basins, Italy. To alleviate the limitations of traditional LSPIV implementations, we propose an improved video acquisition setup comprising a telescopic, an inexpensive GoPro Hero 3 video camera, and a system of two lasers. The setup allows for maintaining the camera axis perpendicular to the water surface, thus mitigating uncertainties related to image orthorectification. Further, the mast encases a laser system for remote image calibration, thus allowing for nonintrusively calibrating videos without acquiring ground reference points. We conduct measurements on two different water bodies to outline the performance of the methodology in case of varying flow regimes, illumination conditions, and distribution of surface tracers. Specifically, the Aniene river is characterized by high surface flow velocity, the presence of abundant, homogeneously distributed ripples and water reflections, and a meagre number of buoyant tracers. On the other hand, the Tiber river presents lower surface flows, isolated reflections, and several floating objects. Videos are processed through image-based analyses to correct for lens

  17. Comparison of Simultaneous PIV and Hydroxyl Tagging Velocimetry in Low Velocity Flows

    NASA Technical Reports Server (NTRS)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2016-01-01

    Hydroxyl tagging velocimetry (HTV) is a molecular tagging velocimetry (MTV) technique that relies on the photo- dissociation of water vapor into OH radicals and their subsequent tracking using laser-induced fluorescence. At ambient temperature in air, the OH species lifetime is about 50 micro-s. The feasibility of using HTV for probing low- speed flows (a few m/s) is investigated by using an inert, heated gas as a means to increase the OH species lifetime. Unlike particle-based techniques, MTV does not suffer from tracer settling, which is particularly problematic at low speeds. Furthermore, the flow needs to be seeded with only a small mole fraction of water vapor, making it safer for both the user and facilities than other MTV techniques based on corrosive or toxic chemical tracers. HTV is demonstrated on a steam-seeded nitrogen jet at approximately 75 C in the laminar (Umean=3.31 m/s, Re=1,540), transitional (Umean=4.48 m/s, Re=2,039), and turbulent (Umean=6.91 m/s, Re=3,016) regimes at atmospheric pressure. The measured velocity profiles are compared with particle image velocimetry (PIV) measurements performed simultaneously with a second imager. Seeding for the PIV is achieved by introducing micron-sized water droplets into the flow with the steam; the same laser sheet is used for PIV and HTV to guarantee spatial and temporal overlap of the data. Optimizing each of these methods, however, requires conflicting operating conditions: higher temperatures benefit the HTV signals but reduce the available seed density for the PIV through evaporation. Nevertheless, data are found to agree within 10% for the instantaneous velocity profiles and within 5% for the mean profiles and demonstrate the feasibility of HTV for low-speed flows at moderate to high temperatures.

  18. Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles.

    PubMed

    Sun, Xiao-Ting; Zhang, Ying; Zheng, Dong-Hua; Yue, Shuai; Yang, Chun-Guang; Xu, Zhang-Run

    2017-06-15

    A visualized sensing method for glucose and cholesterol was developed based on the hemispheres of the same Janus hydrogel microparticles. Single-phase and Janus hydrogel microparticles were both generated using a centrifugal microfluidic chip. For glucose sensing, concanavalin A and fluorescein labeled dextran used for competitive binding assay were encapsulated in alginate microparticles, and the fluorescence of the microparticles was positively correlated with glucose concentration. For cholesterol sensing, the microparticles embedded with γ-Fe 2 O 3 nanoparticles were used as catalyst for the oxidation of 3,3',5,5'-Tetramethylbenzidine by H 2 O 2 , an enzymatic hydrolysis product of cholesterol. And the color transition was more sensitive in the microparticles than in solutions, indicating the microparticles are more applicable for visualized determination. Furthermore, Janus microparticles were employed for multitarget sensing in the two hemespheres, and glucose and cholesterol were detected within the same microparticles without obvious interference. Besides, the particles could be manipulated by an external magnetic field. The glucose and cholesterol levels were measured in human serum utilizing the microparticles, which confirmed the potential application of the microparticles in real sample detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A synchronized particle image velocimetry and infrared thermography technique applied to convective mass transfer in champagne glasses

    NASA Astrophysics Data System (ADS)

    Beaumont, Fabien; Liger-Belair, Gérard; Bailly, Yannick; Polidori, Guillaume

    2016-05-01

    In champagne glasses, it was recently suggested that ascending bubble-driven flow patterns should be involved in the release of gaseous carbon dioxide (CO2) and volatile organic compounds. A key assumption was that the higher the velocity of the upward bubble-driven flow patterns in the liquid phase, the higher the volume fluxes of gaseous CO2 desorbing from the supersaturated liquid phase. In the present work, simultaneous monitoring of bubble-driven flow patterns within champagne glasses and gaseous CO2 escaping above the champagne surface was performed, through particle image velocimetry and infrared thermography techniques. Two quite emblematic types of champagne drinking vessels were investigated, namely a long-stemmed flute and a wide coupe. The synchronized use of both techniques proved that the cloud of gaseous CO2 escaping above champagne glasses strongly depends on the mixing flow patterns found in the liquid phase below.

  20. Cell-derived microparticles in haemostasis and vascular medicine.

    PubMed

    Burnier, Laurent; Fontana, Pierre; Kwak, Brenda R; Angelillo-Scherrer, Anne

    2009-03-01

    Considerable interest for cell-derived microparticles has emerged, pointing out their essential role in haemostatic response and their potential as disease markers, but also their implication in a wide range of physiological and pathological processes. They derive from different cell types including platelets - the main source of microparticles - but also from red blood cells, leukocytes and endothelial cells, and they circulate in blood. Despite difficulties encountered in analyzing them and disparities of results obtained with a wide range of methods, microparticle generation processes are now better understood. However, a generally admitted definition of microparticles is currently lacking. For all these reasons we decided to review the literature regarding microparticles in their widest definition, including ectosomes and exosomes, and to focus mainly on their role in haemostasis and vascular medicine.

  1. Flow separation in a straight draft tube, particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Maciel, Y.; Ciocan, G. D.; Deschênes, C.

    2014-03-01

    As part of the BulbT project, led by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University), the efficiency and power break off in a bulb turbine has been investigated. Previous investigations correlated the break off to draft tube losses. Tuft visualizations confirmed the emergence of a flow separation zone at the wall of the diffuser. Opening the guide vanes tends to extend the recirculation zone. The flow separations were investigated with two-dimensional and two-component particle image velocimetry (PIV) measurements designed based on the information collected from tuft visualizations. Investigations were done for a high opening blade angle with a N11 of 170 rpm, at best efficiency point and at two points with a higher Q11. The second operating point is inside the efficiency curve break off and the last operating point corresponds to a lower efficiency and a larger recirculation region in the draft tube. The PIV measurements were made near the wall with two cameras in order to capture two measurement planes simultaneously. The instantaneous velocity fields were acquired at eight different planes. Two planes located near the bottom wall were parallel to the generatrix of the conical part of the diffuser, while two other bottom planes diverged more from the draft tube axis than the cone generatrix. The last four planes were located on the draft tube side and diverged more from the draft tube axis than the cone generatrix. By combining the results from the various planes, the separation zone is characterized using pseudo-streamlines of the mean velocity fields, maps of the Reynolds stresses and maps of the reverse-flow parameter. The analysis provides an estimation of the separation zone size, shape and unsteady character, and their evolution with the guide vanes opening.

  2. Anti-Neutrophil Cytoplasmic Antibodies Stimulate Release of Neutrophil Microparticles

    PubMed Central

    Eleftheriou, Despina; Hussain, Abdullah A.K.; Price-Kuehne, Fiona E.; Savage, Caroline O.; Jayne, David; Little, Mark A.; Salama, Alan D.; Klein, Nigel J.; Brogan, Paul A.

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3–ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics. PMID:22052057

  3. Preparation and characterization of safe microparticles based on xylan.

    PubMed

    Cartaxo da Costa Urtiga, Silvana; Aquino Azevedo de Lucena Gabi, Camilla; Rodrigues de Araújo Eleamen, Giovanna; Santos Souza, Bartolomeu; Pessôa, Hilzeth de Luna Freire; Marcelino, Henrique Rodrigues; Afonso de Moura Mendonça, Elisângela; Egito, Eryvaldo Sócrates Tabosa do; Oliveira, Elquio Eleamen

    2017-10-01

    This work describes the preparation and evaluation of safe xylan-based microparticles prepared by cross-linking polymerization using sodium trimetaphosphate. The resulting microparticles were evaluated for morphology, particle size, polymer-cross-link agent interaction, and in vitro toxicity. The microparticles showed narrow monodisperse size distributions with their mean sizes being between 3.5 and 12.5 µm in dried state. FT-IR analyzes confirmed the interaction between sodium trimetaphosphate and xylan during the cross-linking process with formation of phosphate ester bonds. Additionally, the X-ray diffraction patterns and FT-IR analyzes suggested that little or no cross-linking agent remained inside the microparticles. Furthermore, the in-vitro studies using Artemia salina and human erythrocytes revealed that the microparticles are not toxic. Therefore, the overall results suggest that these xylan microparticles can be used as a platform for new drug delivery system.

  4. Mechanically robust microfluidics and bulk wave acoustics to sort microparticles

    NASA Astrophysics Data System (ADS)

    Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.

    2016-04-01

    Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.

  5. Using Ultrasonic Speckle Velocimetry to Detect Fluid Instabilities in a Surfactant Solution

    NASA Astrophysics Data System (ADS)

    Bice, Jason E.

    Rheometry is a leading technology used to define material properties of multi-phase viscoelastic fluid-like materials, such as the shear modulus and viscosity. However, traditional rheometry relies on a mechanical response from a rotating or oscillating rotor of various geometries which does not allow for any spatial or temporal quantification of the material characteristics. Further, the setup operates under the assumption of a uniform and homogeneous flow. Thus, only qualitative deductions can be realized when a complex fluid displays inhomogeneous behavior, such as wall slip or shear banding. Due to this lack of capability, non-intrusive imaging is required to define and quantify behavior that occurs in a complex fluid under shear conditions. This thesis outlines the design, fabrication, and experimental examples of an adapted ultrasonic speckle velocimetry device, which enables spatial and temporal resolution of inhomogeneous fluid behavior using ultrasound acoustics. For the experimental example, a commercial surfactant mixture (hair shampoo) was tested to show the utility and precision that ultrasonic speckle velocimetry possesses.

  6. Video monitoring in the Gadria debris flow catchment: preliminary results of large scale particle image velocimetry (LSPIV)

    NASA Astrophysics Data System (ADS)

    Theule, Joshua; Crema, Stefano; Comiti, Francesco; Cavalli, Marco; Marchi, Lorenzo

    2015-04-01

    Large scale particle image velocimetry (LSPIV) is a technique mostly used in rivers to measure two dimensional velocities from high resolution images at high frame rates. This technique still needs to be thoroughly explored in the field of debris flow studies. The Gadria debris flow monitoring catchment in Val Venosta (Italian Alps) has been equipped with four MOBOTIX M12 video cameras. Two cameras are located in a sediment trap located close to the alluvial fan apex, one looking upstream and the other looking down and more perpendicular to the flow. The third camera is in the next reach upstream from the sediment trap at a closer proximity to the flow. These three cameras are connected to a field shelter equipped with power supply and a server collecting all the monitoring data. The fourth camera is located in an active gully, the camera is activated by a rain gauge when there is one minute of rainfall. Before LSPIV can be used, the highly distorted images need to be corrected and accurate reference points need to be made. We decided to use IMGRAFT (an opensource image georectification toolbox) which can correct distorted images using reference points and camera location, and then finally rectifies the batch of images onto a DEM grid (or the DEM grid onto the image coordinates). With the orthorectified images, we used the freeware Fudaa-LSPIV (developed by EDF, IRSTEA, and DeltaCAD Company) to generate the LSPIV calculations of the flow events. Calculated velocities can easily be checked manually because of the already orthorectified images. During the monitoring program (since 2011) we recorded three debris flow events at the sediment trap area (each with very different surge dynamics). The camera in the gully was in operation in 2014 which managed to record granular flows and rockfalls, which particle tracking may be more appropriate for velocity measurements. The four cameras allows us to explore the limitations of camera distance, angle, frame rate, and image

  7. Fabrication of Protein Microparticles and Microcapsules with Biomolecular Tools

    NASA Astrophysics Data System (ADS)

    Cheung, Kwan Yee; Lai, Kwok Kei; Mak, Wing Cheung

    2018-05-01

    Microparticles have attracted much attention for medical, analytical and biological applications. Calcium carbonate (CaCO3) templating method with the advantages of having narrow size distribution, controlled morphology and good biocompatibility that has been widely used for the synthesis of various protein-based microparticles. Despite CaCO3 template is biocompatible, most of the conventional methods to create stable protein microparticles are mainly driven by chemical crosslink reagents which may induce potential harmful effect and remains undesirable especially for biomedical or clinical applications. In this article, we demonstrate the fabrication of protein microparticles and microcapsules with an innovative method using biomolecular tools such as enzymes and affinity molecules to trigger the assembling of protein molecules within a porous CaCO3 template followed by a template removal step. We demonstrated the enzyme-assisted fabrication of collagen microparticles triggered by transglutaminase, as well as the affinity-assisted fabrication of BSA-biotin avidin microcapsules triggered by biotin-avidin affinity interaction, respectively. Based on the different protein assemble mechanisms, the collagen microparticles appeared as a solid-structured particles, while the BSA-biotin avidin microcapsules appeared as hollow-structured morphology. The fabrication procedures are simple and robust that allows producing protein microparticles or microcapsules under mild conditions at physiological pH and temperature. In addition, the microparticle morphologies, protein compositions and the assemble mechanisms were studied. Our technology provides a facile approach to design and fabricate protein microparticles and microcapsules that are useful in the area of biomaterials, pharmaceuticals and analytical chemistry.

  8. Swellable microparticles as carriers for sustained pulmonary drug delivery.

    PubMed

    El-Sherbiny, Ibrahim M; McGill, Shayna; Smyth, Hugh D C

    2010-05-01

    In this investigation, novel biodegradable physically crosslinked hydrogel microparticles were developed and evaluated in vitro as potential carriers for sustained pulmonary drug delivery. To facilitate sustained release in the lungs, aerosols must first navigate past efficient aerodynamic filtering to penetrate to the deep lung (requires small particle size) where they must then avoid rapid macrophage clearance (enhanced by large particle size). The strategy suggested in this study to solve this problem is to deliver drug-loaded hydrogel microparticles with aerodynamic characteristics allowing them to be respirable when dry but attain large swollen sizes once deposited on moist lung surfaces to reduce macrophage uptake rates. The microparticles are based on PEG graft copolymerized onto chitosan in combination with Pluronic(R) F-108 and were prepared via cryomilling. The synthesized polymers used in preparation of the microparticles were characterized using FTIR, EA, 2D-XRD, and differential scanning calorimetry (DSC). The microparticles size, morphology, moisture content, and biodegradation rates were investigated. Swelling studies and in vitro drug release profiles were determined. An aerosolization study was conducted and macrophage uptake rates were evaluated against controls. The microparticles showed a respirable fraction of approximately 15% when prepared as dry powders. Enzymatic degradation of microparticles started within the first hour and about 7-41% weights were remaining after 240 h. Microparticles showed sustained release up to 10 and 20 days in the presence and absence of lysozyme, respectively. Preliminary macrophage interaction studies indicate that the developed hydrogel microparticles significantly delayed phagocytosis and may have the potential for sustained drug delivery to the lung.

  9. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    PubMed Central

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  10. Volumetric velocimetry for fluid flows

    NASA Astrophysics Data System (ADS)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  11. Formulation and biopharmaceutical evaluation of bitter taste masking microparticles containing azithromycin loaded in dispersible tablets.

    PubMed

    Tung, Nguyen-Thach; Tran, Cao-Son; Nguyen, Tran-Linh; Hoang, Tung; Trinh, Thanh-Dat; Nguyen, Thi-Ngan

    2018-05-01

    The objective of this study was to prepare and evaluate some physiochemical and biopharmaceutical properties of bitter taste masking microparticles containing azithromycin loaded in dispersible tablets. In the first stage of the study, the bitter taste masking microparticles were prepared by solvent evaporation and spray drying method. When compared to the bitter threshold (32.43µg/ml) of azithromycin (AZI), the microparticles using AZI:Eudragit L100=1:4 and having a size distribution of 45-212µm did significantly mask the bitter taste of AZI. Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy ( 1 H NMR) proved that the taste masking of microparticles resulted from the intermolecular interaction of the amine group in AZI and the carbonyl group in Eudragit L100. Differential scanning calorimeter (DSC) analysis was used to display the amorphous state of AZI in microparticles. Images obtaining from optical microscopy and scanning electron microscopy (SEM) indicated the existence of microparticles in regular cube shape with many layers. In the second stage, dispersible tablets containing microparticles (DTs-MP) were prepared by direct compression technique. Stability study was conducted to screen pH modulators for DTs-MP, and a combination of alkali agents (CaCO 3 :NaH 2 PO 4 , 2:1) was added into DTs-MP to create microenvironment pH of 5.0-6.0 for the tablets. The disintegration time of optimum DTs-MP was 53±5.29s and strongly depended on the kinds of lubricant and diluent. The pharmacokinetic study in the rabbit model using liquid chromatography tandem mass spectrometry showed that the mean relative bioavailability (AUC) and mean maximum concentration (C max ) of DTs-MP were improved by 2.19 and 2.02 times, respectively, compared to the reference product (Zithromax®, Pfizer). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preparation of donut-shaped starch microparticles by aqueous-alcoholic treatment.

    PubMed

    Farrag, Yousof; Sabando, Constanza; Rodríguez-Llamazares, Saddys; Bouza, Rebeca; Rojas, Claudio; Barral, Luís

    2018-04-25

    A simple method for producing donut-shaped starch microparticles by adding ethanol to a heated aqueous slurry of corn starch is presented. The obtained microparticles were analysed by SEM, XRD and DSC. The average size of microparticles was 14.1 ± 0.3 μm with holes of an average size of 4.6 ± 0.2 μm. The crystalline arrangement of the microparticles was of a V-type single helix. The change in crystallinity from A-type of the starch granules to a more open structure, where water molecules could penetrate easier within the microparticles, substantially increased their solubility and swelling power. The microparticles exhibited a higher gelatinization temperature and a lower gelatinization enthalpy than did the starch granules. The donut-shaped microparticles were stable for more than 18 months and can be used as a carrier of an active compound or as a filler in bioplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.

    PubMed

    Gelfuso, Guilherme Martins; Gratieri, Taís; Simão, Patrícia Sper; de Freitas, Luís Alexandre Pedro; Lopez, Renata Fonseca Vianna

    2011-01-01

    Given the hypothesis that microparticles can penetrate the skin barrier along the transfollicular route, this work aimed to obtain and characterise chitosan microparticles loaded with minoxidil sulphate (MXS) and to study their ability to sustain the release of the drug, attempting a further application utilising them in a targeted delivery system for the topical treatment of alopecia. Chitosan microparticles, containing different proportions of MXS/polymer, were prepared by spray drying and were characterised by yield, encapsulation efficiency, size and morphology. Microparticles selected for further studies showed high encapsulation efficiency (∼82%), a mean diameter of 3.0 µm and a spherical morphology without porosities. When suspended in an ethanol/water solution, chitosan microparticles underwent instantaneous swelling, increasing their mean diameter by 90%. Release studies revealed that the chitosan microparticles were able to sustain about three times the release rate of MXS. This feature, combined with suitable size, confers to these microparticles the potential to target and improve topical therapy of alopecia with minoxidil.

  14. Stereo particle image velocimetry of nonequilibrium turbulence relaxation in a supersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Lapsa, Andrew P.; Dahm, Werner J. A.

    2011-01-01

    Measurements using stereo particle image velocimetry are presented for a developing turbulent boundary layer in a wind tunnel with a Mach 2.75 free stream. As the boundary layer exits from the tunnel nozzle and moves through the wave-free test section, small initial departures from equilibrium turbulence relax, and the boundary layer develops toward the equilibrium zero-pressure-gradient form. This relaxation process is quantified by comparison of first and second order mean, fluctuation, and gradient statistics to classical inner and outer layer scalings. Simultaneous measurement of all three instantaneous velocity components enables direct assessment of the complete turbulence anisotropy tensor. Profiles of the turbulence Mach number show that, despite the M = 2.75 free stream, the incompressibility relation among spatial gradients in the velocity fluctuations applies. This result is used in constructing various estimates of the measured-dissipation rate, comparisons among which show only remarkably small differences over most of the boundary layer. The resulting measured-dissipation profiles, together with measured profiles of the turbulence kinetic energy and mean-flow gradients, enable an assessment of how the turbulence anisotropy relaxes toward its equilibrium zero-pressure-gradient state. The results suggest that the relaxation of the initially disturbed turbulence anisotropy profile toward its equilibrium zero-pressure-gradient form begins near the upper edge of the boundary layer and propagates downward through the defect layer.

  15. Large-scale tomographic particle image velocimetry using helium-filled soap bubbles

    NASA Astrophysics Data System (ADS)

    Kühn, Matthias; Ehrenfried, Klaus; Bosbach, Johannes; Wagner, Claus

    2011-04-01

    To measure large-scale flow structures in air, a tomographic particle image velocimetry (tomographic PIV) system for measurement volumes of the order of one cubic metre is developed, which employs helium-filled soap bubbles (HFSBs) as tracer particles. The technique has several specific characteristics compared to most conventional tomographic PIV systems, which are usually applied to small measurement volumes. One of them is spot lights on the HFSB tracers, which slightly change their position, when the direction of observation is altered. Further issues are the large particle to voxel ratio and the short focal length of the used camera lenses, which result in a noticeable variation of the magnification factor in volume depth direction. Taking the specific characteristics of the HFSBs into account, the feasibility of our large-scale tomographic PIV system is demonstrated by showing that the calibration errors can be reduced down to 0.1 pixels as required. Further, an accurate and fast implementation of the multiplicative algebraic reconstruction technique, which calculates the weighting coefficients when needed instead of storing them, is discussed. The tomographic PIV system is applied to measure forced convection in a convection cell at a Reynolds number of 530 based on the inlet channel height and the mean inlet velocity. The size of the measurement volume and the interrogation volumes amount to 750 mm × 450 mm × 165 mm and 48 mm × 48 mm × 24 mm, respectively. Validation of the tomographic PIV technique employing HFSBs is further provided by comparing profiles of the mean velocity and of the root mean square velocity fluctuations to respective planar PIV data.

  16. Circulating Mesenchymal Stem Cells Microparticles in Patients with Cerebrovascular Disease

    PubMed Central

    Cho, Yeon Hee; Kang, Ho Young; Hyung, Na Kyum; Kim, Donghee; Lee, Ji Hyun; Nam, Ji Yoon; Bang, Oh Young

    2012-01-01

    Preclinical and clinical studies have shown that the application of CD105+ mesenchymal stem cells (MSCs) is feasible and may lead to recovery after stroke. In addition, circulating microparticles are reportedly functional in various disease conditions. We tested the levels of circulating CD105+ microparticles in patients with acute ischemic stroke. The expression of CD105 (a surface marker of MSCs) and CXCR4 (a CXC chemokine receptor for MSC homing) on circulating microparticles was evaluated by flow cytometry of samples from 111 patients and 50 healthy subjects. The percentage of apoptotic CD105 microparticles was determined based on annexin V (AV) expression. The relationship between serum levels of CD105+/AV− microparticles, stromal cells derived factor-1α (SDF-1α), and the extensiveness of cerebral infarcts was also evaluated. CD105+/AV− microparticles were higher in stroke patients than control subjects. Correlation analysis showed that the levels of CD105+/AV− microparticles increased as the baseline stroke severity increased. Multivariate testing showed that the initial severity of stroke was independently associated with circulating CD105+/AV− microparticles (OR, 1.103 for 1 point increase in the NIHSS score on admission; 95% CI, 1.032–1.178) after adjusting for other variables. The levels of CD105+/CXCR4+/AV− microparticles were also increased in patients with severe disability (r = 0.192, p = 0.046 for NIHSS score on admission), but were decreased with time after stroke onset (r = −0.204, p = 0.036). Risk factor profiles were not associated with the levels of circulating microparticles or SDF-1α. In conclusion, our data showed that stroke triggers the mobilization of MSC-derived microparticles, especially in patients with extensive ischemic stroke. PMID:22615882

  17. Topical hydrogel matrix loaded with Simvastatin microparticles for enhanced wound healing activity.

    PubMed

    Yasasvini, S; Anusa, R S; VedhaHari, B N; Prabhu, P C; RamyaDevi, D

    2017-03-01

    A prolonged release drug delivery system was developed by loading Simvastatin-chitosan microparticles into poly vinyl alcohol (PVA) hydrogels for enhanced wound healing efficiency. The microparticles prepared by ionic gelation method with varying composition of chitosan and surfactants (Tween 80/Pluronic F-127) were optimized for entrapment efficiency, morphology and drug-polymer interactions. Microparticles prepared with 0.3% between 80 and 0.5:5 chitosan: drug ratio showed maximum entrapment efficiency of 82% with spherical morphology and mild interaction between drug and chitosan. 5% PVA solutions loaded with pure drug and drug loaded microparticles at three different doses (2.5mg, 5mg and 10mg equivalent of drug) were chemically cross linked using gluteraldehyde and HCl. The formulated hydrogels were optimized for swelling, in vitro release behavior and in vivo wound healing effect. Hydrogels containing 2.5mg equivalent dose of Simvastatin microparticles exhibited maximum cumulative percentage drug release of 92% (n=3) at the end of 7days. The in vitro drug release data was supported by the higher swelling index of the low dose hydrogels. The in vivo wound healing study was performed using Wistar rats (n=30, 5 groups with 6 animals in each group) for the formulated hydrogels (at 3 doses) and compared with the untreated animals and the positive control group treated with conventional topical Simvastatin ointment (1%). The wound healing effect was comparable to the in vitro results, wherein the animals treated with low dose hydrogels (replaced every 7days) exhibited considerable reduction in the wound area compared to medium and high dose hydrogels. Statistically significant difference (P<0.05) was observed in the wound area of the animals treated with low dose hydrogels compared to 1% ointment and untreated animals, as estimated by two-way ANOVA. The histopathology images of the different groups of animals also displayed the comparative changes in the wound

  18. Vortex ring formation at the open end of a shock tube: A particle image velocimetry study

    NASA Astrophysics Data System (ADS)

    Arakeri, J. H.; Das, D.; Krothapalli, A.; Lourenco, L.

    2004-04-01

    The vortex ring generated subsequent to the diffraction of a shock wave from the open end of a shock tube is studied using particle image velocimetry. We examine the early evolution of the compressible vortex ring for three-exit shock Mach numbers, 1.1, 1.2, and 1.3. For the three cases studied, the ring formation is complete at about tUb/D=2, where t is time, Ub is fluid velocity behind shock as it exits the tube and D is tube diameter. Unlike in the case of piston generated incompressible vortex rings where the piston velocity variation with time is usually trapezoidal, in the shock-generated vortex ring case the exit fluid velocity doubles from its initial value Ub before it slowly decays to zero. At the end of the ring formation, its translation speed is observed to be about 0.7 Ub. During initial formation and propagation, a jet-like flow exists behind the vortex ring. The vortex ring detachment from the tailing jet, commonly referred to as pinch-off, is briefly discussed.

  19. A depth-of-field limited particle image velocimetry technique applied to oscillatory boundary layer flow over a porous bed

    NASA Astrophysics Data System (ADS)

    Lara, J. L.; Cowen, E. A.; Sou, I. M.

    2002-06-01

    Boundary layer flows are ubiquitous in the environment, but their study is often complicated by their thinness, geometric irregularity and boundary porosity. In this paper, we present an approach to making laboratory-based particle image velocimetry (PIV) measurements in these complex flow environments. Clear polycarbonate spheres were used to model a porous and rough bed. The strong curvature of the spheres results in a diffuse volume illuminated region instead of the more traditional finite and thin light sheet illuminated region, resulting in the imaging of both in-focus and significantly out-of-focus particles. Results of a traditional cross-correlation-based PIV-type analysis of these images demonstrate that the mean and turbulent features of an oscillatory boundary layer driven by a free-surface wave over an irregular-shaped porous bed can be robustly measured. Measurements of the mean flow, turbulent intensities, viscous and turbulent stresses are presented and discussed. Velocity spectra have been calculated showing an inertial subrange confirming that the PIV analysis is sufficiently robust to extract turbulence. The presented technique is particularly well suited for the study of highly dynamic free-surface flows that prevent the delivery of the light sheet from above the bed, such as swash flows.

  20. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Jolley, Scott T. (Inventor); Buhrow, Jerry W. (Inventor); Li, Wenyan (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  1. Deriving a blood-mimicking fluid for particle image velocimetry in Sylgard-184 vascular models.

    PubMed

    Yousif, Majid Y; Holdsworth, David W; Poepping, Tamie L

    2009-01-01

    A new blood-mimicking fluid (BMF) has been developed for particle image velocimetry (PIV), which enables flow studies in vascular models (phantoms). A major difficulty in PIV that affects measurement accuracy is the refraction and distortion of light passing through the interface between the model and the fluid, due to the difference in refractive index (n) between the two materials. The problem can be eliminated by using a fluid with a refractive index matching that of the model. Such fluids are not commonly available, especially for vascular research where the fluid should also have a viscosity similar to human blood. In this work, a blood-mimicking fluid, composed of water (47.38% by weight), glycerol (36.94% by weight) and sodium iodide salt (15.68% by weight), was developed for compatibility with our silicone (Sylgard 184; n = 1.414) phantoms. The fluid exhibits a dynamic viscosity of 4.31+/-0.03 cP which lies within the range of human blood viscosity (4.4+/-0.6 cP). Both refractive index and viscosity were attained at 22.2+/-0.2 degrees C, which is a feasible room temperature, thus eliminating the need for a temperature-control system. The fluid will be used to study hemodynamics in vascular flow models fabricated from Sylgard 184.

  2. Spatial-temporal and modal analysis of propeller induced ground vortices by particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L. L. M.; Eitelberg, G.

    2016-10-01

    During the ground operation of aircraft, there is potentially a system of vortices generated from the ground toward the propulsor, commonly denoted as ground vortices. Although extensive research has been conducted on ground vortices induced by turbofans which were simplified by suction tubes, these studies cannot well capture the properties of ground vortices induced by propellers, e.g., the flow phenomena due to intermittent characteristics of blade passing and the presence of slipstream of the propeller. Therefore, the investigation of ground vortices induced by a propeller is performed to improve understanding of these phenomena. The distributions of velocities in two different planes containing the vortices were measured by high frequency Particle Image Velocimetry. These planes are a wall-parallel plane in close proximity to the ground and a wall-normal plane upstream of the propeller. The instantaneous flow fields feature highly unsteady flow in both of these two planes. The spectral analysis is conducted in these two flow fields and the energetic frequencies are quantified. The flow fields are further evaluated by applying the Proper Orthogonal Decomposition analysis to capture the coherent flow structures. Consistent flow structures with strong contributions to the turbulent kinetic energy are noticed in the two planes.

  3. Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: feasibility of MR imaging monitoring in mice.

    PubMed

    Al Faraj, Achraf; Gazeau, Florence; Wilhelm, Claire; Devue, Cécile; Guérin, Coralie L; Péchoux, Christine; Paradis, Valérie; Clément, Olivier; Boulanger, Chantal M; Rautou, Pierre-Emmanuel

    2012-04-01

    To assess the feasibility of loading iron oxide nanoparticles in endothelial microparticles (EMPs), thereby enabling their noninvasive monitoring with magnetic resonance (MR) imaging in mice. Experiments were approved by the French Ministry of Agriculture. Endothelial cells, first labeled with anionic superparamagnetic nanoparticles, were stimulated to generate EMPs, carrying the nanoparticles in their inner compartment. C57BL/6 mice received an intravenous injection of nanoparticle-loaded EMPs, free nanoparticles, or the supernatant of nanoparticle-loaded EMPs. A 1-week follow-up was performed with a 4.7-T MR imaging device by using a gradient-echo sequence for imaging spleen, liver, and kidney and a radial very-short-echo time sequence for lung imaging. Comparisons were performed by using the Student t test. The signal intensity loss induced by nanoparticle-loaded EMPs or free nanoparticles was readily detected within 5 minutes after injection in the liver and spleen, with a more pronounced effect in the spleen for the magnetic EMPs. The kinetics of signal intensity attenuation differed for nanoparticle-loaded EMPs and free nanoparticles. No signal intensity changes were observed in mice injected with the supernatant of nanoparticle-loaded EMPs, confirming that cells had not released free nanoparticles, but only in association with EMPs. The results were confirmed by using Perls staining and immunofluorescence analysis. The strategy to generate EMPs with magnetic properties allowed noninvasive MR imaging assessment and follow-up of EMPs and opens perspectives for imaging the implications of these cellular vectors in diseases. © RSNA, 2012.

  4. The influence of mannitol on morphology and disintegration of spray-dried nano-embedded microparticles.

    PubMed

    Torge, Afra; Grützmacher, Philipp; Mücklich, Frank; Schneider, Marc

    2017-06-15

    Nano-embedded microparticles represent a promising approach to deliver nanoparticles to the lungs. Microparticles with an appropriate aerodynamic diameter enable an application by dry powder inhaler and the transport of nanoparticles into the airways. By disintegration after deposition, nanoparticles can be released to exhibit their advantages such as a sustained drug release and delivery of the drug across the mucus barrier. The use of an appropriate matrix excipient to embed the nanoparticles is essential for the necessary disintegration and release of nanoparticles. In this context we investigated the influence of mannitol on the morphology, aerodynamic properties and disintegration behavior of nano-embedded microparticles. PLGA nanoparticles and mannitol were spray dried each as sole component and in combination in three different ratios. An influence of the mannitol content on the morphology was observed. Pure mannitol microparticles were solid and spherical, while the addition of nanoparticles resulted in raisin-shaped hollow particles. The different morphologies can be explained by diffusion processes of the compounds described by the Péclet-number. All powders showed suitable aerodynamic properties. By dispersion of the powders in simulated lung fluid, initial nanoparticle sizes could be recovered for samples containing mannitol. The fraction of redispersed nanoparticles was increased with increasing mannitol content. To evaluate the disintegration under conditions with higher comparability to the in vivo situation, spray-dried powders were exposed to >90% relative humidity. The disintegration behavior was monitored by analyzing roughness values by white light interferometry and supporting SEM imaging. The exposure to high relative humidity was shown to be sufficient for disintegration of the microparticles containing mannitol, releasing morphologically unchanged nanoparticles. With increasing mannitol content, the disintegration occurred faster and to a

  5. Electrospray Charging of Minerals: Surface Chemistry and Applications to High-Velocity Microparticle Impacts

    NASA Astrophysics Data System (ADS)

    Daly, T.; Call, S.; Austin, D. E.

    2010-12-01

    Electrospray is a soft ionization technique commonly used to charge large biomolecules; it has, however, also been applied to inorganic compounds. We are extending this technique to mineral microparticles. Electrospray-charged mineral microparticles are interesting in the context of surface science because surface chemistry dictates where and how charge carriers can bond to mineral surfaces. In addition, using electrospray to charge mineral particles allows these particles to be electrostatically accelerated as projectiles in high- and hyper-velocity impacts. Since current techniques for producing high- and hyper-velocity microparticle impacts are largely limited to metal or metal-coated projectiles, using minerals as projectiles is a significant innovation. Electrospray involves three steps: creation of charged droplets containing solute/particles, evaporation and bifurcation of droplets, and desolvation of the solute/particles. An acidified solution is slowly pumped through a needle in a strong DC field, which causes the solution to break into tiny, charged droplets laden with protons. Solvent evaporates from the electrosprayed droplets as they move through the electric field toward a grounded plate, causing the charge on the droplet to increase relative to its mass. When the electrosprayed droplet’s charge becomes such that the droplet is no longer stable, it bifurcates, and each of the resulting droplets carries some of the original droplet’s charge. Evaporation and bifurcation continues until the solute particle is completely desolvated. The result is a protonated solute molecule or particle. We built an instrument that electrosprays particles into vacuum and measures them using an image charge detector. Mineral microparticles were prepared by grinding natural mineral samples to ~2 µm diameter. These microparticles are then added to a 4:1 methanol:water solution to create a 0.005% w/v suspension. The suspension is electrosprayed into vacuum, where the

  6. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles.

    PubMed

    Tang, Ke; Zhang, Yi; Zhang, Huafeng; Xu, Pingwei; Liu, Jing; Ma, Jingwei; Lv, Meng; Li, Dapeng; Katirai, Foad; Shen, Guan-Xin; Zhang, Guimei; Feng, Zuo-Hua; Ye, Duyun; Huang, Bo

    2012-01-01

    Cellular microparticles are vesicular plasma membrane fragments with a diameter of 100-1,000 nanometres that are shed by cells in response to various physiological and artificial stimuli. Here we demonstrate that tumour cell-derived microparticles can be used as vectors to deliver chemotherapeutic drugs. We show that tumour cells incubated with chemotherapeutic drugs package these drugs into microparticles, which can be collected and used to effectively kill tumour cells in murine tumour models without typical side effects. We describe several mechanisms involved in this process, including uptake of drug-containing microparticles by tumour cells, synthesis of additional drug-packaging microparticles by these cells that contribute to the cytotoxic effect and the inhibition of drug efflux from tumour cells. This study highlights a novel drug delivery strategy with potential clinical application.

  7. CIRCULATING MICROPARTICLES IN PATIENTS WITH ANTIPHOSPHOLIPID ANTIBODIES: CHARACTERIZATION AND ASSOCIATIONS

    PubMed Central

    Chaturvedi, Shruti; Cockrell, Erin; Espinola, Ricardo; Hsi, Linda; Fulton, Stacey; Khan, Mohammad; Li, Liang; Fonseca, Fabio; Kundu, Suman; McCrae, Keith R.

    2014-01-01

    The antiphospholipid syndrome is characterized by venous or arterial thrombosis and/or recurrent fetal loss in the presence of circulating antiphospholipid antibodies. These antibodies cause activation of endothelial and other cell types leading to the release of microparticles with procoagulant and pro-inflammatory properties. The aims of this study were to characterize the levels of endothelial cell, monocyte, platelet derived, and tissue factor-bearing microparticles in patients with antiphospholipid antibodies, to determine the association of circulating microparticles with anticardiolipin and anti-β2-glycoprotein antibodies, and to define the cellular origin of microparticles that express tissue factor. Microparticle content within citrated blood from 47 patients with antiphospholipid antibodies and 144 healthy controls was analyzed within 2 hours of venipuncture. Levels of Annexin-V, CD105 and CD144 (endothelial derived), CD41 (platelet derived) and tissue factor positive microparticles were significantly higher in patients than controls. Though levels of CD14 (monocyte-derived) microparticles in patient plasma were not significantly increased, increased levels of CD14 and tissue factor positive microparticles were observed in patients. Levels of microparticles that stained for CD105 and CD144 showed a positive correlation with IgG (R = 0.60, p=0.006) and IgM anti-beta2-glycoprotein I antibodies (R=0.58, p=0.006). The elevation of endothelial and platelet derived microparticles in patients with APS and their correlation with anti-β2-glycoprotein I antibodies suggests a chronic state of vascular cell activation in these individuals and an important role for β2-glycoprotein I in development of the pro-thrombotic state associated with antiphospholipid antibodies. PMID:25467081

  8. Characterization of nitric oxide-releasing microparticles for the mucosal delivery.

    PubMed

    Yoo, Jin-Wook; Lee, Jae-Suk; Lee, Chi H

    2010-03-15

    For the treatment of female sexual arousal disorder (FSAD), we developed microparticles made of PLGA containing nitric oxide (NO) donor (DETA NONOate) to efficiently deliver NO to vaginal mucosa. The NO-releasing microparticles were prepared by various emulsion methods. SEM and DSC studies were performed to examine the microparticles. The release studies were conducted under various conditions to optimize the loading dose in the microparticles. NO diffusivity through vaginal epithelial cells was evaluated and pharmacological activity of NO-releasing microparticles was examined by assessment of intracellular cGMP level in vaginal cells. Through the modified double emulsion solvent evaporation method (w/o/w(a)), the acid labile DETA NONOate was stabilized during the fabrication process and homogenous morphology and high entrapment efficiency were achieved. DETA NONOate was protected under the acidic conditions of the vagina and NO was released from the microparticles in a controlled manner. A significant amount of NO produced from DETA NONOate penetrated through the vaginal epithelial cells. The intracellular cGMP level increased with the treatment of NO-releasing microparticles in vaginal cells. These findings suggest that NO-releasing microparticles could improve the vaginal blood perfusion and open up the possibilities of novel treatment of FSAD. (c) 2009 Wiley Periodicals, Inc.

  9. Preparation and evaluation of posaconazole-loaded enteric microparticles in rats.

    PubMed

    Yang, Min; Dong, Zhonghua; Zhang, Yongchun; Zhang, Fang; Wang, Yongjie; Zhao, Zhongxi

    2017-04-01

    Posaconazole (POS) is an antifungal compound which has a low oral bioavailability. The aim of this study was to prepare POS enteric microparticles to enhance its oral bioavailability. POS enteric microparticles were prepared with hypromellose acetate succinate (HPMCAS) via the spray drying method. The solvent mixtures of acetone and ethanol used in the preparation of the microparticles were optimized to produce the ideal POS enteric microparticles. Multivariate data analysis using a principal component analysis (PCA) was used to find the relationship among the HPMCAS molecular characteristics, particle properties and drug release kinetics from the spray dried microparticles. The optimal spray solvent mixtures were critical to produce the POS microparticles with the defined polymer entanglement index, drug surface enrichment, particle size and drug loading. The HPMCAS molecular characteristics affected the microscopic connectivity and diffusivity of polymer matrix and eventually influenced the drug release behavior, and enhanced the bioavailability of POS. These studies suggested that the selection of suitable solvent mixtures of acetone and ethanol used in the spray drying of the microparticles was quite important to produce the entangled polymer structures with preferred polymer molecular properties of polymer coiling, overlap concentration and entanglement index. Additional studies on particle size and surface drug enrichment eventually produced HPMCAS-based enteric microparticles to enhance the oral bioavailability of POS.

  10. Improving the performance of transglutaminase-crosslinked microparticles for enteric delivery.

    PubMed

    Tello, Fernando; Prata, Ana S; Rodrigues, Rodney A F; Sartoratto, Adilson; Grosso, Carlos R F

    2016-10-01

    Various agents for cross-linking have been investigated for stabilizing and controlling the barrier properties of microparticles for enteric applications. Transglutaminase, in addition to being commercially available for human consumption, presents inferior cross-linking action compared to glutaraldehyde. In this study, the intensity of this enzymatic cross-linking was investigated in microparticles obtained by complex coacervation between gelatin and gum Arabic. The effectiveness of cross-linking in these microparticles was evaluated based on swelling, release of a model substance (parika oleoresin: colored and hydrophobic) and gastrointestinal assays. The cross-linked microparticles remained intact under gastric conditions, whereas the uncross-linked microparticles have been dissolved. However, all of the microparticles have been dissolved under intestinal conditions. The amount of oily core that was released decreased as the amount of transglutaminase increased. For the most efficient microparticles (50U/g of protein), the performance was improved by increasing the pH of cross-linking from 4.0 to 6.0, resulting in a release of 17.1% rather than 32.3% of the core material. These results were considerably closer to the 10.3% of core material released by glutaraldehyde-cross-linked microparticles (1mM/g of protein). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Dynamic release and clearance of circulating microparticles during cardiac stress.

    PubMed

    Augustine, Daniel; Ayers, Lisa V; Lima, Eduardo; Newton, Laura; Lewandowski, Adam J; Davis, Esther F; Ferry, Berne; Leeson, Paul

    2014-01-03

    Microparticles are cell-derived membrane vesicles, relevant to a range of biological responses and known to be elevated in cardiovascular disease. To investigate microparticle release during cardiac stress and how this response differs in those with vascular disease. We measured a comprehensive panel of circulating cell-derived microparticles by a standardized flow cytometric protocol in 119 patients referred for stress echocardiography. Procoagulant, platelet, erythrocyte, and endothelial but not leukocyte, granulocyte, or monocyte-derived microparticles were elevated immediately after a standardized dobutamine stress echocardiogram and decreased after 1 hour. Twenty-five patients developed stress-induced wall motion abnormalities suggestive of myocardial ischemia. They had similar baseline microparticle levels to those who did not develop ischemia, but, interestingly, their microparticle levels did not change during stress. Furthermore, no stress-induced increase was observed in those without inducible ischemia but with a history of vascular disease. Fourteen patients subsequently underwent coronary angiography. A microparticle rise during stress echocardiography had occurred only in those with normal coronary arteries. Procoagulant, platelet, erythrocyte, and endothelial microparticles are released during cardiac stress and then clear from the circulation during the next hour. This stress-induced rise seems to be a normal physiological response that is diminished in those with vascular disease.

  12. Immunogenicity and Protection of Oral Influenza Vaccines Formulated into Microparticles

    PubMed Central

    SHASTRI, PRATHAP NAGARAJA; KIM, MIN-CHUL; QUAN, FU-SHI; D’SOUZA, MARTIN J.; KANG, SANG-MOO

    2017-01-01

    Influenza is a deadly disease affecting humans and animals. It is recommended that every individual should be vaccinated annually against influenza. Considering the frequency of administration of this vaccine, we have explored the oral route of vaccination with a microparticulate formulation. Microparticles containing inactivated influenza A/PR/34/8 H1N1 virus with Eudragit S and trehalose as a matrix were prepared using the Buchi spray dryer. Particle size distribution of microparticles was measured and the bioactivity of vaccine in a microparticle form was analyzed using a hemagglutination activity test. Furthermore, the efficacy of microparticle vaccines was evaluated in vivo in Balb/c mice. Analysis of serum samples showed that microparticles resulted in enhanced antigen-specific immunoglobulin G (IgG), IgG1, and IgG2a antibodies. Upon challenge with homologous and heterologous influenza viruses, microparticle vaccines showed significantly increased levels of protection. Use of microparticles to deliver vaccines could be a promising tool for the development of an oral influenza vaccine. PMID:22711602

  13. Circulating microparticles from obstructive sleep apnea syndrome patients induce endothelin-mediated angiogenesis.

    PubMed

    Tual-Chalot, Simon; Gagnadoux, Frédéric; Trzepizur, Wojciech; Priou, Pascaline; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2014-02-01

    Microparticles are deemed true biomarkers and vectors of biological information between cells. Depending on their origin, the composition of microparticles varies and the subsequent message transported by them, such as proteins, mRNA, or miRNA, can differ. In obstructive sleep apnea syndrome (OSAS), circulating microparticles are associated with endothelial dysfunction by reducing endothelial-derived nitric oxide production. Here, we have analyzed the potential role of circulating microparticles from OSAS patients on the regulation of angiogenesis and the involved pathway. VEGF content carried by circulating microparticles from OSAS patients was increased when compared with microparticles from non-OSAS patients. Circulating microparticles from OSAS patients induced an increase of angiogenesis that was abolished in the presence of the antagonist of endothelin-1 receptor type B. In addition, endothelin-1 secretion was increased in human endothelial cells treated by OSAS microparticles. We highlight that circulating microparticles from OSAS patients can modify the secretome of endothelial cells leading to angiogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis.

    PubMed

    Fornell, Anna; Nilsson, Johan; Jonsson, Linus; Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N; Tenje, Maria

    2015-10-20

    In this paper, we utilize bulk acoustic waves to control the position of microparticles inside droplets in two-phase microfluidic systems and demonstrate a method to enrich the microparticles. In droplet microfluidics, different unit operations are combined and integrated on-chip to miniaturize complex biochemical assays. We present a droplet unit operation capable of controlling the position of microparticles during a trident shaped droplet split. An acoustic standing wave field is generated in the microchannel, and the acoustic forces direct the encapsulated microparticles to the center of the droplets. The method is generic, requires no labeling of the microparticles, and is operated in a noncontact fashion. It was possible to achieve 2+-fold enrichment of polystyrene beads (5 μm in diameter) in the center daughter droplet with an average recovery of 89% of the beads. Red blood cells were also successfully manipulated inside droplets. These results show the possibility to use acoustophoresis in two-phase systems to enrich microparticles and open up the possibility for new droplet-based assays that are not performed today.

  15. Demonstration of Clean Particle Seeding for Particle Image Velocimetry in a Closed Circuit Supersonic Wind Tunnel

    DTIC Science & Technology

    2007-03-01

    plane in space. Many such lasers are used for PIV, including: Copper vapor, Argon ion, Helium-Neon, Yttrium Aluminum Garnet (YAG) and Neodymium doped ...velocimetry to measure the velocities of nanoparticles in nanofluids .” Optics Express. Vol 14, No 17: 7559-7566 (2006) 15. Poggie, J., Erbland, P.J., Smits

  16. Reconfigurable engineered motile semiconductor microparticles.

    PubMed

    Ohiri, Ugonna; Shields, C Wyatt; Han, Koohee; Tyler, Talmage; Velev, Orlin D; Jokerst, Nan

    2018-05-03

    Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.

  17. Morphological evolution of various fungal species in the presence and absence of aluminum oxide microparticles: Comparative and quantitative insights into microparticle-enhanced cultivation (MPEC).

    PubMed

    Kowalska, Anna; Boruta, Tomasz; Bizukojć, Marcin

    2018-03-05

    The application of microparticle-enhanced cultivation (MPEC) is an attractive method to control mycelial morphology, and thus enhance the production of metabolites and enzymes in the submerged cultivations of filamentous fungi. Unfortunately, most literature data deals with the spore-agglomerating species like aspergilli. Therefore, the detailed quantitative study of the morphological evolution of four different fungal species (Aspergillus terreus, Penicillium rubens, Chaetomium globosum, and Mucor racemosus) based on the digital analysis of microscopic images was presented in this paper. In accordance with the current knowledge, these species exhibit different mechanisms of agglomerates formation. The standard submerged shake flask cultivations (as a reference) and MPEC involving 10 μm aluminum oxide microparticles (6 g·L -1 ) were performed. The morphological parameters, including mean projected area, elongation, roughness, and morphology number were determined for the mycelial objects within the first 24 hr of growth. It occurred that heretofore observed and widely discussed effect of microparticles on fungi, namely the decrease in pellet size, was not observed for the species whose pellet formation mechanism is different from spore agglomeration. In the MPEC, C. globosum developed core-shell pellets, and M. racemosus, a nonagglomerative species, formed the relatively larger, compared to standard cultures, pellets with distinct cores. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Protease-functionalized mucus penetrating microparticles: In-vivo evidence for their potential.

    PubMed

    Mahmood, Arshad; Laffleur, Flavia; Leonaviciute, Gintare; Bernkop-Schnürch, Andreas

    2017-10-30

    The focus of the current study was to explore whether immobilization of proteases to microparticles could result in their enhanced penetration into mucus. The proteases papain (PAP) and bromelain (BROM) were covalently attached to a polyacrylate (PAA; Carbopol 971P) via amide bond formation based on carbodiimide reaction. Microparticles containing these conjugates were generated via ionic gelation with calcium chloride and were characterized regarding size, surface charge, enzymatic activity and fluorescein diacetate (FDA) loading efficiency. Furthermore, mucus penetration potential of these microparticles was evaluated in-vitro on freshly collected porcine intestinal mucus, on intact intestinal mucosa and in-vivo in Sprague-Dawley rats. Results showed mean diameter of microparticles ranging between 2-3μm and surface charge between -8 to -18mV. The addition of PAA-microparticles to porcine intestinal mucus led to a 1.39-fold increase in dynamic viscosity whereas a 3.10- and 2.12-fold decrease was observed in case of PAA-PAP and PAA-BROM microparticles, respectively. Mucus penetration studies showed a 4.27- and 2.21- fold higher permeation of FDA loaded PAA-PAP and PAA-BROM microparticles as compared to PAA microparticles, respectively. Extent of mucus diffusion determined via silicon tube assay illustrated 3.96- fold higher penetration for PAA-PAP microparticles and 1.99- fold for PAA-BROM microparticles. An in-vitro analysis on porcine intestinal mucosa described up to 16- and 7.35-fold higher degree of retention and furthermore, during in-vivo evaluation in Sprague-Dawley rats a 3.35- and 2.07-fold higher penetration behavior was observed in small intestine for PAA-PAP and PAA-BROM microparticles as compared to PAA microparticles, respectively. According to these results, evidence for microparticles decorated with proteases in order to overcome the mucus barrier and to reach the absorption lining has been provided that offers wide ranging applications in mucosal

  19. A three-dimensional strain measurement method in elastic transparent materials using tomographic particle image velocimetry

    PubMed Central

    Suzuki, Sara; Aoyama, Yusuke; Umezu, Mitsuo

    2017-01-01

    Background The mechanical interaction between blood vessels and medical devices can induce strains in these vessels. Measuring and understanding these strains is necessary to identify the causes of vascular complications. This study develops a method to measure the three-dimensional (3D) distribution of strain using tomographic particle image velocimetry (Tomo-PIV) and compares the measurement accuracy with the gauge strain in tensile tests. Methods and findings The test system for measuring 3D strain distribution consists of two cameras, a laser, a universal testing machine, an acrylic chamber with a glycerol water solution for adjusting the refractive index with the silicone, and dumbbell-shaped specimens mixed with fluorescent tracer particles. 3D images of the particles were reconstructed from 2D images using a multiplicative algebraic reconstruction technique (MART) and motion tracking enhancement. Distributions of the 3D displacements were calculated using a digital volume correlation. To evaluate the accuracy of the measurement method in terms of particle density and interrogation voxel size, the gauge strain and one of the two cameras for Tomo-PIV were used as a video-extensometer in the tensile test. The results show that the optimal particle density and interrogation voxel size are 0.014 particles per pixel and 40 × 40 × 40 voxels with a 75% overlap. The maximum measurement error was maintained at less than 2.5% in the 4-mm-wide region of the specimen. Conclusions We successfully developed a method to experimentally measure 3D strain distribution in an elastic silicone material using Tomo-PIV and fluorescent particles. To the best of our knowledge, this is the first report that applies Tomo-PIV to investigate 3D strain measurements in elastic materials with large deformation and validates the measurement accuracy. PMID:28910397

  20. Injectable chitosan microparticles incorporating bone morphogenetic protein-7 for bone tissue regeneration

    PubMed Central

    Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.

    2014-01-01

    This study investigates the influence of the controlled release of bone morphogenetic protein 7 (BMP-7) from cross-linked chitosan microparticles on pre-osteoblasts (OB-6) in vitro. BMP-7 was incorporated into microparticles by encapsulation during the particle preparation and coating after particle preparation. Chitosan microparticles had an average diameter of 700 μm containing ~100 ng of BMP-7. The release study profile indicates that nearly 98% of the BMP-7 coated on the microparticles was released in a period of 18 days while only 36% of the BMP-7 encapsulated in the microparticles was released in the same time period. Cell attachment study indicated that the BMP-7 coated microparticles have many cells adhered on the microparticles in comparison with microparticles without growth factors on day 10. DNA assay indicated a statistical significant increase (p<0.05) in the amount of DNA obtained from BMP-7 encapsulated and coated microparticles in comparison with microparticles without any growth factors. A real time RT-PCR experiment was performed to determine the expression of a few osteoblast specific genes - Dlx5, runx2, osterix, osteopontin, osteocalcin, and bone sialoprotein. The results thus suggest that chitosan microparticles obtained by coacervation method are biocompatible and helps in improving the encapsulation efficiency of BMP-7. Also BMP-7 incorporated in the microparticles is being released in a controlled fashion to support attachment, proliferation and differentiation of pre-osteoblasts, thus acting as a good scaffold for bone tissue regeneration. PMID:24497318

  1. Preparation and Characterization of Doripenem-Loaded Microparticles for Pulmonary Delivery.

    PubMed

    Yildiz-Peköz, Ayca; Akbal, Ozlem; Tekarslan, S Hande; Sagirli, A Olcay; Mulazimoglu, Lütfiye; Morina, Deniz; Cevher, Erdal

    2018-06-07

    Pneumonia is a bacterial lower respiratory tract infection that has a high morbidity rate. The gram-negative pathogen Pseudomonas aeruginosa is a significant cause of nosocomial infections and ventilator-associated pneumonias and is mainly treated by carbapenems. Doripenem is a carbapenem drug, which has a broad-spectrum antibacterial activity. The aim of this study was to develop doripenem-loaded chitosan microparticles for pulmonary administration to provide more efficient treatment for pneumonia. Ionotropic gelation and the spray-drying method were used to obtain doripenem-loaded chitosan microparticles with different lactose, trehalose, and L-leucine concentrations. Physicochemical characteristics, in vitro drug release properties, and aerodynamics properties were investigated and in vitro antimicrobial susceptibility tests of the formulations were performed. Assessment of aerodynamic properties of the powders, including Mass Median Aerodynamic Diameter, size distribution, and fine particle fraction (FPF), were performed using a Next Generation Impactor. Cytotoxicity of the fabricated microparticles was assessed using the Calu-3 cell airway epithelial cell line. Optimum microparticles were produced using a combination of ionotropic gelation and spray-drying methods. Spray-dried microparticle production yield was relatively high (74.03% ± 3.88% to 98.23% ± 1.70%). Lactose, trehalose, and L-leucine were added to the formulation to prevent aggregation produced by the ionotropic gelation spray-drying method. Each formulation's encapsulation efficiency was above 78.98% ± 2.37%. The doripenem-loaded microparticle mean diameter ranged from 3.8 ± 0.110 to 6.9 ± 0.090 μm. Microparticles with 20% (w/w) L-leucine had the highest FPF ratio indicating the best aerosolization properties of the formulations. The efficacy of the formulations as an antibacterial agent was increased by forming doripenem-loaded microparticles compared to blank

  2. High-Definition Optical Velocimetry: A New Diagnostic Paradigm for Nuclear Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daykin, E; Diaz, A; Gallegos, C

    This slide-show describes work done to address the challenge of high-definition optical velocimetry with hundred(s) of high-fidelity velocity vs. time measurements. After a review of the historical context and a general technical description of how optical velocimetry, particularly photonic Doppler velocimetry, works, the innovation of multiplexed photonic Doppler velocimetry (MPDV) is described as implemented with commercially available telecom products and dense wavelength division multiplexing (DWDM). High amplification of small signals allows for laser-safe operations. The authors have evaluated and leveraged telecom components– optical amplifiers, wavelength multiplexers, and seed lasers–to provide an economical, compact and rugged approach to system architecture. Fouriermore » transform data analysis is seen to be robust and capable of discriminating simultaneous data traces recorded onto a single digitizer channel. The authors successfully fielded demonstration MPDV system on shock driven experiments.« less

  3. Platelet and not erythrocyte microparticles are procoagulant in transfused thalassaemia major patients.

    PubMed

    Agouti, Imane; Cointe, Sylvie; Robert, Stéphane; Judicone, Coralie; Loundou, Anderson; Driss, Fathi; Brisson, Alain; Steschenko, Dominique; Rose, Christian; Pondarré, Corinne; Bernit, Emmanuelle; Badens, Catherine; Dignat-George, Françoise; Lacroix, Romaric; Thuret, Isabelle

    2015-11-01

    The level of circulating platelet-, erythrocyte-, leucocyte- and endothelial-derived microparticles detected by high-sensitivity flow cytometry was investigated in 37 β-thalassaemia major patients receiving a regular transfusion regimen. The phospholipid procoagulant potential of the circulating microparticles and the microparticle-dependent tissue factor activity were evaluated. A high level of circulating erythrocyte- and platelet-microparticles was found. In contrast, the number of endothelial microparticles was within the normal range. Platelet microparticles were significantly higher in splenectomized than in non-splenectomized patients, independent of platelet count (P < 0·001). Multivariate analysis indicated that phospholipid-dependent procoagulant activity was influenced by both splenectomy (P = 0·001) and platelet microparticle level (P < 0·001). Erythrocyte microparticles were not related to splenectomy, appear to be devoid of proper procoagulant activity and no relationship between their production and haemolysis, dyserythropoiesis or oxidative stress markers could be established. Intra-microparticle labelling with anti-HbF antibodies showed that they originate only partially (median of 28%) from thalassaemic erythropoiesis. In conclusion, when β-thalassaemia major patients are intensively transfused, the procoagulant activity associated with thalassaemic erythrocyte microparticles is probably diluted by transfusions. In contrast, platelet microparticles, being both more elevated and more procoagulant, especially after splenectomy, may contribute to the residual thrombotic risk reported in splenectomized multi-transfused β-thalassaemia major patients. © 2015 John Wiley & Sons Ltd.

  4. The association between endothelial microparticles and inflammation in patients with systemic sclerosis and Raynaud's phenomenon as detected by functional imaging.

    PubMed

    Jung, Christian; Drummer, Karl; Oelzner, Peter; Figulla, Hans R; Boettcher, Joachim; Franz, Marcus; Betge, Stefan; Foerster, Martin; Wolf, Gunter; Pfeil, Alexander

    2015-01-01

    Systemic sclerosis (SSc) is a systemic, autoimmune connective tissue disease characterized by vasculopathy and microvascular changes. Fluorescence Optical Imaging (FOI) is a technique used to assess inflammation in patients with arthritis; in this study FOI is used to quantify inflammation in the hand. Endothelial Microparticle (EMP) can reflect damage or activation of the endothelium but also actively modulate processes of inflammation, coagulation and vascular function. The aim of the present study was to quantify EMP and FOI, to determine an association between these microparticles and inflammation and to endothelial function. EMP were quantified in plasma samples of 25 patients (24 female, 1 male, age: 41 ± 9 years) with SSc using flow cytometry. EMP was defined as CD31+/CD42- MP, and CD62+ MP. Perivascular inflammation was assessed using fluorescence optical imaging (FOI) of the hand. Macrovascular endothelial function was non-invasively estimated using the Endopat system. Plasma levels of CD31+/CD42- EMP and CD62+ EMP were lower in patients with SSc compared to controls (both p <  0.05). An impaired endothelial function with an increased hyperemia index was observed. A strong association could be demonstrated between CD62+ EMP and perivascular soft tissue inflammation as assessed by the FOI global score (Spearman, p = 0.002, r = 0.61). EMP indicate molecular vascular damage in SSc; in this study a strong association between EMP and perivascular inflammation as quantified by FOI is demonstrated. Consequently EMP, using FOI, may be a potential marker benefitting the diagnosis and therapy monitoring of patients with SSc with associated Raynaud's phenomenon.

  5. Thulium-170-labeled microparticles for local radiotherapy: preliminary studies.

    PubMed

    Polyak, Andras; Das, Tapas; Chakraborty, Sudipta; Kiraly, Reka; Dabasi, Gabriella; Joba, Robert Peter; Jakab, Csaba; Thuroczy, Julianna; Postenyi, Zita; Haasz, Veronika; Janoki, Gergely; Janoki, Gyozo A; Pillai, Maroor R A; Balogh, Lajos

    2014-10-01

    The present article describes the preparation, characterization, and biological evaluation of Thulium-170 ((170)Tm) [T1/2 = 128.4 days; Eβmax = 968 keV; Eγ = 84 keV (3.26%)] labeled tin oxide microparticles for its possible use in radiation synovectomy (RSV) of medium-sized joints. (170)Tm was produced by irradiation of natural thulium oxide target. 170Tm-labeled microparticles were synthesized with high yield and radionuclidic purity (> 99%) along with excellent in vitro stability by following a simple process. Particle sizes and morphology of the radiolabeled particles were examined by light microscope, dynamic light scattering, and transmission electron microscope and found to be of stable spherical morphology within the range of 1.4-3.2 μm. The preparation was injected into the knee joints of healthy Beagle dogs intraarticularly for biological studies. Serial whole-body and regional images were taken by single-photon-emission computed tomography (SPECT) and SPECT-CT cameras up to 9 months postadministration, which showed very low leakage (< 8% of I.D.) of the instilled particles. The majority of leaked radiocolloid particles were found in inguinal lymph nodes during the 9 months of follow-up. All the animals tolerated the treatment well; the compound did not show any possible radiotoxicological effect. These preliminary studies showed that 170Tm-labeled microparticles could be a promising nontoxic and effective radiopharmaceutical for RSV applications or later local antitumor therapy.

  6. Antifungal Effect of a Dental Tissue Conditioner Containing Nystatin-Loaded Alginate Microparticles.

    PubMed

    Kim, Hyun-Jin; Son, Jun Sik; Kwon, Tae-Yub

    2018-02-01

    In this in vitro study, nystatin-alginate microparticles were successfully fabricated to control the release of nystatin from a commercial dental tissue conditioner. These nystatin-alginate microparticles were spherical and had a slightly rough surface. The microparticles incorporated into the tissue conditioner were distributed homogeneously throughout the tissue conditioner matrix. The incorporation of the microparticles did not deteriorate the mechanical properties of the original material. The agar diffusion test results showed that the tissue conditioner containing the microparticles had a good antifungal effect against Candida albicans. The nystatin-alginate microparticles efficiently controlled the release of nystatin from the tissue conditioner matrix over the experimental period of 14 days. Moreover, the nystatin-alginate microparticles incorporated in the tissue conditioner showed effective antifungal function even at lower concentrations of nystatin. The current study suggests that the tissue conditioner containing the nystatin-alginate microparticle carrier system has potential as an effective antifungal material.

  7. Contrast Gradient-Based Blood Velocimetry With Computed Tomography: Theory, Simulations, and Proof of Principle in a Dynamic Flow Phantom.

    PubMed

    Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard

    2016-01-01

    The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good

  8. Endothelial- and Platelet-Derived Microparticles Are Generated During Liver Resection in Humans.

    PubMed

    Banz, Yara; Item, Gian-Marco; Vogt, Andreas; Rieben, Robert; Candinas, Daniel; Beldi, Guido

    2016-01-01

    Cell-derived plasma microparticles (<1.5 μm) originating from various cell types have the potential to regulate thrombogenesis and inflammatory responses. The aim of this study was to test the hypothesis that microparticles generated during hepatic surgery co-regulate postoperative procoagulant and proinflammatory events. In 30 patients undergoing liver resection, plasma microparticles were isolated, quantitated, and characterized as endothelial (CD31+, CD41-), platelet (CD41+), or leukocyte (CD11b+) origin by flow cytometry and their procoagulant and proinflammatory activity was measured by immunoassays. During liver resection, the total numbers of microparticles increased with significantly more Annexin V-positive, endothelial and platelet-derived microparticles following extended hepatectomy compared to standard and minor liver resections. After liver resection, microparticle tissue factor and procoagulant activity increased along with overall coagulation as assessed by thrombelastography. Levels of leukocyte-derived microparticles specifically increased in patients with systemic inflammation as assessed by C-reactive protein but are independent of the extent of liver resection. Endothelial and platelet-derived microparticles are specifically elevated during liver resection, accompanied by increased procoagulant activity. Leukocyte-derived microparticles are a potential marker for systemic inflammation. Plasma microparticles may represent a specific response to surgical stress and may be an important mediator of postoperative coagulation and inflammation.

  9. Particulate matter induces prothrombotic microparticle shedding by human mononuclear and endothelial cells.

    PubMed

    Neri, Tommaso; Pergoli, Laura; Petrini, Silvia; Gravendonk, Lotte; Balia, Cristina; Scalise, Valentina; Amoruso, Angela; Pedrinelli, Roberto; Paggiaro, Pierluigi; Bollati, Valentina; Celi, Alessandro

    2016-04-01

    Particulate airborne pollution is associated with increased cardiopulmonary morbidity. Microparticles are extracellular vesicles shed by cells upon activation or apoptosis involved in physiological processes such as coagulation and inflammation, including airway inflammation. We investigated the hypothesis that particulate matter causes the shedding of microparticles by human mononuclear and endothelial cells. Cells, isolated from the blood and the umbilical cords of normal donors, were cultured in the presence of particulate from a standard reference. Microparticles were assessed in the supernatant as phosphatidylserine concentration. Microparticle-associated tissue factor was assessed by an one-stage clotting assay. Nanosight technology was used to evaluate microparticle size distribution. Particulate matter induces a dose- and time- dependent, rapid (1h) increase in microparticle generation in both cells. These microparticles express functional tissue factor. Particulate matter increases intracellular calcium concentration and phospholipase C inhibition reduces microparticle generation. Nanosight analysis confirmed that upon exposure to particulate matter both cells express particles with a size range consistent with the definition of microparticles (50-1000 nm). Exposure of mononuclear and endothelial cells to particulate matter upregulates the generation of microparticles at least partially mediated by calcium mobilization. This observation might provide a further link between airborne pollution and cardiopulmonary morbidity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Assessment of formulated amodiaquine microparticles in Leishmania donovani infected rats.

    PubMed

    Nettey, Henry; Allotey-Babington, Grace Lovia; Somuah, Isaac; Banga, N'guessan Benoit; Afrane, Barima; Amponsah, Seth Kwabena; Annor, Henrietta; Darko, Henry; Hanson, Kwame; Aidoo, Anoa; Broni, Marisa Nyarkoa; Sasu, Clement; Nyarko, Alexander

    2017-02-01

    The aim of this study was to formulate, characterise and evaluate the activity of amodiaquine microparticles against Leishmania donovani. Microparticles were formulated by encapsulating the drug in bovine serum albumin using the spray-dryer method. The microparticles were evaluated for size, zeta potential, drug content, encapsulation efficiency and in vitro release profile. The size range of the microparticles formulated was between 1.9 and 10 μm with an average zeta potential of -25.5 mV. Of the expected 20% drug loading, an average of 18.27% was obtained giving an encapsulation efficiency of 91.35%. Pharmacokinetic profile of amodiaquine improved with microencapsulation of the drug with C max , AUC 0→48 and t 1//2 all significantly higher than amodiaquine solution. Amodiaquine microparticles showed an overall higher bioavailability and hence were more effective in eliminating intra-tissue parasites than the drug solution. It would therefore be expected that the formulated microparticles will be more effective in treating visceral leishmaniasis.

  11. In vitro release kinetics of Tolmetin from tabletted Eudragit microparticles.

    PubMed

    Pignatello, R; Consoli, P; Puglisi, G

    2000-01-01

    In a previous paper the preparation has been described, by three different techniques, of microparticles made of Eudragit RS 100 and RL 100 containing a NSAI agent, Tolmetin. Freely flowing microparticles failed to affect significantly the in vitro drug release, which displayed a similar dissolution profile after micro-encapsulation to the free drug powder. Microparticles were then converted into tablets and the effect of compression on drug delivery, as well as that of the presence of co-additives, was studied in the present work. Furthermore, microparticles were also prepared by adding MgO to the polymer matrix, to reduce the sensitivity of the drug to pH changes during its dissolution. Similarly, magnesium stearate was also used for microparticle formation as a droplet stabilizer, in order to reduce particle size and hinder rapid drug release. A mathematical evaluation, by using two semi-empirical equations, was applied to evaluate the influence of dissolution and diffusion phenomena upon drug release from microparticle tablets.

  12. Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications.

    PubMed

    Bhardwaj, Nandana; Rajkhowa, Rangam; Wang, Xungai; Devi, Dipali

    2015-11-01

    Silk fibroin has been widely employed in various forms as biomaterials for biomedical applications due to its superb biocompatibility and tunable degradation and mechanical properties. Herein, silk fibroin microparticles of non-mulberry silkworm species (Antheraea assamensis, Antheraea mylitta and Philosamia ricini) were fabricated via a top-down approach using a combination of wet-milling and spray drying techniques. Microparticles of mulberry silkworm (Bombyx mori) were also utilized for comparative studies. The fabricated microparticles were physico-chemically characterized for size, stability, morphology, chemical composition and thermal properties. The silk fibroin microparticles of all species were porous (∼5μm in size) and showed nearly spherical morphology with rough surface as revealed from dynamic light scattering and microscopic studies. Non-mulberry silk microparticles maintained the typical silk-II structure with β-sheet secondary conformation with higher thermal stability. Additionally, non-mulberry silk fibroin microparticles supported enhanced cell adhesion, spreading and viability of mouse fibroblasts than mulberry silk fibroin microparticles (p<0.001) as evidenced from fluorescence microscopy and cytotoxicity studies. Furthermore, in vitro drug release from the microparticles showed a significantly sustained release over 3 weeks. Taken together, this study demonstrates promising attributes of non-mulberry silk fibroin microparticles as a potential drug delivery vehicle/micro carrier for diverse biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cryopreservation alters the membrane and cytoskeletal protein profile of platelet microparticles.

    PubMed

    Raynel, Sarah; Padula, Matthew P; Marks, Denese C; Johnson, Lacey

    2015-10-01

    Cryopreservation of platelets (PLTs) in dimethyl sulfoxide (DMSO) and storage at -80 °C extends the PLT shelf life to at least 2 years, allowing greater accessibility in military and rural environments. While cryopreserved PLTs have been extensively characterized, the microparticles formed as a result of cryopreservation are yet to be fully described. Apheresis PLTs were cryopreserved at -80 °C with 5% DMSO and sampled before freezing and after thawing. Microparticle number, size, surface receptor phenotype, and function were assessed by microscopy, flow cytometry, dynamic light scattering, and thrombin-generating capacity. Proteomic changes were examined using two-dimensional gel electrophoresis and Western blotting. PLT cryopreservation resulted in a 15-fold increase in the number of microparticles compared to fresh PLTs. The surface receptor phenotype of these microparticles differed to microparticles from fresh PLTs, with more microparticles expressing glycoprotein (GP)IV, GPIIb, and the GPIb-V-IX complex. Cryopreservation drastically altered the abundance of many cytoskeletal proteins in the PLT microparticles, including actin, filamin, gelsolin, and tropomyosin. Despite these changes, PLT microparticles were functional and contributed to phosphatidylserine- and tissue factor- induced thrombin generation. This study demonstrates that PLT microparticles formed by cryopreservation are phenotypically distinct from those present before freezing. These differences may be associated with the procoagulant properties of cryopreserved PLTs. © 2015 AABB.

  14. Strategy for the hemocompatibility testing of microparticles.

    PubMed

    Braune, S; Basu, S; Kratz, K; Johansson, J Bäckemo; Reinthaler, M; Lendlein, A; Jung, F

    2016-01-01

    Polymer-based microparticles are applied as non-thrombogenic or thrombogenic materials in a wide variety of intra- or extra-corporeal medical devices. As demanded by the regulatory agencies, the hemocompatibility of these blood contacting biomaterials has to be evaluated in vitro to ensure that the particle systems appropriately fulfill the envisioned function without causing undesired events such as thrombosis or inflammation. Currently described in vitro assays for hemocompatibility testing of particles comprise tests with different single cell types (e.g. erythrocytes or leukocytes), varying concentrations/dilutions of the used blood cells or whole blood, which are not standardized.Here, we report about an in vitro dynamic test system for studying the hemocompatibility of polymeric microparticles utilizing fresh human whole blood from apparently healthy subjects, collected and processed under standardized conditions. Spherical poly(ether imide) microparticles with an average diameter of 140±30 μm were utilized as model systems. Reported as candidate materials for the removal of uremic toxins, these microparticles are anticipated to facilitate optimal flow conditions in a dialyzer with minimal backflow and blood cell damage. Pristine (PEI) and potassium hydroxide (PEI-KOH) functionalized microparticles exhibited similarly nanoporous surfaces (PEI: ØExternal pore = 90±60 nm; PEI-KOH ØExternal pore = 150±130 nm) but varying water wettabilities (PEI: θadv = 112±10° PEI-KOH θadv = 60±2°). The nanoporosity of the microparticle surfaces allows the exchange of toxic solutes from blood towards the interconnective pores in the particle core, while an immigration of the substantially larger blood cells is inhibited.Sterilized PEI microparticles were incorporated -air-free -in a syringe-based test system and exposed to whole blood for 60 minutes under gentle agitation. Thereafter, thrombi formation on the particles surfaces were analyzed

  15. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  16. PARTICLE IMAGE VELOCIMETRY MEASUREMENTS IN A REPRESENTATIVE GAS-COOLED PRISMATIC REACTOR CORE MODEL: FLOW IN THE COOLANT CHANNELS AND INTERSTITIAL BYPASS GAPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas E. Conder; Richard Skifton; Ralph Budwig

    Core bypass flow is one of the key issues with the prismatic Gas Turbine-Modular Helium Reactor, and it refers to the coolant that navigates through the interstitial, non-cooling passages between the graphite fuel blocks instead of traveling through the designated coolant channels. To determine the bypass flow, a double scale representative model was manufactured and installed in the Matched Index-of-Refraction flow facility; after which, stereo Particle Image Velocimetry (PIV) was employed to measure the flow field within. PIV images were analyzed to produce vector maps, and flow rates were calculated by numerically integrating over the velocity field. It was foundmore » that the bypass flow varied between 6.9-15.8% for channel Reynolds numbers of 1,746 and 4,618. The results were compared to computational fluid dynamic (CFD) pre-test simulations. When compared to these pretest calculations, the CFD analysis appeared to under predict the flow through the gap.« less

  17. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects.

    PubMed

    Kriebardis, Anastasios G; Antonelou, Marianna H; Georgatzakou, Hara T; Tzounakas, Vassilis L; Stamoulis, Konstantinos E; Papassideri, Issidora S

    2016-05-01

    Extracellular vesicles or microparticles exhibiting procoagulant and thrombogenic activity may contribute to the haemostatic potential of fresh frozen plasma. Fresh frozen plasma was prepared from platelet-rich plasma at 20 °C (Group-1 donors) or directly from whole blood at 4 °C (Group-2 donors). Each unit was aseptically divided into three parts, stored frozen for specific periods of time, and analysed by flow cytometry for procoagulant activity immediately after thaw or following post-thaw storage for 24 h at 4 °C. Donors' haematologic, biochemical and life-style profiles as well as circulating microparticles were analysed in parallel. Circulating microparticles exhibited a considerable interdonor but not intergroup variation. Fresh frozen plasma units were enriched in microparticles compared to plasma in vivo. Duration of storage significantly affected platelet- and red cell-derived microparticles. Fresh frozen plasma prepared directly from whole blood contained more residual platelets and more platelet-derived microparticles compared to fresh frozen plasma prepared from platelet-rich plasma. Consequently, there was a statistically significant difference in total, platelet- and red cell-derived microparticles between the two preparation protocols over storage time in the freezer. Preservation of the thawed units for 24 h at 4 °C did not significantly alter microparticle accumulation. Microparticle accumulation and anti-oxidant capacity of fresh frozen plasma was positively or negatively correlated, respectively, with the level of circulating microparticles in individual donors. The preparation protocol and the duration of storage in the freezer, independently and in combination, influenced the accumulation of microparticles in fresh frozen plasma units. In contrast, storage of thawed units for 24 h at 4 °C had no significant effect on the concentration of microparticles.

  18. Solid lipid microparticles containing loratadine prepared using a Micromixer.

    PubMed

    Milak, Spomenka; Medlicott, Natalie; Tucker, Ian G

    2006-12-01

    Solid lipid microparticles were investigated as a taste-masking approach for a lipophilic weak base in a suspension. The idea was that the drug concentration in the aqueous phase of a suspension might be reduced by its partitioning into the solid lipid particles. Loratadine, as a model drug, was used to prepare Precirol ATO 5 microparticles by a Micromixer. The effects of three process variables: drug loading, PVA concentration and water/lipid ratio on the microparticle size, encapsulation efficiency, surface appearance, in-vitro release and drug partitioning in a suspension were studied. Loratadine release was slow in simulated saliva and very fast at the pH of stomach. In suspension of loratadine lipid microparticles, drug was released into the aqueous phase to the same concentration as in a drug suspension. Therefore, the usefulness of these microparticles for taste-masking in liquids is limited. However, they might be useful for taste-masking in solid dosage forms.

  19. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  20. Methotrexate loaded gellan gum microparticles for drug delivery.

    PubMed

    Dhanka, Mukesh; Shetty, Chaitra; Srivastava, Rohit

    2018-04-15

    Recently, polysaccharides based microparticles have been found to offer an attractive potential as a carrier in drug delivery field. In this study, bare gellan gum microparticles (GG MPs) and methotrexate (MTX) loaded gellan gum microparticles (MTX-GG MPs) prepared by using simple water-in-oil (W/O) emulsion solvent diffusion method. The developed microparticles (MPs) were found discretely distributed in a spherical shape. MTX has been encapsulated in microparticles with 84.8 ± 1.68% encapsulation efficiency (%EE) and 6.45 ± 0.07% loading capacity (%LC). The Fourier Transform Infrared Spectroscopy (FTIR) characterization of the MPs clearly indicated the physical encapsulation of MTX into polymeric matrix of MPs. Thermogravimetric analysis (TGA) characterization showed slightly higher thermal stability of MTX-GG MPs in comparison to the GG MPs. In vitro release study of MTX-GG MPs showed 84% drug release within 24 h. The hemolysis study of GG MPs and MTX-GG MPs on human red blood cells (RBCs) showed <1.0% hemolysis. The cell viability studies on L929 showed GG MPs, and MTX-GG MPs are biocompatible. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Titanium Dioxide Nanofibers and Microparticles Containing Nickel Nanoparticles.

    PubMed

    Sheikh, Faheem A; Macossay, Javier; Kanjwal, Muzafar A; Abdal-Hay, Abdalla; Tantry, Mudasir A; Kim, Hern

    2012-10-12

    The present study reports on the introduction of various nanocatalysts containing nickel (Ni) nanoparticles (NPs) embedded within TiO 2 nanofibers and TiO 2 microparticles. Typically, a sol-gel consisting of titanium isopropoxide and Ni NPs was prepared to produce TiO 2 nanofibers by the electrospinning process. Similarly, TiO 2 microparticles containing Ni were prepared using a sol-gel syntheses process. The resultant structures were studied by SEM analyses, which confirmed well-obtained nanofibers and microparticles. Further, the XRD results demonstrated the crystalline feature of both TiO 2 and Ni in the obtained composites. Internal morphology of prepared nanofibers and microparticles containing Ni NPs was characterized by TEM, which demonstrated characteristic structures with good dispersion of Ni NPs. In addition, the prepared structures were studied as a model for hydrogen production applications. The catalytic activity of the prepared materials was studied by in situ hydrolysis of NaBH 4 , which indicated that the nanofibers containing Ni NPs can lead to produce higher amounts of hydrogen when compared to other microparticles, also reported in this paper. Overall, these results confirm the potential use of these materials in hydrogen production systems.

  2. Titanium Dioxide Nanofibers and Microparticles Containing Nickel Nanoparticles

    PubMed Central

    Sheikh, Faheem A.; Macossay, Javier; Kanjwal, Muzafar A.; Abdal-hay, Abdalla; Tantry, Mudasir A.; Kim, Hern

    2013-01-01

    The present study reports on the introduction of various nanocatalysts containing nickel (Ni) nanoparticles (NPs) embedded within TiO2 nanofibers and TiO2 microparticles. Typically, a sol-gel consisting of titanium isopropoxide and Ni NPs was prepared to produce TiO2 nanofibers by the electrospinning process. Similarly, TiO2 microparticles containing Ni were prepared using a sol-gel syntheses process. The resultant structures were studied by SEM analyses, which confirmed well-obtained nanofibers and microparticles. Further, the XRD results demonstrated the crystalline feature of both TiO2 and Ni in the obtained composites. Internal morphology of prepared nanofibers and microparticles containing Ni NPs was characterized by TEM, which demonstrated characteristic structures with good dispersion of Ni NPs. In addition, the prepared structures were studied as a model for hydrogen production applications. The catalytic activity of the prepared materials was studied by in situ hydrolysis of NaBH4, which indicated that the nanofibers containing Ni NPs can lead to produce higher amounts of hydrogen when compared to other microparticles, also reported in this paper. Overall, these results confirm the potential use of these materials in hydrogen production systems. PMID:24436780

  3. Assessment of transmitral flow after mitral valve edge-to-edge repair using High-speed particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Jeyhani, Morteza; Shahriari, Shahrokh; Labrosse, Michel; Kadem, Lyes

    2013-11-01

    Approximately 500,000 people in North America suffer from mitral valve regurgitation (MR). MR is a disorder of the heart in which the mitral valve (MV) leaflets do not close securely during systole. Edge-to-edge repair (EtER) technique can be used to surgically treat MR. This technique produces a double-orifice configuration for the MV. Under these un-physiological conditions, flow downstream of the MV forms a double jet structure that may disturb the intraventricular hemodynamics. Abnormal flow patterns following EtER are mainly characterized by high-shear stress and stagnation zones in the left ventricle (LV), which increase the potential of blood component damage. In this study, a custom-made prosthetic bicuspid MV was used to analyze the LV flow patterns after EtER by means of digital particle image velocimetry (PIV). Although the repair of a MV using EtER technique is an effective approach, this study confirms that EtER leads to changes in the LV flow field, including the generation of a double mitral jet flow and high shear stress regions.

  4. A Stereo Imaging Velocimetry Technique for Analyzing Structure of Flame Balls at Low Lewis-Number (SOFBALL) Data

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2008-01-01

    Stereo Imaging Velocimetry (SIV) is a NASA Glenn Research Center (GRC) developed fluid physics technique for measuring threedimensional (3-D) velocities in any optically transparent fluid that can be seeded with tracer particles. SIV provides a means to measure 3-D fluid velocities quantitatively and qualitatively at many points. This technique provides full-field 3-D analysis of any optically clear fluid or gas experiment using standard off-the-shelf CCD cameras to provide accurate and reproducible 3-D velocity profiles for experiments that require 3-D analysis. A flame ball is a steady flame in a premixed combustible atmosphere which, due to the transport properties (low Lewis-number) of the mixture, does not propagate but is instead supplied by diffusive transport of the reactants, forming a premixed flame. This flame geometry presents a unique environment for testing combustion theory. We present our analysis of flame ball phenomena utilizing SIV technology in order to accurately calculate the 3-D position of a flame ball(s) during an experiment, which can be used as a direct comparison of numerical simulations.

  5. Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube.

    PubMed

    György, Bence; Pálóczi, Krisztina; Kovács, Alexandra; Barabás, Eszter; Bekő, Gabriella; Várnai, Katalin; Pállinger, Éva; Szabó-Taylor, Katalin; Szabó, Tamás G; Kiss, Attila A; Falus, András; Buzás, Edit I

    2014-02-01

    Recently extracellular vesicles (exosomes, microparticles also referred to as microvesicles and apoptotic bodies) have attracted substantial interest as potential biomarkers and therapeutic vehicles. However, analysis of microparticles in biological fluids is confounded by many factors such as the activation of cells in the blood collection tube that leads to in vitro vesiculation. In this study we aimed at identifying an anticoagulant that prevents in vitro vesiculation in blood plasma samples. We compared the levels of platelet microparticles and non-platelet-derived microparticles in platelet-free plasma samples of healthy donors. Platelet-free plasma samples were isolated using different anticoagulant tubes, and were analyzed by flow cytometry and Zymuphen assay. The extent of in vitro vesiculation was compared in citrate and acid-citrate-dextrose (ACD) tubes. Agitation and storage of blood samples at 37 °C for 1 hour induced a strong release of both platelet microparticles and non-platelet-derived microparticles. Strikingly, in vitro vesiculation related to blood sample handling and storage was prevented in samples in ACD tubes. Importantly, microparticle levels elevated in vivo remained detectable in ACD tubes. We propose the general use of the ACD tube instead of other conventional anticoagulant tubes for the assessment of plasma microparticles since it gives a more realistic picture of the in vivo levels of circulating microparticles and does not interfere with downstream protein or RNA analyses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Circulating microparticles and endogenous estrogen in newly menopausal women

    PubMed Central

    Jayachandran, M.; Litwiller, R. D.; Owen, W. G.; Miller, V. M.

    2011-01-01

    Background Estrogen modulates antithrombotic characteristics of the vascular endothelium and the interaction of blood elements with the vascular surface. A marker of these modulatory activities is formation of cell-specific microparticles. This study examined the relationship between blood-borne microparticles and endogenous estrogen at menopause. Methods Platelet activation and plasma microparticles were characterized from women being screened (n = 146) for the Kronos Early Estrogen Prevention Study. Women were grouped according to serum estrogen (< 20 pg/ml; low estrogen, n = 21 or > 40 pg/ml; high estrogen, n = 11). Results Age, body mass index, blood pressure and blood chemistries were the same in both groups. No woman was hypertensive, diabetic or a current smoker. Platelet counts, basal and activated expression of P-selectin on platelet membranes were the same, but activated expression of glycoprotein IIb/IIIa was greater in the high-estrogen group. Numbers of endothelium-, platelet-, monocyte- and granulocyte-derived microparticles were greater in the low-estrogen group. Of the total numbers of microparticles, those positive for phosphatidylserine and tissue factor were also greater in the low-estrogen group. Conclusion These results suggest that, with declines in endogenous estrogen at menopause, numbers of procoagulant microparticles increase and thus may provide a means to explore mechanisms for cardiovascular risk development in newly menopausal women. PMID:19051075

  7. Cross-correlation Doppler global velocimetry (CC-DGV)

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  8. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects

    PubMed Central

    Kriebardis, Anastasios G.; Antonelou, Marianna H.; Georgatzakou, Hara T.; Tzounakas, Vassilis L.; Stamoulis, Konstantinos E.; Papassideri, Issidora S.

    2016-01-01

    Background Extracellular vesicles or microparticles exhibiting procoagulant and thrombogenic activity may contribute to the haemostatic potential of fresh frozen plasma. Materials and methods Fresh frozen plasma was prepared from platelet-rich plasma at 20 °C (Group-1 donors) or directly from whole blood at 4 °C (Group-2 donors). Each unit was aseptically divided into three parts, stored frozen for specific periods of time, and analysed by flow cytometry for procoagulant activity immediately after thaw or following post-thaw storage for 24 h at 4 °C. Donors’ haematologic, biochemical and life-style profiles as well as circulating microparticles were analysed in parallel. Results Circulating microparticles exhibited a considerable interdonor but not intergroup variation. Fresh frozen plasma units were enriched in microparticles compared to plasma in vivo. Duration of storage significantly affected platelet- and red cell-derived microparticles. Fresh frozen plasma prepared directly from whole blood contained more residual platelets and more platelet-derived microparticles compared to fresh frozen plasma prepared from platelet-rich plasma. Consequently, there was a statistically significant difference in total, platelet- and red cell-derived microparticles between the two preparation protocols over storage time in the freezer. Preservation of the thawed units for 24 h at 4 °C did not significantly alter microparticle accumulation. Microparticle accumulation and anti-oxidant capacity of fresh frozen plasma was positively or negatively correlated, respectively, with the level of circulating microparticles in individual donors. Discussion The preparation protocol and the duration of storage in the freezer, independently and in combination, influenced the accumulation of microparticles in fresh frozen plasma units. In contrast, storage of thawed units for 24 h at 4 °C had no significant effect on the concentration of microparticles. PMID:27136430

  9. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.

    2016-02-01

    Pulse-burst Particle Image Velocimetry (PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Super-sampled velocity spectra to 150 kHz reveal a power-law dependency of -5/3 in the inertial subrange as well as a -1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.

  10. Iodine Tagging Velocimetry in a Mach 10 Wake

    NASA Technical Reports Server (NTRS)

    Balla, Robert Jeffrey

    2013-01-01

    A variation on molecular tagging velocimetry (MTV) [1] designated iodine tagging velocimetry (ITV) is demonstrated. Molecular iodine is tagged by two-photon absorption using an Argon Fluoride (ArF) excimer laser. A single camera measures fluid displacement using atomic iodine emission at 206 nm. Two examples ofMTVfor cold-flowmeasurements areN2OMTV [2] and Femtosecond Laser Electronic Excitation Tagging [3]. These, like most MTV methods, are designed for atmospheric pressure applications. Neither can be implemented at the low pressures (0.1- 1 Torr) in typical hypersonic wakes. Of all the single-laser/singlecamera MTV approaches, only Nitric-Oxide Planar Laser Induced Fluorescence-based MTV [4] has been successfully demonstrated in a Mach 10 wake. Oxygen quenching limits transit times to 500 ns and accuracy to typically 30%. The present note describes the photophysics of the ITV method. Off-body velocimetry along a line is demonstrated in the aerothermodynamically important and experimentally challenging region of a hypersonic low-pressure near-wake in a Mach 10 air wind tunnel. Transit times up to 10 µs are demonstrated with conservative errors of 10%.

  11. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    PubMed

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Assessing consumption of bioactive micro-particles by filter-feeding Asian carp

    USGS Publications Warehouse

    Jensen, Nathan R.; Amberg, Jon J.; Luoma, James A.; Walleser, Liza R.; Gaikowski, Mark P.

    2012-01-01

    Silver carp Hypophthalmichthys molitrix (SVC) and bighead carp H. nobilis (BHC) have impacted waters in the US since their escape. Current chemical controls for aquatic nuisance species are non-selective. Development of a bioactive micro-particle that exploits filter-feeding habits of SVC or BHC could result in a new control tool. It is not fully understood if SVC or BHC will consume bioactive micro-particles. Two discrete trials were performed to: 1) evaluate if SVC and BHC consume the candidate micro-particle formulation; 2) determine what size they consume; 3) establish methods to evaluate consumption of filter-feeders for future experiments. Both SVC and BHC were exposed to small (50-100 μm) and large (150-200 μm) micro-particles in two 24-h trials. Particles in water were counted electronically and manually (microscopy). Particles on gill rakers were counted manually and intestinal tracts inspected for the presence of micro-particles. In Trial 1, both manual and electronic count data confirmed reductions of both size particles; SVC appeared to remove more small particles than large; more BHC consumed particles; SVC had fewer overall particles in their gill rakers than BHC. In Trial 2, electronic counts confirmed reductions of both size particles; both SVC and BHC consumed particles, yet more SVC consumed micro-particles compared to BHC. Of the fish that ate micro-particles, SVC consumed more than BHC. It is recommended to use multiple metrics to assess consumption of candidate micro-particles by filter-feeders when attempting to distinguish differential particle consumption. This study has implications for developing micro-particles for species-specific delivery of bioactive controls to help fisheries, provides some methods for further experiments with bioactive micro-particles, and may also have applications in aquaculture.

  13. Increased serum concentration of immune cell derived microparticles in polymyositis/dermatomyositis.

    PubMed

    Baka, Zsuzsanna; Senolt, Ladislav; Vencovsky, Jiri; Mann, Herman; Simon, Piroska Sebestyén; Kittel, Agnes; Buzás, Edit; Nagy, György

    2010-02-16

    Microparticles are recently recognized players of intercellular communication. They are involved in signal transduction, cell activation and apoptosis. Their importance is also suggested in autoimmune diseases such as rheumatoid arthritis and systemic sclerosis. We investigated the role of microparticles in polymyositis/dermatomyositis, a group of rare autoimmune diseases, characterized by specific skin lesions and muscle weakness. The plasma concentration of monocyte and lymphocyte derived microparticles of 20 patients with polymyositis/dermatomyositis and 20 healthy controls were determined by flow cytometry. The structure of microparticles was visualized by electron microscopy. Significantly elevated numbers of monocyte (CD14 positive), T-lymphocyte (CD3 positive) and B-lymphocyte (CD19 positive) derived microparticles were found in the plasma samples of polymyositis/dermatomyositis patients, compared to healthy controls (p=0.001, 0.01 and 0.006, respectively). Furthermore, the plasma levels of monocyte and B-lymphocyte derived microparticles correlated with the manual muscle strength test (r=0.497, p=0.027; r=0.508, p=0.023; respectively). Patients with anti-Jo-1 antibody and lung involvement had significantly higher numbers of T- and B-lymphocyte and monocyte derived MPs (p=0.006, 0.012 and 0.007, respectively, for anti-Jo-1; p=0.013, 0.016 and 0.025, respectively, for lung involvement). After ultracentrifugation, CK activity could be detected only in traces in the resuspended pellet containing microparticles of healthy and diseased individuals. The electron microscopy revealed slightly different microparticles in the samples of patients with polymyositis/dermatomyositis. These results suggest that immune cell derived microparticles may contribute to the inflammatory process in polymyositis/dermatomyositis, however, CK-positive, possibly muscle derived microparticles do not seem to be present in the blood of patients with polymyositis

  14. Cell-derived microparticles and complement activation in preeclampsia versus normal pregnancy.

    PubMed

    Biró, E; Lok, C A R; Hack, C E; van der Post, J A M; Schaap, M C L; Sturk, A; Nieuwland, R

    2007-01-01

    Inflammation plays a major role in the vascular dysfunction seen in preeclampsia, and several studies suggest involvement of the complement system. To investigate whether complement activation on the surface of microparticles is increased in plasma of preeclamptic patients versus healthy pregnant controls. Microparticles from plasma of preeclamptic (n=10), healthy pregnant (n=10) and healthy nonpregnant (n=10) women were analyzed by flow cytometry for bound complement components (C1q, C4, C3) and complement activator molecules (C-reactive protein [CRP], serum amyloid P component [SAP], immunoglobulin [Ig]M, IgG). Fluid phase complement activation products and activator molecules were also determined. Levels of microparticles with bound complement components showed no increase in complement activation on the microparticle surface in preeclamptic women, in line with levels of fluid phase complement activation products. In healthy nonpregnant and pregnant women, bound CRP was associated with classical pathway activation on the microparticle surface, and in healthy pregnant women IgM and IgG molecules also contributed. In preeclamptic women, microparticles with bound SAP and those with IgG seemed to contribute to C1q binding without a clear association to further classical pathway activation. Furthermore, significantly increased levels of microparticles with bound CRP were present in preeclamptic compared with healthy pregnant women (median 178x10(6)/L versus 47x10(6)/L, P<0.01), but without concomitant increases in complement activation. We found no evidence of increased complement activation on the microparticle surface in preeclamptic women. Microparticles with bound CRP were significantly increased, but in contrast to healthy pregnant and nonpregnant women, this was not associated with increased classical pathway activation on the surface of the microparticles.

  15. Liposomes self-assembled from electrosprayed composite microparticles

    NASA Astrophysics Data System (ADS)

    Yu, Deng-Guang; Yang, Jun-He; Wang, Xia; Tian, Feng

    2012-03-01

    Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way.

  16. Microparticles Mediate Hepatic Ischemia-Reperfusion Injury and Are the Targets of Diannexin (ASP8597)

    PubMed Central

    Wong, Heng Jian; Croft, Kevin; Mori, Trevor; Farrell, Geoffrey C.

    2014-01-01

    Background & Aims Ischemia–reperfusion injury (IRI) can cause hepatic failure after liver surgery or transplantation. IRI causes oxidative stress, which injures sinusoidal endothelial cells (SECs), leading to recruitment and activation of Kupffer cells, platelets and microcirculatory impairment. We investigated whether injured SECs and other cell types release microparticles during post-ischemic reperfusion, and whether such microparticles have pro-inflammatory, platelet-activating and pro-injurious effects that could contribute to IRI pathogenesis. Methods C57BL6 mice underwent 60 min of partial hepatic ischemia followed by 15 min–24 hrs of reperfusion. We collected blood and liver samples, isolated circulating microparticles, and determined protein and lipid content. To establish mechanism for microparticle production, we subjected murine primary hepatocytes to hypoxia-reoxygenation. Because microparticles express everted phosphatidylserine residues that are the target of annexin V, we analyzed the effects of an annexin V-homodimer (Diannexin or ASP8597) on post-ischemia microparticle production and function. Results Microparticles were detected in the circulation 15–30 min after post-ischemic reperfusion, and contained markers of SECs, platelets, natural killer T cells, and CD8+ cells; 4 hrs later, they contained markers of macrophages. Microparticles contained F2-isoprostanes, indicating oxidative damage to membrane lipids. Injection of mice with TNF-α increased microparticle formation, whereas Diannexin substantially reduced microparticle release and prevented IRI. Hypoxia-re-oxygenation generated microparticles from primary hepatocytes by processes that involved oxidative stress. Exposing cultured hepatocytes to preparations of microparticles isolated from the circulation during IRI caused injury involving mitochondrial membrane permeability transition. Microparticles also activated platelets and induced neutrophil migration in vitro. The inflammatory

  17. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK.

    PubMed

    Mohning, Michael P; Thomas, Stacey M; Barthel, Lea; Mould, Kara J; McCubbrey, Alexandria L; Frasch, S Courtney; Bratton, Donna L; Henson, Peter M; Janssen, William J

    2018-01-01

    Microparticles are a newly recognized class of mediators in the pathophysiology of lung inflammation and injury, but little is known about the factors that regulate their accumulation and clearance. The primary objective of our study was to determine whether alveolar macrophages engulf microparticles and to elucidate the mechanisms by which this occurs. Alveolar microparticles were quantified in bronchoalveolar fluid of mice with lung injury induced by LPS and hydrochloric acid. Microparticle numbers were greatest at the peak of inflammation and declined as inflammation resolved. Isolated, fluorescently labeled particles were placed in culture with macrophages to evaluate ingestion in the presence of endocytosis inhibitors. Ingestion was blocked with cytochalasin D and wortmannin, consistent with a phagocytic process. In separate experiments, mice were treated intratracheally with labeled microparticles, and their uptake was assessed though microscopy and flow cytometry. Resident alveolar macrophages, not recruited macrophages, were the primary cell-ingesting microparticles in the alveolus during lung injury. In vitro, microparticles promoted inflammatory signaling in LPS primed epithelial cells, signifying the importance of microparticle clearance in resolving lung injury. Microparticles were found to have phosphatidylserine exposed on their surfaces. Accordingly, we measured expression of phosphatidylserine receptors on macrophages and found high expression of MerTK and Axl in the resident macrophage population. Endocytosis of microparticles was markedly reduced in MerTK-deficient macrophages in vitro and in vivo. In conclusion, microparticles are released during acute lung injury and peak in number at the height of inflammation. Resident alveolar macrophages efficiently clear these microparticles through MerTK-mediated phagocytosis.

  18. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    PubMed

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

  19. In vivo biocompatibility of the PLGA microparticles in parotid gland

    PubMed Central

    Cantín, Mario; Miranda, Patricio; Suazo Galdames, Iván; Zavando, Daniela; Arenas, Patricia; Velásquez, Luis; Vilos, Cristian

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microparticles are used in various disorders for the controlled or sustained release of drugs, with the management of salivary gland pathologies possible using this technology. There is no record of the response to such microparticles in the glandular parenchyma. The purpose of this study was to assess the morphological changes in the parotid gland when injected with a single dose of PLGA microparticles. We used 12 adult female Sprague Dawley rats (Rattus norvegicus) that were injected into their right parotid gland with sterile vehicle solution (G1, n=4), 0.5 mg PLGA microparticles (G2, n=4), and 0.75 mg PLGA microparticles (G3, n=4); the microparticles were dissolved in a sterile vehicle solution. The intercalar and striated ducts lumen, the thickness of the acini and the histology aspect in terms of the parenchyma organization, cell morphology of acini and duct system, the presence of polymeric residues, and inflammatory response were determined at 14 days post-injection. The administration of the compound in a single dose modified some of the morphometric parameters of parenchyma (intercalar duct lumen and thickness of the glandular acini) but did not induce tissue inflammatory response, despite the visible presence of polymer waste. This suggests that PLGA microparticles are biocompatible with the parotid tissue, making it possible to use intraglandular controlled drug administration. PMID:24228103

  20. Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Hutchins, N.; Hambleton, W. T.; Marusic, Ivan

    2005-10-01

    This work can be viewed as a reprise of Head & Bandyopadhyay's (J. Fluid Mech. vol. 107, p. 297) original boundary-layer visualization study although in this instance we make use of stereo particle image velocimetry (PIV), techniques to obtain a quantitative view of the turbulent structure. By arranging the laser light-sheet and image plane of a stereo PIV system in inclined spanwise/wall-normal planes (inclined at both 45(°) and 135(°) to the streamwise axis) a unique quantitative view of the turbulent boundary layer is obtained. Experiments are repeated across a range of Reynolds numbers, Re_{tau} {≈} 690-2800. Despite numerous experimental challenges (due to the large out-of-plane velocity components), mean flow and Reynolds stress profiles indicate that the salient features of the turbulent flow have been well resolved. The data are analysed with specific attention to a proposed hairpin eddy model. In-plane two-dimensional swirl is used to identify vortical eddy structures piercing the inclined planes. The vast majority of this activity occurs in the 135(°) plane, indicating an inclined eddy structure, and Biot-Savart law calculations are carried out to aid in the discussion. Conditional averaging and linear stochastic estimation results also support the presence of inclined eddies, arranged about low-speed regions. In the 135(°) plane, instantaneous swirl patterns exhibit a predisposition for counter-rotating vortex pairs (arranged with an ejection at their confluence). Such arrangements are consistent with the hairpin packet model. Correlation and scaling results show outer-scaling to be the correct way to quantify the characteristic spanwise length scale across the log and wake regions of the boundary layers (for the range of Reynolds numbers tested). A closer investigation of two-point velocity correlation contours indicates the occurrence of a distinct two-regime behaviour, in which contours (and hence streamwise velocity fluctuations) either appear

  1. Flow-Tagging Velocimetry for Hypersonic Flows Using Fluorescence of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; OByrne, S.; Houwing, A. F. P.

    2001-01-01

    We investigate a new type of flow-tagging velocimetry technique for hypersonic flows. The technique involves exciting a thin line of nitric oxide molecules with a laser beam and then, after some delay, acquiring an image of the displaced line. One component of velocity is determined from the time of flight. This method is applied to measure the velocity profile in a Mach 8.5 laminar, hypersonic boundary layer in the Australian National Universities T2 free-piston shock tunnel. The velocity is measured with an uncertainty of approximately 2%. Comparison with a CFD simulation of the flow shows reasonable agreement.

  2. Preparation and in vitro evaluation of pyridostigmine bromide microparticles.

    PubMed

    Hegazy, Nahed; Demirel, Müzeyyen; Yazan, Yasemin

    2002-08-21

    Pyridostigmine bromide (PB) is an anticholinesterase agent whose aqueous solubility is high and which has a short elimination half-life. Its dosage rate in the treatment of myastenia gravis is frequent due to the short half-life and it exhibits side effects. Microparticles designed to deliver a pharmaceutical active ingredient efficiently at the minimum dose and also to enhance stability, reduce side effects and modify drug release were prepared in this study using an acrylic polymer (Eudragit) as the vehicle by the spray-drying technique. The drug was either dissolved or dispersed in the polymeric solution and following the preparation of microparticles using different ratios of ingredients, characterization studies including the determination of shape, particle size distribution, amount loaded, release and stability of PB were performed. The results obtained were compared to those of pure PB. Drug release from microparticles could be modified and was found to depend on the shapes of the microparticles. In vitro evaluation results indicate that the frequent dosage and side effects of pure PB may be reduced with the formulation of microparticles.

  3. Bilayer mucoadhesive microparticles for the delivery of metoprolol succinate: Formulation and evaluation.

    PubMed

    Kumar, Krishan; Dhawan, Neha; Sharma, Harshita; Patwal, Pramod S; Vaidya, Shubha; Vaidya, Bhuvaneshwar

    2015-01-01

    Metoprolol succinate is a very potent drug for the treatment of hypertension but suffers from poor bioavailability due to its erratic absorption in lower GI tract. Therefore, in the present study, it was hypothesized that by formulating mucoadhesive particles, the residence time in the GIT and release of drug may be prolonged that will enhance the bioavailability of metoprolol succinate. Metoprolol succinate loaded chitosan microparticles were prepared by ionic gelation method. The optimized microparticles were coated with sodium alginate to form a layer over chitosan microparticles to increase the mucoadhesive strength and to release the drug in controlled manner. Coated and uncoated microparticles were evaluated for particle size, zeta potential, morphology, entrapment efficiency, drug loading and in vitro drug release. The coated microparticles showed comparatively less drug release in the 0.1 N HCl while sustained release in PBS (pH 6.8) as compared to uncoated microparticles. The in vivo study on albino rats demonstrated an increase in bioavailability of the coated microparticles as compared to marketed formulation. From the study it can be concluded that alginate coated chitosan microparticles could be a useful carrier for the oral delivery of metoprolol succinate.

  4. Inhalable microparticles containing large payload of anti-tuberculosis drugs.

    PubMed

    Muttil, Pavan; Kaur, Jatinder; Kumar, Kaushlendra; Yadav, Awadh Bihari; Sharma, Rolee; Misra, Amit

    2007-10-01

    Microparticles containing large payloads of two anti-tuberculosis (TB) drugs were prepared and evaluated for suitability as a dry powder inhalation targeting alveolar macrophages. A solution containing one part each of isoniazid and rifabutin, plus two parts poly(lactic acid) (L-PLA) was spray-dried. Drug content and in vitro release were assayed by HPLC, and DSC was used to elucidate release behaviour. Particle size was measured by laser scattering and aerosol characteristics by cascade impaction using a Lovelace impactor. Microparticles were administered to mice using an in-house inhalation apparatus or by intra-tracheal instillation. Drugs in solution were administered orally and by intra-cardiac injection. Flow cytometry and HPLC were used to investigate the specificity and magnitude of targeting macrophages. Microparticles having drug content approximately 50% (w/w), particle size approximately 5 microm and satisfactory aerosol characteristics (median mass aerodynamic diameter, MMAD=3.57 microm; geometric standard deviation, GSD=1.41 microm; fine particle fraction, FPF(<4.6 microm)=78.91+/-8.4%) were obtained in yields of >60%. About 70% of the payload was released in vitro in 10 days. Microparticles targeted macrophages and not epithelial cells on inhalation. Drug concentrations in macrophages were approximately 20 times higher when microparticles were inhaled rather than drug solutions administered. Microparticles were thus deemed suitable for enhanced targeted drug delivery to lung macrophages.

  5. Bone regeneration using injectable BMP-7 loaded chitosan microparticles in rat femoral defect.

    PubMed

    Mantripragada, Venkata P; Jayasuriya, Ambalangodage C

    2016-06-01

    Injectable chitosan microparticles were prepared using a simple coacervation method under physiologically friendly conditions by eliminating oil or toxic chemical, and employing low temperature and pressure for growth factor stability. Amount of 200 ng of bone morphogenetic protein-7 (BMP-7) was incorporated in the chitosan microparticles by two methods: encapsulating and coating techniques. These microparticles were tested in vivo to determine the biological response in a rat femoral bone defect at 6 and 12 weeks. Four groups (n=10) were tested which include two groups for BMP-7 incorporated microparticles (by two techniques), microparticles without BMP-7, and defect itself (negative control). Healthy bone formation was observed around the microparticles, which were only confined to the defect site and did not disperse. Histology indicated minor inflammatory response around the microparticles at 6 weeks, which reduced by 12 weeks. Micro-CT analysis of bone surface density and porosity was found to be significantly more (p<0.05) for microparticles containing groups, in comparison with controls, which suggests that the new bone formed in the presence of microparticles is more interconnected and porous. Collagen fibrils analysis conducted using multiphoton microscopy showed significant improvement in the formation of bundled collagen area (%) in microparticles containing groups in comparison with controls, indicating higher cross-linking between the fibrils. Microparticles were biocompatible and did not degrade in the 12 week implant period. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Aluminum silicide microparticles transformed from aluminum thin films by hypoeutectic interdiffusion

    PubMed Central

    2014-01-01

    Aluminum silicide microparticles with oxidized rough surfaces were formed on Si substrates through a spontaneous granulation process of Al films. This microparticle formation was caused by interdiffusion of Al and Si atoms at hypoeutectic temperatures of Al-Si systems, which was driven by compressive stress stored in Al films. The size, density, and the composition of the microparticles could be controlled by adjusting the annealing temperature, time, and the film thickness. High-density microparticles of a size around 10 μm and with an atomic ratio of Si/Al of approximately 0.8 were obtained when a 90-nm-thick Al film on Si substrate was annealed for 9 h at 550°C. The microparticle formation resulted in a rapid increase of the sheet resistance, which is a consequence of substantial consumption of Al film. This simple route to size- and composition-controllable microparticle formation may lay a foundation stone for the thermoelectric study on Al-Si alloy-based heterogeneous systems. PMID:24994964

  7. Aluminum silicide microparticles transformed from aluminum thin films by hypoeutectic interdiffusion.

    PubMed

    Noh, Jin-Seo

    2014-01-01

    Aluminum silicide microparticles with oxidized rough surfaces were formed on Si substrates through a spontaneous granulation process of Al films. This microparticle formation was caused by interdiffusion of Al and Si atoms at hypoeutectic temperatures of Al-Si systems, which was driven by compressive stress stored in Al films. The size, density, and the composition of the microparticles could be controlled by adjusting the annealing temperature, time, and the film thickness. High-density microparticles of a size around 10 μm and with an atomic ratio of Si/Al of approximately 0.8 were obtained when a 90-nm-thick Al film on Si substrate was annealed for 9 h at 550°C. The microparticle formation resulted in a rapid increase of the sheet resistance, which is a consequence of substantial consumption of Al film. This simple route to size- and composition-controllable microparticle formation may lay a foundation stone for the thermoelectric study on Al-Si alloy-based heterogeneous systems.

  8. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.

    PubMed

    Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao

    2015-09-08

    Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems.

  9. Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect

    NASA Astrophysics Data System (ADS)

    Pominova, Daria V.; Ryabova, Anastasia V.; Grachev, Pavel V.; Romanishkin, Igor D.; Kuznetsov, Sergei V.; Rozhnova, Julia A.; Yasyrkina, Daria S.; Fedorov, Pavel P.; Loschenov, Victor B.

    2016-09-01

    The great interest in upconversion nanoparticles exists due to their high efficiency under multiphoton excitation. However, when these particles are used in scanning microscopy, the upconversion luminescence causes a streaking effect due to the long lifetime. This article describes a method of upconversion microparticle luminescence lifetime determination with help of modified Lucy-Richardson deconvolution of laser scanning microscope (LSM) image obtained under near-IR excitation using nondescanned detectors. Determination of the upconversion luminescence intensity and the decay time of separate microparticles was done by intensity profile along the image fast scan axis approximation. We studied upconversion submicroparticles based on fluoride hosts doped with Yb3+-Er3+ and Yb3+-Tm3+ rare earth ion pairs, and the characteristic decay times were 0.1 to 1.5 ms. We also compared the results of LSM measurements with the photon counting method results; the spread of values was about 13% and was associated with the approximation error. Data obtained from live cells showed the possibility of distinguishing the position of upconversion submicroparticles inside and outside the cells by the difference of their lifetime. The proposed technique allows using the upconversion microparticles without shells as probes for the presence of OH- ions and CO2 molecules.

  10. Potential roles of cell-derived microparticles in ischemic brain disease.

    PubMed

    Horstman, Lawrence L; Jy, Wenche; Bidot, Carlos J; Nordberg, Mary L; Minagar, Alireza; Alexander, J Steven; Kelley, Roger E; Ahn, Yeon S

    2009-10-01

    The objective of this study is to review the role of cell-derived microparticles in ischemic cerebrovascular diseases. An extensive PubMed search of literature pertaining to this study was performed in April 2009 using specific keyword search terms related to cell-derived microparticles and ischemic stroke. Some references are not cited here as it is not possible to be all inclusive or due to space limitation. Cell-derived microparticles are small membranous vesicles released from the plasma membranes of platelets, leukocytes, red cells and endothelial cells in response to diverse biochemical agents or mechanical stresses. They are the main carriers of circulating tissue factor, the principal initiator of intravascular thrombosis, and are implicated in a variety of thrombotic and inflammatory disorders. This review outlines evidence suggesting that cell-derived microparticles are involved predominantly with microvascular, as opposed to macrovascular, thrombosis. More specifically, cell-derived microparticles may substantially contribute to ischemic brain disease in several settings, as well as to neuroinflammatory conditions. If further work confirms this hypothesis, novel therapeutic strategies for minimizing cell-derived microparticles-mediated ischemia are available or can be developed, as discussed.

  11. Microparticles: Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes (Small 24/2016).

    PubMed

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun

    2016-06-01

    Microparticles carrying quick response (QR) barcodes are fabricated by J. Wang and co-workers on page 3259, using a massive coding of dissociated elements (MiCODE) technology. Each microparticle can bear a special custom-designed QR code that enables encryption or tagging with unlimited multiplexity, and the QR code can be easily read by cellphone applications. The utility of MiCODE particles in multiplexed DNA detection and microtagging for anti-counterfeiting is explored. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Particle tracking velocimetry using echocardiographic data resolves flow in the left ventricle

    NASA Astrophysics Data System (ADS)

    Sampath, Kaushik; Abd, Thura T.; George, Richard T.; Katz, Joseph

    2015-11-01

    Two dimensional contrast echocardiography was performed on patients with a history of left ventricular (LV) thrombus. The 636 x 434 pixels electrocardiograms were recorded using a GE Vivid 9E system with (M5S-D and 4V-D) probes in a 2-D mode at a magnification of 0.3 mm/pix. The concentration of 2-4.5 micron seed bubbles was adjusted to obtain individually discernable traces, and a data acquisition rate of 60-90 fps kept the inter-frame displacements suitable for matching traces, and calculating vectors, but yet low enough to allow a scanning depth and width of upto 13 cm and 60 degrees respectively. Particle tracking velocimetry (PTV) guided by initial particle image velocimetry (PIV) was used to obtain the velocity distributions inside the LV with vector spacing of 3-5 mm. The data quality was greatly enhanced by implementing an iterative particle specific enhancement and tracking algorithm. Data covering 20 heart beats facilitated phase averaging. The results elucidated blood flow in the intra-ventricular septal region, lateral wall region, the apex of the LV and the mitral valve region.

  13. Increased levels of circulating platelet derived microparticles in Crohn's disease patients.

    PubMed

    Tziatzios, Georgios; Polymeros, Dimitrios; Spathis, Aris; Triantafyllou, Maria; Gkolfakis, Paraskevas; Karakitsos, Petros; Dimitriadis, George; Triantafyllou, Konstantinos

    2016-10-01

    Platelet activation is a consistent feature in inflammatory bowel disease. However, the role of circulating platelet derived microparticles (PDMPs) and the effects of disease activity and treatment on their levels has not been clarified yet in this disorder. Using flow cytometry, we measured platelet derived microparticles and platelet derived microparticles expressing Annexin V in platelet rich plasma from 47 Crohn's disease and 43 ulcerative colitis patients and 24 healthy controls. Crohn's disease patients have greater PDMPs (0.31% ± 0.07% versus 0.14% ± 0.04%, p = 0.02) and PDMPs expressing Annexin V (27% ± 2.6% versus 14.6% ± 2.7%, p = 0.002) levels in comparison with healthy controls; however, both microparticles levels are not related with disease activity. Crohn's disease patients on 5-ASA therapy show lower levels of PDMPs in comparison with those on no 5-ASA (0.30% ± 0.07% versus 0.32% ± 0.09%, p = 0.048). Ulcerative colitis patients have similar PDMPs and PDMPs expressing Annexin V levels, compared to healthy controls (p = 0.06 and p = 0.2, respectively) and there is no correlation of both microparticles expression with disease activity. 5-ASA has no effect on both microparticles levels in ulcerative colitis patients. Anti-TNF-α treatment has no effect on study's microparticles expression in Crohn's and ulcerative colitis patients. Circulating levels of platelet derived microparticles are increased only in Crohn's patients, but they do not correlate with disease activity. 5-ASA treatment is associated with lower levels of PDMPs only in Crohn's, while anti-TNF-α treatment does not influence expression of microparticles in inflammatory bowel disease patients.

  14. Characteristic study of flat spray nozzle by using particle image velocimetry (PIV) and ANSYS simulation method

    NASA Astrophysics Data System (ADS)

    Pairan, M. Rasidi; Asmuin, Norzelawati; Isa, Nurasikin Mat; Sies, Farid

    2017-04-01

    Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. This project studies the water droplet velocity and penetration angle generated by new development mist spray with a flat spray pattern. This research conducted into two part which are experimental and simulation section. The experimental was conducted by using particle image velocimetry (PIV) method, ANSYS software was used as tools for simulation section meanwhile image J software was used to measure the penetration angle. Three different of combination pressure of air and water were tested which are 1 bar (case A), 2 bar (case B) and 3 bar (case C). The flat spray generated by the new development nozzle was examined at 9cm vertical line from 8cm of the nozzle orifice. The result provided in the detailed analysis shows that the trend of graph velocity versus distance gives the good agreement within simulation and experiment for all the pressure combination. As the water and air pressure increased from 1 bar to 2 bar, the velocity and angle penetration also increased, however for case 3 which run under 3 bar condition, the water droplet velocity generated increased but the angle penetration is decreased. All the data then validated by calculate the error between experiment and simulation. By comparing the simulation data to the experiment data for all the cases, the standard deviation for this case A, case B and case C relatively small which are 5.444, 0.8242 and 6.4023.

  15. Formation of inhalable rifampicin-poly(L-lactide) microparticles by supercritical anti-solvent process.

    PubMed

    Patomchaiviwat, Vipaluk; Paeratakul, Ornlaksana; Kulvanich, Poj

    2008-01-01

    Formation of inhalable microparticles containing rifampicin and poly(L-lactide) (L-PLA) by using supercritical anti-solvent process (SAS) was investigated. The solutions of drug and polymer in methylene chloride were sprayed into supercritical carbon dioxide. The effect of polymer content and operating conditions, temperature, pressure, carbon dioxide molar fraction, and concentration of solution, on product characteristics were studied. The prepared microparticles were characterized with respect to their morphology, particle size and size distribution, drug content, drug loading efficiency, and drug release characteristic. Discrete, spherical microparticles were obtained at high polymer:drug ratios of 7:3, 8:2, and 9:1. The shape of L-PLA microparticles became more irregular and agglomerated with decreasing polymer content. Microparticles with polymer content higher than 60% exhibited volumetric mean diameter less than 5 microm, but percent drug loading efficiency was relatively low. Drug-loaded microparticles containing 70% and 80% L-PLA showed a sustainable drug release property without initial burst release. Operating temperature level influenced on mean size and size distribution of microparticles. The operating pressure and carbon dioxide molar fraction in the range investigated were unlikely to have an effect on microparticle formation. An increasing concentration of feed solution provided larger size microparticles. Rifampicin-loaded L-PLA microparticles could be produced by SAS in a size range suitable for dry powder inhaler formulation.

  16. Flow-Tagging Velocimetry for Hypersonic Flows Using Fluorescence of Nitric Oxide

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; OByrne, Sean; Houwing, A. Frank P.; Fox, Jodie S.; Smith, Daniel R.

    2003-01-01

    We demonstrate a new variation of molecular-tagging velocimetry for hypersonic flows based on laser-induced fluorescence. A thin line of nitric-oxide molecules is excited with a laser beam and then, after a time delay, a fluorescence image of the displaced line is acquired. One component of velocity is determined from the time of flight. This method is applied to measure the velocity profile in a Mach 8.5 laminar, hypersonic boundary layer in the Australian National University s T2 free-piston shock tunnel. The single-shot velocity measurement uncertainty in the freestream was found to be 3.5%, based on 90% confidence. The method is also demonstrated in the separated flow region forward of a blunt fin attached to a flat plate in a Mach 7.4 flow produced by the Australian National University s T3 free-piston shock tunnel. The measurement uncertainty in the blunt fin experiment is approximately 30%, owing mainly to low fluorescence intensities, which could be improved significantly in future experiments. This velocimetry method is applicable to very high-speed flows that have low collisional quenching of the fluorescing species. It is particularly convenient in facilities where planar laser-induced fluorescence is already being performed.

  17. Laser velocimetry with fluorescent dye-doped polystyrene microspheres.

    PubMed

    Lowe, K Todd; Maisto, Pietro; Byun, Gwibo; Simpson, Roger L; Verkamp, Max; Danehy, Paul M; Tiemsin, Pacita I; Wohl, Christopher J

    2013-04-15

    Simultaneous Mie scattering and laser-induced fluorescence (LIF) signals are obtained from individual polystyrene latex microspheres dispersed in an air flow. Microspheres less than 1 μm mean diameter were doped with two organic fluorescent dyes, Rhodamine B (RhB) and dichlorofluorescein (DCF), intended either to provide improved particle-based flow velocimetry in the vicinity of surfaces or to provide scalar flow information (e.g., marking one of two fluid streams). Both dyes exhibit measureable fluorescence signals that are on the order of 10(-3) to 10(-4) times weaker than the simultaneously measured Mie signals. It is determined that at the conditions measured, 95.5% of RhB LIF signals and 32.2% of DCF signals provide valid laser-Doppler velocimetry measurements compared with the Mie scattering validation rate with 6.5 W of 532 nm excitation, while RhB excited with 1.0 W incident laser power still exhibits 95.4% valid velocimetry signals from the LIF channel. The results suggest that the method is applicable to wind tunnel measurements near walls where laser flare can be a limiting factor and monodisperse particles are essential.

  18. IGF-1 Release Kinetics from Chitosan Microparticles Fabricated Using Environmentally Benign Conditions

    PubMed Central

    Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.

    2014-01-01

    The main objective of this study is to maximize growth factor encapsulation efficiency into microparticles. The novelty of this study is to maximize the encapsulated growth factors into microparticles by minimizing the use of organic solvents and using relatively low temperatures. The microparticles were fabricated using chitosan biopolymer as a base polymer and cross-linked with tripolyphosphate (TPP). Insulin like-growth factor-1 (IGF-1) was encapsulated into microparticles to study release kinetics and bioactivity. In order to authenticate the harms of using organic solvents like hexane and acetone during microparticle preparation, IGF-1 encapsulated microparticles prepared by the emulsification and coacervation methods were compared. The microparticles fabricated by emulsification method have shown a significant decrease (p<0.05) in IGF-1 encapsulation efficiency, and cumulative release during the two-week period. The biocompatibility of chitosan microparticles and the bioactivity of the released IGF-1 were determined in vitro by live/dead viability assay. The mineralization data observed with Von Kossa assay, was supported by mRNA expression levels of osterix and runx2, which are transcription factors necessary for osteoblasts differentiation. Real time RT-PCR data showed an increased expression of runx 2 and a decreased expression of osterix over time, indicating differentiating osteoblasts. Chitosan microparticles prepared in optimum environmental conditions are a promising controlled delivery system for cells to attach, proliferate, differentiate and mineralize, thereby acting as a suitable bone repairing material. PMID:25063148

  19. Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes.

    PubMed

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun

    2016-06-01

    Encoded microparticles are high demand in multiplexed assays and labeling. However, the current methods for the synthesis and coding of microparticles either lack robustness and reliability, or possess limited coding capacity. Here, a massive coding of dissociated elements (MiCODE) technology based on innovation of a chemically reactive off-stoichimetry thiol-allyl photocurable polymer and standard lithography to produce a large number of quick response (QR) code microparticles is introduced. The coding process is performed by photobleaching the QR code patterns on microparticles when fluorophores are incorporated into the prepolymer formulation. The fabricated encoded microparticles can be released from a substrate without changing their features. Excess thiol functionality on the microparticle surface allows for grafting of amine groups and further DNA probes. A multiplexed assay is demonstrated using the DNA-grafted QR code microparticles. The MiCODE technology is further characterized by showing the incorporation of BODIPY-maleimide (BDP-M) and Nile Red fluorophores for coding and the use of microcontact printing for immobilizing DNA probes on microparticle surfaces. This versatile technology leverages mature lithography facilities for fabrication and thus is amenable to scale-up in the future, with potential applications in bioassays and in labeling consumer products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Instantaneous Doppler Global Velocimetry Measurements of a Rotor Wake: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Meyers, James; Fleming, Gary A.; Gorton, Susan Althoff; Berry, John D.

    1998-01-01

    A combined Doppler Global Velocimetry (DGV) and Projection Moir Interferometry (PMI) investigation of a helicopter rotor wake flow field and rotor blade deformation is presented. The three-component DGV system uses a single-frequency, frequency-doubled Nd:YAG laser to obtain instantaneous velocity measurements in the flow. The PMI system uses a pulsed laser-diode bar to obtain blade bending and twist measurements at the same instant that DGV measured the flow. The application of pulse lasers to DGV and PMI in large-scale wind tunnel applications represents a major step forward in the development of these technologies. As such, a great deal was learned about the difficulties of using these instruments to obtain instantaneous measurements in large facilities. Laser speckle and other image noise in the DGV data images were found to be traceable to the Nd:YAG laser. Although image processing techniques were used to virtually eliminate laser speckle noise, the source of low-frequency image noise is still under investigation. The PMI results agreed well with theoretical predictions of blade bending and twist.

  1. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  2. Colour-barcoded magnetic microparticles for multiplexed bioassays.

    PubMed

    Lee, Howon; Kim, Junhoi; Kim, Hyoki; Kim, Jiyun; Kwon, Sunghoon

    2010-09-01

    Encoded particles have a demonstrated value for multiplexed high-throughput bioassays such as drug discovery and clinical diagnostics. In diverse samples, the ability to use a large number of distinct identification codes on assay particles is important to increase throughput. Proper handling schemes are also needed to readout these codes on free-floating probe microparticles. Here we create vivid, free-floating structural coloured particles with multi-axis rotational control using a colour-tunable magnetic material and a new printing method. Our colour-barcoded magnetic microparticles offer a coding capacity easily into the billions with distinct magnetic handling capabilities including active positioning for code readouts and active stirring for improved reaction kinetics in microscale environments. A DNA hybridization assay is done using the colour-barcoded magnetic microparticles to demonstrate multiplexing capabilities.

  3. Thermoporometry characterization of silica microparticles and nanowires.

    PubMed

    Wu, Jiaxin; Zheng, Han; Cheng, He; Zhou, L; Leong, K C; Rajagopalan, R; Too, H P; Choi, W K

    2014-03-04

    We present the results of a systematic study on the porosity of silica microparticles and nanowires prepared by glancing angle deposition-metal-assisted chemical etching (GLAD-MACE) and interference lithography-metal-assisted chemical etching (IL-MACE) techniques using the thermoporometry (TPM) method. Good agreement was obtained between our TPM results and published data provided by the suppliers of silica microparticles. TPM characterization of the GLAD-MACE and IL-MACE nanowires was carried out on the basis of parameters obtained from TPM experiments on microparticles. Our nanowires showed a similar trend but lower values of the pore volume and surface area than nanowires prepared by MACE with AgNO3 solution. We attribute the enhanced bioanalysis performance of the GLAD-MACE nanowires based devices to the increased pore volume and total surface area of the nanowires.

  4. Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  5. Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  6. Four-dimensional (4D) tracking of high-temperature microparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui, E-mail: zwang@lanl.gov; Liu, Q.; Waganaar, W.

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  7. Four-dimensional (4D) tracking of high-temperature microparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-11-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  8. Four-dimensional (4D) tracking of high-temperature microparticles

    DOE PAGES

    Wang, Zhehui; Liu, Qiuguang; Waganaar, Bill; ...

    2016-07-08

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. As a result, velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  9. Four-dimensional (4D) tracking of high-temperature microparticles.

    PubMed

    Wang, Zhehui; Liu, Q; Waganaar, W; Fontanese, J; James, D; Munsat, T

    2016-11-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  10. Atmospheric laser Doppler velocimetry - An overview

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.

    1980-01-01

    Research, development, and application of atmospheric laser Doppler velocimetry are overviewed. Consideration is given to operation principles of CO2 heterodyne systems. Global wind, pollution, V/STOL flow, and true airspeed measurements are outlined. Wind energy, dust devils, water spouts, tornadoes, and aircraft wake vortices are covered.

  11. Cell-derived microparticles in the pathogenesis of cardiovascular disease: friend or foe?

    PubMed

    Tushuizen, Maarten E; Diamant, Michaela; Sturk, Augueste; Nieuwland, Rienk

    2011-01-01

    Microparticles are ascribed important roles in coagulation, inflammation, and endothelial function. These processes are mandatory to safeguard the integrity of the organism, and their derangements contribute to the development of atherosclerosis and cardiovascular disease. More recently, the presumed solely harmful role of microparticles has been challenged because microparticles may also be involved in the maintenance and preservation of cellular homeostasis and in promoting defense mechanisms. Here, we summarize recent studies revealing these 2 faces of microparticles in cardiovascular disease.

  12. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    DOE PAGES

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; ...

    2016-01-01

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less

  13. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less

  14. Detection of microparticles from human red blood cells by multiparametric flow cytometry

    PubMed Central

    Grisendi, Giulia; Finetti, Elena; Manganaro, Daniele; Cordova, Nicoletta; Montagnani, Giuliano; Spano, Carlotta; Prapa, Malvina; Guarneri, Valentina; Otsuru, Satoru; Horwitz, Edwin M.; Mari, Giorgio; Dominici, Massimo

    2015-01-01

    Background During storage, red blood cells (RBC) undergo chemical and biochemical changes referred to as “storage lesions”. These events determine the loss of RBC integrity, resulting in lysis and release of microparticles. There is growing evidence of the clinical importance of microparticles and their role in blood transfusion-related side effects and pathogen transmission. Flow cytometry is currently one of the most common techniques used to quantify and characterise microparticles. Here we propose multiparametric staining to monitor and quantify the dynamic release of microparticles by stored human RBC. Material and methods RBC units (n=10) were stored under blood bank conditions for up to 42 days. Samples were tested at different time points to detect microparticles and determine the haemolysis rate (HR%). Microparticles were identified by flow cytometry combining carboxyfluorescein diacetate succinimidyl ester (CFSE) dye, annexin V and anti-glycophorin A antibody. Results We demonstrated that CFSE can be successfully used to label closed vesicles with an intact membrane. The combination of CFSE and glycophorin A antibody was effective for monitoring and quantifying the dynamic release of microparticles from RBC during storage. Double staining with CFSE/glycophorin A was a more precise approach, increasing vesicle detection up to 4.7-fold vs the use of glycophorin A/annexin V alone. Moreover, at all the time points tested, we found a robust correlation (R=0.625; p=0.0001) between HR% and number of microparticles detected. Discussion Multiparametric staining, based on a combination of CFSE, glycophorin A antibody and annexin V, was able to detect, characterise and monitor the release of microparticles from RBC units during storage, providing a sensitive approach to labelling and identifying microparticles for transfusion medicine and, more broadly, for cell-based therapies. PMID:25369588

  15. Mucoadhesive microparticles for local treatment of gastrointestinal diseases.

    PubMed

    Preisig, Daniel; Roth, Roger; Tognola, Sandy; Varum, Felipe J O; Bravo, Roberto; Cetinkaya, Yalcin; Huwyler, Jörg; Puchkov, Maxim

    2016-08-01

    Mucoadhesive microparticles formulated in a capsule and delivered to the gastrointestinal tract might be useful for local drug delivery. However, swelling and agglomeration of hydrophilic polymers in the gastrointestinal milieu can have a negative influence on particle retention of mucoadhesive microparticles. In this work, we investigated the impact of dry-coating with nano-sized hydrophilic fumed silica on dispersibility and particle retention of mucoadhesive microparticles. As a model for local treatment of gastrointestinal diseases, antibiotic therapy of Clostridium difficile infections with metronidazole was selected. For particle preparation, we used a two-step fluidized-bed method based on drug loading of porous microcarriers and subsequent outer coating with the mucoadhesive polymer chitosan. The prepared microparticles were analysed for drug content, and further characterized by thermal analysis, X-ray diffraction, and scanning electron microscopy. The optimal molecular weight and content of chitosan were selected by measuring particle retention on porcine colonic mucosa under dynamic flow conditions. Mucoadhesive microparticles coated with 5% (weight of chitosan coating/total weight of particles) of low molecular weight chitosan showed good in vitro particle retention, and were used for the investigation of dispersibility enhancement. By increasing the amount of silica, the dissolution rate measured in the USPIV apparatus was increased, which was an indirect indication for improved dispersibility due to increased surface area. Importantly, mucoadhesion was not impaired up to a silica concentration of 5% (w/w). In summary, mucoadhesive microparticles with sustained-release characteristics over several hours were manufactured at pilot scale, and dry-coating with silica nanoparticles has shown to improve the dispersibility, which is essential for better particle distribution along the intestinal mucosa in humans. Therefore, this advanced drug delivery

  16. Endocytosis of Red Blood Cell Microparticles by Pulmonary Endothelial Cells is Mediated By Rab5.

    PubMed

    Kim, Young; Abplanalp, William A; Jung, Andrew D; Schuster, Rebecca M; Lentsch, Alex B; Gulbins, Erich; Caldwell, Charles C; Pritts, Timothy A

    2018-03-01

    Microparticles are submicron vesicles shed from aging erythrocytes as a characteristic feature of the red blood cell (RBC) storage lesion. Exposure of pulmonary endothelial cells to RBC-derived microparticles promotes an inflammatory response, but the mechanisms underlying microparticle-induced endothelial cell activation are poorly understood. In the present study, cultured murine lung endothelial cells (MLECs) were treated with microparticles isolated from aged murine packed RBCs or vehicle. Microparticle-treated cells demonstrated increased expression of the adhesion molecules ICAM and E-selectin, as well as the cytokine, IL-6. To identify mechanisms that mediate these effects of microparticles on MLECs, cells were treated with microparticles covalently bound to carboxyfluorescein succinimidyl ester (CFSE) and cellular uptake of microparticles was quantified via flow cytometry. Compared with controls, there was a greater proportion of CFSE-positive MLECs from 15 min up to 24 h, suggesting endocytosis of the microparticles by endothelial cells. Colocalization of microparticles with lysosomes was observed via immunofluorescence, indicating endocytosis and endolysosomal trafficking. This process was inhibited by endocytosis inhibitors. SiRNA knockdown of Rab5 signaling protein in endothelial cells resulted in impaired microparticle uptake as compared with nonsense siRNA-treated cells, as well as an attenuation of the inflammatory response to microparticle treatment. Taken together, these data suggest that endocytosis of RBC-derived microparticles by lung endothelial cells results in endothelial cell activation. This response seems to be mediated, in part, by the Rab5 signaling protein.

  17. Spray Dried Chitosan Microparticles for Intravesical Delivery of Celecoxib: Preparation and Characterization.

    PubMed

    Lopedota, Angela; Cutrignelli, Annalisa; Laquintana, Valentino; Denora, Nunzio; Iacobazzi, Rosa Maria; Perrone, Mara; Fanizza, Elisabetta; Mastrodonato, Maria; Mentino, Donatella; Lopalco, Antonio; Depalo, Nicoletta; Franco, Massimo

    2016-09-01

    Chitosan microparticles containing celecoxib (CB), were developed as chemoprevention of bladder cancer. Furthermore two inclusion complexes of CB with methyl-β-cyclodextrin (C1 and C2) were prepared to improve the solubility of the drug. C1 and C2 were obtained by freeze-drying and characterized in the solid state and in solution. Microparticles loaded with CB or C1 or C2 were prepared by spray drying and fully characterized. The yield and encapsulation efficiencies of microparticles depended by both the viscosity and the presence of the inclusion complex in the feed medium nebulised. Generally, the microparticles exhibited a spherical shape with mean diameter of approximately 2 μm which was compatible with local intravesical administration using a catheter. The CB release studies from the microparticles allowed us to identify both immediate release systems (microparticles including the complexes) and prolonged release systems (microparticles including CB alone). The latter exhibited good adhesion to the bladder mucosa, as highlighted by a mucoadhesion study. Histological studies revealed a desquamation of the superficial cells when the bladder mucosa was treated with microparticles loaded with CB, while the morphology of the urothelium did not change when it was treated with microparticles loaded with the inclusion complex. A new CB intravesical formulation than can easily be administered with a catheter and is able to release the drug at the target site for several hours was realized. This new delivery system could be a good alternative to classic oral CB administration.

  18. Optimized preparation of in situ forming microparticles for the parenteral delivery of vinpocetine.

    PubMed

    Li, Jizhong; Chen, Fei; Hu, Chanjuan; He, Ling; Yan, Keshu; Zhou, Liying; Pan, Weisan

    2008-06-01

    A spherical symmetric design-response surface methodology was applied to optimize the preparation of vinpocetine-loaded poly(D,L-lactide-co-glycolide) PLGA in situ forming microparticles (ISM system). The influence of the ratio of PLGA to vinpocetine (w/w), the concentration of Tween 80 (w/v) and the volume of propylene glycol on the burst release, medium particle diameter and size distribution was evaluated. Scan electron microscopy of the optimized in situ microparticles exhibited spherical shape, and vinpocetine-loading mainly inside the microparticles. The data showed that the release of vinpocetine from in situ microparticles in vitro and in vivo lasted about 40 d. In vivo pharmacokinetic characteristics of the optimized in situ microparticles was assessed after they were intramuscularly injected into rats. HPLC method was used to determine the plasma concentration of vinpocetine. The absolute bioavailability of vinpocetine in the microparticles was 27.6% in rats, which suggested that PLGA in situ microparticles were a valuable system for the delivery of vinpocetine.

  19. Novel hierarchical microparticles super-assembled from nanoparticles with the induction of casein micelles

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaopeng; Duan, Jiangjiang; Wang, Yong; Yu, Zhaoju

    2013-08-01

    We have demonstrated a solution-based synthesis of novel waxberry-like hierarchical ZnO microparticles in the presence casein micelles under mild conditions. The microstructures of the sub-micrometer-sized hierarchical microparticles were characterized, and the synthesis conditions were optimized. The formation mechanism of the hierarchical microparticle was analyzed through control experiments. The hierarchical ZnO microparticles are found to be super-assemblies of 30-70 nm ZnO nanoparticles, which are thought to be based on casein micelle induction followed by Ostwald ripening. In the same manner, copper-based hierarchical microparticles with a similar morphology have also been successfully synthesized. By controlling the synthetic time or temperature, solid or hollow microparticles can be fabricated. The narrowly distributed ZnO microparticles have a high specific surface area, exhibiting great potential application in fields such as photocatalytic and energy conversion. Our findings may meanwhile open a new bottom-up strategy in order to construct structurally sophisticated nanomaterials.

  20. Review of Fluorescence-Based Velocimetry Techniques to Study High-Speed Compressible Flows

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Criag; Inman, Jennifer A.; Jones, Stephen B.; Danehy, Paul M.

    2013-01-01

    This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.

  1. Novel cryomilled physically cross-linked biodegradable hydrogel microparticles as carriers for inhalation therapy.

    PubMed

    El-Sherbiny, I M; Smyth, H D C

    2010-01-01

    In this study, novel biodegradable physically cross-linked hydrogel microparticles were developed and evaluated in-vitro as potential carriers for inhalation therapy. These hydrogel microparticles were prepared to be respirable (desired aerodynamic size) when dry and also designed to avoid the macrophage uptake (attain large swollen size once deposited in lung). The swellable microparticles, prepared using cryomilling, were based on Pluronic® F-108 in combination with PEG grafted onto both chitosan (Cs) and its N-phthaloyl derivative (NPHCs). Polymers synthesized in the study were characterized using EA, FTIR, 2D-XRD and DSC. Morphology, particle size, density, biodegradation and moisture content of the microparticles were quantified. Swelling characteristics for both drug-free and drug-loaded microparticles showed excellent size increases (between 700-1300%) and the release profiles indicated sustained release could be achieved for up to 20 days. The respirable microparticles showed drug loading efficiency up to 92%. The enzymatic degradation of developed microparticles started within the first hour and only ∼10% weights were remaining after 10 days. In conclusion, these respirable microparticles demonstrated promising in-vitro performance for potential sustained release vectors in pulmonary drug delivery.

  2. New Poly(3-hydroxybutyrate) Microparticles with Paclitaxel Sustained Release for Intraperitoneal Administration.

    PubMed

    Bonartsev, Anton P; Zernov, Anton L; Yakovlev, Sergey G; Zharkova, Irina I; Myshkina, Vera L; Mahina, Tatiana K; Bonartseva, Garina A; Andronova, Natalia V; Smirnova, Galina B; Borisova, Juliya A; Kalishjan, Mikhail S; Shaitan, Konstantin V; Treshalina, Helena M

    2017-01-01

    Poly(hydroxyalkanoates) (PHA) have recently attracted increasing attention due to their biodegradability and high biocompatibility, which makes them suitable for the development of new prolong drug formulations. This study was conducted to develop new prolong paclitaxel (PTX) formulation based on poly(3- hydroxybutyrate) (PHB) microparticles. PHB microparticles loaded with antitumor cytostatic drug PTX were obtained by spray-drying method using Nano Spray Dryer B-90. The PTX release kinetics in vitro from PHB microparticles and their cytotoxity on murine hepatoma cell line MH-22a were studied. Microparticles antitumor activity in vivo was studied using intraperitoneally (i.p.) transplanted tumor models: murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. Uniform PTX release from PHB-microparticles during 2 months was observed. PTX-loaded PHB microparticles have demonstrated a significant antitumor activity versus pure drug both in vitro in murine hepatoma cells and in vivo when administered i.p. to mice with murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. The developed technique of PTX sustained delivery from PHB-microparticles has therapeutic potential as prolong anticancer drug formulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases

    PubMed Central

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-01-01

    Background Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Design and Methods Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Results Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-α) and also induced allogeneic naive CD4+ T cells to proliferate and to produce type 1 cytokines such as interferon-γ and tumor necrosis factor-α. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Conclusions Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in

  4. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    PubMed

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  5. Effect of strenuous physical exercise on circulating cell-derived microparticles.

    PubMed

    Chaar, Vicky; Romana, Marc; Tripette, Julien; Broquere, Cédric; Huisse, Marie-Geneviève; Hue, Olivier; Hardy-Dessources, Marie-Dominique; Connes, Philippe

    2011-01-01

    Strenuous exercise is associated with an inflammatory response involving the activation of several types of blood cells. In order to document the specific activation of these cell types, we studied the effect of three maximal exercise tests conducted to exhaustion on the quantitative and qualitative pattern of circulating cell-derived microparticles and inflammatory molecules in healthy subjects. This study mainly indicated that the plasma concentration of microparticles from platelets and polymorphonuclear neutrophils (PMN) was increased immediately after the strenuous exercise. In addition, the increase in plasma concentration of microparticles from PMN and platelets was still observed after 2 hours of recovery. A similar pattern was observed for the IL-6 plasma level. In contrast, no change was observed for either soluble selectins or plasma concentration of microparticles from red blood cells, monocytes and endothelial cells. In agreement, sVCAM-1 and sICAM-1 levels were not changed by the exercise. We conclude that a strenuous exercise is accompanied by platelet- and PMN-derived microparticle production that probably reflects the activation of these two cell types.

  6. Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV).

    PubMed

    Koch, Jon D; Jaramillo, David E; DiVito, Enrico; Peters, Ove A

    2016-03-01

    This study aimed to compare fluid movements generated from photon-induced photoacoustic streaming (PIPS) and passive ultrasonic irrigation (PUI). Particle Image Velocimetry (PIV) was performed using 6-μm melamine spheres in water. Measurement areas were 3-mm-long sections of the canal in the coronal, midroot and apical regions for PIPS (erbium/yttrium-aluminium garnet (Er:YAG) laser set at 15 Hz with 20 mJ), or passive ultrasonic irrigation (PUI, non-cutting insert at 30% unit power) was performed in simulated root canals prepared to an apical size #30/0.04 taper. Fluid movement was analysed directly subjacent to the apical ends of ultrasonic insert or fiber optic tips as well as at midroot and apically. During PUI, measured average velocities were around 0.03 m/s in the immediate vicinity of the sides and tip of the ultrasonic file. Speeds decayed to non-measureable values at a distance of about 2 mm from the sides and tip. During PIPS, typical average speeds were about ten times higher than those measured for PUI, and they were measured throughout the length of the canal, at distances up to 20 mm away. PIPS caused higher average fluid speeds when compared to PUI, both close and distant from the instrument. The findings of this study could be relevant to the debriding and disinfecting stage of endodontic therapy. Irrigation enhancement beyond needle irrigation is relevant to more effectively eradicate microorganisms from root canal systems. PIPS may be an alternative approach due to its ability to create high streaming velocities further away from the activation source compared to ultrasonic activation.

  7. Imaging vulnerable plaques by targeting inflammation in atherosclerosis using fluorescent-labeled dual-ligand microparticles of iron oxide and magnetic resonance imaging.

    PubMed

    Chan, Joyce M S; Monaco, Claudia; Wylezinska-Arridge, Marzena; Tremoleda, Jordi L; Cole, Jennifer E; Goddard, Michael; Cheung, Maggie S H; Bhakoo, Kishore K; Gibbs, Richard G J

    2018-05-01

    Identification of patients with high-risk asymptomatic carotid plaques remains an elusive but essential step in stroke prevention. Inflammation is a key process in plaque destabilization and a prelude to clinical sequelae. There are currently no clinical imaging tools to assess the inflammatory activity within plaques. This study characterized inflammation in atherosclerosis using dual-targeted microparticles of iron oxide (DT-MPIO) as a magnetic resonance imaging (MRI) probe. DT-MPIO were used to detect and characterize inflammatory markers, vascular cell adhesion molecule 1 (VCAM-1). and P-selectin on (1) tumor necrosis factor-α-treated cells by immunocytochemistry and (2) aortic root plaques of apolipoprotein-E deficient mice by in vivo MRI. Furthermore, apolipoprotein E-deficient mice with focal carotid plaques of different phenotypes were developed by means of periarterial cuff placement to allow in vivo molecular MRI using these probes. The association between biomarkers and the magnetic resonance signal in different contrast groups was assessed longitudinally in these models. Immunocytochemistry confirmed specificity and efficacy of DT-MPIO to VCAM-1 and P-selectin. Using this in vivo molecular MRI strategy, we demonstrated (1) the DT-MPIO-induced magnetic resonance signal tracked with VCAM-1 (r = 0.69; P = .014), P-selectin (r = 0.65; P = .022), and macrophage content (r = 0.59; P = .045) within aortic root plaques and (2) high-risk inflamed plaques were distinguished from noninflamed plaques in the murine carotid artery within a practical clinical imaging time frame. These molecular MRI probes constitute a novel imaging tool for in vivo characterization of plaque vulnerability and inflammatory activity in atherosclerosis. Further development and translation into the clinical arena will facilitate more accurate risk stratification in carotid atherosclerotic disease in the future. Copyright © 2017 Society for Vascular Surgery. Published by

  8. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles

    PubMed Central

    Walid Rezanoor, Md.; Dutta, Prashanta

    2016-01-01

    Electrorotation is widely used for characterization of biological cells and materials using a rotating electric field. Generally, multiphase AC electric fields and quadrupolar electrode configuration are needed to create a rotating electric field for electrorotation. In this study, we demonstrate a simple method to rotate dielectrophoretically trapped microparticles using a stationary AC electric field. Coplanar interdigitated electrodes are used to create a linearly polarized nonuniform AC electric field. This nonuniform electric field is employed for dielectrophoretic trapping of microparticles as well as for generating electroosmotic flow in the vicinity of the electrodes resulting in rotation of microparticles in a microfluidic device. The rotation of barium titanate microparticles is observed in 2-propanol and methanol solvent at a frequency below 1 kHz. A particle rotation rate as high as 240 revolutions per minute is observed. It is demonstrated that precise manipulation (both rotation rate and equilibrium position) of the particles is possible by controlling the frequency of the applied electric field. At low frequency range, the equilibrium positions of the microparticles are observed between the electrode edge and electrode center. This method of particle manipulation is different from electrorotation as it uses induced AC electroosmosis instead of electric torque as in the case of electrorotation. Moreover, it has been shown that a microparticle can be rotated along its own axis without any translational motion. PMID:27014394

  9. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.

    PubMed

    Walid Rezanoor, Md; Dutta, Prashanta

    2016-03-01

    Electrorotation is widely used for characterization of biological cells and materials using a rotating electric field. Generally, multiphase AC electric fields and quadrupolar electrode configuration are needed to create a rotating electric field for electrorotation. In this study, we demonstrate a simple method to rotate dielectrophoretically trapped microparticles using a stationary AC electric field. Coplanar interdigitated electrodes are used to create a linearly polarized nonuniform AC electric field. This nonuniform electric field is employed for dielectrophoretic trapping of microparticles as well as for generating electroosmotic flow in the vicinity of the electrodes resulting in rotation of microparticles in a microfluidic device. The rotation of barium titanate microparticles is observed in 2-propanol and methanol solvent at a frequency below 1 kHz. A particle rotation rate as high as 240 revolutions per minute is observed. It is demonstrated that precise manipulation (both rotation rate and equilibrium position) of the particles is possible by controlling the frequency of the applied electric field. At low frequency range, the equilibrium positions of the microparticles are observed between the electrode edge and electrode center. This method of particle manipulation is different from electrorotation as it uses induced AC electroosmosis instead of electric torque as in the case of electrorotation. Moreover, it has been shown that a microparticle can be rotated along its own axis without any translational motion.

  10. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery.

    PubMed

    Tewes, Frederic; Gobbo, Oliviero L; Ehrhardt, Carsten; Healy, Anne Marie

    2016-01-20

    Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution.

  11. Isolation and phenotypic characteristics of microparticles in acute respiratory distress syndrome

    PubMed Central

    Li, Hongxia; Meng, Xiangyu; Gao, Yue; Cai, Shaohua

    2015-01-01

    Objective: To investigate the alterations of microparticles in acute respiratory distress syndrome (ARDS) in rats. Methods: 18 Wistar male rats were randomly divided into three groups: no intervention, sham (saline control) group and ARDS group (LPS induced). Blood was collected from abdominal aorta and microparticles were extracted through multiple rounds of centrifugation. Particles were analyzed by flow cytometry and transmission electron microscope. Results: The circulating concentration of total microparticles of rats with ARDS induced by lipopolysaccharide (LPS) did not change compared with other two groups. However, ARDS rats expressed higher concentration of leukocyte- and endothelium- derived microparticles in the three groups. Conclusion: Our results indicate that leukocyte and endothelial cell-derived particles may play an important role in ARDS. Thus it is important not only to monitor total microparticle levels but also the phenotypes, which may contribute to the prevention and early treatment of ARDS. PMID:25973049

  12. Corrosive and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy.

    PubMed

    Ristic, Ljubisa; Vucevic, Dragana; Radovic, Ljubica; Djordjevic, Snezana; Nikacevic, Milutin; Colic, Miodrag

    2014-04-01

    Nickel-chromium (Ni-Cr) dental alloys have been widely used in prosthodontic practice, but there is a permanent concern about their biocompatibility due to the release of metal ions. This is especially important when Ni-Cr metal microparticles are incorporated into gingival tissue during prosthodontic procedures. Therefore, the aim of this study was to examine and compare the corrosion and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy. Ni-Cr alloy, Remanium CSe bars (4 mm diameter), were made by the standard casting method and then cut into 0.5-mm-thick disks. Metal particles were obtained by scraping the bars using a diamond instrument for crown preparation. The microstructure was observed by an optical microscope. Quantitative determination and morphological and dimensional characterization of metal particles were carried out by a scanning electron microscope and Leica Application Suite software for image analysis. Corrosion was studied by conditioning the alloy specimens in the RPMI 1640 medium, containing 10% fetal calf serum in an incubator with 5% CO2 for 72 hours at 37°C. Inductively coupled plasma-optical emission spectrometry was used to assess metal ion release. The cytotoxity of conditioning medium (CM) was investigated on L929 cells using an MTT test. One-way ANOVA was used for statistical analysis. After casting, the microstructure of the Remanium CSe compact specimen composed of Ni, Cr, Mo, Si, Fe, Al, and Co had a typical dendritic structure. Alloy microparticles had an irregular shape with a wide size range: from less than 1 μm to more than 100 μm. The release of metal ions, especially Ni and Mo from microparticles, was significantly higher, compared to the compact alloy specimen. The CM prepared from compact alloy was not cytotoxic at any tested dilutions, whereas CM from alloy microparticles showed dose-dependent cytotoxicity (90% CM and 45% CM versus control; p < 0.005). Ni-Cr microparticles showed less

  13. Velocimetry Overview for visitors from the DOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Matthew E.; Holtkamp, David Bruce

    2016-08-19

    We are in the midst of a transformative period in which technological advances are making fundamental changes in the measurement techniques that form the backbone of nuclear weapon certification. Optical velocimetry has replaced electrical shorting pins in “Hydrotests,” which measure the dynamic implosion process. This advance has revolutionized nuclear weapons certification during the last 5 years. We can now measure the implosion process that drives a nuclear detonation with many orders of magnitude more resolution in both space and time than was possible just 10 years ago. It has been compared to going from Morse Code to HDTV, resulting inmore » a dozen or more improvements in models of these weapons. These Hydrotests are carried out at LANL, LLNL and the NNSS, with the later holding the important role of allowing us to test with nuclear materials, in sub-critical configurations (i.e., no yield.) Each of these institutions has largely replaced pins with hundreds of channels of optical velocimetry. Velocimetry is non-contact and is used simultaneously with the X-ray capability of these facilities. The U1-a facility at NNSS pioneered this approach in the Gemini series in 2012, and continues to lead, both in channel count and technological advances. Close cooperation among LANL, LLNL and NSTec in these advances serves the complex by leveraging capabilities across sites and accelerating the pace of technical improvements.« less

  14. Particle tracking velocimetry in three-dimensional flows

    NASA Astrophysics Data System (ADS)

    Maas, H. G.; Gruen, A.; Papantoniou, D.

    1993-07-01

    Particle Tracking Velocimetry (PTV) is a well-known technique for the determination of velocity vectors within an observation volume. However, for a long time it has rarely been applied because of the intensive effort necessary to measure coordinates of a large number of flow marker particles in many images. With today's imaging hardware in combination with the methods of digital image processing and digital photogrammetry, however, new possibilities have arisen for the design of completely automatic PTV systems. A powerful 3 D PTV has been developed in a cooperation of the Institute of Geodesy and Photogrammetry with the Institute of Hydromechanics and Water Resources Management at the Swiss Federal Institute of Technology. In this paper hardware components for 3 D PTV systems wil be discussed, and a strict mathematical model of photogrammetric 3 D coordinate determination, taking into account the different refractive indices in the optical path, will be presented. The system described is capable of determining coordinate sets of some 1000 particles in a flow field at a time resolution of 25 datasets per second and almost arbitrary sequence length completely automatically after an initialization by an operator. The strict mathematical modelling of the measurement geometry, together with a thorough calibration of the system provide for a coordinate accuracy of typically 0.06 mm in X, Y and 0.18 mm in Z (depth coordinate) in a volume of 200 × 160 × 50 mm3.

  15. Technical note: a noninvasive method for measuring mammary apoptosis and epithelial cell activation in dairy animals using microparticles extracted from milk.

    PubMed

    Pollott, G E; Wilson, K; Jerram, L; Fowkes, R C; Lawson, C

    2014-01-01

    Milk production from dairy animals has been described in terms of 3 processes: the increase in secretory cell numbers in late pregnancy and early lactation, secretion rate of milk per cell, and the decline in cell numbers as lactation progresses. This latter process is thought to be determined by the level of programmed cell death (apoptosis) found in the animal. Until now, apoptosis has been measured by taking udder biopsies, using magnetic resonance imaging scans, or using animals postmortem. This paper describes an alternative, noninvasive method for estimating apoptosis by measuring microparticles in milk samples. Microparticles are the product of several processes in dairy animals, including apoptosis. Milk samples from 12 Holstein cows, at or past peak lactation, were collected at 5 monthly samplings. The samples (n=57) were used to measure the number of microparticles and calculate microparticle density for 4 metrics: annexin V positive and merocyanine 540 dye positive, for both and total particles, in both whole milk (WM) and spun milk. Various measures of milk production were also recorded for the 12 cows, including daily milk yield, fat and protein percentage in the milk, somatic cell count, and the days in milk when the samples were taken. A high correlation was found between the 4 WM microparticle densities and days in milk (0.46 to 0.64), and a moderate correlation between WM microparticle densities and daily milk yield (-0.33 to -0.44). No significant relationships were found involving spun milk samples, somatic cell count, or fat and protein percentage. General linear model analyses revealed differences between cows for both level of microparticle density and its rate of change in late lactation. Persistency of lactation was also found to be correlated with the WM microparticle traits (-0.65 to -0.32). As apoptosis is likely to be the major contributor to microparticle numbers in late lactation, this work found a noninvasive method for estimating

  16. Energetics of jellyfish locomotion determined from field measurements using a Self- Contained Underwater Velocimetry Apparatus (SCUVA)

    NASA Astrophysics Data System (ADS)

    Katija, K.; Dabiri, J. O.

    2007-12-01

    We conduct laboratory measurements of the flow fields induced by Aurelia labiata over a range of sizes using the method of digital particle image velocimetry (DPIV). The flow field measurements are used to directly quantify the kinetic energy induced by the swimming motions of individual medusae. This method provides details regarding the temporal evolution of the energetics during a swimming cycle and its scaling with bell diameter. These types of measurements also allow for the determination of propulsive efficiency, which can be used to compare various methods of propulsion, both biological and artificial. We then describe the development and application of a Self-Contained Underwater Velocimetry Apparatus (SCUVA), a device that enables a single SCUBA diver to make DPIV measurements of animal-fluid interactions in the field. Improvements and adjustments made to the original system will be presented, and a comparison between the animal-induced flow fields in the laboratory and in the field will be made.

  17. Preparation and Characterization of Rivastigmine Transdermal Patch Based on Chitosan Microparticles.

    PubMed

    Sadeghi, Mohsen; Ganji, Fariba; Taghizadeh, Seyyed Mojtaba; Daraei, Bahram

    2016-01-01

    Here we report a novel approach for preparation of a 6-day transdermal drug delivery system (TDDS) as treatment for mild to moderate Alzheimer's disease. The spray drying method was used to prepare microparticles containing the anti-Alzheimer drug, Rivastigmine, in combination with the natural polymer, chitosan, for transdermal drug delivery applications. The content of the drug was determined by High Performance Liquid Chromatography (HPLC) method which was validated as per FDA guidelines. The morphology and size range of the microparticles were determined; and the effect of drug concentration in the solution injected into the spray dryer on the particles characterizations was studied. The stability of Rivastigmine at high temperature was confirmed using FTIR analysis as well as a validate HPLC assay. The obtained results show that the drug was stable at high temperatures with 7 to 42% loading in the microparticles, and the higher drug concentrations of the solution injected into the spray dryer resulted in increase of the drug loading, surface drug and microparticles distortion. The TDDS containing the microparticles was also prepared with microparticle to dry adhesive ratios of 5, 10 and 15% using acrylic adhesive. Based on adhesion properties of the patches, gained from the probe tack and the peel adhesion 180° tests, and the 15% patch by having more drug content per unit area of the patch, and still having similar adhesion properties was compared to the microparticles-free patch of 5.1% Rivastigmine salt (equivalent to the drug content of the 15% patch) from the permeation point of view by using Franz cell diffusion over 6 days. The drug permeation rate from the microparticle-free patch was slower than the 15% microparticles patch, which is the result of crystallization of Rivastigmine salt in the acrylic adhesive. The 6-day-prepared TDDS can be considered as an alternative for one-week application of 6 Exelon patches.

  18. Volumetric velocimetry downstream of a percutaneous heart valve

    NASA Astrophysics Data System (ADS)

    Raghav, Vrishank; Clifford, Christopher; Midha, Prem; Okafor, Ikechukwu; Thurow, Brian; Yoganathan, Ajit; Auburn University Collaboration; Georgia Institute of Technology Collaboration

    2017-11-01

    Transcatheter aortic valve replacement has emerged as a safe and effective treatment for severe, symptomatic aortic stenosis in intermediate or greater surgical risk patients. However, despite excellent short-term outcomes, improved imaging and awareness has led to the identification of leaflet thrombosis on the aortic side of the prosthesis. Upon implantation, the transcatheter heart valve (THV) becomes enclosed in the native aortic valve leaflet tissue dividing the native sinus into two regions - a smaller anatomical sinus and a neo-sinus. To understand the causes for thrombosis, plenoptic Particle Image Velocimetry (PIV) is used to investigate the pulsatile three-dimensional flow in the sinus and neo-sinus region of the THV. Experiments are conducted on both a real and a transparent THV model in a pulsatile flow loop capable of replicating physiological hemodynamics. Comparisons with planar PIV results demonstrate the feasibility of using Plenoptic PIV to study heart valve fluid dynamics. Large three-dimensional regions of low velocity magnitude and low viscous shear stress were observed near the heart valve which could increase particle residence time potentially leading to formation of clots the THV leaflet.

  19. Procoagulant effects of lung cancer chemotherapy: impact on microparticles and cell-free DNA.

    PubMed

    Lysov, Zakhar; Dwivedi, Dhruva J; Gould, Travis J; Liaw, Patricia C

    2017-01-01

    Lung cancer is the second leading type of cancer, with venous thromboembolism being the second leading cause of death. Studies have shown increased levels of microparticles and cell-free DNA (CFDNA) in cancer patients, which can activate coagulation through extrinsic and intrinsic pathways, respectively. However, the impact of lung cancer chemotherapy on microparticle and/or CFDNA generation is not completely understood. The aim of the study was to study the effects of platinum-based chemotherapeutic agents on generation of procoagulant microparticles and CFDNA in vitro and in vivo. Microparticles were isolated from chemotherapy-treated monocytes, human umbilical vein endothelial cells, or cancer cells. Tissue factor (TF) and phosphatidylserine levels were characterized and thrombin/factor Xa generation assays were used to determine microparticle procoagulant activity. CFDNA levels were isolated from cell supernatants and plasma. A murine xenograft model of human lung carcinoma was used to study the procoagulant effects of TF microparticles and CFDNA in vivo. In vitro, platinum-based chemotherapy induced TF/phosphatidylserine microparticle shedding from A549 and A427 lung cancers cells, which enhanced thrombin generation in plasma in a FVII-dependent manner. CFDNA levels were increased in supernatants of chemotherapy-treated neutrophils and plasma of chemotherapy-treated mice. TF microparticles were elevated in plasma of chemotherapy-treated tumour-bearing mice. Plasma CFDNA levels are increased in chemotherapy-treated tumour-free mice and correlate with increased thrombin generation. In tumour-bearing mice, chemotherapy increases plasma levels of CFDNA and TF/phosphatidylserine microparticles. Platinum-based chemotherapy induces the shedding of TF/phosphatidylserine microparticles from tumour cells and the release of CFDNA from host neutrophils.

  20. Hemodynamic flow visualization of early embryonic great vessels using μPIV.

    PubMed

    Goktas, Selda; Chen, Chia-Yuan; Kowalski, William J; Pekkan, Kerem

    2015-01-01

    Microparticle image velocimetry (μPIV) is an evolving quantitative methodology to closely and accurately monitor the cardiac flow dynamics and mechanotransduction during vascular morphogenesis. While PIV technique has a long history, contemporary developments in advanced microscopy have significantly expanded its power. This chapter includes three new methods for μPIV acquisition in selected embryonic structures achieved through advanced optical imaging: (1) high-speed confocal scanning of transgenic zebrafish embryos, where the transgenic erythrocytes act as the tracing particles; (2) microinjection of artificial seeding particles in chick embryos visualized with stereomicroscopy; and (3) real-time, time-resolved optical coherence tomography acquisition of vitelline vessel flow profiles in chick embryos, tracking the erythrocytes.

  1. Preparation and evaluation of microparticles from thiolated polymers via air jet milling.

    PubMed

    Hoyer, Herbert; Schlocker, Wolfgang; Krum, Kafedjiiski; Bernkop-Schnürch, Andreas

    2008-06-01

    Microparticles were formulated by incorporation of the model protein horseradish peroxidase in (thiolated) chitosan and (thiolated) poly(acrylic acid) via co-precipitation. Dried protein/polymer complexes were ground with an air jet mill and resulting particles were evaluated regarding size distribution, shape, zeta potential, drug load, protein activity, release pattern, swelling behaviour and cytotoxicity. The mean particle size distribution was 0.5-12 microm. Non-porous microparticles with a smooth surface were prepared. Microparticles from (thiolated) chitosan had a positive charge whereas microparticles from (thiolated) poly(acrylic acid) were negatively charged. The maximum protein load for microparticles based on chitosan, chitosan-glutathione (Ch-GSH), poly(acrylic acid) (PAA) and for poly(acrylic acid)-glutathione (PAA-GSH) was 7+/-1%, 11+/-2%, 4+/-0.2% and 7+/-2%, respectively. The release profile of all microparticles followed a first order release kinetic. Chitosan (0.5mg), Ch-GSH, PAA and PAA-GSH particles showed a 31.4-, 13.8-, 54.2- and a 42.2-fold increase in weight, respectively. No significant cytotoxicity could be found. Thiolated microparticles prepared by jet milling technique were shown to be stable and to have controlled drug release characteristics. After further optimizations the preparation method described here might be a useful tool for the production of protein loaded drug delivery systems.

  2. Velocimetry modalities for secondary flows in a curved artery test section

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Elkins, Christopher J.; Banko, Andrew J.; Plesniak, Michael W.; Eaton, John K.

    2014-11-01

    Secondary flow structures arise due to curvature-related centrifugal forces and pressure imbalances. These flow structures influence wall shear stress and alter blood particle residence times. Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) techniques were implemented independently, under the same physiological inflow conditions (Womersley number = 4.2). A 180-degree curved artery test section with curvature ratio (1/7) was used as an idealized geometry for curved arteries. Newtonian blood analog fluids were used for both MRV and PIV experiments. The MRV-technique offers the advantage of three-dimensional velocity field acquisition without requiring optical access or flow markers. Phase-averaged, two-dimensional, PIV-data at certain cross-sectional planes and inflow phases were compared to phase-averaged MRV-data to facilitate the characterization of large-scale, Dean-type vortices. Coherent structures detection methods that included a novel wavelet decomposition-based approach to characterize these flow structures was applied to both PIV- and MRV-data. The overarching goal of this study is the detection of motific, three-dimensional shapes of secondary flow structures using MRV techniques with guidance obtained from high fidelity, 2D-PIV measurements. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  3. Displacement fields from point cloud data: Application of particle imaging velocimetry to landslide geodesy

    USGS Publications Warehouse

    Aryal, Arjun; Brooks, Benjamin A.; Reid, Mark E.; Bawden, Gerald W.; Pawlak, Geno

    2012-01-01

    Acquiring spatially continuous ground-surface displacement fields from Terrestrial Laser Scanners (TLS) will allow better understanding of the physical processes governing landslide motion at detailed spatial and temporal scales. Problems arise, however, when estimating continuous displacement fields from TLS point-clouds because reflecting points from sequential scans of moving ground are not defined uniquely, thus repeat TLS surveys typically do not track individual reflectors. Here, we implemented the cross-correlation-based Particle Image Velocimetry (PIV) method to derive a surface deformation field using TLS point-cloud data. We estimated associated errors using the shape of the cross-correlation function and tested the method's performance with synthetic displacements applied to a TLS point cloud. We applied the method to the toe of the episodically active Cleveland Corral Landslide in northern California using TLS data acquired in June 2005–January 2007 and January–May 2010. Estimated displacements ranged from decimeters to several meters and they agreed well with independent measurements at better than 9% root mean squared (RMS) error. For each of the time periods, the method provided a smooth, nearly continuous displacement field that coincides with independently mapped boundaries of the slide and permits further kinematic and mechanical inference. For the 2010 data set, for instance, the PIV-derived displacement field identified a diffuse zone of displacement that preceded by over a month the development of a new lateral shear zone. Additionally, the upslope and downslope displacement gradients delineated by the dense PIV field elucidated the non-rigid behavior of the slide.

  4. Controlled electrosprayed formation of non-spherical microparticles

    NASA Astrophysics Data System (ADS)

    Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S. H.

    2017-11-01

    Fabrication of biocompatible microparticles, such as alginate particles, with the possibility of controlling the particles' morphology in a high-throughput manner, is essential for pharmaceutical and cosmetic industries. Even though the shape of alginate particles has been shown to be an important parameter in controlling drug delivery, there are very limited manufacturing methods to produce non-spherical alginate microparticles in a high-throughput fashion. Here, we present a system that generates non-spherical biocompatible alginate microparticles with a tunable size and shape, and at high-throughput, using an electrospray technique. Alginate solution, which is a highly biocompatible material, is flown through a needle using a constant flow rate syringe pump. The alginate phase is connected to a high-voltage power supply to charge it positively. There is a metallic ring underneath the needle that is charged negatively. The applied voltage creates an electric field that forces the dispensing droplets to pass through the metallic ring toward the collection bath. During this migration, droplets break up to smaller droplets to dissipate their energy. When the droplets reach the calcium chloride bath, polymerization happens and solidifies the droplets. We study the effects of changing the distance from the needle to the bath, and the concentration of calcium chloride in the bath, to control the size and the shape of the resulting microparticles.

  5. Pharmacokinetics of intramuscular microparticle depot of valdecoxib in an experimental model.

    PubMed

    Agnihotri, Sagar M; Vavia, Pradeep R

    2009-09-01

    We did a prospective study to investigate pharmacokinetics of a single intramuscularly (i.m.) administered Valdecoxib (VC) polymeric microparticles in New Zealand white rabbits. Poly[lac(glc-leu)] microparticles encapsulating a potent cyclooxygenase-2- selective inhibitor, VC, were prepared by emulsion and solvent evaporation technique and administered i.m. to rabbits for pharmacokinetic study. A single i.m. dose of drug-loaded poly[lac(glc-leu)] microparticles resulted in sustained therapeutic drug levels in the plasma for 49 days. The relative bioavailability was increased severalfold as compared with unencapsulated drug. Injectable poly[lac(glc-leu)] microparticles hold promise for increasing drug bioavailability and reducing dosing frequency for better management of rheumatoid arthritis.

  6. 3D real-time visualization of blood flow in cerebral aneurysms by light field particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart

    2016-04-01

    Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of

  7. Stimuli sensitive polymethacrylic acid microparticles (PMAA)--oral insulin delivery.

    PubMed

    Victor, Sunita Prem; Sharma, Chandra P

    2002-10-01

    This study investigated polymethacrylic acid (PMAA) microparticles for controlled release of Insulin in oral administration. The microparticles were characterised by scanning electron microscopy (SEM) for morphological studies. The swelling behaviour and drug release profile in various pH media were studied. The % swelling of gels was found to be inversely related to the amount of crosslinker added. Inclusion complex of betaCD and Insulin was studied using polyacrylamide gel electrophoresis (PAGE). Optimum complexation was obtained in the ratio 100 mg betaCD: 200 IU Insulin. The release pattern of Insulin from Insulin-betaCD complex encapsulated PMAA microparticles showed release of Insulin for more than seven hours.

  8. Passive heat stress reduces circulating endothelial and platelet microparticles.

    PubMed

    Bain, Anthony R; Ainslie, Philip N; Bammert, Tyler D; Hijmans, Jamie G; Sekhon, Mypinder; Hoiland, Ryan L; Flück, Daniela; Donnelly, Joseph; DeSouza, Christopher A

    2017-06-01

    What is the central question of this study? Does passive heat stress of +2°C oesophageal temperature change concentrations of circulating arterial endothelial- and platelet-derived microparticles in healthy adults? What is the main finding and its importance? Concentrations of circulating endothelial- and platelet-derived microparticles were markedly decreased in heat stress. Reductions in circulating microparticles might indicate favourable vascular changes associated with non-pathological hyperthermia. Interest in circulating endothelial- and platelet-derived microparticles (EMPs and PMPs, respectively) has increased because of their potential pathogenic role in vascular disease and as biomarkers for vascular health. Hyperthermia is commonly associated with a pro-inflammatory stress but might also provide vascular protection when the temperature elevation is non-pathological. Circulating microparticles might contribute to the cellular adjustments and resultant vascular impacts of hyperthermia. Here, we determined whether circulating concentrations of arterial EMPs and PMPs are altered by passive heat stress (+2°C oesophageal temperature). Ten healthy young men (age 23 ± 3 years) completed the study. Hyperthermia was achieved by circulating ∼49°C water through a water-perfused suit that covered the entire body except the hands, feet and head. Arterial (radial) blood samples were obtained immediately before heating (normothermia) and in hyperthermia. The mean ± SD oesophageal temperature in normothermia was 37.2 ± 0.1°C and in hyperthermia 39.1 ± 0.1°C. Concentrations of circulating EMPs and PMPs were markedly decreased in hyperthermia. Activation-derived EMPs were reduced by ∼30% (mean ± SD; from 61 ± 8 to 43 ± 7 microparticles μl -1 ; P < 0.05) and apoptosis-derived EMPs by ∼45% (from 46 ± 7 to 23 ± 3 microparticles μl -1 ; P < 0.05). Likewise, circulating PMPs were reduced by ∼75% in response to hyperthermia

  9. An experimental study of microneedle-assisted microparticle delivery.

    PubMed

    Zhang, Dongwei; Das, Diganta B; Rielly, Chris D

    2013-10-01

    A set of well-defined experiments has been carried out to explore whether microneedles (MNs) can enhance the penetration depths of microparticles moving at high velocity such as those expected in gene guns for delivery of gene-loaded microparticles into target tissues. These experiments are based on applying solid MNs that are used to reduce the effect of mechanical barrier function of the target so as to allow delivery of microparticles at less imposed pressure as compared with most typical gene guns. Further, a low-cost material, namely, biomedical-grade stainless steel microparticle with size ranging between 1 and 20 μm, has been used in this study. The microparticles are compressed and bound in the form of a cylindrical pellet and mounted on a ground slide, which are then accelerated together by compressed air through a barrel. When the ground slide reaches the end of the barrel, the pellet is separated from the ground slide and is broken down into particle form by a mesh that is placed at the end of the barrel. Subsequently, these particles penetrate into the target. This paper investigates the implications of velocity of the pellet along with various other important factors that affect the particle delivery into the target. Our results suggest that the particle passage increases with an increase in pressure, mesh pore size, and decreases with increase in polyvinylpyrrolidone concentration. Most importantly, it is shown that MNs increase the penetration depths of the particles. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Live cell refractometry based on non-SPR microparticle sensor.

    PubMed

    Liu, Chang; Chen, David D Y; Yu, Lirong; Luo, Yong

    2013-06-01

    Unlike the nanoparticles with surface plasmon resonance, the optical response of polystyrene microparticles (PSMPs) is insensitive to the chemical components of the surrounding medium under the wavelength-dependent differential interference contrast microscopy. This fact is exploited for the measurement of the refractive index of cytoplasm in this study. PSMPs of 400 nm in diameter were loaded into the cell to contact cytoplasm seamlessly, and the refractive index information of cytoplasm could be extracted by differential interference contrast microscopy operated at 420 nm illumination wavelength through the contrast analysis of PSMPs images. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sputter-Coated Microparticle Additives for Tailored Optical Properties

    DTIC Science & Technology

    2016-09-01

    hour at best). The microspheres coated in this work will be incorporated into a polymer matrix for composite and large-area coating applications...demonstrated, they will be incorporated into a polymer matrix for further testing. 15. SUBJECT TERMS fluidized bed, thin film, microparticles, coating...films of metals, ceramics , and multilayered materials.1 This is a practical method for the batch production of microparticles with tailored optical

  12. Pulmonary sustained release of insulin from microparticles composed of polyelectrolyte layer-by-layer assembly.

    PubMed

    Amancha, Kiran Prakash; Balkundi, Shantanu; Lvov, Yuri; Hussain, Alamdar

    2014-05-15

    The present study tests the hypothesis that layer-by-layer (LbL) nanoassembly of thin polyelectrolyte films on insulin particles provides sustained release of the drug after pulmonary delivery. LbL insulin microparticles were formulated using cationic and anionic polyelectrolytes. The microparticles were characterized for particle size, particle morphology, zeta potential and in vitro release. The pharmacokinetics and pharmacodynamics of drug were assessed by measuring serum insulin and glucose levels after intrapulmonary administration in rats. Bronchoalveolar lavage (BAL) and evans blue (EB) extravasation studies were performed to investigate the cellular or biochemical changes in the lungs caused by formulation administration. The mass median aerodynamic diameter (MMAD) of the insulin microparticles was 2.7 μm. Confocal image of the formulation particles confirmed the polyelectrolyte deposition around the insulin particles. Zeta potential measurements showed that there was charge reversal after each layering. Pulmonary administered LbL insulin formulation resulted in sustained serum insulin levels and concomitant decrease in serum glucose levels. The BAL and EB extravasation studies showed that the LbL insulin formulation did not elicit significant increase in marker enzymes activities compared to control group. These results demonstrate that the sustained release of insulin could be achieved using LbL nanoassembly around the insulin particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: impact of active tissue factor.

    PubMed

    Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V

    2017-07-01

    : Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.

  14. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.

    PubMed

    Mori, Michela; Almeida, Patrick V; Cola, Michela; Anselmi, Giulia; Mäkilä, Ermei; Correia, Alexandra; Salonen, Jarno; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2014-11-01

    The wound healing stands as very complex and dynamic process, aiming the re-establishment of the damaged tissue's integrity and functionality. Thus, there is an emerging need for developing biopolymer-based composites capable of actively promoting cellular proliferation and reconstituting the extracellular matrix. The aims of the present work were to prepare and characterize biopolymer-functionalized porous silicon (PSi) microparticles, resulting in the development of drug delivery microsystems for future applications in wound healing. Thermally hydrocarbonized PSi (THCPSi) microparticles were coated with both chitosan and a mixture of chondroitin sulfate/hyaluronic acid, and subsequently loaded with two antibacterial model drugs, vancomycin and resveratrol. The biopolymer coating, drug loading degree and drug release behavior of the modified PSi microparticles were evaluated in vitro. The results showed that both the biopolymer coating and drug loading of the THCPSi microparticles were successfully achieved. In addition, a sustained release was observed for both the drugs tested. The viability and proliferation profiles of a fibroblast cell line exposed to the modified THCPSi microparticles and the subsequent reactive oxygen species (ROS) production were also evaluated. The cytotoxicity and proliferation results demonstrated less toxicity for the biopolymer-coated THCPSi microparticles at different concentrations and time points comparatively to the uncoated counterparts. The ROS production by the fibroblasts exposed to both uncoated and biopolymer-coated PSi microparticles showed that the modified PSi microparticles did not induce significant ROS production at the concentrations tested. Overall, the biopolymer-based PSi microparticles developed in this study are promising platforms for wound healing applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase.

    PubMed

    Ferru, Emanuela; Pantaleo, Antonella; Carta, Franco; Mannu, Franca; Khadjavi, Amina; Gallo, Valentina; Ronzoni, Luisa; Graziadei, Giovanna; Cappellini, Maria Domenica; Turrini, Francesco

    2014-03-01

    High counts of circulating microparticles, originated from the membrane of abnormal erythrocytes, have been associated with increased thrombotic risk in hemolytic disorders. Our studies indicate that in thalassemia intermedia patients the number of circulating microparticles correlates with the capability of the thalassemic erythrocytes to release microparticles. The microparticles are characteristically loaded with hemichromes formed by denatured α-chains. This finding was substantiated by the positive correlation observed in thalassemia intermedia patients between the amount of hemichromes measured in erythrocytes, their capability to release microparticles and the levels of plasma hemichromes. We observed that hemichromes, following their binding to the cytoplasmic domain of band 3, induce the formation of disulfide band 3 dimers that are subsequently phosphorylated by p72Syk kinase. Phosphorylation of oxidized band 3 appears to be relevant for the formation of large hemichromes/band 3 clusters that, in turn, induce local membrane instability and the release of microparticles. Proteomic analysis of microparticles released from thalassemia intermedia erythrocytes indicated that, besides hemichromes and clustered band 3, the microparticles contain a characteristic set of proteins that includes catalase, heat shock protein 70, peroxiredoxin 2 and carbonic anhydrase. High amounts of immunoglobulins and C3 have also been found to be associated with microparticles, accounting for their intense phagocytosis. The effect of p72Syk kinase inhibitors on the release of microparticles from thalassemia intermedia erythrocytes may indicate new perspectives for controlling the release of circulating microparticles in hemolytic anemias.

  16. Effect of short-chain fatty acids on the formation of amylose microparticles by amylosucrase.

    PubMed

    Lim, Min-Cheol; Park, Kyu-Hwan; Choi, Jong-Hyun; Lee, Da-Hee; Letona, Carlos Andres Morales; Baik, Moo-Yeol; Park, Cheon-Seok; Kim, Young-Rok

    2016-10-20

    Amylose microparticles can be produced by self-assembly of amylose molecules through an amylosucrase-mediated synthesis. Here we investigated the role of short-chain fatty acids in the formation of amylose microparticles and the fate of these fatty acids at the end of the reaction. The rate of self-assembly and production yields of amylose microparticles were significantly enhanced in the presence of fatty acids. The effect was dependent on the length of the fatty acid carbon tail; butanoic acid (C4) was the most effective, followed by hexanoic acid (C6) and octanoic acid (C8). The amylose microparticles were investigated by carrying out SEM, XRD, Raman, NMR, FT-IR and DSC analysis. The size, morphology and crystal structure of the resulting amylose microparticles were comparable with those of amylose microparticles produced without fatty acids. The results indicated the carboxyl group of the fatty acid to be responsible for promoting the self-assembly of amylose chains to form microparticles. The fatty acids were eventually removed from the microstructure through the tight association of amylose double helices to form the amylose microparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles

    NASA Astrophysics Data System (ADS)

    Lio, Daniel; Yeo, David; Xu, Chenjie

    2016-01-01

    Core-shell alginate-poly (lactic-co-glycolic) acid (PLGA) microparticles are potential candidates to improve hydrophilic drug loading while facilitating controlled release. This report studies the influence of the alginate core size on the drug release profile of alginate-PLGA microparticles and its size. Microparticles are synthesized through double-emulsion fabrication via a concurrent ionotropic gelation and solvent extraction. The size of alginate core ranges from approximately 10, 50, to 100 μm when the emulsification method at the first step is homogenization, vortexing, or magnetic stirring, respectively. The second step emulsification for all three conditions is performed with magnetic stirring. Interestingly, although the alginate core has different sizes, alginate-PLGA microparticle diameter does not change. However, drug release profiles are dramatically different for microparticles comprising different-sized alginate cores. Specifically, taking calcein as a model drug, microparticles containing the smallest alginate core (10 μm) show the slowest release over a period of 26 days with burst release less than 1 %.

  18. Protein encapsulation via porous CaCO3 microparticles templating.

    PubMed

    Volodkin, Dmitry V; Larionova, Natalia I; Sukhorukov, Gleb B

    2004-01-01

    Porous microparticles of calcium carbonate with an average diameter of 4.75 microm were prepared and used for protein encapsulation in polymer-filled microcapsules by means of electrostatic layer-by-layer assembly (ELbL). Loading of macromolecules in porous CaCO3 particles is affected by their molecular weight due to diffusion-limited permeation inside the particles and also by the affinity to the carbonate surface. Adsorption of various proteins and dextran was examined as a function of pH and was found to be dependent both on the charge of the microparticles and macromolecules. The electrostatic effect was shown to govern this interaction. This paper discusses the factors which can influence the adsorption capacity of proteins. A new way of protein encapsulation in polyelectrolyte microcapsules is proposed exploiting the porous, biocompatible, and decomposable microparticles from CaCO3. It consists of protein adsorption in the pores of the microparticles followed by ELbL of oppositely charged polyelectrolytes and further core dissolution. This resulted in formation of polyelectrolyte-filled capsules with protein incorporated in interpenetrating polyelectrolyte network. The properties of CaCO3 microparticles and capsules prepared were characterized by scanning electron microscopy, microelectrophoresis, and confocal laser scanning microscopy. Lactalbumin was encapsulated by means of the proposed technique yielding a content of 0.6 pg protein per microcapsule. Horseradish peroxidase saves 37% of activity after encapsulation. However, the thermostability of the enzyme was improved by encapsulation. The results demonstrate that porous CaCO3 microparticles can be applied as microtemplates for encapsulation of proteins into polyelectrolyte capsules at neutral pH as an optimal medium for a variety of bioactive material, which can also be encapsulated by the proposed method. Microcapsules filled with encapsulated material may find applications in the field of

  19. Visualization of nasal airflow patterns in a patient affected with atrophic rhinitis using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Garcia, G. J. M.; Mitchell, G.; Bailie, N.; Thornhill, D.; Watterson, J.; Kimbell, J. S.

    2007-10-01

    The relationship between airflow patterns in the nasal cavity and nasal function is poorly understood. This paper reports an experimental study of the interplay between symptoms and airflow patterns in a patient affected with atrophic rhinitis. This pathology is characterized by mucosal dryness, fetor, progressive atrophy of anatomical structures, a spacious nasal cavity, and a paradoxical sensation of nasal congestion. A physical replica of the patient's nasal geometry was made and particle image velocimetry (PIV) was used to visualize and measure the flow field. The nasal replica was based on computed tomography (CT) scans of the patient and was built in three steps: three-dimensional reconstruction of the CT scans; rapid prototyping of a cast; and sacrificial use of the cast to form a model of the nasal passage in clear silicone. Flow patterns were measured by running a water-glycerol mixture through the replica and evaluating the displacement of particles dispersed in the liquid using PIV. The water-glycerol flow rate used corresponded to an air flow rate representative of a human breathing at rest. The trajectory of the flow observed in the left passage of the nose (more affected by atrophic rhinitis) differed markedly from what is considered normal, and was consistent with patterns of epithelial damage observed in cases of the condition. The data are also useful for validation of computational fluid dynamics predictions.

  20. Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design.

    PubMed

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2014-01-01

    We investigated the flow modifications induced by a large panel of commercial-off-the-shelf (COTS) intracranial stents in an idealized sidewall intracranial aneurysm (IA). Flow velocities in IA silicone model were assessed with and without stent implantation using particle imaging velocimetry (PIV). The use of the recently developed multi-time-lag method has allowed for uniform and precise measurements of both high and low velocities at IA neck and dome, respectively. Flow modification analysis of both regular (RSs) and flow diverter stents (FDSs) was subsequently correlated with relevant geometrical stent parameters. Flow reduction was found to be highly sensitive to stent porosity variations for regular stents RSs and moderately sensitive for FDSs. Consequently, two distinct IA flow change trends, with velocity reductions up to 50% and 90%, were identified for high-porosity RS and low-porosity FDS, respectively. The intermediate porosity (88%) regular braided stent provided the limit at which the transition in flow change trend occurred with a flow reduction of 84%. This transition occurred with decreasing stent porosity, as the driving force in IA neck changed from shear stress to differential pressure. Therefore, these results suggest that stents with intermediate porosities could possibly provide similar flow change patterns to FDS, favourable to curative thrombogenesis in IAs.

  1. Investigation of Flow Structures Downstream of SAPIEN 3, CoreValve, and PERIMOUNT Magna Using Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Barakat, Mohammed; Lengsfeld, Corinne; Dvir, Danny; Azadani, Ali

    2017-11-01

    Transcatheter aortic valves provide superior systolic hemodynamic performance in terms of valvular pressure gradient and effective orifice area compared with equivalent size surgical bioprostheses. However, in depth investigation of the flow field structures is of interest to examine the flow field characteristics and provide experimental evidence necessary for validation of computational models. The goal of this study was to compare flow field characteristics of the three most commonly used transcatheter and surgical valves using phase-locked particle image velocimetry (PIV). 26mm SAPIEN 3, 26mm CoreValve, and 25mm PERIMOUNT Magna were examined in a pulse duplicator with input parameters matching ISO-5840. A 2D PIV system was used to obtain the velocity fields. Flow velocity and shear stress were obtained during the entire cardiac cycle. In-vitro testing showed that mean gradient was lowest for SAPIEN 3, followed by CoreValve and PERIMOUNT Magna. In all the valves, the peak jet velocity and maximum viscous shear stress were 2 m/s and 2 MPa, respectively. In conclusion, PIV was used to investigate flow field downstream of the three bioprostheses. Viscous shear stress was low and consequently shear-induced thrombotic trauma or shear-induced damage to red blood cells is unlikely.

  2. Measurement Capabilities of Single-Pulse Planar Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    McKenzie, Robert L.; Kutler, Paul F. (Technical Monitor)

    1994-01-01

    Preliminary investigations are described of a method that is capable of measuring instantaneous, 3-D, velocity vectors everywhere in a light sheet generated by a pulsed laser. The technique, here called Planar Doppler Velocimetry (PDV), is a variation of a new concept for velocity measurements that was called Doppler Global Velocimetry (DGV) in its original disclosure. The concept relies on the use of a narrowband laser and measurements of the Doppler shift of scattered light from particles moving with a flow. The Doppler shift is recorded as a variation in transmission through a sharp-edged spectral filter provided by iodine vapor in a cell. Entire fields of velocity can be determined by using a solid-state camera to record the intensity variations throughout the field of view. However, the implementation of DGV has been centered principally on the use of high power, continuous-wave, ion lasers and measurement times that are determined by the 30-ms framing times of standard video cameras. Hence, they provide velocity fields that are averaged in time at least over that period. On the other hand, the PDV concept described in this presentation incorporates a high energy, repetitively pulsed, Nd-YAG laser that is injection-seeded to make it narrowband and then frequency-doubled to provide light at frequencies absorbed by the iodine vapor. The duration of each pulse is less than 10 nanoseconds. When used in combination with nonstandard, scientific quality, solid state cameras, a sequence of images can be obtained that provides instantaneous velocity vectors everywhere in the field of view. The investigations described in this paper include an accurate characterization of the iodine cell spectral behavior and its influence on the PDV measurements, a derivation of the PDV signal analysis requirements, and the unique aspects of the pulsed laser behavior related to this application. In addition, PDV measurements are to be demonstrated using data from a rotating wheel

  3. Lipid-coated mannitol core microparticles for sustained release of protein.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2018-07-01

    Parenteral sustained release systems for proteins which provide therapeutic levels over a longer period avoiding frequent administration, which preserve protein stability during manufacturing, storage and application and which are biodegradable and highly biocompatible in the body are intensively sought after. The aim of this study was to generate and study mannitol core microparticles loaded with a monoclonal antibody IgG1 and coated with lipid either hard fat or glyceryl stearate at different coating levels. The protein was stabilized with 22.5 mg/mL sucrose, 0.1% PS 80, 10 mM methionine in 10 mM His buffer pH 7.2 during the spray loading process. 30 g protein-loaded mannitol carrier microparticles were coated with 5 g, 10 g, 20 g and 30 g of lipid, respectively. Placing more lipid onto the protein-loaded microparticles reduced both burst and release rate, and the particles maintained their geometric form during the release test. The IgG1 release from microparticles covered with a hard fat layer extended up to 6 weeks. The IgG1 was released in its monomeric form and maintained its secondary structure as shown by FTIR. Incomplete release of IgG1 from glyceryl stearate-coated microparticles was observed, which may be due to the small pore sizes of the glyceryl stearate layer or a detrimental surfactant character of glyceryl stearate to protein. Hence, these hard fat-coated mannitol core microparticles have high potential for protein delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Optical Trap Loading of Dielectric Microparticles In Air.

    PubMed

    Park, Haesung; LeBrun, Thomas W

    2017-02-05

    We demonstrate a method to trap a selected dielectric microparticle in air using radiation pressure from a single-beam gradient optical trap. Randomly scattered dielectric microparticles adhered to a glass substrate are momentarily detached using ultrasonic vibrations generated by a piezoelectric transducer (PZT). Then, the optical beam focused on a selected particle lifts it up to the optical trap while the vibrationally excited microparticles fall back to the substrate. A particle may be trapped at the nominal focus of the trapping beam or at a position above the focus (referred to here as the levitation position) where gravity provides the restoring force. After the measurement, the trapped particle can be placed at a desired position on the substrate in a controlled manner. In this protocol, an experimental procedure for selective optical trap loading in air is outlined. First, the experimental setup is briefly introduced. Second, the design and fabrication of a PZT holder and a sample enclosure are illustrated in detail. The optical trap loading of a selected microparticle is then demonstrated with step-by-step instructions including sample preparation, launching into the trap, and use of electrostatic force to excite particle motion in the trap and measure charge. Finally, we present recorded particle trajectories of Brownian and ballistic motions of a trapped microparticle in air. These trajectories can be used to measure stiffness or to verify optical alignment through time domain and frequency domain analysis. Selective trap loading enables optical tweezers to track a particle and its changes over repeated trap loadings in a reversible manner, thereby enabling studies of particle-surface interaction.

  5. High-Mobility Group Box 1 From Hypoxic Trophoblasts Promotes Endothelial Microparticle Production and Thrombophilia in Preeclampsia.

    PubMed

    Hu, Yae; Yan, Ruhong; Zhang, Ce; Zhou, Zhichao; Liu, Meng; Wang, Can; Zhang, Hong; Dong, Liang; Zhou, Tiantian; Wu, Yi; Dong, Ningzheng; Wu, Qingyu

    2018-04-12

    Thrombophilia is a major complication in preeclampsia, a disease associated with placental hypoxia and trophoblast inflammation. Preeclampsia women are known to have increased circulating microparticles that are procoagulant, but the underlying mechanisms remain unclear. In this study, we sought to understand the mechanism connecting placental hypoxia, circulating microparticles, and thrombophilia. We analyzed protein markers on plasma microparticles from preeclampsia women and found that the increased circulating microparticles were mostly from endothelial cells. In proteomic studies, we identified HMGB1 (high-mobility group box 1), a proinflammatory protein, as a key factor from hypoxic trophoblasts in stimulating microparticle production in human umbilical vein endothelial cells. Immunodepletion or inhibition of HMGB1 in the conditioned medium from hypoxic human trophoblasts abolished the endothelial microparticle-stimulating activity. Conversely, recombinant HMGB1 stimulated microparticle production in cultured human umbilical vein endothelial cells. The microparticles from recombinant HMGB1-stimulated human umbilical vein endothelial cells promoted blood coagulation and neutrophil activation in vitro. Injection of recombinant HMGB1 in pregnant mice increased plasma endothelial microparticles and promoted blood coagulation. In preeclampsia women, elevated placental HMGB1 expression was detected and high levels of plasma HMGB1 correlated with increased plasma endothelial microparticles. Our results indicate that placental hypoxia-induced HMGB1 expression and release from trophoblasts are important mechanism underlying increased circulating endothelial microparticles and thrombophilia in preeclampsia. © 2018 American Heart Association, Inc.

  6. Microparticles Produced by the Hydrogel Template Method for Sustained Drug Delivery

    PubMed Central

    Lu, Ying; Sturek, Michael; Park, Kinam

    2014-01-01

    Polymeric microparticles have been used widely for sustained drug delivery. Current methods of microparticle production can be improved by making homogeneous particles in size and shape, increasing the drug loading, and controlling the initial burst release. In the current study, the hydrogel template method was used to produce homogeneous poly(lactide-co-glycolide) (PLGA) microparticles and to examine formulation and process-related parameters. Poly(vinyl alcohol) (PVA) was used to make hydrogel templates. The parameters examined include PVA molecular weight, type of PLGA (as characterized by lactide content, inherent viscosity), polymer concentration, drug concentration and composition of solvent system. Three model compounds studied were risperidone, methylprednisolone acetate and paclitaxel. The ability of the hydrogel template method to produce microparticles with good conformity to template was dependent on molecular weight of PVA and viscosity of the PLGA solution. Drug loading and encapsulation efficiency were found to be influenced by PLGA lactide content, polymer concentration and composition of the solvent system. The drug loading and encapsulation efficiency were 28.7% and 82% for risperidone, 31.5% and 90% for methylprednisolone acetate, and 32.2 % and 92 % for paclitaxel, respectively. For all three drugs, release was sustained for weeks, and the in vitro release profile of risperidone was comparable to that of microparticles prepared using the conventional emulsion method. The hydrogel template method provides a new approach of manipulating microparticles. PMID:24333903

  7. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Vauthier, C; Gueutin, C; Ponchel, G; Sharma, Chandra P

    2010-08-01

    In the present study thiol functionalized polymethacrylic acid-polyethylene glycol-chitosan (PCP)-based hydrogel microparticles were utilized to develop an oral insulin delivery system. Thiol modification was achieved by grafting cysteine to the activated surface carboxyl groups of PCP hydrogels (Cys-PCP). Swelling and insulin loading/release experiments were conducted on these particles. The ability of these particles to inhibit protease enzymes was evaluated under in vitro experimental conditions. Insulin transport experiments were performed on Caco-2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. Finally, the efficacy of insulin-loaded particles in reducing the blood glucose level in streptozotocin-induced diabetic rats was investigated. Thiolated hydrogel microparticles showed less swelling and had a lower insulin encapsulation efficiency as compared with unmodified PCP particles. PCP and Cys-PCP microparticles were able to inhibit protease enzymes under in vitro conditions. Thiolation was an effective strategy to improve insulin absorption across Caco-2 cell monolayers, however, the effect was reduced in the experiments using excised rat intestinal tissue. Nevertheless, functionalized microparticles were more effective in eliciting a pharmacological response in diabetic animal, as compared with unmodified PCP microparticles. From these studies thiolation of hydrogel microparticles seems to be a promising approach to improve oral delivery of proteins/peptides. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Effects of right ventricular hemodynamic burden on intraventricular flow in tetralogy of fallot: an echocardiographic contrast particle imaging velocimetry study.

    PubMed

    Kutty, Shelby; Li, Ling; Danford, David A; Houle, Helene; Datta, Saurabh; Mancina, Joel; Xiao, Yunbin; Pedrizzetti, Gianni; Porter, Thomas R

    2014-12-01

    The purpose of this investigation was to test the hypothesis that flow patterns in the right ventricle are abnormal in patients with repaired tetralogy of Fallot (TOF). High-resolution echocardiographic contrast particle imaging velocimetry was used to investigate rotation intensity and kinetic energy dissipation of right ventricular (RV) flow in patients with TOF compared with normal controls. Forty-one subjects (16 with repaired TOF and varying degrees of RV dilation and 25 normal controls) underwent prospective contrast imaging using the lipid-encapsulated microbubble (Definity) on Sequoia systems. A mechanical index of 0.4, three-beat high-frame rate (>60 Hz) captures, and harmonic frequencies were used. Rotation intensity and kinetic energy dissipation of flow in the right and left ventricles were studied (Hyperflow). Ventricular volumes and ejection fractions in all subjects were derived from same-day cardiac magnetic resonance (CMR). Measurable planar maps were obtained for the left ventricle in 14 patients and the right ventricle in 10 patients among those with TOF and for the left ventricle in 23 controls and the right ventricle in 21 controls. Compared with controls, the TOF group had higher RV indexed end-diastolic volumes (117.8 ± 25.5 vs 88 ± 15.4 mL/m(2), P < .001) and lower RV ejection fractions (44.6 ± 3.6% vs 51.8 ± 3.6%, P < .001). Steady-streaming (heartbeat-averaged) flow rotation intensities were higher in patients with TOF for the left ventricle (0.4 ± 0.13 vs 0.29 ± 0.08, P = .012) and the right ventricle (0.53 ± 0.15 vs 0.26 ± 0.12, P < .001), whereas kinetic energy dissipation in TOF ventricles was lower (for the left ventricle, 0.51 ± 0.29 vs 1.52 ± 0.69, P < .001; for the right ventricle, 0.4 ± 0.24 vs 1.65 ± 0.91, P < .001). It is feasible to characterize RV and left ventricular flow parameters and planar maps in adolescents and adults with repaired TOF using echocardiographic contrast

  9. RBC Storage Effect on Coagulation, Microparticles and Microchimerism in Critically Ill Patients

    DTIC Science & Technology

    2015-03-01

    Award Number: W81XWH-11-2-0028 TITLE: “RBC Storage Effect on Coagulation, Microparticles and Microchimerism in Critically Ill Patients...27 DEC 2010 - 26 DEC 2015 – 4. TITLE AND SUBTITLE "“RBC Storage Effect on Coagulation, Microparticles and 5a. CONTRACT NUMBER Microchimerism in...15. SUBJECT TERMS RBC storage age; microchimerism; critically ill patients; coagulation; microparticles 16. SECURITY CLASSIFICATION OF: U 17

  10. Design and evaluation of acrylate polymeric carriers for fabrication of pH-sensitive microparticles.

    PubMed

    Arya, Amit; Majumdar, Dipak K; Pathak, Dharam Pal; Sharma, Anil K; Ray, Alok R

    2017-02-01

    Colon-targeted microparticles loaded with a model anti-inflammatory drug were fabricated using especially designed acrylic acid-butyl methacrylate copolymers. Microparticles were prepared by oil-in-oil solvent evaporation method using Span 80 as emulsifier. Microparticles were found to be spherical in shape, hemocompatible and anionic with zeta potential of -27.4 and -29.0 mV. Entrapment of drug in the microparticles was confirmed by Fourier transform infrared (FTIR) spectroscopy. However, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) revealed amorphous nature of microparticles due to the dilution effect of amorphous polymer. The microparticles released less than 5% drug at pH 1.2, while more than 90% of the drug load was released at pH 7.4. This suggested the colon targeting nature of the formulations. In experimentally developed colitis in Wistar rats, the microparticle formulation showed significant reduction (p < .05) in the disease activity score (disease symptoms), the colon-to-body weight ratio (tissue edema) and the myeloperoxidase, tumor necrosis factor (TNF)-α and interleukin (IL)-1β activities.

  11. Potential for application of an acoustic camera in particle tracking velocimetry.

    PubMed

    Wu, Fu-Chun; Shao, Yun-Chuan; Wang, Chi-Kuei; Liou, Jim

    2008-11-01

    We explored the potential and limitations for applying an acoustic camera as the imaging instrument of particle tracking velocimetry. The strength of the acoustic camera is its usability in low-visibility environments where conventional optical cameras are ineffective, while its applicability is limited by lower temporal and spatial resolutions. We conducted a series of experiments in which acoustic and optical cameras were used to simultaneously image the rotational motion of tracer particles, allowing for a comparison of the acoustic- and optical-based velocities. The results reveal that the greater fluctuations associated with the acoustic-based velocities are primarily attributed to the lower temporal resolution. The positive and negative biases induced by the lower spatial resolution are balanced, with the positive ones greater in magnitude but the negative ones greater in quantity. These biases reduce with the increase in the mean particle velocity and approach minimum as the mean velocity exceeds the threshold value that can be sensed by the acoustic camera.

  12. Metformin reduces total microparticles and microparticles-expressing tissue factor in women with polycystic ovary syndrome.

    PubMed

    Carvalho, Laura M L; Ferreira, Cláudia N; Candido, Ana L; Reis, Fernando M; Sóter, Mirelle O; Sales, Mariana F; Silva, Ieda F O; Nunes, Fernanda F C; Gomes, Karina Braga

    2017-10-01

    The objective of this study was to evaluate the levels of total microparticles (MPs) and microparticles-expressing tissue factor (TFMPs) in women with polycystic ovarian syndrome (PCOS) who use metformin comparing to those who do not take metformin. We quantified total MPs and TFMPs in the plasma of 50 patients with PCOS-13 of these women used metformin (850 mg 2×/day during at least 6 months) and the other 37 did not. For this purpose, the microparticles (MPs) were purified by differential centrifugation of the plasma and, subsequently, by flow cytometry, using annexin-V and CD142 as markers. Total MPs levels were lower in treated patients (59.58 ± 28.43 MPs/µL) when compared to untreated group (97.32 ± 59.42; p = 0.033). Plasma levels of TFMPs were also significantly lower in the group of patients who used metformin (1.10 ± 0.94 MPs/µL) when compared to untreated patients (2.20 ± 1.42 MPs/µL) (p = 0.003). Considering that metformin reduced the levels of total MPs and TFMPs, our results suggest that this mechanism could be involved in the antithrombotic metformin effect, corroborating with the indication of this drug in the PCOS treatment.

  13. Monitoring structural features, biocompatibility and biological efficacy of gamma-irradiated methotrexate-loaded spray-dried microparticles.

    PubMed

    de Oliveira, Alice R; Mesquita, Philippe C; Machado, Paula R L; Farias, Kleber J S; de Almeida, Yêda M B; Fernandes-Pedrosa, Matheus F; Cornélio, Alianda M; do Egito, Eryvaldo Sócrates T; da Silva-Júnior, Arnóbio A

    2017-11-01

    In this study, biodegradable and biocompatible gamma irradiated poly-(dl-lactide-co-glycolide) (PLGA) spray-dried microparticles were prepared aiming to improve the efficacy of methotrexate (MTX). The experimental design included three formulations of microparticles containing distinct drug amount (9%, 18%, and 27% w/w) and three distinct gamma irradiation dose (15kGy, 25kGy, and 30kGy). The physicochemical and drug release properties of the microparticles supported their biocompatibility and biological efficacy studies in different cell lines. The irradiation induced slight changes in the spherical shape of the microparticles and the formation of free radicals was dependent on the drug loading. However, the amorphous character, particle size, drug loading, and drug release rate of the microparticles were preserved. The drug release data from all microparticles formulation were evaluated by using four drug kinetic models and by comparison of their similarity factor (f 2 ). The gamma irradiation did not induce changes in the biocompatibility of PLGA microparticles and in the biological activity of the MTX-loaded microparticles. Finally, the spray-dried MTX-loaded PLGA microparticles enhanced the efficacy of the drug in the human cervical cancer cells (SiHa cell line). This study demonstrated the feasibility of the gamma irradiated spray dried PLGA microparticles for prolonged release of MTX, supporting a promising antitumor-drug delivery system for parenteral (subcutaneous) or pulmonary use. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Particle image velocimetry study of pulsatile flow in bi-leaflet mechanical heart valves with image compensation method.

    PubMed

    Shi, Yubing; Yeo, Tony Joon Hock; Zhao, Yong; Hwang, Ned H C

    2006-12-01

    Particle Image Velocimetry (PIV) is an important technique in studying blood flow in heart valves. Previous PIV studies of flow around prosthetic heart valves had different research concentrations, and thus never provided the physical flow field pictures in a complete heart cycle, which compromised their pertinence for a better understanding of the valvular mechanism. In this study, a digital PIV (DPIV) investigation was carried out with improved accuracy, to analyse the pulsatile flow field around the bi-leaflet mechanical heart valve (MHV) in a complete heart cycle. For this purpose a pulsatile flow test rig was constructed to provide the necessary in vitro test environment, and the flow field around a St. Jude size 29 bi-leaflet MHV and a similar MHV model were studied under a simulated physiological pressure waveform with flow rate of 5.2 l/min and pulse rate at 72 beats/min. A phase-locking method was applied to gate the dynamic process of valve leaflet motions. A special image-processing program was applied to eliminate optical distortion caused by the difference in refractive indexes between the blood analogue fluid and the test section. Results clearly showed that, due to the presence of the two leaflets, the valvular flow conduit was partitioned into three flow channels. In the opening process, flow in the two side channels was first to develop under the presence of the forward pressure gradient. The flow in the central channel was developed much later at about the mid-stage of the opening process. Forward flows in all three channels were observed at the late stage of the opening process. At the early closing process, a backward flow developed first in the central channel. Under the influence of the reverse pressure gradient, the flow in the central channel first appeared to be disturbed, which was then transformed into backward flow. The backward flow in the central channel was found to be the main driving factor for the leaflet rotation in the valve

  15. Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry. Final report, September 1988--November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, T.A.

    1992-12-01

    The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows.more » A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.« less

  16. Fabrication of starch-based microparticles by an emulsification-crosslinking method

    USDA-ARS?s Scientific Manuscript database

    Starch-based microparticles (MPs) fabricated by a water-in-water (w/w) emulsification-crosslinking method could be used as a controlled-release delivery vehicle for food bioactives. Due to the processing route without the use of toxic organic solvents, it is expected that these microparticles can be...

  17. Cavitational Iron Microparticles Generation By Plasma Procedures For Medical Applications

    NASA Astrophysics Data System (ADS)

    Bica, Ioan; Bunoiu, Madalin; Chirigiu, Liviu; Spunei, Marius; Juganaru, Iulius

    2012-12-01

    The paper presents the experimental installation for the production, in argon plasma, of cavitational iron microparticles (pore microspheres, microtubes and octopus-shaped microparticles). Experimental results are presented and discussed and it is shown that absorbant particles with a minimum iron content are obtained by the plasma procedures

  18. Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier.

    PubMed

    Obaidat, Rana M; Alnaief, Mohammad; Mashaqbeh, Hadeia

    2018-05-07

    Carrageenan is an anionic polysaccharide offering many advantages to be used in drug delivery applications. These include availability, thermo-stability, low toxicity, and encapsulating properties. Combination of these properties with aerogel properties like large surface area and porosity make them an ideal candidate for drug adsorption and delivery applications. Emulsion-gelation technique was used to prepare carrageenan gel microparticles with supercritical CO 2 for drying and loading purposes. Ibuprofen has been selected as a model drug for drug loading inside. The prepared microparticles were characterized using particle size analysis, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, density measurements, surface area, and porosity measurements. Finally, dissolution was applied to the loaded preparations to test in vitro drug release. Ibuprofen was successfully loaded in the amorphous form inside the prepared microparticles with a significant enhancement in the drug release profile. In conclusion, prepared carrageenan aerogel microparticles showed an excellent potential for use as a drug carrier.

  19. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties

    PubMed Central

    Islam, Paromita; Water, Jorrit J.; Bohr, Adam; Rantanen, Jukka

    2016-01-01

    Chitosan-based nanogels have been widely applied as drug delivery vehicles. Spray-drying of said nanogels allows for the preparation of dry powder nano-embedded microparticles. In this work, chitosan-based nanogels composed of chitosan, alginate, and/or sodium tri-penta phosphate were investigated, particularly with respect to the impact of composition on the resulting physicochemical properties. Different compositions were obtained as nanogels with sizes ranging from 203 to 561 nm. The addition of alginate and exclusion of sodium tri-penta phosphate led to an increase in nanogel size. The nanogels were subsequently spray-dried to form nano-embedded microparticles with trehalose or mannitol as matrix excipient. The microparticles of different composition were mostly spherical with a smooth surface and a mass median aerodynamic diameter of 6–10 µm. Superior redispersibility was observed for microparticles containing amorphous trehalose. This study demonstrates the potential of nano-embedded microparticles for stabilization and delivery of nanogel-based delivery systems. PMID:28025505

  20. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties.

    PubMed

    Islam, Paromita; Water, Jorrit J; Bohr, Adam; Rantanen, Jukka

    2016-12-22

    Chitosan-based nanogels have been widely applied as drug delivery vehicles. Spray-drying of said nanogels allows for the preparation of dry powder nano-embedded microparticles. In this work, chitosan-based nanogels composed of chitosan, alginate, and/or sodium tri-penta phosphate were investigated, particularly with respect to the impact of composition on the resulting physicochemical properties. Different compositions were obtained as nanogels with sizes ranging from 203 to 561 nm. The addition of alginate and exclusion of sodium tri-penta phosphate led to an increase in nanogel size. The nanogels were subsequently spray-dried to form nano-embedded microparticles with trehalose or mannitol as matrix excipient. The microparticles of different composition were mostly spherical with a smooth surface and a mass median aerodynamic diameter of 6-10 µm. Superior redispersibility was observed for microparticles containing amorphous trehalose. This study demonstrates the potential of nano-embedded microparticles for stabilization and delivery of nanogel-based delivery systems.

  1. Production of microparticles of molinate degrading biocatalysts using the spray drying technique.

    PubMed

    Lopes, Ana R; Sousa, Vera M; Estevinho, Berta N; Leite, José P; Moreira, Nuno F F; Gales, Luís; Rocha, Fernando; Nunes, Olga C

    2016-10-01

    Previous studies demonstrated the capability of mixed culture DC1 to mineralize the thiocarbamate herbicide molinate through the activity of molinate hydrolase (MolA). Because liquid suspensions are not compatible with long-term storage and are not easy to handle when bioremediation strategies are envisaged, in this study spray drying was evaluated as a cost-effective method to store and transport these molinate biocatalysts. Microparticles of mixed culture DC1 (DC1) and of cell free crude extracts containing MolA (MA) were obtained without any carrier polymer, and with calcium alginate (CA) or modified chitosan (MCt) as immobilizing agents. All the DC1 microparticles showed high molinate degrading activity upon storage for 6 months, or after 9 additions of ∼0.4 mM molinate over 1 month. The DC1-MCt microparticles were those with the highest survival rate and lowest heterogeneity. For MA microparticles, only MA-MCt degraded molinate. However, its Vmax was only 1.4% of that of the fresh cell free extract (non spray dried). The feasibility of using the DC1-MCt and MA-MCt microparticles in bioaugmentation processes was assessed in river water microcosms, using mass (g):volume (L) ratios of 1:13 and 1:0.25, respectively. Both type of microparticles removed ∼65-75% of the initial 1.5 mg L(-1) molinate, after 7 days of incubation. However, only DC1-MCt microparticles were able to degrade this environmental concentration of molinate without disturbing the native bacterial community. These results suggest that spray drying can be successfully used to produce DC1-MCt microparticles to remediate molinate polluted sites through a bioaugmentation strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A method to analyze molecular tagging velocimetry data using the Hough transform.

    PubMed

    Sanchez-Gonzalez, R; McManamen, B; Bowersox, R D W; North, S W

    2015-10-01

    The development of a method to analyze molecular tagging velocimetry data based on the Hough transform is presented. This method, based on line fitting, parameterizes the grid lines "written" into a flowfield. Initial proof-of-principle illustration of this method was performed to obtain two-component velocity measurements in the wake of a cylinder in a Mach 4.6 flow, using a data set derived from computational fluid dynamics simulations. The Hough transform is attractive for molecular tagging velocimetry applications since it is capable of discriminating spurious features that can have a biasing effect in the fitting process. Assessment of the precision and accuracy of the method were also performed to show the dependence on analysis window size and signal-to-noise levels. The accuracy of this Hough transform-based method to quantify intersection displacements was determined to be comparable to cross-correlation methods. The employed line parameterization avoids the assumption of linearity in the vicinity of each intersection, which is important in the limit of drastic grid deformations resulting from large velocity gradients common in high-speed flow applications. This Hough transform method has the potential to enable the direct and spatially accurate measurement of local vorticity, which is important in applications involving turbulent flowfields. Finally, two-component velocity determinations using the Hough transform from experimentally obtained images are presented, demonstrating the feasibility of the proposed analysis method.

  3. Time-resolved particle image velocimetry measurements of the 3D single-mode Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Xu, Qian

    The Richtmyer-Meshkov Instability (RMI) (Commun. Pure Appl. Math 23, 297-319, 1960; Izv. Akad. Nauk. SSSR Maekh. Zhidk. Gaza. 4, 151-157, 1969) occurs due to an impulsive acceleration acting on a perturbed interface between two fluids of different densities. In the experiments presented in this thesis, single mode 3D RMI experiments are performed. An oscillating speaker generates a single mode sinusoidal initial perturbation at an interface of two gases, air and SF6. A Mach 1.19 shock wave accelerates the interface and generates the Richtmyer-Meshkov Instability. Both gases are seeded with propylene glycol particles which are illuminated by an Nd: YLF pulsed laser. Three high-speed video cameras record image sequences of the experiment. Particle Image Velocimetry (PIV) is applied to measure the velocity field. Measurements of the amplitude for both spike and bubble are obtained, from which the growth rate is measured. For both spike and bubble experiments, amplitude and growth rate match the linear stability theory at early time, but fall into a non-linear region with amplitude measurements lying between the modified 3D Sadot et al. model ( Phys. Rev. Lett. 80, 1654-1657, 1998) and the Zhang & Sohn model (Phys. Fluids 9. 1106-1124, 1997; Z. Angew. Math Phys 50. 1-46, 1990) at late time. Amplitude and growth rate curves are found to lie above the modified 3D Sadot et al. model and below Zhang & Sohn model for the spike experiments. Conversely, for the bubble experiments, both amplitude and growth rate curves lie above the Zhang & Sohn model, and below the modified 3D Sadot et al. model. Circulation is also calculated using the vorticity and velocity fields from the PIV measurements. The calculated circulation are approximately equal and found to grow with time, a result that differs from the modified Jacobs and Sheeley's circulation model (Phys. Fluids 8, 405-415, 1996).

  4. Preparation, In Vitro Characterization, and In Vivo Pharmacokinetic Evaluation of Respirable Porous Microparticles Containing Rifampicin

    PubMed Central

    Kundawala, Aliasgar; Patel, Vishnu; Patel, Harsha; Choudhary, Dhaglaram

    2014-01-01

    Abstract This study aimed to prepare and evaluate rifampicin microparticles for the lung delivery of rifampicin as respirable powder. The microparticles were prepared using chitosan by the spray-drying method and evaluated for aerodynamic properties and pulmonary drug absorption. To control the drug release, tripoly-phosphate in different concentrations 0.6, 0.9, 1.2, and 1.5 was employed to get a sustained drug release profile. The microparticles were evaluated for drug loading, % entrapment efficiency, tapped density, morphological characteristics, and in vitro drug release studies. Aerosol properties were determined using the Andersen cascade impactor. Porous microparticles with particle sizes (d0.5) less than 10 μm were obtained. The entrapment of rifampicin in microparticles was up to 72%. In vitro drug release suggested that the crosslinked microparticles showed sustained release for more than 12 hrs. The drug release rate was found to be decreased as the TPP concentration was increased. The microparticles showed a fine particle fraction in the range of 55–63% with mass median aerodynamic diameter (MMAD) values below 3 μm. The in vivo pulmonary absorption of the chitosan microparticles suggested a sustained drug release profile up to 72 hrs with an elimination rate of 0.010 per hr. The studies revealed that the spray-dried porous microparticles have suitable properties to be used as respirable powder in rifampicin delivery to the lungs. PMID:25853075

  5. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    NASA Astrophysics Data System (ADS)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  6. Development of Aerosol Phospholipid Microparticles for the Treatment of Pulmonary Hypertension.

    PubMed

    Brousseau, Sarah; Wang, Zimeng; Gupta, Sweta K; Meenach, Samantha A

    2017-11-01

    Pulmonary arterial hypertension (PAH) is an incurable cardiovascular disease characterized by high blood pressure in the arteries leading from the heart to the lungs. Over two million people in the USA are diagnosed with PAH annually and the typical survival rate is only 3 years after diagnosis. Current treatments are insufficient because of limited bioavailability, toxicity, and costs associated with approved therapeutics. Aerosol delivery of drugs is an attractive approach to treat respiratory diseases because it increases localized drug concentration while reducing systemic side effects. In this study, we developed phospholipid-based aerosol microparticles via spray drying consisting of the drug tacrolimus and the excipients dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol. The phospholipid-based spray-dried aerosol microparticles were shown to be smooth and spherical in size, ranging from 1 to 3 μm in diameter. The microparticles exhibited thermal stability and were amorphous after spray drying. Water content in the microparticles was under 10%, which will allow successful aerosol dispersion and long-term storage stability. In vitro aerosol dispersion showed that the microparticles could successfully deposit in the deep lung, as they exhibited favorable aerodynamic diameters and high fine particle fractions. In vitro dose-response analysis showed that TAC is nontoxic in the low concentrations that would be delivered to the lungs. Overall, this work shows that tacrolimus-loaded phospholipid-based microparticles can be successfully created with optimal physicochemical and toxicological characteristics.

  7. Mucoadhesive Microparticles in a Rapidly Dissolving Tablet for Sustained Drug Delivery to the Eye

    PubMed Central

    Choy, Young Bin; Patel, Samirkumar R.; Park, Jung-Hwan; McCarey, Bernard E.; Edelhauser, Henry F.

    2011-01-01

    Purpose. To test the hypothesis that mucoadhesive microparticles formulated in a rapidly dissolving tablet can achieve sustained drug delivery to the eye. Methods. Mucoadhesive microparticles, smaller than 5 μm were fabricated with poly(lactic-co-glycolic acid) and poly(ethylene glycol) as a core material and mucoadhesion promoter, respectively, and encapsulated pilocarpine as a model drug. These microparticles were embedded in a poly(vinyl alcohol) matrix to form a dry tablet designed to reduce rapid clearance of the microparticles on initial application to the eye. Results. This in vitro drug release study exhibited that for all formulations, approximately 90% of pilocarpine was released during the first 10 minutes, and the remaining 10% was released slowly for 3 hours. In vivo mucoadhesion test on the rabbit eye indicated that mucoadhesive microparticles adhered significantly better to the preocular surface than other formulations. To assess the pharmacodynamics, the most prolonged pilocarpine-induced pupil constriction was observed in rabbit eyes in vivo using a tablet with mucoadhesive microparticles; it lasted up to 330 minutes. Conclusions. The authors conclude that mucoadhesive microparticles formulated into a dry dosage form is a promising system for sustained drug delivery to the eye. PMID:21245405

  8. Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds.

    PubMed

    Wang, Ruoxi; Tian, Zhigang; Chen, Lingyun

    2011-03-15

    Novel microparticles (3-5 μm) were created by pre-emulsifying barley proteins with a homogenizer followed a microfluidizer system. These microparticles exhibited a high oil carrying capacity (encapsulation efficiency, 93-97%; loading efficiency, 46-49%). Microparticle degradation and bioactive compound release behaviours were studied in the simulated gastro-intestinal (GI) tract. The data revealed that nano-encapsulations (20-30 nm) were formed as a result of enzymatic degradation of barley protein microparticle bulk matrix in the simulated gastric tract. These nano-encapsulations delivered β-carotene to a simulated human intestinal tract intact, where they were degraded by pancreatic enzymes and steadily released the β-carotene. These uniquely structured microparticles may provide a new strategy for the nutraceutical and pharmaceutical industries to develop targeted delivery systems for lipophilic bioactive compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Galectin-3 binding protein links circulating microparticles with electron dense glomerular deposits in lupus nephritis.

    PubMed

    Nielsen, C T; Østergaard, O; Rekvig, O P; Sturfelt, G; Jacobsen, S; Heegaard, N H H

    2015-10-01

    A high level of galectin-3-binding protein (G3BP) appears to distinguish circulating cell-derived microparticles in systemic lupus erythematosus (SLE). The aim of this study is to characterize the population of G3BP-positive microparticles from SLE patients compared to healthy controls, explore putative clinical correlates, and examine if G3BP is present in immune complex deposits in kidney biopsies from patients with lupus nephritis. Numbers of annexin V-binding and G3BP-exposing plasma microparticles from 56 SLE patients and 36 healthy controls were determined by flow cytometry. Quantitation of microparticle-associated G3BP, C1q and immunoglobulins was obtained by liquid chromatography tandem mass spectrometry (LC-MS/MS). Correlations between microparticle-G3BP data and clinical parameters were analyzed. Co-localization of G3BP with in vivo-bound IgG was examined in kidney biopsies from one non-SLE control and from patients with class IV (n = 2) and class V (n = 1) lupus nephritis using co-localization immune electron microscopy. Microparticle-G3BP, microparticle-C1q and microparticle-immunoglobulins were significantly (P < 0.01) increased in SLE patients by LC-MS/MS. Three G3BP-exposing microparticle populations could be discerned by flow cytometry, including two subpopulations that were significantly increased in SLE samples (P = 0.01 and P = 0.0002, respectively). No associations of G3BP-positive microparticles with clinical manifestations or disease activity were found. Immune electron microscopy showed co-localization of G3BP with in vivo-bound IgG in glomerular electron dense immune complex deposits in all lupus nephritis biopsies. Both circulating microparticle-G3BP numbers as well as G3BP expression are increased in SLE patients corroborating G3BP being a feature of SLE microparticles. By demonstrating G3BP co-localized with deposited immune complexes in lupus nephritis, the study supports cell-derived microparticles as a major

  10. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process.

    PubMed

    Hosseini, Seyede Marzieh; Hosseini, Hedayat; Mohammadifar, Mohammad Amin; Mortazavian, Amir Mohammad; Mohammadi, Abdorreza; Khosravi-Darani, Kianoosh; Shojaee-Aliabadi, Saeedeh; Dehghan, Solmaz; Khaksar, Ramin

    2013-11-01

    In this study, an o/w/o multiple emulsion/ionic gelation method was developed for production of alginate microparticles loaded with Satureja hortensis essential oil (SEO). It was found that the essential oil concentration has significant influence on encapsulation efficiency (EE), loading capacity (LC) and size of microparticles. The values of EE, LC and particle mean diameter were about 52-66%, 20-26%, and 47-117 μm, respectively, when the initial SEO content was 1-3% (v/v) .The essential oil-loaded microparticles were porous, as displayed by scanning electron micrograph. The presence of SEO in alginate microparticles was confirmed by Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) analyses. SEO-loaded microparticles showed good antioxidant (with DPPH radical scavenging activity of 40.7-73.5%) and antibacterial properties; this effect was greatly improved when the concentration of SEO was 3% (v/v). S. aureus was found to be the most sensitive bacterium to SEO and showed a highest inhibition zone of 304.37 mm(2) in the microparticles incorporated with 3% (v/v) SEO. In vitro release studies showed an initial burst release and followed by a slow release. In addition, the release of SEO from the microparticles followed Fickian diffusion with acceptable release. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Patterning and manipulating microparticles into a three-dimensional matrix using standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Nguyen, T. D.; Tran, V. T.; Fu, Y. Q.; Du, H.

    2018-05-01

    A method based on standing surface acoustic waves (SSAWs) is proposed to pattern and manipulate microparticles into a three-dimensional (3D) matrix inside a microchamber. An optical prism is used to observe the 3D alignment and patterning of the microparticles in the vertical and horizontal planes simultaneously. The acoustic radiation force effectively patterns the microparticles into lines of 3D space or crystal-lattice-like matrix patterns. A microparticle can be positioned precisely at a specified vertical location by balancing the forces of acoustic radiation, drag, buoyancy, and gravity acting on the microparticle. Experiments and finite-element numerical simulations both show that the acoustic radiation force increases gradually from the bottom of the chamber to the top, and microparticles can be moved up or down simply by adjusting the applied SSAW power. Our method has great potential for acoustofluidic applications, building the large-scale structures associated with biological objects and artificial neuron networks.

  12. Hydrophobicity of silver surfaces with microparticle geometry

    NASA Astrophysics Data System (ADS)

    Macko, Ján; Oriňaková, Renáta; Oriňak, Andrej; Kovaľ, Karol; Kupková, Miriam; Erdélyi, Branislav; Kostecká, Zuzana; Smith, Roger M.

    2016-11-01

    The effect of the duration of the current deposition cycle and the number of current pulses on the geometry of silver microstructured surfaces and on the free surface energy, polarizability, hydrophobicity and thus adhesion force of the silver surfaces has been investigated. The changes in surface hydrophobicity were entirely dependent on the size and density of the microparticles on the surface. The results showed that formation of the silver microparticles was related to number of current pulses, while the duration of one current pulse played only a minor effect on the final surface microparticle geometry and thus on the surface tension and hydrophobicity. The conventional geometry of the silver particles has been transformed to the fractal dimension D. The surface hydrophobicity depended predominantly on the length of the dendrites not on their width. The highest silver surface hydrophobicity was observed on a surface prepared by 30 current pulses with a pulse duration of 1 s, the lowest one when deposition was performed by 10 current pulses with a duration of 0.1 s. The partial surface tension coefficients γDS and polarizability kS of the silver surfaces were calculated. Both parameters can be applied in future applications in living cells adhesion prediction and spectral method selection. Silver films with microparticle geometry showed a lower variability in final surface hydrophobicity when compared to nanostructured surfaces. The comparisons could be used to modify surfaces and to modulate human cells and bacterial adhesion on body implants, surgery instruments and clean surfaces.

  13. Quantitative NO{sub 2} molecular tagging velocimetry at 500 kHz frame rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Naibo; Nishihara, Munetake; Lempert, Walter R.

    2010-11-29

    NO{sub 2} molecular tagging velocimetry (MTV) is demonstrated at repetition rates as high as 500 kHz in a laboratory scale Mach 5 wind tunnel. A pulse burst laser and a home built optical parametric oscillator system were used to simultaneously generate the required 355 and 226 nm wavelengths for NO{sub 2} photodissociation (tagging) and NO planar laser induced fluorescence imaging (interrogation), respectively. NO{sub 2} MTV images were obtained both in front and behind the characteristic bow shock from a 5 mm diameter cylinder. From Gaussian curve fitting, an average free stream flow velocity of 719 m/s was obtained. Absolute statisticalmore » precision in velocity of {approx}11.5 m/s was determined, corresponding to relative precision of 1.6%-5%, depending upon the region of the flow probed.« less

  14. Assessing the biodegradability of microparticles disposed down the drain.

    PubMed

    McDonough, Kathleen; Itrich, Nina; Casteel, Kenneth; Menzies, Jennifer; Williams, Tom; Krivos, Kady; Price, Jason

    2017-05-01

    Microparticles made from naturally occurring materials or biodegradable plastics such as poly(3-hydroxy butyrate)-co-(3-hydroxy valerate), PHBV, are being evaluated as alternatives to microplastics in personal care product applications but limited data is available on their ultimate biodegradability (mineralization) in down the drain environmental compartments. An OECD 301B Ready Biodegradation Test was used to quantify ultimate biodegradability of microparticles made of PHBV foam, jojoba wax, beeswax, rice bran wax, stearyl stearate, blueberry seeds and walnut shells. PHBV polymer was ready biodegradable reaching 65.4 ± 4.1% evolved CO 2 in 5 d and 90.5 ± 3.1% evolved CO 2 in 80 d. PHBV foam microparticles (125-500 μm) were mineralized extensively with >66% CO 2 evolution in 28 d and >82% CO 2 evolution in 80 d. PHBV foam microparticles were mineralized at a similar rate and extent as microparticles made of jojoba wax, beeswax, rice bran wax, and stearyl stearate which reached 84.8  ± 4.8, 84.9  ± 2.2, 82.7  ± 4.7, and 86.4 ± 3.2% CO 2 evolution respectively in 80 d. Blueberry seeds and walnut shells mineralized more slowly only reaching 39.3  ± 6.9 and 5.1 ± 2.8% CO 2 evolution in 80 d respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    PubMed

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Persistence, Distribution, and Impact of Distinctly Segmented Microparticles on Cochlear Health following In Vivo Infusion3*

    PubMed Central

    Ross, Astin M.; Rahmani, Sahar; Prieskorn, Diane M.; Dishman, Acacia F; Miller, Josef M.; Lahann, Joerg; Altschuler, Richard A.

    2016-01-01

    Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma. This study assessed the feasibility of utilizing microparticles for drug delivery into cochlear fluids, testing persistence, distribution, biocompatibility, and drug release characteristics. To allow for delivery of multiple therapeutics, particles were composed of two distinct compartments; one containing polylactide-co-glycolide (PLGA), and one composed of acetal-modified dextran and PLGA. Following in vivo infusion, image analysis revealed microparticle persistence in the cochlea for at least 7 days post-infusion, primarily in the first and second turns. The majority of subjects maintained or had only slight elevation in auditory brainstem response thresholds at 7 days post-infusion compared to pre-infusion baselines. There was only minor to limited loss of cochlear hair cells and negligible immune response based on CD45+ immunolabling. When Piribedil-loaded microparticles were infused, Piribedil was detectable within the cochlear fluids at 7 days post-infusion. These results indicate that segmented microparticles are relatively inert, can persist, release their contents, and be functionally and biologically compatible with cochlear function and therefore are promising vehicles for cochlear drug delivery. PMID:26841263

  17. Single camera volumetric velocimetry in aortic sinus with a percutaneous valve

    NASA Astrophysics Data System (ADS)

    Clifford, Chris; Thurow, Brian; Midha, Prem; Okafor, Ikechukwu; Raghav, Vrishank; Yoganathan, Ajit

    2016-11-01

    Cardiac flows have long been understood to be highly three dimensional, yet traditional in vitro techniques used to capture these complexities are costly and cumbersome. Thus, two dimensional techniques are primarily used for heart valve flow diagnostics. The recent introduction of plenoptic camera technology allows for traditional cameras to capture both spatial and angular information from a light field through the addition of a microlens array in front of the image sensor. When combined with traditional particle image velocimetry (PIV) techniques, volumetric velocity data may be acquired with a single camera using off-the-shelf optics. Particle volume pairs are reconstructed from raw plenoptic images using a filtered refocusing scheme, followed by three-dimensional cross-correlation. This technique was applied to the sinus region (known for having highly three-dimensional flow structures) of an in vitro aortic model with a percutaneous valve. Phase-locked plenoptic PIV data was acquired at two cardiac outputs (2 and 5 L/min) and 7 phases of the cardiac cycle. The volumetric PIV data was compared to standard 2D-2C PIV. Flow features such as recirculation and stagnation were observed in the sinus region in both cases.

  18. Characterization of Chlorhexidine-Loaded Calcium-Hydroxide Microparticles as a Potential Dental Pulp-Capping Material.

    PubMed

    Priyadarshini, Balasankar M; Selvan, Subramanian T; Narayanan, Karthikeyan; Fawzy, Amr S

    2017-06-22

    This study explores the delivery of novel calcium hydroxide [Ca(OH)₂] microparticles loaded with chlorhexidine (CHX) for potential dental therapeutic and preventive applications. Herein, we introduce a new approach for drug-delivery to deep dentin-surfaces in the form of drug-loaded microparticles. Unloaded Ca(OH)₂ [Ca(OH)₂/Blank] and CHX-loaded/Ca(OH)₂ microparticles were fabricated by aqueous chemical-precipitation technique. The synthesized-microparticles were characterized in vitro for determination of surface-morphology, crystalline-features and thermal-properties examined by energy-dispersive X-ray scanning and transmission electron-microscopy (EDX-SEM/TEM), Fourier-transform infrared-spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning-calorimetry (DSC). Time-related pH changes, initial antibacterial/biofilm-abilities and cytotoxicity of CHX-loaded/Ca(OH)₂ microparticles were evaluated. Microparticles were delivered to dentin-surfaces with subsequent SEM examination of treated dentin-substrates. The in vitro and ex vivo CHX-release profiles were characterized. Ca(OH)₂/Blank were hexagonal-shaped with highest z -average diameter whereas CHX-inclusion evidenced micro-metric spheres with distinguishable surface "rounded deposits" and a negative-shift in diameter. CHX:Ca(OH)₂/50 mg exhibited maximum encapsulation-efficiency with good antibacterial and cytocompatible properties. SEM examination revealed an intact layer of microparticles on exposed dentin-surfaces with retention of spherical shape and smooth texture. Microparticles loaded on dentin-surfaces showed prolonged release of CHX indicating substantial retention on dentin-substrates. This study validated the inherent-applicability of this novel drug-delivery approach to dentin-surfaces using micro-metric CHX-loaded/Ca(OH)₂ microparticles.

  19. Characterization of Chlorhexidine-Loaded Calcium-Hydroxide Microparticles as a Potential Dental Pulp-Capping Material

    PubMed Central

    Priyadarshini, Balasankar M.; Selvan, Subramanian T.; Narayanan, Karthikeyan; Fawzy, Amr S.

    2017-01-01

    This study explores the delivery of novel calcium hydroxide [Ca(OH)2] microparticles loaded with chlorhexidine (CHX) for potential dental therapeutic and preventive applications. Herein, we introduce a new approach for drug-delivery to deep dentin-surfaces in the form of drug-loaded microparticles. Unloaded Ca(OH)2 [Ca(OH)2/Blank] and CHX-loaded/Ca(OH)2 microparticles were fabricated by aqueous chemical-precipitation technique. The synthesized-microparticles were characterized in vitro for determination of surface-morphology, crystalline-features and thermal-properties examined by energy-dispersive X-ray scanning and transmission electron-microscopy (EDX-SEM/TEM), Fourier-transform infrared-spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning-calorimetry (DSC). Time-related pH changes, initial antibacterial/biofilm-abilities and cytotoxicity of CHX-loaded/Ca(OH)2 microparticles were evaluated. Microparticles were delivered to dentin-surfaces with subsequent SEM examination of treated dentin-substrates. The in vitro and ex vivo CHX-release profiles were characterized. Ca(OH)2/Blank were hexagonal-shaped with highest z-average diameter whereas CHX-inclusion evidenced micro-metric spheres with distinguishable surface “rounded deposits” and a negative-shift in diameter. CHX:Ca(OH)2/50 mg exhibited maximum encapsulation-efficiency with good antibacterial and cytocompatible properties. SEM examination revealed an intact layer of microparticles on exposed dentin-surfaces with retention of spherical shape and smooth texture. Microparticles loaded on dentin-surfaces showed prolonged release of CHX indicating substantial retention on dentin-substrates. This study validated the inherent-applicability of this novel drug-delivery approach to dentin-surfaces using micro-metric CHX-loaded/Ca(OH)2 microparticles. PMID:28952538

  20. Miconazole Nitrate-loaded Microparticles For Buccal Use: Immediate Drug Release and Antifungal Effect.

    PubMed

    Cartagena, Andres Felipe; Lyra, Amanda Martinez; Kapuchczinski, Aline Cristina; Urban, Amanda Migliorini; Esmerino, Luis Antonio; Klein, Traudi; Nadal, Jessica Mendes; Farago, Paulo Vitor; Campanha, Nara Hellen

    2017-01-01

    Miconazole nitrate has been widely employed in treatment of oral mycoses, however your immediate bio-availability and location in the affected area is critical. The aim of this study was to prepare and evaluate Eudragit® L100 and Gantrez MS-955 microparticles containing miconazole nitrate for oral delivery. Microparticles were prepared by spray-drying method to achieve high encapsulation efficiency and increase the drug solubility. The microparticles were formed containing 10% and 20% of drug on polymer Eudragit® L100 (E10 and E20), Gantrez MS-955 (G10 and G20) or their combination (EG10 and EG20). The influence of formulation factors (polymer:drug ratio, type of polymer) on yield percent, encapsulation efficiency, particle size, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, differential scanning calorimetry, in vitro drug release and antifungal activity were investigated. Acceptable yield, micrometer-sized and drug-loading efficiencies higher than 89% were obtained. No change in FTIR assignments was recorded after the microencapsulation procedure. X-ray and differential scanning calorimetry studies revealed amorphous/non-crystalline formulations. Miconazole nitrate-microparticles provided a remarkable increase of dissolution rate of the drug. Miconazole nitrate and G10, G20 and EG20 microparticles fitted to biexponential kinetic model, and E10, E20 and EG10 microparticles, monoexponential kinetic model. The antifungal activity test demonstrated that miconazole nitrate-microparticles possessed the same anti-Candida albicans activity as the pure drug. These results indicate that miconazole nitrate-microparticles are feasible carriers for increased release of miconazole at oral environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease

    PubMed Central

    van Beers, Eduard J.; Schaap, Marianne C.L.; Berckmans, René J.; Nieuwland, Rienk; Sturk, Augueste; van Doormaal, Frederiek F.; Meijers, Joost C.M.; Biemond, Bart J.

    2009-01-01

    Background Sickle cell disease is characterized by a hypercoagulable state as a result of multiple factors, including chronic hemolysis and circulating cell-derived microparticles. There is still no consensus on the cellular origin of such microparticles and the exact mechanism by which they may enhance coagulation activation in sickle cell disease. Design and Methods In the present study, we analyzed the origin of circulating microparticles and their procoagulant phenotype during painful crises and steady state in 25 consecutive patients with sickle cell disease. Results The majority of microparticles originated from platelets (GPIIIa,CD61) and erythrocytes (glycophorin A,CD235), and their numbers did not differ significantly between crisis and steady state. Erythrocyte-derived microparticles strongly correlated with plasma levels of markers of hemolysis, i.e. hemoglobin (r=−0.58, p<0.001) and lactate dehydrogenase (r=0.59, p<0.001), von Willebrand factor as a marker of platelet/endothelial activation (r=0.44, p<0.001), and D-dimer and prothrombin fragment F1+2 (r=0.52, p<0.001 and r=0.59, p<0.001, respectively) as markers of fibrinolysis and coagulation activation. Thrombin generation depended on the total number of microparticles (r=0.63, p<0.001). Anti-human factor XI inhibited thrombin generation by about 50% (p<0.001), whereas anti-human factor VII was ineffective (p>0.05). The extent of factor XI inhibition was associated with erythrocyte-derived microparticles (r=0.50, p=0.023). Conclusions We conclude that the procoagulant state in sickle cell disease is partially explained by the factor XI-dependent procoagulant properties of circulating erythrocyte-derived microparticles. PMID:19815831

  2. Effect of non-Poisson samples on turbulence spectra from laser velocimetry

    NASA Technical Reports Server (NTRS)

    Sree, Dave; Kjelgaard, Scott O.; Sellers, William L., III

    1994-01-01

    Spectral analysis of laser velocimetry (LV) data plays an important role in characterizing a turbulent flow and in estimating the associated turbulence scales, which can be helpful in validating theoretical and numerical turbulence models. The determination of turbulence scales is critically dependent on the accuracy of the spectral estimates. Spectral estimations from 'individual realization' laser velocimetry data are typically based on the assumption of a Poisson sampling process. What this Note has demonstrated is that the sampling distribution must be considered before spectral estimates are used to infer turbulence scales.

  3. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery

    PubMed Central

    Giri, Tapan Kumar; Choudhary, Chhatrapal; Ajazuddin; Alexander, Amit; Badwaik, Hemant; Tripathi, Dulal Krishna

    2012-01-01

    Several methods and techniques are potentially useful for the preparation of microparticles in the field of controlled drug delivery. The type and the size of the microparticles, the entrapment, release characteristics and stability of drug in microparticles in the formulations are dependent on the method used. One of the most common methods of preparing microparticles is the single emulsion technique. Poorly soluble, lipophilic drugs are successfully retained within the microparticles prepared by this method. However, the encapsulation of highly water soluble compounds including protein and peptides presents formidable challenges to the researchers. The successful encapsulation of such compounds requires high drug loading in the microparticles, prevention of protein and peptide degradation by the encapsulation method involved and predictable release, both rate and extent, of the drug compound from the microparticles. The above mentioned problems can be overcome by using the double emulsion technique, alternatively called as multiple emulsion technique. Aiming to achieve this various techniques have been examined to prepare stable formulations utilizing w/o/w, s/o/w, w/o/o, and s/o/o type double emulsion methods. This article reviews the current state of the art in double emulsion based technologies for the preparation of microparticles including the investigation of various classes of substances that are pharmaceutically and biopharmaceutically active. PMID:23960828

  4. Phagocytosis of PLGA Microparticles in Rat Peritoneal Exudate Cells: A Time-Dependent Study

    NASA Astrophysics Data System (ADS)

    Gomes, Anderson De Jesus; Nain Lunardi, Claure; Henrique Caetano, Flávio; Orive Lunardi, Laurelúcia; da Hora Machado, Antonio Eduardo

    2006-07-01

    With the purpose of enhancing the efficacy of microparticle-encapsulated therapeutic agents, in this study we evaluated the phagocytic ability of rat peritoneal exudate cells and the preferential location of poly(D,L-lactide-co-glycolic acid) (PLGA) microparticles inside these cells. The microparticles used were produced by a solvent evaporation method and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Size distribution analysis using DLS and SEM showed that the particles were spherical, with diameters falling between 0.5 and 1.5 [mu]m. Results from cell adhesion by SEM assay, indicated that the PLGA microparticles are not toxic to cells and do not cause any distinct damage to them as confirmed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Among the large variety of cell populations found in the peritoneal exudates (neutrophils, eosinophils, monocytes, and macrophages), TEM showed that only the latter phagocytosed PLGA microparticles, in a time-dependent manner. The results obtained indicate that the microparticles studied show merits as possible carriers of drugs for intracellular delivery.

  5. Optical frequency standards for gravitational wave detection using satellite velocimetry

    NASA Astrophysics Data System (ADS)

    Vutha, Amar

    2015-04-01

    Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.

  6. Decellularized extracellular matrix microparticles as a vehicle for cellular delivery in a model of anastomosis healing.

    PubMed

    Hoganson, David M; Owens, Gwen E; Meppelink, Amanda M; Bassett, Erik K; Bowley, Chris M; Hinkel, Cameron J; Finkelstein, Eric B; Goldman, Scott M; Vacanti, Joseph P

    2016-07-01

    Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 µm microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1728-1735, 2016. © 2016 Wiley Periodicals, Inc.

  7. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex.

    PubMed

    Liang, Yansheng; Lei, Ming; Yan, Shaohui; Li, Manman; Cai, Yanan; Wang, Zhaojun; Yu, Xianghua; Yao, Baoli

    2018-01-01

    Low-refractive-index microparticles, such as hollow microspheres, have shown great significance in some applications, such as biomedical sensing and targeted drug delivery. However, optical trapping and manipulation of low-refractive-index microparticles are challenging, owing to the repelling force exerted by typical optical traps. In this paper, we demonstrated optical trapping and rotating of large-sized low-refractive-index microparticles by using quasi-perfect optical vortex (quasi-POV) beams, which were generated by Fourier transform of high-order quasi-Bessel beams. Numerical simulation was carried out to characterize the focusing property of the quasi-POV beams. The dynamics of low-refractive-index microparticles in the quasi-POV with various topological charges was investigated in detail. To improve the trapping and rotating performances of the vortex, a point trap was introduced at the center of the ring. Experimental results showed that the quasi-POV was preferable for manipulation of large-sized low-refractive-index microparticles, with its control of the particles' rotating velocity dependent only on the topological charge due to the unchanged orbital radius.

  8. Mucoadhesive microparticles with a nanostructured surface for enhanced bioavailability of glaucoma drug.

    PubMed

    Park, Chun Gwon; Kim, Young Kook; Kim, Mi Jeung; Park, Min; Kim, Myung Hun; Lee, Seung Ho; Choi, Sung Yoon; Lee, Won Seok; Chung, You Jung; Jung, Young Eun; Park, Ki Ho; Choy, Young Bin

    2015-12-28

    Topical drug administration to the eye is limited by low drug bioavailability due to its rapid clearance from the preocular surface. Thus, multiple daily administrations are often needed, but patient compliance is low, hence a high chance of unsatisfactory treatment of ocular diseases. To resolve this, we propose mucoadhesive microparticles with a nanostructured surface as potential carriers for delivery of brimonidine, an ocular drug for glaucoma treatment. For sustained drug delivery, the microparticles were composed mainly of a diffusion-wall material, poly(lactic-co-glycolic acid) and a mucoadhesive polymer, polyethylene glycol, was used as an additive. Due to their nanostructured surface, the microparticles with a mucoadhesive material exhibited a 13-fold increase in specific surface area and could thus adhere better to the mucous layer on the eye, as compared with the conventional spherical microparticles. When loaded with brimonidine, the mucoadhesive microparticles with a nanostructured surface increased both drug bioavailability and its activity period by a factor of more than 2 over Alphagan P, a marketed eye drop of brimonidine. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. To flap or not to flap: continued discussion with particle image velocimetry of the near wake

    NASA Astrophysics Data System (ADS)

    Martin, Nathan; Roh, Chris; Idrees, Suhail; Gharib, Morteza

    2017-11-01

    We continue the discussion of which underwater propulsion mechanism is more effective: flapping used by fish or periodic contractions used by jellyfish. The two propulsion mechanisms are simplified into flapping and clapping plate motions, respectively, to allow for a direct comparison. A device is designed to operate in either mode of propulsion between Reynolds numbers 1,880 and 11,260, based on the average tip velocity and the span of the plate. The stroke angle, stroke time, flexibility, and duty cycle are varied to determine their impact on the generated thrust and the required torque. Overall, the clapping mode tends to require significantly more power to generate a similar thrust compared to that from the flapping mode. The performance of the clapping mode is increased by modifying the duty cycle such that the closing motion is faster than the opening motion causing a greater thrust and a similar efficiency to that from the flapping mode. Interestingly, when using rigid plates, the average thrust generated per cycle is similar between the two modes when the overall kinematics are equivalent. Investigation of the near wake of both modes through digital particle image velocimetry provides insight into the cause of this similar thrust. This work was supported by the Charyk Bio-inspired Laboratory at the California Institute of Technology, the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469, and the Summer Undergraduate Research Fellowships program.

  10. Methotrexate loaded alginate microparticles and effect of Ca2+ post-crosslinking: An in vitro physicochemical and biological evaluation.

    PubMed

    Dhanka, Mukesh; Shetty, Chaitra; Srivastava, Rohit

    2018-04-15

    Methotrexate (MTX) loaded alginate microparticles were produced by simple water-in-oil (W/O) emulsion solvent diffusion method with homogenization and then subsequently cross-linked by Ca 2+ . The mean sizes of developed microparticles (bare non-crosslinked, crosslinked, drug-loaded non-crosslinked, and drug-loaded cross-linked) were found to be <11μm. The morphology of bare non-crosslinked and crosslinked microparticles were observed to be spherical with smooth surface morphology. However, MTX loaded non-crosslinked and crosslinked microparticles were found to have an irregular shape with rough surface morphology. The encapsulation efficiency (% EE) and loading capacity (% LC) of MTX loaded non-crosslinked microparticles were estimated to be 92.19±1.85 and 9.35±0.22, respectively. However, in case of cross-linked microparticles, the % EE and % LC values slightly decreased, i.e., 83.26±1.69% and 8.44±0.21%, respectively. Crosslinked microparticles were found to release MTX at a slower rate as compared to non-crosslinked microparticles. The physicochemical characterizations of microparticles by Fourier Transform Infrared Spectroscopy and High-Resolution X-Ray Diffraction have shown that drug encapsulated in the microparticles without chemical interactions has lost its crystalline nature. The biocompatibility and hemocompatibility studies of the microparticles have demonstrated that microparticles are biocompatible and were non-hemolytic at low concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles

    PubMed Central

    Tong, Zongrui; Chen, Yu; Liu, Yang; Tong, Li; Chu, Jiamian; Xiao, Kecen; Zhou, Zhiyu; Dong, Wenbo; Chu, Xingwu

    2017-01-01

    Alginate (Alg) is a renewable polymer with excellent hemostatic properties and biocapability and is widely used for hemostatic wound dressing. However, the swelling properties of alginate-based wound dressings need to be promoted to meet the requirements of wider application. Poly(γ-glutamic acid) (PGA) is a natural polymer with high hydrophility. In the current study, novel Alg/PGA composite microparticles with double network structure were prepared by the emulsification/internal gelation method. It was found from the structure characterization that a double network structure was formed in the composite microparticles due to the ion chelation interaction between Ca2+ and the carboxylate groups of Alg and PGA and the electrostatic interaction between the secondary amine group of PGA and the carboxylate groups of Alg and PGA. The swelling behavior of the composite microparticles was significantly improved due to the high hydrophility of PGA. Influences of the preparing conditions on the swelling behavior of the composites were investigated. The porous microparticles could be formed while compositing of PGA. Thermal stability was studied by thermogravimetric analysis method. Moreover, in vitro cytocompatibility test of microparticles exhibited good biocompatibility with L929 cells. All results indicated that such Alg/PGA composite microparticles are a promising candidate in the field of wound dressing for hemostasis or rapid removal of exudates. PMID:28398222

  12. Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles.

    PubMed

    Tong, Zongrui; Chen, Yu; Liu, Yang; Tong, Li; Chu, Jiamian; Xiao, Kecen; Zhou, Zhiyu; Dong, Wenbo; Chu, Xingwu

    2017-04-11

    Alginate (Alg) is a renewable polymer with excellent hemostatic properties and biocapability and is widely used for hemostatic wound dressing. However, the swelling properties of alginate-based wound dressings need to be promoted to meet the requirements of wider application. Poly( γ -glutamic acid) (PGA) is a natural polymer with high hydrophility. In the current study, novel Alg/PGA composite microparticles with double network structure were prepared by the emulsification/internal gelation method. It was found from the structure characterization that a double network structure was formed in the composite microparticles due to the ion chelation interaction between Ca 2+ and the carboxylate groups of Alg and PGA and the electrostatic interaction between the secondary amine group of PGA and the carboxylate groups of Alg and PGA. The swelling behavior of the composite microparticles was significantly improved due to the high hydrophility of PGA. Influences of the preparing conditions on the swelling behavior of the composites were investigated. The porous microparticles could be formed while compositing of PGA. Thermal stability was studied by thermogravimetric analysis method. Moreover, in vitro cytocompatibility test of microparticles exhibited good biocompatibility with L929 cells. All results indicated that such Alg/PGA composite microparticles are a promising candidate in the field of wound dressing for hemostasis or rapid removal of exudates.

  13. Microparticles Engineered to Highly Express Peroxisome Proliferator-Activated Receptor-γ Decreased Inflammatory Mediator Production and Increased Adhesion of Recipient Monocytes

    PubMed Central

    Sahler, Julie; Woeller, Collynn F.; Phipps, Richard P.

    2014-01-01

    Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte

  14. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    PubMed

    Sahler, Julie; Woeller, Collynn F; Phipps, Richard P

    2014-01-01

    Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte

  15. Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles

    PubMed Central

    Serda, Rita E.; Blanco, Elvin; Mack, Aaron; Stafford, Susan J.; Amra, Sarah; Li, Qingpo; van de Ven, Anne L.; Tanaka, Takemi; Torchilin, Vladimir P.; Wiktorowicz, John E.; Ferrari, Mauro

    2014-01-01

    Mass transport of drug delivery vehicles is guided by particle properties, such as shape, composition and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light chain variable region, fibrinogen, and complement component 1 compared to their anionic counterparts. The anionic-surface favored equal accumulation of microparticles in the liver and spleen, while cationic-surfaces favored preferential accumulation in the spleen. Immunohistochemistry supported macrophage internalization of both anionic and cationic silicon microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution. PMID:21303614

  16. Plasma levels of endothelial and B-cell-derived microparticles are restored by fingolimod treatment in multiple sclerosis patients.

    PubMed

    Zinger, Anna; Latham, Sharissa L; Combes, Valery; Byrne, Scott; Barnett, Michael H; Hawke, Simon; Grau, Georges E

    2016-12-01

    No molecular marker can monitor disease progression and treatment efficacy in multiple sclerosis (MS). Circulating microparticles represent a potential snapshot of disease activity at the blood brain barrier. To profile plasma microparticles by flow cytometry in MS and determine how fingolimod could impact endothelial microparticles production. In non-treated MS patients compared to healthy and fingolimod-treated patients, endothelial microparticles were higher, while B-cell-microparticle numbers were lower. Fingolimod dramatically reduced tumour necrosis factor (TNF)-induced endothelial microparticle release in vitro. Fingolimod restored dysregulated endothelial and B-cell-microparticle numbers, which could serve as a biomarker in MS. © The Author(s), 2016.

  17. Redox-responsive solid lipid microparticles composed of octadecyl acrylate and allyl disulfide.

    PubMed

    Kim, Tae Hoon; Kim, Jin-Chul

    2018-04-01

    Redox-responsive solid lipid microparticles were prepared by an emulsification photo-polymerization method. Octadecyl acrylate (ODA) and a cross-linker (i.e. allyl disulfide (ADS) and octadiene (ODE)) were dissolved in dichloromethane, it was emulsified in poly(vinyl alcohol) solution, and the resulting O/W emulsion was irradiated with UV light. On the scanning electron microscope micrographs, the microparticles were sphere-like and they were not markedly different from the oil droplets in size. Using the atomic compositions analyzed by energy dispersive X-ray spectroscopy, the ODA to cross-linker molar ratio of ODA/ADS microparticles and ODA/ODE ones were calculated to be 1:0.13 and 1:0.15, respectively. In the FT-IR spectra of the microparticles, the signal of the vinyl group was hardly detected, implying that the monomer and the cross-linkers participated in the photo-polymerization. In differential scanning calorimetry study, ODA/ADS microparticles and ODA/ODE ones exhibited their endothermic peaks around 42.9 and 41.3 °C, respectively, possibly due to the melting of polymeric ODA. Dithiothreitol (DTT, a reducing agent) concentration had little effect on the release degree of dye loaded in ODA/ODE microparticles. Whereas, DTT concentration had a significant effect on the release degree of dye loaded in ODA/ADS microparticles. The release degree at 26 °C was weakly affected by DTT concentration. When the temperature was 37 °C, DTT concentration had a strong effect on the release degree. The disulfide cross-linker (i.e. ADS) can be broken to thiol compounds by the reducing agent, resulting in an increase in the release degree.

  18. Heparin Microparticle Effects on Presentation and Bioactivity of Bone Morphogenetic Protein-2

    PubMed Central

    Hettiaratchi, Marian H.; Miller, Tobias; Temenoff, Johnna S.; Guldberg, Robert E.; McDevitt, Todd C.

    2014-01-01

    Biomaterials capable of providing localized and sustained presentation of bioactive proteins are critical for effective therapeutic growth factor delivery. However, current biomaterial delivery vehicles commonly suffer from limitations that can result in low retention of growth factors at the site of interest or adversely affect growth factor bioactivity. Heparin, a highly sulfated glycosaminoglycan, is an attractive growth factor delivery vehicle due to its ability to reversibly bind positively charged proteins, provide sustained delivery, and maintain protein bioactivity. This study describes the fabrication and characterization of heparin methacrylamide (HMAm) microparticles for recombinant growth factor delivery. HMAm microparticles were shown to efficiently bind several heparin-binding growth factors (e.g. bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (FGF-2)), including a wide range of BMP-2 concentrations that exceeds the maximum binding capacity of other common growth factor delivery vehicles, such as gelatin. BMP-2 bioactivity was assessed on the basis of alkaline phosphatase (ALP) activity induced in skeletal myoblasts (C2C12). Microparticles loaded with BMP-2 stimulated comparable C2C12 ALP activity to soluble BMP-2 treatment, indicating that BMP-2-loaded microparticles retain bioactivity and potently elicit a functional cell response. In summary, our results suggest that heparin microparticles stably retain large amounts of bioactive BMP-2 for prolonged periods of time, and that presentation of BMP-2 via heparin microparticles can elicit cell responses comparable to soluble BMP-2 treatment. Consequently, heparin microparticles present an effective method of delivering and spatially retaining growth factors that could be used in a variety of systems to enable directed induction of cell fates and tissue regeneration. PMID:24881028

  19. PEGylated Biodegradable Polyesters for PGSS Microparticles Formulation: Processability, Physical and Release Properties.

    PubMed

    Perinelli, D R; Cespi, M; Bonacucina, G; Naylor, A; Whitaker, M; Lam, J K W; Howdle, S M; Casettari, L; Palmieri, G F

    2016-01-01

    Particles from Gas Saturated Solution (PGSS) is an emergent method that employs supercritical carbon dioxide (scCO2) to produce microparticles. It is suitable for encapsulating biologically active compounds including therapeutic peptides and proteins. Poly(lactide acid) (PLA) and/or poly(lactic-coglycolic acid) (PLGA) are the most commonly used materials in PGSS, due to their good processability in scCO2. Previous studies demonstrated that the properties of the microparticles can be modulated by adding polyethylene glycol (PEG) or tri-block PEGylated copolymers. In the present work, the effect of the addition of biodegradable PEGylated di-block copolymers on the physical properties and drug release performance of microparticles prepared by PGSS technique was evaluated. mPEG5kDa-P(L)LA and mPEG5kDa-P(L)LGA with similar molecular weights were synthesized and their behaviour, when exposed to supercritical CO2, was investigated. Different microparticle formulations, composed of a high (81%) or low (9%) percentage of the synthesized copolymers were prepared and compared in terms of particle size distribution, morphology, yield and protein release. Drug release studies were performed using bovine serum albumin (BSA) as a model protein. PEGylated copolymers showed good processability in PGSS without significant changes to the physical properties of the microparticles. However, the addition of PEG exerted a modulating effect on the microparticle drug dissolution behaviour, increasing the rate of BSA release as a function of its content in the formulation. This study demonstrated the feasibility of producing microparticles by using PEGylated di-block copolymers through a PGSS technique at mild operating conditions (low operating pressure and temperature).

  20. Characterization of microparticles prepared by emulsion method from pectin and protein

    USDA-ARS?s Scientific Manuscript database

    In this study, pectin was extracted from apple peel and formulated into microparticles in combination with zein, an edible food protein. The physical, chemical, and structural properties of the resultant pectin structures were evaluated. The resultant microparticles were also examined in vitro for c...

  1. Robust Label-free, Quantitative Profiling of Circulating Plasma Microparticle (MP) Associated Proteins*

    PubMed Central

    Braga-Lagache, Sophie; Buchs, Natasha; Iacovache, Mircea-Ioan; Zuber, Benoît; Jackson, Christopher Benjamin

    2016-01-01

    Cells of the vascular system release spherical vesicles, called microparticles, in the size range of 0.1–1 μm induced by a variety of stress factors resulting in variable concentrations between health and disease. Furthermore, microparticles have intercellular communication/signaling properties and interfere with inflammation and coagulation pathways. Today's most used analytical technology for microparticle characterization, flow cytometry, is lacking sensitivity and specificity, which might have led to the publication of contradicting results in the past. We propose the use of nano-liquid chromatography two-stage mass spectrometry as a nonbiased tool for quantitative MP proteome analysis. For this, we developed an improved microparticle isolation protocol and quantified the microparticle protein composition of twelve healthy volunteers with a label-free, data-dependent and independent proteomics approach on a quadrupole orbitrap instrument. Using aliquots of 250 μl platelet-free plasma from one individual donor, we achieved excellent reproducibility with an interassay coefficient of variation of 2.7 ± 1.7% (mean ± 1 standard deviation) on individual peptide intensities across 27 acquisitions performed over a period of 3.5 months. We show that the microparticle proteome between twelve healthy volunteers were remarkably similar, and that it is clearly distinguishable from whole cell and platelet lysates. We propose the use of the proteome profile shown in this work as a quality criterion for microparticle purity in proteomics studies. Furthermore, one freeze thaw cycle damaged the microparticle integrity, articulated by a loss of cytoplasm proteins, encompassing a specific set of proteins involved in regulating dynamic structures of the cytoskeleton, and thrombin activation leading to MP clotting. On the other hand, plasma membrane protein composition was unaffected. Finally, we show that multiplexed data-independent acquisition can be used for relative

  2. Selective microrobot control using a thermally responsive microclamper for microparticle manipulation

    NASA Astrophysics Data System (ADS)

    Go, Gwangjun; Choi, Hyunchul; Jeong, Semi; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-03-01

    Microparticle manipulation using a microrobot in an enclosed environment, such as a lab-on-a-chip, has been actively studied because an electromagnetic actuated microrobot can have accurate motility and wireless controllability. In most studies on electromagnetic actuated microrobots, only a single microrobot has been used to manipulate cells or microparticles. However, the use of a single microrobot can pose several limitations when performing multiple roles in microparticle manipulation. To overcome the limitations associated with using a single microrobot, we propose a new method for the control of multiple microrobots. Multiple microrobots can be controlled independently by an electromagnetic actuation system and multiple microclampers combined with microheaters. To select a specific microrobot among multiple microrobots, we propose a microclamper composed of a clamper structure using thermally responsive hydrogel and a microheater for controlling the microclamper. A fundamental test of the proposed microparticle manipulation system is performed by selecting a specific microrobot among multiple microrobots. Through the independent locomotion of multiple microrobots with U- and V-shaped tips, heterogeneous microparticle manipulation is demonstrated in the creation of a two-dimensional structure. In the future, our proposed multiple-microrobot system can be applied to tasks that are difficult to perform using a single microrobot, such as cell manipulation, cargo delivery, tissue assembly, and cloning.

  3. Three-dimensional particle tracking velocimetry algorithm based on tetrahedron vote

    NASA Astrophysics Data System (ADS)

    Cui, Yutong; Zhang, Yang; Jia, Pan; Wang, Yuan; Huang, Jingcong; Cui, Junlei; Lai, Wing T.

    2018-02-01

    A particle tracking velocimetry algorithm based on tetrahedron vote, which is named TV-PTV, is proposed to overcome the limited selection problem of effective algorithms for 3D flow visualisation. In this new cluster-matching algorithm, tetrahedrons produced by the Delaunay tessellation are used as the basic units for inter-frame matching, which results in a simple algorithmic structure of only two independent preset parameters. Test results obtained using the synthetic test image data from the Visualisation Society of Japan show that TV-PTV presents accuracy comparable to that of the classical algorithm based on new relaxation method (NRX). Compared with NRX, TV-PTV possesses a smaller number of loops in programming and thus a shorter computing time, especially for large particle displacements and high particle concentration. TV-PTV is confirmed practically effective using an actual 3D wake flow.

  4. Dynamics of rigid microparticles at the interface of co-flowing immiscible liquids in a microchannel.

    PubMed

    Jayaprakash, K S; Banerjee, U; Sen, A K

    2017-05-01

    We report the dynamical migration behavior of rigid polystyrene microparticles at an interface of co-flowing streams of primary CP 1 (aqueous) and secondary CP 2 (oils) immiscible phases at low Reynolds numbers (Re) in a microchannel. The microparticles initially suspended in the CP 1 either continue to flow in the bulk CP 1 or migrate across the interface into CP 2 , when the stream width of the CP 1 approaches the diameter of the microparticles. Experiments were performed with different secondary phases and it is found that the migration criterion depends on the sign of the spreading parameter S and the presence of surfactant at the interface. To substantiate the migration criterion, experiments were also carried out by suspending the microparticles in CP 2 (oil phase). Our study reveals that in case of aqueous-silicone oil combination, the microparticles get attached to the interface since S<0 and the three phase contact angle, θ>90°. For complete detachment of microparticles from the interface into the secondary phase, additional energy ΔG is needed. We discuss the role of interfacial perturbation, which causes detachment of microparticles from the interface. In case of mineral and olive oils, the surfactants present at the interface prevents attachment of the microparticles to the interface due to the repulsive disjoining pressure. Finally, using a aqueous-silicone oil system, we demonstrate size based sorting of microparticles of size 25μm and 15μm respectively from that of 15μm and 10μm and study the variation of separation efficiency η with the ratio of the width of the aqueous stream to the diameter of the microparticles ρ. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids.

    PubMed

    Baek, Jong-Suep; Choo, Chee Chong; Tan, Nguan Soon; Loo, Say Chye Joachim

    2017-10-06

    Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D, L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.

  6. Effects of anti-TNF-α agents on circulating endothelial-derived and platelet-derived microparticles in psoriasis.

    PubMed

    Pelletier, Fabien; Garnache-Ottou, Francine; Biichlé, Sabeha; Vivot, Aurore; Humbert, Philippe; Saas, Philippe; Seillès, Estelle; Aubin, François

    2014-12-01

    Psoriasis involves TNF-α secretion leading to release of microparticles into the bloodstream. We investigated the effect of TNF blockers on microparticles levels before and after treatment in patients (twenty treated by anti-TNF-α agents and 6 by methotrexate) with severe psoriasis. Plasmatic microparticles were labelled using fluorescent monoclonal antibodies and were analysed using cytometry. Three months later, 70% of patients treated with anti-TNF-α agents achieved a reduction in PASI score of at least 75%. The clinical improvement in patients treated with anti-TNF-α agents was associated with a significant reduction of the mean number of platelet microparticles (2837/μl vs 1849/μl, P = 0.02) and of endothelial microparticles (64/μl vs 22/μl, P = 0.001). Microparticles are significantly decreased in psoriatic patients successfully treated by anti-TNF-α. Microparticles levels as circulating endothelial cells represent signs of endothelial dysfunction and are elevated in psoriasis. Then, TNF blockade may be effective to reduce cardiovascular risk through the reduction of circulating microparticles. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Calpastatin Controls Polymicrobial Sepsis by Limiting Procoagulant Microparticle Release

    PubMed Central

    Gerotziafas, Grigoris; Byrnes, Colleen; Hu, Xuzhen; Perez, Joelle; Lévi, Charlène; Placier, Sandrine; Letavernier, Emmanuel; Leelahavanichkul, Asada; Haymann, Jean-philippe; Elalamy, Ismail; Miller, Jeffrey L.; Star, Robert A.; Yuen, Peter S. T.; Baud, Laurent

    2012-01-01

    Rationale: Sepsis, a leading cause of death worldwide, involves widespread activation of inflammation, massive activation of coagulation, and lymphocyte apoptosis. Calpains, calcium-activated cysteine proteases, have been shown to increase inflammatory reactions and lymphocyte apoptosis. Moreover, calpain plays an essential role in microparticle release. Objectives: We investigated the contribution of calpain in eliciting tissue damage during sepsis. Methods: To test our hypothesis, we induced polymicrobial sepsis by cecal ligation and puncture in wild-type (WT) mice and transgenic mice expressing high levels of calpastatin, a calpain-specific inhibitor. Measurements and Main Results: In WT mice, calpain activity increased transiently peaking at 6 hours after cecal ligation and puncture surgery. Calpastatin overexpression improved survival, organ dysfunction (including lung, kidney, and liver damage), and lymphocyte apoptosis. It decreased the sepsis-induced systemic proinflammatory response and disseminated intravascular coagulation, by reducing the number of procoagulant circulating microparticles and therefore delaying thrombin generation. The deleterious effect of microparticles in this model was confirmed by transferring microparticles from septic WT to septic transgenic mice, worsening their survival and coagulopathy. Conclusions: These results demonstrate an important role of the calpain/calpastatin system in coagulation/inflammation pathways during sepsis, because calpain inhibition is associated with less severe disseminated intravascular coagulation and better overall outcomes in sepsis. PMID:22268136

  8. Evaluation of Plasma Platelet Microparticles in Thrombotic Thrombocytopenic Purpura.

    PubMed

    Tahmasbi, Leila; Karimi, Mehran; Kafiabadi, Sedigheh Amini; Nikougoftar, Mahin; Haghpanah, Sezaneh; Ranjbaran, Reza; Moghadam, Mohamad

    2017-01-01

    Platelet microparticles (PMPs) have a procoagulant activity about 50-100 times greater than active platelets due to high expression of negatively charged phospholipids on their surfaces. In this study, we evaluated microparticle immunophenotyping and also plasma PMPs level in patients with Thrombotic Thrombocytopenic Purpura (TTP) in Southern Iran. We had two study groups: 15 TTP patients and 15 healthy control group and PMPs from platelet concentrate (PC) at the 5 th day of storage. Microparticles were prepared in two steps, by low and high centrifugation followed by size confirmation via 'Dynamic Light Scattering (DLS)' Zetasizer. Immunophenotyping of PMPs was done via flow cytometry, using a FACS Calibur flow cytometer (BD, USA). PMPs counts were obtained using Partec-cyflow and Polysciences Microbeads (1 micron in diameter). Results were analyzed using FlowJo 7.6 (Treestar, USA) and Partec FlowMax software. Our results showed that the majority of microparticles in TTP patients and normal individuals were PMPs and also demonstrated that the plasma PMPs level in TTP patients was higher than the normal control group ( P -value<0.001). It seems that elevated PMPs level in TTP patients could be related to thrombotic events. Nevertheless, more studies are needed to confirm these results. © 2017 by the Association of Clinical Scientists, Inc.

  9. Liver Cell-Derived Microparticles Activate Hedgehog Signaling and Alter Gene Expression in Hepatic Endothelial Cells

    PubMed Central

    Witek, Rafal P.; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S.; Cheong, Yeiwon; Fearing, Caitlin M.; Agboola, Kolade M.; Chen, Wei; Diehl, Anna Mae

    2013-01-01

    Background & Aims Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). Methods MF-HSCs and cholangiocytes were exposed to platelet-derived growth factor (PDGF) to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy (TEM) and immunoblots, and applied to Hh-reporter containing cells. Microparticles were also obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, a Hh signaling inhibitor. Effects on SEC gene expression were evaluated by QRT-PCR and immunoblotting. Finally, Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Results PDGF-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically active Hh ligands. BDL also increased release of Hh-containing exosome-enriched microparticles into plasma and bile. TEM and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Conclusions Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy. PMID:19013163

  10. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    PubMed

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  11. Turbulent Structure of a Simplified Urban Fluid Flow Studied Through Stereoscopic Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Monnier, Bruno; Goudarzi, Sepehr A.; Vinuesa, Ricardo; Wark, Candace

    2018-02-01

    Stereoscopic particle image velocimetry was used to provide a three-dimensional characterization of the flow around a simplified urban model defined by a 5 by 7 array of blocks, forming four parallel streets, perpendicular to the incoming wind direction corresponding to a zero angle of incidence. Channeling of the flow through the array under consideration was observed, and its effect increased as the incoming wind direction, or angle of incidence ( AOI), was changed from 0° to 15°, 30°, and 45°. The flow between blocks can be divided into two regions: a region of low turbulence kinetic energy (TKE) levels close to the leeward side of the upstream block, and a high TKE area close to the downstream block. The centre of the arch vortex is located in the low TKE area, and two regions of large streamwise velocity fluctuation bound the vortex in the spanwise direction. Moreover, a region of large spanwise velocity fluctuation on the downstream block is found between the vortex legs. Our results indicate that the reorientation of the arch vortex at increasing AOI is produced by the displacement of the different TKE regions and their interaction with the shear layers on the sides and top of the upstream and downstream blocks, respectively. There is also a close connection between the turbulent structure between the blocks and the wind gusts. The correlations among gust components were also studied, and it was found that in the near-wall region of the street the correlations between the streamwise and spanwise gusts R_{uv} were dominant for all four AOI cases. At higher wall-normal positions in the array, the R_{uw} correlation decreased with increasing AOI, whereas the R_{uv} coefficient increased as AOI increased, and at {it{AOI}}=45° all three correlations exhibited relatively high values of around 0.4.

  12. Porous microwells for geometry-selective, large-scale microparticle arrays

    NASA Astrophysics Data System (ADS)

    Kim, Jae Jung; Bong, Ki Wan; Reátegui, Eduardo; Irimia, Daniel; Doyle, Patrick S.

    2017-01-01

    Large-scale microparticle arrays (LSMAs) are key for material science and bioengineering applications. However, previous approaches suffer from trade-offs between scalability, precision, specificity and versatility. Here, we present a porous microwell-based approach to create large-scale microparticle arrays with complex motifs. Microparticles are guided to and pushed into microwells by fluid flow through small open pores at the bottom of the porous well arrays. A scaling theory allows for the rational design of LSMAs to sort and array particles on the basis of their size, shape, or modulus. Sequential particle assembly allows for proximal and nested particle arrangements, as well as particle recollection and pattern transfer. We demonstrate the capabilities of the approach by means of three applications: high-throughput single-cell arrays; microenvironment fabrication for neutrophil chemotaxis; and complex, covert tags by the transfer of an upconversion nanocrystal-laden LSMA.

  13. Characterization of Microparticle Separation Utilizing Electrokinesis within an Electrodeless Dielectrophoresis Chip

    PubMed Central

    Chiou, Chi-Han; Pan, Jia-Cheng; Chien, Liang-Ju; Lin, Yu-Ying; Lin, Jr-Lung

    2013-01-01

    This study demonstrated the feasibility of utilizing electrokinesis in an electrodeless dielectrophoresis chip to separate and concentrate microparticles such as biosamples. Numerical simulations and experimental observations were facilitated to investigate the phenomena of electrokinetics, i.e., electroosmosis, dielectrophoresis, and electrothermosis. Moreover, the proposed operating mode can be used to simultaneously convey microparticles through a microfluidic device by using electroosmotic flow, eliminating the need for an additional micropump. These results not only revealed that the directions of fluids could be controlled with a forward/backward electroosmotic flow but also categorized the optimum separating parameters for various microparticle sizes (0.5, 1.0 and 2.0 μm). Separation of microparticles can be achieved by tuning driving frequencies at a specific electric potential (90 Vpp·cm−1). Certainly, the device can be designed as a single automated device that carries out multiple functions such as transportation, separation, and detection for the realization of the envisioned Lab-on-a-Chip idea. PMID:23447009

  14. Light-scattering flow cytometry for identification and characterization of blood microparticles

    NASA Astrophysics Data System (ADS)

    Konokhova, Anastasiya I.; Yurkin, Maxim A.; Moskalensky, Alexander E.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.

    2012-05-01

    We describe a novel approach to study blood microparticles using the scanning flow cytometer, which measures light scattering patterns (LSPs) of individual particles. Starting from platelet-rich plasma, we separated spherical microparticles from non-spherical plasma constituents, such as platelets and cell debris, based on similarity of their LSP to that of sphere. This provides a label-free method for identification (detection) of microparticles, including those larger than 1 μm. Next, we rigorously characterized each measured particle, determining its size and refractive index including errors of these estimates. Finally, we employed a deconvolution algorithm to determine size and refractive index distributions of the whole population of microparticles, accounting for largely different reliability of individual measurements. Developed methods were tested on a blood sample of a healthy donor, resulting in good agreement with literature data. The only limitation of this approach is size detection limit, which is currently about 0.5 μm due to used laser wavelength of 0.66 μm.

  15. Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production.

    PubMed

    Yatmaz, Ercan; Karahalil, Ercan; Germec, Mustafa; Ilgin, Merve; Turhan, İrfan

    2016-09-01

    β-mannanase was produced mainly by Aspergillus species and can degrade the β-1,4-mannose linkages of galactomannans. This study was undertaken to enhance mannanase production using talcum and aluminum oxide as the microparticles, which control cell morphology of recombinant Aspergillus sojae in glucose and carob extract medium. Both microparticles improved fungal growth in glucose and carob pod extract medium. Aluminum oxide (1 g/L) was the best agent for glucose medium which resulted in 514.0 U/ml. However, the highest mannanase activity was found as 568.7 U/ml with 5 g/L of talcum in carob extract medium. Increase in microparticle concentration resulted in decreasing the pellet size diameter. Furthermore, more than 10 g/L of talcum addition changed the filamentous fungi growth type from pellet to pellet/mycelium mixture. Results showed that right type and concentration of microparticle in fermentation media improved the mannanase activity and production rate by controlling the growth morphology.

  16. Pharmacological activity and protein phosphorylation caused by nitric oxide-releasing microparticles.

    PubMed

    Yoo, Jin-Wook; Choe, Eun-Sang; Ahn, Sung-Min; Lee, Chi H

    2010-01-01

    Nitric oxide (NO)-releasing microparticles were developed as a potential treatment option against various blood flow irregulations including sexual dysfunction, atherosclerosis and metal stent-induced restenosis. Polymeric microparticles containing diethylenetriamine diazeniumdiolate (DETA NONOate), a NO donor, were prepared using modified double-emulsion solvent evaporation method to maximize the loading efficacy and stability of DETA NONOate. The pharmacological effects of the NO-releasing microparticles were evaluated by examining the changes in the vaginal blood flow in rats. The effects of NO on the phosphorylation of protein kinase C (PKC) and mitogen activated protein (MAP) kinases in excised vaginal mucosa, such as extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38, were examined using immunoblotting technique to determine whether NO activates PKC, which subsequently plays an integral role in the formation of PKC-MAP kinase modules. The viability of vagina cells (VK2E6E7) upon exposure to NO-releasing microparticles was examined for cytotoxicity assessment. In contrast to rapid and short-term effects of non-formulated DETA NONOate, microparticles containing DETA NONOate exerted beneficial effects on the blood flow (148+/-13%) for an extended period of time, inducing a significant change at 5 min after its application and the maximum blood flow of 172+/-23% at 120 min. The enhanced vaginal blood flow was maintained for up to 210 min and gradually returned to the baseline afterward. The results of Western immunoblotting study displayed differential expression of MAP kinases (ERK1/2 and JNK) upon NO treatment, clearly demonstrating that PKC is involved in the blood flow regulation process. There were no significant changes in cell viability in vaginal cells upon exposure to NO-releasing microparticles as compared with the control. The results of this work supported that NO-releasing microparticles could improve the

  17. Red blood cell-derived microparticles: An overview.

    PubMed

    Westerman, Maxwell; Porter, John B

    2016-07-01

    The red blood cell (RBC) is historically the original parent cell of microparticles (MPs). In this overview, we describe the discovery and the early history of red cell-derived microparticles (RMPs) and present an overview of the evolution of RMP. We report the formation, characteristics, effects of RMP and factors which may affect RMP evaluation. The review examines RMP derived from both normal and pathologic RBC. The pathologic RBC studies include sickle cell anemia (SCA), sickle cell trait (STr), thalassemia intermedia (TI), hereditary spherocytosis (HS), hereditary elliptocytosis (HE), hereditary stomatocytosis (HSt) and glucose-6-phosphate dehydrogenase deficiency (G6PD). Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Image Processing Software

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Ames digital image velocimetry technology has been incorporated in a commercially available image processing software package that allows motion measurement of images on a PC alone. The software, manufactured by Werner Frei Associates, is IMAGELAB FFT. IMAGELAB FFT is a general purpose image processing system with a variety of other applications, among them image enhancement of fingerprints and use by banks and law enforcement agencies for analysis of videos run during robberies.

  19. Utilization of microparticles in next-generation assays for microflow cytometers.

    PubMed

    Kim, Jason S; Ligler, Frances S

    2010-11-01

    Micron-sized particles have primarily been used in microfabricated flow cytometers for calibration purposes and proof-of-concept experiments. With increasing frequency, microparticles are serving as a platform for assays measured in these small analytical devices. Light scattering has been used to measure the agglomeration of antibody-coated particles in the presence of an antigen. Impedance detection is another technology being integrated into microflow cytometers for microparticle-based assays. Fluorescence is the most popular detection method in flow cytometry, enabling highly sensitive multiplexed assays. Finally, magnetic particles have also been used to measure antigen levels using a magnetophoretic micro-device. We review the progress of microparticle-based assays in microflow cytometry in terms of the advantages and limitations of each approach.

  20. Pirfenidone inhibits p38-mediated generation of procoagulant microparticles by human alveolar epithelial cells.

    PubMed

    Neri, Tommaso; Lombardi, Stefania; Faìta, Francesca; Petrini, Silvia; Balìa, Cristina; Scalise, Valentina; Pedrinelli, Roberto; Paggiaro, Pierluigi; Celi, Alessandro

    2016-08-01

    Pirfenidone is a drug recently approved for idiopathic pulmonary fibrosis but its mechanisms of action are partially unknown. We have previously demonstrated that the airways of patients with idiopathic pulmonary fibrosis contain procoagulant microparticles that activate coagulation factor X to its active form, Xa, a proteinase that signals fibroblast growth and differentiation, thus potentially contributing to the pathogenesis of the disease. We also reported that in vitro exposure of human alveolar cells to H2O2 causes microparticle generation. Since p38 activation is involved in microparticle generation in some cell models and p38 inhibition is one of the mechanisms of action of pirfenidone, we investigated the hypothesis that H2O2-induced generation of microparticles by alveolar cells is dependent on p38 phosphorylation and is inhibited by pirfenidone. H2O2 stimulation of alveolar cells caused p38 phosphorylation that was inhibited by pirfenidone. The drug also inhibited H2O2 induced microparticle generation as assessed by two independent methods (solid phase thrombin generation and flow cytometry). The shedding of microparticle-bound tissue factor activity was also inhibited by pirfenidone. Inhibition of p38-mediated generation of procoagulant microparticle is a previously unrecognized mechanism of action of the antifibrotic drug, pirfenidone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Magnetic tagging of cell-derived microparticles: new prospects for imaging and manipulation of these mediators of biological information.

    PubMed

    Vats, Nidhi; Wilhelm, Claire; Rautou, Pierre-Emmanuel; Poirier-Quinot, Marie; Péchoux, Christine; Devue, Cécile; Boulanger, Chantal M; Gazeau, Florence

    2010-07-01

    Submicron membrane fragments termed microparticles (MPs), which are released by apoptotic or activated cells, are newly considered as vectors of biological information and actors of pathology development. We propose the tagging of MPs with magnetic nanoparticles as a new approach allowing imaging, manipulation and targeting of cell-derived MPs. MPs generated in vitro from human endothelial cells or isolated from atherosclerotic plaques were labeled using citrate-coated 8 nm iron-oxide nanoparticles. MPs were tagged with magnetic nanoparticles on their surface and detected as Annexin-V positive by flow cytometry. Labeled MPs could be mobilized, isolated and manipulated at a distance in a magnetic field gradient. Magnetic mobility of labeled MPs was quantified by micromagnetophoresis. Interactions of labeled MPs with endothelial cells could be triggered and modulated by magnetic guidance. Nanoparticles served as tracers at different scales: at the subcellular level by electron microscopy, at the cellular level by histology and at the macroscopic level by MRI. Magnetic labeling of biogenic MPs opens new prospects for noninvasive monitoring and distal manipulations of these biological effectors.

  2. The role of photographic parameters in laser speckle or particle image displacement velocimetry

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Krothapalli, A.

    1987-01-01

    The parameters involved in obtaining the multiple exposure photographs in the laser speckle velocimetry method (to record the light scattering by the seeding particles) were optimized. The effects of the type, concentration, and dimensions of the tracer, the exposure conditions (time between exposures, exposure time, and number of exposures), and the sensitivity and resolution of the film on the quality of the final results were investigated, photographing an experimental flow behind an impulsively started circular cylinder. The velocity data were acquired by digital processing of Young's fringes, produced by point-by-point scanning of a photographic negative. Using the optimal photographing conditions, the errors involved in the estimation of the fringe angle and spacing were of the order of 1 percent for the spacing and +/1 deg for the fringe orientation. The resulting accuracy in the velocity was of the order of 2-3 percent of the maximum velocity in the field.

  3. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.

    PubMed

    Keohane, Kieran; Brennan, Des; Galvin, Paul; Griffin, Brendan T

    2014-06-05

    The increasing realisation of the impact of size and surface properties on the bio-distribution of drug loaded colloidal particles has driven the application of micro fabrication technologies for the precise engineering of drug loaded microparticles. This paper demonstrates an alternative approach for producing size controlled drug loaded PLGA based microparticles using silicon Microfluidic Flow Focusing Devices (MFFDs). Based on the precise geometry and dimensions of the flow focusing channel, microparticle size was successfully optimised by modifying the polymer type, disperse phase (Qd) flow rate, and continuous phase (Qc) flow rate. The microparticles produced ranged in sizes from 5 to 50 μm and were highly monodisperse (coefficient of variation <5%). A comparison of Ciclosporin (CsA) loaded PLGA microparticles produced by MFFDs vs conventional production techniques was also performed. MFFDs produced microparticles with a narrower size distribution profile, relative to the conventional approaches. In-vitro release kinetics of CsA was found to be influenced by the production technique, with the MFFD approach demonstrating the slowest rate of release over 7 days (4.99 ± 0.26%). Finally, MFFDs were utilised to produce pegylated microparticles using the block co-polymer, PEG-PLGA. In contrast to the smooth microparticles produced using PLGA, PEG-PLGA microparticles displayed a highly porous surface morphology and rapid CsA release, with 85 ± 6.68% CsA released after 24h. The findings from this study demonstrate the utility of silicon MFFDs for the precise control of size and surface morphology of PLGA based microparticles with potential drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo

    PubMed Central

    Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551

  5. Optimizing Prednisolone Loading into Distiller's Dried Grain Kafirin Microparticles, and In vitro Release for Oral Delivery.

    PubMed

    Lau, Esther T L; Johnson, Stuart K; Williams, Barbara A; Mikkelsen, Deirdre; McCourt, Elizabeth; Stanley, Roger A; Mereddy, Ram; Halley, Peter J; Steadman, Kathryn J

    2017-05-19

    Kafirin microparticles have potential as colon-targeted delivery systems because of their ability to protect encapsulated material from digestive processes of the upper gastrointestinal tract (GIT). The aim was to optimize prednisolone loading into kafirin microparticles, and investigate their potential as an oral delivery system. Response surface methodology (RSM) was used to predict the optimal formulation of prednisolone loaded microparticles. Prednisolone release from the microparticles was measured in simulated conditions of the GIT. The RSM models were inadequate for predicting the relationship between starting quantities of kafirin and prednisolone, and prednisolone loading into microparticles. Compared to prednisolone released in the simulated gastric and small intestinal conditions, no additional drug release was observed in simulated colonic conditions. Hence, more insight into factors affecting drug loading into kafirin microparticles is required to improve the robustness of the RSM model. This present method of formulating prednisolone-loaded kafirin microparticles is unlikely to offer clinical benefits over commercially available dosage forms. Nevertheless, the overall amount of prednisolone released from the kafirin microparticles in conditions simulating the human GIT demonstrates their ability to prevent the release of entrapped core material. Further work developing the formulation methods may result in a delivery system that targets the lower GIT.

  6. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    PubMed

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over

  7. A study on arrangement characteristics of microparticles in sedimentation on flat and round substrates

    NASA Astrophysics Data System (ADS)

    Yeo, Eunju; Son, Minhee; Kim, Kwanoh; Kim, Jeong Hwan; Yoo, Yeong-Eun; Choi, Doo-Sun; Kim, Jungchul; Yoon, Seok Ho; Yoon, Jae Sung

    2017-12-01

    Recent advances of microfabrication techniques have enabled diverse structures and devices on the microscale. This fabrication method using microparticles is one of the most promising technologies because it can provide a cost effective process for large areas. So, many researchers are studying modulation and manipulation of the microparticles in solution to obtain a proper arrangement. However, the microparticles are in sedimentation status during the process in many cases, which makes it difficult to control their arrangement. In this study, droplets containing microparticles were placed on a substrate with minimal force and we investigated the arrangement of these microparticles after evaporation of the liquid. Experiments have been performed with upward and downward substrates to change the direction of gravity. The geometry of substrates was also changed, which were flat or round. The results show that the arrangement depends on the size of particles and gravity and geometry of the substrate. The arrangement also depends on the movement of the contact line of the droplets, which may recede or be pinned during evaporation. This study is expected to provide a method of the fabrication process for microparticles which may not be easily manipulated due to sedimentation.

  8. On the origin of microparticles: From “platelet dust” to mediators of intercellular communication

    PubMed Central

    Hargett, Leslie A.; Bauer, Natalie N.

    2013-01-01

    Microparticles are submicron vesicles shed from a variety of cells. Peter Wolf first identified microparticles in the midst of ongoing blood coagulation research in 1967 as a product of platelets. He termed them platelet dust. Although initially thought to be useless cellular trash, decades of research focused on the tiny vesicles have defined their roles as participators in coagulation, cellular signaling, vascular injury, and homeostasis. The purpose of this review is to highlight the science leading up to the discovery of microparticles, feature discoveries made by key contributors to the field of microparticle research, and discuss their positive and negative impact on the pulmonary circulation. PMID:24015332

  9. Experimental Investigation of Vortex Structures in Wake of Hyperboloid-Shaped Model by Means of 2D Particle Image Velocimetry Measurement

    NASA Astrophysics Data System (ADS)

    Barraclough, V.; Novotný, J.; Šafařík, P.

    2018-06-01

    This paper deals with flow around a bluff body of hyperboloid shape. It consists of results gathered in the course of research by means of Particle Image Velocimetry (PIV). The experiments were carried out by means of low-frequency 2D PIV in a range of Reynolds numbers from 40000 to 50000. A hyperboloid-shaped model was measured in a wind tunnel with a modelled atmospheric boundary layer (and additionally, in a low-speed wind tunnel with low turbulence). The model was tested in a subcritical range of Reynolds numbers and various planes in a wake of the model were captured with the intention of getting an estimation of 3D flow structures. The tunnel with the modelled atmospheric boundary layer has a high rate of turbulence, so the influence of the turbulence of incoming flow on the wake could be outlined. The ratio of the height of the model to a thickness of the modelled boundary layer in the tunnel was 1/3, meaning the turbulence in the boundary layer strongly influenced the flow around the model; it suppresses the wake which leads to a lot shorter area of recirculation than low turbulence incoming flow would cause.

  10. Particle Image Velocimetry Measurements of a Two/Three-dimensional Separating/Reattaching Boundary Layer Downstream of an Axisymmetric Backward-facing Step

    NASA Technical Reports Server (NTRS)

    Hudy, Laura M.; Naguib, Ahmed M.; Humphreys, William M.; Bartram, Scott M.

    2005-01-01

    Planar Particle Image Velocimetry measurements were obtained in the separating/reattaching flow region downstream of an axisymmetric backward-facing step. Data were acquired for a two-dimensional (2D) separating boundary layer at five different Reynolds numbers based on step height (Re(sub h)), spanning 5900-33000, and for a three-dimensional (3D) separating boundary layer at Re(sub h) = 5980 and 8081. Reynolds number effects were investigated in the 2D cases using mean-velocity field, streamwise and wall-normal turbulent velocity, and Reynolds stress statistics. Results show that both the reattachment length (x(sub r)) and the secondary separation point are Reynolds number dependent. The reattachment length increased with rising Re(sub h) while the secondary recirculation region decreased in size. These and other Re(sub h) effects were interpreted in terms of changes in the separating boundary layer thickness and wall-shear stress. On the other hand, in the 3D case, it was found that the imposed cross-flow component was relatively weak in comparison to the streamwise component. As a result, the primary influences of three dimensionality only affected the near-separation region rather than the entire separation bubble.

  11. A vector scanning processing technique for pulsed laser velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1989-01-01

    Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.

  12. Spray-dried nanofibrillar cellulose microparticles for sustained drug release.

    PubMed

    Kolakovic, Ruzica; Laaksonen, Timo; Peltonen, Leena; Laukkanen, Antti; Hirvonen, Jouni

    2012-07-01

    Nanofibrillar cellulose (also referred to as cellulose nanofibers, nanocellulose, microfibrillated or nanofibrillated cellulose) has gained a lot of attention in recent years in different research areas including biomedical applications. In this study we have evaluated the applicability of nanofibrillar cellulose (NFC) as a material for the formation of matrix systems for sustained drug delivery. For that purpose, drug loaded NFC microparticles were produced by a spray drying method. The microparticles were characterized in terms of size and morphology, total drug loading, and physical state of the encapsulated drug. Drug release from the microparticles was assessed by dissolution tests, and suitable mathematical models were used to explain the drug releasing kinetics. The particles had spherical shapes with diameters of around 5 μm; the encapsulated drug was mainly in amorphous form. The controlled drug release was achieved. The drug releasing curves were fitted to a mathematical model describing the drug releasing kinetics from a spherical matrix. Different drugs had different release kinetics, which was a consequence of several factors, including different solubilities of the drugs in the chosen medium and different affinities of the drugs to the NFC. It can be concluded that NFC microparticles can sustain drug release by forming a tight fiber network and thus limit drug diffusion from the system. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Preparation of porous yttrium oxide microparticles by gelation of ammonium alginate in aqueous solution containing yttrium ions.

    PubMed

    Kawashita, Masakazu; Matsui, Naoko; Li, Zhixia; Miyazaki, Toshiki

    2010-06-01

    Porous Y2O3 microparticles 500 microm in size were obtained, when 1 wt%-ammonium alginate aqueous solution was dropped into 0.5 M-YCl3 aqueous solution by a Pasteur pipette and the resultant gel microparticles were heat-treated at 1100 degrees C. Small pores less than 1 microm were formed in the microparticles by the heat treatment. The bulk density of the heat-treated microparticle was as low as 0.66 g cm(-3). The chemical durability of the heat-treated microparticles in simulated body fluid at pH = 6 and 7 was high enough for clinical application of in situ radiotherapy. Although the size of the microparticles should be decreased to around 25 microm using atomizing device such as spray gun for clinical application, we found that the porous Y2O3 microparticles with high chemical durability and low density can be obtained by utilizing gelation of ammonium alginate in YCl3 aqueous solution in this study.

  14. Properties of gelatin-based films incorporated with chitosan-coated microparticles charged with rutin.

    PubMed

    Dammak, Ilyes; Bittante, Ana Mônica Quinta Barbosa; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2017-08-01

    The aim of this study was development an active film based on gelatin incorporated with antioxidant, rutin carried into microparticles. The complexation between oppositely charged lecithin and chitosan was applied to prepare the chitosan-coated microparticles. The generated microparticles had an average size of 520±4nm and a span of 0.3 were formulated by a rotor-stator homogenize at the homogenization speed 10,000rpm. Composite films were prepared by incorporating chitosan-coated microparticles, at various concentrations (0.05, 0.1, 0.5, or 1% (based on the weight of the gelatin powder)) in the gelatin-based films. For the prepared films, the results showed that obtained physicochemical, water vapor barrier, and mechanical were compared with native gelatin film with a slight decrease for chitosan concentration higher than 0.5%. The microstructure studies done by scanning electron microscopes, revealed different micropores embedded with oil resulting from the incorporation of the microparticles into the gelatin matrix. Moreover, the calorimetric results were comparable to those of gelatin control film with T g value 45°C and increased crystallinity percentage with increasing incorporation of microparticles. This original concept of composite biodegradable films may thus be a good alternative to incorporate liposoluble active compounds to design an active packaging with good properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Paclitaxel-loaded polymeric microparticles: Quantitative relationships between in vitro drug release rate and in vivo pharmacodynamics

    PubMed Central

    Tsai, Max; Lu, Ze; Wientjes, M. Guillaume; Au, Jessie L.-S.

    2013-01-01

    Intraperitoneal therapy (IP) has demonstrated survival advantages in patients with peritoneal cancers, but has not become a widely practiced standard-of-care in part due to local toxicity and sub-optimal drug delivery. Paclitaxel-loaded, polymeric microparticles were developed to overcome these limitations. The present study evaluated the effects of microparticle properties on paclitaxel release (extent and rate) and in vivo pharmacodynamics. In vitro paclitaxel release from microparticles with varying physical characteristics (i.e., particle size, copolymer viscosity and composition) was evaluated. A method was developed to simulate the dosing rate and cumulative dose released in the peritoneal cavity based on the in vitro release data. The relationship between the simulated drug delivery and treatment outcomes of seven microparticle compositions was studied in mice bearing IP human pancreatic tumors, and compared to that of the intravenous Cremophor micellar paclitaxel solution used off-label in previous IP studies. Paclitaxel release from polymeric microparticles in vitro was multi-phasic; release was greater and more rapid from microparticles with lower polymer viscosities and smaller diameters (e.g., viscosity of 0.17 vs. 0.67 dl/g and diameter of 5–6 vs. 50–60 μm). The simulated drug release in the peritoneal cavity linearly correlated with treatment efficacy in mice (r2>0.8, p<0.001). The smaller microparticles, which distribute more evenly in the peritoneal cavity compared to the large microparticles, showed greater dose efficiency. For single treatment, the microparticles demonstrated up to 2-times longer survival extension and 4-times higher dose efficiency, relative to the paclitaxel/Cremophor micellar solution. Upon repeated dosing, the paclitaxel/Cremophor micellar solution showed cumulative toxicity whereas the microparticle that yielded 2-times longer survival did not display cumulative toxicity. The efficacy of IP therapy depended on both

  16. Engineering fungal morphology for enhanced production of hydrolytic enzymes by Aspergillus oryzae SBS50 using microparticles.

    PubMed

    Singh, Bijender

    2018-06-01

    Effect of microparticles and silver nanoparticles was studied on the production of hydrolytic enzymes by a potent phytase-producing mould, Aspergillus oryzae SBS50. Addition of microparticles, viz. talc powder and aluminum oxide enhanced phytase production from 2894 to 3903 and 2847 to 4204 U/L, cellulase from 2529 to 4931 and 2455 to 3444 U/L, xylanase from 9067 to 9642 and 9994 to 14,783 U/L, amylase from 5880 to 11,000 and 6130 to 13,145 U/L, respectively. Fungal morphology was also engineered by the use of microparticles. Fungal pellet size was significantly reduced (~ 90%) by the addition of microparticles. Fermentation time was reduced from 4 to 3 days after the addition of microparticles, thus increasing the productivity of the enzymes significantly. These results confirmed the importance of microparticles in engineering fungal morphology for enhanced production of hydrolytic enzymes.

  17. Multimodal in vivo blood flow sensing combining particle image velocimetry and optical tweezers-based blood steering

    NASA Astrophysics Data System (ADS)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2018-02-01

    All higher developed organisms contain complex hierarchical networks of arteries, veins and capillaries. These constitute the cardiovascular system responsible for supplying nutrients, gas and waste exchange. Diseases related to the cardiovascular system are among the main causes for death worldwide. In order to understand the processes leading to arteriovenous malformation, we studied hereditary hemorrhagic telangiectasia (HHT), which has a prevalence of 1:5000 worldwide and causes internal bleeding. In zebrafish, HHT is induced by mutation of the endoglin gene involved in HHT and observed to reduce red blood cell (RBC) flow to intersegmental vessels (ISVs) in the tail due to malformations of the dorsal aorta (DA) and posterior cardinal vein (PCV). However, these capillaries are still functional. Changes in the blood flow pattern are observed from in vivo data from zebrafish embryos through particle image velocimetry (PIV). Wall shear rates (WSRs) and blood flow velocities are obtained non-invasively with millisecond resolution. We observe significant increases of blood flow velocity in the DA for endoglin-deficient zebrafish embryos (mutants) at 3 days post fertilization. In the PCV, this increase is even more pronounced. We identified an increased similarity between the DA and the PCV of mutant fish compared to siblings, i.e., unaffected fish. To counteract the reduced RBC flow to ISVs we implement optical tweezers (OT). RBCs are steered into previously unperfused ISVs showing a significant increase of RBC count per minute. We discuss limitations with respect to biocompatibility of optical tweezers in vivo and determination of in vivo wall shear stress (WSS) connected to normal and endoglin-deficicent zebrafish embryos.

  18. Velocity Deficits in the Wake of Model Lemon Shark Dorsal Fins Measured with Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Terry, K. N.; Turner, V.; Hackett, E.

    2017-12-01

    Aquatic animals' morphology provides inspiration for human technological developments, as their bodies have evolved and become adapted for efficient swimming. Lemon sharks exhibit a uniquely large second dorsal fin that is nearly the same size as the first fin, the hydrodynamic role of which is unknown. This experimental study looks at the drag forces on a scale model of the Lemon shark's unique two-fin configuration in comparison to drag forces on a more typical one-fin configuration. The experiments were performed in a recirculating water flume, where the wakes behind the scale models are measured using particle image velocimetry. The experiments are performed at three different flow speeds for both fin configurations. The measured instantaneous 2D distributions of the streamwise and wall-normal velocity components are ensemble averaged to generate streamwise velocity vertical profiles. In addition, velocity deficit profiles are computed from the difference between these mean streamwise velocity profiles and the free stream velocity, which is computed based on measured flow rates during the experiments. Results show that the mean velocities behind the fin and near the fin tip are smallest and increase as the streamwise distance from the fin tip increases. The magnitude of velocity deficits increases with increasing flow speed for both fin configurations, but at all flow speeds, the two-fin configurations generate larger velocity deficits than the one-fin configurations. Because the velocity deficit is directly proportional to the drag force, these results suggest that the two-fin configuration produces more drag.

  19. Development and Evaluation of Chitosan Microparticles Based Dry Powder Inhalation Formulations of Rifampicin and Rifabutin.

    PubMed

    Pai, Rohan V; Jain, Rajesh R; Bannalikar, Anilkumar S; Menon, Mala D

    2016-04-01

    The lung is the primary entry site and target for Mycobacterium tuberculosis; more than 80% of the cases reported worldwide are of pulmonary tuberculosis. Hence, direct delivery of anti-tubercular drugs to the lung would be beneficial in reducing both, the dose required, as well as the duration of therapy for pulmonary tuberculosis. In the present study, microsphere-based dry powder inhalation systems of the anti-tubercular drugs, rifampicin and rifabutin, were developed and evaluated, with a view to achieve localized and targeted delivery of these drugs to the lung. The drug-loaded chitosan microparticles were prepared by an ionic gelation method, followed by spray-drying to obtain respirable particles. The microparticles were evaluated for particle size and drug release. The drug-loaded microparticles were then adsorbed onto an inhalable lactose carrier and characterized for in vitro lung deposition on an Andersen Cascade Impactor (ACI) followed by in vitro uptake study in U937 human macrophage cell lines. In vivo toxicity of the developed formulations was evaluated using Sprague Dawley rats. Both rifampicin and rifabutin-loaded microparticles had MMAD close to 5 μm and FPF values of 21.46% and 29.97%, respectively. In vitro release study in simulated lung fluid pH 7.4 showed sustained release for 12 hours for rifampicin microparticles and up to 96 hours for rifabutin microparticles, the release being dependent on both swelling of the polymer and solubility of the drugs in the dissolution medium. In vitro uptake studies in U937 human macrophage cell line suggested that microparticles were internalized within the macrophages. In vivo acute toxicity study of the microparticles in Sprague Dawley rats revealed no significant evidence for local adverse effects. Thus, spray-dried microparticles of the anti-tubercular drugs, rifampicin and rifabutin, could prove to be an improved, targeted, and efficient system for treatment of tuberculosis.

  20. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    PubMed

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions

  1. A Microparticle/Hydrogel Combination Drug-Delivery System for Sustained Release of Retinoids

    PubMed Central

    Gao, Song-Qi; Maeda, Tadao; Okano, Kiichiro; Palczewski, Krzysztof

    2012-01-01

    Purpose. To design and develop a drug-delivery system containing a combination of poly(d,l-lactide-co-glycolide) (PLGA) microparticles and alginate hydrogel for sustained release of retinoids to treat retinal blinding diseases that result from an inadequate supply of retinol and generation of 11-cis-retinal. Methods. To study drug release in vivo, either the drug-loaded microparticle–hydrogel combination was injected subcutaneously or drug-loaded microparticles were injected intravitreally into Lrat−/− mice. Orally administered 9-cis-retinoids were used for comparison and drug concentrations in plasma were determined by HPLC. Electroretinography (ERG) and both chemical and histologic analyses were used to evaluate drug effects on visual function and morphology. Results. Lrat−/− mice demonstrated sustained drug release from the microparticle/hydrogel combination that lasted 4 weeks after subcutaneous injection. Drug concentrations in plasma of the control group treated with the same oral dose rose to higher levels for 6−7 hours but then dropped markedly by 24 hours. Significantly increased ERG responses and a markedly improved retinal pigmented epithelium (RPE)–rod outer segment (ROS) interface were observed after subcutaneous injection of the drug-loaded delivery combination. Intravitreal injection of just 2% of the systemic dose of drug-loaded microparticles provided comparable therapeutic efficacy. Conclusions. Sustained release of therapeutic levels of 9-cis-retinoids was achieved in Lrat−/− mice by subcutaneous injection in a microparticle/hydrogel drug-delivery system. Both subcutaneous and intravitreal injections of drug-loaded microparticles into Lrat−/− mice improved visual function and retinal structure. PMID:22918645

  2. Circulating cell-derived microparticles in patients with minimally symptomatic obstructive sleep apnoea.

    PubMed

    Ayers, L; Ferry, B; Craig, S; Nicoll, D; Stradling, J R; Kohler, M

    2009-03-01

    Moderate-severe obstructive sleep apnoea (OSA) has been associated with several pro-atherogenic mechanisms and increased cardiovascular risk, but it is not known if minimally symptomatic OSA has similar effects. Circulating cell-derived microparticles have been shown to have pro-inflammatory, pro-coagulant and endothelial function-impairing effects, as well as to predict subclinical atherosclerosis and cardiovascular risk. In 57 patients with minimally symptomatic OSA, and 15 closely matched control subjects without OSA, AnnexinV-positive, platelet-, leukocyte- and endothelial cell-derived microparticles were measured by flow cytometry. In patients with OSA, median (interquartile range) levels of AnnexinV-positive microparticles were significantly elevated compared with control subjects: 2,586 (1,566-3,964) microL(-1) versus 1,206 (474-2,501) microL(-1), respectively. Levels of platelet-derived and leukocyte-derived microparticles were also significantly higher in patients with OSA (2,267 (1,102-3,592) microL(-1) and 20 (14-31) microL(-1), respectively) compared with control subjects (925 (328-2,068) microL(-1) and 15 (5-23) microL(-1), respectively). Endothelial cell-derived microparticle levels were similar in patients with OSA compared with control subjects (13 (8-25) microL(-1) versus 11 (6-17) microL(-1)). In patients with minimally symptomatic obstructive sleep apnoea, levels of AnnexinV-positive, platelet- and leukocyte-derived microparticles are elevated when compared with closely matched control subjects without obstructive sleep apnoea. These findings suggest that these patients may be at increased cardiovascular risk, despite being minimally symptomatic.

  3. Bioresponsive Materials for Drug Delivery Based on Carboxymethyl Chitosan/Poly(γ-Glutamic Acid) Composite Microparticles

    PubMed Central

    Yan, Xiaoting; Tong, Zongrui; Chen, Yu; Mo, Yanghe; Feng, Huaiyu; Li, Peng; Qu, Xiaosai; Jin, Shaohua

    2017-01-01

    Carboxymethyl chitosan (CMCS) microparticles are a potential candidate for hemostatic wound dressing. However, its low swelling property limits its hemostatic performance. Poly(γ-glutamic acid) (PGA) is a natural polymer with excellent hydrophilicity. In the current study, a novel CMCS/PGA composite microparticles with a dual-network structure was prepared by the emulsification/internal gelation method. The structure and thermal stability of the composite were determined by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The effects of preparation conditions on the swelling behavior of the composite were investigated. The results indicate that the swelling property of CMCS/PGA composite microparticles is pH sensitive. Levofloxacin (LFX) was immobilized in the composite microparticles as a model drug to evaluate the drug delivery performance of the composite. The release kinetics of LFX from the composite microparticles with different structures was determined. The results suggest that the CMCS/PGA composite microparticles are an excellent candidate carrier for drug delivery. PMID:28452963

  4. Stereo Particle Image Velocimetry Measurements of Transition Downstream of a Backward-Facing Step in a Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Yao, Chung-Sheng

    2017-01-01

    Stereo particle image velocimetry measurements were performed downstream of a backward-facing step in a stationary-cross flow dominated flow. The PIV measurements exhibit excellent quantitative and qualitative agreement with the previously acquired hotwire data. Instantaneous PIV snapshots reveal new information about the nature and cause of the \\spikes" that occurred prior to breakdown in both the hotwire and PIV data. The PIV snapshots show that the events occur simultaneously across multiple stationary cross flow wavelengths, indicating that this is not simply a local event, but is likely caused by the 2D Tollmien-Schlichting instability that is introduced by the step. While the TS instability is a 2D instability, it is also modulated in the spanwise direction due to interactions with the stationary cross flow, as are the other unsteady disturbances present. Because of this modulation, the "spike" events cause an instantaneous increase of the spanwise modulation of the streamwise and spanwise velocity initially caused by the stationary cross flow. Breakdown appears to be caused by this instantaneous modulation, possibly due to a high-frequency secondary instability similar to a traveling-cross flow breakdown scenario. These results further illuminate the respective roles of the stationary cross flow and unsteady disturbances in transition downstream of a backward-facing step.

  5. Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require Vanin-1 for uptake by endothelial cells

    PubMed Central

    Povero, Davide; Eguchi, Akiko; Niesman, Ingrid R.; Andronikou, Nektaria; de Mollerat du Jeu, Xavier; Mulya, Anny; Berk, Michael; Lazic, Milos; Thapaliya, Samjana; Parola, Maurizio; Patel, Hemal H.; Feldstein, Ariel E.

    2014-01-01

    Angiogenesis is a key pathological feature of experimental and human steatohepatitis, a common chronic liver disease that is associated with obesity. We demonstrated that hepatocytes generated a type of membrane-bound vesicle, microparticles, in response to conditions that mimicked the lipid accumulation that occurs in the liver in some forms of steatohepatitis and that these microparticles promoted angiogenesis. When applied to an endothelial cell line, medium conditioned by murine hepatocytes or a human hepatocyte cell line exposed to saturated free fatty acids induced migration and tube formation, two processes required for angiogenesis. Medium from hepatocytes in which caspase 3 was inhibited or medium in which the microparticles were removed by ultracentrifugation lacked proangiogenic activity. Isolated hepatocyte-derived microparticles induced migration and tube formation of an endothelial cell line in vitro and angiogenesis in mice, processes that depended on internalization of microparticles. Microparticle internalization required the interaction of the ectoenzyme Vanin-1 (VNN1), an abundant surface protein on the microparticles, with lipid raft domains of endothelial cells. Large quantities of hepatocyte-derived microparticles were detected in the blood of mice with diet-induced steatohepatitis, and microparticle quantity correlated with disease severity. Genetic ablation of caspase 3 or RNA interference directed against VNN1 protected mice from steatohepatitis-induced pathological angiogenesis in the liver and resulted in a loss of the proangiogenic effects of microparticles. Our data identify hepatocyte-derived microparticles as critical signals that contribute to angiogenesis and liver damage in steatohepatitis and suggest a therapeutic target for this condition. PMID:24106341

  6. Chemopreventive efficacy of curcumin-loaded PLGA microparticles in a transgenic mouse model of HER-2-positive breast cancer.

    PubMed

    Grill, Alex E; Shahani, Komal; Koniar, Brenda; Panyam, Jayanth

    2018-04-01

    Curcumin has shown promising inhibitory activity against HER-2-positive tumor cells in vitro but suffers from poor oral bioavailability in vivo. Our lab has previously developed a polymeric microparticle formulation for sustained delivery of curcumin for chemoprevention. The goal of this study was to examine the anticancer efficacy of curcumin-loaded polymeric microparticles in a transgenic mouse model of HER-2 cancer, Balb-neuT. Microparticles were injected monthly, and mice were examined for tumor appearance and growth. Initiating curcumin microparticle treatment at 2 or 4 weeks of age delayed tumor appearance by 2-3 weeks compared to that in control mice that received empty microparticles. At 12 weeks, abnormal (lobular hyperplasia, carcinoma in situ, and invasive carcinoma) mammary tissue area was significantly decreased in curcumin microparticle-treated mice, as was CD-31 staining. Curcumin treatment decreased mammary VEGF levels significantly, which likely contributed to slower tumor formation. When compared to saline controls, however, blank microparticles accelerated tumorigenesis and curcumin treatment abrogated this effect, suggesting that PLGA microparticles enhance tumorigenesis in this model. PLGA microparticle administration was shown to be associated with higher plasma lactic acid levels and increased activation of NF-κΒ. The unexpected side effects of PLGA microparticles may be related to the high dose of the microparticles that was needed to achieve sustained curcumin levels in vivo. Approaches that can decrease the overall dose of curcumin (for example, by increasing its potency or reducing its clearance rate) may allow the development of sustained release curcumin dosage forms as a practical approach to cancer chemoprevention.

  7. Increased CD39 Nucleotidase Activity on Microparticles from Patients with Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Visovatti, Scott H.; Hyman, Matthew C.; Bouis, Diane; Neubig, Richard; McLaughlin, Vallerie V.; Pinsky, David J.

    2012-01-01

    Background Idiopathic pulmonary arterial hypertension (IPAH) is a devastating disease characterized by increased pulmonary vascular resistance, smooth muscle and endothelial cell proliferation, perivascular inflammatory infiltrates, and in situ thrombosis. Circulating intravascular ATP, ADP, AMP and adenosine activate purinergic cell signaling pathways and appear to induce many of the same pathologic processes that underlie IPAH. Extracellular dephosphorylation of ATP to ADP and AMP occurs primarily via CD39 (ENTPD1), an ectonucleotidase found on the surface of leukocytes, platelets, and endothelial cells [1]. Microparticles are micron-sized phospholipid vesicles formed from the membranes of platelets and endothelial cells. Objectives: Studies here examine whether CD39 is an important microparticle surface nucleotidase, and whether patients with IPAH have altered microparticle-bound CD39 activity that may contribute to the pathophysiology of the disease. Methodology/ Principal Findings Kinetic parameters, inhibitor blocking experiments, and immunogold labeling with electron microscopy support the role of CD39 as a major nucleotidase on the surface of microparticles. Comparison of microparticle surface CD39 expression and nucleotidase activity in 10 patients with advanced IPAH and 10 healthy controls using flow cytometry and thin layer chromatograph demonstrate the following: 1) circulating platelet (CD39+CD31+CD42b+) and endothelial (CD39+CD31+CD42b−) microparticle subpopulations in patients with IPAH show increased CD39 expression; 2) microparticle ATPase and ADPase activity in patients with IPAH is increased. Conclusions/ Significance We demonstrate for the first time increased CD39 expression and function on circulating microparticles in patients with IPAH. Further research is needed to elucidate whether these findings identify an important trigger for the development of the disease, or reflect a physiologic response to IPAH. PMID:22792409

  8. Oral delivery of microparticles containing plasmid DNA encoding hepatitis-B surface antigen.

    PubMed

    Bhowmik, Tuhin; D'Souza, Bernadette; Uddin, Mohammad N; D'Souza, Martin J

    2012-05-01

    The role of albumin-based chitosan microparticles on enhancing immune response of plasmid DNA (pDNA) to hepatitis-B surface antigen (HBsAg) vaccine after oral administration was investigated in mice. The pDNA encoding HBsAg was entrapped in albumin microparticles using a one-step spray drying technique optimized in our laboratory. The encapsulated particles were also characterized in vitro for their shape, size, encapsulation efficiency, content, and stability. Albumin microparticles could protect the DNA from nuclease degradation as confirmed in our agarose gel study. Further immune modulating effect was studied in our formulation by measuring IgG antibodies in serum as well as IgA antibodies in fecal extracts. The mice were immunized with a prime dose of 100 μg of pDNA in microparticle formulations with and without interleukins biweekly until week 7 followed by a booster dose of equivalent strength on week 33 to compare the response with the subcutaneous group. The oral immunization with the pDNA to HBsAg microparticles gave significantly higher titer level of both sIgA and IgG at week 9 and 34, respectively, in oral vaccine with interleukins group when compared with the subcutaneous group. Thus, we observed an augmentation of both humoral and cellular immune responses for prolonged periods after immunization.

  9. Detection of microparticles in dynamic processes

    NASA Astrophysics Data System (ADS)

    Ten, K. A.; Pruuel, E. R.; Kashkarov, A. O.; Rubtsov, I. A.; Shechtman, L. I.; Zhulanov, V. V.; Tolochko, B. P.; Rykovanov, G. N.; Muzyrya, A. K.; Smirnov, E. B.; Stolbikov, M. Yu; Prosvirnin, K. M.

    2016-11-01

    When a metal plate is subjected to a strong shock impact, its free surface emits a flow of particles of different sizes (shock-wave “dusting”). Traditionally, the process of dusting is investigated by the methods of pulsed x-ray or piezoelectric sensor or via an optical technique. The particle size ranges from a few microns to hundreds of microns. The flow is assumed to include also finer particles, which cannot be detected with the existing methods yet. On the accelerator complex VEPP-3-VEPP-4 at the BINP there are two experiment stations for research on fast processes, including explosion ones. The stations enable measurement of both passed radiation (absorption) and small-angle x-ray scattering on synchrotron radiation (SR). Radiation is detected with a precision high-speed detector DIMEX. The detector has an internal memory of 32 frames, which enables recording of the dynamics of the process (shooting of movies) with intervals of 250 ns to 2 μs. Flows of nano- and microparticles from free surfaces of various materials (copper and tin) have been examined. Microparticle flows were emitted from grooves of 50-200 μs in size and joints (gaps) between metal parts. With the soft x-ray spectrum of SR one can explore the dynamics of a single microjet of micron size. The dynamics of density distribution along micro jets were determined. Under a shock wave (∼ 60 GPa) acting on tin disks, flows of microparticles from a smooth surface were recorded.

  10. Effect of Formulation and Process Parameters on Chitosan Microparticles Prepared by an Emulsion Crosslinking Technique.

    PubMed

    Rodriguez, Lidia B; Avalos, Abraham; Chiaia, Nicholas; Nadarajah, Arunan

    2017-05-01

    There are many studies about the synthesis of chitosan microparticles; however, most of them have very low production rate, have wide size distribution, are difficult to reproduce, and use harsh crosslinking agents. Uniform microparticles are necessary to obtain repeatable drug release behavior. The main focus of this investigation was to study the effect of the process and formulation parameters during the preparation of chitosan microparticles in order to produce particles with narrow size distribution. The technique evaluated during this study was emulsion crosslinking technique. Chitosan is a biocompatible and biodegradable material but lacks good mechanical properties; for that reason, chitosan was ionically crosslinked with sodium tripolyphosphate (TPP) at three different ratios (32, 64, and 100%). The model drug used was acetylsalicylic acid (ASA). During the preparation of the microparticles, chitosan was first mixed with ASA and then dispersed in oil containing an emulsifier. The evaporation of the solvents hardened the hydrophilic droplets forming microparticles with spherical shape. The process and formulation parameters were varied, and the microparticles were characterized by their morphology, particle size, drug loading efficiency, and drug release behavior. The higher drug loading efficiency was achieved by using 32% mass ratio of TPP to chitosan. The average microparticle size was 18.7 μm. The optimum formulation conditions to prepare uniform spherical microparticles were determined and represented by a region in a triangular phase diagram. The drug release analyses were evaluated in phosphate buffer solution at pH 7.4 and were mainly completed at 24 h.

  11. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing

    PubMed Central

    Dey-Hazra, Emily; Hertel, Barbara; Kirsch, Torsten; Woywodt, Alexander; Lovric, Svjetlana; Haller, Hermann; Haubitz, Marion; Erdbruegger, Uta

    2010-01-01

    The clinical importance of microparticles resulting from vesiculation of platelets and other blood cells is increasingly recognized, although no standardized method exists for their measurement. Only a few studies have examined the analytical and preanalytical steps and variables affecting microparticle detection. We focused our analysis on microparticle detection by flow cytometry. The goal of our study was to analyze the effects of different centrifugation protocols looking at different durations of high and low centrifugation speeds. We also analyzed the effect of filtration of buffer and long-term freezing on microparticle quantification, as well as the role of Annexin V in the detection of microparticles. Absolute and platelet-derived microparticles were 10- to 15-fold higher using initial lower centrifugation speeds at 1500 × g compared with protocols using centrifugation speeds at 5000 × g (P < 0.01). A clear separation between true events and background noise was only achieved using higher centrifugation speeds. Filtration of buffer with a 0.2 μm filter reduced a significant amount of background noise. Storing samples for microparticle detection at −80°C decreased microparticle levels at days 28, 42, and 56 (P < 0.05 for all comparisons with fresh samples). We believe that staining with Annexin V is necessary to distinguish true events from cell debris or precipitates. Buffers should be filtered and fresh samples should be analyzed, or storage periods will have to be standardized. Higher centrifugation speeds should be used to minimize contamination by smaller size platelets. PMID:21191433

  12. The role of the hyporheic flow on sediment transport processes : an experimental approach using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Rousseau, Gauthier; Sklivaniti, Angeliki; Vito Papa, Daniel; Ancey, Christophe

    2017-04-01

    The study of river dynamics usually considers a turbulent stream on an impervious bed. However, it is known that part of the total discharge takes place through the erodible bed, especially for mountain rivers. This hyporheic flow (or subsurface flow) is likely to play an active role in the stability of the erodible bed. The question then arises: How does the hyporheic flow affect bed stability and thereby bed load transport? Monitoring hyporheic flow under natural conditions remains a key challenge. Laboratory experiments and new measurement techniques shed new light on this problem. Using PIV-LIF method (Particle Image Velocimetry - Laser Induced Fluorescence) we investigate hyporheic flows through erodible beds. The experiment is conducted in a 2-m-long and 6-cm-width flume with 2-mm-diameter glass beads and 4-mm-diameter natural pebbles under turbulent stream conditions. In parallel, we develop a simple analytical model that accounts for the interaction between the surface and subsurface flows at the bed interface. As the Reynolds number of the hyporheic flow is fairly high (10 to 100), inertia cannot be neglected. This leads us to use the Darcy-Forchheimer law instead of Darcy's law to model hyporheic flows. We show that this model is consistent with the PIV-LIF experimental results. Moreover, the PIV-LIF data show that hyporheic flows modify the velocity profile and turbulence. Our measurements and empirical model emphasize the exchange processes in coarse-grained river for incipient sediment motion.

  13. Experimental investigations on the fluid-mechanics of an electrospun heart valve by means of particle image velocimetry.

    PubMed

    Del Gaudio, Costantino; Gasbarroni, Pier Luca; Romano, Giovanni Paolo

    2016-12-01

    End-stage failing heart valves are currently replaced by mechanical or biological prostheses. Both types positively contribute to restore the physiological function of native valves, but a number of drawbacks limits the expected performances. In order to improve the outcome, tissue engineering can offer an alternative approach to design and fabricate innovative heart valves capable to support the requested function and to promote the formation of a novel, viable and correctly operating physiological structure. This potential result is particularly critical if referred to the aortic valve, being the one mainly exposed to structural and functional degeneration. In this regard, the here proposed study presents the fabrication and in vitro characterization of a bioresorbable electrospun heart valve prosthesis using the particle image velocimetry technique either in physiological and pathological fluid dynamic conditions. The scaffold was designed to reproduce the aortic valve geometry, also mimicking the fibrous structure of the natural extracellular matrix. To evaluate its performances for possible implantation, the flow fields downstream the valve were accurately investigated and compared. The experimental results showed a correct functionality of the device, supported by the formation of vortex structures at the edge of the three cusps, with Reynolds stress values below the threshold for the risk of hemolysis (which can be comprised in the range 400-4000N/m(2) depending on the exposure period), and a good structural resistance to the mechanical loads generated by the driving pressure difference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Miller, Joseph D.; Jiang, Naibo; Slipchenko, Mikhail N.; Mance, Jason G.; Meyer, Terrence R.; Roy, Sukesh; Gord, James R.

    2016-12-01

    100-kHz particle image velocimetry (PIV) is demonstrated using a double-pulsed, burst-mode laser with a burst duration up to 100 ms. This enables up to 10,000 time-sequential vector fields for capturing a temporal dynamic range spanning over three orders of magnitude in high-speed turbulent flows. Pulse doublets with inter-pulse spacing of 2 µs and repetition rate of 100 kHz are generated using a fiber-based oscillator and amplified through an all-diode-pumped, burst-mode amplifier. A physics-based model of pulse doublet amplification in the burst-mode amplifier is developed and used to accurately predict oscillator pulse width and pulse intensity inputs required to generate equal-energy pulse doublets at 532 nm for velocity measurements. The effect of PIV particle response and high-speed-detector limitations on the spatial and temporal resolution are estimated in subsonic turbulent jets. An effective spatial resolution of 266-275 µm and temporal resolution of 10 µs are estimated from the 8 × 8 pixel correlation window and inter-doublet time spacing, respectively. This spatiotemporal resolution is sufficient for quantitative assessment of integral time and length scales in highly turbulent jets with Reynolds numbers in the range 15,000-50,000. The temporal dynamic range of the burst-mode PIV measurement is 1200, limited by the 85-ms high-energy portion of the burst and 30-kHz high-frequency noise limit.

  15. Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0244 TITLE: Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...observed effects these particles have on allograft survival. Key Words CTA Composite Tissue Allotransplantation VCA Vascularized Composite

  16. Circulating levels of cell-derived microparticles are reduced by mild hypobaric hypoxia: data from a randomised controlled trial.

    PubMed

    Ayers, Lisa; Stoewhas, Anne-Christin; Ferry, Berne; Latshang, Tsogyal D; Lo Cascio, Christian M; Sadler, Ross; Stadelmann, Katrin; Tesler, Noemi; Huber, Reto; Achermann, Peter; Bloch, Konrad E; Kohler, Malcolm

    2014-05-01

    Hypoxia is known to induce the release of microparticles in vitro. However, few publications have addressed the role of hypoxia in vivo on circulating levels of microparticles. This randomised, controlled, crossover trial aimed to determine the effect of mild hypoxia on in vivo levels of circulating microparticles in healthy individuals. Blood was obtained from 51 healthy male volunteers (mean age of 26.9 years) at baseline altitude (490 m) and after 24 and 48 h at moderate altitude (2,590 m). The order of altitude exposure was randomised. Flow cytometry was used to assess platelet-poor plasma for levels of circulating microparticles derived from platelets, endothelial cells, leucocytes, granulocytes, monocytes, red blood cells and procoagulant microparticles. Mean (standard deviation) oxygen saturation was significantly lower on the first and second day after arrival at 2,590 m, 91.0 (2.0) and 92.0 (2.0) %, respectively, compared to 490 m, 96 (1.0) %, p < 0.001 for both comparisons. A significant decrease in the levels of procoagulant microparticles (annexin V+ -221/μl 95 % CI -370.8/-119.0, lactadherin+ -202/μl 95 % CI -372.2/-93.1), platelet-derived microparticles (-114/μl 95 % CI -189.9/-51.0) and red blood cell-derived microparticles (-81.4 μl 95 % CI -109.9/-57.7) after 48 h at moderate altitude was found. Microparticles derived from endothelial cells, granulocytes, monocytes and leucocytes were not significantly altered by exposure to moderate altitude. In healthy male individuals, mild hypobaric hypoxia, induced by a short-term stay at moderate altitude, is associated with lower levels of procoagulant microparticles, platelet-derived microparticles and red blood cell-derived microparticles, suggesting a reduction in thrombotic potential.

  17. Thermal evaporation and condensation synthesis of metallic Zn layered polyhedral microparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Waheed S.; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Usman, Zahid

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Zn polyhedral microparticles prepared by thermal evaporation and condensation route. Black-Right-Pointing-Pointer Vapour-solid process based growth model governs the formation of Zn microparticles. Black-Right-Pointing-Pointer A strong PL emission band is observed at 369 nm in UV region. Black-Right-Pointing-Pointer Radiative recombination of electrons in the s, p conduction band and the holes in the d bands causes this emission. -- Abstract: Metallic zinc layered polyhedral microparticles have been fabricated by thermal evaporation and condensation technique using zinc as precursor at 750 Degree-Sign C for 120 min and NH{sub 3} as a carrier gas. The zinc polyhedral microparticles with oblate sphericalmore » shape are observed to be 2-9 {mu}m in diameter along major axes and 1-7 {mu}m in thickness along minor axes. The structural, compositional and morphological characterizations were performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). A vapour-solid (VS) mechanism based growth model has been proposed for the formation of Zn microparticles. Room temperature photoluminescence (PL) emission spectrum of the product exhibited a strong emission band at 369 nm attributed to the radiative recombination of electrons in the s, p conduction band near Fermi surface and the holes in the d bands generated by the optical excitation.« less

  18. Characterisation of inorganic microparticles in pigment cells of human gut associated lymphoid tissue.

    PubMed Central

    Powell, J J; Ainley, C C; Harvey, R S; Mason, I M; Kendall, M D; Sankey, E A; Dhillon, A P; Thompson, R P

    1996-01-01

    Macrophages at the base of human gut associated lymphoid tissue (GALT), become loaded early in life with dark granular pigment that is rich in aluminium, silicon, and titanium. The molecular characteristics, intracellular distribution, and source of this pigment is described. Laser scanning and electron microscopy showed that pigmented macrophages were often closely related to collagen fibres and plasma cells in GALT of both small and large intestine and contained numerous phagolysosomes, previously described as granules, that are rich in electron dense submicron sized particles. Morphological assessment, x ray microanalysis, and image electron energy loss spectroscopy showed three distinct types of microparticle: type I - spheres of titanium dioxide, 100-200 nm diameter, characterised as the synthetic food-additive polymorph anatase; type II - aluminosilicates, < 100-400 nm in length, generally of flaky appearance, often with adsorbed surface iron, and mostly characteristic of the natural clay mineral kaolinite; and type III - mixed environmental silicates without aluminium, 100-700 nm in length and of variable morphology. Thus, this cellular pigment that is partly derived from food additives and partly from the environment is composed of inert inorganic microparticles and loaded into phagolysosomes of macrophages within the GALT of all human subjects. These observations suggest that the pathogenicity of this pigment should be further investigated since, in susceptible individuals, the same intracellular distribution of these three types of submicron particle causes chronic latent granulomatous inflammation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 PMID:8675092

  19. Use of prebiotic carbohydrate as wall material on lime essential oil microparticles.

    PubMed

    Campelo, Pedro Henrique; Figueiredo, Jayne de Abreu; Domingues, Rosana Zacarias; Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; Borges, Soraia Vilela

    2017-09-01

    The aim of this work was to study the use of different prebiotic biopolymers in lime essential oil microencapsulation. Whey protein isolate, inulin and oligofructose biopolymers were used. The addition of prebiotic biopolymers reduced emulsion viscosity, although it produced larger droplet sizes (0.31-0.32 µm). Moisture values (2.94-3.13 g/100 g dry solids) and water activity (0.152-0.185) were satisfactory, being within the appropriate range for powdered food quality. Total oil content, limonene retention values and antioxidant activity of the microparticles containing essential oil decreased in the presence of the carbohydrates. The addition of prebiotic biopolymers reduced the microparticle thermal stability. X-ray diffraction confirmed the amorphous characteristic of the microparticles and the interaction of the essential oil with the wall material. The presence of prebiotic biopolymers can be a good alternative for lime essential oil microparticles, mainly using fibre that has a functional food appeal and can improve consumer health.

  20. Hierarchical assembly of viral nanotemplates with encoded microparticles via nucleic acid hybridization.

    PubMed

    Tan, Wui Siew; Lewis, Christina L; Horelik, Nicholas E; Pregibon, Daniel C; Doyle, Patrick S; Yi, Hyunmin

    2008-11-04

    We demonstrate hierarchical assembly of tobacco mosaic virus (TMV)-based nanotemplates with hydrogel-based encoded microparticles via nucleic acid hybridization. TMV nanotemplates possess a highly defined structure and a genetically engineered high density thiol functionality. The encoded microparticles are produced in a high throughput microfluidic device via stop-flow lithography (SFL) and consist of spatially discrete regions containing encoded identity information, an internal control, and capture DNAs. For the hybridization-based assembly, partially disassembled TMVs were programmed with linker DNAs that contain sequences complementary to both the virus 5' end and a selected capture DNA. Fluorescence microscopy, atomic force microscopy (AFM), and confocal microscopy results clearly indicate facile assembly of TMV nanotemplates onto microparticles with high spatial and sequence selectivity. We anticipate that our hybridization-based assembly strategy could be employed to create multifunctional viral-synthetic hybrid materials in a rapid and high-throughput manner. Additionally, we believe that these viral-synthetic hybrid microparticles may find broad applications in high capacity, multiplexed target sensing.

  1. An Assessment of Stream Confluence Flow Dynamics using Large Scale Particle Image Velocimetry Captured from Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lewis, Q. W.; Rhoads, B. L.

    2017-12-01

    The merging of rivers at confluences results in complex three-dimensional flow patterns that influence sediment transport, bed morphology, downstream mixing, and physical habitat conditions. The capacity to characterize comprehensively flow at confluences using traditional sensors, such as acoustic Doppler velocimeters and profiles, is limited by the restricted spatial resolution of these sensors and difficulties in measuring velocities simultaneously at many locations within a confluence. This study assesses two-dimensional surficial patterns of flow structure at a small stream confluence in Illinois, USA, using large scale particle image velocimetry (LSPIV) derived from videos captured by unmanned aerial systems (UAS). The method captures surface velocity patterns at high spatial and temporal resolution over multiple scales, ranging from the entire confluence to details of flow within the confluence mixing interface. Flow patterns at high momentum ratio are compared to flow patterns when the two incoming flows have nearly equal momentum flux. Mean surface flow patterns during the two types of events provide details on mean patterns of surface flow in different hydrodynamic regions of the confluence and on changes in these patterns with changing momentum flux ratio. LSPIV data derived from the highest resolution imagery also reveal general characteristics of large-scale vortices that form along the shear layer between the flows during the high-momentum ratio event. The results indicate that the use of LSPIV and UAS is well-suited for capturing in detail mean surface patterns of flow at small confluences, but that characterization of evolving turbulent structures is limited by scale considerations related to structure size, image resolution, and camera instability. Complementary methods, including camera platforms mounted at fixed positions close to the water surface, provide opportunities to accurately characterize evolving turbulent flow structures in confluences.

  2. Expanding Imaging Capabilities for Microfluidics: Applicability of Darkfield Internal Reflection Illumination (DIRI) to Observations in Microfluidics

    PubMed Central

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics. PMID:25748425

  3. Expanding imaging capabilities for microfluidics: applicability of darkfield internal reflection illumination (DIRI) to observations in microfluidics.

    PubMed

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics.

  4. Comparative studies on the properties of glycyrrhetinic acid-loaded PLGA microparticles prepared by emulsion and template methods.

    PubMed

    Wang, Hong; Zhang, Guangxing; Sui, Hong; Liu, Yanhua; Park, Kinam; Wang, Wenping

    2015-12-30

    The O/W emulsion method has been widely used for the production of poly (lactide-co-glycolide) (PLGA) microparticles. Recently, a template method has been used to make homogeneous microparticles with predefined size and shape, and shown to be useful in encapsulating different types of active compounds. However, differences between the template method and emulsion method have not been examined. In the current study, PLGA microparticles were prepared by the two methods using glycyrrhetinic acid (GA) as a model drug. The properties of obtained microparticles were characterized and compared on drug distribution, in vitro release, and degradation. An encapsulation efficiency of over 70% and a mean particle size of about 40μm were found for both methods. DSC thermograms and XRPD diffractograms indicated that GA was highly dispersed or in the amorphous state in the matrix of microparticles. The emulsion method produced microparticles of a broad size distribution with a core-shell type structure and many drug-rich domains inside each microparticle. Its drug release and matrix degradation was slow before Day 50 and then accelerated. In contrast, the template method formed microparticles with narrow size distribution and drug distribution without apparent drug-rich domains. The template microparticles with a loading efficiency of 85% exhibited a zero-order release profile for 3 months after the initial burst release of 26.7%, and a steady surface erosion process as well. The same microparticles made by two different methods showed two distinguished drug release profiles. The two different methods can be supplementary with each other in optimization of drug formulation for achieving predetermined drug release patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effects of transplanted circulating endothelial progenitor cells and platelet microparticles in atherosclerosis development.

    PubMed

    Georgescu, Adriana; Alexandru, Nicoleta; Andrei, Eugen; Dragan, Emanuel; Cochior, Daniel; Dias, Sérgio

    2016-08-01

    Atherosclerosis is an inflammatory disease, in which risk factors such as hyperlipidemia and hypertension affect the arterial endothelium, resulting in dysfunction, cell damage or both. The number of circulating endothelial progenitor cells and microparticles provides invaluable outcome prediction for atherosclerosis disease. However, evidence for the therapeutic potential of endothelial progenitor cells and microparticles in atherosclerosis development is limited. Our study was designed to investigate the possible protective role of a cell therapy-based approach, using endothelial progenitor cells and the dual behaviour of circulating platelet microparticles, on atherosclerosis development in hypertensive-hypercholesterolemic hamster model. Consequently, control hamsters received four intravenous inoculations of: (1) 1×10(5) endothelial progenitor cells of healthy origins in one dose per month, during four months of diet-induced atherosclerosis, and after hypertensive-hypercholesterolemic diet for further four months; (2) in a second set of experiments, 1×10(5) endothelial progenitor cells of healthy origins or/and 1×10(5) platelet microparticles of atherosclerotic origins were inoculated every other month during hypertensive-hypercholesterolemic diet. Endothelial progenitor cell treatment had the following effects: (1) re-established plasmatic parameters: cholesterol and triglyceride concentrations, blood pressure, heart rate, cytokine and chemokine profiles, platelet microparticle pro-thrombotic activity and endothelial progenitor cell paracrine activity reflected by cytokine/chemokine detection; (2) reduced lipid, macrophage and microparticle accumulation in liver; (3) reduced atherosclerosis development, revealed by decreased lipid, macrophage and microparticle content of arterial wall; (4) induced the recruitment and incorporation of endothelial progenitor cells into liver and arterial wall; (5) improved arterial dysfunction by increasing contraction and

  6. Enhancing microparticle internalization by nonphagocytic cells through the use of noncovalently conjugated polyethyleneimine

    PubMed Central

    Patiño, Tania; Nogués, Carme; Ibáñez, Elena; Barrios, Leonardo

    2012-01-01

    Development of micro- and nanotechnology for the study of living cells, especially in the field of drug delivery, has gained interest in recent years. Although several studies have reported successful results in the internalization of micro- and nanoparticles in phagocytic cells, when nonphagocytic cells are used, the low internalization efficiency represents a limitation that needs to be overcome. It has been reported that covalent surface modification of micro- and nanoparticles increases their internalization rate. However, this surface modification represents an obstacle for their use as drug-delivery carriers. For this reason, the aim of the present study was to increase the capability for microparticle internalization of HeLa cells through the use of noncovalently bound transfection reagents: polyethyleneimine (PEI) Lipofectamine™ 2000 and FuGENE 6®. Both confocal microscopy and flow cytometry techniques allowed us to precisely quantify the efficiency of microparticle internalization by HeLa cells, yielding similar results. In addition, intracellular location of microparticles was analyzed through transmission electron microscopy and confocal microscopy procedures. Our results showed that free PEI at a concentration of 0.05 mM significantly increased microparticle uptake by cells, with a low cytotoxic effect. As determined by transmission electron and confocal microscopy analyses, microparticles were engulfed by plasma-membrane projections during internalization, and 24 hours later they were trapped in a lysosomal compartment. These results show the potential use of noncovalently conjugated PEI in microparticle internalization assays. PMID:23152683

  7. Microparticles from stored red blood cells promote a hypercoagulable state in a murine model of transfusion.

    PubMed

    Kim, Young; Xia, Brent T; Jung, Andrew D; Chang, Alex L; Abplanalp, William A; Caldwell, Charles C; Goodman, Michael D; Pritts, Timothy A

    2018-02-01

    Red blood cell-derived microparticles are biologically active, submicron vesicles shed by erythrocytes during storage. Recent clinical studies have linked the duration of red blood cell storage with thromboembolic events in critically ill transfusion recipients. In the present study, we hypothesized that microparticles from aged packed red blood cell units promote a hypercoagulable state in a murine model of transfusion. Microparticles were isolated from aged, murine packed red blood cell units via serial centrifugation. Healthy male C57BL/6 mice were transfused with microparticles or an equivalent volume of vehicle, and whole blood was harvested for analysis via rotational thromboelastometry. Serum was harvested from a separate set of mice after microparticles or saline injection, and analyzed for fibrinogen levels. Red blood cell-derived microparticles were analyzed for their ability to convert prothrombin to thrombin. Finally, mice were transfused with either red blood cell microparticles or saline vehicle, and a tail bleeding time assay was performed after an equilibration period of 2, 6, 12, or 24 hours. Mice injected with red blood cell-derived microparticles demonstrated an accelerated clot formation time (109.3 ± 26.9 vs 141.6 ± 28.2 sec) and increased α angle (68.8 ± 5.0 degrees vs 62.8 ± 4.7 degrees) compared with control (each P < .05). Clotting time and maximum clot firmness were not significantly different between the 2 groups. Red blood cell-derived microparticles exhibited a hundredfold greater conversion of prothrombin substrate to its active thrombin form (66.60 ± 0.03 vs 0.70 ± 0.01 peak OD; P<.0001). Additionally, serum fibrinogen levels were lower in microparticles-injected mice compared with saline vehicle, suggesting thrombin-mediated conversion to insoluble fibrin (14.0 vs 16.5 µg/mL, P<.05). In the tail bleeding time model, there was a more rapid cessation of bleeding at 2 hours posttransfusion (90

  8. Neurokinin 1 Receptor Mediates Membrane Blebbing and Sheer Stress-Induced Microparticle Formation in HEK293 Cells

    PubMed Central

    Chen, Panpan; Douglas, Steven D.; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2–10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing. PMID:23024816

  9. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    PubMed

    Chen, Panpan; Douglas, Steven D; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  10. Line-Scanning Particle Image Velocimetry: An Optical Approach for Quantifying a Wide Range of Blood Flow Speeds in Live Animals

    PubMed Central

    Kim, Tyson N.; Goodwill, Patrick W.; Chen, Yeni; Conolly, Steven M.; Schaffer, Chris B.; Liepmann, Dorian; Wang, Rong A.

    2012-01-01

    Background The ability to measure blood velocities is critical for studying vascular development, physiology, and pathology. A key challenge is to quantify a wide range of blood velocities in vessels deep within living specimens with concurrent diffraction-limited resolution imaging of vascular cells. Two-photon laser scanning microscopy (TPLSM) has shown tremendous promise in analyzing blood velocities hundreds of micrometers deep in animals with cellular resolution. However, current analysis of TPLSM-based data is limited to the lower range of blood velocities and is not adequate to study faster velocities in many normal or disease conditions. Methodology/Principal Findings We developed line-scanning particle image velocimetry (LS-PIV), which used TPLSM data to quantify peak blood velocities up to 84 mm/s in live mice harboring brain arteriovenous malformation, a disease characterized by high flow. With this method, we were able to accurately detect the elevated blood velocities and exaggerated pulsatility along the abnormal vascular network in these animals. LS-PIV robustly analyzed noisy data from vessels as deep as 850 µm below the brain surface. In addition to analyzing in vivo data, we validated the accuracy of LS-PIV up to 800 mm/s using simulations with known velocity and noise parameters. Conclusions/Significance To our knowledge, these blood velocity measurements are the fastest recorded with TPLSM. Partnered with transgenic mice carrying cell-specific fluorescent reporters, LS-PIV will also enable the direct in vivo correlation of cellular, biochemical, and hemodynamic parameters in high flow vascular development and diseases such as atherogenesis, arteriogenesis, and vascular anomalies. PMID:22761686

  11. Dynamics of optically levitated microparticles in vacuum placed in 2D and 3D optical potentials possessing orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Mazilu, Michael; Chen, Mingzhou; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan

    2017-04-01

    We demonstrate the transfer of orbital angular momentum to optically levitated microparticles in vacuum [1]. We prepare two-dimensional and three-dimensional optical potentials. In the former case the microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present. This effect was predicted theoretically [2] and can be understood considering the underlying dynamics arising from the link between the magnitude of the azimuthal index and the beam radius [3]. Whilst a Laguerre-Gaussian beam scales in size with azimuthal index `, recently we have created a "perfect" vortex beam whose radial intensity profile and radius are both independent of topological charge [4, 5]. As the Fourier transform of a perfect vortex yields a Bessel beam. Imaging a perfect vortex, with its subsequent propagation thus realises a complex three dimensional optical field. In this scenario we load individual silica microparticles into this field and observe their trajectories. The optical gradient and scattering forces interplay with the inertial and gravitational forces acting on the trapped particle, including the rotational degrees of freedom. As a result the trapped microparticle exhibits a complex three dimensional motion that includes a periodic orbital motion between the Bessel and the perfect vortex beam. We are able to determine the three dimensional optical potential in situ by tracking the particle. This first demonstration of trapping microparticles within a complex three dimensional optical potential in vacuum opens up new possibilities for fundamental studies of many-body dynamics, mesoscopic

  12. Incorporation of iodine in polymeric microparticles and emulsions

    NASA Astrophysics Data System (ADS)

    Kolontaeva, Olga A.; Khokhlova, Anastasia R.; Markina, Natalia E.; Markin, Alexey V.; Burmistrova, Natalia A.

    2016-04-01

    Application of different methods for formation of microcontainers containing iodine is proposed in this paper. Two types of microcontainers: microemulsions and microparticles have been investigated, conditions and methods for obtaining microcontainers were optimized. Microparticles were formed by layer-by-layer method with cores of calcium carbonate (CaCO3) as templates. Incorporation of complexes of iodine with polymers (chitosan, starch, polyvinyl alcohol) into core, shell and hollow capsules was investigated and loadings of microparticles with iodine were estimated. It was found that the complex of iodine with chitosan adsorbed at CaCO3 core is the most stable under physiological conditions and its value of loading can be 450 μg of I2 per 1 g of CaCO3. Moreover, chitosan was chosen as a ligand because of its biocompatibility and biodegradability as well as very low toxicity while its complex with iodine is very stable. A small amount of microparticles containing a iodine-chitosan complex can be used for prolonged release of iodine in the human body since iodine daily intake for adults is around 100 μg. "Oil-in-water" emulsions were prepared by ultrasonication of iodinated oils (sunflower and linseed) with sodium laurilsulfate (SLS) as surfactant solution. At optimal conditions, the homogenous emulsions remained stable for weeks, with total content of iodine in such emulsion being up to 1% (w/w). The oil:SLS ratio was equal to 1:10 (w/w), optimal duration and power of ultrasound exposure were 1.5 min and 7 W, correspondingly. Favorable application of iodized linseed oil for emulsion preparation with suitable oil microdroplets size was proved.

  13. A Comparison of Aerosolization and Homogenization Techniques for Production of Alginate Microparticles for Delivery of Corticosteroids to the Colon.

    PubMed

    Samak, Yassmin O; El Massik, Magda; Coombes, Allan G A

    2017-01-01

    Alginate microparticles incorporating hydrocortisone hemisuccinate were produced by aerosolization and homogenization methods to investigate their potential for colonic drug delivery. Microparticle stabilization was achieved by CaCl 2 crosslinking solution (0.5 M and 1 M), and drug loading was accomplished by diffusion into blank microparticles or by direct encapsulation. Homogenization method produced smaller microparticles (45-50 μm), compared to aerosolization (65-90 μm). High drug loadings (40% wt/wt) were obtained for diffusion-loaded aerosolized microparticles. Aerosolized microparticles suppressed drug release in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) prior to drug release in simulated colonic fluid (SCF) to a higher extent than homogenized microparticles. Microparticles prepared using aerosolization or homogenization (1 M CaCl 2 , diffusion loaded) released 5% and 17% of drug content after 2 h in SGF and 4 h in SIF, respectively, and 75% after 12 h in SCF. Thus, aerosolization and homogenization techniques show potential for producing alginate microparticles for colonic drug delivery in the treatment of inflammatory bowel disease. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Immunogenicity and protection in small-animal models with controlled-release tetanus toxoid microparticles as a single-dose vaccine.

    PubMed Central

    Singh, M; Li, X M; Wang, H; McGee, J P; Zamb, T; Koff, W; Wang, C Y; O'Hagan, D T

    1997-01-01

    Tetanus toxoid (TT) was encapsulated in microparticles prepared from polylactide-co-glycolide polymers by a solvent-evaporation technique. Combinations of small- and large-sized microparticles with controlled-release characteristics were used to immunize Sprague-Dawley rats, and the antibody responses were monitored for 1 year. For comparison, control groups of rats were immunized at 0, 1, and 2 months with TT adsorbed to alum. The antibody responses generated by the TT entrapped in microparticles were comparable to those generated by TT adsorbed to alum in control groups from 32 weeks onwards. Microparticles with a single entrapped antigen (TT) induced better antibody responses than microparticles with two antigens (TT and diphtheria toxoid) entrapped simultaneously. A combination vaccine consisting of TT adsorbed to alum and also entrapped in microparticles gave the best antibody responses. In an inhibition assay designed to determine the relative levels of binding of antisera to the antigens, the sera from the microparticle- and the alum-immunized animals showed comparable levels of binding. In addition, in a passive-challenge study with mice, TT adsorbed to alum and TT entrapped in microparticles provided equal levels of protection against a lethal challenge with tetanus toxin. An intradermal-challenge study was also performed with rabbits, which showed similar levels of protection in sera from alum- and microparticle-immunized animals at 4, 12, and 32 weeks after immunization. PMID:9125552

  15. Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds

    PubMed Central

    Acosta, Miguel A.; Ymele-Leki, Patrick; Kostov, Yordan V.; Leach, Jennie B.

    2010-01-01

    We present the development and characterization of fluorescent oxygen-sensing microparticles designed for measuring oxygen concentration in microenvironments existing within standard cell culture and transparent three-dimensional (3D) cell scaffolds. The microparticle synthesis employs poly(dimethylsiloxane) to encapsulate silica gel particles bound with an oxygen-sensitive luminophore as well as a reference or normalization fluorophore that is insensitive to oxygen. We developed a rapid, automated and non-invasive sensor analysis method based on fluorescence microscopy to measure oxygen concentration in a hydrogel scaffold. We demonstrate that the microparticles are non-cytotoxic and that their response is comparable to that of a traditional dissolved oxygen meter. Microparticle size (5–40 μm) was selected for microscale-mapping of oxygen concentration to allow measurements local to individual cells. Two methods of calibration were evaluated and revealed that the sensor system enables characterization of a range of hypoxic to hyperoxic conditions relevant to cell and tissue biology (i.e., pO2 10–160 mm Hg). The calibration analysis also revealed that the microparticles have a high fraction of quenched luminophore (0.90 ± 0.02), indicating that the reported approach provides significant advantages for sensor performance. This study thus reports a versatile oxygen-sensing technology that enables future correlations of local oxygen concentration with individual cell response in cultured engineered tissues. PMID:19285719

  16. Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds.

    PubMed

    Acosta, Miguel A; Ymele-Leki, Patrick; Kostov, Yordan V; Leach, Jennie B

    2009-06-01

    We present the development and characterization of fluorescent oxygen-sensing microparticles designed for measuring oxygen concentration in microenvironments existing within standard cell culture and transparent three-dimensional (3D) cell scaffolds. The microparticle synthesis employs poly(dimethylsiloxane) to encapsulate silica gel particles bound with an oxygen-sensitive luminophore as well as a reference or normalization fluorophore that is insensitive to oxygen. We developed a rapid, automated and non-invasive sensor analysis method based on fluorescence microscopy to measure oxygen concentration in a hydrogel scaffold. We demonstrate that the microparticles are non-cytotoxic and that their response is comparable to that of a traditional dissolved oxygen meter. Microparticle size (5-40 microm) was selected for microscale-mapping of oxygen concentration to allow measurements local to individual cells. Two methods of calibration were evaluated and revealed that the sensor system enables characterization of a range of hypoxic to hyperoxic conditions relevant to cell and tissue biology (i.e., pO(2) 10-160 mmHg). The calibration analysis also revealed that the microparticles have a high fraction of quenched luminophore (0.90+/-0.02), indicating that the reported approach provides significant advantages for sensor performance. This study thus reports a versatile oxygen-sensing technology that enables future correlations of local oxygen concentration with individual cell response in cultured engineered tissues.

  17. Synthesis and characterization of hyaluronic acid coated manganese dioxide microparticles that act as ROS scavengers.

    PubMed

    Bizeau, Joëlle; Tapeinos, Christos; Marella, Claudio; Larrañaga, Aitor; Pandit, Abhay

    2017-11-01

    Atherosclerosis is a chronic inflammatory disease of the arterial wall that leads to cardiovascular diseases which are the major cause of deaths worldwide. There is currently no treatment that can stop or reverse the disease. However, the use of microparticles with anti-inflammatory properties could represent a promising treatment. Herein, spherical microparticles with a core-shell structure and an average diameter of 1μm were synthesized. The microparticles were comprised of a MnCO 3 and MnO 2 core and a 4-arm PEG-amine cross-linked shell of hyaluronic acid. The HA-Mn-SM microparticles were loaded with D-α-tocopherol (vitamin-E) (TOC), to fabricate a targeted biocompatible delivery platform for the treatment of atherosclerotic inflamed cells. Loading and release studies of TOC demonstrated a lactic acid concentration dependant controlled release profile of the HA-Mn-SM mimicking the atherosclerotic environment where lactic acid is over-produced. The microparticles exhibited a high scavenging ability towards H 2 O 2 in addition to the controlled generation of O 2 . The optimal results were obtained for 250μg/mL microparticles which in the presence of 1000μM H 2 O 2 resulted in the scavenging of almost all the H 2 O 2 . Our results demonstrate that 50μg/mL of microparticles scavenged continuously produced H 2 O 2 up to a concentration of 1000μM, a characteristic that demonstrates the sustained therapeutic effect of the HA-Mn-SM microparticles in an environment that mimics that of inflamed tissues. Our results indicate the potential use of HA-Mn-SM as a novel platform for the treatment of atherosclerosis. In vitro studies confirmed that the microparticles are not cytotoxic at concentrations up to 250μg/mL and for 72h. These preliminary results indicate the potential use of HA-Mn-SM as a novel drug delivery system for atherosclerotic tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke

    PubMed Central

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Purpose Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Methods Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3–7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Results Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Conclusions Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process

  19. Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models

    NASA Astrophysics Data System (ADS)

    Bruschewski, Martin; Freudenhammer, Daniel; Buchenberg, Waltraud B.; Schiffer, Heinz-Peter; Grundmann, Sven

    2016-05-01

    Velocity measurements with magnetic resonance velocimetry offer outstanding possibilities for experimental fluid mechanics. The purpose of this study was to provide practical guidelines for the estimation of the measurement uncertainty in such experiments. Based on various test cases, it is shown that the uncertainty estimate can vary substantially depending on how the uncertainty is obtained. The conventional approach to estimate the uncertainty from the noise in the artifact-free background can lead to wrong results. A deviation of up to -75 % is observed with the presented experiments. In addition, a similarly high deviation is demonstrated with the data from other studies. As a more accurate approach, the uncertainty is estimated directly from the image region with the flow sample. Two possible estimation methods are presented.

  20. Association between cell-derived microparticles and adverse events in patients with nonpulsatile left ventricular assist devices

    PubMed Central

    Nascimbene, Angelo; Hernandez, Ruben; George, Joggy K.; Parker, Anita; Bergeron, Angela L.; Pradhan, Subhashree; Vijayan, K. Vinod; Civitello, Andrew; Simpson, Leo; Nawrot, Maria; Lee, Vei-Vei; Mallidi, Hari R.; Delgado, Reynolds M.; Dong, Jing Fei; Frazier, O.H.

    2014-01-01

    BACKGROUND Continuous-flow left ventricular assist devices (LVADs) expose blood cells to high shear stress, potentially resulting in the production of microparticles that express phosphatidylserine (PS+) and promote coagulation and inflammation. In this prospective study, we attempted to determine whether PS+ microparticle levels correlate with clinical outcomes in LVAD-supported patients. METHODS We enrolled 20 patients undergoing implantation of the HeartMate II LVAD and 10 healthy controls who provided reference values for the microparticle assays. Plasma was collected before LVAD implantation, at discharge, at 3-month follow-up, and when an adverse clinical event occurred. We quantified PS+ microparticles in the plasma using flow cytometry. RESULTS During the study period, 8 patients developed adverse clinical events: ventricular tachycardia storm (n=1), non–ST-elevation myocardial infarction (n=2), arterial thrombosis (n=2), gastrointestinal bleeding (n=2), and stroke (n=3). Levels of PS+ microparticles were higher in patients at baseline than in healthy controls (2.11%±1.26 vs 0.69±0.46, P=0.007). After LVAD implantation, patient PS+ microparticle levels increased to 2.39%±1.22 at discharge and then leveled to 1.97%±1.25 at 3-month follow-up. Importantly, patients who developed an adverse event had significantly higher levels of PS+ microparticles than did patients with no events (3.82%±1.17 vs 1.57%±0.59, P<0.001), even though the 2 patient groups did not markedly differ in other clinical and hematologic parameters. CONCLUSIONS Our results suggest that an elevation of PS+ microparticle levels may be associated with adverse clinical events. Thus, measuring PS+ microparticle levels in LVAD-supported patients may help identify patients at increased risk for adverse events. PMID:24656391

  1. Association between cell-derived microparticles and adverse events in patients with nonpulsatile left ventricular assist devices.

    PubMed

    Nascimbene, Angelo; Hernandez, Ruben; George, Joggy K; Parker, Anita; Bergeron, Angela L; Pradhan, Subhashree; Vijayan, K Vinod; Civitello, Andrew; Simpson, Leo; Nawrot, Maria; Lee, Vei-Vei; Mallidi, Hari R; Delgado, Reynolds M; Dong, Jing Fei; Frazier, O H

    2014-05-01

    Continuous-flow left ventricular assist devices (LVADs) expose blood cells to high shear stress, potentially resulting in the production of microparticles that express phosphatidylserine (PS+) and promote coagulation and inflammation. In this prospective study, we attempted to determine whether PS+ microparticle levels correlate with clinical outcomes in LVAD-supported patients. We enrolled 20 patients undergoing implantation of the HeartMate II LVAD (Thoratec Corp, Pleasanton, CA) and 10 healthy controls who provided reference values for the microparticle assays. Plasma was collected before LVAD implantation, at discharge, at the 3-month follow-up, and when an adverse clinical event occurred. We quantified PS+ microparticles in the plasma using flow cytometry. During the study period, 8 patients developed adverse clinical events: ventricular tachycardia storm in 1, non-ST-elevation myocardial infarction in 2, arterial thrombosis in 2, gastrointestinal bleeding in 2, and stroke in 3. Levels of PS+ microparticles were higher in patients at baseline than in healthy controls (2.11% ± 1.26% vs 0.69% ± 0.46%, p = 0.007). After LVAD implantation, patient PS+ microparticle levels increased to 2.39% ± 1.22% at discharge and then leveled to 1.97% ± 1.25% at the 3-month follow-up. Importantly, levels of PS+ microparticles were significantly higher in patients who developed an adverse event than in patients with no events (3.82% ± 1.17% vs 1.57% ± 0.59%, p < 0.001), even though the 2 patient groups did not markedly differ in other clinical and hematologic parameters. Our results suggest that an elevation of PS+ microparticle levels may be associated with adverse clinical events. Thus, measuring PS+ microparticle levels in LVAD-supported patients may help identify patients at increased risk for adverse events. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  2. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles.

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)

    NASA Astrophysics Data System (ADS)

    Falahatpisheh, Ahmad; Kheradvar, Arash

    2015-11-01

    Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.

  4. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.

    PubMed

    Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles.

    PubMed

    Lacerda, Ellen Cristina Quirino; Calado, Verônica Maria de Araújo; Monteiro, Mariana; Finotelli, Priscilla Vanessa; Torres, Alexandre Guedes; Perrone, Daniel

    2016-10-20

    The influence of encapsulating carbohydrates (EC) with varying properties on the technological and functional properties of jussara pulp microparticles produced by spray drying were evaluated using experimental design. Microparticles produced with sodium octenyl succinate (OSA) starch at 0.5 core to EC ratio and with mixtures of inulin and maltodextrin at 1.0 and 2.0 core to EC ratio showed darker color, and higher anthocyanins contents and antioxidant activity. Seven microparticles showing high water solubility and desirable surface morphology. Hygroscopicity (10.7% and 11.5%) and wettability (41s and 43s) were improved when OSA starch and mixtures of inulin and maltodextrin were used. The anthocyanins contents and color of the microparticles did not change when exposed to light at 50°C for 38days. Finally, microparticles produced at 1.0 core to EC ratio with 2/3 OSA starch, 1/6 inulin and 1/6 maltodextrin were selected. These microparticles may be applied as colorant in numerous foods, whilst adding prebiotic fiber and anthocyanins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Formulation of olfactory-targeted microparticles with tamarind seed polysaccharide to improve nose-to-brain transport of drugs.

    PubMed

    Yarragudi, Sasi B; Richter, Robert; Lee, Helen; Walker, Greg F; Clarkson, Andrew N; Kumar, Haribalan; Rizwan, Shakila B

    2017-05-01

    Targeted delivery and retention of drug formulations in the olfactory mucosa, the target site for nose-to-brain drug absorption is a major challenge due to the geometrical complexity of the nose and nasal clearance. Recent modelling data indicates that 10μm-sized microparticles show maximum deposition in the olfactory mucosa. In the present study we tested the hypothesis that 10μm-sized mucoadhesive microparticles would preferentially deposit on, and increase retention of drug on, the olfactory mucosa in a novel 3D-printed human nasal-replica cast under simulated breathing. The naturally occurring mucoadhesive polymer, tamarind seed polysaccharide (TSP) was used to formulate the microparticles using a spray drying technique. Physicochemical properties of microparticles such as size, morphology and mucoadhesiveness was investigated using a combination of laser diffraction, electron microscopy and texture-analysis. Furthermore, FITC-dextrans (5-40kDa) were incorporated in TSP-microparticles as model drugs. Size-dependent permeability of the FITC-dextrans was observed ex vivo using porcine nasal mucosa. Using the human nasal-replica cast, greater deposition of 10μm TSP-microparticles in the olfactory region was observed compared to TSP-microparticles 2μm in size. Collectively, these findings support our hypothesis that 10μm-sized mucoadhesive microparticles can achieve selective deposition and retention of drug in the olfactory mucosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Gamma-oryzanol-loaded calcium pectinate microparticles reinforced with chitosan: optimization and release characteristics.

    PubMed

    Lee, Ji-Soo; Kim, Jong Soo; Lee, Hyeon Gyu

    2009-05-01

    Response surface methodology was used to optimize microparticle preparation conditions, including the ratio of pectin:gamma-oryzanol (OZ) (X(1)), agitation speed (X(2)), and the concentration of emulsifier (X(3)), for maximal entrapment efficiency (EE) of OZ-loaded Ca pectinate microparticles. The optimized values of X(1), X(2), and X(3) were found to be 2.72:5.28, 1143.5 rpm, and 2.61%, respectively. Experimental results obtained for the optimum formulation agreed favorably with the predicted results, indicating the usefulness of predicting models for EE. In order to evaluate the effect of chitosan-coating and blending on the release pattern of the entrapped OZ from microparticles, chitosan-coated and blended Ca pectinate microparticles were prepared. Release studies revealed that the chitosan treatments, especially the chitosan-coating, were effective in suppressing the release in both simulated gastric fluid (SGF) and intestinal fluid (SIF).

  8. Enhancing the Microparticle Deposition Stability and Homogeneity on Planer for Synthesis of Self-Assembly Monolayer.

    PubMed

    Shih, An-Ci; Han, Chi-Jui; Kuo, Tsung-Cheng; Cheng, Yun-Chien

    2018-03-14

    The deposition stability and homogeneity of microparticles improved with mask, lengthened nozzle and flow rate adjustment. The microparticles can be used to encapsulate monomers, before the monomers in the microparticles can be deposited onto a substrate for nanoscale self-assembly. For the uniformity of the synthesized nanofilm, the homogeneity of the deposited microparticles becomes an important issue. Based on the ANSYS simulation results, the effects of secondary flow were minimized with a lengthened nozzle. The ANSYS simulation was also used to investigate the ring-vortex generation and why the ring vortex can be eliminated by adding a mask with an aperture between the nozzle and deposition substrate. The experimental results also showed that particle deposition with a lengthened nozzle was more stable, while adding the mask stabilized deposition and diminished the ring-vortex contamination. The effects of flow rate and pressure were also investigated. Hence, the deposition stability and homogeneity of microparticles was improved.

  9. Capreomycin oleate microparticles for intramuscular administration: Preparation, in vitro release and preliminary in vivo evaluation.

    PubMed

    Cambronero-Rojas, Adrián; Torres-Vergara, Pablo; Godoy, Ricardo; von Plessing, Carlos; Sepúlveda, Jacqueline; Gómez-Gaete, Carolina

    2015-07-10

    Capreomycin sulfate (CS) is a second-line drug used for the treatment of multidrug-resistant tuberculosis (MDR-TB). The adverse effects profile and uncomfortable administration scheme of CS has led to the development of formulations based on liposomes and polymeric microparticles. However, as CS is a water-soluble peptide that does not encapsulate properly into hydrophobic particulate matrices, it was necessary to reduce its aqueous solubility by forming the pharmacologically active capreomycin oleate (CO) ion pair. The aim of this research was to develop a new formulation of CO for intramuscular injection, based on biodegradable microparticles that encapsulate CO in order to provide a controlled release of the drug with reduced local and systemic adverse effects. The CO-loaded microparticles prepared by spray drying or solvent emulsion-evaporation were characterized in their morphology, encapsulation efficiency, in vitro/in vivo kinetics and tissue tolerance. Through scanning electron microscopy it was confirmed that the microparticles were monodisperse and spherical, with an optimal size for intramuscular administration. The interaction between CO and the components of the microparticle matrix was confirmed on both formulations by X-ray powder diffraction and differential scanning calorimetry analyses. The encapsulation efficiencies for the spray-dried and emulsion-evaporation microparticles were 92% and 56%, respectively. The in vitro kinetics performed on both formulations demonstrated a controlled and continuous release of CO from the microparticles, which was successfully reproduced on an in vivo rodent model. The results of the histological analysis demonstrated that none of the formulations produced significant tissue damage on the site of injection. Therefore, the results suggest that injectable CO microparticles obtained by spray drying and solvent emulsion-evaporation could represent an interesting therapeutic alternative for the treatment of MDR

  10. Constituent elements and their distribution in the radioactive Cs-bearing silicate glass microparticles released from Fukushima nuclear plant.

    PubMed

    Kogure, Toshihiro; Yamaguchi, Noriko; Segawa, Hiroyo; Mukai, Hiroki; Motai, Satoko; Akiyama-Hasegawa, Kotone; Mitome, Masanori; Hara, Toru; Yaita, Tsuyoshi

    2016-10-01

    Microparticles of radioactive cesium (Cs)-bearing silicate glass emitted from the Fukushima Daiichi nuclear power plant were investigated mainly using state-of-the-art energy-dispersive X-ray spectroscopy in scanning transmission electron microscopes. Precise elemental maps of the particles were obtained using double silicon drift detectors with a large collection angle of X-rays, and qualitative elemental analysis was performed using high-resolution X-ray spectroscopy with a microcalorimetry detector. Beside the substantial elements (O, Si, Cl, K, Fe, Zn, Rb, Sn and Cs) as previously reported, Mn and Ba were also common, though their amounts were small. The atomic ratios of the substantial elements were not the same but varied among individual particles. Fe and Zn were relatively homogeneously distributed, whereas the concentration of alkali ions varied radially. Generally, Cs was rich and K and Rb were poor outward of the particles but the degree of such radial dependence was considerably different among the particles. A concentration of Sn on the particle surface was observed. High-resolution imaging indicated the formation of SnO 2 (cassiterite) nanocrystals on the surface. Synthesis of the bulk glass with a similar composition to the microparticles was attempted by quenching the silicate melt from ∼1600°C. However, homogeneous silicate glass like that of the microparticles could not be obtained due to the segregation of nano-spherules rich in Fe and Zn, suggesting that the microparticles were formed in a very specific condition in the nuclear reactor. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

  11. Effect of alginate composition on profile release and characteristics of chitosan-alginate microparticles loaded with mangosteen extract

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Halimah, Nur; Krisanti, Elsa

    2017-03-01

    Preparation of mangostin-loaded chitosan-alginate microparticles, chemical and physical characterization of the particles, and mangostin release profiles, are described herein. Mangostin rich fraction was obtained from Garcinia mangostana L. pericarp by extraction followed by fractionation. Mangostin-loaded chitosan-alginate microparticles were prepared by ionic gelation method using tripolyphosphate as the linking agent and various concentration of alginate. Mangostin was effectively loaded in all microparticle formulations, resulting in ˜97% encapsulation efficiencies. The loading of mangostin and the in-vitro release profiles in simulated gastrointestinal fluids were affected by the chitosan to alginate ratios used in the preparation of the microparticles. Increased alginate concentration resulted in lowered release of mangostin from microparticles immersed in simulated gastric fluid (pH 1.2) up to two hours. Low release of mangostin in acidic fluid but high release in simulated colon fluid, indicated that the chitosan-alginate microparticles are prospective carrier for extended release of active compound in gastrointestinal system.

  12. Magnetic Control of Lateral Migration of Ellipsoidal Microparticles in Microscale Flows

    NASA Astrophysics Data System (ADS)

    Zhou, Ran; Sobecki, Christopher A.; Zhang, Jie; Zhang, Yanzhi; Wang, Cheng

    2017-08-01

    Precise manipulations of nonspherical microparticles by shape have diverse applications in biology and biomedical engineering. Here, we study lateral migration of ellipsoidal paramagnetic microparticles in low-Reynolds-number flows under uniform magnetic fields. We show that magnetically induced torque alters the rotation dynamics of the particle and results in shape-dependent lateral migration. By adjusting the direction of the magnetic field, we demonstrate versatile control of the symmetric and asymmetric rotation of the particles, thereby controlling the direction of the particle's lateral migration. The particle rotations are experimentally measured, and their symmetry or asymmetry characteristics agree well with the prediction from a simple theory. The lateral migration mechanism is found to be valid for nonmagnetic particles suspended in a ferrofluid. Finally, we demonstrate shape-based sorting of microparticles by exploiting the proposed migration mechanism.

  13. Study of poly(L-lactide) microparticles based on supercritical CO2.

    PubMed

    Chen, Ai-Zheng; Pu, Xi-Ming; Kang, Yun-Qing; Liao, Li; Yao, Ya-Dong; Yin, Guang-Fu

    2007-12-01

    Poly(L-lactide) (PLLA) microparticles were prepared in supercritical anti-solvent process. The effects of several key factors on surface morphology, and particle size and particle size distribution were investigated. These factors included initial drops size, saturation ratio of PLLA solution, pressure, temperature, concentration of the organic solution, the flow rate of the solution and molecular weight of PLLA. The results indicated that the saturation ratio of PLLA solution, concentration of the organic solution and flow rate of the solution played important roles on the properties of products. Various microparticles with the mean particle size ranging from 0.64 to 6.64 microm, could be prepared by adjusting the operational parameters. Fine microparticles were obtained in a process namely solution-enhanced dispersion by supercritical fluids (SEDS) process with dichloromethane/acetone mixture as solution.

  14. Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air.

    PubMed

    Park, Haesung; LeBrun, Thomas W

    2016-12-21

    We measure charging of single dielectric microparticles after interaction with a glass substrate using optical tweezers to control the particle, measure its charge with a sensitivity of a few electrons, and precisely contact the particle with the substrate. Polystyrene (PS) microparticles adhered to the substrate can be selected based on size, shape, or optical properties and repeatedly loaded into the optical trap using a piezoelectric (PZT) transducer. Separation from the substrate leads to charge transfer through contact electrification. The charge on the trapped microparticles is measured from the response of the particle motion to a step excitation of a uniform electric field. The particle is then placed onto a target location of the substrate in a controlled manner. Thus, the triboelectric charging profile of the selected PS microparticle can be measured and controlled through repeated cycles of trap loading followed by charge measurement. Reversible optical trap loading and manipulation of the selected particle leads to new capabilities to study and control successive and small changes in surface interactions.

  15. Red blood cell microparticles and blood group antigens: an analysis by flow cytometry

    PubMed Central

    Canellini, Giorgia; Rubin, Olivier; Delobel, Julien; Crettaz, David; Lion, Niels; Tissot, Jean-Daniel

    2012-01-01

    Background The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. Material and methods Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. Results The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. Discussion We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies. PMID:22890266

  16. Release mechanism of insulin encapsulated in trehalose ester derivative microparticles delivered via inhalation.

    PubMed

    Davidson, Iain G; Langner, Eric J; Plowman, Steven V; Blair, Julian A

    2003-03-26

    The aim of this study was to evaluate properties of amorphous oligosaccharide ester derivative (OED) microparticles in order to determine drug release mechanisms in the lung. Trehalose OEDs with a wide range of properties were synthesised using conventional methods. The interaction of spray dried amorphous microparticles (2-3 microm) with water was investigated using attenuated total reflectance Fourier transform infra-red spectroscopy (ATR-FTIR) and dynamic vapour sorption (DVS). The in vivo performance of insulin/OED microparticles was assessed using a modified Higuchi kinetic model. A modified Hansen solvent parameter approach was used to analyse the interactions with water and in vivo trends. In water or high humidity, OED powders absorb water, lose relaxation energy and crystallise. The delay of the onset of crystallisation depends on the OED and the amount of water present. Crystallisation follows first order Arrhenius kinetics and release of insulin from OED microparticles closely matches the degree of crystallisation. The induction period depends on dispersive interactions between the OED and water while crystallisation is governed by polarity and hydrogen bonding. Drug release from OED microparticles is, therefore, controlled by crystallisation of the matrix on contact with water. The pulmonary environment was found to resemble one of high humidity rather than a liquid medium. Copyright 2003 Elsevier Science B.V.

  17. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide.

    PubMed

    Millotti, Gioconda; Vetter, Anja; Leithner, Katharina; Sarti, Federica; Shahnaz Bano, Gul; Augustijns, Patrick; Bernkop-Schnürch, Andreas

    2014-12-01

    The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70-80 µm. Drug encapsulation was ∼80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40 min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.

  18. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    PubMed

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  19. Development of Suppositories Containing Flutamide-Loaded Alginate-Tamarind Microparticles for Rectal Administration: In Vitro and in Vivo Studies.

    PubMed

    Patil, Bharati Shivajirao; Mahajan, Hitendra Shaligram; Surana, Sanjay Javerilal

    2015-01-01

    In the present work the absorption of flutamide from suppositories containing hydrophilic tamarind alginate microparticles after rectal administration in rats was investigated with the purpose of enhancing bioavailability and to avoid hepatic toxicity. Microparticles were developed by ionic gelation method and optimized using one factorial design of response surface methodology. The optimized batch of microparticles had tamarind gum-sodium alginate (1 : 3) ratio and showed entrapment efficiency 94.969% and mucoadhesion strength 94.646% with desirability of 0.961. Suppositories loaded with microparticles were developed by fusion method using poloxamer 407 and poloxamer 188 in combination as suppository base. Kinetic analysis of the release data of microparticle-loaded suppositories showed time-independent release of drug. Higher values of 'n' (>0.89) represent Super Case II-type drug release. The pharmacokinetics of flutamide from flutamide tamarind alginate microparticle-loaded suppository were compared with oral suspension. Cmax of microparticle-loaded suppository was significantly larger than that of oral suspension (1.711 and 0.859 µg/mL, respectively).

  20. Development of biodegradable methylprednisolone microparticles for treatment of articular pathology using a spray-drying technique

    PubMed Central

    Tobar-Grande, Blanca; Godoy, Ricardo; Bustos, Paulina; von Plessing, Carlos; Fattal, Elias; Tsapis, Nicolas; Olave, Claudia; Gómez-Gaete, Carolina

    2013-01-01

    In this work, microparticles were prepared by spray-drying using albumin, chondroitin sulfate, and hyaluronic acid as excipients to create a controlled-release methylprednisolone system for use in inflammatory disorders such as arthritis. Scanning electron microscopy demonstrated that these microparticles were almost spherical, with development of surface wrinkling as the methylprednisolone load in the formulation was increased. The methylprednisolone load also had a direct influence on the mean diameter and zeta potential of the microparticles. Interactions between formulation excipients and the active drug were evaluated by x-ray diffraction, differential scanning calorimetry, and thermal gravimetric analysis, showing limited amounts of methylprednisolone in a crystalline state in the loaded microparticles. The encapsulation efficiency of methylprednisolone was approximately 89% in all formulations. The rate of methylprednisolone release from the microparticles depended on the initial drug load in the formulation. In vitro cytotoxic evaluation using THP-1 cells showed that none of the formulations prepared triggered an inflammatory response on release of interleukin-1β, nor did they affect cellular viability, except for the 9.1% methylprednisolone formulation, which was the maximum test concentration used. The microparticles developed in this study have characteristics amenable to a therapeutic role in inflammatory pathology, such as arthritis. PMID:23737670