Science.gov

Sample records for microquasar cygnus x-1

  1. Origin of multi-band emission from the microquasar Cygnus X-1

    SciTech Connect

    Zhang, Jianfu; Lu, Jufu; Xu, Bing

    2014-06-20

    We study the origin of non-thermal emissions from the Galactic black hole X-ray binary Cygnus X-1, which is a confirmed high-mass microquasar. By analogy with the methods used in studies of active galactic nuclei, we propose a two-dimensional, time-dependent radiation model from the microquasar Cygnus X-1. In this model, the evolution equation for relativistic electrons in a conical jet are numerically solved by including escape, adiabatic, and various radiative losses. The radiative processes involved are synchrotron emission, its self-Compton scattering, and inverse Compton scatterings of an accretion disk and its surrounding stellar companion. This model also includes an electromagnetic cascade process of an anisotropic γ-γ interaction. We study the spectral properties of electron evolution and its emission spectral characteristic at different heights of the emission region located in the jet. We find that radio data from Cygnus X-1 are reproduced by the synchrotron emission, the Fermi Large Area Telescope measurements by the synchrotron emission and Comptonization of photons of the stellar companion, and the TeV band emission fluxes by the Comptonization of the stellar photons. Our results show the following. (1) The radio emission region extends from the binary system scales to the termination of the jet. (2) The GeV band emissions should originate from the distance close to the binary system scales. (3) The TeV band emissions could be inside the binary system, and these emissions could be probed by the upcoming Cherenkov Telescope Array. (4) The MeV tail emissions, which produce a strongly linearly polarized signal, are emitted inside the binary system. The location of the emissions is very close to the inner region of the jet.

  2. EPISODIC TRANSIENT GAMMA-RAY EMISSION FROM THE MICROQUASAR CYGNUS X-1

    SciTech Connect

    Sabatini, S.; Tavani, M.; Vittorini, V.; Piano, G.; Del Monte, E.; Feroci, M.; Argan, A.; D'Ammando, F.; Costa, E.; De Paris, G.; Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Di Cocco, G.; Barbiellini, G.; Caraveo, P.; Chen, A. W.

    2010-03-20

    Cygnus X-1 (Cyg X-1) is the archetypal black hole binary system in our Galaxy. We report the main results of an extensive search for transient gamma-ray emission from Cygnus X-1 carried out in the energy range 100 MeV-3 GeV by the AGILE satellite, during the period 2007 July-2009 October. The total exposure time is about 300 days, during which the source was in the 'hard' X-ray spectral state. We divided the observing intervals in 2-4 week periods, and searched for transient and persistent emission. We report an episode of significant transient gamma-ray emission detected on 2009 October 16 in a position compatible with Cyg X-1 optical position. This episode, which occurred during a hard spectral state of Cyg X-1, shows that a 1-2 day time variable emission above 100 MeV can be produced during hard spectral states, having important theoretical implications for current Comptonization models for Cyg X-1 and other microquasars. Except for this one short timescale episode, no significant gamma-ray emission was detected by AGILE. By integrating all available data, we obtain a 2{sigma} upper limit for the total integrated flux of F {sub {gamma}}{sub ,U.L.} = 3 x 10{sup -8} ph cm{sup -2} s{sup -1} in the energy range 100 MeV-3 GeV. We then clearly establish the existence of a spectral cutoff in the energy range 1-100 MeV that applies to the typical hard state outside the flaring period and that confirms the historically known spectral cutoff above 1 MeV.

  3. Gamma-ray Observations of the Microquasars Cygnus X-1, Cygnus X-3, GRS 1915+105, and GX 339-4 with Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Bodaghee, Arash; Tomsick, J.; Rodriguez, J.; Pottschmidt, K.; Wilms, J.; Pooley, G. G.

    2013-04-01

    Detecting gamma-rays from microquasars is a challenging but important endeavor for understanding particle acceleration, the jet mechanism, and for testing leptonic/hadronic emission models. In this talk, we present results from a 1-d and 10-d likelihood analysis of ~4 years worth of gamma-ray observations (0.1--10 GeV) by Fermi-LAT of Cyg X-1, Cyg X-3, GRS 1915+105, and GX 339-4. This allowed us to sample a variety of states and transitions in these X-ray bright microquasars. Our analysis reproduced all but one of the previous gamma-ray outbursts of Cyg X-3 as reported with Fermi or AGILE. In addition, there are 5 days on which Cyg X-3 is detected at a significance of ~5σ that are not reported in the literature. We also find evidence for persistent gamma-ray emission from Cyg X-3 which appears to be unrelated to the jets. There are several days on which Cyg X-1 displays low-significance 3--4σ) excesses, two of which are contemporaneous with reported gamma-ray flares detected (also at low significance) by AGILE. For GRS 1915+105 and GX 339-4, we derive 3σ upper limits of 3.9e-6 ph/cm2/s and 4.0e-6 ph/cm2/s, respectively, on the flux in the 0.1--10 GeV range. These results enable us to propose a list of general conditions which appear to be necessary for the detection of gamma-rays from microquasars.

  4. GAMMA-RAY OBSERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 339–4 WITH THE FERMI LARGE AREA TELESCOPE

    SciTech Connect

    Bodaghee, Arash; Tomsick, John A.; Pottschmidt, Katja; Rodriguez, Jérôme; Pooley, Guy G.

    2013-10-01

    Detecting gamma-rays from microquasars is a challenging but worthwhile endeavor for understanding particle acceleration and the jet mechanism and for constraining leptonic/hadronic emission models. We present results from a likelihood analysis on timescales of 1 day and 10 days of ∼4 yr worth of gamma-ray observations (0.1-10 GeV) by Fermi-LAT of Cyg X-1, Cyg X-3, GRS 1915+105, and GX 339–4. Our analysis reproduced all but one of the previous gamma-ray outbursts of Cyg X-3 as reported with Fermi or AGILE, plus five new days on which Cyg X-3 is detected at a significance of ∼5σ that are not reported in the literature. In addition, Cyg X-3 is significantly detected on 10 day timescales outside of known gamma-ray flaring epochs, which suggests that persistent gamma-ray emission from Cyg X-3 has been detected for the first time. For Cyg X-1 we find three low-significance excesses (∼3-4σ) on daily timescales that are contemporaneous with gamma-ray flares reported (also at low significance) by AGILE. Two other microquasars, GRS 1915+105 and GX 339–4, are not detected, and we derive 3σ upper limits of 2.3 × 10{sup –8} photons cm{sup –2} s{sup –1} and 1.6 × 10{sup –8} photons cm{sup –2} s{sup –1}, respectively, on the persistent flux in the 0.1-10 GeV range. These results enable us to define a list of the general conditions that are necessary for the detection of gamma-rays from microquasars.

  5. Gamma-Ray Observations of the Microquasars Cygnus X-1, Cygnus X-3, GRS 1915+105, and GX 339-4 with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Bodaghee, Arash; Tomsick, John A.; Pottschmidt, Katja; Rodriguez, Jérôme; Wilms, Jörn; Pooley, Guy G.

    2013-10-01

    Detecting gamma-rays from microquasars is a challenging but worthwhile endeavor for understanding particle acceleration and the jet mechanism and for constraining leptonic/hadronic emission models. We present results from a likelihood analysis on timescales of 1 day and 10 days of ~4 yr worth of gamma-ray observations (0.1-10 GeV) by Fermi-LAT of Cyg X-1, Cyg X-3, GRS 1915+105, and GX 339-4. Our analysis reproduced all but one of the previous gamma-ray outbursts of Cyg X-3 as reported with Fermi or AGILE, plus five new days on which Cyg X-3 is detected at a significance of ~5σ that are not reported in the literature. In addition, Cyg X-3 is significantly detected on 10 day timescales outside of known gamma-ray flaring epochs, which suggests that persistent gamma-ray emission from Cyg X-3 has been detected for the first time. For Cyg X-1 we find three low-significance excesses (~3-4σ) on daily timescales that are contemporaneous with gamma-ray flares reported (also at low significance) by AGILE. Two other microquasars, GRS 1915+105 and GX 339-4, are not detected, and we derive 3σ upper limits of 2.3 × 10-8 photons cm-2 s-1 and 1.6 × 10-8 photons cm-2 s-1, respectively, on the persistent flux in the 0.1-10 GeV range. These results enable us to define a list of the general conditions that are necessary for the detection of gamma-rays from microquasars.

  6. Extreme particle acceleration in the microquasar Cygnus X-3.

    PubMed

    Tavani, M; Bulgarelli, A; Piano, G; Sabatini, S; Striani, E; Evangelista, Y; Trois, A; Pooley, G; Trushkin, S; Nizhelskij, N A; McCollough, M; Koljonen, K I I; Pucella, G; Giuliani, A; Chen, A W; Costa, E; Vittorini, V; Trifoglio, M; Gianotti, F; Argan, A; Barbiellini, G; Caraveo, P; Cattaneo, P W; Cocco, V; Contessi, T; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Feroci, M; Ferrari, A; Fuschino, F; Galli, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Mattaini, E; Marisaldi, M; Mastropietro, M; Mauri, A; Mereghetti, S; Morelli, E; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Pilia, M; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Scalise, E; Soffitta, P; Vallazza, E; Vercellone, S; Zambra, A; Zanello, D; Pittori, C; Verrecchia, F; Giommi, P; Colafrancesco, S; Santolamazza, P; Antonelli, A; Salotti, L

    2009-12-01

    Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated gamma-ray emission. Galactic 'microquasars', which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four gamma-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the gamma-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states. PMID:19935645

  7. Veritas observations of the microquasar Cygnus X-3

    SciTech Connect

    Archambault, S.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Bird, R.; Bouvier, A.; Byrum, K.; Chen, X.; Federici, S.; Ciupik, L.; Connolly, M. P.; Cui, W.; Feng, Q.; Duke, C.; Dumm, J.; Errando, M.; Falcone, A. E-mail: cui@purdue.edu; Collaboration: VERITAS Collaboration) and; Smithsonian Astrophysical Observatory; and others

    2013-12-20

    We report results from TeV gamma-ray observations of the microquasar Cygnus X-3. The observations were made with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) over a time period from 2007 June 11 to 2011 November 28. VERITAS is most sensitive to gamma rays at energies between 85 GeV and 30 TeV. The effective exposure time amounts to a total of about 44 hr, with the observations covering six distinct radio/X-ray states of the object. No significant TeV gamma-ray emission was detected in any of the states, nor with all observations combined. The lack of a positive signal, especially in the states where GeV gamma rays were detected, places constraints on TeV gamma-ray production in Cygnus X-3. We discuss the implications of the results.

  8. THE TRIGONOMETRIC PARALLAX OF CYGNUS X-1

    SciTech Connect

    Reid, Mark J.; McClintock, Jeffrey E.; Narayan, Ramesh; Gou Lijun; Remillard, Ronald A.; Orosz, Jerome A.

    2011-12-01

    We report a direct and accurate measurement of the distance to the X-ray binary Cygnus X-1, which contains the first black hole to be discovered. The distance of 1.86{sup +0.12}{sub -0.11} kpc was obtained from a trigonometric parallax measurement using the Very Long Baseline Array. The position measurements are also sensitive to the 5.6 day binary orbit and we determine the orbit to be clockwise on the sky. We also measured the proper motion of Cygnus X-1 which, when coupled to the distance and Doppler shift, gives the three-dimensional space motion of the system. When corrected for differential Galactic rotation, the non-circular (peculiar) motion of the binary is only about 21 km s{sup -1}, indicating that the binary did not experience a large 'kick' at formation.

  9. Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Fermi LAT Collaboration; Abdo, A. A.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chaty, S.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbel, S.; Corbet, R.; Dermer, C. D.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dubus, G.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Hjalmarsdotter, L.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Koerding, E.; Kuss, M.; Lande, J.; Latronico, J.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Marchand, L.; Marelli, M.; Max-Moerbeck, W.; Mazziotta, M. N.; McColl, N.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Migliari, S.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Ong, R. A.; Ormes, J. F.; Paneque, D.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Pooley, G.; Porter, T. A.; Pottschmidt, K.; Rainò, S.; Rando, R.; Ray, P. S.; Razzano, M.; Rea, N.; Readhead, A.; Reimer, A.; Reimer, O.; Richards, J. L.; Rochester, L. S.; Rodriguez, J.; Rodriguez, A. Y.; Romani, R. W.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spinelli, P.; Starck, J.-L.; Stevenson, M.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tomsick, J. A.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wilms, J.; Winer, B. L.; Wood, K. W.; Ylinen, T.; Ziegler, M.

    2009-12-01

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  10. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets. PMID:19965378

  11. The Lukewarm Absorber in the Microquasar Cir X-1

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Galloway, D. K.; Brandt, W. N.

    2006-09-01

    Through many observations in the last decades the extreme and violent X-ray binary Cir X-1 has been classified as a microquasar, Z-source, X-ray burster, and accreting neutron star exhibiting ultrarelativistic jets. Since the launch of Chandra the source underwent a dramatic change from a high flux (1.5 Crab) source to a rather low persistent flux ( 30 mCrab) in the last year. Spectra from Chandra High Energy Transmission Grating Spectrometer (HETGS) taken during this transformation have revealed many details besides the large overall flux change ranging from blue-shifted absorption lines indicating high-velocity (< 2000 km/s) outflows during high flux, persistently bright lines emission throughout all phases to some form of warm absorption in the low flux phase. Newly released atomic data allows us to analyse specifically the Fe K line region with unprecedented detail for all flux phases observed so far. We also compare these new results with recently released findings of warm absorbers and outflow signatures observed in other microqasars such as GX 339+4, GRS J1655-40, and GRS1915+115.

  12. Lepto-hadronic model for the broadband emission of Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Pepe, Carolina; Vila, Gabriela S.; Romero, Gustavo E.

    2015-12-01

    Context. Cygnus X-1 is a well-observed microquasar. Broadband observations at all wavelengths have been collected over the years. The origin of the MeV tail observed with COMPTEL and INTEGRAL is still under debate and it has mostly been attributed to the corona, although its high degree of polarization suggests that it is synchrotron radiation from a jet. The origin of the transient emission above ~100 GeV is also unclear. Aims: We aim to clarify the origin of the broadband spectral energy distribution (SED) of Cygnus X-1, focusing particularly on the gamma-ray emission, and to gain information on the physical conditions inside the jets. Methods: We developed a lepto-hadronic, inhomogeneous jet model and applied it to the non-thermal SED of Cygnus X-1. We calculated the contributions to the SED of both protons and electrons accelerated in an extended region of the jet. We also estimated the radiation of charged secondaries produced in hadronic interactions through several radiative processes. Absorption effects were considered. We produced synthetic maps of the jets at radio wavelengths. Results: We find two sets of model parameters that lead to good fits of the SED. One of the models fits all the observations, including the MeV tail. This model also predicts hadronic gamma-ray emission slightly below the current upper limits. The flux predicted at 8.4 GHz is in agreement with the observations available in the literature, although the synthetic source is more compact than the imaged radio jet. Conclusions: Our results show that the MeV emission in Cygnus X-1 may be jet synchrotron radiation. This depends mainly on the strength of the jet magnetic field and the location of the injection region of the relativistic particles. Our calculations show that there must be energetic electrons in the jets quite far from the black hole.

  13. XMM-Newton observations of CYGNUS X-1

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Miller, Jon

    2005-01-01

    Observations of Cygnus X-1 were first attempted under this program in the spring of 2004, but were complicated by instrumental flaring problems. Successful observations were completed in the fall of 2004, and processed data were delivered to the PI in the winter and spring of 2005. Thus, focused work on this data was only possible starting in 2005. A preliminary reduction and analysis of data from the EPIC CCD cameras and the Reflection Grating Spectrometer has been made. The EPIC spectra reveal the best example of a broadened, relativistic iron emission line yet found in Cygnus X-1. The Oxygen K-shell region has been shown to be a very complex wavelength range in numerous spectra of accreting sources, but the RGS spectra reveal this region in great detail and will be important in understanding the wind from the 0-type donor star that is focused onto the black hole in Cygnus X-1.

  14. Absorption dips at low X-ray energies in Cygnus X-1. [observed with Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Murdin, P. G.

    1976-01-01

    Absorbing material in Cygnus X-1 jitters near the line joining the two stars, out of the orbital plane is described. Three looks with the Copernicus satellite at Cygnus X-1 have produced four examples of absorption dips (decreases in the 2 to 7 keV flux from Cygnus X-1 with an increase of spectral hardness consistent with photoelectric absorption).

  15. On the nature of the episodic gamma-ray flare observed in Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Del Valle, M. V.; Romero, G. E.; Orellana, M.

    The high-mass microquasar Cygnus X-1, the best established candidate for a stellar-mass black hole, has been detected in a flaring state at very high energies, E > 200 GeV (Albert et al. 2007). The observation was per- formed by the Atmospheric Cherenkov Telescope MAGIC. It is the first experimental evidence of very high energy emission produced by a galactic stellar-mass black hole. The observed high energy excess occurred in coin- cidence with an X-ray flare. The flare took place at orbital phase = 0.91, being = 1 the moment when the black hole is behind the companion star. In this configuration the absorption of gamma-ray photons produced by photon-photon annihilation with the stellar field is expected to be the highest. We present detailed calculations of the gamma-ray opacity due to pair creation along the whole orbit, and for different locations of the emitter (height above the compact object). We discuss the location of the gamma- ray producing region in Cygnus X-1 and the energetics required to produce the flare.

  16. The X-ray halo of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Bode, M. F.; Norwell, G. A.; Priedhorsky, W. C.; Evans, A.

    1985-01-01

    Four Einstein HRI images of Cygnus X-1 were examined for the presence of a halo due to scattering of X-rays by interstellar grains. The analysis technique exploits the intrinsic aperiodic variability of the source to map the point response function of the optics. A residual, nonvariable component to the surface brightness distribution (comprising approximately more than 12 percent of the source flux) is interpreted as a scattered halo. The halo flux does not reflect the short term time variability of the central source as it is smoothed by differential time delays of order days. The Cygnus X-1 halo is consistent with those of other sources derived in previous studies using different techniques. Comparison is made with a scattering model, and the sensitivity of the halo flux to maximal grain size is demonstrated.

  17. Multi-frequency observation of Galactic micro-quasar Cygnus X-3 during flare

    NASA Astrophysics Data System (ADS)

    Patra, D.; Pal, S.; Ishwara-Chandra, C. H.; Rao, A. P.

    We studied the multi-frequency radio observations of the Galactic micro-quasar Cygnus X-3 using the Giant Metrewave Radio Telescope at 244, 325, 614 and 1280 MHz and Very Large Array at 8.43, 22.5 and 43.3 GHz during various flaring activities between 2006 to 2009. We have calculated the two point spectral index from the simultaneous observations at 244 and 614 MHz. These spectral index varies from positive (optically thick) and negative (optically thin) values which is consistent with the synchrotron self absorption model. We calculated some physical parameters such as the size of emitting region, turn over frequency and corresponding peak flux using the synchrotron self absorption model. The size of the emitting region are different at different time of the flare.

  18. X-Ray Timing Properties of Cygnus X-1 and Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Focke, Warren Bosworth

    Cygnus X-1 and Cygnus X-2 are X-ray sources which are believed to be a black hole and a neutron star, respectively. We investigate the variability of Cygnus X-1 in the context of shot noise models, and employ a peak detection algorithm to select individual shots. The detected shots are fit to several model templates. The fit shot parameters are found to be distributed. The cross spectrum of light curves from Cygnus X-1 in different energy bands is studied. Large, frequency dependent time lags are observed, along with high coherence. The high coherence implies that the transfer function between low and high energy variability is uniform. This implies that, if the lags are due to Compton scattering, variations in the seed intensity must originate in a region much smaller than the Comptonizing medium. The frequency dependence of the lags implies that, if they are due to Comptonization, the Comptonizing medium is nonuniform. The uniformity of the transfer function implies that the observed distribution of shot widths cannot have been acquired through Compton scattering. The energy spectrum of the radiation reaching us from Cygnus X-1 is found to fluctuate at the shortest timescales observable. This implies rapid changes in the geometry or temperature of some portions of the system, possibly due to dynamical instabilities of the system. The high counting rates and temporal resolution of the Rossi X-ray Timing Explorer allow more detailed investigation of the Horizontal Branch Oscillations (HBO) in Cygnus X-2 than has been possible previously, including observation of a second harmonic. The relations of the frequencies and widths of these peaks are investigated in order to shed light on their origin and thus the conditions in the region of their formation. The observations support the Magnetospheric Beat Frequency Modulated Accretion model for the origin of the HBO. The data indicate that neither rapid variation in the frequency of, nor short lifetime of, a locally

  19. A MULTIWAVELENGTH STUDY OF CYGNUS X-1: THE FIRST MID-INFRARED SPECTROSCOPIC DETECTION OF COMPACT JETS

    SciTech Connect

    Rahoui, Farid; Lee, Julia C.; Heinz, Sebastian; Hines, Dean C.; Pottschmidt, Katja; Wilms, Joern; Grinberg, Victoria E-mail: jclee@cfa.harvard.edu E-mail: hines@stsci.edu E-mail: joern.wilms@sternwarte.uni-erlangen.de

    2011-07-20

    We report on a Spitzer/InfraRed Spectrograph (mid-infrared), RXTE/PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multiwavelength study of the microquasar Cygnus X-1, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break-where the transition from the optically thick to the optically thin regime takes place-at about 2.9 x 10{sup 13} Hz. We then show that the jet's optically thin synchrotron emission accounts for Cygnus X-1's emission beyond 400 keV, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 {mu}m mid-infrared continuum of Cygnus X-1 stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Rayleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f{sub {infinity}} {approx} 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anti-correlation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and Cygnus X-1's environment and/or the companion star's stellar wind.

  20. The Microquasar Cyg X-1: A Short Review

    NASA Technical Reports Server (NTRS)

    Nowak, M. A.; Wilms, J.; Hanke, M.; Pottschmidt, K.; Markoff, S.

    2011-01-01

    We review the spectral properties of the black hole candidate Cygnus X-I. Specifically, we discuss two recent sets of multi-satellite observations. One comprises a 0.5-500 keY spectrum, obtained with eve!)' flying X-ray satellite at that time, that is among the hardest Cyg X-I spectra observed to date. The second set is comprised of 0.5-40 keV Chandra-HETG plus RXTE-PCA spectra from a radio-quiet, spectrally soft state. We first discuss the "messy astrophysics" often neglected in the study of Cyg X-I, i.e., ionized absorption from the wind of the secondary and the foreground dust scattering halo. We then discuss components common to both state extremes: a low temperature accretion disk, and a relativistically broadened Fe line and reflection. Hard state spectral models indicate that the disk inner edge does not extend beyond > or approx.= 40 GM/sq c , and may even approach as close as approx. = 6GM/sq c. The soft state exhibits a much more prominent disk component; however, its very low normalization plausibly indicates a spinning black hole in the Cyg X-I system. Key words. accretion, accretion disks - black hole physics - X-rays:binaries

  1. The Variable Superorbital Modulation of Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Rico, Javier

    2008-08-01

    We study the superorbital modulation present in the Cygnus X-1 X-ray data, usually attributed to the precession of the accretion disk and relativistic jets. We find a new, strong, 326 ± 2 day period modulation starting in 2005, in Swift BAT and RXTE ASM light curves (LCs). We also investigate Vela 5B ASM and Ariel 5 ASM archival data and confirm the previously reported ~290 day periodic modulation, therefore confirming that the superorbital period is not constant. Finally, we study RXTE ASM LC before 2005 and find that the previously reported ~150 day period is most likely an artifact due to the use of a Fourier-power-based analysis under the assumption that the modulation has a constant period along the whole data sample. Instead, we find strong indications of several discrete changes of the precession period, happening in coincidence with soft and failed state transition episodes. We also find a hint of correlation between the period and the amplitude of the modulation. The detection of gamma rays above 100 GeV with MAGIC in 2006 September happened in coincidence with a maximum of the superorbital modulation. The next maximum will happen between 2008 July 2 and 14, when the observational conditions of Cygnus X-1 with ground-based Cerenkov telescopes, such as MAGIC and VERITAS, are optimal.

  2. Shell-shocked: the interstellar medium near Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Sell, P. H.; Heinz, S.; Richards, E.; Maccarone, T. J.; Russell, D. M.; Gallo, E.; Fender, R.; Markoff, S.; Nowak, M.

    2015-02-01

    We conduct a detailed case study of the interstellar shell near the high-mass X-ray binary, Cygnus X-1. We present new WIYN optical spectroscopic and Chandra X-ray observations of this region, which we compare with detailed MAPPINGS III shock models, to investigate the outflow powering the shell. Our analysis places improved, physically motivated constraints on the nature of the shock wave and the interstellar medium (ISM) it is plowing through. We find that the shock is travelling at less than a few hundred km s-1 through a low-density ISM (<5 cm-3). We calculate a robust, 3σ upper limit to the total, time-averaged power needed to drive the shock wave and inflate the bubble, <2 × 1038 erg s-1. We then review possible origins of the shock wave. We find that a supernova origin to the shock wave is unlikely and that the black hole jet and/or O-star wind can both be central drivers of the shock wave. We conclude that the source of the Cygnus X-1 shock wave is far from solved.

  3. RXTE observation of Cygnus X-1: spectral analysis

    NASA Astrophysics Data System (ADS)

    Dove, J. B.; Wilms, Jörn; Nowak, M. A.; Vaughan, B. A.; Begelman, M. C.

    1999-01-01

    We present the results of the analysis of the broad-band spectrum of Cygnus X-1 from 3.0 to 200keV, using data from a 10ksec observation by the Rossi X-ray Timing Explorer. Although the spectrum can be well described phenomenologically by an exponentially cut-off power law (photon index Γ=1.45+0.01-0.02, e-folding energy Ef=162+9-8keV, plus a deviation from a power law that formally can be modeled as a thermal blackbody with temperature kTBB=1.2+0.0-0.1keV), the inclusion of a reflection component does not improve the fit. As a physical description of this system, we apply the accretion disc corona (ADC0 models of Dove, Wilms & Begelman [1]). A slab-geometry ADC model is unable to describe the data. However, a spherical corona, with a total optical depth τ=1.6+/-0.1 and an average temperature kTC=87+/-5keV, surrounded by an exterior cold disc, does provide a good description of the data (χ2red=1.55). These models deviate from the data by up to 7% in the 5-10keV range. However, considering how successfully the spherical corona reproduces the 10-200keV data, such ``photon-starved'' coronal geometries seem very promising for explaining the accretion processes of Cygnus X-1.

  4. Catching Up on State Transitions in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Boeck, Moritz; Hanke, Manfred; Wilms, Joern; Pirner, Stefan; Grinberg, Victoria; Markoff, Sera; Pottschmidt, Katja; Nowak, Michael A.; Pooley, Guy

    2008-01-01

    In 2005 February we observed Cygnus X-1 over a period of 10 days quasi-continuously with the Rossi X-ray Timing Explorer and the Ryle telescope. We present the results of the spectral and timing analysis on a timescale of 90 min and show that the behavior of Cyg X-1 is similar to that found during our years long monitoring campaign. As a highlight we present evidence for a full transition from the hard to the soft state that happened during less than three hours. The observation provided a more complete picture of a state transition than before, especially concerning the evolution of the time lags, due to unique transition coverage and analysis with high time resolution.

  5. Gamma-ray observations of Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Bassani, L.; Di Cocco, G.; Stephen, J. B.; Dean, A. J.; Perotti, F.

    1989-08-01

    The results of gamma-ray observations of the Galactic black hole candidate Cygnus X-1 are presented. The recent HEAO 3 results reported by Ling et al. (1987) on this source are confirmed: (1) the detection in 1979 of a gamma-ray excess of comparable flux; and (2) a spectral variation above about 25 keV going from 1979 to 1980, which implies and anticorrelation between hard X-ray and gamma-ray luminosities with a pivot point in the 200-400 keV band. A comparison of all the data available at gamma-ray energies gives further support to the existence of this anticorrelation, although its statistical significance is low. The hard X-ray/gamma-ray 1979 spectrum, which is well fitted by a power law with photon index alpha = 1.7, can be interpreted as thermal Comptonization of soft photons or in terms of nonthermal models with copious photon-photon absorption.

  6. The Extreme Spin of the Black Hole Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Gou, Lijun; McClintock, Jeffrey E.; Reid, Mark J.; Orosz, Jerome A.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.

    2011-01-01

    Remarkably, an astronomical black hole is completely described by the two numbers that specify its mass and its spin. Knowledge of spin is crucial for understanding how, for example, black holes produce relativistic jets. Recently, it has become possible to measure the spins of black holes by focusing on the very inner region of an accreting disk of hot gas orbiting the black hole. According to General Relativity (GR), this disk is truncated at an inner radius 1 that depends only on the mass and spin of the black hole. We measure the radius of the inner edge of this disk by fitting its continuum X-ray spectrum to a fully relativistic model. Using our measurement of this radius, we deduce that the spin of Cygnus X-1 exceeds 97% of the maximum value allowed by GR.

  7. RXTE Observation of Cygnus X-1 Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Dove, J. B.; Wilms, Joern; Nowak, M. A.; Vaughan, B. A.; Begelman, M. C.

    1998-01-01

    We present the results of the analysis of the broad-band spectrum of Cygnus X-1 from 3.0 to 200 keV, using data from a 10 ksec observation by the Rossi X-ray Timing Explorer. Although the spectrum can be well described phenomenologically by an exponentially cut-off power law (photon index Gamma = 1.45+0.01 -0.02 , e-folding energy e(sub f) = 162+9 -8 keV, plus a deviation from a power law that formally can be modeled as a thermal blackbody, with temperature kT(sub BB) = 1.2 +0.0 -0.1 keV), the inclusion of a reflection component does not improve the fit. As a physical description of this system, we apply the accretion disc corona (ADC) models. A slab-geometry ADC model is unable to describe the data. However, a spherical corona, with a total optical depth tau- = 1.6 + or - 0.1 and an average temperature kTc = 87 + or - 5 keV, surrounded by an exterior cold disc, does provide a good description of the data (X red (exp 2) = 1.55). These models deviate from the data bv up to 7% in the 5-10 keV range. However, considering how successfully the spherical corona reproduces the 10-200 keV data, such "photon-starved" coronal geometries seem very promising for explaining the accretion processes of Cygnus X-1.

  8. RXTE observation of Cygnus X-1 - I. Spectral analysis

    NASA Astrophysics Data System (ADS)

    Dove, James B.; Wilms, Jörn; Nowak, Michael A.; Vaughan, Brian A.; Begelman, Mitchell C.

    1998-08-01

    We present the results of the analysis of the broad-band spectrum of Cygnus X-1 from 3.0 to 200keV, using data from a 10-ks observation by the Rossi X-ray Timing Explorer (RXTE). The spectrum can be well described phenomenologically by an exponentially cut-off power law with a photon index Γ=1.45+0.01-0.02 (a value considerably harder than is typically found), e-folding energy Ef=162+9-8keV, plus a deviation from a power law that formally can be modelled as a thermal blackbody with temperature kTbb=1.2+0.0-0.1keV. Although the 3-30 keV portion of the spectrum can be fitted with a reflected power law with Γ=1.81+/-0.01 and covering fraction f=0.35+/-0.02, the quality of the fit is significantly reduced when the HEXTE data in the 30-100 keV range are included, as there is no observed softening in the power law within this energy range. As a physical description of this system, we apply the accretion disc corona models of Dove, Wilms &38 Begelman, in which the temperature of the corona is determined self-consistently. A spherical corona with a total optical depth τ=1.6+/-0.1 and an average temperature kTc=87+/-5keV, surrounded by an exterior cold disc, does provide a good description of the data (χ2red=1.55). These models deviate from the data by up to 7 per cent in the 5-10keV range, and we discuss possible reasons for these discrepancies. However, considering how successfully the spherical corona reproduces the 10-200keV data, such `photon-starved' coronal geometries seem very promising for explaining the accretion processes of Cygnus X-1.

  9. A LIKELY MICRO-QUASAR IN THE SHADOW OF M82 X-1

    SciTech Connect

    Xu, Xiao-jie; Liu, Jifeng; Liu, Jiren E-mail: jfliu@nao.cas.cn

    2015-02-01

    The ultra-luminous X-ray source M82 X-1 is one of the most promising intermediate mass black hole candidates in the local universe based on its high X-ray luminosities (10{sup 40}–10{sup 41} erg s{sup −1}) and quasi-periodic oscillations, and is possibly associated with a radio flare source. In this work, applying the sub-pixel technique to the 120 ks Chandra observation (ID: 10543) of M82 X-1, we split M82 X-1 into two sources separated by 1.″1. The secondary source is not detected in other M82 observations. The radio flare source is not found to associate with M82 X-1, but is instead associated with the nearby transient source S1 with an outburst luminosity of ∼10{sup 39} erg s{sup −1}. With X-ray outburst and radio flare activities analogous to the recently discovered micro-quasar in M31, S1 is likely to be a micro-quasar hidden in the shadow of M82 X-1.

  10. A Likely Micro-Quasar in the Shadow of M82 X-1

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-jie; Liu, Jifeng; Liu, Jiren

    2015-02-01

    The ultra-luminous X-ray source M82 X-1 is one of the most promising intermediate mass black hole candidates in the local universe based on its high X-ray luminosities (1040-1041 erg s-1) and quasi-periodic oscillations, and is possibly associated with a radio flare source. In this work, applying the sub-pixel technique to the 120 ks Chandra observation (ID: 10543) of M82 X-1, we split M82 X-1 into two sources separated by 1.″1. The secondary source is not detected in other M82 observations. The radio flare source is not found to associate with M82 X-1, but is instead associated with the nearby transient source S1 with an outburst luminosity of ˜1039 erg s-1. With X-ray outburst and radio flare activities analogous to the recently discovered micro-quasar in M31, S1 is likely to be a micro-quasar hidden in the shadow of M82 X-1.

  11. RXTE Observation of Cygnus X-1. 1; Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Joern; Nowak, Michael A.; Vaughan, Brian A.; Begelman, Mitchell C.

    1998-01-01

    We present the results of the analysis of the broad-band spectrum of Cygnus X-1 from 3.0 to 200 keV, using data from a 10 ksec observation by the Rossi X-ray Timing Explorer. The spectrum can be well described phenomenologically by an exponentially cut-off power law with a photon index Gamma = 1.45(+0.01 -0.02) (a value considerably harder 0.02 than typically found), e-folding energy E(sub f) = 162(+9 -8) keV, plus a deviation from a power law that formally can be modeled as a thermal blackbody with temperature kT(sub bb) = 1.2(+0.0 -0.1) keV. Although the 3-30 keV portion of the spectrum can be fit with a reflected power law with Gamma = 1.81 + or - 0.01 and covering fraction f = 0.35 + or - 0.02, the quality of the fit is significantly reduced when the HEXTE data in the 30-100 keV range is included, as there is no observed hardening in the power law within this energy range. As a physical description of this system, we apply the accretion disc corona models of Dove, Wilms & Begelman (1997a) - where the temperature of the corona is determined self-consistently. A spherical corona with a total optical depth pi = 1.6 + or - 0.1 and an average temperature kT(sub c) = 87 + or - 5 keV, surrounded by an exterior cold disc, does provide a good description of the data (X(exp 2 sub red) = 1.55). These models deviate from red the data by up to 7% in the 5 - 10 keV range, and we discuss possible reasons for these discrepancies. However, considering bow successfully the spherical corona reproduces the 10 - 200 keV data, such "pboton-starved" coronal geometries seem very promising for explaining the accretion processes of Cygnus X-1.

  12. Microquasars: observations and perspectives

    NASA Astrophysics Data System (ADS)

    Ribó, Marc

    Since their discovery nearly two decades ago, microquasars have been studied in great detail. These sources exhibit transient X-ray and gamma-ray emission, and multi-wavelength observa-tions from radio to gamma rays have revealed the existence of correlations and anti-correlations, which have helped to build up an scenario for the understanding of their outbursts. However, there are still several issues that are not understood, and the mechanism for triggering rela-tivistic jets is still a matter of debate. During the last year, we have seen the first unambiguous detection of a microquasar, Cygnus X-3, at energies above 1 GeV by the Fermi and AGILE satellites. This, together with the evidence of VHE emission from Cygnus X-1 obtained by MAGIC, has reinforced the possibility to detect microquasars by ground based Cherenkov tele-scopes. In this talk I will review microquasars from the observational point of view and I will discuss future strategies for their detection at TeV energies.

  13. Hard X-ray spectrum of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.

    1981-01-01

    Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.

  14. 10 microsecond time resolution studies of Cygnus X-1

    SciTech Connect

    Wen, H.C.

    1997-06-01

    Time variability analyses have been applied to data composed of event times of X-rays emitted from the binary system Cygnus X-1 to search for unique black hole signatures. The X-ray data analyzed was collected at ten microsecond time resolution or better from two instruments, the High Energy Astrophysical Observatory (HEAO) A-1 detector and the Rossi X-ray Timing Explorer (XTE) Proportional Counter Array (PCA). HEAO A-1 and RXTE/PCA collected data from 1977--79 and from 1996 on with energy sensitivity from 1--25 keV and 2--60 keV, respectively. Variability characteristics predicted by various models of an accretion disk around a black hole have been searched for in the data. Drop-offs or quasi-periodic oscillations (QPOs) in the Fourier power spectra are expected from some of these models. The Fourier spectral technique was applied to the HEAO A-1 and RXTE/PCA data with careful consideration given for correcting the Poisson noise floor for instrumental effects. Evidence for a drop-off may be interpreted from the faster fall off in variability at frequencies greater than the observed breaks. Both breaks occur within the range of Keplerian frequencies associated with the inner edge radii of advection-dominated accretion disks predicted for Cyg X-1. The break between 10--20 Hz is also near the sharp rollover predicted by Nowak and Wagoner`s model of accretion disk turbulence. No QPOs were observed in the data for quality factors Q > 9 with a 95% confidence level upper limit for the fractional rms amplitude at 1.2% for a 16 M{sub {circle_dot}} black hole.

  15. RXTE Observation of Cygnus X-1. Report 2; TIming Analysis

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Vaughan, Brian A.; Wilms, Joern; Dove, James B.; Begelman, Mitchell C.

    1998-01-01

    We present timing analysis for a Rossi X-ray Timing Explorer (RXTE) observation of Cygnus X-1 in its hard/low state. This was the first RXTE observation of Cyg X-1 taken after it transited back to this state from its soft/high state. RXTE's large effective area, superior timing capabilities, and ability to obtain long, uninterrupted observations have allowed us to obtain measurements of the power spectral density (PSD), coherence function, and Fourier time lags to a decade lower in frequency and half a decade higher in frequency than typically was achieved with previous instruments. Notable aspects of our observations include a weak 0.005 Hz feature in the PSD coincident with a coherence recovery; a 'hardening' of the high-frequency PSD with increasing energy; a broad frequency range measurement of the coherence function, revealing rollovers from unity coherence at both low and high frequency; and an accurate determination of the Fourier time lags over two and a half decades in frequency. As has been noted in previous similar observations, the time delay is approximately proportional to f(exp -0.7), and at a fixed Fourier frequency the time delay of the hard X-rays compared to the softest energy channel tends to increase logarithmically with energy. Curiously, the 0.01-0.2 Hz coherence between the highest and lowest energy bands is actually slightly greater than the coherence between the second highest and lowest energy bands. We carefully describe all of the analysis techniques used in this paper, and we make comparisons of the data to general theoretical expectations. In a companion paper, we make specific comparisons to a Compton corona model that we have successfully used to describe the energy spectral data from this observation.

  16. What is special about Cygnus X-1?. [evidence for a black hole

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.; Holt, S. S.; Rothschild, R. E.; Serlemitsos, P. J.

    1974-01-01

    The X-ray evidence from several experiments is reviewed, with special emphasis on those characteristics which appear to distinguish Cygnus X-1 from other compact X-ray emitting objects. Data are examined within the context of a model in which millisecond bursts are superposed upon shot-noise fluctuations arising from events of durations on the order of a second. Possible spectral-temporal correlations are investigated which provide additional evidence that Cygnus X-1 is very likely a black hole.

  17. Wavelet analysis of fast photometry on Cygnus X-1 with the AstraLux camera

    SciTech Connect

    Luque-Escamilla, P. L.; Marti, J.; Combi, Jorge A.; Arjonilla, Alvaro Munoz; Sanchez-Sutil, J. R.

    2008-10-08

    We present sub-second fast photometry for the high mass X-ray binary Cygnus X-1. We try to observe variability due to instabilities in the accretion process at optical wavelengths. The observations were carried out using the high speed AstraLux camera at the Calar Alto 2.2 m telescope, Spain, in November 2006 and August 2007. We report that the Cygnus X-1 system light curve sampled every 30 milli-second did not display strong enough evidence of any periodic component related to the source.

  18. Fermi-LAT Observation of Increased Gamma-ray Emission from the Microquasar Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Loh, Alan; Corbel, Stephane; Dubus, Guillaume; Corbet, Robin

    2016-01-01

    Recently, the hard X-ray emission from the high-mass X-ray binary Cygnus X-3 has drastically dropped since 2016 Jan 11 (MJD 57398, as observed by Swift/BAT http://swift.gsfc.nasa.gov/results/transients/CygX-3/, Krimm et al. 2013, ApJS 209, 14) indicating a possible transition to the soft state.

  19. Cygnus X-1: A Case for a Magnetic Accretion Disk?

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Vaughan, B. A.; Dove, J.; Wilms, J.

    1996-01-01

    With the advent of Rossi X-ray Timing Explorer (RXTE), which is capable of broad spectral coverage and fast timing, as well as other instruments which are increasingly being used in multi-wavelength campaigns (via both space-based and ground-based observations), we must demand more of our theoretical models. No current model mimics all facets of a system as complex as an x-ray binary. However, a modern theory should qualitatively reproduce - or at the very least not fundamentally disagree with - all of Cygnus X-l's most basic average properties: energy spectrum (viewed within a broader framework of black hole candidate spectral behavior), power spectrum (PSD), and time delays and coherence between variability in different energy bands. Below we discuss each of these basic properties in turn, and we assess the health of one of the currently popular theories: Comptonization of photons from a cold disk. We find that the data pose substantial challenges for this theory, as well as all other in currently discussed models.

  20. RXTE Observation of Cygnus X-1: Spectra and Timing

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Dove, J.; Nowak, M.; Vaughan, B. A.

    1997-01-01

    We present preliminary results from the analysis of an R.XTE observation of Cyg X-1 in the hard state. We show that the observed X-ray spectrum can be explained with a model for an accretion disk corona (ADC), in which a hot sphere is situated inside of a cold accretion disk (similar to an advection dominated model). ADC Models with a slab-geometry do not successfully fit the data. In addition to the spectral results we present the observed temporal properties of Cyg X-1, i.e. the coherence-function and the time-lags, and discuss the constraints the. temporal properties imply for the accretion geometry in Cyg X-1.

  1. Cygnus X-1: Dips and Low Frequency Noise

    NASA Technical Reports Server (NTRS)

    Wilms, Joern

    2000-01-01

    The primary science result to come out of this work is the discovery that the time lags between hard and soft variability in Cyg X-1 show dramatic spikes during the transitions between hard and soft states (and possibly during "failed transitions" to the soft state), but are remarkably similar between the main soft and hard states. This work is being continued and elaborated upon with ongoing RXTE monitoring campaigns.

  2. Studying the Warm Layer and the Hardening Factor in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Yao, Yangsen; Zhang, Shuangnan; Zhang, Xiaoling; Feng, Yuxin

    2002-01-01

    As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broadband spectrum observed with BeppoSax is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power-law hard component and a broad excess feature above 10 keV (a disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently. Here we propose that the additional soft component is due to the thermal Comptonization between the soft disk photons and a warm plasma cloud just above the disk, i.e., a warm layer. We use the Monte-Carlo technique to simulate this Compton scattering process and build a table model based on our simulation results. With this table model, we study the disk structure and estimate the hardening factor to the MCD component in Cygnus X-1.

  3. SAS-3 observations of an X-ray flare from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Bradt, H.; Buff, J.; Laufer, B.

    1976-01-01

    Preliminary results are presented for the SAS-3 observation of an X-ray flare from Cygnus X-1. The 1.5 to 6 keV intensity rose by a factor of four and exhibited variability on several time scales from seconds to hours. The 6 to 15 keV intensity showed less activity. The event is similar to that observed by ANS and Ariel 5, but lasted less than two weeks.

  4. On the distance to Cygnus X-1. [extrapolation from nearby stars

    NASA Technical Reports Server (NTRS)

    Margon, B.; Bowyer, S.; Stone, R. P. S.

    1973-01-01

    Interstellar extinction of 50 stars in the immediate vicinity of Cyg X-1 is compared with color excess of HDE 226868. The fact that HDE 226868 has extinction drastically exceeding that of all stars in the field at less than 1 kpc is believed to be in conflict with the model of Trimble et al. (1973) in which the primary is a luminous undermassive star and with other similar models. Uniform extrapolation of the reddening yields a distance estimate of (2.5 plus or minus 0.4) kpc for Cygnus X-1, in agreement with the spectroscopic modulus for an O9 star.

  5. RXTE Observation of Cygnus X-1: Spectra and Timing

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Dove, J.; Nowak, M.; Vaughan, B. A.

    1997-01-01

    We present first results from the analysis of an RXTE observation of Cyg X-1 in its low state, taken about two months after the end of the high state. With Gamma approx. equal to 1.45 the spectrum is considerably harder than previous low-state measurements. The observed spectrum can be explained by a Comptonization spectrum as that emitted from a spherical corona surrounded by a cold accretion disk. The optical depth of the corona is between 2 and 2.5 and the temperature is between 60 and 80 keV. Temporal analysis shows a typical Root Mean Square (RMS) noise of approximately 25%. The Pulse Shape Discrimination (PSD) can be described as consisting of a flat component followed by an 1/f power-law, followed by an f(sup -1.6) power-law. The lag of the hard photons with respect to the soft photons is consistent with prior observations. The coherence function is remarkably close to unity from 0.01 Hz to 10 Hz.

  6. SMM/HXRBS observations of Cygnus X-1 from 1986 December to 1988 April

    NASA Astrophysics Data System (ADS)

    Schwartz, R. A.; Orwig, L. E.; Dennis, B. R.; Ling, J. C.; Wheaton, W. A.

    1991-07-01

    The Solar Maximum Mission's Hard X-ray Burst Spectrometer made 30 measurements of Cygnus X-1 from December, 1986 to April, 1988, yielding a data set of broad synoptic coverage but limited duration for each data point. The hard X-ray intensity was found to be between the gamma(2) and gamma(3) levels, with a range of fluctuations about the average intensity level. The shape of the photon spectrum was found to be closest to that reported by Ling et al. (1983, 1987) during the time of the gamma(3) level emission, although the spectral shapes reported for the gamma(2) and gamma(1) levels were not precluded.

  7. GAMMA-RAY OBSERVATIONS OF CYGNUS X-1 ABOVE 100 MeV IN THE HARD AND SOFT STATES

    SciTech Connect

    Sabatini, S.; Tavani, M.; Del Santo, M.; Campana, R.; Evangelista, Y.; Piano, G.; Del Monte, E.; Giusti, M.; Striani, E.; Pooley, G.; Chen, A.; Giuliani, A.; Colafrancesco, S.; Longo, F.; Morselli, A.; Pellizzoni, A.; Pilia, M.; and others

    2013-04-01

    We present the results of multi-year gamma-ray observations by the AGILE satellite of the black hole binary system Cygnus X-1. In a previous investigation we focused on gamma-ray observations of Cygnus X-1 in the hard state during the period mid-2007/2009. Here we present the results of the gamma-ray monitoring of Cygnus X-1 during the period 2010/mid-2012 which includes a remarkably prolonged 'soft state' phase (2010 June-2011 May). Previous 1-10 MeV observations of Cyg X-1 in this state hinted at a possible existence of a non-thermal particle component with substantial modifications of the Comptonized emission from the inner accretion disk. Our AGILE data, averaged over the mid-2010/mid-2011 soft state of Cygnus X-1, provide a significant upper limit for gamma-ray emission above 100 MeV of F{sub soft} < 20 Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1} , excluding the existence of prominent non-thermal emission above 100 MeV during the soft state of Cygnus X-1. We discuss theoretical implications of our findings in the context of high-energy emission models of black hole accretion. We also discuss possible gamma-ray flares detected by AGILE. In addition to a previously reported episode observed by AGILE in 2009 October during the hard state, we report a weak but important candidate for enhanced emission which occurred at the end of 2010 June (2010 June 30 10:00-2010 July 2 10:00 UT) exactly coinciding with a hard-to-soft state transition and before an anomalous radio flare. An appendix summarizes all previous high-energy observations and possible detections of Cygnus X-1 above 1 MeV.

  8. On the orbital and physical parameters of the HDE 226868/Cygnus X-1 binary system

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2008-06-01

    In this paper we explore the consequences of the recent determination of the mass m=(8.7±0.8) M ⊙ of Cygnus X-1, obtained from the Quasi-Periodic Oscillation (QPO)-photon index correlation scaling, on the orbital and physical properties of the binary system HDE 226868/Cygnus X-1. By using such a result and the latest spectroscopic optical data of the HDE 226868 supergiant star we get M=(24±5) M ⊙ for its mass. It turns out that deviations from the third Kepler law significant at more than 1-sigma level would occur if the inclination i of the system’s orbital plane to the plane of the sky falls outside the range ≈41 56 deg: such deviations cannot be due to the first post-Newtonian (1PN) correction to the orbital period because of its smallness; interpreted in the framework of the Newtonian theory of gravitation as due to the stellar quadrupole mass moment Q, they are unphysical because Q would take unreasonably large values. By conservatively assuming that the third Kepler law is an adequate model for the orbital period we obtain i=(48±7) deg which yields for the relative semimajor axis a=(42±9) R ⊙ (≈0.2 AU).

  9. THE EXTREME SPIN OF THE BLACK HOLE IN CYGNUS X-1

    SciTech Connect

    Gou Lijun; McClintock, Jeffrey E.; Reid, Mark J.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Orosz, Jerome A.; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.

    2011-12-01

    The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole's accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a{sub *} > 0.95 (3{sigma}). For a less probable (synchronous) dynamical model, we find a{sub *} > 0.92 (3{sigma}). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle, and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk's low luminosity.

  10. A dark jet dominates the power output of the stellar black hole Cygnus X-1.

    PubMed

    Gallo, Elena; Fender, Rob; Kaiser, Christian; Russell, David; Morganti, Raffaella; Oosterloo, Tom; Heinz, Sebastian

    2005-08-11

    Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities. Here we show that the 10-solar-mass (10M(o)) black hole in the X-ray binary Cygnus X-1 (refs 3-5) is surrounded by a large-scale (approximately 5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of 'dark', radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow. PMID:16094361

  11. The Extreme Spin of the Black Hole in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Gou, Lijun; McClintock, Jeffrey E.; Reid, Mark J.; Orosz, Jerome A.; Steiner, James F.; Narayan, Ramesh; Xiang, Jingen; Remillard, Ronald A.; Arnaud, Keith A.; Davis, Shane W.

    2011-01-01

    The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole s accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a* > 0.95 (3(sigma)). For a less probable (synchronous) dynamical model, we find a. > 0.92 (3 ). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle, and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk s low luminosity.

  12. Ultraviolet, X-ray, and infrared observations of HDE 226868 equals Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Treves, A.; Chiappetti, L.; Tanzi, E. G.; Tarenghi, M.; Gursky, H.; Dupree, A. K.; Hartmann, L. W.; Raymond, J.; Davis, R. J.; Black, J.

    1980-01-01

    During April, May, and July of 1978, HDE 226868, the optical counterpart of Cygnus X-1, was repeatedly observed in the ultraviolet with the IUE satellite. Some X-ray and infrared observations have been made during the same period. The general shape of the spectrum is that expected from a late O supergiant. Strong absorption features are apparent in the ultraviolet, some of which have been identified. The equivalent widths of the most prominent lines appear to be modulated with the orbital phase. This modulation is discussed in terms of the ionization contours calculated by Hatchett and McCray, for a binary X-ray source in the stellar wind of the companion.

  13. Using Monte-Carlo Simulations to Study the Disk Structure in Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Yao, Y.; Zhang, S. N.; Zhang, X. L.; Feng, Y. X.

    2002-01-01

    As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broad-band spectra in hard state with BeppoSAX is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power- law component and a broad excess feature above 10 keV (disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently.We propose that the additional soft component is due to the thermal Comptonization process between the s oft disk photon and the warm plasma cloud just above the disk.i.e., a warm layer. We use Monte-Carlo technique t o simulate this Compton scattering process and build several table models based on our simulation results.

  14. Polarized gamma-ray emission from the galactic black hole Cygnus X-1.

    PubMed

    Laurent, P; Rodriguez, J; Wilms, J; Cadolle Bel, M; Pottschmidt, K; Grinberg, V

    2011-04-22

    Because of their inherently high flux allowing the detection of clear signals, black hole x-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the International Gamma-Ray Astrophysics Laboratory Imager on Board the Integral Satellite (INTEGRAL/IBIS) telescope. Spectral modeling of the data reveals two emission mechanisms: The 250- to 400-keV (kilo-electron volt) data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400-keV to 2-MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band. PMID:21436402

  15. Chaos and random processes in the x ray variability of Cygnus X-1

    SciTech Connect

    Lochner, J.C.

    1989-01-01

    The temporal variability of the x ray emission of the black hole candidate Cygnus X-1 was examined in an attempt to better characterize the source of the aperiodic variability. The emission is generally believed to come from a turbulent accretion disk surrounding the black hole. Two analysis techniques were applied to low energy x ray light curves: a search for a low-dimensional chaotic attractor; and a new technique to further develop the standard shot noise model. The search for a low-dimensional attractor tests the hypothesis that deterministic chaotic dynamics underlie the accretion disk physics. Using a standard time delay embedding, the phase space trajectory was constructed from the light curve, and the correlation integral was used to determine the dimension of the resulting manifold. The difficulties encountered by this method were investigated with a finite number of data points and a noise level not usually encountered in other applications. The data were not found to indicate that a low-dimensional attractor underlies the variability. This implies that the turbulence in the disk is well developed, and that simple models cannot reliably reconstruct the temporal variability. Shot noise models have long been used as phenomenological, stochastic models for the variability of Cygnus X-1, relying on random pulses of emission, each having a fixed shape and duration. A distribution of shot lengths from 0.01 s to 6.0 s was introduced to reproduce the power density spectrum of the data. The shot profile and the fraction of the emission are found by fitting the phase portrait of the data with trial shot models. Both sets of data are found to be consistent with shots having a symmetric exponential rise and decay, and with the shot amplitude as a power law function of the shot length. These results are interpreted in terms of a distribution of magnetic flares in the disk.

  16. UNDERSTANDING COMPACT OBJECT FORMATION AND NATAL KICKS. III. THE CASE OF CYGNUS X-1

    SciTech Connect

    Wong, Tsing-Wai; Valsecchi, Francesca; Kalogera, Vassiliki; Fragos, Tassos E-mail: francesca@u.northwestern.edu E-mail: tfragos@cfa.harvard.edu

    2012-03-10

    In recent years, accurate observational constraints have become available for an increasing number of Galactic X-ray binaries (XRBs). Together with proper-motion measurements, we could reconstruct the full evolutionary history of XRBs back to the time of compact object formation. In this paper, we present the first study of the persistent X-ray source Cygnus X-1 that takes into account all available observational constraints. Our analysis accounts for three evolutionary phases: orbital evolution and motion through the Galactic potential after the formation of a black hole (BH), and binary orbital dynamics at the time of core collapse. We find that the mass of the BH immediate progenitor is 15.0-20.0 M{sub Sun }, and at the time of core collapse, the BH has potentially received a small kick velocity of {<=}77 km s{sup -1} at 95% confidence. If the BH progenitor mass is less than {approx}17 M{sub Sun }, a non-zero natal kick velocity is required to explain the currently observed properties of Cygnus X-1. Since the BH has only accreted mass from its companion's stellar wind, the negligible amount of accreted mass does not explain the observationally inferred BH spin of a{sub *} > 0.95, and the origin of this extreme BH spin must be connected to the BH formation itself. Right after the BH formation, we find that the BH companion is a 19.8-22.6 M{sub Sun} main-sequence star, orbiting the BH at a period of 4.7-5.2 days. Furthermore, recent observations show that the BH companion is currently super-synchronized. This super-synchronism indicates that the strength of tides exerted on the BH companion should be weaker by a factor of at least two compared to the usually adopted strength.

  17. Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the

  18. Multi-Satellite Observations of Cygnus X-1 to Study the Focused Wind and Absorption Dips

    NASA Technical Reports Server (NTRS)

    Hanke, Manfred; Wilms, Joern; Boeck, Moritz; Nowak, Michael A.; Schultz, Norbert S.; Pottschmidt, Katja; Lee, Julia C.

    2008-01-01

    High-mass X-ray binary systems are powered by the stellar wind of their donor stars. The X-ray state of Cygnus X-1 is correlated with the properties of the wind which defines the environment of mass accretion. Chandra-HETGS observations close to orbital phase 0 allow for an analysis of the photoionzed stellar wind at high resolution, but because of the strong variability due to soft X-ray absorption dips, simultaneous multi-satellite observations are required to track and understand the continuum, too. Besides an earlier joint Chandra and RXTE observation, we present first results from a recent campaign which represents the best broad-band spectrum of Cyg X-1 ever achieved: On 2008 April 18/19 we observed this source with XMM-Newton, Chandra, Suzaku, RXTE, INTEGRAL, Swift, and AGILE in X- and gamma-rays, as well as with VLA in the radio. After superior conjunction of the black hole, we detect soft X-ray absorption dips likely due to clumps in the focused wind covering greater than or equal to 95% of the X-ray source, with column densities likely to be of several 10(exp 23) cm(exp -2), which also affect photon energies above 20 keV via Compton scattering.

  19. What is special about Cygnus X-1 - Black holes in theory and observation: X-ray observations

    NASA Technical Reports Server (NTRS)

    Boldt, E.; Holt, S.; Rothschild, R.; Serlemitsos, P.

    1975-01-01

    Of the eight X-ray sources now known which may be associated with binary stellar systems, Cygnus X-1 is the most likely candidate for being a black hole. The X-ray evidence from several experiments is reviewed, with special emphasis on those characteristics which appear to distinguish Cygnus X-1 from other compact X-ray emitting objects. Data are examined within the context of a model in which millisecond bursts (Rothschild et al., 1974) are superposed on shot-noise fluctuations (Terrell, 1972) arising from 'events' of durations on the order of a second. Possible spectral-temporal correlations are investigated which indicate new measurements that need to be made in future experiments.

  20. Shot model parameters for Cygnus X-1 through phase portrait fitting

    SciTech Connect

    Lochner, J.C.; Swank, J.H.; Szymkowiak, A.E. )

    1991-07-01

    Shot models for systems having about 1/f power density spectrum are developed by utilizing a distribution of shot durations. Parameters of the distribution are determined by fitting the power spectrum either with analytic forms for the spectrum of a shot model with a given shot profile, or with the spectrum derived from numerical realizations of trial shot models. The shot fraction is specified by fitting the phase portrait, which is a plot of intensity at a given time versus intensity at a delayed time and in principle is sensitive to different shot profiles. These techniques have been extensively applied to the X-ray variability of Cygnus X-1, using HEAO 1 A-2 and an Exosat ME observation. The power spectra suggest models having characteristic shot durations lasting from milliseconds to a few seconds, while the phase portrait fits give shot fractions of about 50 percent. Best fits to the portraits are obtained if the amplitude of the shot is a power-law function of the duration of the shot. These fits prefer shots having a symmetric exponential rise and decay. Results are interpreted in terms of a distribution of magnetic flares in the accretion disk. 30 refs.

  1. Rapid variability of 10-140 keV X-rays from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Matteson, J. L.; Peterson, L. E.; Rothschild, R. E.; Doty, J. P.; Levine, A. M.; Lewin, W. H. G.; Primini, F. A.

    1981-01-01

    On five occasions in 1977 and 1978, Cygnus X-1 was observed using the low-energy detectors of the UCSD/MIT Hard X-ray and Low-Energy Gamma Ray experiment on the HEAO 1 satellite. Rapid (times between 0.08 and 1000 sec) variability was found in the 10-140 keV band. The power spectrum was white for frequencies between 0.001 and 0.05 Hz and was proportional to the inverse of the frequency for frequencies between 0.05 and 3 Hz, indicating correlations on all time scales less than approximately 20 s. The shape of the energy spectrum was correlated with intensity; it was harder at higher intensity. If the emission is produced by Comptonization of a soft photon flux in a hot cloud, the heating of the cloud cannot be constant; it must vary on time scales up to approximately 20 s. A variable accretion rate could cause the observed effects.

  2. Leveraging High Resolution Spectra to Understand the Disk and Relativistic Iron Line of Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Nowak, M.; Wilms, J.; Pottschmidt, K.; Grinberg, V.; Schulz, N.; Corrales, L.

    2016-06-01

    In April 2008 we conducted an observation of the black hole candidate Cygnus X-1 that was performed simultaneously with every X-ray and gamma-ray satellite flying at that time, including Chandra-HETG. The HETG spectra are crucial for modeling the ionized absorbtion from the "focused-wind" of the secondary, which is present and must be accounted for in all of our spectra. These features, however, are unresolved in the non-gratings instruments (e.g., RXTE, Suzaku, Swift, XMM-EPIC, INTEGRAL). Similarly, we must account for differences in spatial resolution. The X-ray scattering dust halo, which is usually ignored in most analyses, is spatially resolved in the Chandra and XMM-Newton spectra, but is unresolved in the other instruments. Thus one must account for dust scattering loss in the high spatial resolution spectra, and the scattering back into our line of site for the low resolution spectra. In this work, we attempt to arrive at a joint model for these spectra, and further comment on the cross calibration of each of the X-ray instruments participating in this campaign.

  3. Spectroscopy of the Stellar Wind in the Cygnus X-1 System

    NASA Technical Reports Server (NTRS)

    Miskovicova, Ivica; Hanke, Manfred; Wilms, Joern; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert

    2010-01-01

    The X-ray luminosity of black holes is produced through the accretion of material from their companion stars. Depending on the mass of the donor star, accretion of the material falling onto the black hole through the inner Lagrange point of the system or accretion by the strong stellar wind can occur. Cygnus X-1 is a high mass X-ray binary system, where the black hole is powered by accretion of the stellar wind of its supergiant companion star HDE226868. As the companion is close to filling its Roche lobe, the wind is not symmetric, but strongly focused towards the black hole. Chandra-HETGS observations allow for an investigation of this focused stellar wind, which is essential to understand the physics of the accretion flow. We compare observations at the distinct orbital phases of 0.0, 0.2, 0.5 and 0.75. These correspond to different lines of sights towards the source, allowing us to probe the structure and the dynamics of the wind.

  4. A Multiwavelength Study of Cygnus X-1: The First Mid-Infrared Spectroscopic Detection of Compact Jets

    NASA Technical Reports Server (NTRS)

    Rahoui, Farid; Lee, Julia C.; Heinz, Sebastian; Hines, Dean C.; Pottschmidt, Katja; Wilms, Joern

    2011-01-01

    We report on a Spitzer/IRS (mid-infrared), RXTE /PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multi-wavelength study of the micro quasar Cygnus X-I, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break - where the transition from the optically thick to the optically thin regime takes place - at about 2.9 x 10(exp 13) Hz. We then show that the jet's optically thin synchrotron emission accounts for the Cygnus X-1's emission beyond 400 keY, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 micron mid-infrared continuum of Cygnus X-I stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Raleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f(sub infinity) approx.= 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anticorrelation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and the Cygnus X-1's environment and/or companion star's stellar wind.

  5. Common Gamma-Ray Spectral Properties of GROJ0422+32 and CYGNUS X-1

    NASA Astrophysics Data System (ADS)

    Ling, J. C.; Wheaton, Wm. A.

    2003-03-01

    We report soft gamma-ray (30 keV to 1.7 MeV) spectral properties in the black hole GROJ0422+32, observed during its first known outburst in 1992, and similar to properties of Cygnus X-1 during its low-to-high state transitions in 1994 and 1996 (see Ling & Wheaton, 2003). In both cases, the high-intensity (``gamma2'') spectrum consists of two components: a Comptonized shape below 300 keV, plus a steep power-law tail above 300 keV. By contrast, the low-intensity spectrum (``gamma0'') has a power-law shape with an index of ˜2. The two spectra cross at ˜600 keV for GROJ0422+32, or about 1 MeV for Cyg X-1. We suggest a scenario for interpreting these common spectral features by including a separate non-thermal source region, possibly a jet, in the ADAF model of Esin et al (1998). During the high-intensity gamma2 state, the system consists of a hot inner corona, a cooler outer thin disk, and a region that produced the variable power-law gamma-ray emission. In this condition, the transition radius of the disk is ˜100 Schwarzschild radii. Electrons in the hot corona up-scatter the low-energy photons, produced both within the corona as well as from the outer disk, to form the Comptonized component that dominates the spectrum in the 35-300 keV range. The same electrons also down-scatter high energy (>10 MeV) photons produced nonthermally in the ``jet'' region, forming the softer power-law component observed in the 0.3-1 MeV range. During the low-intensity gamma0 state, a large soft flux cools the inner corona, and moves the transition radius inward, close to the event horizon. Under this condition, the Comptonized component in the 35-300 keV range is suppressed, and the source spectrum is dominated by the unperturbed power-law emission produced in the non-thermal source region, with a characteristic index of ˜2. The work described in this paper was carried out by the Jet Propulsion Laboratory, under the contract with the National Aeronautics and Space Administration

  6. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Miller, J. M.; Parker, M. L.; Rahoui, F.; Stern, D.; Tao, L.; Wilms, J.; Zhang, W.

    2016-07-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93≲ {a}* ≲ 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ˜10°–15°. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ˜6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.

  7. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Miller, J. M.; Parker, M. L.; Rahoui, F.; Stern, D.; Tao, L.; Wilms, J.; Zhang, W.

    2016-07-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93≲ {a}* ≲ 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ∼10°–15°. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ∼6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.

  8. Understanding the Long-Term Spectral Variability of Cygnus X-1 from BATSE and ASM Observations

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Linqing; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present a spectral analysis of observations of Cygnus X-1 by the RXTE/ASM (1.5-12 keV) and CGRO/BATSE (20-300 keV), including about 1200 days of simultaneous data. We find a number of correlations between intensities and hardnesses in different energy bands from 1.5 keV to 300 keV. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness (as previously reported) but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the flux in the 20-100 keV range. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. The observations show that there has to be another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superimposed on a constant soft blackbody component. These variability patterns are in agreement with the dependence of the rms variability on the photon energy in the two states. We interpret the observed correlations in terms of theoretical Comptonization models. In the hard state, the variability appears to be driven mostly by changing flux in seed photons Comptonized in a hot thermal plasma cloud with an approximately constant power supply. In the soft state, the variability is consistent with flares of hybrid, thermal/nonthermal, plasma with variable power above a stable cold disk. Also, based on broadband pointed observations simultaneous with those of the ASM and BATSE, we find the intrinsic bolometric luminosity increases by a

  9. Constraints on the inclination and masses of the HDE 226868/Cygnus X-1 system from the observations

    NASA Technical Reports Server (NTRS)

    Davis, R.; Hartmann, L.

    1983-01-01

    Analyses of two high-dispersions IUE spectra of HDE 226868 (the optical counterpart of Cygnus X-1) are combined with studies of low-dispersion IUE spectra to provide a more accurate determination of the variation of C IV stellar wind absorption as a function of orbital phase. By incorporating these observational results into an analysis of the structure of the X-ray ionization cavity in the stellar wind, it is found that the orbital inclination must lie between 36 and 67 deg, leading to a mass for the compact object between 5.7 and 11.2 solar masses.

  10. Hard X-ray Observation of Cygnus X-1 By the Marshall Imaging X-ray Experiment (MIXE2)

    NASA Technical Reports Server (NTRS)

    Minamitani, Takahisa; Apple, J. A.; Austin, R. A.; Dietz, K. L.; Koloziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.

    1998-01-01

    The second generation of the Marshall Imaging X-ray Experiment (MIXE2) was flown from Fort Sumner, New Mexico on May 7-8, 1997. The experiment consists of coded-aperture telescope with a field of view of 1.8 degrees (FWHM) and an angular resolution of 6.9 arcminutes. The detector is a large (7.84x10(exp 4) sq cm) effective area microstrip proportional counter filled with 2.0x10(exp5) Pascals of xenon with 2% isobutylene. We present MIXE2 observation of the 20-80keV spectrum and timing variability of Cygnus X-1 made during balloon flight.

  11. Confirmation via the continuum-fitting method that the spin of the black hole in Cygnus X-1 is extreme

    SciTech Connect

    Gou, Lijun; McClintock, Jeffrey E.; Steiner, James F.; Reid, Mark J.; Narayan, Ramesh; García, Javier; Remillard, Ronald A.; Orosz, Jerome A.; Hanke, Manfred

    2014-07-20

    In Gou et al., we reported that the black hole primary in the X-ray binary Cygnus X-1 is a near-extreme Kerr black hole with a spin parameter a{sub *} > 0.95 (3σ). We confirm this result while setting a new and more stringent limit: a{sub *} > 0.983 at the 3σ (99.7%) confidence level. The earlier work, which was based on an analysis of all three useful spectra that were then available, was possibly biased by the presence in these spectra of a relatively strong Compton power-law component: the fraction of the thermal seed photons scattered into the power law was f{sub s} = 23%-31%, while the upper limit for reliable application of the continuum-fitting method is f{sub s} ≲ 25%. We have subsequently obtained six additional spectra of Cygnus X-1 suitable for the measurement of spin. Five of these spectra are of high quality with f{sub s} in the range 10%-19%, a regime where the continuum-fitting method has been shown to deliver reliable results. Individually, the six spectra give lower limits on the spin parameter that range from a{sub *} > 0.95 to a{sub *} > 0.98, allowing us to conservatively conclude that the spin of the black hole is a{sub *} > 0.983 (3σ).

  12. A self-consistent model for the long-term gamma-ray spectral variability of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Misra, Ranjeev

    1993-01-01

    The long-term transitions of the black hole candidate Cygnus X-1 (between the states gamma-1, gamma-2, and gamma-3) include the occasional appearance of a strong nearly-MeV bump (gamma-1), whose strength appears to be anticorrelated with the continuum flux (below 400 keV) due to the Compton upscattering of cold disk photons by the inner, hot corona. We develop a self-consistent disk picture in which the bump is seen as due to the self-Comptonization of bremsstrahlung photons emitted predominantly near the plane of the corona itself. A decrease by a factor of about two in the viscosity parameter alpha is responsible for quenching this bump and driving the system to the gamma-2 state, whereas a transition from gamma-2 to gamma-3 appears to be induced by an increase of about 25 percent in the accretion rate M. In view of the fact that most of the transitions observed in this source seem to be of the gamma-2-gamma-3 variety, we conclude that much of the long-term gamma-ray spectral variability in Cygnus X-1 is due to these small fluctuations in M. The unusual appearance of the gamma-1 state apparently reflects a change in the dissipative processes within the disk.

  13. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  14. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. II; Application to Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Joern; Maisack, Michael; Begelman, Mitchell C.

    1997-01-01

    We apply our self-consistent accretion disk corona (ADC) model, with two different geometries, to the broadband X-ray spectrum of the black hole candidate Cygnus X-1. As shown in a companion paper, models in which the Comptonizing medium is a slab surrounding the cold accretion disk cannot have a temperature higher than about 140 keV for optical depths greater than 0.2, resulting in spectra that are much softer than the observed 10-30 keV spectrum of Cyg X-1. In addition, the slab-geometry models predict a substantial "soft excess" at low energies, a feature not observed for Cyg X-1, and Fe K-alpha fluorescence lines that are stronger than observed. Previous Comptonization models in the literature have invoked a slab geometry with optical depth tau(sub T) approx. greater than 0.3 and coronal temperature T(sub c) approx. 150 keV, but they are not self-consistent. Therefore, ADC models with a slab geometry are not appropriate for explaining the X-ray spectrum of Cyg X-1. Models with a spherical corona and an exterior disk, however, predict much higher self-consistent coronal temperatures than the slab-geometry models. The higher coronal temperatures are due to the lower amount of reprocessing of coronal radiation in the accretion disk, giving rise to a lower Compton cooling rate. Therefore, for the sphere-plus-disk geometry, the predicted spectrum can be hard enough to describe the observed X-ray continuum of Cyg X-1 while predicting Fe fluorescence lines having an equivalent width of approx. 40 eV. Our best-fit parameter values for the sphere-plus-disk geometry are tau(sub T) approx. equal to 1.5 and T(sub c) approx. equal to 90 keV.

  15. Evidence for an approx. 300 day period in Cygnus X-1

    SciTech Connect

    Priedhorsky, W.C.; Terrell, J.; Holt, S.S.

    1983-07-01

    We present the time history of X-ray emission from Cyg X-1 over an 11 year period, with 10 day resolution. The data were obtained by experiments on the Vela 5B (1969--1979) and Ariel 5 (1974--1980) satellites. Cyg X-1 varies by approx.25% with a 294 +- 4 day period. This modulation is apparently unrelated to the known transitions between the source high and low states. Flux minima occur at 1974.05+nP. The observed period is within the possible range for the precession period of an accretion disk, or of the companion star HDE 226868, in the Cyg X-1 system.

  16. The reflection component from Cygnus X-1 in the soft state measured by NuSTAR and Suzaku

    SciTech Connect

    Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Nowak, Michael A.; Parker, Michael; Fabian, Andy C.; Miller, Jon M.; King, Ashley L.; Harrison, Fiona A.; Forster, Karl; Fürst, Felix; Grefenstette, Brian W.; Madsen, Kristin K.; Bachetti, Matteo; Barret, Didier; Christensen, Finn E.; Hailey, Charles J.; Natalucci, Lorenzo; Pottschmidt, Katja; Ross, Randy R.; and others

    2014-01-01

    The black hole binary Cygnus X-1 was observed in late 2012 with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku, providing spectral coverage over the ∼1-300 keV range. The source was in the soft state with a multi-temperature blackbody, power law, and reflection components along with absorption from highly ionized material in the system. The high throughput of NuSTAR allows for a very high quality measurement of the complex iron line region as well as the rest of the reflection component. The iron line is clearly broadened and is well described by a relativistic blurring model, providing an opportunity to constrain the black hole spin. Although the spin constraint depends somewhat on which continuum model is used, we obtain a {sub *} > 0.83 for all models that provide a good description of the spectrum. However, none of our spectral fits give a disk inclination that is consistent with the most recently reported binary values for Cyg X-1. This may indicate that there is a >13° misalignment between the orbital plane and the inner accretion disk (i.e., a warped accretion disk) or that there is missing physics in the spectral models.

  17. Spectral State Dependence of the 0.4-2 MeV Polarized Emission in Cygnus X-1 Seen with INTEGRAL/IBIS, and Links with the AMI Radio Data

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jérôme; Grinberg, Victoria; Laurent, Philippe; Cadolle Bel, Marion; Pottschmidt, Katja; Pooley, Guy; Bodaghee, Arash; Wilms, Jörn; Gouiffès, Christian

    2015-07-01

    Polarization of the ≳ 400 keV hard tail of the microquasar Cygnus X-1 has been independently reported by INTEGRAL/Imager on Board the INTEGRAL Satellite (IBIS), and INTEGRAL/SPectrometer on INTEGRAL and interpreted as emission from a compact jet. These conclusions were, however, based on the accumulation of all INTEGRAL data regardless of the spectral state. We utilize additional INTEGRAL exposure accumulated until 2012 December, and include the AMI/Ryle (15 GHz) radio data in our study. We separate the observations into hard, soft, and intermediate/transitional states and detect radio emission from a compact jet in hard and intermediate states (IS), but not in the soft. The 10-400 keV INTEGRAL (JEM-X and IBIS) state resolved spectra are well modeled with thermal Comptonization and reflection components. We detect a hard tail in the 0.4-2 MeV range for the hard state only. We extract the state dependent polarigrams of Cyg X-1, which are all compatible with no or an undetectable level of polarization except in the 400-2000 keV range in the hard state where the polarization fraction is 75% ± 32% and the polarization angle 40.°0 ± 14.°3. An upper limit on the 0.4-2 MeV soft state polarization fraction is 70%. Due to the short exposure, we obtain no meaningful constraint for the IS. The likely detection of a \\gt 400 keV polarized tail in the hard state, together with the simultaneous presence of a radio jet, reinforce the notion of a compact jet origin of the \\gt 400 keV emission.

  18. New results from long-term observations of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Kaluzienski, L. J.

    1976-01-01

    Observations of Cyg X-1 between October 1974 and July 1975 reveal a persistent 5.6-day modulation of the 3-6 keV X-ray intensity, having a minimum in phase with superior conjunction of the HDE 226868 binary system. The modulation is found to be most pronounced just prior to the April-May 1975 increase of Cyg X-1, after which both the modulation and intensity are at their lowest values for the entire duration of the observations. These data imply that the X-ray emission from Cyg X-1 arises from the compact member of HDE 226868, and that the increase of April-May 1975 may have represented the depletion of accreting material which had not yet been mixed into a cylindrically symmetric accretion disk about the compact member.

  19. Observations of rapid X-ray flaring from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.; Oda, M.

    1977-01-01

    SAS-3 observations of Cyg X-1 in October 1976 show the source to be in a highly active state exhibiting rapid continual flaring on time scales of 1 to 10 s. The flares exhibit temporal structure and variable spectra, but their mean spectrum is similar to that of the source as a whole. The characteristic time scales of the source are 2 to 4 times longer than those previously observed. It is suggested that this active phase of Cyg X-1 signals a modified accretion-disk structure. The flares may result from correlated bunches of the same 'shots ' which are thought to explain the rest of the short-time-scale variability of the source. While the flares superficially resemble X-ray bursts, they are distinct in several respects.

  20. Image of the Black Hole, Cygnus X-1, Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This image of the suspected Black Hole, Cygnus X-1, was the first object seen by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. According to the theories to date, one concept of a black hole is a star, perhaps 10 times more massive than the Sun, that has entered the last stages of stelar evolution. There is an explosion triggered by nuclear reactions after which the star's outer shell of lighter elements and gases is blown away into space and the heavier elements in the stellar core begin to collapse upon themselves. Once this collapse begins, the inexorable force of gravity continues to compact the material until it becomes so dense it is squeezed into a mere point and nothing can escape from its extreme gravitational field, not even light. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy.

  1. IBIS preliminary results on Cygnus X-1 spectral and temporal characteristics

    NASA Astrophysics Data System (ADS)

    Bazzano, A.; Bird, A. J.; Capitanio, F.; Del Santo, M.; Ubertini, P.; Zdziarski, A. A.; Di Cocco, G.; Falanga, M.; Goldoni, P.; Goldwurm, A.; Laurent, P.; Lebrun, F.; Malaguti, G.; Segreto, A.

    2003-11-01

    We report preliminary results of a broadband spectral and temporal study of the black-hole binary Cyg X-1 performed with the IBIS telescope. Cyg X-1 was the first pointed celestial target of IBIS during the INTEGRAL Performance and Verification Phase, 2002 Nov.-Dec., for a total observing time of ~ 2 Ms in both staring and dithering mode. Here, we report on only the staring, on-axis, observation performed in a stable instrument configuration. During the observing period the source was in its characteristic low/hard state, in which a few flares and dips have been detected. The IBIS/ISGRI results demonstrate that the INTEGRAL observatory offers a unique capability for studying correlations between hardness and/or flux in different bands over a wide photon energy range. One of our new results is finding that the hardness-flux correlation changes the sign twice over the 20-220 keV; first from positive to negative at ~ 50 keV, and then back to positive at ~ 120 keV. The former change appears to be due to the spectral curvature introduced by variable Compton reflection. The latter may be due spectral pivoting. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA.

  2. Optical spectrum of HDE 226868 = Cygnus X-1. II. Spectrophotometry and mass estimates

    SciTech Connect

    Gies, D.R.; Bolton, C.T.

    1986-05-01

    In part I of this series, Gies and Bolton (1982) have presented the results of radial velocity measures of 78 high-dispersion spectrograms of HDE 226868 = Cyg X-1. For the present study, 55 of the best plates considered by Gies and Bolton were selected to form 10 average spectra. An overall mean spectrum with S/N ratio = 300 was formed by coadding the 10 averaged spectra. There is no evidence for statistically significant variations of the spectral type about the mean value of 09.7 Iab, and all the absorption line strengths are normal for the spectral type. Evidence is presented that the He II lambda 4846 emission line is formed in the stellar wind above the substellar point on the visible star. Probable values regarding the mass for the visible star and its companion are 33 and 16 solar masses, respectively. Theoretical He II lambda 4686 emission line profiles are computed for the focused stellar wind model for the Cyg X-1 system considered by Friend and Castor (1982). 105 references.

  3. Linear polarization from tidal distortions of the Cygnus X-1 primary component

    SciTech Connect

    Bochkarev, N.G.; Karitskaia, E.A.; Loskutov, V.M.; Sokolov, V.V.

    1986-02-01

    The variability that would be introduced into the optical linear polarization of the Cyg X-1 (V1357 Cyg) binary system due to tidal deformation or shallow partial eclipses of the primary component is calculated, allowing for the optical-depth variation of the source function and single-scattering albedo in a model stellar atmosphere with Teff = 32,900 K and log g = 3.1. Angular distributions of the intensity and polarization per unit area of the stellar surface are derived for selected wavelengths, and the wavelength dependence of the corresponding polarization variability amplitude Ap is predicted. In the optical range Ap should be less than about 0.025 percent, but in principle might be detectable at short wavelengths. The observed V-band variations in p are, however an order of magnitude stronger and cannot result from tidal distortions or partial eclipses. 24 references.

  4. X-ray Studies of the Black Hole Binary Cygnus X-1 with Suzaku

    NASA Astrophysics Data System (ADS)

    Yamada, Shin'ya

    2011-03-01

    In order to study X-ray properties of black hole binaries in so-called Low/Hard state, we analyzed 0.5--300 keV data of Cyg X-1, taken with the X-ray Imaging Spectrometer and the Hard X-ray Detector onboard the X-ray satellite Suzaku. The data were acquired on 25 occasions from 2005 to 2009, with a total exposure of ~450 ks. The source was in the Low/Hard state throughout, and the 0.5-300 keV luminosity changed by a factor of 4, corresponding to 2-10% of the Eddington limit for a 10 Mo black hole. Among the 25 data sets, the first one was already analyzed by Makishima et al. (2008), who successfully reproduced the wide-band spectrum by a linear combination of an emission from a standard accretion disk, soft and hard Comptonization continua, and reprocessed features. Given this, we analyzed the 25 data sets for intensity-related spectral changes, on three different time scales using different analysis methods. One is the source behavior on time scales of days to months, studied via direct comparison among the 25 spectra which are averaged over individual observations. Another is spectral changes on time scales of 1-2 seconds, revealed through ``intensity-sorted spectroscopy''. The other is spectral changes on time scales down to ~0.1 seconds, conducted using ``shot analysis" technique which was originally developed by Negoro et al. (1997) with Ginga. These studies partially incorporated spectral fitting in terms of a thermal Comptonization model. We payed great attention to instrumental problems caused by the source brightness, and occasional ``dipping" episodes which affects the Cyg X-1 spectrum at low energies. The shot analysis incorporated a small fraction of XIS data that were taken in the P-sum mode with a time resolution of 7.8 msec. Through these consistent analyses of all the 25 data sets, we found that a significant soft X-ray excess develops as the source gets brighter. Comparing results from the different time scales, the soft excess was further

  5. Similar Gamma-Ray Spectral Characteristics of Thermal and Non-Thermal Emission Observed in Cygnus X-1, GROJ0422+32 and GROJ1719-24

    NASA Astrophysics Data System (ADS)

    Ling, J. C.; Wheaton, Wm. A.

    2004-08-01

    BATSE-EBOP (Enhanced BATSE Occultation Package; Ling et al. 2000) gamma-ray (30 keV - 1 MeV) observations of Cygnus X-1, GROJ0422+32 and GROJ1719-24 showed that these sources displayed similar spectral characteristics when undergoing transitions between the high and low gamma-ray intensity states. The high gamma-ray state spectra (gamma-2 , for Cygnus X-1) featured two components: a Comptonized shape below 200-300 keV with a soft power-law tail (photon index > 3) that extended to ˜1 MeV or beyond. For the low gamma-ray state (gamma-0, for Cygnus X-1) spectra, however, the Comptonized spectral shape below 300 keV vanished and the entire spectrum from 30 keV to ˜1 MeV can be characterized by a single power law with a relatively harder photon index ˜2-2.7. The high and low-intensity gamma-ray spectra therefore intersect at ˜400 KeV-1 MeV range, in contrast to the spectral pivoting seen previously at lower ( ˜10 keV) energies. The presence of the power-law component in both the high- and low-intensity gamma-ray spectra strongly suggests that the non-thermal process is likely to be at work in both the high and the low-intensity situations. We have suggested a possible scenario (Ling & Wheaton, 2003,), combining the ADAF model of Esin et al. (1998) with a separate jet region that produces the non-thermal gamma-ray emission, and which explains the state transitions. Such a scenario will be discussed in the context of the observational evidence, summarized above. This work was carried out by the Jet Propulsion Laboratory, under the contract to the National Aeronautics and Space Administration. References: Esin et al., 1998, ApJ, 505, 854. Ling et al.,2000, ApJS , 127, 70. Ling & Wheaton. 2003, ApJ, 584, 399.

  6. The Physical Interpretation of X-Ray Phase Lags and Coherence: RXTE Observations of Cygnus X-1 as a Case Study

    NASA Technical Reports Server (NTRS)

    Nowak, M. A.; Dove, J. B.; Vaughan, B. A.; Wilms, J.; Begelman, M. C.

    1998-01-01

    There have been a number of recent spectral models that have been successful in reproducing the observed X-ray spectra of galactic black hole candidates (GBHC). However, there still exists controversy over such issues as: what are the sources of hard radiation, what is the system's geometry, is the accretion efficient or inefficient, etc. A potentially powerful tool for distinguishing among these possibilities, made possible by the Rossi X-ray Timing Explorer (RXTE), is the variability data, especially the observed phase lags and variability coherence. These data, in conjunction with spectral modeling, have the potential of determining physical sizes of the system, as well as placing strong constraints on both Compton corona and advection models. As an example, we present RXTE variability data of Cygnus X-1.

  7. Probing the Inflow/Outflow and Accretion Disk of Cygnus X-1 in the High State with the Chandra High Energy Transmission Grating

    NASA Technical Reports Server (NTRS)

    Feng, Y. X.; Tennant, A. F.; Zhang, S. N.

    2003-01-01

    Cygnus X-1 was observed in the high state at the conjunction orbital phase (0) with Chandra High Energy Transmission Grating (HETG). Strong and asymmetric absorption lines of highly ionized species were detected, such as Fe xxv, Fe xxiv, Fe xxiii, Si xiv, S xvi, Ne x, etc. In the high state the profile of the absorption lines is composed of an extended red wing and a less extended blue wing. The red wings of higher ionized species are more extended than those of lower ionized species. The detection of these lines provides a way to probe the properties of the flow around the companion and the black hole in Cyg X-1 during the high state. A broad emission feature around 6.5 keV was significantly detected from the spectra of both the Chandra/HETG and the RXTE/Proportional Counter Array. This feature appears to be symmetric and can be fitted with a Gaussian function rather than the Laor disk line model of the fluorescent Fe K(alpha) line from an accretion disk. The implications of these results on the structure of the accretion flow of Cyg X-1 in the high state are discussed.

  8. Chandra X-ray Spectroscopy of the Focused Wind In the Cygnus X-1 System I. The Non-Dip Spectrum in the Low/Hard State

    NASA Technical Reports Server (NTRS)

    Hanke, Manfred; Wilms, Jorn; Nowak, Michael A.; Pottschmidt, Katja; Schultz, Norbert S.; Lee, Julia C.

    2008-01-01

    We present analyses of a 50 ks observation of the supergiant X-ray binary system CygnusX-1/HDE226868 taken with the Chandra High Energy Transmission Grating Spectrometer (HETGS). CygX-1 was in its spectrally hard state and the observation was performed during superior conjunction of the black hole, allowing for the spectroscopic analysis of the accreted stellar wind along the line of sight. A significant part of the observation covers X-ray dips as commonly observed for CygX-1 at this orbital phase, however, here we only analyze the high count rate non-dip spectrum. The full 0.5-10 keV continuum can be described by a single model consisting of a disk, a narrow and a relativistically broadened Fe K line, and a power law component, which is consistent with simultaneous RXTE broad band data. We detect absorption edges from overabundant neutral O, Ne and Fe, and absorption line series from highly ionized ions and infer column densities and Doppler shifts. With emission lines of He-like Mg XI, we detect two plasma components with velocities and densities consistent with the base of the spherical wind and a focused wind. A simple simulation of the photoionization zone suggests that large parts of the spherical wind outside of the focused stream are completely ionized, which is consistent with the low velocities (<200 km/s) observed in the absorption lines, as the position of absorbers in a spherical wind at low projected velocity is well constrained. Our observations provide input for models that couple the wind activity of HDE 226868 to the properties of the accretion flow onto the black hole.

  9. Detection of a bright radio flare of Cygnus X-1 at 7.2 GHz with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Egron, E.; Pellizzoni, A.; Bachetti, M.; Navarrini, A.; Trois, A.; Pilia, M.; Iacolina, M. N.; Melis, A.; Concu, R.; Loru, S.; Sessini, A.; Grinberg, V.; Nowak, M.; Markoff, S.; Pottschmidt, K.; Rodriguez, J.; Wilms, J.; Ballhausen, R.; Corbel, S.; Eikmann, W.; Fuerst, F.; Kreykenbohm, I.; Marongiu, M.; Possenti, A.

    2016-05-01

    In the framework of radio monitoring of NS/BH Galactic Binaries with Sardinia Radio Telescope (www.srt.inaf.it) during SRT Early Science Program S0013 (PI Egron), we detected Cyg X-1 in C-band through on-the-fly mapping centered on the source position (see also Atels #8921, #8849, #8821).

  10. RXTE Observation of Cygnus X-1: III. Implications for Compton Corona and ADAF Models. Report 3; Implications for Compton Corona and ADAF Models

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wilms, Joern; Vaughan, Brian A.; Dove, James B.; Begelman, Mitchell C.

    1999-01-01

    We have recently shown that a 'sphere + disk' geometry Compton corona model provides a good description of Rossi X-ray Timing Explorer (RXTE) observations of the hard/low state of Cygnus X-1. Separately, we have analyzed the temporal data provided by RXTE. In this paper we consider the implications of this timing analysis for our best-fit 'sphere + disk' Comptonization models. We focus our attention on the observed Fourier frequency-dependent time delays between hard and soft photons. We consider whether the observed time delays are: created in the disk but are merely reprocessed by the corona; created by differences between the hard and soft photon diffusion times in coronae with extremely large radii; or are due to 'propagation' of disturbances through the corona. We find that the time delays are most likely created directly within the corona; however, it is currently uncertain which specific model is the most likely explanation. Models that posit a large coronal radius [or equivalently, a large Advection Dominated Accretion Flow (ADAF) region] do not fully address all the details of the observed spectrum. The Compton corona models that do address the full spectrum do not contain dynamical information. We show, however, that simple phenomenological propagation models for the observed time delays for these latter models imply extremely slow characteristic propagation speeds within the coronal region.

  11. Discovery of a low-frequency broad quasi-periodic oscillation peak in the power density spectrum of Cygnus X-1 with Granat/SIGMA

    NASA Astrophysics Data System (ADS)

    Vikhlinin, A.; Churazov, E.; Gilfanov, M.; Sunyaev, R.; Dyachkov, A.; Khavenson, N.; Kremnev, R.; Sukhanov, K.; Ballet, J.; Laurent, P.; Salotti, L.; Claret, A.; Olive, J. F.; Denis, M.; Mandrou, P.; Roques, J. P.

    1994-03-01

    A transient broad (delta(f)/f = 0.8 approximately 1) very low frequency (approximately 0.04-0.07 Hz) and strong (fractional rms variations are at the level of approximately 10-15% of total source intensity) quasi-periodic oscillations (QPO) feature was discovered by the SIGMA telescope onboard the Granat observatory in the power density spectra of Cygnus X-1; the source was during all the observations carried out in 1990-1992 in its standard (low or hard) spectral state (Sunyaev & Truemper 1979) with average 40-150 keV flux, corresponding appproximately to the 'nominal' gamma2 level of the source (Ling et al. 1979). The power density spectra, obtained in the 4 x 10-4-10 Hz frequency range, typically exhibit strong very low frequency noise below a few millihertz increasing toward lower frequencies, a nearly flat region from a few millihertz up to a break frequency fbr = 0.04 approximately 0.1 Hz and a power-law spectrum as f-1 above the break frequency. The QPO feature, when observed, was centered below or near the break frequency fbr.

  12. Two distinct modes in the low (hard) state of Cygnus X-1 and 1E 1740.7-2942.

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S.; Gilfanov, M.; Churazov, E.; Sunyaev, R.; Vikhlinin, A.; Khavenson, N.; Dyachkov, A.; Laurent, P.; Goldwurm, A.; Cordier, B.; Vargas, M.; Mandrou, P.; Roques, J. P.; Jourdain, E.; Borrel, V.

    1996-02-01

    The entire dataset of the GRANAT/SIGMA observations of Cyg X-1 and 1E 1740.7-2942 in 1990-1994 was analyzed in order to search for correlations between primary observational characteristics of the hard X-ray (40-400 keV) emission - hard X-ray luminosity LX, hardness of the spectrum (quantified in terms of the best-fit thermal bremsstrahlung temperature kT) and the rms of short-term flux variations. Two distinct modes of the kT vs. LX dependence were found for both sources. At low luminosity - below the level corresponding approximately to the γ1 state of Cyg X-1 (Ling et al. 1987) - the kT increases as the LX increases. Quantitatively it corresponds to increase of the temperature from 70 keV at ≍0.5 Lγ1 to 150 keV at ≍1.2 Lγ1. Above the luminosity level of ≍1.2 Lγ1 the spectrum hardness is nearly constant (T ≍ 150 keV) and does not depend on the luminosity. In the case of Cyg X-1 (1E 1740.7-2942 is not bright enough and is located in the crowded Galactic Center region) the correlation of similar kind was found between the spectrum hardness and rms of the short-term flux variations. The increase of the kT, corresponding to the increasing branch on the kT vs. LX diagram, is accompanied with increase of the rms from ⪉ few percent level to ≍10-15%. Further increase of the rms is not accompanied with change of the kT and does not correlate with changes in the luminosity.

  13. Search for scattered X-ray halos around variable sources - The X-ray halo of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Bode, M. F.; Priedhorsky, W. C.; Norwell, G. A.; Evans, A.

    1985-01-01

    The results of a program to search for the presence of halos due to X-ray scattering by interstellar grains in the line-of-sight to variable X-ray sources are reported. As part of this program, four Einstein HRI images of Cyg X-1 were examined. The analysis technique exploits the intrinsic aperiodic variability of this source to map the point response function of the optics. Any scattered halo present will not reflect short-term central source time variability, since such variability is smoothed by differential time delays of order days. Thus, a residual, nonvariable component to the surface brightness distribution (comprising about 12 percent or more of the source flux) is interpreted as a scattered halo. The Cyg X-1 halo is consistent with those of other sources found in previous studies using different techniques. Comparison is also made with a scattering model and, despite uncertainties in source spectrum and distance, reasonable agreement with the observatons is found using a standard interstellar grain model. The potential of X-ray scattering as a probe of the properties of interstellar grains is demonstrated.

  14. Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Joern; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, Jhn E.; Tramper, Frank

    2009-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states". Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary s focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations, and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum-dependent, none of the broad line fits allow for an inner disk radius that is > 40 GM/c(sup 2).

  15. Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State

    NASA Astrophysics Data System (ADS)

    Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Jörn; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, John E.; Tramper, Frank

    2011-02-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states." Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary's focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c 2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus, whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum dependent, none of the broad line fits allow for an inner disk radius that is >40 GM/c 2.

  16. Polarization in massive X-ray binaries. I - A low-inclination model for Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Friend, D. B.; Cassinelli, J. P.

    1986-01-01

    The possibility that variable linear polarization in massive X-ray binaries is produced by electron scattering in an asymmetric stellar wind is investigated. The stellar wind is asymmetric because of the gravitational field of the secondary (X-ray source). The degree of asymmetry and the magnitude of the linear polarization are controlled by the degree to which the primary star fills its Roche lobe. For the well-observed X-ray binary Cyg X-1, the present model can produce the correct magnitude for the polarization. Provided that the inclination of the system is less than about 20 deg, the present model should also predict the correct phase dependence of the polarization. Modifications to the model are described which would enable it to apply to systems with higher inclination.

  17. Revealing the broad iron Kα line in Cygnus X-1 through simultaneous XMM-Newton, RXTE, and INTEGRAL observations

    NASA Astrophysics Data System (ADS)

    Duro, Refiz; Dauser, Thomas; Grinberg, Victoria; Miškovičová, Ivica; Rodriguez, Jérôme; Tomsick, John; Hanke, Manfred; Pottschmidt, Katja; Nowak, Michael A.; Kreykenbohm, Sonja; Cadolle Bel, Marion; Bodaghee, Arash; Lohfink, Anne; Reynolds, Christopher S.; Kendziorra, Eckhard; Kirsch, Marcus G. F.; Staubert, Rüdiger; Wilms, Jörn

    2016-05-01

    We report on the analysis of the broad Fe Kα line feature of Cyg X-1 in the spectra of four simultaneous hard intermediate state observations made with the X-ray Multiple Mirror mission (XMM-Newton), the Rossi X-ray Timing Explorer (RXTE), and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The high quality of the XMM-Newton data taken in the Modified Timing Mode of the EPIC-pn camera provides a great opportunity to investigate the broadened Fe Kα reflection line at 6.4 keV with a very high signal to noise ratio. The 4-500 keV energy range is used to constrain the underlying continuum and the reflection at higher energies. We first investigate the data by applying a phenomenological model that consists of the sum of an exponentially cutoff power law and relativistically smeared reflection. Additionally, we apply a more physical approach and model the irradiation of the accretion disk directly from the lamp post geometry. All four observations show consistent values for the black hole parameters with a spin of a ~ 0.9, in agreement with recent measurements from reflection and disk continuum fitting. The inclination is found to be i ~ 30°, consistent with the orbital inclination and different from inclination measurements made during the soft state, which show a higher inclination. We speculate that the difference between the inclination measurements is due to changes in the inner region of the accretion disk.

  18. MAXI observations of long-term variations of Cygnus X-1 in the low/hard and the high/soft states

    NASA Astrophysics Data System (ADS)

    Sugimoto, Juri; Mihara, Tatehiro; Kitamoto, Shunji; Matsuoka, Masaru; Sugizaki, Mutsumi; Negoro, Hitoshi; Nakahira, Satoshi; Makishima, Kazuo

    2016-06-01

    The long-term X-ray variability of the black hole binary Cygnus X-1 was studied with five years of MAXI data from 2009 to 2014, which include substantial periods of the high/soft state, as well as the low/hard state. In each state, normalized power spectrum densities (NPSDs) were calculated in three energy bands of 2-4 keV, 4-10 keV, and 10-20 keV. The NPSDs for frequencies from 10-7 Hz to 10-4 Hz are all approximated by a power-law function with an index -1.35-1.29. The fractional RMS variation η, calculated in the above frequency range, was found to show the following three properties: (1) η slightly decreases with energy in the low/hard state; (2) η increases towards higher energies in the high/soft state; and (3) in the 10-20 keV band, η is three times higher in the high/soft state than in the low/hard state. These properties were confirmed through studies of intensity-correlated changes of the MAXI spectra. Of these three findings, the first one is consistent with that seen in the short-term variability during the low/hard state. The latter two can be understood as a result of high variability of the hard-tail component seen in the high/soft state with the above very low frequency range, although the origin of the variability remains inconclusive.

  19. A New Method to Resolve X-Ray Halos around Point Sources with Chandra Data and Its Application to Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Yao, Yangsen; Zhang, Shuang Nan; Zhang, Xiao-Ling; Feng, Yu-Xin

    2003-01-01

    With excellent angular resolution, good energy resolution, and a broad energy band, the Chandra Advanced CCD Imaging Spectrometer (ACIS) is the best instrument for studying the X-ray halos around some Galactic X-ray point sources caused by the dust scattering of X-rays in the interstellar medium. However, the direct images of bright sources obtained with the ACIS usually suffer from severe pileup. Making use of the fact that an isotropic image could be reconstructed from its projection in to any direction, we can reconstruct the images of the X-ray halos from the data obtained with the High Energy Transition Grating Spectrometer (HETGS) and/or in continuos clocking (CC) mode. These data have no or less serious pileup and enable us to take full advantage of the excellent angular resolution of Chandra. With the reconstructed high-resolution images, we can probe the X-ray halos as close as 1" to their associated point sources. Applying this method to Cygnus X-1 observed with the Chandra HETGS in CC mode, we derived an energy-dependent radial halo flux distribution and concluded that in a circular region (2' in radius) centered a the point source: (1) relative to the total intensity, the fractional halo intensity is about 15% at keV and drops to aboout 5% at approximately 6 keV (2) about 50% of the halo photons are within the region of a radius less than 40 inches and (3) the spectrum of the pooint source is slightly distorted by the halo contamination.

  20. Very fast X-ray spectral variability in Cygnus X-1: origin of the hard- and soft-state emission components

    NASA Astrophysics Data System (ADS)

    Skipper, Chris J.; McHardy, Ian M.; Maccarone, Thomas J.

    2013-09-01

    The way in which the X-ray photon index, Γ, varies as a function of count rate is a strong diagnostic of the emission processes and emission geometry around accreting compact objects. Here we present the results from a study using a new, and simple, method designed to improve sensitivity to the measurement of the variability of Γ on very short time-scales. We have measured Γ in ˜2 million spectra, extracted from observations with a variety of different accretion rates and spectral states, on time-scales as short as 16 ms for the high-mass X-ray binary Cygnus X-1 (and in a smaller number of spectra for the low-mass X-ray binary GX 339-4), and have cross-correlated these measurements with the source count rate. In the soft-state cross-correlation functions (CCFs), we find a positive peak at zero lag, stronger and narrower in the softer observations. Assuming that the X-rays are produced by Compton scattering of soft seed photons by high-energy electrons in a corona, these results are consistent with Compton cooling of the corona by seed photons from the inner edge of the accretion disc, the truncation radius of which increases with increasing hardness ratio. The CCFs produced from the hard-state observations, however, show an anti-correlation which is most easily explained by variation in the energy of the electrons in the corona rather than in variation of the seed photon flux. The hard-state CCFs can be decomposed into a narrow anti-correlation at zero lag, which we tentatively associate with the effects of self-Comptonization of cyclo-synchrotron seed photons in either a hot, optically thin accretion flow or the base of the jet, and a second, asymmetric component which we suggest is produced as a consequence of a lag between the soft and hard X-ray emission. The lag may be caused by a radial temperature/energy gradient in the Comptonizing electrons combined with the inward propagation of accretion rate perturbations.

  1. CYGNUS X-3's LITTLE FRIEND

    SciTech Connect

    McCollough, M. L.; Smith, R. K.; Valencic, L. A.

    2013-01-01

    Using the unique X-ray imaging capabilities of the Chandra X-ray observatory, a 2006 observation of Cygnus X-3 has provided insight into a singular feature associated with this well-known microquasar. This extended emission, located {approx}16'' from Cygnus X-3, varies in flux and orbital phase (shifted by 0.56 in phase) with Cygnus X-3, acting like a celestial X-ray 'mirror'. The feature's spectrum, flux, and time variations allow us to determine the location, size, density, and mass of the scatterer. We find that the scatterer is a Bok Globule located along our line of sight, and we discuss its relationship to Cygnus X-3. This is the first time such a feature has been identified with Chandra.

  2. Cygnus X-3's Little Friend

    NASA Technical Reports Server (NTRS)

    McCollough, M. L.; Smith, R. K.; Valencic, L. A.

    2010-01-01

    Using the unique X-ray imaging capabilities of the Chandra X-ray observatory, a 2006 observation of Cygnus X-3 has provided insight into a singular feature associated with this well-known microquasar. This extended emission, located approx.16" from Cygnus X-3, varies in flux and orbital phase (shifted by 0.56 in phase) with Cygnus X-3, acting like a celestial X-ray "mirror." The feature s spectrum, flux, and time variations allow us to determine the location, size, density, and mass of the scatterer. We find that the scatterer is a Bok Globule located along our line of sight, and we discuss its relationship to Cygnus X-3. This is the first time such a feature has been identified with Chandra.

  3. Sensitivity of an underwater Čerenkov km 3 telescope to TeV neutrinos from Galactic microquasars

    NASA Astrophysics Data System (ADS)

    Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Capone, A.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; De Bonis, G.; De Marzo, C.; De Rosa, G.; De Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sedita, M.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2007-09-01

    In this paper are presented the results of Monte Carlo simulations on the capability of the proposed NEMO-km 3 telescope to detect TeV muon neutrinos from Galactic microquasars. For each known microquasar we compute the number of detectable events, together with the atmospheric neutrino and muon background events. We also discuss the detector sensitivity to neutrino fluxes expected from known microquasars, optimizing the event selection also to reject the background; the number of events surviving the event selection are given. The best candidates are the steady microquasars SS433 and GX339-4 for which we estimate a sensitivity of about 5 × 10 -11 erg/cm 2 s; the predicted fluxes are expected to be well above this sensitivity. For bursting microquasars the most interesting candidates are Cygnus X-3, GRO J1655-40 and XTE J1118+480: their analyses are more complicated because of the stochastic nature of the bursts.

  4. Cygnus History

    SciTech Connect

    David J. Henderson, Raymond E. Gignac, Douglas E. Good, Mark D. Hansen, Charles V. Mitton; Daniel S. Nelson, Eugene C. Ormond; Steve R. Cordova, Isidro Molina; John R. Smith, Evan A. Rose

    2009-07-02

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources: Cygnus 1 and Cygnus 2. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site. The sources were developed to produce high-resolution images for dynamic plutonium experiments. This work will recount and discuss salient maintenance and operational issues encountered during the history of Cygnus. A brief description of Cygnus systems and rational for design selections will set the stage for this historical narrative. It is intended to highlight the team-derived solutions for technical problems encountered during extended periods of maintenance and operation. While many of the issues are typical to pulsed power systems, some of the solutions are unique. It is hoped that other source teams will benefit from this presentation, as well as other necessary disciplines (e.g., source users, system architects, facility designers and managers, funding managers, and team leaders).

  5. The Broad Iron K-alpha line of Cygnus X-1 as Seen by XMM-Newton in the EPIC-pn Modified Timing Mode

    NASA Technical Reports Server (NTRS)

    Duro, Refiz; Dauser, Thomas; Wilms, Jorn; Pottschmidt, Katja; Nowak, Michael A.; Fritz, Sonja; Kendziorra, Eckhard; Kirsch, Marcus G. F.; Reynolds, Christopher S.; Staubert, Rudiger

    2011-01-01

    We present the analysis of the broadened, flourescent iron K(alpha) line in simultaneous XMM-Newton and RXTE data from the black hole Cygnus X-I. The XMM-Newton data were taken in a modified version of the Timing Mode of the EPIC-pn camera. In this mode the lower energy threshold of the instrument is increased to 2.8 keV to avoid telemetry drop outs due to the brightness of the source, while at the same time preserving the signal to noise ratio in the Fe K(alpha) band. We find that the best-fit spectrum consists of the sum of an exponentially cut-off power-law and relativistically smeared, ionized reflection. The shape of the broadened Fe K(alpha) feature is due to strong Compton broadening combined with relativistic broadening. Assuming a standard, thin accretion disk, the black hole is close to maximally rotating. Key words. X-rays: binaries - black hole physics - gravitation

  6. Chandra X-ray spectroscopy of focused wind in the Cygnus X-1 system. II. The non-dip spectrum in the low/hard state - modulations with orbital phase

    NASA Astrophysics Data System (ADS)

    Miškovičová, Ivica; Hell, Natalie; Hanke, Manfred; Nowak, Michael A.; Pottschmidt, Katja; Schulz, Norbert S.; Grinberg, Victoria; Duro, Refiz; Madej, Oliwia K.; Lohfink, Anne M.; Rodriguez, Jérôme; Cadolle Bel, Marion; Bodaghee, Arash; Tomsick, John A.; Lee, Julia C.; Brown, Gregory V.; Wilms, Jörn

    2016-05-01

    Accretion onto the black hole in the system HDE 226868/Cygnus X-1 is powered by the strong line-driven stellar wind of the O-type donor star. We study the X-ray properties of the stellar wind in the hard state of Cyg X-1, as determined using data from the Chandra High Energy Transmission Gratings. Large density and temperature inhomogeneities are present in the wind, with a fraction of the wind consisting of clumps of matter with higher density and lower temperature embedded in a photoionized gas. Absorption dips observed in the light curve are believed to be caused by these clumps. This work concentrates on the non-dip spectra as a function of orbital phase. The spectra show lines of H-like and He-like ions of S, Si, Na, Mg, Al, and highly ionized Fe (Fe xvii-Fe xxiv). We measure velocity shifts, column densities, and thermal broadening of the line series. The excellent quality of these five observations allows us to investigate the orbital phase-dependence of these parameters. We show that the absorber is located close to the black hole. Doppler shifted lines point at a complex wind structure in this region, while emission lines seen in some observations are from a denser medium than the absorber. The observed line profiles are phase-dependent. Their shapes vary from pure, symmetric absorption at the superior conjunction to P Cygni profiles at the inferior conjunction of the black hole.

  7. INTEGRAL SPI observations of Cygnus X-1 in the soft state: What about the jet contribution in hard X-rays?

    SciTech Connect

    Jourdain, E.; Roques, J. P.; Chauvin, M.

    2014-07-01

    During the first 7 yr of the INTEGRAL mission (2003-2009), Cyg X-1 has essentially been detected in its hard state (HS), with some incursions in intermediate HSs. This long, spectrally stable period allowed in particular the measurement of the polarization of the high-energy component that has long been observed above 200 keV in this peculiar object. This result strongly suggests that here we see the contribution of the jet, known to emit a strong synchrotron radio emission. In 2010 June, Cyg X-1 underwent a completed transition toward a soft state (SS). It gave us the unique opportunity to study in detail the corona emission in this spectral state, and to investigate in particular the behavior of the jet contribution. Indeed, during the SS, the hard X-ray emission decreases drastically, with its maximum energy shifted toward lower energy and its flux divided by a factor of ∼5-10. Interestingly, the radio emission follows a similar drop, supporting the correlation between the jet emission and the hard component, even though the flux is too low to quantify the polarization characteristics.

  8. Understanding the Long-Term Spectral Variability of Cygnus X-1 with Burst and Transient Source Experiment and All-Sky Monitor Observations

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Lin-Qing

    2002-01-01

    We present a comprehensive analysis of all observations of Cyg X-1 by the Compton Gamma Ray Observatory Burst and Transient Source Experiment (BATSE; 20-300 keV) and by the Rossi X-Ray Timing Explorer all-sky monitor (ASM; 1.5-12 keV) until 2002 June, including approximately 1200 days of simultaneous data. We find a number of correlations between fluxes and hardnesses in different energy bands. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the 20-100 keV flux. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. There is also another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superposed on a constant soft blackbody component. These variability patterns are in agreement with the dependencies of the rms variability on the photon energy in the two states. We also study in detail recent soft states from late 2000 until 2002. The last of them has lasted thus far for more than 200 days. Their spectra are generally harder in the 1.5-5 keV band and similar or softer in the 3-12 keV band than the spectra of the 1996 soft state, whereas the rms variability is stronger in all the ASM bands. On the other hand, the 1994 soft state transition observed by BATSE appears very similar to the 1996 one. We interpret the variability patterns in terms of theoretical Comptonization

  9. Soft X-ray Excesses and X-ray Line Variability in Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Varlotta, Angelo; McCollough, Michael L

    2014-06-01

    Cygnus X-3 is an X-ray binary (XRB) system containing a stellar-mass compact object, most likely a black hole, and a Wolf-Rayet companion star, which produces collimated, relativistic jets, placing it in the sub-class of XRBs known as microquasars. During a Swift/XRT monitoring program of Cygnus X-3, a soft X-ray excess (below 1 keV) was observed at certain states and phases of activity. This soft excess appears to be similar to the variable soft emission observed in Seyfert galaxies. The presence of these features in Cygnus X-3 would argue for a greater support of the black-hole nature of the compact object and serve to better highlight the similarities of microquasars and AGN. We present the results of our investigations of these soft excesses, as well as the variations of the X-ray Fe line region (6.4-7.0 keV) as a function of the state activity and orbital phase.

  10. Black hole binaries and microquasars

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang-Nan

    2013-12-01

    This is a general review on the observations and physics of black hole X-ray binaries and microquasars, with the emphasize on recent developments in the high energy regime. The focus is put on understanding the accretion flows and measuring the parameters of black holes in them. It includes mainly two parts: i) Brief review of several recent review article on this subject; ii) Further development on several topics, including black hole spin measurements, hot accretion flows, corona formation, state transitions and thermal stability of standard think disk. This is thus not a regular bottom-up approach, which I feel not necessary at this stage. Major effort is made in making and incorporating from many sources useful plots and illustrations, in order to make this article more comprehensible to non-expert readers. In the end I attempt to make a unification scheme on the accretion-outflow (wind/jet) connections of all types of accreting BHs of all accretion rates and all BH mass scales, and finally provide a brief outlook.

  11. Cygnus Water Switch Jitter

    SciTech Connect

    Charles V. Mitton, George D. Corrow, Mark D. Hansen, David J. Henderson, et al.

    2008-03-01

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources - Cygnus 1 and Cygnus 2. Each source has the following x-ray output: 1-mm diameter spot size, 4 rad at 1 m, 50-ns Full Width Half Max. The diode pulse has the following electrical specifications: 2.25 MV, 60 kA, 60 ns. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site (NTS). The sources were developed to produce high-resolution images on subcritical tests which are performed at NTS. Subcritical tests are single-shot, high-value events. For this application, it is desirable to maintain a high level of reproducibility in source output. The major components of the Cygnus machines are: Marx generator, water-filled pulse–forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. A primary source of fluctuation in Cygnus shot-to-shot performance is jitter in breakdown of the main PFL switch, which is a “self-break” switch. The PFL switch breakdown time determines the peak PFL charging voltage, which ultimately affects the diode pulse. Therefore, PFL switch jitter contributes to shot-to-shot variation in source endpoint energy and dose. In this paper we will present PFL switch jitter analysis for both Cygnus machines and give the correlation with diode performance. For this analysis the PFL switch on each machine was maintained at a single gap setting which has been used for the majority of shots at NTS. In addition to this analysis, PFL switch performance for different switch gap settings taken recently will be examined. Lastly, implications of source jitter for radiographic diagnosis of subcritical shots will be discussed.

  12. Cygnus PFL Switch Jitter

    SciTech Connect

    C. Mitton, G. Corrow, M. Hansen, D. Henderson, et al.

    2007-07-21

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources: Cygnus 1 and Cygnus 2. Each source has the following X-ray output: 1-mm diameter spot size, 4 rads at 1 m, 50-ns full-widthhalf-maximum. The diode pulse has the following electrical specifications: 2.25 MV, 60 kA, 60 ns. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site (NTS). The sources were developed to produce high-resolution images on subcritical tests performed at NTS. Subcritical tests are single-shot, high-value events. For this application, it is desirable to maintain a high level of reproducibility in source output. The major components of the Cygnus machines are Marx generator, water-filled pulse forming line (PFL), water-filled coaxial transmission line, threecell inductive voltage adder, and rod-pinch diode. A primary source of fluctuation in Cygnus shot-to-shot performance may be jitter in breakdown of the main PFL switch, which is a “self-break” switch. The PFL switch breakdown time determines the peak PFL charging voltage, which ultimately affects the source X-ray spectrum and dose. Therefore, PFL switch jitter may contribute to shot-to-shot variation in these parameters, which are crucial to radiographic quality. In this paper we will present PFL switch jitter analysis for both Cygnus machines and present the correlation with dose. For this analysis, the PFL switch on each machine was maintained at a single gap setting, which has been used for the majority of shots at NTS. In addition the PFL switch performance for one larger switch gap setting will be examined.

  13. The beginning of a giant radio flare from Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.; Zhekanis, G. V.

    2016-09-01

    As we suggested in ATel #9416, galactic microquasar Cygnus X-3 is currently undergoing a flaring activity. If on 30 August 2016 (MJD 57630.798) its fluxes were 120-128 mJy at 4.6, 8.2, 11.2 GHz in the RATAN-600 radio telescope observations, then on 31 August (MJD 57631.795) the fluxes became 60, 300, 570, 740, 800 mJy at 2.3, 4.6, 8.2, 11.2 and 21.7 GHz with typical errors about 3-7%.

  14. A search for new galactic microquasars

    NASA Astrophysics Data System (ADS)

    Tsarevsky, G. S.; Pavlenko, E. P.; Stathakis, R. A.; Kardashev, N. S.; Slee, O. B.

    2002-01-01

    The population of microquasars in our Galaxy} Accretion onto a supermassive black hole with a strong surrounding magnetic field can supply the necessary energy for AGNs (Kardashev 1995). Inside our own galaxy, accretion from a stellar component onto a black hole (or neutron star) in a close binary system can produce a similar kind of phenomenon. X-ray observations made by UHURU in 1978 attracted attention to the peculiar object SS 433 located in the very centre of the supernova remnant W50. When the orbital period was first determined, Shklovski (1978) suggested that SS 433 is a binary system associated with the ejection of relativistic particles, which are responsible for the strong, periodic radio emission. Many observations of SS 433 led to the conclusion that the system is a close binary consisting of a massive OB star and a neutron star or a black hole surrounded by a bright accretion disk opaque to X-rays. SS 433 and similar objects have been assigned to a special class called "microquasars" (see comprehensive review by Mirabel & Rodriguez, 1999). Only about 30 of ~280 known X-ray binaries (XRBs) have been detected in radio (Fender et al. 1997), and only a few of them have characteristic radio emission and morphology associated with the microquasars' family. Radio images of such objects bear a striking similarity to the structures of AGN: they have a compact core and two-sided jets of relativistic particles. Flux variability and superluminal motions are also quite common for the microquasars. GRO J1655--40 is a representative object of this class (Tingay at al. 1995). First discovered in X-rays, it produces relativistic radio jets with β = 0.92, and has an angular extent of 1arcsec. It is the intention of the project described here to search for similar features with the aim of increasing the number of known microquasars.

  15. Complete mitochondrial genome of Cygnus cygnus (Aves, Anseriformes, Anatidae).

    PubMed

    Park, Chang Eon; Park, Gun-Seok; Kwak, Yunyoung; Hong, Sung-Jun; Rahim Khan, Abdur; Kwon Jung, Byung; Park, Yung-Jun; Kim, Jong-Guk; Cheon Park, Hee; Shin, Jae-Ho

    2016-07-01

    In this study, the complete mitochondrial genome of Cygnus cygnus (Aves, Anseriformes, Anatidae) was sequenced. The genome, consisting of 16 724 base pairs (bp), encoded 13 protein coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and a control region (CR). Two rRNA genes for 12S rRNA (991 bases) and 16S rRNA (1608 bases) are located between tRNA-Phe and tRNA-Leu (UUR) and divided by the tRNA-Val. The CR, of 1156 bp in length, is located between tRNA-Glu and tRNA-Phe. The overall base composition of C. cygnus is G + C: 47.2%, A + T: 52.8%, apparently with a slight AT bias. Phylogenetic analysis showed that the C. cygnus was closed to Cygnus columbianus. PMID:26153753

  16. Cygnus Trigger System

    SciTech Connect

    G. Corrow, M. Hansen, D. Henderson, C. Mitton

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two radiographic sources (Cygnus 1, Cygnus 2) each with a dose rating of 4 rads at 1 m, and a 1-mm diameter spot size. The electrical specifications are: 2.25 MV, 60 kA, 60 ns. This facility is located in an underground environment at the Nevada Test Site (NTS). These sources were developed as a primary diagnostic for subcritical tests, which are single-shot, high-value events. In such an application there is an emphasis on reliability and reproducibility. A robust, low-jitter trigger system is a key element for meeting these goals. The trigger system was developed with both commercial and project-specific equipment. In addition to the traditional functions of a trigger system there are novel features added to protect the investment of a high-value shot. Details of the trigger system, including elements designed specifically for a subcritical test application, will be presented. The individual electronic components have their nominal throughput, and when assembled have a system throughput with a measured range of jitter. The shot-to-shot jitter will be assessed both individually and in combination. Trigger reliability and reproducibility results will be presented for a substantial number of shots executed at the NTS.

  17. MAGIC CONSTRAINTS ON {gamma}-RAY EMISSION FROM CYGNUS X-3

    SciTech Connect

    Aleksic, J.; Blanch, O.; Antonelli, L. A.; Bonnoli, G.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J. A.; Bastieri, D.; Gonzalez, J. Becerra; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Boller, A.; Bock, R. K.; Tridon, D. Borla; Bordas, P.; Bosch-Ramon, V. E-mail: tysaito@mpp.mpg.d

    2010-09-20

    Cygnus X-3 is a microquasar consisting of an accreting compact object orbiting around a Wolf-Rayet star. It has been detected at radio frequencies and up to high-energy {gamma} rays (above 100 MeV). However, many models also predict a very high energy (VHE) emission (above hundreds of GeV) when the source displays relativistic persistent jets or transient ejections. Therefore, detecting such emission would improve the understanding of the jet physics. The imaging atmospheric Cherenkov telescope MAGIC observed Cygnus X-3 for about 70 hr between 2006 March and 2009 August in different X-ray/radio spectral states and also during a period of enhanced {gamma}-ray emission. MAGIC found no evidence for a VHE signal from the direction of the microquasar. An upper limit to the integral flux for energies higher than 250 GeV has been set to 2.2 x 10{sup -12} photons cm{sup -2} s{sup -1} (95% confidence level). This is the best limit so far to the VHE emission from this source. The non-detection of a VHE signal during the period of activity in the high-energy band sheds light on the location of the possible VHE radiation favoring the emission from the innermost region of the jets, where absorption is significant. The current and future generations of Cherenkov telescopes may detect a signal under precise spectral conditions.

  18. SAS 3 observations of Cygnus X-1 - The intensity dips

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Canizares, C. R.

    1984-01-01

    In general, the dips are observed to occur near superior conjunctions of the X-ray source, but one pair of 2-minute dips occurs when the X-ray source is closer to the observer than is the supergiant companion. The dips are analyzed spectrally with the aid of seven energy channels in the range 1.2-50 keV. Essentially, there is no change in the spectral index during the dips. Reductions in the count rates are observed at energies exceeding 6 keV for some of the dips, but the dip amplitude is always significantly greater in the 1.2-3 keV band. It is believed that absorption by partially ionized gas may best explain these results, since the observations of Pravdo et al. (1980) rule out absorption by unionized material. Estimates for the intervening gas density, extent, and distance from the X-ray source are presented. Attention is also given to the problems confronting the models for the injection of gas through the line of sight, believed to be inclined by approximately 30 deg from the binary pole.

  19. γ-Ray Generation in Microquasars: the link with AGN

    NASA Astrophysics Data System (ADS)

    Latham, I. J.; Aye, K.-M.; Brown, A. M.; Chadwick, P. M.; Hadjichristidis, C. N.; Le Gallou, R.; McComb, T. J. L.; Nolan, S. J.; Orford, K. J.; Osborne, J. L.; Noutsos, A.; Rayner, S. M.

    2005-02-01

    The link between the physical processes responsible for high energy emission from relativistic jets in AGN and microquasars is investigated. A Fortran code based on an existing inhomogeneous, synchrotron self-Compton (SSC) model, for AGN is presented. The code is then applied to the AGN 3C 279 and the microquasar LS5039. Spectral energy distributions (SED's) are presented.

  20. Cygnus Diverter Switch Analysis

    SciTech Connect

    G. Corrow, M. Hansen, D. Henderson, C. Mitton et al.

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two 2.25-MV, 60-kA, 50-ns x-ray sources fielded in an underground laboratory at the Nevada Test Site. The tests performed in this laboratory involve study of the dynamic properties of plutonium and are called subcritical experiments. From end-to-end, the Cygnus machines utilize the following components: Marx generator, water-filled pulse-forming line (PFL), waterfilled coaxial transmission line (WTL), 3-cell inductive voltage adder (IVA), and rod-pinch diode. The upstream WTL interface to the PFL is via a radial insulator with coaxial geometry. The downstream WTL terminates in a manifold where the center conductor splits into three lines which individually connect to each of the IVA cell inputs. There is an impedance mismatch at this juncture. It is a concern that a reflected pulse due to anomalous behavior in the IVA or diode might initiate breakdown upon arrival at the upstream PFL/WTL insulator. Therefore near the beginning of the WTL a radial diverter switch is installed to protect the insulator from over voltage and breakdown. The diverter has adjustable gap spacing, and an in-line aqueous-solution (sodium thiosulfate) resistor array for energy dissipation. There are capacitive voltage probes at both ends of the WTL and on the diverter switch. These voltage signals will be analyzed to determine diverter performance. Using this analysis the usefulness of the diverter switch will be evaluated.

  1. Tour the Cygnus X Star Factory

    NASA Video Gallery

    This video opens with wide optical and infrared images of the constellation Cygnus, then zooms into the Cygnus X region using radio, infrared and gamma-ray images. Fermi LAT shows that gamma rays f...

  2. Cygnus: Electrochemical cleaning

    SciTech Connect

    Simon, G.G.; Sokcic-Kostic, M.; Vujic, J.; Solly, F.; Johnson, D.; Philipp, D.

    2000-07-01

    Electrochemical cleaning, commonly referred to as electropolishing, can be used to remove surface contamination by dissolving the underlying metal matrix. This is accomplished in the Cygnus process by passing an electric current through a dilute, acidic electrolyte. In the operation, the surface is polished, thereby removing contamination and irregularities to prevent recontamination. Mechanical decontamination processes, by comparison, leave the surface layer distorted, highly stressed, and contaminated with process media. Techniques employing grinding and particle impingement rework the surface of malleable metals such as stainless steel, folding the contamination into pockets where material is released for uncontrolled use. Solway, Ltd., developed the method to be more effective with respect to waste reduction and cost-effectiveness. Together with NUKEM Nuklear, the method was improved for a decontamination procedure in nuclear technology. One of the applications was the decontamination work at KRN Grundremmingen in Germany. The intensive work has shown that the method is suitable for decontamination services in both defense and commercial areas.

  3. GLAST Status and Application to Microquasars

    SciTech Connect

    Dubois, Richard; /SLAC

    2006-11-15

    The Gamma-ray Large Area Space Telescope (GLAST) is a next generation high energy gamma-ray observatory due for launch in Fall 2007. The primary instrument is the Large Area Telescope (LAT), which will measure gamma-ray flux and spectra from 20 MeV to > 300 GeV and is a successor to the highly successful EGRET experiment on CGRO. The LAT will have better angular resolution, greater effective area, wider field of view and broader energy coverage than any previous experiment in this energy range. An overview of the LAT instrument design and construction is presented which includes performance estimates with particular emphasis on how these apply to studies of microquasars. The nature and quality of the data that will be provided by the LAT is described with results from recent detailed simulations that illustrate the potential of the LAT to observe gamma ray variability and spectra.

  4. Long-term studies with the Ariel 5 ASM. 2: The strong Cygnus sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Kaluzienski, L. J.; Boldt, E. A.; Serlemitsos, P. J.

    1979-01-01

    The three bright 3-6 keV X-ray sources in Cygnus are examined for regular temporal variability with a 1300-day record from the Ariel 5 All Sky Monitor. The only periods consistently observed are 5.6 days for Cyg X-1, 11.23 days for Cyg X-2, and 4.8 hours for Cyg X-3.

  5. Cygnus Performance in Subcritical Experiments

    SciTech Connect

    G. Corrow, M. Hansen, D. Henderson, S. Lutz, C. Mitton, et al.

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources with the following specifications: 4-rad dose at 1 m, 1-mm spot size, 50-ns pulse length, 2.25-MeV endpoint energy. The facility is located in an underground tunnel complex at the Nevada Test Site. Here SubCritical Experiments (SCEs) are performed to study the dynamic properties of plutonium. The Cygnus sources were developed as a primary diagnostic for these tests. Since SCEs are single-shot, high-value events - reliability and reproducibility are key issues. Enhanced reliability involves minimization of failure modes through design, inspection, and testing. Many unique hardware and operational features were incorporated into Cygnus to insure reliability. Enhanced reproducibility involves normalization of shot-to-shot output also through design, inspection, and testing. The first SCE to utilize Cygnus, Armando, was executed on May 25, 2004. A year later, April - May 2005, calibrations using a plutonium step wedge were performed. The results from this series were used for more precise interpretation of the Armando data. In the period February - May 2007 Cygnus was fielded on Thermos, which is a series of small-sample plutonium shots using a one-dimensional geometry. Pulsed power research generally dictates frequent change in hardware configuration. Conversely, SCE applications have typically required constant machine settings. Therefore, while operating during the past four years we have accumulated a large database for evaluation of machine performance under highly consistent operating conditions. Through analysis of this database Cygnus reliability and reproducibility on Armando, Step Wedge, and Thermos is presented.

  6. Cygnus X-3 Little Friend's Counterpart, the Distance to Cygnus X-3 and Jets (Oh My!)

    NASA Astrophysics Data System (ADS)

    McCollough, Michael L.; Dunham, Michael M.; Corrales, Lia

    2016-04-01

    Chandra observations have revealed a feature within 16" of Cygnus X-3 which varied in phase with Cygnus X-3. This feature was shown to be a Bok globule which is along the line of sight to Cygnus X-3. We report onobservations made with Submillimeter Array (SMA) to search for molecular emission from this globule, also known as Cygnus X-3's "little friend." We have found a counterpart in both 12CO and 13CO emission. From the velocity shift of the molecular lines we are able determine a kinematic distance to the little friend and in turn a distance to Cygnus X-3. The uncertainties in this distance estimate to Cygnus X-3 are less than 10%. An additional unexpected discovery was that Cygnus X-3 is not the only source to have jets!

  7. The Cygnus Loop: An Older Supernova Remnant.

    ERIC Educational Resources Information Center

    Straka, William

    1987-01-01

    Describes the Cygnus Loop, one of brightest and most easily studied of the older "remnant nebulae" of supernova outbursts. Discusses some of the historical events surrounding the discovery and measurement of the Cygnus Loop and makes some projections on its future. (TW)

  8. GLAST: Launched And Being Commissioned - Status And Prospects for Microquasars

    SciTech Connect

    Dubois, Richard; /SLAC

    2011-12-01

    GLAST: Launched And Being Commissioned - Status And Prospects for Microquasars The Fermi Gamma-ray Space Telescope (Fermi) is a next generation high energy gamma-ray observatory launched in June 2008. The primary instrument is the Large Area Telescope (LAT), which will measure gamma-ray flux and spectra from 20 MeV to > 300 GeV and is a successor to the highly successful EGRET experiment on CGRO. The LAT has better angular resolution, greater effective area, wider field of view and broader energy coverage than any previous experiment in this energy range. An overview of the LAT instrument design and construction is presented which includes performance estimates with particular emphasis on how these apply to studies of microquasars. Early results on LS I +61 303 detection are presented.

  9. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Orosz, Jerry; Tomsick, John

    2012-10-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  10. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Tomsick, John; Orosz, Jerry

    2011-10-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  11. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Orosz, Jerry; Tomsick, John

    2013-10-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  12. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Tomsick, John; Orosz, Jerry

    2011-04-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  13. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Orosz, Jerry; Tomsick, John

    2013-04-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  14. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Tomsick, John; Orosz, Jerry

    2012-04-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years.

  15. NGC 300 X-1 and IC 10 X-1: a new breed of black hole binary?

    NASA Astrophysics Data System (ADS)

    Barnard, R.; Clark, J. S.; Kolb, U. C.

    2008-09-01

    Context: IC 10 X-1 has recently been confirmed as a black hole (BH) + Wolf-Rayet (WR) X-ray binary, and NGC 300 X-1 is thought to be. The only other known BH+WR candidate is Cygnus X-3. IC 10 X-1 and NGC 300 X-1 have similar X-ray properties, with 0.3-10 keV luminosities ~1038 erg s-1, and their X-ray lightcurves exhibit orbital periods ~30 h. Aims: We investigate similarities between IC 10 X-1 and NGC 300 X-1, as well as differences between these systems and the known Galactic BH binary systems. Methods: We have examined all four XMM-Newton observations of NGC 300 X-1, as well as the single XMM-Newton observation of IC 10 X-1. For each observation, we extracted lightcurves and spectra from the pn, MOS1 and MOS2 cameras; power density spectra were constructed from the lightcurves, and the X-ray emission spectra were modeled. Results: Each source exhibits power density spectra that are well described by a power law with index, γ, ~1. Such variability is characteristic of turbulence in wind accretion or disc-accreting X-ray binaries (XBs) in the high state. In this state, Galactic XBs with known BH primaries have soft, thermal emission; however the emission spectra of NGC 300 X-1 and IC 10 X-1 in the XMM-Newton observations are predominantly non-thermal. Furthermore, the Observation 1 spectrum of NGC 300 X-1 is strikingly similar to that of IC 10 X-1. Conclusions: The remarkable similarity between the behaviour of NGC 300 X-1 in Observation 1 and that of IC 10 X-1 lends strong evidence for NGC 300 X-1 being a BH+WR binary. Our spectral modeling rules out Bondi-Hoyle accretion onto a neutron star (NS) for NGC 300 X-1, but not a disc-accreting NS+WR system, nor a NS low mass X-ray binary (LMXB) that is merely coincident with the WR. We favour disc accretion for both systems, but cannot exclude Bondi-Hoyle accretion onto a BH. The unusual spectra of NGC 300 X-1 and IC 10 X-1 may be due to these systems existing in a persistently high state, whereas all known BH LMXBs

  16. Underground muons from Cygnus X-3

    SciTech Connect

    Price, L.E.

    1985-01-01

    Underground detectors, intended for searches for nucleon decay and other rare processes, have recently begun searching for evidence of astrophysical sources, particularly Cygnus X-3, in the cosmic ray muons they record. Some evidence for signals from Cygnus X-3 has been reported. The underground observations are reported here in the context of previous (surface) observations of the source at high energies. 25 refs., 8 figs.

  17. Large scale radio/X-ray jets in microquasars

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Orosz, Jerry; Tomsick, John; Loh, Alan

    2014-10-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years. The proposed observations are optimized to discover and study (flux evolution, morphology, SED, proper motion, ...) new radio lobes from microquasars. This will have implications not only for the study of jets from Galactic X-ray binaries, but also for our understanding of relativistic jets from active galactic nuclei (AGN).

  18. Cygnus Loop Supernova Blast Wave

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  19. Long-term studies with the Ariel 5 ASM. II - The strong Cygnus sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Kaluzienski, L. J.; Boldt, E. A.; Serlemitsos, P. J.

    1979-01-01

    The three bright 3-6 keV X-ray sources in Cygnus are examined for regular temporal variability with a 1300 day record from the Ariel 5 All-Sky Monitor. The only periods consistently observed are 5.6 days for Cyg X-1, 11.23 days for Cyg X-2, and 4.8 hours for Cyg X-3. The 78.4 day period of Kemp, Herman, and Barbour for Cyg X-1, the 9.843 day period of Cowley, Crampton, and Hutchings for Cyg X-2, and the 16.75 day period of Holt et al. for Cyg X-3 are not confirmed.

  20. Search for UHE emission from Cygnus X-3

    SciTech Connect

    Stark, M.J.; The CYGNUS Collaboration

    1993-05-01

    Data from the CYGNUS experiment has been searched for evidence of ultra high energy (UHE) emission from Cygnus X-3. An upper limit to continuous flux from the source is given. In addition, we find no evidence for episodic emission from Cygnus X-3 on any time scale from 3.3 minutes to 4 years. The results of searches for periodic emission from Cygnus X-3 will be presented at the conference.

  1. Search for UHE emission from Cygnus X-3

    SciTech Connect

    Stark, M.J.

    1993-01-01

    Data from the CYGNUS experiment has been searched for evidence of ultra high energy (UHE) emission from Cygnus X-3. An upper limit to continuous flux from the source is given. In addition, we find no evidence for episodic emission from Cygnus X-3 on any time scale from 3.3 minutes to 4 years. The results of searches for periodic emission from Cygnus X-3 will be presented at the conference.

  2. X-ray spectrum of the entire Cygnus Loop.

    NASA Technical Reports Server (NTRS)

    Stevens, J. C.; Riegler, G. R.; Garmire, G. P.

    1973-01-01

    The spectrum of the entire Cygnus Loop has been obtained using gas-filled proportional counters and filters flown on a Nike-Aerobee rocket. The results indicate an average spectral temperature of (2.8 plus or minus 0.2) x 1,000,000 K and the presence of excess emission in the energy range from 0.530 to 0.693 keV. If the excess emission originates in a single line at 0.658 keV, the intensity at the earth corresponds to 1.8 plus or minus 0.7 photons per sq cm per sec, or about 10% of the total energy received from the Loop. The spectrum of the entire Loop is found to be attenuated by an average of (4.8 plus or minus 0.2) x 10 to the 20th hydrogen atoms per sq cm.

  3. Prospects for High Energy Detection of Microquasars with the AGILE and GLAST Gamma-Ray Telescopes

    SciTech Connect

    Santolamazza, Patrizia; Pittori, Carlotta; Verrecchia, Francesco

    2007-08-21

    We estimate the sensitivities of the AGILE and GLAST {gamma}-ray experiments taking into account two cases for the galactic {gamma}-ray diffuse background (at high galactic latitude and toward the galactic center). Then we use sensitivities to estimate microquasar observability with the two experiments, assuming the {gamma}-ray emission above 100 MeV of a recent microquasar model.

  4. Cygnus

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (the Swan; abbrev. Cyg, gen. Cygni; area 804 sq. deg.) A northern constellation which lies between Cepheus and Vulpecula, and culminates at midnight in late July. Its origin is uncertain, though it was known to the ancient Greeks, who identified it with one of the forms assumed by Zeus during his amorous pursuits, or with other mythological swans. Its brightest stars were cataloged by Ptolemy (c....

  5. X-1 in flight

    NASA Technical Reports Server (NTRS)

    1947-01-01

    The Bell Aircraft Corporation X-1-1 (#46-062) in flight. The shock wave pattern in the exhaust plume is visible. The X-1 series aircraft were air-launched from a modified Boeing B-29 or a B-50 Superfortress bombers. The X-1-1 was painted a bright orange by Bell Aircraft. It was thought that the aircraft would be more visable to those doing the tracking during a flight. When NACA received the airplanes they were painted white, which was an easier color to find in the skies over Muroc Air Field in California. This particular craft was nicknamed 'Glamorous Glennis' by Chuck Yeager in honor of his wife, and is now on permanent display in the Smithsonian Institution's National Air and Space Museum in Washington, DC. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all

  6. X1 Exoskeleton

    NASA Video Gallery

    NASA's Ironman-Like Exoskeleton Could Give Astronauts, Paraplegics Improved Mobility and Strength. While NASA's X1 robotic exoskeleton can't do what you see in the movies, the latest robotic, space...

  7. Search for neutrino emission from microquasars with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Galatà, S.

    2012-12-01

    Neutrino telescopes are nowadays exploring a new window of observation on the high energy universe and may shed light on the longstanding problem regarding the origin of cosmic rays. The ANTARES neutrino telescope is located underwater 40 km offshore from the Southern coast of France, on a plateau at 2475 m depth. Since 2007 it observes the high energy (>100 GeV) neutrino sky looking for cosmic neutrino sources. Among the candidate neutrino emitters are microquasars, i.e. galactic X-ray binaries exhibiting relativistic jets, which may accelerate hadrons thus producing neutrinos, under certain conditions. These sources are also variable in time and undergo X-ray or gamma ray outburst that can be related to the acceleration of relativistic particles witnessed by their radio emission. These events can provide a trigger to the neutrino search, with the advantage of drastically reducing the atmospheric neutrino background. A search for neutrino emission from microquasar during outbursts is presented based on the data collected by ANTARES between 2007 and 2010. Upper limits are shown and compared with the predictions.

  8. A study of 2-20 KeV X-rays from the Cygnus region

    NASA Technical Reports Server (NTRS)

    Bleach, R. D.

    1972-01-01

    Two rocket-borne proportional counters, each with 650 sq c, met area and 1.8 x 7.1 deg FWHM rectangular mechanical collimation, surveyed the Cygnus region in the 2 to 20 keV energy range on two occasions. X-ray spectral data gathered on 21 September 1970 from discrete sources in Cygnus are presented. The data from Cyg X-1, Cyg X-2, and Cyg X-3 have sufficient statistical significance to indicate mutually exclusive spectral forms for the three. Upper limits are presented for X-ray intensities above 2 keV for Cyg X-4 and Cyg X-5 (Cygnus loop). A search was made on 9 August 1971 for a diffuse component of X-rays 1.5 keV associated with an interarm region of the galaxy at galactic longitudes in the vicinity of 60 degrees. A statistically significant excess associated with a narrow disk component was detected. Several possible emission models are discussed, with the most likely candidate being a population of unresolvable low luminosity discrete sources.

  9. Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The brightest cosmic x-ray source in the constellation of Scorpius and the first cosmic x-ray source to be discovered. Detected for the first time in 1962 by instrumentation carried to an altitude of 225 km by an Aerobee rocket, Scorpius X-1 is, apart from occasional transient sources, the brightest cosmic source of x-radiation in the sky....

  10. Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni

    NASA Astrophysics Data System (ADS)

    Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G. H.; Beloborodov, Andrei M.; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W.; Zhang, Xiaoling

    2016-03-01

    Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 106 to 1010 solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.

  11. Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni.

    PubMed

    Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G H; Beloborodov, Andrei M; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W; Zhang, Xiaoling

    2016-03-17

    Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 10(6) to 10(10) solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy. PMID:26934231

  12. Gigantic Cosmic Corkscrew Reveals New Details About Mysterious Microquasar

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Making an extra effort to image a faint, gigantic corkscrew traced by fast protons and electrons shot out from a mysterious microquasar paid off for a pair of astrophysicists who gained new insights into the beast's inner workings and also resolved a longstanding dispute over the object's distance. Microquasar SS 433 VLA Image of Microquasar SS 433 CREDIT: Blundell & Bowler, NRAO/AUI/NSF (Click on Image for Larger Version) The astrophysicists used the National Science Foundation's Very Large Array (VLA) radio telescope to capture the faintest details yet seen in the plasma jets emerging from the microquasar SS 433, an object once dubbed the "enigma of the century." As a result, they have changed scientists' understanding of the jets and settled the controversy over its distance "beyond all reasonable doubt," they said. SS 433 is a neutron star or black hole orbited by a "normal" companion star. The powerful gravity of the neutron star or black hole draws material from the stellar wind of its companion into an accretion disk of material tightly circling the dense central object prior to being pulled onto it. This disk propels jets of fast protons and electrons outward from its poles at about a quarter of the speed of light. The disk in SS 433 wobbles like a child's top, causing its jets to trace a corkscrew in the sky every 162 days. The new VLA study indicates that the speed of the ejected particles varies over time, contrary to the traditional model for SS 433. "We found that the actual speed varies between 24 percent to 28 percent of light speed, as opposed to staying constant," said Katherine Blundell, of the University of Oxford in the United Kingdom. "Amazingly, the jets going in both directions change their speeds simultaneously, producing identical speeds in both directions at any given time," Blundell added. Blundell worked with Michael Bowler, also of Oxford. The scientists' findings have been accepted by the Astrophysical Journal Letters. SS 433 New VLA

  13. The violent past of Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Kolb, Ulrich; Davies, Melvyn B.; King, Andrew; Ritter, Hans

    2000-09-01

    Cygnus X-2 appears to be the descendant of an intermediate-mass X-ray binary (IMXB). Using Mazzitelli's stellar code we compute detailed evolutionary sequences for the system and find that its prehistory is sensitive to stellar input parameters, in particular the amount of core overshooting during the main-sequence phase. With standard assumptions for convective overshooting a case B mass transfer starting with a 3.5-Msolar donor star is the most likely evolutionary solution for Cygnus X-2. This makes the currently observed state rather short-lived, of order 3Myr, and requires a formation rate > 10-7-10-6yr-1 of such systems in the Galaxy. Our calculations show that neutron star IMXBs with initially more massive donors (>~4Msolar) encounter a delayed dynamical instability; they are unlikely to survive this rapid mass transfer phase. We determine limits for the age and initial parameters of Cygnus X-2 and calculate possible dynamical orbits of the system in a realistic Galactic potential, given its observed radial velocity. We find trajectories which are consistent with a progenitor binary on a circular orbit in the Galactic plane inside the solar circle that received a kick velocity <=200kms-1 at the birth of the neutron star. The simulations suggest that about 7per cent of IMXBs receiving an arbitrary kick velocity from a standard kick velocity spectrum would end up in an orbit similar to Cygnus X-2, while about 10per cent of them reach yet larger Galactocentric distances.

  14. X-ray Variability Constraints on Compton Cloud Models of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Vaughan, Brian

    1999-01-01

    We have now completed this work, and all related publications have either appeared in print or are currently in press. A list of these publications is given below. There have been essentially three works that have arisen from this proposal. Spectral analysis of the data is presented in Dove et al. (1998a). Timing analysis is presented in Nowak et al. (1999a). Theoretical implications of the data analysis are discussed in Nowak et al. (1999b). Preliminary versions of all these works were presented at various conferences, and are reported in Nowak et al. (1997, 1998), Wilms et al. (1997), and Dove et al. (1998b). The grant was predominantly used for salary support for Dr. Michael Nowak, Dr. James Dove, and Dr. J. Wilms during the course of these projects. Grant funds were also used for Dr. Nowak to travel to Caltech to perform data analysis with Dr. Brian Vaughan, and for Dr. Wilms to visit JILA, University of Colorado, where much of this work was performed.

  15. Primary orbit and the absorption lines of HDE 226868 (Cygnus X-1)

    SciTech Connect

    Ninkov, Z.; Walker, G.A.H.; Yang, S.

    1987-10-01

    From Reticon spectra of about 1 A resolution taken between 1980 and 1984, the radial velocity curve of HDE 226868 is found to be characteristic of a single-line spectroscopic binary with K = 75.0 + or - 1.0 km/s and e = 0.0. Combining historical velocities from the literature with present data and applying a period-folding analysis, a period of 5.59964 + or - 0.00001 days is found. These values agree well with those published by Gies and Bolton (1982). The value of v sin i is estimated to be 94.3 + or - 5 km/s from CFHT Reticon spectra taken at 0.1 A resolution. Assuming that the rotation of the primary is synchronized to the orbital revolution of the secondary gives a primary to secondary mass ratio between 1.5 and 2.3. An absolute magnitude of -6.5 + or - 0.2 is derived from the equivalent width of H-gamma (1.5 + or - 0.1 A) and the calibration of Walker and Millward (1985), which is consistent with the spectral classification of O9.7 Iab. Assuming 20 solar masses as a reasonable estimate for the mass of the primary implies a mass of 10 + or - 1 solar masses for the secondary. 62 references.

  16. The primary orbit and the absorption lines of HDE 226868 (Cygnus X-1)

    NASA Astrophysics Data System (ADS)

    Ninkov, Z.; Walker, G. A. H.; Yang, S.

    1987-10-01

    From Reticon spectra of about 1 A resolution taken between 1980 and 1984, the radial velocity curve of HDE 226868 is found to be characteristic of a single-line spectroscopic binary with K = 75.0 + or - 1.0 km/s and e = 0.0. Combining historical velocities from the literature with present data and applying a period-folding analysis, a period of 5.59964 + or - 0.00001 days is found. These values agree well with those published by Gies and Bolton (1982). The value of v sin i is estimated to be 94.3 + or - 5 km/s from CFHT Reticon spectra taken at 0.1 A resolution. Assuming that the rotation of the primary is synchronized to the orbital revolution of the secondary gives a primary to secondary mass ratio between 1.5 and 2.3. An absolute magnitude of -6.5 + or - 0.2 is derived from the equivalent width of H-gamma (1.5 + or - 0.1 A) and the calibration of Walker and Millward (1985), which is consistent with the spectral classification of O9.7 Iab. Assuming 20 solar masses as a reasonable estimate for the mass of the primary implies a mass of 10 + or - 1 solar masses for the secondary.

  17. Black hole-jet systems: From blazars to microquasars

    NASA Astrophysics Data System (ADS)

    Xue, Yongquan

    Understanding black holes is one of the most intriguing and important topics in high energy astrophysics. Many astronomical black hole systems are known to contain three basic components: a black hole, an accretion disk, and a pair of collimated jets that are likely coupled physically to the accretion disk. For this thesis work, the focus is on two classes of black hole-jet systems, known as blazars and microquasars. There is growing evidence that the central engines in both types of systems are qualitatively similar. Collectively, they may, therefore, provide an excellent laboratory for studying common physical processes over a vast range of physical scales. Although both types of systems have been studied extensively, there are still many outstanding issues. The goal of this thesis work is to cast light on some of these important issues. First, to understand the energetics of the flaring phenomenon in blazars, it is necessary to get a handle on the size of the emitting region. An effective way to do so is to quantify timescales over which a source varies. I systematically studied X-ray flaring activities of the TeV blazar Mrk 501 and found flares over a wide range of timescale, with the most rapid one lasting for only about 800 s, which is the shortest ever seen in this system. The latter sets an upper limit of ~ 2.4 × 10^14 cm (i.e., 800 light seconds) on the size of the region that produces the flare, which is already comparable to the characteristic size of the black hole (of ~ 10 9 [Special characters omitted.] ). Second, a related question is what causes the observed flares in blazars. To this end, I studied X-ray spectral evolution of TeV blazars Mrk 421 and Mrk 501 during individual flares that last for a few days. Such a study has become possible only recently, with high-quality X-ray data taken during very active periods of the sources. I fitted the time-resolved X-ray spectra with a synchrotron model and found that, in order to account for the observed

  18. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  19. Hadronic gamma-ray and neutrino emission from Cygnus X-3

    SciTech Connect

    Sahakyan, N.; Piano, G.; Tavani, M.

    2014-01-01

    Cygnus X-3 (Cyg X-3) is a remarkable Galactic microquasar (X-ray binary) emitting from radio to γ-ray energies. In this paper, we consider the hadronic model of emission of γ-rays above 100 MeV and their implications. We focus on the joint γ-ray and neutrino production resulting from proton-proton interactions within the binary system. We find that the required proton injection kinetic power, necessary to explain the γ-ray flux observed by AGILE and Fermi-LAT, is L{sub p} ∼ 10{sup 38} erg s{sup –1}, a value in agreement with the average bolometric luminosity of the hypersoft state (when Cyg X-3 was repeatedly observed to produce transient γ-ray activity). If we assume an increase of the wind density at the superior conjunction, the asymmetric production of γ-rays along the orbit can reproduce the observed modulation. According to observational constraints and our modeling, a maximal flux of high-energy neutrinos would be produced for an initial proton distribution with a power-law index α = 2.4. The predicted neutrino flux is almost two orders of magnitude less than the two-month IceCube sensitivity at ∼1 TeV. If the protons are accelerated up to PeV energies, the predicted neutrino flux for a prolonged 'soft X-ray state' would be a factor of about three lower than the one-year IceCube sensitivity at ∼10 TeV. This study shows that, for a prolonged soft state (as observed in 2006) possibly related to γ-ray activity and a hard distribution of injected protons, Cyg X-3 might be close to being detectable by cubic-kilometer neutrino telescopes such as IceCube.

  20. The 2010 May Flaring Episode of Cygnus X-3 in Radio, X-Rays, and gamma-Rays

    NASA Technical Reports Server (NTRS)

    Williams, Peter K. G.; Tomsick, John A.; Bodaghee, Arash; Bower, Geoffrey C.; Pooley, Guy G.; Pottschmidt, Katja; Rodriguez, Jerome; Wilms, Joern; Migliari, Simone; Trushkin, Sergei A.

    2011-01-01

    In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV gamma-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich dataset of radio, hard and soft X-ray, and gamma-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a approx.3-d softening and recovery of the X-ray emission, followed almost immediately by a approx.1-Jy radio flare at 15 GHz, followed by a 4.3sigma gamma-ray flare (E > 100 MeV) approx.1.5 d later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the gamma-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the gamma-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for gamma-ray emission from Cyg X-3.

  1. Shocked clouds in the Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    1994-01-01

    This grant covers the analysis of ROSAT PSPC and HRI images of the Cygnus Loop, an elderly supernova remnant. The project, as proposed, includes not only the usual analysis of ROSAT data; the ROSAT data is being combined with optical and UV data, and new model calculations are being performed. The status is reported on optical imagery, echelle data, IUE data, ROSAT data, and the grain model. The major question being addressed is whether the blastwave-cloud interaction in the feature known as XA is basically a converging shock in a fairly large cloud or turbulent stripping of material from the edges of a smaller cloud.

  2. Shocked clouds in the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Raymond, John C.

    1994-02-01

    This grant covers the analysis of ROSAT PSPC and HRI images of the Cygnus Loop, an elderly supernova remnant. The project, as proposed, includes not only the usual analysis of ROSAT data; the ROSAT data is being combined with optical and UV data, and new model calculations are being performed. The status is reported on optical imagery, echelle data, IUE data, ROSAT data, and the grain model. The major question being addressed is whether the blastwave-cloud interaction in the feature known as XA is basically a converging shock in a fairly large cloud or turbulent stripping of material from the edges of a smaller cloud.

  3. Variable very-high-energy gamma-ray emission from the microquasar LS I +61 303.

    PubMed

    Albert, J; Aliu, E; Anderhub, H; Antoranz, P; Armada, A; Asensio, M; Baixeras, C; Barrio, J A; Bartelt, M; Bartko, H; Bastieri, D; Bavikadi, S R; Bednarek, W; Berger, K; Bigongiari, C; Biland, A; Bisesi, E; Bock, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Ciprini, S; Coarasa, J A; Commichau, S; Contreras, J L; Cortina, J; Curtef, V; Danielyan, V; Dazzi, F; De Angelis, A; de Los Reyes, R; De Lotto, B; Domingo-Santamaría, E; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Flix, J; Fonseca, M V; Font, L; Fuchs, M; Galante, N; Garczarczyk, M; Gaug, M; Giller, M; Goebel, F; Hakobyan, D; Hayashida, M; Hengstebeck, T; Höhne, D; Hose, J; Hsu, C C; Isar, P G; Jacon, P; Kalekin, O; Kosyra, R; Kranich, D; Laatiaoui, M; Laille, A; Lenisa, T; Liebing, P; Lindfors, E; Lombardi, S; Longo, F; López, J; López, M; Lorenz, E; Lucarelli, F; Majumdar, P; Maneva, G; Mannheim, K; Mansutti, O; Mariotti, M; Martínez, M; Mase, K; Mazin, D; Merck, C; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moralejo, A; Nilsson, K; Oña-Wilhelmi, E; Orduña, R; Otte, N; Oya, I; Paneque, D; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pavel, N; Pegna, R; Persic, M; Peruzzo, L; Piccioli, A; Poller, M; Pooley, G; Prandini, E; Raymers, A; Rhode, W; Ribó, M; Rico, J; Riegel, B; Rissi, M; Robert, A; Romero, G E; Rügamer, S; Saggion, A; Sánchez, A; Sartori, P; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sillanpää, A; Sobczynska, D; Stamerra, A; Stark, L S; Takalo, L; Temnikov, P; Tescaro, D; Teshima, M; Tonello, N; Torres, A; Torres, D F; Turini, N; Vankov, H; Vitale, V; Wagner, R M; Wibig, T; Wittek, W; Zanin, R; Zapatero, J

    2006-06-23

    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, which suggests that the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or absorption processes. PMID:16709745

  4. MODELING THE INFRARED EMISSION IN CYGNUS A

    SciTech Connect

    Privon, G. C.; Baum, S. A.; Noel-Storr, J.; O'Dea, C. P.; Axon, D. J.; Robinson, A.; Gallimore, J.

    2012-03-01

    We present new Spitzer IRS spectroscopy of Cygnus A, one of the most luminous radio sources in the local universe. Data on the inner 20'' are combined with new reductions of MIPS and IRAC photometry as well as data from the literature to form a radio through mid-infrared spectral energy distribution (SED). This SED is then modeled as a combination of torus reprocessed active galactic nucleus (AGN) radiation, dust enshrouded starburst, and a synchrotron jet. This combination of physically motivated components successfully reproduces the observed emission over almost 5 dex in frequency. The bolometric AGN luminosity is found to be 10{sup 12} L{sub Sun} (90% of L{sub IR}), with a clumpy AGN-heated dust medium extending to {approx}130 pc from the supermassive black hole. Evidence is seen for a break or cutoff in the core synchrotron emission. The associated population of relativistic electrons could in principle be responsible for some of the observed X-ray emission though the synchrotron self-Compton mechanism. The SED requires a cool dust component, consistent with dust-reprocessed radiation from ongoing star formation. Star formation contributes at least 6 Multiplication-Sign 10{sup 10} L{sub Sun} to the bolometric output of Cygnus A, corresponding to a star formation rate of {approx}10 M{sub Sun} yr{sup -1}.

  5. The Cygnus region of the galaxy: A VERITAS perspective

    NASA Astrophysics Data System (ADS)

    Weinstein, A.

    2015-12-01

    The Cygnus-X star-forming region ("Cygnus") is the richest star-forming region within 2 kpc of Earth and is home to a wealth of potential cosmic ray accelerators, including supernova remnants, massive star clusters, and pulsar wind nebulae. Over the past five years, discoveries by several gamma-ray observatories sensitive in different energy bands, including the identification by Fermi-LAT of a potential cocoon of freshly accelerated cosmic rays, have pinpointed this region as a unique laboratory for studying the early phases of the cosmic ray life cycle. From 2007 to 2009 VERITAS, a very high energy (VHE; E > 100 GeV) observatory in southern Arizona, undertook an extensive survey of the Cygnus region from 67 to 82 degrees Galactic longitude and from -1 to 4 degrees in Galactic latitude. In the years since, VERITAS has continued to accumulate data at specific locations within the survey region. We will review the discoveries and insights that this rich dataset has already provided. We will also consider the key role that we expect these data to play in interpreting the complex multiwavelength picture we have of the Cygnus region, particularly in the vicinity of the Cygnus cocoon. As part of this discussion we will summarize ongoing studies of VERITAS data in the Cygnus region, including the development of new data analysis techniques that dramatically increase VERITAS' sensitivity to sources on scales larger than a square degree.

  6. The Cluster of Galaxies Surrounding Cygnus A

    NASA Astrophysics Data System (ADS)

    Owen, Frazer N.; Ledlow, Michael J.; Morrison, Glenn E.; Hill, John M.

    1997-10-01

    We report optical imaging and spectroscopy of 41 galaxies in a 22' square region surrounding Cygnus A. The results show that there is an extensive rich cluster associated with Cyg A of Abell richness of at least 1 and possibly as high as 4. The velocity histogram has two peaks, one centered on Cyg A and a more significant peak redshifted by about 2060 km s-1 from the velocity of Cyg A. The dynamical centroid of the spatial distribution is also shifted somewhat to the northwest. However, statistical tests show only weak evidence that there are two distinct clusters. The entire system has a velocity dispersion of 1581 km s-1, which is slightly larger than other, well-studied examples of rich clusters.

  7. Red supergiants and the past of Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Comerón, F.; Djupvik, A. A.; Schneider, N.; Pasquali, A.

    2016-02-01

    Context. Red supergiants are the evolved descendants of massive stars with initial masses between 7 and 40 M⊙. Their brightness makes them easily detectable in the near infrared, making them useful probes of star formation that occurred several tens of Myr ago. Aims: We investigate the past star formation history of Cygnus OB2, the nearest very massive OB association, using red supergiants as a probe. Our aim is to confirm the evidence, found by previous studies, that star formation in the Cygnus OB2 region started long before the latest burst that gave rise to the dense aggregate of early O-type stars that dominate the appearance of the association at present. Methods: Near-infrared star counts in the Cygnus region reveal moderate evidence for a peak in the areal density of bright, reddened stars approximately coincident with Cygnus OB2. A total of 11 sources are found within a circle of 1° radius centered on the association, of which 4 are non-supergiants based on existing observations. Near-infrared spectroscopy is presented of the remaining seven candidates, including four that have been already classified as M supergiants in the literature. Results: We confirm the presence of seven red supergiants in the region and argue that they are probably physically associated with Cygnus OB2. Their location is roughly coincident with that of the older population identified by previous studies, supporting the scenario in which the main star formation activity in the association has been shifting toward higher Galactic longitudes with time. Their luminosities are compared with the predictions of evolutionary tracks with and without rotation to estimate the mass of their progenitors and ages. In this way, we confirm that massive star formation was already taking place in the area of Cygnus OB2 over 20 Myr ago, and we estimate that the star formation rate in the latest 6 Myr represents a six-fold increase over the massive star formation rate at the time when the

  8. Modelling a Simultaneous Radio/X-Ray Flare from Cyg X-1

    NASA Technical Reports Server (NTRS)

    Leventis, Konstantinos; Markoff, Sera; Wilsm, Joern; Nowak, Michael A.; Maitra, Dipankar; Pottschmidt, Katja; Pooley, Guy G.; Kreykenbohm, Ingo; Rotschild, Richard E.

    2008-01-01

    The long-term monitoring campaign of Cyg X-1 has provided the detection of the first simultaneous radio/X-ray flare seen from that source. We investigate the physical characteristics of the event in terms of emission from a homogeneous, expanding blob of pair-plasma, superimposed on a baseline flux in both bands. We find that while the radio flare can be reconstructed under various configurations of a cooling blob, continuous (re)acceleration of particles inside the jet is necessary to sustain X-ray emission at the levels implied by the data, for the observed duration. We present major results of the modelling and discuss implications for the role of microquasar jets.

  9. The radio 'lobes' of Scorpius X-1 are unrelated background sources

    NASA Technical Reports Server (NTRS)

    Fomalont, E. B.; Geldzahler, B. J.

    1991-01-01

    The VLA between 1981 and 1990 are used to produce high-resolution images of the radio emission from the region near Sco X-1. The radio proper motion of Sco X-1 was measured at 0.0148 +/-0.0011/yr, which agrees with the optical determination for the X-ray-emitting binary system. The proper motions of two nearby radio sources, juxtaposed 1 arcmin to the NE and to the SW, were measured and found to be stationary in the sky with upper limits of 0.004 arcsec/yr. A deep radio image of the 10-arcsec extended SW source shows a morphology strikingly similar to that of a typical luminous extragalactic radio source, which contains two edge-brightened lobes, a jet, and a core. The possibilities that the NE source, although nearly stationary in the sky, is associated with Sco X-1, are discussed, and it is concluded that it is an unrelated background source. It is inferred that Sco X-1 is not a miniature triple source or a 'microquasar', and its radio emission is confined to the binary system.

  10. X-1A impact site

    NASA Technical Reports Server (NTRS)

    1955-01-01

    A photo taken on 8 August 1955, showing the remains of the Bell X-1A The Bell X-1A (Serial # 48-1384) was designed for aerodynamic stability and air load research. It was delivered to Edwards Air Force Base on 7 January 1953. The aircraft made its first glide flight on 14 February with Bell test pilot Jean 'Skip' Ziegler at the controls. Ziegler also flew the first powered flight in the X-1A on 21 February. Contractor flights in the aircraft continued through April, at which time the X-1A was temporarily grounded for modifications. Flight operations were resumed on 21 November 1953 with Maj. Charles 'Chuck' Yeager at the controls. During a flight on 12 December, Yeager took the X-1A to a record-breaking speed of Mach 2.44 at an altitude of 75,000 feet. He then encountered the unpleasant phenomemon of inertia coupling. The X-1A tumbled out of control, knocking Yeager unconscious briefly before entering an inverted spin. Fortunately Yeager regained his senses and control of the aircraft 60 miles from Edwards at an altitude of 25,000 feet. Shaken, but unharmed, he brought the rocket plane in for a safe landing on Rogers Dry Lake. Next, the X-1A was used for a series of high-altitude missions piloted by Maj. Arthur 'Kit' Murray. Fourteen flights proved necessary to meet the program requirements, with only four being successful. During the test series, Murray set several unofficial world altitude records. The highest (90,440 feet) was set on 26 August 1954. Following completion of the altitude program, the aircraft was turned over to the National Advisory Committee for Aeronautics (NACA). The X-1A underwent more modifications and was returned to flight status in July 1955. The first NACA-sponsored flight, piloted by Joseph A. Walker, took place on 20 July. The second NACA mission was to be the 25th flight of the X-1A. The flight began normally on 8 August 1955, with the X-1A shackled to the underside of a JTB-29A (45-21800) piloted by Stanley Butchart and John 'Jack' Mc

  11. A discussion of the H-alpha filamentary nebulae and galactic structure in the Cygnus region

    NASA Technical Reports Server (NTRS)

    Matthews, T. A.; Simonson, S. C., III

    1971-01-01

    From observation of the galactic structure in Cygnus, the system of filamentary nebulae was found to lie at a distance of roughly 1.5 kpc, in the same region as about half the thermal radio sources in Cygnus X, the supernova remnant near gamma Cygni, and the association Cygnus OB2, in the direction of which the X-ray source Cygnus XR-3 is observed. The source of excitation was probably the pulse of radiation from a supernova explosion, as proposed in the case of Gum nebula. However continuing excitation by early stars in the region of Cygnus X cannot be excluded.

  12. A search for time dependent neutrino emission from microquasars with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Barrios, J.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; De Rosa, G.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hofestädt, J.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Montaruli, T.; Müller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vernin, P.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.

    2014-09-01

    Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. No statistically significant excess has been observed, thus upper limits on the neutrino fluences have been derived and compared to the predictions by models. Constraints have been put on the ratio of proton to electron luminosity in the jets.

  13. Are 3C 120 and Other Active Galactic Nuclei Overweight Microquasars?

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.

    2005-11-01

    The appearance of superluminal radio knots follows drops in the X-ray flux in the FR1 radio galaxy 3C 120 and possibly the FR2 source 3C 111. This corresponds in a very general way to the behavior of the X-ray binary GRS 1915 + 105, but the light curves of the microquasar are much richer in detail. Starting in 2003.7, the character of the radio and X-ray light curves of 3C 120 changed, perhaps signaling a new stage of activity. I discuss here what one might expect when a microquasar is scaled up to AGN dimensions, and compare this with what we see in 3C 120. There is a mismatch between expectations and observations.

  14. Forbidden coronal iron emission in the Cygnus Loop

    SciTech Connect

    Teske, R.G. )

    1990-12-01

    Forbidden iron line images of parts of the Cygnus Loop supernova remnant are reported and discussed. Images in both the red and green lines on the rim of NGC 6995 cannot be well interpreted in terms of cloud evaporation, and instead support the reflected shock model of Hester and Cox (1986). On the northeast rim both lines are brightest at the radiative filaments of NGC 6992 and fade to invisibility in the remnant's interior, in agreement with the sheet model for the Cygnus Loop. Forbidden Fe X emission is also found just behind some of the nonradiative filaments lying northeast of the main optical nebulosity, at a location quantitatively consistent with the cosmic-ray shock model of Boulares and Cox (1988). However, the forbidden Fe X and forbidden Fe IV data taken together also qualitatively agree with a hydrodynamic shock and cavity explosion model for the event which created the Cygnus Loop. 20 refs.

  15. JET TRAILS AND MACH CONES: THE INTERACTION OF MICROQUASARS WITH THE INTERSTELLAR MEDIUM

    SciTech Connect

    Yoon, D.; Morsony, B.; Heinz, S.; Wiersema, K.; Fender, R. P.; Russell, D. M.; Sunyaev, R.

    2011-11-20

    A subset of microquasars exhibits high peculiar velocity with respect to the local standard of rest due to the kicks they receive when being born in supernovae. The interaction between the radio plasma released by microquasar jets from such high-velocity binaries with the interstellar medium must lead to the production of trails and bow shocks similar to what is observed in narrow-angle tailed radio galaxies and pulsar wind nebulae. We present a set of numerical simulations of this interaction that illuminate the long-term dynamical evolution and the observational properties of these microquasar bow-shock nebulae and trails. We find that this interaction always produces a structure that consists of a bow shock, a trailing neck, and an expanding bubble. Using our simulations to model emission, we predict that the shock surrounding the bubble and the neck should be visible in H{sub {alpha}} emission, the interior of the bubble should be visible in synchrotron radio emission, and only the bow shock is likely to be detectable in X-ray emission. We construct an analytic model for the evolution of the neck and bubble shape and compare this model with observations of the X-ray binary SAX J1712.6-3739.

  16. Large scale radio/X-ray jets in microquasars (NAPA part)

    NASA Astrophysics Data System (ADS)

    Corbel, Stephane; Tzioumis, Anastasios; Fender, Rob; Kaaret, Philip; Orosz, Jerry; Tomsick, John; Loh, Alan

    2014-10-01

    The discovery with ATCA of large scale radio lobes around the microquasar XTE J1550-564 has led to the discovery with Chandra (for the first time) of moving relativistic X-ray jets in a galactic accreting source. The lobes are likely due to the interaction of relativistic plasma with the ISM. This ATCA proposal has allowed similar discovery in H 1743-322, and therefore that it maybe a common occurrence in the Galaxy. Recently, we have witnessed with ATCA the formation of similar lobes in the black hole GX 339-4. We propose to use the Compact Array to continue our search for radio lobes in microquasars that have been active in the past years. The proposed observations are optimized to discover and study (flux evolution, morphology, SED, proper motion, ...) new radio lobes from microquasars. This will have implications not only for the study of jets from Galactic X-ray binaries, but also for our understanding of relativistic jets from active galactic nuclei (AGN).

  17. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.

    PubMed

    Neilsen, Joseph; Lee, Julia C

    2009-03-26

    Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet. PMID:19325629

  18. Satellite tracking of the migration of Whooper Swans Cygnus cygnus wintering in Japan

    USGS Publications Warehouse

    Shimada, Tetsuo; Yamaguchi, Noriyuki M.; Hijikata, N.; Hiraoka, Emiko N.; Hupp, Jerry; Flint, Paul L.; Tokita, Ken-ichi; Fujita, Go; Uchida, Kiyoshi; Sato, F.; Kurechi, M.; Pearce, John M.; Ramey, Andy M.; Higuchi, Hiroyoshi

    2014-01-01

    We satellite-tracked Whooper Swans Cygnus cygnus wintering in northern Japan to document their migration routes and timing, and to identify breeding areas. From 47 swans that we marked at Lake Izunuma-Uchinuma, Miyagi Prefecture, northeast Honshu, and at Lake Kussharo, east Hokkaido, we observed 57 spring and 33 autumn migrations from 2009-2012. In spring, swans migrated north along Sakhalin Island from eastern Hokkaido using stopovers in Sakhalin, at the mouth of the Amur River and in northern coastal areas of the Sea of Okhotsk. They ultimately reached molting/breedmg areas along the Indigirka River and the lower Kolyma River in northern Russia. In autumn, the swans basically reversed the spring migration routes. We identified northern Honshu, eastern Hokkaido, coastal areas in Sakhalin, the lower Amur River and northern coastal areas of the Sea of Okhotsk as the most frequent stopover sites, and the middle reaches of the Indigirka and the lower Kolyma River as presumed breeding sites. Our results are helpful in understanding the distribution of the breeding and stopover sites of Whooper Swans wintering in Japan and in identifying their major migration habitats. Our findings contribute to understanding the potential transmission process of avian influenza viruses potentially carried by swans, and provide information necessary to conserve Whooper Swans in East Asia.

  19. Characterization of microsatellite loci isolated in trumpeter swan (Cygnus buccinator)

    USGS Publications Warehouse

    John, J. St; Ransler, F.A.; Quinn, T.W.; Oyler-McCance, S.J.

    2006-01-01

    Primers for 16 microsatellite loci were developed for the trumpeter swan (Cygnus buccinator), a species recovering from a recent population bottleneck. In a screen of 158 individuals, the 16 loci were found to have levels of variability ranging from two to seven alleles. No loci were found to be linked, although two loci repeatedly revealed significant departures from Hardy-Weinberg equilibrium. Amplification in the closely related tundra swan (Cygnus columbianus) was successful for all except one locus. These microsatellite loci will be applicable for population genetic analyses and ultimately aid in management efforts. ?? 2006 The Authors.

  20. Soft X-ray spectroscopy of the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    McEntaffer, Randall L.

    My thesis work consisted of the design, fabrication and launch of a sounding rocket payload to observe the spectrum of the soft X-ray emission from the Cygnus Loop supernova remnant. This payload was designated the Cygnus X-ray Emission Spectroscopic Survey (CyXESS) and launched from White Sands Missile Range on November 20th, 2006. The novel X-ray spectrograph incorporated a wire- grid collimator feeding an array of gratings in the extreme off-plane mount which ultimately dispersed the spectrum onto never before flown Gaseous Electron Multiplier (GEM) detectors. This instrument recorded 65 seconds of usable data between 43-49.5 Å in two prominent features. The first feature near 45 Å is dominated by the He-like triplet of O VII in second order with contributions from Mg X and Si IX-Si XII in first order, while the second feature near 47.5 Å is first order S IX and S X. Fits to the spectra give an equilibrium plasma at log( T )=6.2 ( kT e =0.14 keV) and near cosmic abundances. This is consistent with previous observations, which demonstrated that the soft x-ray emission from the Cygnus Loop is dominated by interactions between the initial blast wave with the walls of a precursor formed cavity surrounding the Cygnus Loop.

  1. Global far-ultraviolet properties of the Cygnus Loop

    SciTech Connect

    Kim, Il-Joong; Seon, Kwang-Il; Lee, Dae-Hee; Han, Wonyong; Lim, Yeo-Myeong; Min, Kyoung-Wook; Edelstein, Jerry

    2014-03-20

    We present the C III λ977, O VI λλ1032, 1038 and N IV] λ1486 emission line maps of the Cygnus Loop, obtained with the newly processed data of the Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR; also known as FIMS) mission. In addition, the Si IV+O IV] line complexes around 1400 Å are resolved into two separate emission lines whose intensity demonstrates a relatively high Si IV region that was predicted in the previous study. The morphological similarity between the O VI and X-ray images, as well as a comparison of the O VI intensity with the value expected from the X-ray results, indicates that large portions of the observed O VI emissions could be produced from X-ray emitting gas. Comparisons of the far-ultraviolet (FUV) images with the optical and H I 21 cm images reveal spatial variations of shock-velocity populations and high FUV extinction in the direction of a previously identified H I cloud. By calculating the FUV line ratios for several subregions of the Cygnus Loop, we investigate the spatial variation of the population of radiative shock velocities as well as the effects of resonance scattering, X-ray emitting gas, and nonradiative shocks. The FUV and X-ray luminosity comparisons between the Cygnus Loop and the Vela supernova remnant suggest that the fraction of shocks in the early evolutionary stages is much larger in the Cygnus Loop.

  2. Search for old neutron stars in molecular clouds: Cygnus rift and Cygnus OB7.

    NASA Astrophysics Data System (ADS)

    Belloni, T.; Zampieri, L.; Campana, S.

    1997-03-01

    We present the results of a systematic search for old isolated neutron stars (ONSs) in the direction of two giant molecular clouds in Cygnus (Rift and OB7). From theoretical calculations, we expect the detection of a large number of ONSs with the PSPC on board ROSAT. By analyzing the PSPC pointings in the direction of the clouds, we find four sources characterized by count rates (~10^-3^ct/s) and spectral properties consistent with the hypothesis that the X-ray radiation is produced by ONSs and also characterized by the absence of any measurable optical counterpart within their error circle in the digitized red plates of the Palomar All Sky Survey. The importance of follow-up deep observations in the direction of these ONS candidates is discussed. The observational and theoretical approach presented here could be fruitfully applied also to the systematic search for ONSs in other regions of the Galaxy.

  3. LINE-OF-SIGHT SHELL STRUCTURE OF THE CYGNUS LOOP

    SciTech Connect

    Uchida, Hiroyuki; Tsunemi, Hiroshi; Katsuda, Satoru; Kimura, Masashi; Kosugi, Hiroko; Takahashi, Hiroaki

    2009-11-10

    We conducted a comprehensive study on the shell structure of the Cygnus Loop using 41 observation data obtained by the Suzaku and the XMM-Newton satellites. To investigate the detailed plasma structure of the Cygnus Loop, we divided our fields of view into 1042 box regions. From the spectral analysis, the spectra obtained from the limb of the Loop are well fitted by the single-component non-equilibrium ionization plasma model. On the other hand, the spectra obtained from the inner regions are well fitted by the two-component model. As a result, we confirmed that the low-temperature and high-temperature components originated from the surrounding interstellar matter (ISM) and the ejecta of the Loop, respectively. From the best-fit results, we showed a flux distribution of the ISM component. The distribution clearly shows the limb-brightening structure, and we found out some low-flux regions. Among them, the south blowout region has the lowest flux. We also found other large low-flux regions at slightly west and northeast from the center. We estimated the former thin shell region to be approx1.{sup 0}3 in diameter and concluded that there exists a blowout along the line of sight in addition to the south blowout. We also calculated the emission measure distribution of the ISM component and showed that the Cygnus Loop is far from the result obtained by a simple Sedov evolution model. From the results, we support that the Cygnus Loop originated from a cavity explosion. The emission measure distribution also suggests that the cavity-wall density is higher in the northeast than that in the southwest. These results suggest that the thickness of the cavity wall surrounding the Cygnus Loop is not uniform.

  4. The youngest known X-ray binary: Circinus X-1 and its natal supernova remnant

    SciTech Connect

    Heinz, S.; Sell, P.; Fender, R. P.; Jonker, P. G.; Brandt, W. N.; Calvelo-Santos, D. E.; Tzioumis, A. K.; Nowak, M. A.; Schulz, N. S.; Wijnands, R.; Van der Klis, M.

    2013-12-20

    Because supernova remnants are short-lived, studies of neutron star X-ray binaries within supernova remnants probe the earliest stages in the life of accreting neutron stars. However, such objects are exceedingly rare: none were known to exist in our Galaxy. We report the discovery of the natal supernova remnant of the accreting neutron star Circinus X-1, which places an upper limit of t < 4600 yr on its age, making it the youngest known X-ray binary and a unique tool to study accretion, neutron star evolution, and core-collapse supernovae. This discovery is based on a deep 2009 Chandra X-ray observation and new radio observations of Circinus X-1. Circinus X-1 produces type I X-ray bursts on the surface of the neutron star, indicating that the magnetic field of the neutron star is small. Thus, the young age implies either that neutron stars can be born with low magnetic fields or that they can rapidly become de-magnetized by accretion. Circinus X-1 is a microquasar, creating relativistic jets that were thought to power the arcminute-scale radio nebula surrounding the source. Instead, this nebula can now be attributed to non-thermal synchrotron emission from the forward shock of the supernova remnant. The young age is consistent with the observed rapid orbital evolution and the highly eccentric orbit of the system and offers the chance to test the physics of post-supernova orbital evolution in X-ray binaries in detail for the first time.

  5. Radio lobes and X-ray hot spots of the extraordinary microquasar in NGC 7793

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Pakull, Manfred; Broderick, Jess; Corbel, Stephane; Motch, Christian

    2010-07-01

    We have studied the newly-discovered microquasar in NGC 7793 in radio, optical and X-ray bands. This system comprises a large (250×120 pc) line-emitting optical nebula, detected in Ha and HeII λ4686. The optical nebula coincides with a synchrotron-emitting radio cocoon, with a radio luminosity about 3 times that of Cas A. The central BH appears as a hard X-ray source with a point-like, blue optical counterpart. Two prominent radio lobes are located at the extremities of the cocoon. Just ahead of the radio hot spots, we found two X-ray hot spots, which we interpret as a signature of the bow shock into the interstellar medium. The X-ray hot spots, radio hot spots, X-ray core and major axis of the cocoon are well aligned, proving that the system is powered by a jet. From both the X-ray and optical data, we estimate a jet power ~a few×1040 erg s-1, active over a timescale ~105 yrs. This extraordinary system is a long-sought analog of the Galactic microquasar SS433 and may represent a new class of non-nuclear BHs dominated by mechanical power even at very high accretion rates.

  6. NuSTAR Observations of V404 Cygnus in Outburst

    NASA Astrophysics Data System (ADS)

    Walton, Dom; NuSTAR Collaboration

    2016-04-01

    The Galactic LMXB V404 Cygnus, one of the closest known black hole binary systems, went through its first major outburst in ~25 years in summer 2015. Over the course of this event, the NuSTAR observatory played an active role in the substantial multi-wavelength campaign initiated, performing a series of exposures covering a span of several weeks. These observations revealed extreme variability on both long and short timescales, as well as complex broadband X-ray spectra. More recently, after having returned to quiescence, V404 Cygnus also exhibited an unexpected re-brightening only ~6 months later. In this talk I will present an overview of the NuSTAR campaign, and discuss some early results from these observations.

  7. Cygnus OB2: Star Formation Ugly Duckling Causes a Flap

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Wright, Nicholas; Guarcello, Mario

    2015-08-01

    Cygnus OB2 is one of the largest known OB associations in our Galaxy, with a total stellar mass of 30,000 Msun and boasting an estimated 65 O-type stars and hundreds of OB stars. At a distance of only 1.4kpc, it is also the closest truly massive star forming region and provides a valuable testbed for star and planet formation theory. We have performed a deep stellar census using observations from X-ray to infrared, which has enabled studies of sub-structuring, mass segregation and dynamics, while infrared data reveal a story of protoplanetary disk attrition in an extremely harsh radiation environment. I will discuss how Cygnus OB2 challenges the idea that stars must form in dense, compact clusters, and demonstrates that stars as massive as 100 Msun can form in relatively low-density environments. Convincing evidence of disk photoevaporation poses a potential problem for planet formation and growth in starburst environments.

  8. Cygnus X-2 in a radio quiet state

    NASA Astrophysics Data System (ADS)

    Rushton, A.; Bach, U.; Spencer, R.; Kadler, M.; Church, M.; Balucinska-Church, M.; Wilms, J.; Hanke, M.; Zola, S.; Schulz, N.

    2009-05-01

    The neutron star X-ray binary Cygnus X-2 was observed using the e- EVN (European VLBI Network) on May 12/13th 2009 between 23:00-13:00 UT at 5 GHz. The radio telescopes participating with the e-EVN at 5 GHz were Effelsberg, Medicina, Onsala 25m, Torun, Sheshan, Yebes, Jodrell Bank MKII, Cambridge and Knockin. A maximum data rate of 1024 Mbps were achieved from four telescopes (Effelsberg, Onsala, Torun and Jodrell Bank MKII).

  9. Evidence for observation of underground muons from Cygnus X-3

    SciTech Connect

    Bartelt, J.; Courant, H.; Heller, K.; Heppelmann, S.; Joyce, T.; Peterson, E.A.; Marshak, M.L.; Ruddick, K.; Shupe, M.; Ayres, D.S.

    1985-01-01

    We have observed evidence for an average underground muon flux of approx. = 7 x 10/sup -11/ cm/sup -2/ s/sup -1/ which points back to the x-ray binary Cygnus X-3 and which exhibits the 4.8 h periodicity observed for other radiation from this source. These observations cannot be explained by conventional models of the propagation and interaction of cosmic rays. 13 refs., 2 figs.

  10. Underground muons from the direction of Cygnus X-3

    SciTech Connect

    Johns, K.; Marshak, M.L.; Peterson, E.A.; Ruddick, K.; Shupe, M. . School of Physics and Astronomy); Ayres, D.S.; Fields, T.H.; May, E.N.; Price, L.E. )

    1989-09-11

    We report on 3.2 years live time of underground muon observations taken between 1981 and 1989 using the Soudan 1 proportional tube detector, located at a depth of 1800 m water equivalent. The post-1984 observations are consistent with our earlier data on an excess signal apparently correlated with the Cygnus X-3 orbital period. The signal-to-background ratio in the entire data sample is 1 to 3 percent, depending on phase width. 10 refs., 2 figs., 1 tab.

  11. The Massive Star Forming Region Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas James; Drake, J. J.; Drew, J. E.

    2009-12-01

    We present a multi-wavelength study of the massive star forming Cygnus OB2. Cygnus OB2 is the northern hemisphere's most massive star forming region and hosts a tremendously rich and diverse stellar population, with thousands of OB stars. The strong and highly variable extinction in the direction of the association have hindered previous studies of the region, but recent deep photometric surveys in the optical and near-infrared are opening the region up for study. The appreciation of the pivotal status of Cyg OB2 has led to a number of recent ambitious surveys of the cluster and its setting within the Cygnus-X region at X-ray, infrared and radio wavelengths. Chandra X-ray observations of two fields in the center of the association reveal 1720 X-ray sources, which we have combined with optical and near-IR photometry from the IPHAS and UKIDSS surveys. Near-IR photometry reveals a stellar population with a spread of ages greater than previously thought, overturning the picture of coeval star formation in the region. The distribution of young sources in the region shows evidence for clustering and significant mass segregation, which we judge to be primordial given the cluster's age.

  12. Catching a Galactic Football: Chandra Examines Cygnus A

    NASA Astrophysics Data System (ADS)

    2000-11-01

    Using NASA's Chandra X-ray Observatory, astronomers have found a giant football-shaped cavity within X-ray emitting hot gas surrounding the galaxy Cygnus A. The cavity in the hot gas has been created by two powerful jets emitted from the central black hole region in the nucleus of Cygnus A. Hot gas is steadily being piled up around the cavity as it continuously expands, creating a bright rim of X-ray emission. The jets themselves terminate in radio and X-ray emitting "hot spots" some 300,000 light years from the center of the galaxy. These results are being presented to the High Energy Astrophysics Division of the American Astronomical Society meeting in Honolulu, HI, by Andrew S. Wilson, Andrew J. Young (University of Maryland) and Patrick L. Shopbell (California Institute of Technology). "This is a spectacular cavity, which is inflated by jets and completely surrounds the Cygnus A galaxy," said Dr. Wilson, who is Professor of Astronomy at the University of Maryland, College Park. "We are witnessing a battle between the gravity of the Cygnus A galaxy, which is trying to pull the hot gas inwards, and the pressure of material created by the jets, which is trying to push the hot gas outwards." Cygnus A has long been famous as the brightest radio source in the sky. It is the nearest powerful radio galaxy. The Chandra X-ray image, which was taken with the Advanced CCD Imaging Spectrometer (ACIS), shows the cavity surrounded by a vast sea of extremely hot gas. The elongated oval shape comes from the force of the outwardly moving jets as they push through the hot gas. Bright bands around the "equator of the football" are also visible, and this may be evidence of material swirling toward the central black hole. Cygnus A Illustration Illustration of Cygnus A Credit: CXC Without the jets, an X-ray image of Cygnus A, which is about 700 million light years from Earth, would appear as a more or less spherical region (about 2 million light years across) of hot gas slowly

  13. GBM Monitoring of Cyg X-1 During the Recent State Transitions

    NASA Astrophysics Data System (ADS)

    Case, Gary L., II; Baldridge, S.; Cherry, M.; Camero-Arranz, A.; Finger, M.; Chaplin, V.; Jenke, P.; Wilson-Hodge, C.

    2011-09-01

    Cygnus X-1 is a high-mass x-ray binary with a black hole compact object. It is normally extremely bright in hard x-rays and low energy gamma rays and resides in the canonical hard spectral state. In July 2010, however, Cyg X-1 made a transition to the soft state, with a rise in the soft x-ray flux and a decrease in the flux in the hard x-ray and low energy gamma-ray energy bands. It remained in the soft state until April 2011 when it made the transition back to the hard state. We have been using the Gamma-Ray Burst Monitor on Fermi to monitor the fluxes of a number of sources, including Cyg X-1, in the 8-1000 keV energy range using the Earth occultation technique. We present light curves showing the decrease in the hard x-ray and low energy gamma-ray energy range during the hard-to-soft state transition, the several broad flares observed in these higher energies during the soft state, and then the transition back to the hard state. We also present preliminary spectra based on GBM data for the initial hard state, the spectral evolution to the soft state, and the spectral evolution back to the hard state. The implication of these results on the physical processes responsible for the hard x-ray and low energy gamma-ray emission will be discussed.

  14. Holleman in X-1 Reaction Control Cockpit

    NASA Technical Reports Server (NTRS)

    1958-01-01

    The X-1B and X-1E were simulated several times between 1956 and 1958 on both the AFFTC and NACA/NASA analog computers. The X-1 simulations were used for pilot training, envelope expansion studies, roll and inertial coupling studies, and reaction control studies.

  15. X-1A in flight over lakebed

    NASA Technical Reports Server (NTRS)

    1953-01-01

    The Bell Aircraft Corporation X-1A (48-1384) returning from an Air Force test flight over Edwards Air Force Base, California in late 1953. A North American F-86A Sabre as chase plane will follow the X-1A to touchdown. The Rogers Dry Lake is the whitish area under the planes with the airfield at the edge of the dry lake. Bell test pilot Jean 'Skip' Ziegler made six flights between 14 February and 25 April 1953. Air Force test pilots Maj. Charles 'Chuck' Yeager and Maj. Arthur 'Kit' Murray made 18 test flights between 21 November 1953 and 26 August 1954. NACA test pilot Joseph Walker made one successful flight on 20 July 1955. During a second flight attempt, on 8 August 1955, an explosion damaged the aircraft shortly before launch. Walker, unhurt, climbed up into the JTB-29A mothership, and the X-1A was jettisoned over the Edwards AFB bombing range. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system

  16. Decoding the heartbeat of the microquasar GRS 1915+105: Disk wind Connection

    NASA Astrophysics Data System (ADS)

    Zoghbi, Abderahmen; Miller, Jon M.; Harrison, Fiona

    2016-04-01

    GRS 1915+105 is a microquasar that shows extreme variability in X-ray, IR and radio bands. It shows disk emission, relativistic jets and strong winds during its different states. We observed this source recently with NuSTAR and Chandra during the heartbeat state, characterized a 50 seconds strong oscillations. The oscillations are likely due to thermal/viscous instability in the inner disk when it deviates significantly from the standard Shakura & Sunyaev disk. Combining the high sensitivty of Nustar and the high resolution of Chandra, we use phase spectroscopy to study the details of these oscillation, revealing changes in the inner accretion disk as well as the launching of powerful winds during the oscillations. I will discuss the implications of these results on accretion physics, the thermal instability and the launching mechanism of the wind.

  17. Are gamma rays produced in the core region of microquasars and AGNs?

    NASA Astrophysics Data System (ADS)

    Khiali, Behrouz; de Gouveia Dal Pino, Elisabete; Sol, Helene; del Valle, Maria Victoria

    2015-08-01

    Cosmic Ray (CR) acceleration is still challenging in high energy astrophysics. A first-order Fermi mechanism within magnetic reconnection layers has been demonstrated to be a powerful CR accelerator in recent studies. In this work we have investigated this acceleration process in the nuclear region of radio-galaxies and microquasars and found that the very high energy (VHE) emission from these astrophysical sources may be originated in the nuclear region around the central black hole. We employed both lepontic and hadronic models to interpret the observed gamma emission resulting from interactions of accelerated particles by magnetic reconnection with the ambient radiation, magnetic and matter fields. We compared the acceleration rate with the proper cooling rates obtaining the maximum particle energy and then reconstructed the spectral energy distribution (SED) for a few galactic and extragalactic sources and found that the are consistent with the observations. Also this model naturally explains the fast time variability of the emission of these sources.

  18. JET PROPULSION OF WIND EJECTA FROM A MAJOR FLARE IN THE BLACK HOLE MICROQUASAR SS433

    SciTech Connect

    Blundell, Katherine M.; Hirst, Paul

    2011-07-01

    We present direct evidence, from adaptive-optics near-infrared imaging, of the jets in the Galactic microquasar SS433 interacting with enhanced wind-outflow off the accretion disk that surrounds the black hole in this system. Radiant quantities of gas are transported significant distances away from the black hole approximately perpendicular to the accretion disk from which the wind emanates. We suggest that the material that comprised the resulting 'bow-tie' structure is associated with a major flare that the system exhibited 10 months prior to the observations. During this flare, excess matter was expelled by the accretion disk as an enhanced wind, which in turn is 'snow-ploughed', or propelled, out by the much faster jets that move at approximately a quarter of the speed of light. Successive instances of such bow-ties may be responsible for the large-scale X-ray cones observed within the W50 nebula by ROSAT.

  19. X-1E with Pilot Joe Walker

    NASA Technical Reports Server (NTRS)

    1958-01-01

    A photo of the X-1E with pilot Joe Walker suited up at the NASA High-Speed Flight Station, Edwards, California. The dice and 'Little Joe' are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Five years later when Walker reached 354,200 feet in the X-15, that aircraft carried similar artwork - 'Little Joe the II.' Walker is shown in the photo above wearing an early partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946

  20. X-1E Engine Ground Test Run

    NASA Technical Reports Server (NTRS)

    1956-01-01

    The Bell Aircraft Corporation X-1E during a ground engine test run on the NACA High-Speed Flight Station ramp near the Rogers Dry Lake. The rocket technician is keeping the concrete cool by hosing it with water during the test. This also helps in washing away any chemicals that might spill. The test crew worked close to the aircraft during ground tests. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about

  1. Timing and Spectral Studies of the Peculiar X-ray Binary Circinus X-1

    SciTech Connect

    Saz Parkinson, Pablo M.

    2003-08-26

    Circinus X-1 (Cir X-1) is an X-ray binary displaying an array of phenomena which makes it unique in our Galaxy. Despite several decades of observation, controversy surrounds even the most basic facts about this system. It is generally classified as a Neutron Star (NS) Low Mass X-ray Binary (LMXB),though this classification is based primarily on the observation of Type I X-ray Bursts by EXOSAT in 1985. It is believed to be in a very eccentric {approx} 16.5 day orbit, displaying periodic outbursts in the radio and other frequency bands (including optical and IR) which reinforce the notion that this is in fact the orbital period. Cir X-1 lies in the plane of the Galaxy, where optical identification of the companion is made difficult due to dust obscuration. The companion is thought to be a low mass star, though a high mass companion has not currently been ruled out. In this work, the author analyzes recent observations of Cir X-1 made with the Unconventional Stellar Aspect (USA) experiment, as well as archival observations of Cir X-1 made by a variety of instruments, from as early as 1969. The fast (< 1 s) timing properties of Cir X-1 are studied by performing FFT analyses of the USA data. Quasi-Periodic Oscillations (QPOs) in the 1-50 Hz range are found and discussed in the context of recent correlations which question the leading models invoked for their generation. The energy dependence of the QPOs (rms increasing with energy) argues against them being generated in the disk and favors models in which the QPOs are related to a higher energy Comptonizing component. The power spectrum of Cir X-1 in its soft state is compared to that of Cygnus X-1 (Cyg X-1), the prototypical black hole candidate. Using scaling arguments the author argues that the mass of Cir X-1 could exceed significantly the canonical 1.4 M{circle_dot} mass of a neutron star, possibly partly explaining why this object appears so different to other neutron stars. The spectral evolution of Cir X-1 is

  2. Soft X-ray search of centre of Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Snyder, W. A.; Henry, R. C.; Charles, P. A.; Culhane, J. L.; Sanford, P. W.; Bleach, R.; Drake, J.

    1975-01-01

    Equipment on the Copernicus satellite has been used to search for evidence of a compact object in the center of the Cygnus Loop supernova remnant. Rocket measurements reported by Rappaport et al. (1973) indicate that a central object exists. However, the study conducted with the aid of the satellite was negative. This negative result could indicate that the X-ray source was simply not in its high-intensity mode at the time of observation, or could arise because the source is at some other location in the Loop.

  3. X-1E with Pilot Joe Walker

    NASA Technical Reports Server (NTRS)

    1958-01-01

    A photo of the X-1E with pilot Joe Walker suited up at the NASA High-Speed Flight Station, Edwards, California. The dice and 'Little Joe' are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Five years later when Walker reached 354,200 feet in the X-15, that aircraft carried similar artwork - 'Little Joe the II.' Walker is shown in the photo above wearing an early partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946

  4. X-1E canopy mock-up

    NASA Technical Reports Server (NTRS)

    1953-01-01

    This photo appears to depict the design of the X-1E canopy. In 1955, the X-1-2 was modified. The modifications included a new thin wing and a low-pressure fuel system. The most visible change was a raised canopy that replaced the original flush windshield on the aircraft, which was called the X-1E. The modified aircraft made its first glide flight on December 12, 1955, and its first powered flight three days later. Over a three-year period, the X-1E made a total of 26 flights, reaching a speed of Mach 2.24. National Advisory Committee for Aeronautics (NACA) pilot Joseph Walker was the pilot for flights 1 through 21, while John McKay made flights 22 to 26. The final flight occurred on November 6, 1958. This was also the last flight by an X-1 aircraft. On April 29, 1960, the X-1E was mounted on a pole in front of the Flight Research Center (FRC) headquarters building. In 1976 the FRC became the Hugh L. Dryden Flight Research Center, and the X-1E remained in front of the headquarters building. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many

  5. Understanding the Cray X1 System

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    2004-01-01

    This paper helps the reader understand the characteristics of the Cray X1 vector supercomputer system, and provides hints and information to enable the reader to port codes to the system. It provides a comparison between the basic performance of the X1 platform and other platforms that are available at NASA Ames Research Center. A set of codes, solving the Laplacian equation with different parallel paradigms, is used to understand some features of the X1 compiler. An example code from the NAS Parallel Benchmarks is used to demonstrate performance optimization on the X1 platform.

  6. Underground muons from the direction of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Marshak, M. L.

    1992-01-01

    The flux of underground muons from the direction of the binary Cygnus X-3 was measured by the Soudan 2 proton decay detector. This time-projection calorimeter is located at a depth of 2200 m (water equivalent) in northern Minnesota at latitude 48 deg N, longitude 92 deg W. An analysis was then performed that compared both the total observed flux and the observed flux per transit with the number of events expected in the absence of a source. This expected number of events was determined by combining the detector acceptance as a function of time with detector acceptance as a function of the local spatial coordinates. These functions were evaluated by use of off-source events. The direction of Cygnus X-3 was defined as a 2 deg half-angle cone, centered on the nominal source coordinates. This definition is consistent with the expected appearance of a point source in the Soudan 2 detector after consideration of track reconstruction errors, multiple scattering in the rock, and possible systematic effects. Details of the analysis and the results are presented.

  7. Cygnus Pressurized Cargo Module (PCM) Flight Inertial Load Static Tests

    NASA Astrophysics Data System (ADS)

    Murgia, Giovanni; Mancini, Simone; Palmieri, Paolo; Rutigliano, Luigi

    2012-07-01

    Cygnus PCM Flight Inertial Load Static Test campaign has been performed by Thales Alenia Space - Italy (TAS-I) to achieve the Static Qualification of its Primary Structure. A “Proto-flight Approach” has been followed (as per [1] and [2]), thus the first flight unit, the PCM0, has been tested up to qualification level (qualification/acceptance factor equivalent to 1.2 [1]). The PCM0 has been constrained to a dummy Service Module (the second member of Cygnus Spacecraft), representative in terms of interfaces provisions, and flight load conditions have been reproduced with proper forces that have been applied by means of hydraulic jacks at internal PCM secondary structure interfaces. Test load cases have been defined in order to simulate load paths and relevant stress fields associated to the worst flight load conditions by using the FE model analyses. Tests have been monitored by means of gauges and displacement transducers and results have been utilized to correlate the PCM FEM following [3] requirements.

  8. X-1-2 on ramp

    NASA Technical Reports Server (NTRS)

    1951-01-01

    The Bell Aircraft Corporation X-1-2 aircraft on the ramp at NACA High Speed Flight Research Station located on the South Base of Muroc Army Air Field in 1947. The X-1-2 flew until October 23, 1951, completing 74 glide and powered flights with nine different pilots. The aircraft has white paint and the NACA tail band. The black Xs are reference markings for tracking purposes. They were widely used on NACA aircraft in the early 1950s. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager

  9. A continuous watch of the northern sky above 40 TeV with the CYGNUS array

    SciTech Connect

    Haines, T.J.; Miller, R.; Sinnis, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The aim of the project has been to continuously monitor the northern sky for transient high-energy gamma-ray emission from astrophysical sources. Potential objects of such emission include gamma-ray bursts and flares from active galaxies. At the start of this project, the CYGNUS extensive air shower array was used for the monitoring; CYGNUS has an energy threshold of {approximately}40 TeV. In August, 1996, the CYGNUS data-acquisition computer suffered a fatal hardware problem so data-taking with the array ended. The Milagrito detector, which is much more sensitive than CYGNUS, started taking data in February 1997 and has continued the sky monitoring. The authors are presently honing reconstruction algorithms for Milagrito. When this is complete, the data taken since February will be analyzed for transient emission.

  10. Nature of the high-energy particles from Cygnus X-3

    SciTech Connect

    Dar, A.; Lord, J.J.; Wilkes, R.J.

    1986-01-01

    If the published experimental results on both air showers and underground muons generated by particles from Cygnus X-3 are correct, then these particles cannot be any presently known elementary particles, neutral atoms, or micrograins of ordinary matter. The primary particles from Cygnus X-3 must be electrically neutral, relatively stable, strongly or electromagnetically interacting, and have rest mass less than 50 MeV/cS.

  11. Astronomy at ultra-high energies: Results from the CYGNUS experiment

    SciTech Connect

    Alexandreas, D.E.; Allen, R.C.; Biller, S.D.; Dion, G.M.; Lu, X-Q.; Vishwanath, P.R.; Yodh, G.B. ); Berley, D.; Chang, C.Y.; Dingus, B.L.; Goodman, J.A.; Haines, T.J.; Kwok, P.; Stark, M.J.; Talaga, R.L. ); Burman, R.L.; Hoffman, C.M.; Lloyd-Evans, J.; Nagle, D.E.; Potter, M.E.; Sandberg, V.D.; Zhang, W. ); C

    1990-01-01

    The CYGNUS experiment is composed of an air-shower array and muon detectors, located in Los Alamos, NM, and operating at energies above 50 TeV. Recent results include a search for emission from Cygnus X-3 during the radio outbursts of June and July 1989, preliminary results from a search for diffuse emission from the galactic plane, and preliminary results from a search for emission from possible northern hemisphere point sources, both known and unknown. 3 refs., 4 figs.

  12. THE VARIABLE NEAR-INFRARED COUNTERPART OF THE MICROQUASAR GRS 1758–258

    SciTech Connect

    Luque-Escamilla, Pedro L.

    2014-12-10

    We present a new study of the microquasar system GRS 1758–258 in the near-infrared domain based on archival observations with the Hubble Space Telescope and the NICMOS camera. In addition to confirming the near-infrared counterpart pointed out by Muñoz-Arjonilla et al., we show that this object displays significant photometric variability. From its average magnitudes, we also find that GRS 1758–258 fits well within the correlation between the optical/near-infrared and X-ray luminosity known to exist for low-mass, black-hole candidate X-ray binaries in a hard state. Moreover, the spectral energy distribution built using all radio, near-infrared, and X-ray data available closest in time to the NICMOS observations can be reasonably interpreted in terms of a self-absorbed radio jet and an irradiated accretion disk model around a stellar-mass black hole. All these facts match the expected behavior of a compact binary system and strengthen our confidence in the counterpart identification.

  13. VLBA "Movie" Gives Scientists New Insights On Workings of Mysterious Microquasars

    NASA Astrophysics Data System (ADS)

    2004-01-01

    Astronomers have made a 42-day movie showing unprecedented detail of the inner workings of a strange star system that has puzzled scientists for more than two decades. Their work is providing new insights that are changing scientists' understanding of the enigmatic stellar pairs known as microquasars. SS 433 Frame from SS 433 Movie: End to end is some 200 billion miles. CREDIT: Mioduszewski et al., NRAO/AUI/NSF Image Files Single Frame Overall Jet View (above image) VLBA Movie (animated gif, 2.3 MB) Animated graphic of SS 433 System (18MB) (Created using software by Robert Hynes, U.Texas) Annotated brightening graphic Unannotated brightening Frame 1 Unannotated brightening Frame 2 "This once-a-day series of exquisitely-detailed images is the best look anyone has ever had at a microquasar, and already has made us change our thinking about how these things work," said Amy Mioduszewski, of the National Radio Astronomy Observatory (NRAO), in Socorro, New Mexico. The astronomers used the National Science Foundation's Very Long Baseline Array (VLBA), a system of radio telescopes stretching from Hawaii to the Caribbean, to follow daily changes in a binary-star system called SS 433, some 15,000 light-years from Earth in the constellation Aquila. Mioduszewski worked with Michael Rupen, Greg Taylor and Craig Walker, all of NRAO. They reported their findings to the American Astronomical Society's meeting in Atlanta, Georgia. SS 433 consists of a neutron star or black hole orbited by a "normal" companion star. The powerful gravity of the neutron star or black hole is drawing material from the stellar wind of its companion into an accretion disk of material tightly circling the dense, central object prior to being pulled onto that object. This disk propels jets of subatomic particles outward from its poles. In SS 433, the particles in the jets move at 26 percent of the speed of light; in other microquasars, the jet material moves at 90-95 percent of light speed. The disk in SS

  14. Variable-Frequency QPOs from the Galactic Microquasar GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Markwardt, Craig B.; Swank, Jean H.; Taam, Ronald E.

    1998-01-01

    We show that the galactic microquasar GRS 1915+105 exhibits quasi-periodic oscillations (QPOS) whose frequency varies continuously from 1-15 Hz, during spectrally hard dips when the source is in a flaring state. NN'e report here analyses of simultaneous energy spectra and power density spectra at 4 s intervals. The energy spectrum is well fit at each time step by an optically thick accretion disk plus power law model, while the power density spectrum consists of a varying red noise component plus the variable frequency QPO. The features of both spectra are strongly correlated with one another. The 1-15 Hz QPOs appear when the power law component becomes hard and intense, and themselves have an energy spectrum consistent with the power law component (with root mean square amplitudes as high as 10%). The frequency of the oscillations, however, is most strikingly correlated with the parameters of the thermal disk component. The tightest correlation is between QPO frequency and the disk X-ray flux. This fact indicates that the properties of the QPO are not determined by solely a disk or solely a corona.

  15. SUZAKU OBSERVATIONS OF THE GALACTIC CENTER MICROQUASAR 1E 1740.7-2942

    SciTech Connect

    Reynolds, Mark T.; Miller, Jon M.

    2010-06-20

    We present two Suzaku observations of the Galactic center microquasar 1E 1740.7-2942 separated by approximately 700 days. The source was observed on both occasions after a transition to the spectrally hard state. Significant emission from 1E 1740.7-2942 is detected out to an energy of 300 keV, with no spectral break or turnover evident in the data. We tentatively measure a lower limit to the cutoff energy of {approx}380 keV. The spectra are found to be consistent with a Comptonized corona on both occasions, where the high energy emission is consistent with a hard power-law ({Gamma} {approx} 1.8) with a significant contribution from an accretion disk with a temperature of {approx}0.4 keV at soft X-ray energies. The measured value for the inner radius of the accretion disk is found to be inconsistent with the picture whereby the disk is truncated at large radii in the low-hard state and instead favors a radius close to the ISCO (R{sub in} {approx} 10 - 20 R{sub g}).

  16. THE DISTANCE, INCLINATION, AND SPIN OF THE BLACK HOLE MICROQUASAR H1743-322

    SciTech Connect

    Steiner, James F.; McClintock, Jeffrey E.; Reid, Mark J.

    2012-01-20

    During its 2003 outburst, the black hole X-ray transient H1743-322 produced two-sided radio and X-ray jets. Applying a simple and symmetric kinematic model to the trajectories of these jets, we determine the source distance, 8.5 {+-} 0.8 kpc, and the inclination angle of the jets, 75 Degree-Sign {+-} 3 Degree-Sign . Using these values, we estimate the spin of the black hole by fitting its Rossi X-ray Timing Explorer spectra, obtained during the 2003 outburst, to a standard relativistic accretion-disk model. For its spin, we find a{sub *} = 0.2 {+-} 0.3 (68% limits), -0.3 < a{sub *} < 0.7 at 90% confidence. We strongly rule against an extreme value of spin: a{sub *} < 0.92 at 99.7% confidence. H1743-322 is the third known microquasar (after A0620-00 and XTE J1550-564) that displays large-scale ballistic jets and has a moderate value of spin. Our result, which depends on an empirical distribution of black hole masses, takes into account all known sources of measurement error.

  17. Relativistic Iron Emission and Disk Reflection in Galactic Microquasar XTE J1748-288

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Fox, D. W.; DiMatteo, T.; Wijnands, R.; Belloni, T.; Pooley, D.; Kouveliotou, C.; Lewin, W. H. G.

    2001-01-01

    We report evidence for an Fe K-alpha fluorescence line feature and disk reflection in the very high, high-, and low-state X-ray spectra of the Galactic microquasar XTE J1748 - 288 during its 1998 June outburst. Spectral analyses are made on data gathered throughout the outburst by the Rossi X-Ray Timing Explorer Proportional Counter Array. Gaussian line, relativistic disk emission line, and ionized disk reflection models are fitted to the data. In the very high state the line profile appears strongly redshifted, consistent with disk emission from the innermost stable orbits around a maximally rotating Kerr black hole. In the high state the line profile is less redshifted and increasingly prominent. The low-state line profile is very strong (approx. 0.5 keV equivalent width) and centered at 6.7 +/- 0.10 keV; disk line emission model fits indicate that the inner edge of the disk fluctuates between approx. 20R(sub g) and - approx. 100R(sub g) in this state. The disk reflection fraction is traced through the outburst; reflection from an ionized disk is preferred in the very high and high states, and reflection from a relatively neutral disk is preferred in the low state. We discuss the implications of our findings for the binary system dynamics and accretion flow geometry in XTE J1748 - 288.

  18. Relativistic Iron Emission and Disk Reflection in Galactic Microquasar XTE J1748-288

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Fox, D. W.; Matteo, T. DI; Wijnands, R.; Belloni, T.; Pooley, D.; Kouveliotou, C.; Lewin, W. H. G.

    2001-01-01

    We report evidence for an Fe K(alpha) fluorescence line feature and disk reflection in the very high, high-, and low-state X-ray spectra of the Galactic microquasar XTE J1748-288 during its 1998 June outburst. Spectral analyses are made on data gathered throughout the outburst by the Rossi X-Ray Timing Explorer Proportional Counter Array. Gaussian line, relativistic disk emission line, and ionized disk reflection models are fitted to the data. In the very high state the line profile appears strongly redshifted, consistent with disk emission from the innermost stable orbits around a maximally rotating Kerr black hole. In the high state the line profile is less redshifted and increasingly prominent. The low-state line profile is very strong (approx. 0.5 keV equivalent width) and centered at 6.7 +/- 0.10 keV; disk line emission model fits indicate that the inner edge of the disk fluctuates between approx. 20Rg and approx. 100Rg in this state. The disk reflection fraction is traced through the outburst; reflection from an ionized disk is preferred in the very high and high states, and reflection from a relatively neutral disk is preferred in the low state. We discuss the implications of our findings for the binary system dynamics and accretion flow geometry in XTE J1748-288.

  19. AR1429 Releases X1 Class Flare

    NASA Video Gallery

    The Solar Dynamics Observatory captured the X1 flare, shown here in the 171 Angstrom wavelength, a wavelength typically shown in the color gold. This movie runs from 10 PM ET March 4 to 3 AM March ...

  20. Highly Structured Wind in Vela X-1

    NASA Technical Reports Server (NTRS)

    Kreykenbohm, Ingo; Wilms, Joern; Kretschmar, Peter; Torrejon, Jose Miguel; Pottschmidt, Katja; Hanke, Manfred; Santangelo, Andrea; Ferrigno, Carlo; Staubert, Ruediger

    2008-01-01

    We present an in-depth analysis of the spectral and temporal behavior of a long almost uninterrupted INTEGRAL observation of Vela X-1 in Nov/Dec 2003. In addition to an already high activity level, Vela X-1 exhibited several very intense flares with a maximum intensity of more than 5 Crab in the 20 40 keV band. Furthermore Vela X-1 exhibited several off states where the source became undetectable with ISGRI. We interpret flares and off states as being due to the strongly structured wind of the optical companion: when Vela X-1 encounters a cavity in the wind with strongly reduced density, the flux will drop, thus potentially triggering the onset of the propeller effect which inhibits further accretion, thus giving rise to the off states. The required drop in density to trigger the propeller effect in Vela X-1 is of the same order as predicted by theoretical papers for the densities in the OB star winds. The same structured wind can give rise to the giant flares when Vela X-1 encounters a dense blob in the wind. Further temporal analysis revealed that a short lived QPO with a period of 6800 sec is present. The part of the light curve during which the QPO is present is very close to the off states and just following a high intensity state, thus showing that all these phenomena are related.

  1. An infrared supershell surrounding the Cygnus OB1 association

    NASA Technical Reports Server (NTRS)

    Saken, Jon M.; Shull, J. M.; Garmany, Catharine D.; Nichols-Bohlin, Joy; Fesen, Robert A.

    1992-01-01

    New studies are reported of a large, 2 x 5 deg peanut-shaped cavity in the far-infrared emission seen using IRAS data for the Cygnus X region. A more complete and better defined infrared supershell than reported by Lozinskaya and Repin (1990) is found and connected to the Cyg OB1 association. It is shown that the cavity represents the early stages of a superbubble produced by the winds and possible SNe from 10 to 20 massive stars. The locations and properties of these stars are used to estimate the energy deposition rate and to understand the manner in which supershells form and propagate. In Cyg OB1, spatially distributed subclustering appears to have played an important role in determining the nonspherical morphology of the superbubble.

  2. Complete mitochondrial genome of Cygnus olor (Aves, Anseriformes, Anatidae).

    PubMed

    Park, Chang Eon; Park, Gun-Seok; Kwak, Yunyoung; Hong, Sung-Jun; Khan, Abdur Rahim; Jung, Byung Kwon; Park, Yeong-Jun; Kim, Jong-Guk; Park, Hee Cheon; Shin, Jae-Ho

    2016-09-01

    The complete mitochondrial genome of Cygnus olor (Aves, Anseriformes, Anatidae) was revealed in this study. Total 16 739 base pairs (bp) of this mitogenome encoded genes for 13 protein coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and a D-loop (control region). The 12S rRNA and 16S rRNA genes are located between tRNA-Phe and tRNA-Leu (UUR) and segmentalized by the tRNA-Val. D-loop is located between tRNA-Glu and tRNA-Phe. The overall base composition of C. olor is G + C: 47.8%, A + T: 52.2%, apparently with a slight AT bias. Following the phylogenetic analysis, the C. olor was closed to Anser cygnoides. PMID:26153738

  3. Subaru spectroscopy and spectral modeling of Cygnus A

    SciTech Connect

    Merlo, Matthew J.; Perlman, Eric S.; Nikutta, Robert; Packham, Christopher; Elitzur, Moshe; Imanishi, Masatoshi; Levenson, N. A.; Radomski, James T.

    2014-06-10

    We present high angular resolution (∼0.''5) MIR spectra of the powerful radio galaxy, Cygnus A (Cyg A), obtained with the Subaru telescope. The overall shape of the spectra agree with previous high angular resolution MIR observations, as well as previous Spitzer spectra. Our spectra, both on and off nucleus, show a deep silicate absorption feature. The absorption feature can be modeled with a blackbody obscured by cold dust or a clumpy torus. The deep silicate feature is best fit by a simple model of a screened blackbody, suggesting that foreground absorption plays a significant, if not dominant, role in shaping the spectrum of Cyg A. This foreground absorption prevents a clear view of the central engine and surrounding torus, making it difficult to quantify the extent the torus attributes to the obscuration of the central engine, but does not eliminate the need for a torus in Cyg A.

  4. Study of the Cygnus Star-Forming Field

    NASA Astrophysics Data System (ADS)

    Christopherson, Christopher; Kaltcheva, Nadia

    2016-01-01

    The star-forming complexes in Cygnus extend nearly 30 deg in Galactic longitude and 20 deg in latitude, and most probably include star-formation sites located between 600 and 4000 pc. We combine the catalog by Heiles (2000) with uvbyβ photometric data from the catalog of Paunzen (2015) to collate a sample of O and B-type stars with precise homogeneous distances, color excess and available polarimetry. This allows us to identify star-forming sites at different distances along the line of sight and to investigate their spatial correlation to the interstellar matter. Further, we use this sample to study the orientation of the polarization as revealed by the polarized light of the bright early-type stars and analyze the polarization-extinction correlation for this field. Since dust grains align in the presence of a magnetic field cause the observed polarization at optical wavelengths, the data contain information about the large-scale component of the Galactic magnetic field. In addition, wide-field astrophotography equipment was used to image the Cygnus field in Hydrogen-alpha, Hydrogen-beta and the [OIII] line at 500.7 nm. This allows us to map the overall distribution of ionized material and the interstellar dust and trace large-scale regions where the physical conditions change rapidly due to supernova shock fronts and strong stellar winds. Acknowledgments: This work was supported by NSF grant AST- 1516932 and the Wisconsin Space Grant Consortium, NASA Space Grant College and Fellowship Program, NASA Training Grant #NNX14AP22H.

  5. NACA Aircraft on Lakebed - D-558-2, X-1B, and X-1E

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Early NACA research aircraft on the lakebed at the High Speed Research Station in 1955: Left to right: X-1E, D-558-2, X-1B There were four versions of the original Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E. The modifications included adding a conventional canopy, an ejection seat, a low-pressure fuel system

  6. Cray X1 Evaluation Status Report

    SciTech Connect

    Vetter, J.S.

    2004-02-09

    On August 15, 2002 the Department of Energy (DOE) selected the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL) to deploy a new scalable vector supercomputer architecture for solving important scientific problems in climate, fusion, biology, nanoscale materials and astrophysics. ''This program is one of the first steps in an initiative designed to provide U.S. scientists with the computational power that is essential to 21st century scientific leadership,'' said Dr. Raymond L. Orbach, director of the department's Office of Science The Cray X1 is an attempt to incorporate the best aspects of previous Cray vector systems and massively-parallel-processing (MPP) systems into one design. Like the Cray T90, the X1 has high memory bandwidth, which is key to realizing a high percentage of theoretical peak performance. Like the Cray T3E, the X1 has a high-bandwidth, low-latency, scalable interconnect, and scalable system software. And, like the Cray SV1, the X1 leverages commodity off-the-shelf (CMOS) technology and incorporates non-traditional vector concepts, like vector caches and multi-streaming processors. In FY03, CCS procured a 256-processor Cray X1 to evaluate the processors, memory subsystem, scalability of the architecture, software environment and to predict the expected sustained performance on key DOE applications codes. The results of the micro-benchmarks and kernel benchmarks show the architecture of the Cray X1 to be exceptionally fast for most operations. The best results are shown on large problems, where it is not possible to fit the entire problem into the cache of the processors. These large problems are exactly the types of problems that are important for the DOE and ultra-scale simulation.

  7. A Resonantly Excited Disk-Oscillation Model of High-Frequency QPOs of Microquasars

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2012-12-01

    A possible model of twin high-frequency QPOs (HF QPOs) of microquasars is examined. The disk is assumed to have global magnetic fields and to be deformed with a two-armed pattern. In this deformed disk, a set of a two-armed (m = 2) vertical p-mode oscillation and an axisymmetric (m = 0) g-mode oscillation is considered. They resonantly interact through the disk deformation when their frequencies are the same. This resonant interaction amplifies the set of the above oscillations in the case where these two oscillations have wave energies of opposite signs. These oscillations are assumed to be excited most efficiently in the case where the radial group velocities of these two waves vanish at the same place. The above set of oscillations is not unique, depending on the node number n, of oscillations in the vertical direction. We consider that the basic two sets of oscillations correspond to the twin QPOs. The frequencies of these oscillations depend on the disk parameters, such as the strength of the magnetic fields. For observational mass ranges of GRS 1915+ 105, GRO J1655-40, XTE J1550-564, and HEAO H1743-322, the spins of these sources are estimated. High spins of these sources can be described if the disks have weak poloidal magnetic fields as well as toroidal magnetic fields of moderate strength. In this model the 3:2 frequency ratio of high-frequency QPOs is not related to their excitation, but occurs by chance.

  8. BLACK HOLE MASS AND SPIN FROM THE 2:3 TWIN-PEAK QPOs IN MICROQUASARS

    SciTech Connect

    Mondal, Soumen

    2010-01-10

    In the Galactic microquasars with double peak kHz quasi-periodic oscillations (QPOs) detected in X-ray fluxes, the ratio of the twin-peak frequencies is exactly, or almost exactly 2:3. This rather strongly supports the fact that they originate a few gravitational radii away from its center due to two modes of accretion disk oscillations. Numerical investigations suggest that post-shock matter, before they settle down in a subsonic branch, execute oscillations in the neighborhood region of 'shock transition'. This shock may excite QPO mechanism. The radial and vertical epicyclic modes of oscillating matter exactly match with these twin-peak QPOs. In fully general relativistic transonic flows, we investigate that shocks may form very close to the horizon around highly spinning Kerr black holes and appear as extremum in the inviscid flows. The extreme shock location provides upper limit of QPOs and hence fixes 'lower cutoff' of the spin. We conclude that the 2:3 ratio exactly occurs for spin parameters a >= 0.87 and almost exactly, for wide range of spin parameter, for example, XTE 1550-564, and GRO 1655-40 a>0.87, GRS 1915+105 a>0.83, XTE J1650-500 a>0.78, and H 1743-322 a>0.68. We also make an effort to measure unknown mass for XTE J1650-500(9.1 approx 14.1 M{sub sun}) and H 1743-322(6.6 approx 11.3 M{sub sun}).

  9. NACA Aircraft on Lakebed - D-558-2, X-1B, and X-1E

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Early NACA research aircraft on the lakebed at the High Speed Research Station in 1955: Left to right: X-1E, D-558-2, X-1B There were four versions of the original Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E. The modifications included adding a conventional canopy, an ejection seat, a low-pressure fuel system

  10. Testing modified gravity and no-hair relations for the Kerr-Newman metric through quasiperiodic oscillations of galactic microquasars

    NASA Astrophysics Data System (ADS)

    Suvorov, Arthur George; Melatos, Andrew

    2016-01-01

    We construct multipole moments for stationary, asymptotically flat, spacetime solutions to higher-order curvature theories of gravity. The moments are defined using 3 +1 techniques involving timelike Killing vector constructions as in the classic papers by Geroch and Hansen. Using the fact that the Kerr-Newman metric is a vacuum solution to a particular class of f (R ) theories of gravity, we compute all its moments, and find that they admit recurrence relations similar to those for the Kerr solution in general relativity. It has been proposed previously that modeling the measured frequencies of quasiperiodic oscillations from galactic microquasars enables experimental tests of the no-hair theorem. We explore the possibility that, even if the no-hair relation is found to break down in the context of general relativity, there may be an f (R ) counterpart that is preserved. We apply the results to the microquasars GRS 1915 +105 and GRO J1655-40 using the diskoseismology and kinematic resonance models, and constrain the spins and "charges" of their black holes.

  11. New measurements of the 12. 6 millisecond pulsar in Cygnus X-3

    SciTech Connect

    Brazier, K.T.S.; Carraminana, A.; Chadwick, P.M.; Dipper, N.A.; Lincoln, E.W. )

    1990-02-01

    Evidence for a 12.59 ms pulsar in Cygnus X-3 is presented on the basis of TeV gamma-ray observations. Evidence for pulsed emission at a phase in the 4.8 hr cycle and with a pulsar period and secular period derivative are compatible with earlier measurements (Chadwick et al., 1985). The conservative overall Rayleigh probability of uniformity of phase for this new result is 1.7 x 10 to the -6th. Data from observations of Cygnus X-3 from 1981 to 1985 are analyzed using a new X-ray ephemeris of the 4.8 hr X-ray cycle. This suggests that Cygnus X-3 is producing sporadic very high energy gamma rays at a fixed time in the 4.8 hr X-ray cycle. 28 refs.

  12. Application of cosmic-ray shock theories to the Cygnus Loop - An alternative model

    NASA Technical Reports Server (NTRS)

    Boulares, Ahmed; Cox, Donald P.

    1988-01-01

    Steady state cosmic-ray shock models are investigated here in the light of observations of the Cygnus Loop supernova remnant. The predicted downstream temperature is derived for each model. The Cygnus Loop data and the application of the models to them, including wave dissipation, are presented. Heating rate and ionization fraction structures are provided along with an estimate of the cosmic-ray diffusion coefficient. It is found that the model of Voelk, Drury, and McKenzie (1984), in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of the Cygnus Loop shocks. The model is used to deduce upstream densities and shock velocities and, compared to the usual pure gas shock interpretation, it is found that lower densities and approximately three times higher velocities are required.

  13. Discovery of dense absorbing clouds in Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Balucinska-Church, Monika; Schulz, Norbert S.; Church, Michael; Wilms, Joern; Hanke, Manfred

    We report results of several day-long observation of Cygnus X-2 using Chandra and XMM-Newton. The source displayed extensive dipping events in the lightcurve often seen before in the source and causing an additional track in the hardness-intensity Z-track diagram. For the first time we are able to investigate these events using both high efficiency CCD continuum spectra and highly-resolved grating data. In the XMM PN instrument, the dips are 30% deep and resemble those in the low mass X-ray binary dip sources. However, remarkably, in the Chandra HEG and MEG no absorption or edge features can be seen corresponding to expected increases of column density in excess of the interstellar column. Non-dip and dip PN spectra are fitted well with a model containing point-like blackbody emission which we associate with the neutron star plus Comptonized emission of the ADC which must be extended. Dipping can be explained without absorption of the blackbody emission, but by covering 40% of the extended ADC emission by dense absorber. In the covered fraction almost no flux remains and so no significant additional optical depths appear in the neutral K edges in the grating spectra. The dipping appears not to be explicable by absorption in the outer disk, but requires large, dense blobs of absorber that do not overlap the neutron star in the line-of-sight. The nature of these blobs is unknown.

  14. Reexamination of the SAS 2 Cygnus X-3 data

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Thompson, D. J.; Lamb, R. C.

    1987-01-01

    Recent observations of Cygnus X-3 have shown marked variability of the radiation on short time scales. In particular, the bursts lasting on the order of 10 minutes, seen in both the infrared and very high energy (greater than 10 to the 11th eV) gamma-ray regions, and the time-variations on many scales at high energies, have stimulated a reanalysis of the March 6 to 13, 1973 SAS 2 high-energy gamma-ray data. Although a clear periodicity in the E greater 35 MeV gamma radiation is observed at the 4.79 hr period seen in X-rays, there is no evidence for major variations of the radiation from one day to the next, and no statistically significant evidence for bursts on the 10-minute time scale seen in the infrared or very high energy ranges. If the excess observed had been predominantly in the form of ten minute bursts even at a rate as high as two/day, a clearly significant set of bursts would have been seen.

  15. Monitoring of heavy metal burden in mute swan (Cygnus olor).

    PubMed

    Grúz, Adrienn; Szemerédy, Géza; Kormos, Éva; Budai, Péter; Majoros, Szilvia; Tompai, Eleonóra; Lehel, József

    2015-10-01

    Concentrations of heavy metals (especially arsenic, cadmium, chromium, copper, mercury and lead) were measured in the contour (body) feathers of mute swans (Cygnus olor) and in its nutrients (fragile stonewort [Chara globularis], clasping leaf pondweed [Potamogeton perfoliatus], Eurasian watermilfoil [Myriophyllum spicatum], fennel pondweed [Potamogeton pectinatus]) to investigate the accumulation of metals during the food chain. The samples (17 feathers, 8 plants) were collected at Keszthely Bay of Lake Balaton, Hungary. Dry ashing procedure was used for preparing of sample and the heavy metal concentrations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Copper (10.24 ± 2.25 mg/kg) and lead (1.11 ± 1.23 mg/kg) were detected the highest level in feathers, generally, the other metals were mostly under the detection limit (0.5 mg/kg). However, the concentrations of the arsenic (3.17 ± 1.87 mg/kg), cadmium (2.41 ± 0.66 mg/kg) and lead (2.42 ± 0.89 mg/kg) in the plants were low but the chromium (198.27 ± 102.21 mg/kg) was detected in high concentration. PMID:26044143

  16. Evidence from the Soudan 1 experiment for underground muons associated with Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Ayres, D. S. E.

    1986-01-01

    The Soudan 1 experiment has yielded evidence for an average underground muon flux of approximately 7 x 10 to the minus 11th power/sq cm/s which points back to the X-ray binary Cygnus X-3, and which exhibits the 4.8 h periodicity observed for other radiation from this source. Underground muon events which seem to be associated with Cygnus X-3 also show evidence for longer time variability of the flux. Such underground muons cannot be explained by any conventional models of the propagation and interaction of cosmic rays.

  17. Evidence from the Soudan 1 experiment for underground muons associated with Cygnus X-3

    SciTech Connect

    Ayres, D.S.

    1985-09-01

    The Soudan 1 experiment has yielded evidence for an average underground muon flux of approx.7 x 10/sup -11/ cm/sup -2/ s/sup -1/ which points back to the x-ray binary Cygnus X-3, and which exhibits the 4.8 h periodicity observed for other radiation from this source. Underground muon events which seem to be associated with Cygnus X-3 also show evidence for longer time variability of the flux. Such underground muons cannot be explained by conventional models of the propagation and interaction of cosmic rays. 16 refs., 5 figs., 1 tab.

  18. Radio lobes and X-ray hotspots in the microquasar S26

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Pakull, Manfred W.; Broderick, Jess W.; Corbel, Stephane; Motch, Christian

    2010-12-01

    We have studied the structure and energetics of the powerful microquasar/shock-ionized nebula S26 in NGC7793, with particular focus on its radio and X-ray properties. Using the Australia Telescope Compact Array, we have resolved for the first time the radio lobe structure and mapped the spectral index of the radio cocoon. The steep spectral index of the radio lobes is consistent with optically-thin synchrotron emission; outside the lobes, the spectral index is flatter, suggesting an additional contribution from free-free emission, and perhaps ongoing ejections near the core. The radio core is not detected, while the X-ray core has a 0.3-8 keV luminosity ~6 × 1036 erg s-1. The size of the radio cocoon matches that seen in the optical emission lines and diffuse soft X-ray emission. The total 5.5-GHz flux of cocoon and lobes is ~2.1 mJy, which at the assumed distance of 3.9 Mpc corresponds to about three times the luminosity of Cas A. The total 9.0-GHz flux is ~1.6 mJy. The X-ray hotspots (combined 0.3-8 keV luminosity ~2 × 1037 erg s-1) are located ~20 pc outwards of the radio hotspots (i.e. downstream along the jet direction), consistent with a different physical origin of X-ray and radio emission (thermal-plasma and synchrotron, respectively). The total particle energy in the bubble is ~1053 erg: from the observed radio flux, we estimate that only approximately a few times 1050 erg is stored in the relativistic electrons; the rest is stored in protons, nuclei and non-relativistic electrons. The X-ray-emitting component of the gas in the hotspots contains ~1051 erg, and ~1052 erg over the whole cocoon. We suggest that S26 provides a clue to understand how the ambient medium is heated by the mechanical power of a black hole near its Eddington accretion rate.

  19. Space X1 First Entry Sample

    NASA Technical Reports Server (NTRS)

    James, John T.

    2012-01-01

    One mini-grab sample container (m-GSC) was returned aboard Space X1 because of the importance of quickly knowing first-entry conditions in this new commercial module. This sample was analyzed alongside samples of the portable clean room (PCR) used in the Space X complex at KSC. The recoveries of C-13-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 130, 129, and 132 %, respectively.

  20. ORNL Cray X1 evaluation status report

    SciTech Connect

    Agarwal, P.K.; Alexander, R.A.; Apra, E.; Balay, S.; Bland, A.S; Colgan, J.; D'Azevedo, E.F.; Dongarra, J.J.; Dunigan Jr., T.H.; Fahey, M.R.; Fahey, R.A.; Geist, A.; Gordon, M.; Harrison, R.J.; Kaushik, D.; Krishnakumar, M.; Luszczek, P.; Mezzacappa, A.; Nichols, J.A.; Nieplocha, J.; Oliker, L.; Packwood, T.; Pindzola, M.S.; Schulthess, T.C.; Vetter, J.S.; White III, J.B.; Windus, T.L.; Worley, P.H.; Zacharia, T.

    2004-05-01

    On August 15, 2002 the Department of Energy (DOE) selected the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL) to deploy a new scalable vector supercomputer architecture for solving important scientific problems in climate, fusion, biology, nanoscale materials and astrophysics. ''This program is one of the first steps in an initiative designed to provide U.S. scientists with the computational power that is essential to 21st century scientific leadership,'' said Dr. Raymond L. Orbach, director of the department's Office of Science. In FY03, CCS procured a 256-processor Cray X1 to evaluate the processors, memory subsystem, scalability of the architecture, software environment and to predict the expected sustained performance on key DOE applications codes. The results of the micro-benchmarks and kernel bench marks show the architecture of the Cray X1 to be exceptionally fast for most operations. The best results are shown on large problems, where it is not possible to fit the entire problem into the cache of the processors. These large problems are exactly the types of problems that are important for the DOE and ultra-scale simulation. Application performance is found to be markedly improved by this architecture: - Large-scale simulations of high-temperature superconductors run 25 times faster than on an IBM Power4 cluster using the same number of processors. - Best performance of the parallel ocean program (POP v1.4.3) is 50 percent higher than on Japan s Earth Simulator and 5 times higher than on an IBM Power4 cluster. - A fusion application, global GYRO transport, was found to be 16 times faster on the X1 than on an IBM Power3. The increased performance allowed simulations to fully resolve questions raised by a prior study. - The transport kernel in the AGILE-BOLTZTRAN astrophysics code runs 15 times faster than on an IBM Power4 cluster using the same number of processors. - Molecular dynamics simulations related to the phenomenon of

  1. PHOTOEVAPORATING PROPLYD-LIKE OBJECTS IN CYGNUS OB2

    SciTech Connect

    Wright, Nicholas J.; Drake, Jeremy J.; Guarcello, Mario G.; Hora, Joseph L.; Drew, Janet E.; Gutermuth, Robert A.; Kraemer, Kathleen E.

    2012-02-20

    We report the discovery of 10 proplyd-like objects in the vicinity of the massive OB association Cygnus OB2. They were discovered in IPHAS H{alpha} images and are clearly resolved in broadband Hubble Space Telescope/Advanced Camera for Surveys, near-IR, and Spitzer mid-IR images. All exhibit the familiar tadpole shape seen in photoevaporating objects such as the Orion proplyds, with a bright ionization front at the head facing the central cluster of massive stars and a tail stretching in the opposite direction. Many also show secondary ionization fronts, complex tail morphologies, or multiple heads. We consider the evidence that these are either proplyds or 'evaporating gaseous globules' (EGGs) left over from a fragmenting molecular cloud, but find that neither scenario fully explains the observations. Typical sizes are 50,000-100,000 AU, larger than the Orion proplyds, but in agreement with the theoretical scaling of proplyd size with distance from the ionizing source. These objects are located at projected separations of {approx}6-14 pc from the OB association, compared to {approx}0.1 pc for the Orion proplyds, but are clearly being photoionized by the {approx}65 O-type stars in Cyg OB2. Central star candidates are identified in near- and mid-IR images, supporting the proplyd scenario, though their large sizes and notable asymmetries are more consistent with the EGG scenario. A third possibility is therefore considered that these are a unique class of photoevaporating partially embedded young stellar objects that have survived the destruction of their natal molecular cloud. This has implications for the properties of stars that form in the vicinity of massive stars.

  2. Photoevaporating Proplyd-like Objects in Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas J.; Drake, Jeremy J.; Drew, Janet E.; Guarcello, Mario G.; Gutermuth, Robert A.; Hora, Joseph L.; Kraemer, Kathleen E.

    2012-02-01

    We report the discovery of 10 proplyd-like objects in the vicinity of the massive OB association Cygnus OB2. They were discovered in IPHAS Hα images and are clearly resolved in broadband Hubble Space Telescope/Advanced Camera for Surveys, near-IR, and Spitzer mid-IR images. All exhibit the familiar tadpole shape seen in photoevaporating objects such as the Orion proplyds, with a bright ionization front at the head facing the central cluster of massive stars and a tail stretching in the opposite direction. Many also show secondary ionization fronts, complex tail morphologies, or multiple heads. We consider the evidence that these are either proplyds or "evaporating gaseous globules" (EGGs) left over from a fragmenting molecular cloud, but find that neither scenario fully explains the observations. Typical sizes are 50,000-100,000 AU, larger than the Orion proplyds, but in agreement with the theoretical scaling of proplyd size with distance from the ionizing source. These objects are located at projected separations of ~6-14 pc from the OB association, compared to ~0.1 pc for the Orion proplyds, but are clearly being photoionized by the ~65 O-type stars in Cyg OB2. Central star candidates are identified in near- and mid-IR images, supporting the proplyd scenario, though their large sizes and notable asymmetries are more consistent with the EGG scenario. A third possibility is therefore considered that these are a unique class of photoevaporating partially embedded young stellar objects that have survived the destruction of their natal molecular cloud. This has implications for the properties of stars that form in the vicinity of massive stars.

  3. FIVE MORE MASSIVE BINARIES IN THE CYGNUS OB2 ASSOCIATION

    SciTech Connect

    Kiminki, Daniel C.; Kobulnicky, Henry A.; Gilbert, Ian; Bird, Sarah; Chunev, Georgi

    2009-06-15

    We present the orbital solutions for four OB spectroscopic binaries, MT145, GSC 03161 - 00815, 2MASS J20294666+4105083, and Schulte 73, and the partial orbital solution to the B spectroscopic binary, MT372, as part of an ongoing study to determine the distribution of orbital parameters for massive binaries in the Cygnus OB2 Association. MT145 is a new, single-lined, moderately eccentric (e = 0.291 {+-} 0.009) spectroscopic binary with period of 25.140 {+-} 0.008 days. GSC 03161 - 00815 is a slightly eccentric (e = 0.10 {+-} 0.01), eclipsing, interacting and double-lined spectroscopic binary with a period of 4.674 {+-} 0.004 days. 2MASS J20294666+4105083 is a moderately eccentric (e = 0.273 {+-} 0.002) double-lined spectroscopic binary with a period of 2.884 {+-} 0.001 days. Schulte 73 is a slightly eccentric (e = 0.169 {+-} 0.009), double-lined spectroscopic binary with a period of 17.28 {+-} 0.03 days and the first 'twin' in our survey with a mass ratio of q = 0.99 {+-} 0.02. MT372 is a single-lined, eclipsing system with a period of 2.228 days and low eccentricity (e {approx} 0). Of the now 18 known OB binaries in Cyg OB2, 14 have periods and mass ratios. Emerging evidence also shows that the distribution of log(P) is flat and consistent with 'Oepik's Law'.

  4. The massive star population of Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas J.; Drew, Janet E.; Mohr-Smith, Michael

    2015-05-01

    We have compiled a significantly updated and comprehensive census of massive stars in the nearby Cygnus OB2 association by gathering and homogenizing data from across the literature. The census contains 169 primary OB stars, including 52 O-type stars and 3 Wolf-Rayet stars. Spectral types and photometry are used to place the stars in a Hertzsprung-Russell diagram, which is compared to both non-rotating and rotating stellar evolution models, from which stellar masses and ages are calculated. The star formation history and mass function of the association are assessed, and both are found to be heavily influenced by the evolution of the most massive stars to their end states. We find that the mass function of the most massive stars is consistent with a `universal' power-law slope of Γ = 1.3. The age distribution inferred from stellar evolutionary models with rotation and the mass function suggest the majority of star formation occurred more or less continuously between 1 and 7 Myr ago, in agreement with studies of low- and intermediate-mass stars in the association. We identify a nearby young pulsar and runaway O-type star that may have originated in Cyg OB2 and suggest that the association has already seen its first supernova. Finally we use the census and mass function to calculate the total mass of the association of 16 500^{+3800}_{-2800} M⊙, at the low end, but consistent with, previous estimates of the total mass of Cyg OB2. Despite this Cyg OB2 is still one of the most massive groups of young stars known in our Galaxy making it a prime target for studies of star formation on the largest scales.

  5. A Far-Ultraviolet Study of the Cygnus Loop Using the VOYAGER Ultraviolet Spectrometers

    NASA Technical Reports Server (NTRS)

    Vancura, Olaf; Blair, William P.; Long, Knox S.; Raymond, John C.; Holberg, J. B.

    1993-01-01

    We have used the Voyager 1 and 2 Ultraviolet Spectrometers to study the far-ultraviolet emissions from different types of shock waves in the Cygnus Loop. In the southeast and northern parts of the supernova remnant (SNR), we have measured the O(VI) lambda1035 surface brightness from the main blast wave. This value is several times below the average and more than one order of magnitude below the peak O(VI) brightness in the SNR as measured with Voyager. A simple blast wave model appears able to reproduce the observations in the southeast and the northern parts of the Cygnus Loop but can only account for 10%-15% of the total O(VI) emission from the Cygnus Loop. The brightest O(VI) and C(III) lambda977 emission is found coincident with optical filamentation and X-ray enhancements in the northeast. We interpret the observations in the northeast in terms of nonradiative and incomplete shocks whose surface area rises in the optical filamentary regions. We conclude that the bulk of the O(VI) emission from the Cygnus Loop arises from optically bright clouds within which intermediate-velocity (200 + 50 km/s) nonradiative and incomplete shocks are widespread.

  6. JOINT SUZAKU AND XMM-NEWTON SPECTRAL ANALYSIS OF THE SOUTHWEST CYGNUS LOOP

    SciTech Connect

    Leahy, Denis; Hassan, Mohammed

    2013-02-10

    We carry out a joint spectral analysis of the Cygnus Loop using data from all six detectors combined from Suzaku and XMM-Newton. This had not been done before, but if a spectral model is physically realistic, it is required that it be consistent with data from different instruments. Thus, our results are an important verification of spectral models for the Cygnus Loop. One of the prominent features of the Cygnus Loop is the bright 'V' region near the southwest rim. We choose this region, in part, because it has been observed by both Suzaku and XMM-Newton. We divide the field of view into 12 box-shaped regions, such that each contains 9000-13,000 photons in the Suzaku-XIS1 camera. A non-equilibrium ionization model with variable abundances (VNEI) or a two-component VNEI model is found to fit the observations. Resulting electron temperatures and ionization timescales are inversely related, consistent with an origin in density variations by a factor of {approx}3. Element abundances and temperature are strongly correlated, which can be explained by mixing in the outer hydrogen-rich envelope of ejecta: Heavy-element-rich regions have higher velocity to reach this far out from the center of the Cygnus Loop, resulting in higher shock temperature for more element-rich regions.

  7. RXTE/ASM Observations Of SS 433 And Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Hoffman, Lisa; Mason, P. A.

    2010-01-01

    We present a dynamic period search analysis of the X-ray binaries SS 433 and Cygnus X-2 using data from the Rossi X-Ray Timing Explorer All Sky Monitor (RXTE/ASM) spanning over 13 years. We report the detection of a period in SS 433 near 162 days. This may be the first detection of the disk precession period in X-rays. We detect an 81.8 day period in the object Cygnus X-2. The RXTE/ASM light curve is inconsistent with the 77.7 day X-ray period of Wijnands et al. (1996), which was based on a small subset of the RXTE/ASM data combined with data from VELA 5B, and Ariel 5 All-Sky Monitors. Since Cygnus X-2 displays periodic behavior that seems to come and go, producing different best-fit periods on time scales of a few years; we suggest that Cygnus X-2 exhibits quasi-periodic oscillations of about 80 days. This research is supported by a grant from the New Mexico Space Grant Consortium.

  8. The dependence of protostellar luminosity on environment in the Cygnus-X star-forming complex

    SciTech Connect

    Kryukova, E.; Megeath, S. T.; Hora, J. L.; Smith, Howard A.; Gutermuth, R. A.; Bontemps, S.; Schneider, N.; Kraemer, K.; Hennemann, M.; Motte, F.

    2014-07-01

    The Cygnus-X star-forming complex is one of the most active regions of low- and high-mass star formation within 2 kpc of the Sun. Using mid-infrared photometry from the IRAC and MIPS Spitzer Cygnus-X Legacy Survey, we have identified over 1800 protostar candidates. We compare the protostellar luminosity functions of two regions within Cygnus-X: CygX-South and CygX-North. These two clouds show distinctly different morphologies suggestive of dissimilar star-forming environments. We find the luminosity functions of these two regions are statistically different. Furthermore, we compare the luminosity functions of protostars found in regions of high and low stellar density within Cygnus-X and find that the luminosity function in regions of high stellar density is biased to higher luminosities. In total, these observations provide further evidence that the luminosities of protostars depend on their natal environment. We discuss the implications this dependence has for the star formation process.

  9. Isolation and genetic characterization of Toxoplasma gondii from mute swan (Cygnus olor) from the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known of the genetic diversity of Toxoplasma gondii circulating in wildlife. In the present study, antibodies to T. gondii were determined in serum samples from 632 mute swans (Cygnus olor) collected from different areas of the USA. Sera were tested by T. gondii modified agglutination te...

  10. Soft X-Ray Spectroscopy of the Cygnus Loop Supernova Remnant

    NASA Astrophysics Data System (ADS)

    McEntaffer, R. L.; Cash, W.

    2008-06-01

    The Cygnus X-Ray Emission Spectroscopic Survey (CyXESS) sounding rocket payload was launched from White Sands Missile Range on 2006 November 20 and obtained a high-resolution spectrum of the Cygnus Loop supernova remnant in the soft X-ray. The novel X-ray spectrograph incorporated a wire-grid collimator feeding an array of gratings in the extreme off-plane mount that ultimately dispersed the spectrum onto gaseous electron multiplier (GEM) detectors. This instrument recorded 65 s of usable data between 43 and 49.5 Å in two prominent features. The first feature near 45 Å is dominated by the He-like triplet of O VII in second order with contributions from Mg X and Si IX-Si XII in first order, while the second feature near 47.5 Å is first-order S IX and S X. Fits to the spectra give an equilibrium plasma at log (T) = 6.2 (kTe = 0.14 keV) and near cosmic abundances. This is consistent with previous observations, which demonstrated that the soft X-ray emission from the Cygnus Loop is dominated by interactions between the initial blast wave and the walls of a precursor-formed cavity surrounding the Cygnus Loop and that this interaction can be described using equilibrium conditions.

  11. Application of cosmic-ray shock theories to the Cygnus Loop - an alternative model

    NASA Astrophysics Data System (ADS)

    Boulares, Ahmed; Cox, Donald P.

    1988-10-01

    Steady state cosmic-ray shock models are investigated in light of observations of the Cygnus Loop supernova remnant. In this work the authors find that the model of Völk, Drury, and McKenzie, in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of Cygnus Loop shocks. The waves heat the gas substantially in the cosmic-ray precursor, in addition to the usual heating in the (possibly weak) gas shock. The model is used to deduce upstream densities and shock velocities using known quantities for Cygnus Loop shocks. Compared to the usual pure gas shock interpretation, it is found that lower densities and approximately 3 times higher velocities are required. If the cosmic-ray models are valid, this could significantly alter our understanding of the Cygnus Loop's distance and age and of the energy released during the initial explosion.

  12. The {ital ROSAT} HRI x-ray survey of the Cygnus loop

    SciTech Connect

    Levenson, N.A.; Graham, J.R.; Aschenbach, B.; Blair, W.P.; Brinkmann, W.; Busser, J.; Egger, R.; Fesen, R.A.; Hester, J.J.; Kahn, S.M.; Klein, R.I. |; McKee, C.F. |; Petre, R.; Pisarski, R.; Raymond, J.C.; Snowden, S.L.

    1997-07-01

    We describe and report progress on the joint U.S. and German campaign to map the X-ray emission from the entire Cygnus Loop with the {ital ROSAT} High Resolution Imager. The Cygnus Loop is the prototype for a supernova remnant that is dominated by interactions with the interstellar medium and supplies fundamental physical information on this basic mechanism for shaping the interstellar medium. The global view that these high-resolution (FWHM{approximately}10{sup {prime}{prime}}) observations provide emphasizes the inhomogeneity of the interstellar medium and the pivotal nature of cloud{endash}blast-wave interactions in determining the X-ray morphology of the supernova remnant. While investigating the details of the evolution of the blast wave, we also describe the interstellar medium in the vicinity of the Cygnus Loop, which the progenitor star has processed. Although we do not expect the X-ray observations to be complete until 1997 September, the incomplete data combined with deep H{alpha} images provide definitive evidence that the Cygnus Loop was formed by an explosion within a preexisting cavity. {copyright} {ital 1997} {ital The American Astronomical Society}

  13. Infrared study of H 1743-322 in outburst: a radio-quiet and NIR-dim microquasar

    NASA Astrophysics Data System (ADS)

    Chaty, S.; Muñoz Arjonilla, A. J.; Dubus, G.

    2015-05-01

    Context. Microquasars are accreting Galactic sources that are commonly observed to launch relativistic jets. One of the most important issues regarding these sources is the energy budget of ejections relative to the accretion of matter. Aims: The X-ray binary, black hole candidate, and microquasar H 1743-322 exhibited a series of X-ray outbursts between 2003 and 2008. We took optical and near-infrared (OIR) observations with the ESO/NTT telescope during three of these outbursts (2003, 2004, and 2008). The goals of these observations were to investigate the presence of a jet, and to disentangle the various contributions constituting the spectral energy distribution (SED): accretion, ejection, and stellar emission. Methods: Photometric and spectroscopic OIR observations allowed us to produce a high time-resolution lightcurve in Ks-band, to analyze emission lines present in the IR spectra, to construct a multiwavelength SED including radio, IR, and X-ray data, and to complete the OIR vs. X-ray correlation of black hole binaries with H 1743-322 data points. Results: We detect rapid flares of duration ~5 min in the high time-resolution IR lightcurve. We identify hydrogen and helium emission lines in the IR spectra, coming from the accretion disk. The IR SED exhibits the spectral index typically associated with the X-ray high, soft state in our observations taken during the 2003 and 2004 outbursts, while the index changes to one that is typical of the X-ray low, hard state during the 2008 outburst. During this last outburst, we detected a change of slope in the NIR spectrum between the J and Ks bands, where the JH part is characteristic of an optically thick disk emission, while the HKs part is typical of optically thin synchrotron emission. Furthermore, the comparison of our IR data with radio and X-ray data shows that H 1743-322 exhibits a faint jet both in radio and NIR domains. Finally, we suggest that the companion star is a late-type main sequence star located in

  14. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus.

    PubMed

    Cardoso, Adauto Lima; Pieczarka, Julio Cesar; Nagamachi, Cleusa Yoshiko

    2015-05-01

    Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes. PMID:26273225

  15. A 300-parsec-long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793.

    PubMed

    Pakull, Manfred W; Soria, Roberto; Motch, Christian

    2010-07-01

    Black-hole accretion states near or above the Eddington luminosity (the point at which radiation force outwards overcomes gravity) are still poorly known because of the rarity of such sources. Ultraluminous X-ray sources are the most luminous class of black hole (L(X) approximately 10(40) erg s(-1)) located outside the nuclei of active galaxies. They are likely to be accreting at super-Eddington rates, if they are powered by black holes with masses less than 100 solar masses. They are often associated with shock-ionized nebulae, though with no evidence of collimated jets. Microquasars with steady jets are much less luminous. Here we report that the large nebula S26 (ref. 4) in the nearby galaxy NGC 7793 is powered by a black hole with a pair of collimated jets. It is similar to the famous Galactic source SS433 (ref. 5), but twice as large and a few times more powerful. We determine a mechanical power of around a few 10(40) erg s(-1). The jets therefore seem 10(4) times more energetic than the X-ray emission from the core. S26 has the structure of a Fanaroff-Riley type II (FRII-type) active galaxy: X-ray and optical core, X-ray hot spots, radio lobes and an optical and X-ray cocoon. It is a microquasar where most of the jet power is dissipated in thermal particles in the lobes rather than relativistic electrons. PMID:20613836

  16. The effects of the stellar wind and orbital motion on the jets of high-mass microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Barkov, M. V.

    2016-05-01

    Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (i) a strong recollimation shock; (ii) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (iii) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.

  17. The JCMT 12CO(3-2) survey of the Cygnus X region. I. A pathfinder

    NASA Astrophysics Data System (ADS)

    Gottschalk, M.; Kothes, R.; Matthews, H. E.; Landecker, T. L.; Dent, W. R. F.

    2012-05-01

    Context. Cygnus X is one of the most complex areas in the sky, rich in massive stars; Cyg OB2 (2600 stars, 120 O stars) and other OB associations lie within its boundaries. This complicates interpretation, but also creates the opportunity to investigate accretion into molecular clouds and many subsequent stages of star formation, all within one small field of view. Understanding large complexes like Cygnus X is the key to understanding the dominant role that massive star complexes play in galaxies across the Universe. Aims: The main goal of this study is to establish feasibility of a high-resolution CO survey of the entire Cygnus X region by observing part of it as a pathfinder, and to evaluate the survey as a tool for investigating the star-formation process. We can investigate the mass accretion history of outflows, study interaction between star-forming regions and their cold environment, and examine triggered star formation around massive stars. Methods: A 2° × 4° area of the Cygnus X region has been mapped in the 12CO(3-2) line at an angular resolution of 15'' and a velocity resolution of ~0.4 km s-1 using HARP-B and ACSIS on the James Clerk Maxwell Telescope. The star formation process is heavily connected to the life-cycle of the molecular material in the interstellar medium. The high critical density of the 12CO(3-2) transition reveals clouds in key stages of molecule formation, and shows processes that turn a molecular cloud into a star. Results: We observed ~15% of Cygnus X, and demonstrated that a full survey would be feasible and rewarding. We detected three distinct layers of 12CO(3-2) emission, related to the Cygnus Rift (500-800 pc), to W75N (1-1.8 kpc), and to DR 21 (1.5-2.5 kpc). Within the Cygnus Rift, H i self-absorption features are tightly correlated with faint diffuse CO emission, while HISA features in the DR 21 layer are mostly unrelated to any CO emission. 47 molecular outflows were detected in the pathfinder, 27 of them previously

  18. Cygnus OB2 DANCe: A high-precision proper motion study of the Cygnus OB2 association

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas J.; Bouy, Herve; Drew, Janet E.; Sarro, Luis Manuel; Bertin, Emmanuel; Cuillandre, Jean-Charles; Barrado, David

    2016-08-01

    We present a high-precision proper motion study of 873 X-ray and spectroscopically selected stars in the massive OB association Cygnus OB2 as part of the DANCe project. These were calculated from images spanning a 15 yr baseline and have typical precisions <1 mas yr-1. We calculate the velocity dispersion in the two axes to be σ _α (c) = 13.0^{+0.8}_{-0.7} and σ _δ (c) = 9.1^{+0.5}_{-0.5} km s-1, using a two-component, two-dimensional model that takes into account the uncertainties on the measurements. This gives a three-dimensional velocity dispersion of σ3D = 17.8 ± 0.6 km s-1 implying a virial mass significantly larger than the observed stellar mass, confirming that the association is gravitationally unbound. The association appears to be dynamically unevolved, as evidenced by considerable kinematic substructure, non-isotropic velocity dispersions and a lack of energy equipartition. The proper motions show no evidence for a global expansion pattern, with approximately the same amount of kinetic energy in expansion as there is in contraction, which argues against the association being an expanded star cluster disrupted by process such as residual gas expulsion or tidal heating. The kinematic substructures, which appear to be close to virial equilibrium and have typical masses of 40-400 M⊙, also do not appear to have been affected by the expulsion of the residual gas. We conclude that Cyg OB2 was most likely born highly substructured and globally unbound, with the individual subgroups born in (or close to) virial equilibrium, and that the OB association has not experienced significant dynamical evolution since then.

  19. Cygnus OB2 DANCe: A high-precision proper motion study of the Cygnus OB2 association

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas J.; Bouy, Herve; Drew, Janet E.; Sarro, Luis Manuel; Bertin, Emmanuel; Cuillandre, Jean-Charles; Barrado, David

    2016-08-01

    We present a high-precision proper motion study of 873 X-ray and spectroscopically selected stars in the massive OB association Cygnus OB2 as part of the DANCe project. These were calculated from images spanning a 15 year baseline and have typical precisions < 1 mas/yr. We calculate the velocity dispersion in the two axes to be $\\sigma_\\alpha(c) = 13.0^{+0.8}_{-0.7}$ and $\\sigma_\\delta(c) = 9.1^{+0.5}_{-0.5}$ km/s, using a 2-component, 2-dimensional model that takes into account the uncertainties on the measurements. This gives a 3-dimensional velocity dispersion of $\\sigma_{3D} = 17.8 \\pm 0.6$ km/s implying a virial mass significantly larger than the observed stellar mass, confirming that the association is gravitationally unbound. The association appears to be dynamically unevolved, as evidenced by considerable kinematic substructure, non-isotropic velocity dispersions and a lack of energy equipartition. The proper motions show no evidence for a global expansion pattern, with approximately the same amount of kinetic energy in expansion as there is in contraction, which argues against the association being an expanded star cluster disrupted by process such as residual gas expulsion or tidal heating. The kinematic substructures, which appear to be close to virial equilibrium and have typical masses of 40-400 M$_\\odot$, also do not appear to have been affected by the expulsion of the residual gas. We conclude that Cyg OB2 was most likely born highly substructured and globally unbound, with the individual subgroups born in (or close to) virial equilibrium, and that the OB association has not experienced significant dynamical evolution since then.

  20. Diet and nutrition of western rock lobsters, Panulirus cygnus, in shallow coastal waters: the role of habitat

    EPA Science Inventory

    Generalist consumers often have diets that vary considerably over time and space, which reflects changes in resource availability. Predicting diets of consumers can therefore be difficult. The western rock lobster, Panulirus cygnus, is an omnivorous generalist consumer that uses ...

  1. THE ORBITAL PERIOD OF SCORPIUS X-1

    SciTech Connect

    Hynes, Robert I.; Britt, Christopher T.

    2012-08-10

    The orbital period of Sco X-1 was first identified by Gottlieb et al. While this has been confirmed on multiple occasions, this work, based on nearly a century of photographic data, has remained the reference in defining the system ephemeris ever since. It was, however, called into question when Vanderlinde et al. claimed to find the one-year alias of the historical period in RXTE/All-Sky Monitor data and suggested that this was the true period rather than that of Gottlieb et al. We examine data from the All Sky Automated Survey (ASAS) spanning 2001-2009. We confirm that the period of Gottlieb et al. is in fact the correct one, at least in the optical, with the one-year alias strongly rejected by these data. We also provide a modern time of minimum light based on the ASAS data.

  2. Leon X-1, the First Chandra Source

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Aldcroft, Tom; Cameron, Robert A.; Gandhi, Poshak; Foellmi, Cedric; Elsner, Ronald F.; Patel, Sandeep K.; ODell, Stephen L.

    2004-01-01

    Here we present an analysis of the first photons detected with the Chandra X-ray Observatory and an identification of the brightest source in the field which we named Leon X-1 to honor the momentous contributions of the Chandra Telescope Scientist, Leon Van Speybroeck. The observation took place immediately following the opening of the last door protecting the X-ray telescope. We discuss the unusual operational conditions as the first extra-terrestrial X-ray photons reflected from the telescope onto the ACIS camera. One bright source was a p parent to the team at the control center and the small collection of photons that appeared on the monitor were sufficient to indicate that the telescope had survived the launch and was approximately in focus, even prior to any checks and subsequent adjustments.

  3. Photometric Observations of 6000 Stars in the Cygnus Field

    NASA Technical Reports Server (NTRS)

    Borucki, W.; Caldwell, D.; Koch, D.; Jenkins, J.; Ninkov, Z.

    1999-01-01

    A small photometer to detect transits by extrasolar planets has been assembled and is being tested at Lick Observatory on Mt. Hamilton, California. The Vulcan photometer is constructed from a 30 cm focal length, F/2.5 AeroEktar reconnaissance lens and Photometrics PXL16800 CCD camera. A spectral filter is used to confine the pass band from 480 to 763 mn. It simultaneously monitors 6000 stars brighter than 12th magnitude within a single star field in the galactic plane. When the data are folded and phased to discover low amplitude transits, the relative precision of one-hour samples is about 1 part per thousand (10 x l0(exp -3)) for many of the brighter stars. This precision is sufficient to find jovian-size planets orbiting solar-like stars, which have signal amplitudes from 5 to 30 x l0(exp -3) depending on the inflation of the planet and the size of the star. Based on the frequency of giant inner-planets discovered by Doppler-velocity method, one or two planets should be detectable in a rich star field. The goal of the observations is to obtain the sizes of giant extrasolar planets in short-period orbits and to combine these with masses determined from Doppler velocity measurements to determine the densities of these planets. A further goal is to compare the measured planetary diameters with those predicted from theoretical models. From August 10 through September 30 of 1998, a forty nine square degree field in the Cygnus constellation centered at RA and DEC of 19 hr 47 min, +36 deg 55 min was observed. Useful data were obtained on twenty-nine nights. Nearly fifty stars showed some evidence of transits with periods between 0.3 and 8 days. Most had amplitudes too large to be associated with planetary transits. However, several stars showed low amplitude transits. The data for several transits of each of these two stars have been folded and been folded into 30 minute periods. Only Cygl433 shows any evidence of a flattened bottom that is expected when a small object

  4. Infrared photometry and polarimetry of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Jones, Terry Jay; Gehrz, Robert D.; Kobulnicky, Henry A.; Molnar, Lawrence A.; Howard, Eric M.

    1994-01-01

    We present photometry and linear polarimetry of Cygnus X-3 at K (2.2 micrometers) obtained over a 5 yr period. Photometry and polarimetry at J, H, and K of nearby field stars is also presented. From an analysis of these data we find: (1) Using the x-ray ephemeris of Kitamoto et al. (ApJ, 384, 263 (1992), including the first and second derivatives of the period, the leading edge of the decline to minimum in the quiescent K light curve has not changed in phase since 1974. The duration of the minimum in the light curve has changed significantly between different epochs, becoming much broader in 1993 than it was previously. (2) In addition to an interstellar polarization component, it is likely Cyg X-3 has an intrinsic polarization component that is variable. The variations in the polarization do not show any diagnostic pattern with orbital phase. A crude analysis of the polarization suggests the intrinsic polarization of Cyg X-3 has a mean position angle of approximately 12 deg, nearly the same as the direction of the expanding radio lobes. This is consistent with circumstellar electrons scattering in an equatorial disk that is perpendicular to the lobe axis. (3) The mean position angle for the interstellar polarization in the direction of Cyg X-3 is 150 deg. This is nearly perpendicular to the axis of interstellar radio scattering seen in the extended (Very Long Baseline Inteferometry (VLBI) images. Since the position angle of interstellar polarization is the same as the projected magnetic field direction, this suggests the interstellar (not circumstellar) scattering must be taking place perpendicular to the interstellar magnetic field lines. (4) Cyg X-3 was observed at K during a flare on 1992 September 30 with a temporal resolution of 6 s. The flaring had rise and fall times of approximately 50 s with peak intensities up to 80 mJy. The flux between individual flare events never dropped to quiescent levels for the duration of our observations (approximately 2000 s).

  5. The nature of the hard state of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Hjalmarsdotter, L.; Zdziarski, A. A.; Larsson, S.; Beckmann, V.; McCollough, M.; Hannikainen, D. C.; Vilhu, O.

    2008-02-01

    The X-ray binary Cygnus X-3 (Cyg X-3) is a highly variable X-ray source that displays a wide range of observed spectral states. One of the main states is significantly harder than the others, peaking at ~20 keV, with only a weak low-energy component. Due to the enigmatic nature of this object, hidden inside the strong stellar wind of its Wolf-Rayet companion, it has remained unclear whether this state represents an intrinsic hard state, with truncation of the inner disc, or whether it is just a result of increased local absorption. We study the X-ray light curves from RXTE/ASM and CGRO/BATSE in terms of distributions and correlations of flux and hardness and find several signs of a bimodal behaviour of the accretion flow that are not likely to be the result of increased absorption in a surrounding medium. Using INTEGRAL observations, we model the broad-band spectrum of Cyg X-3 in its apparent hard state. We find that it can be well described by a model of a hard state with a truncated disc, despite the low cut-off energy, provided the accreted power is supplied to the electrons in the inner flow in the form of acceleration rather than thermal heating, resulting in a hybrid electron distribution and a spectrum with a significant contribution from non-thermal Comptonization, usually observed only in soft states. The high luminosity of this non-thermal hard state implies that either the transition takes place at significantly higher L/LE than in the usual advection models, or the mass of the compact object is >~20Msolar, possibly making it the most-massive black hole observed in an X-ray binary in our Galaxy so far. We find that an absorption model as well as a model of almost pure Compton reflection also fit the data well, but both have difficulties explaining other results, in particular the radio/X-ray correlation.

  6. The dust scattering halo of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; Paerels, F.

    2015-10-01

    Dust grains scatter X-ray light through small angles, producing a diffuse halo image around bright X-ray point sources situated behind a large amount of interstellar material. We present analytic solutions to the integral for the dust scattering intensity, which allow for a Bayesian analysis of the scattering halo around Cygnus X-3. Fitting the optically thin 4-6 keV halo surface brightness profile yields the dust grain size and spatial distribution. We assume a power-law distribution of grain sizes (n ∝ a-p) and fit for p, the grain radius cut-off amax, and dust mass column. We find that a p ≈ 3.5 dust grain size distribution with amax ≈ 0.2 μm fits the halo profile relatively well, whether the dust is distributed uniformly along the line of sight or in clumps. We find that a model consisting of two dust screens, representative of foreground spiral arms, requires the foreground Perseus arm to contain 80 per cent of the total dust mass. The remaining 20 per cent of the dust, which may be associated with the outer spiral arm of the Milky Way, is located within 1 kpc of Cyg X-3. Regardless of which model was used, we found τ_sca ˜ 2 E_keV^{-2}. We examine the energy resolved haloes of Cyg X-3 from 1 to 6 keV and find that there is a sharp drop in scattering halo intensity when E < 2-3 keV, which cannot be explained with multiple scattering effects. We hypothesize that this may be caused by large dust grains or material with unique dielectric properties, causing the scattering cross-section to depart from the Rayleigh-Gans approximation that is used most often in X-ray scattering studies. The foreground Cyg OB2 association, which contains several evolved stars with large extinction values, is a likely culprit for grains of unique size or composition.

  7. New very massive stars in Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Negueruela, I.; Marco, A.; Herrero, A.; Clark, J. S.

    2008-08-01

    Context: The compact association Cygnus OB2 is known to contain a large population of massive stars, but its total mass is currently a matter of debate. While recent surveys have uncovered large numbers of OB stars in the area around Cyg OB2, detailed study of the optically brightest among them suggests that most are not part of the association. Aims: We observed an additional sample of optically faint OB star candidates, with the aim of checking if more obscured candidates are correspondingly more likely to be members of Cyg OB2. Methods: Low resolution spectra of 9 objects allow the rejection of one foreground star and the selection of four O-type stars, which were later observed at higher resolution. In a subsequent run, we observed three more stars in the classification region and three other stars in the far red. Results: We identify five (perhaps six) new evolved very massive stars and three main sequence O-type stars, all of which are likely to be members of Cyg OB2. The new findings allow a much better definition of the upper HR diagram, suggesting an age ~2.5 Myr for the association and hinting that the O3-5 supergiants in the association are blue stragglers, either younger or following a different evolutionary path from other cluster members. Though the bulk of the early stars seems to belong to an (approximately) single-age population, there is ample evidence for the presence of somewhat older stars at the same distance. Conclusions: Our results suggest that, even though Cyg OB2 is unlikely to contain as many as 100 O-type stars, it is indeed substantially more massive than was thought prior to recent infrared surveys. Figure [see full textsee full textsee full textsee full textsee full textsee full textsee full text] and Table [see full textsee full textsee full textsee full textsee full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  8. A New Method to Use Chandra Data to Resolve the X-Ray Halos Around Point Sources and Its Application to Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Yao, Y.; Zhang, S. Nan; Zhang, X. L.; Feng, Y. X.

    2003-01-01

    The excellent angular resolution, good energy resolution and broad energy band make Chandra ACIS the best instrument for studying the X-ray halos around some galactic x-ray point sources caused by the dust scattering of X-rays in the interstellar medium, but direct images of bright sources of b r i g h t sources obtained with ACIS usually from severe pile- UP - Making use of the fact that an isotropic image could be reconstructed from it's projection on any direction, we can reconstruct the images of the X-ray halos from data obtained with the regular HETGS and/or the CC mode. With the reconstructed high resolution images, we can probe the X-ray halos as close as 1 arcsecond to their associated point sources.

  9. Globules and pillars in Cygnus X. I. Herschel far-infrared imaging of the Cygnus OB2 environment

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Bontemps, S.; Motte, F.; Blazere, A.; André, Ph.; Anderson, L. D.; Arzoumanian, D.; Comerón, F.; Didelon, P.; Di Francesco, J.; Duarte-Cabral, A.; Guarcello, M. G.; Hennemann, M.; Hill, T.; Könyves, V.; Marston, A.; Minier, V.; Rygl, K. L. J.; Röllig, M.; Roy, A.; Spinoglio, L.; Tremblin, P.; White, G. J.; Wright, N. J.

    2016-06-01

    The radiative feedback of massive stars on molecular clouds creates pillars, globules and other features at the interface between the H II region and molecular cloud. Optical and near-infrared observations from the ground as well as with the Hubble or Spitzer satellites have revealed numerous examples of such cloud structures. We present here Herschel far-infrared observations between 70 μm and 500 μm of the immediate environment of the rich Cygnus OB2 association, performed within the Herschel imaging survey of OB Young Stellar objects (HOBYS) program. All of the observed irradiated structures were detected based on their appearance at 70 μm, and have been classified as pillars, globules, evaporating gasous globules (EGGs), proplyd-like objects, and condensations. From the 70 μm and 160 μm flux maps, we derive the local far-ultraviolet (FUV) field on the photon dominated surfaces. In parallel, we use a census of the O-stars to estimate the overall FUV-field, that is 103-104 G0 (Habing field) close to the central OB cluster (within 10 pc) and decreases down to a few tens G0, in a distance of 50 pc. From a spectral energy distribution (SED) fit to the four longest Herschel wavelengths, we determine column density and temperature maps and derive masses, volume densities and surface densities for these structures. We find that the morphological classification corresponds to distinct physical properties. Pillars and globules are massive (~500 M⊙) and large (equivalent radius r ~ 0.6 pc) structures, corresponding to what is defined as "clumps" for molecular clouds. EGGs and proplyd-likeobjects are smaller (r ~ 0.1 and 0.2 pc) and less massive (~10 and ~30 M⊙). Cloud condensations are small (~0.1 pc), have an average mass of 35 M⊙, are dense (~6 × 104 cm-3), and can thus be described as molecular cloud "cores". All pillars and globules are oriented toward the Cyg OB2 association center and have the longest estimated photoevaporation lifetimes, a few million

  10. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    NASA Astrophysics Data System (ADS)

    2000-11-01

    NASA's Chandra X-ray Observatory has detected, for the first time in X rays, a stellar fingerprint known as a P Cygni profile--the distinctive spectral signature of a powerful wind produced by an object in space. The discovery reveals a 4.5-million-mile-per-hour wind coming from a highly compact pair of stars in our galaxy, report researchers from Penn State and the Massachusetts Institute of Technology in a paper they will present on 8 November 2000 during a meeting of the High-Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. The paper also has been accepted for publication in The Astrophysical Journal Letters. "To our knowledge, these are the first P Cygni profiles reported in X rays," say researchers Niel Brandt, assistant professor of astronomy and astrophysics at Penn State, and Norbert S. Schulz, research scientist at the Massachusetts Institute of Technology. The team made the discovery during their first observation of a binary-star system with the Chandra X-ray Observatory, which was launched into space in July 1999. The system, known as Circinus X-1, is located about 20,000 light years from Earth in the constellation Circinus near the Southern Cross. It contains a super-dense neutron star in orbit around a normal fusion-burning star like our Sun. Although Circinus X-1 was discovered in 1971, many properties of this system remain mysterious because Circinus X-1 lies in the galactic plane where obscuring dust and gas have blocked its effective study in many wavelengths. The P Cygni spectral profile, previously detected primarily at ultraviolet and optical wavelengths but never before in X rays, is the textbook tool astronomers rely on for probing stellar winds. The profile looks like the outline of a roller coaster, with one really big hill and valley in the middle, on a data plot with velocity on one axis and the flow rate of photons per second on the other. It is named after the famous star P Cygni, in which such

  11. A Multi-Frequency VLBA Survey of Interstellar Scattering in the Cygnus X Region

    NASA Astrophysics Data System (ADS)

    Mutel, R. L.; Molnar, L. A.; Spangler, S. R.

    1998-05-01

    We describe the results of a multi-frequency VLBA study of the scatter-broadened images of fifteen compact extragalactic sources. The sources are located along lines of sight which intercept the Cygnus X superbubble. We have used the phase structure function to determine the spatial spectrum of turbulence with high SNR on scales from 100 to 6,000 km. We will discuss evidence for detection of an inner scale length along some lines of sight as well as excess visibility amplitude for projected baseline lengths much greater than the diffractive scale. We also find that most scattered-broadened images are significantly elliptical with orientations which may be related to the large-scale magnetic field orientation in the Cygnus superbubble.

  12. Observations of ultra-high-energy photons from Cygnus X-3

    SciTech Connect

    Muraki, Y.; Shibata, S.; Aoki, T.; Mitsui, K.; Okada, A. Tokyo, University )

    1991-06-01

    Extensive air showers coming from the Cygnus X-3 region are analyzed using the van der Klis and Bonnet-Bidaud ephemeris. A 4.7 sigma excess has been observed in the phase bin 0.25-0.3. The maximum excess is seen when a muon cut is applied to the showers, which indicates a slightly muon poor property. The flux is estimated to be (2.7 + or {minus} 0.5) {times} 10 to the -14th/sq cm s for the showers Ne greater than 200,000. DC excesses are observed at the time of the radio burst of Cygnus X-3 in June 1989. 21 refs.

  13. X-1E on Display Stand at Dryden

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A photo showing the Bell Aircraft Corporation X-1E mounted at a jaunty angle in front of the main building (4800) at NASA Dryden Flight Research Center, Edwards, California. The X-1E began life as the X-1-2, a first generation aircraft. The X-1E flew twenty-six times with two pilots. It was retired on November 6, 1958. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and

  14. Support for joint infrared and Copernicus X-Ray observations of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Simultaneous X-ray and infrared measurements were carried out of the flares from Cygnus X-3 from the Copernicus spacecraft observatory. The detectors, InSb, were arranged so that 1.65 and 2.2 micrometer broadbend photometry was performed through a common diaphragm. The measurements were used to determine the energy distribution during a flare and thus learn about the infrared spectrum and its changes during the flare.

  15. Fussy feeders: phyllosoma larvae of the Western Rocklobster (Panulirus cygnus) demonstrate prey preference.

    PubMed

    Saunders, Megan I; Thompson, Peter A; Jeffs, Andrew G; Säwström, Christin; Sachlikidis, Nikolas; Beckley, Lynnath E; Waite, Anya M

    2012-01-01

    The Western Rocklobster (Panulirus cygnus) is the most valuable single species fishery in Australia and the largest single country spiny lobster fishery in the world. In recent years a well-known relationship between oceanographic conditions and lobster recruitment has become uncoupled, with significantly lower recruitment than expected, generating interest in the factors influencing survival and development of the planktonic larval stages. The nutritional requirements and wild prey of the planktotrophic larval stage (phyllosoma) of P. cygnus were previously unknown, hampering both management and aquaculture efforts for this species. Ship-board feeding trials of wild-caught mid-late stage P. cygnus phyllosoma in the eastern Indian Ocean, off the coast of Western Australia, were conducted in July 2010 and August-September 2011. In a series of experiments, phyllosoma were fed single and mixed species diets of relatively abundant potential prey items (chaetognaths, salps, and krill). Chaetognaths were consumed in 2-8 times higher numbers than the other prey, and the rate of consumption of chaetognaths increased with increasing concentration of prey. The highly variable lipid content of the phyllosoma, and the fatty acid profiles of the phyllosoma and chaetognaths, indicated they were from an oligotrophic oceanic food chain where food resources for macrozooplankton were likely to be constrained. Phyllosoma fed chaetognaths over 6 days showed significant changes in some fatty acids and tended to accumulate lipid, indicating an improvement in overall nutritional condition. The discovery of a preferred prey for P. cygnus will provide a basis for future oceanographic, management and aquaculture research for this economically and ecologically valuable species. PMID:22586479

  16. Externally Induced Disks Photoevaporation in the Massive Cluster Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Guarcello, Mario

    2013-07-01

    CygnusOB2, the most massive OB association of the Cygnus-X region, hosts more than 2000 OB stars and a population of young pre-Main Sequence stars. It is 1.4kpc distant from the Sun and the best target to study star formation and disk evolution in the presence of a large number of massive stars. We present a multiwavelength study of protoplanetary disks in Cyg OB2, based on new deep optical and X-ray data obtained with OSIRIS@GTC and Chandra/ACIS-I (the Cygnus OB2 Chandra Legacy Survey), and on archival data from 2MASS, UKIDSS, IPHAS and the Spitzer Legacy Survey of the Cygnus-X Region. We compare the spatial variation of disk fraction with the intensity of the ionized flux emitted by the OB members of CygOB2. We show that the disk fraction decreases gradually with increasing the intensity of the ionizing flux. The results suggests protoplanetary disks in Cyg OB2 suffer long-range photoevaporation induced by the OB star population. This is different than the results obtained in the study of NGC6611 (i.e. Guarcello et al 2007), NGC2264 (i.e. Balog et al. 2007), and the Trapezium in Orion (i.e. Storzer & Hollenbach 1999), where disk fraction drops only in the proximity of the OB stars. We discuss this difference in terms of the larger ionizing flux and older age in Cyg OB2 with respect to these other clusters and touch upon the relevance of this work for planet formation in the universe.

  17. Predicting GAIA's Parallax Distance to the Cygnus OB2 Association with Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Kiminki, Daniel C.; Kobulnicky, Henry A.; Vargas Álvarez, Carlos A.; Alexander, Michael J.; Lundquist, Michael J.

    2015-10-01

    The Cygnus OB2 Association is one of the nearest and largest collections of massive stars in the Galaxy. Situated at the heart of the “Cygnus X” complex of star-forming regions and molecular clouds, its distance has proven elusive owing to the ambiguous nature of kinematic distances along this ℓ ≃ 80° sightline and the heavy, patchy extinction. In an effort to refine the three-dimensional geometry of key Cygnus X constituents, we have measured distances to four eclipsing double-lined OB-type spectroscopic binaries that are probable members of Cyg OB2. We find distances of 1.33 ± 0.17, 1.32 ± 0.07, 1.44 ± 0.18, and 1.32 ± 0.13 kpc toward MT91 372, MT91 696, CPR2002 A36, and Schulte 3, respectively. We adopt a weighted average distance of 1.33 ± 0.06 kpc. This agrees well with spectrophotometric estimates for the Association as a whole and with parallax measurements of protostellar masers in the surrounding interstellar clouds, thereby linking the ongoing star formation in these clouds with Cyg OB2. We also identify Schulte 3C (O9.5V), a 4″ visual companion to the 4.75 day binary Schulte 3(A+B), as a previously unrecognized Association member.

  18. W 58 G - A distant H II region in the H I Cygnus arm

    NASA Astrophysics Data System (ADS)

    Georgelin, Y. M.; Boulesteix, J.; Georgelin, Y. P.; Le Coarer, E.; Marcelin, M.; Monnet, G.

    1988-01-01

    A 9arcmin×9arcmin sky area centered on the galactic nebula W58 G has been scanned at Hα wavelength with the CIGALE instrument at the prime focus of the 2.6 m Armenian telescope in Byurakan. Four distinct nebular emissions can be distinguished along the same line of sight. Two are related to the nearby Cygnus complex, one at VLSR = 9 km s-1 is associated with the Cygnus Rift at 900 pc and another one at VLSR = 60 km s-1 is probably due to stellar winds or supernova remnants. The third emission, at VLSR = -26 km s-1, is the optical counterpart of the Extended Region South East of W58, mapped by Israel (1976) in the radio continuum, in the Perseus arm (8.4 kpc). The fourth emission comes from W58 G, an H II region which appears to belong to the H I Cygnus arm, with VLSR = -66 km s-1, at a distance of 12.4 kpc.

  19. The physics and validation of the Cygnus radiographic source for Armando

    NASA Astrophysics Data System (ADS)

    Berninger, M.; Lutz, S.; Devolder, B.; Yin, L.; Kwan, T.

    2003-10-01

    Conventional simulation techniques for radiographic systems use approximations that poorly represent the dynamics of the electron beam that generates photons via the bremsstrahlung process. The radiographic chain model more accurately accounts for the electron dynamics by linking electron distributions generated in electromagnetic particle-in-cell (PIC) simulations in a self-consistent way to the Monte Carlo particle transport code MCNP. Based on the electron dynamics from PIC simulations, MCNP simulates the emission of bremsstrahlung photons due to the electron collisions with a dense target in the radiographic source and then calculates the photon transport through the imaging object onto the detectors, which are simulated with detector response functions. This integrated radiographic simulation capability has been applied in understanding the Cygnus source physics. By employing the methodology of the chain model, we characterized the effect of the rod-pinch diode operating parameters on the Cygnus radiographic machine parameters, such as energy- and angle-dependent photon spectra, spot size, and dose. The calculations were validated in juxtaposition with radiographic experimental data on step wedges, rolled edges, and static objects. We present the detailed characterization of the performance of the Cygnus source for Armando.

  20. Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Tamagawa, Toru

    2012-01-01

    We report on a discovery of a diffuse nebula containing a point-like source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the point-like source are well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F(sub nebula)/F(sub point-like) approx. 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1x10(exp 31)(d/540pc)(exp 2)ergss/2, where d is the distance to the Loop. This implies a spin-down loss-energy E approx. 2.6x10(exp 35)(d/540pc)(exp 2)ergs/s. The location of the neutron star candidate, approx.2deg away from the geometric center of the Loop, implies a high transverse velocity of approx.1850(theta/2deg)(d/540pc)(t/10kyr)/k/s assuming the currently accepted age of the Cygnus Loop.

  1. Carbon, Helium, and Proton Kinetic Temperatures in a Cygnus Loop Shock Wave

    NASA Astrophysics Data System (ADS)

    Raymond, John C.; Edgar, Richard J.; Ghavamian, Parviz; Blair, William P.

    2015-06-01

    Observations of SN 1006 have shown that ions and electrons in the plasma behind fast supernova remnant shock waves are far from equilibrium, with the electron temperature much lower than the proton temperature and ion temperatures approximately proportional to ion mass. In the ˜360 km s-1shock waves of the Cygnus Loop, on the other hand, electron and ion temperatures are roughly equal, and there is evidence that the oxygen kinetic temperature is not far from the proton temperature. In this paper, we report observations of the He ii λ1640 line and the C iv λ1550 doublet in a 360 km s-1shock in the Cygnus Loop. While the best-fit kinetic temperatures are somewhat higher than the proton temperature, the temperatures of He and C are consistent with the proton temperature and the upper limits are 0.5 and 0.3 times the mass-proportional temperatures, implying efficient thermal equilibration in this collisionless shock. The equilibration of helium and hydrogen affects the conversion between proton temperatures determined from Hα line profiles and shock speeds, and the efficient equilibration found here reduces the shock speed estimates and the distance estimate to the Cygnus Loop of Medina et al. to about 800 pc.

  2. An unidentified TeV source in the vicinity of Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Coarasa, T.; Contreras, J.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Girma, M.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Milite, M.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Röhring, A.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Schröder, F.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.; Uchiyama, Y.; Takahashi, T.; HEGRA Collaboration

    2002-10-01

    Deep observation ( ~ 113 hrs) of the Cygnus region at TeV energies using the HEGRA stereoscopic system of air Čerenkov telescopes has serendipitously revealed a signal positionally inside the core of the OB association Cygnus OB2, at the edge of the 95% error circle of the EGRET source 3EG J2033+4118, and ~ 0.5o north of Cyg X-3. The source centre of gravity is RA alphaJ2000: 20h 32m 07s+/- 9.2sstat +/-2.2ssys, Dec deltaJ2000: +41o 30' 30''+/- 2.0'stat +/- 0.4'sys. The source is steady, has a post-trial significance of +4.6sigma , indication for extension with radius 5.6' at the ~ 3sigma level, and has a differential power-law flux with hard photon index of -1.9 +/-0.3stat +/-0.3sys. The integral flux above 1 TeV amounts ~ 3% that of the Crab. No counterpart for the TeV source at other wavelengths is presently identified, and its extension would disfavour an exclusive pulsar or AGN origin. If associated with Cygnus OB2, this dense concentration of young, massive stars provides an environment conducive to multi-TeV particle acceleration and likely subsequent interaction with a nearby gas cloud. Alternatively, one could envisage gamma -ray production via a jet-driven termination shock.

  3. Dying Pulse Trains in Cygnus XR-1: Initial Results of X-Ray Searches

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.

    2003-01-01

    Dying pulse trains (DPT's) are a signature of a black hole as described by general relativity. Detecting DPT's would establish the existence of black holes by ruling out more exotic objects in systems in which a neutron star or white dwarf component has already been excluded by maximum mass arguments. The positive identification of a black hole would also be an additional test of general relativity. Two possible DPT's were detected in W photometry of Cygnus XR-1, the leading candidate for a stellar mass sized BH, in 3 hours of observational data. A search of X-ray photometry of Cygnus XR-1 from the Ross1 X-ray Timing Explorer (RXTE) has begun. No DPT's have been detected in the first 4 hours of data searched. Because of the low event rate detected in the W data, these initial results are consistent with such disparate scenarios as the rate of DPT occurrence being dependent on the luminosity state of the system; or being more difficult to detect in the X-ray region relative to the W region; or occurring at the same rate in the W and X-ray regions; or even not occurring at all from Cygnus XR-1. The search for DPT's in RXTE photometry is continuing.

  4. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    NASA Astrophysics Data System (ADS)

    2000-11-01

    NASA's Chandra X-ray Observatory has detected, for the first time in X rays, a stellar fingerprint known as a P Cygni profile--the distinctive spectral signature of a powerful wind produced by an object in space. The discovery reveals a 4.5-million-mile-per-hour wind coming from a highly compact pair of stars in our galaxy, report researchers from Penn State and the Massachusetts Institute of Technology in a paper they will present on 8 November 2000 during a meeting of the High-Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. The paper also has been accepted for publication in The Astrophysical Journal Letters. "To our knowledge, these are the first P Cygni profiles reported in X rays," say researchers Niel Brandt, assistant professor of astronomy and astrophysics at Penn State, and Norbert S. Schulz, research scientist at the Massachusetts Institute of Technology. The team made the discovery during their first observation of a binary-star system with the Chandra X-ray Observatory, which was launched into space in July 1999. The system, known as Circinus X-1, is located about 20,000 light years from Earth in the constellation Circinus near the Southern Cross. It contains a super-dense neutron star in orbit around a normal fusion-burning star like our Sun. Although Circinus X-1 was discovered in 1971, many properties of this system remain mysterious because Circinus X-1 lies in the galactic plane where obscuring dust and gas have blocked its effective study in many wavelengths. The P Cygni spectral profile, previously detected primarily at ultraviolet and optical wavelengths but never before in X rays, is the textbook tool astronomers rely on for probing stellar winds. The profile looks like the outline of a roller coaster, with one really big hill and valley in the middle, on a data plot with velocity on one axis and the flow rate of photons per second on the other. It is named after the famous star P Cygni, in which such

  5. Investigation of TeV Gamma-Ray Emission from Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Georgievna Sinitsyna, V.; Arsov, T.P.; Alaverdian, A.Y.; Borisov, S.S.; Musin, F.I.; Mirzafatikhov, R.M.; Nikolsky, S.I.; Kasparov, G.M.; Sinitsyna, V.Y.; Platonov, G.F.

    2003-07-01

    Cherenkov mirror telescope SHALON-1 created at Leb edev Physical Institute and stated at 1991-1992 y. at Tien-Shan mountains 3338 m high above the sea level with 11,2 m2 mirror area and image matrix consisting of 144 photomultipliers with total viewing angle of 8o during 1992-2003 y. was used for observations of galactic sources: Crab Nebula, Cygnus X-3 Ticho Brage, Geminga and metagalactic sources: Markarian 421, Markarian 501, NGC 1275, 3C454.3, 1739+522. Timing analysis show that the contribution of protons of cosmic rays in observable gamma-quanta with energy more than 0.8TeV from the point sources of gammaquanta very high energies do not exceed 10% 15%. The fluxes at energy above 0.8TeV of observation Cygnus X-3 (4.20 ± 0.70) • 10-13 cm-2 s-1 is and Crab Nebula (1.10 ± 0.13) • 10-12 cm-2 s-1 . The observable energy distribution of gamma quanta in an interval of energy 1012 - 5 • 1013 from the local sources in our Galaxy do not contradict with the spectrum of Cygnus X-3 dF /dEγ ˜ Eγ 2.20±0.14 ,- of Crab Nebula -dF /dEγ ˜ Eγ 2.45±0.04 . The observed spectra of the gamma- quanta including the 10%-15% contribution of the proton showers is for Cygnus dF /dE ˜ E -2.51±0.22 , for Crab Nebula dF /dE ˜ E -2.61±0.04 . The images of Cygnus X-3 and Crab Nebula are also presented. One of the basic science parts is nuclear physics, physics of elementary particles and connected with them astrophysics and cosmology, studied the matter structure on micro and macro scales. The gamma-astronomy is a unique experimental possibility of high-energy cosmic rays sources (1012 - 1014 eV) location now. Only neutrino-astronomy will complete search and investigation of galactic and metagalactic objects where the protons and nuclei acceleration processes, accompanying with generation of non scattering by Universal magnetic fields gammas and neutrinos. The cosmological processes, connecting the physic of matter structure with its superdense quasistable state in active

  6. X-1-2 with Pilots Robert Champine Herb Hoover

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The Bell Aircraft Corporation X-1-2 and two of the NACA pilots that flew the aircraft. The one on the left is Robert Champine with the other being Herbert Hoover. The X-1-2 was also equipped with the 10-percent wing and 8 percent tail, powered with an XLR-11 rocket engine and aircraft made its first powered flight on December 9, 1946 with Chalmers 'Slick' Goodlin at the controls. As with the X-1-1 the X-1-2 continued to investigate transonic/supersonic flight regime. NACA pilot Herbert Hoover became the first civilian to fly Mach 1, March 10, 1948. X-1-2 flew until October 23, 1951, completing 74 glide and powered flights with nine different pilots, when it was retired to be rebuilt as the X-1E.

  7. X-1-2 on Ramp with Boeing B-29

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The Bell Aircraft Corporation X-1-2 sitting on the ramp at NACA High- Speed Flight Research Station with the Boeing B-29 launch ship behind. The B-29 was fondly referred to as 'Fertile Myrtle.' The painting near the nose depicts a stork carrying a bundle which is symbolic of the Mothership launching her babe (X-1-2). The pilot access door is open to the cockpit of the X-1-2 aircraft.

  8. Search for a periodic signal from Cygnus X-3 usingmuons observed underground in the Frejus detector (4800 mwe)

    NASA Technical Reports Server (NTRS)

    Bareyre, P.; Barloutaud, R.; Becker, K. H.; Behr, L.; Berger, C.; Bland, R. W.; Chardin, G.; Daum, H. J.; Degrange, B.; Demski, S.

    1986-01-01

    Periodic signals from Cygnus X-3 in the ultra high energy range were recently reported by air shower arrays and attributed to gamma rays. Although gamma rays are expected to produce muon-poor showers, the preceding observations have stimulated similar studies based on underground muons. Two groups have claimed a significant underground signal coming from Cygnus X-3. The results are, however, extremely difficult to explain in the present framework of particle physics, and clearly need confirmation. The preliminary results obtained from the Frejus underground detector during its first 16 months of operation (March 1984 to June 1985) are presented.

  9. A parallax distance to the microquasar GRS 1915+105 and a revised estimate of its black hole mass

    SciTech Connect

    Reid, M. J.; McClintock, J. E.; Steiner, J. F.; Narayan, R.; Steeghs, D.; Remillard, R. A.; Dhawan, V.

    2014-11-20

    Using the Very Long Baseline Array, we have measured a trigonometric parallax for the microquasar GRS 1915+105, which contains a black hole and a K-giant companion. This yields a direct distance estimate of 8.6{sub −1.6}{sup +2.0} kpc and a revised estimate for the mass of the black hole of 12.4{sub −1.8}{sup +2.0} M {sub ☉}. GRS 1915+105 is at about the same distance as some H II regions and water masers associated with high-mass star formation in the Sagittarius spiral arm of the Galaxy. The absolute proper motion of GRS 1915+105 is –3.19 ± 0.03 mas yr{sup –1} and –6.24 ± 0.05 mas yr{sup –1} toward the east and north, respectively, which corresponds to a modest peculiar speed of 22 ± 24 km s{sup –1} at the parallax distance, suggesting that the binary did not receive a large velocity kick when the black hole formed. On one observational epoch, GRS 1915+105 displayed superluminal motion along the direction of its approaching jet. Considering previous observations of jet motions, the jet in GRS 1915+105 can be modeled with a jet inclination to the line of sight of 60° ± 5° and a variable flow speed between 0.65c and 0.81c, which possibly indicates deceleration of the jet at distances from the black hole ≳ 2000 AU. Finally, using our measurements of distance and estimates of black hole mass and inclination, we provisionally confirm our earlier result that the black hole is spinning very rapidly.

  10. Long term X-ray variability of Circinus X-1

    SciTech Connect

    Saz Parkinson, Pablo

    2003-03-19

    We present an analysis of long term X-ray monitoring observations of Circinus X-1 (Cir X-1) made with four different instruments: Vela 5B, Ariel V ASM, Ginga ASM, and RXTE ASM, over the course of more than 30 years. We use Lomb-Scargle periodograms to search for the {approx}16.5 day orbital period of Cir X-1 in each of these data sets and from this derive a new orbital ephemeris based solely on X-ray measurements, which we compare to the previous ephemerides obtained from radio observations. We also use the Phase Dispersion Minimization (PDM) technique, as well as FFT analysis, to verify the periods obtained from periodograms. We obtain dynamic periodograms (both Lomb-Scargle and PDM) of Cir X-1 during the RXTE era, showing the period evolution of Cir X-1, and also displaying some unexplained discrete jumps in the location of the peak power.

  11. VLBI Measurements of Plasma Turbulence Associated with the Cygnus OB1 Association

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Cordes, James M.

    1998-10-01

    We have made dual-frequency (1.67 and 5.00 GHz) VLBI observations of five compact, presumably extragalactic radio sources in the Galactic plane in the constellation of Cygnus. The lines of sight to these sources pass through a part of the interstellar medium that is modified by the Cygnus OB1 association. The VLBI observations were processed to yield measurements of the scattering measure due to interstellar plasma turbulence. The dual-frequency VLBI observations allowed estimates of the possible intrinsic structure contamination of the scattering measurements. Such an error is estimated to be less than 5% of the scattering measure for our two best-observed cases, and 15% to as high as 30% for a more weakly scattered source. Modeling the spatial power spectrum of the turbulence by Pδn(q) = C2Nq-α, where q is the spatial wavenumber of the turbulent fluctuations, our observations provide a measurement of 0LC2Ndz, where L is the thickness of the scattering medium and z is a coordinate along the line of sight. When combined with our earlier observations of the radio source 2013+370, we have a total of six lines of sight through the Cygnus OB1 association. Our observations show that the scattering through the Cygnus OB1 association is heavy and that the scattering measures vary from 0.14 to 2.21 m-20/3 kpc on lines of sight separated by as little as 1°-2°. When combined with measurements of the emission measure in the same directions, our scattering-measure results constrain properties of the turbulence in the Cygnus OB1 association. Specifically, if ε is the normalized amplitude of the density fluctuations, and l0 is the outer scale to the Kolmogorov spectrum, then our combined scattering measure-emission measure data set constrains the quantity ε2/(1+ε2)l2/30. The mean value is ~4.3 × 10-13 cm-2/3, with a range of about 0.5 in the logarithm. We do not have sufficient information to determine ε and l0 separately, but plausible ranges are ε < 1 and l0 < 3 pc

  12. The nature of the Cygnus X-2 like Low Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Gibiec, Andrzej; Balucinska-Church, Monika; Church, Michael

    We propose a physical model of the Cygnus X-2 like Z-track sources: GX 340+0, GX 5-1 and Cygnus X-2 based on the results of applying a particular emission model for low mass X-ray binaries to high quality Rossi-XTE data on the sources. In this emission model the Comptonizing Accretion Disk Corona is very extended, and the evidence for this is now very secure. In our physical model, the Normal Branch is dominated by an increasing mass accretion rate between the soft and hard apex leading to a much increased neutron star temperature resulting in high radiation pressure of the neutron star. The radiation pressure continues to increase on the Horizontal Branch becoming several times super-Eddington. We propose that this disrupts the inner accretion disk and that part of the accretion flow is diverted vertically forming jets which are detected by their radio emission on this part of the Z-track. We thus propose that high radiation pressure is the main factor responsible for the launching of jets. On the Flaring Branch there is a large increase in the neutron star blackbody luminosity at constant mass accretion rate showing that there is an additional energy source on the neutron star. We find good agreement between the mass accretion rate per unit emitting area of the neutron star at the onset of flaring and the theoretical critical value at which burning becomes unstable and propose that flaring in the Cygnus X-2 like sources consists of unstable nuclear burning. Correlation of kilohertz QPO frequencies in all three sources with spectral fitting results leads to the proposal that the upper kHz QPO always takes place at the inner accretion disk edge, the radius of which increases due to disruption of the disk by the high radiation pressure.

  13. NEW EVIDENCE FOR A BLACK HOLE IN THE COMPACT BINARY CYGNUS X-3

    SciTech Connect

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-07-20

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. It is known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. However, one of the most basic of parameters-the mass of the compact object-is not known, nor is it even clear whether it is a neutron star or a black hole (BH). In this paper, we present our analysis of the broadband high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship that has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 M{sub sun}, thus clearly indicative of a BH and as such, resolves a long-standing issue. The full range of uncertainty in our analysis and from using a range of recently published distance estimates constrain the compact object mass to lie between 4.2 M{sub sun} and 14.4 M{sub sun}. Our favored estimate, based on a 9.0 kpc distance estimate, is {approx}10 M{sub sun}, with an error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries, as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma-ray source.

  14. Young and embedded clusters in Cygnus-X: evidence for building up the initial mass function?

    NASA Astrophysics Data System (ADS)

    Maia, F. F. S.; Moraux, E.; Joncour, I.

    2016-05-01

    We provide a new view on the Cygnus-X north complex by accessing for the first time the low mass content of young stellar populations in the region. Canada-France-Hawaii Telescope/Wide-Field Infrared Camera was used to perform a deep near-infrared survey of this complex, sampling stellar masses down to ˜0.1 M⊙. Several analysis tools, including a extinction treatment developed in this work, were employed to identify and uniformly characterize a dozen unstudied young star clusters in the area. Investigation of their mass distributions in low-mass domain revealed a relatively uniform log-normal initial mass function (IMF) with a characteristic mass of 0.32 ± 0.08 M⊙ and mass dispersion of 0.40 ± 0.06. In the high-mass regime, their derived slopes showed that while the youngest clusters (age < 4 Myr) presented slightly shallower values with respect to the Salpeter's, our older clusters (4 Myr < age < 18 Myr) showed IMF compliant values and a slightly denser stellar population. Although possibly evidencing a deviation from an `universal' IMF, these results also supports a scenario where these gas-dominated young clusters gradually `build up' their IMF by accreting low-mass stars formed in their vicinity during their first ˜3 Myr, before the gas expulsion phase, emerging at the age of ˜4 Myr with a fully fledged IMF. Finally, the derived distances to these clusters confirmed the existence of at least three different star-forming regions throughout Cygnus-X north complex, at distances of 500-900 pc, 1.4-1.7 and 3.0 kpc, and revealed evidence of a possible interaction between some of these stellar populations and the Cygnus OB2 association.

  15. Possible Charge-Exchange X-Ray Emission in the Cygnus Loop Detected with Suzaku

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Nakajima, Hiroshi; Takakura, Satoru; Petre, Robert; Hewitt. John W.; Yamaguchi, Hiroya

    2011-01-01

    X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnant s rim are depleted to approx.0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously "enhanced" abundances (up to approx. 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the "enhanced" abundance regions commonly show a strong emission feature at approx.0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O K(alpha) appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently "enhanced" metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question. Subject headings: ISM: abundances ISM: individual objects (Cygnus Loop) ISM: supernova remnants X-rays: ISM atomic processes

  16. NuSTAR Observations of the Powerful Radio Galaxy Cygnus A

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher S.; Lohfink, Anne M.; Ogle, Patrick M.; Harrison, Fiona A.; Madsen, Kristin K.; Fabian, Andrew C.; Wik, Daniel R.; Madejski, Grzegorz; Ballantyne, David R.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fuerst, Felix; Hailey, Charles J.; Lanz, Lauranne; Miller, Jon M.; Saez, Cristian; Stern, Daniel; Walton, Dominic J.; Zhang, William

    2015-08-01

    We present NuSTAR observations of the powerful radio galaxy Cygnus A, focusing on the central absorbed active galactic nucleus (AGN). Cygnus A is embedded in a cool-core galaxy cluster, and hence we also examine archival XMM-Newton data to facilitate the decomposition of the spectrum into the AGN and intracluster medium components. NuSTAR gives a source-dominated spectrum of the AGN out to \\gt 70 keV. In gross terms, the NuSTAR spectrum of the AGN has the form of a power law ({{Γ }}∼ 1.6-1.7) absorbed by a neutral column density of {N}{{H}}∼ 1.6× {10}23 {{cm}}-2. However, we also detect curvature in the hard (\\gt 10 keV) spectrum resulting from reflection by Compton-thick matter out of our line of sight to the X-ray source. Compton reflection, possibly from the outer accretion disk or obscuring torus, is required even permitting a high-energy cut off in the continuum source; the limit on the cut-off energy is {E}{cut}\\gt 111 keV(90% confidence). Interestingly, the absorbed power law plus reflection model leaves residuals suggesting the absorption/emission from a fast (15,000-26,000 {km} {{{s}}}-1 ), high column-density ({N}W\\gt 3× {10}23 {{cm}}-2), highly ionized (ξ ∼ 2500 {erg} {cm} {{{s}}}-1) wind. A second, even faster ionized wind component is also suggested by these data. We show that the ionized wind likely carries a significant mass and momentum flux, and may carry sufficient kinetic energy to exercise feedback on the host galaxy. If confirmed, the simultaneous presence of a strong wind and powerful jets in Cygnus A demonstrates that feedback from radio-jets and sub-relativistic winds are not mutually exclusive phases of AGN activity but can occur simultaneously.

  17. Non-Thermal Emission from the massive stellar association Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Fenech, Danielle Marie; Prinja, Raman; Morford, Jack

    2015-08-01

    The Cygnus OB2 association is located in the Galactic Cygnus X region at a distance of 1.4 kpc, making it one of the closest young massive stellar clusters. Cyg OB2 is not only very rich in stellar density but also in its diversity. It is known to contain a rich population of massive stars including almost 2600 OB stars, a large number of binaries (including a collection of some of the most interesting radio emitting colliding-wind binaries), and a considerable number of pre-main sequence stars.We report here on the first results from The Cyg OB2 Radio Survey (COBRaS), which is a UCL-led e-MERLIN legacy project to provide a deep-field radio mapping of the Cygnus OB2 association. The project has been awarded a total allocation of 252 hours at C-band (5GHz) and 42 hours at L-band (1.6GHz) to image the core of the cluster.We discuss in particular the presence of non-thermal radio emission at 20 cm (L-band), and its potential as a highly efficient way to identify binaries via single-epoch observations, particularly for colliding-wind binaries. COBRaS data will provide a powerful tool for establishing binary incidence in Cyg~OB2, specifically in the difficult intermediate-period range (1--100~yr). Knowing the binary frequency over the whole period range is important for population synthesis.Additionally, Weak-lined T Tauri (WTT) stars in Cyg OB2 also emit non-thermal radiation from magnetically active regions. Hence these observations will be used to detect the considerable population of younger stars.Ultimately, we aim to assemble a substantial and uniquely sensitive radio dataset, which will be exploited to address several fundamentally important areas of stellar astrophysics, including mass-loss, binary frequency, stellar cluster dynamics, and triggered star-formation.

  18. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.

  19. CIRCUMSTELLAR STRUCTURE AROUND EVOLVED STARS IN THE CYGNUS-X STAR FORMATION REGION

    SciTech Connect

    Kraemer, Kathleen E.; Price, Stephan D.

    2010-06-15

    We present observations of newly discovered 24 {mu}m circumstellar structures detected with MIPS around three evolved stars in the Cygnus-X star-forming region. One of the objects, BD+43 3710, has a bipolar nebula, possibly due to an outflow or a torus of material. A second, HBHA 4202-22, a Wolf-Rayet candidate, shows a circular shell of 24 {mu}m emission suggestive of either a limb-brightened shell or disk seen face-on. No diffuse emission was detected around either of these two objects in the Spitzer 3.6-8 {mu}m IRAC bands. The third object is the luminous blue variable candidate G79.29+0.46. We resolved the previously known inner ring in all four IRAC bands. The 24 {mu}m emission from the inner ring extends {approx}1.'2 beyond the shorter wavelength emission, well beyond what can be attributed to the difference in resolutions between MIPS and IRAC. Additionally, we have discovered an outer ring of 24 {mu}m emission, possibly due to an earlier episode of mass loss. For the two shell stars, we present the results of radiative transfer models, constraining the stellar and dust shell parameters. The shells are composed of amorphous carbon grains, plus polycyclic aromatic hydrocarbons in the case of G79.29+0.46. Both G79.29+0.46 and HBHA 4202-22 lie behind the main Cygnus-X cloud. Although G79.29+0.46 simply may be on the far side of the cloud, HBHA 4202-22 is unrelated to the Cygnus-X star formation region.

  20. X-ray astronomy. [Crab Nebula, Cygnus Loop and the Perseus Cluster

    NASA Technical Reports Server (NTRS)

    Novick, R.

    1975-01-01

    Various experiments in X-ray astronomy are described. The occurrence of lunar occultations of the Crab Nebula were utilized to determine the spatial distribution of X-ray emitting regions in the nebula. Study of the Cygnus Loop included a search for a central X-ray point source for the area and measurement of the energy spectrum of the flux from the supernova remnant. The X-ray morphology of the Perseus cluster of galaxies was studied. X-ray spectra of different points in the cluster were also obtained. In addition, the construction of a high resolution gas fluorescence proportional counter for application to X-ray astronomy is discussed.

  1. Angular resolution studies of the CYGNUS array using the shadows of the sun and moon

    SciTech Connect

    Shoup, A.L.; The CYGNUS Collaboration

    1993-05-01

    Using the cosmic ray shadows of the sun and moon, we have estimated the angular resolution of the CYGNUS extensive air shower array. With the event sample now available we estimate the angular resolution of the array to be 0.70{sub {minus}0.06}{sup {plus}0.07} degrees. The resolution depends on the total number of detected shower particles. A new parameterization of the measured shower-front timing structure and the use of counters with small pulse areas lead to a {approximately}25% improvement in the resolution. The systematic pointing error of the array is less than 0.4{degree}.

  2. Angular resolution studies of the CYGNUS array using the shadows of the sun and moon

    SciTech Connect

    Shoup, A.L.

    1993-01-01

    Using the cosmic ray shadows of the sun and moon, we have estimated the angular resolution of the CYGNUS extensive air shower array. With the event sample now available we estimate the angular resolution of the array to be 0.70[sub [minus]0.06][sup [plus]0.07] degrees. The resolution depends on the total number of detected shower particles. A new parameterization of the measured shower-front timing structure and the use of counters with small pulse areas lead to a [approximately]25% improvement in the resolution. The systematic pointing error of the array is less than 0.4[degree].

  3. An Investigation into PAH Destruction in Nearby Supernova Remnants, North Polar Spur and Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Burkhart, Sarah M.; Witt, Adolf N.

    2015-01-01

    Our goal in conducting this research was to look at the polycyclic aromatic hydrocarbon (PAH)/large dust grain emission intensity ratio in nearby supernova remnants to find evidence for selective PAH destruction by hot gas and high velocity shock waves within these regions, as predicted by the models of Arendt et al. (2010) and Micelotta et al. (2010a,b). Two supernova remnants were studied- the North Polar Spur (NPS) and the Cygnus Loop. The data for PAHs were obtained from the WISE W3 12 micron all-sky map processed by Meisner & Finkbeiner (2014), and the data for the larger grains come from the IRAS 100 micron all-sky map processed by Schlegel, Finkbeiner & Davis (1998). After obtaining a control PAH/large grain intensity ratio of ~2.8 (DN/px)/(MJy/sr) from two high latitude clouds, MBM 30 and MBM 32, we found that the intensity ratios across the NPS and Cygnus Loop were not far off- ~2.7 (DN/px)/(MJy/sr) and ~3.1 (DN/px)/(MJy/sr), respectively- showing no evidence of selective large-scale PAH destruction in supernova remnants. The individual intensities for both PAHs and large grains do decrease inside the Cygnus Loop, however, suggesting a decrease in abundances of both grain types, which could mean total dust grain destruction with the normal ratios coming from foreground and background dust located in the line of sight of the remnant. In addition, temperature and E(B-V) measurements taken from calibrated IRAS images show that while the dust column density increases in the Eastern Veil of the Cygnus Loop, the dust temperature reaches a local maximum, indicating the heating of large grains by interaction with the hot gas in the remnant. The PAH/large grain ratio in the Eastern Veil does decrease and could be indicative of currently ongoing active grain destruction there, with the PAHs being destroyed on a more rapid timescale than the large grains.We are grateful for financial support from the NSF REU Program grant to the Department of Physics & Astronomy at

  4. X-1-2 on ramp with Boeing B-29

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The Bell Aircraft Corporation X-1-2 Sitting on the ramp at NACA High-Speed Flight Research Station with the Boeing B-29 launch ship behind. The painting near the nose of the B-29 depicts a stork carrying a bundle which is symbolic of the Mothership launching her babe (X-1-2). The pilot access door is open to the cockpit of the X-1-2 aircraft. On the X-1-2's fin is the old NACA shield, which was later replaced with a yellow band and the letters 'NACA' plus wings that were both black. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1

  5. X-1E on Lakebed with Collapsed Nose Gear

    NASA Technical Reports Server (NTRS)

    1956-01-01

    This photo was taken June 18, 1956 on Rogers Dry Lakebed after Flight 7 of the Bell Aircraft Corporation X-1E with NACA High-Speed Flight Station test pilot Joseph `Joe' Walker at the controls. The first generation X-1s were well known for nose gear failures and the X-1E was no exception. The hard pitch down on landing usually resulted in a collapsed nose gear. The damage rarely was serious but required several days of down-time for repair. The X-1E was the only one to have a true tail skid to protect the empennage from over-rotation during landing. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25

  6. X-1-2 on ramp during ground engine test

    NASA Technical Reports Server (NTRS)

    1947-01-01

    Ground engine test run on the Bell Aircraft Corporation X-1-2 airplane at NACA Muroc Flight Test Unit service area. Notice the front on the lower part of the aircraft aft of the nose section. The frost forms from the mixture of the propellants (including liquid oxygen) in the internal tanks. This photograph was taken in 1947. The aircraft shown is still painted in its original saffron (orange) paint finish. This was later changed to white, which was more visible against the dark blue sky than saffron turned out to be. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December

  7. VLBI observations of a radio flare of Circinus X-1

    NASA Technical Reports Server (NTRS)

    Preston, R. A.; Morabito, D. D.; Wehrle, A. E.; Jauncey, D. L.; Batty, M. J.; Haynes, R. F.; Wright, A. E.; Nicolson, G. D.

    1983-01-01

    VLBI 2.3 GHz observations of a strong radio flare of the binary star system Circinus X-1 indicate a radio source flaring component angular size of 0.0015-0.015 arcsec. This is equivalent to a linear size of 15-150 AU at the 10 kpc distance of Circinus X-1, although interstellar medium scattering may have enlarged the apparent angular source size. Since the radio source quiescent component, observed prior to the flare, had an angular size greater than 0.2 arcsec (equivalent to more than 2000 AU at 10 kpc), the quiescent radio emission comes from a region much larger than that proposed in recent models for Circinus X-1. The quiescent component appears to be variable on a time scale of years, and is probably fueled by the Circinus X-1 binary system.

  8. Identification of the TeV gamma-ray source ARGO J2031+4157 with the Cygnus Cocoon

    SciTech Connect

    Bartoli, B.; Catalanotti, S.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Bernardini, P.; D'Amone, A.; De Mitri, I.; Bi, X. J.; Cao, Z.; Chen, S. Z.; Branchini, P.; Budano, A.; Camarri, P.; Cardarelli, R.; Di Sciascio, G.; Chen, T. L.; Danzengluobu; Creti, P.; Cui, S. W.; Dai, B. Z.; Collaboration: ARGO-YBJ Collaboration; and others

    2014-08-01

    The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is positionally consistent with the Cygnus Cocoon discovered by Fermi-LAT at GeV energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected from 2007 November to 2013 January, the angular extension and energy spectrum of ARGO J2031+4157 are evaluated. After subtracting the contribution of the overlapping TeV sources, the ARGO-YBJ excess map is fitted with a two-dimensional Gaussian function in a square region of 10° × 10°, finding a source extension σ{sub ext}= 1.°8 ± 0.°5. The observed differential energy spectrum is dN/dE = (2.5 ± 0.4) × 10{sup –11}(E/1 TeV){sup –2.6±0.3} photons cm{sup –2} s{sup –1} TeV{sup –1}, in the energy range 0.2-10 TeV. The angular extension is consistent with that of the Cygnus Cocoon as measured by Fermi-LAT and the spectrum also shows a good connection with the one measured in the 1-100 GeV energy range. These features suggest to identify ARGO J2031+4157 as the counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in the star-forming region of Cygnus X, is interpreted as a cocoon of freshly accelerated cosmic rays related to the Cygnus superbubble. The spectral similarity with supernova remnants (SNRs) indicates that the particle acceleration inside a superbubble is similar to that in an SNR. The spectral measurements from 1 GeV to 10 TeV allows for the first time to determine the possible spectrum slope of the underlying particle distribution. A hadronic model is adopted to explain the spectral energy distribution.

  9. Discovery of TeV Gamma-Ray Emission from the Cygnus Region

    SciTech Connect

    Abdo, A.A.; Allen, B.; Berley, D.; Blaufuss, E.; Casanova, S.; Chen, C.; Coyne, D.G.; Delay, R.S.; Dingus, B.L.; Ellsworth, R.W.; Fleysher, L.; Fleysher, R.; Gonzalez, M.M.; Goodman, J.A.; Hays, E.; Hoffman, C.M.; Kolterman, B.E.; Kelley, L.A.; Lansdell, C.P.; Linnemann, J.T.; McEnery, J.E.

    2006-11-28

    The diffuse gamma radiation arising from the interaction of cosmic ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of the cosmic rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this paper we present spatial and flux measurements of TeV gamma-ray emission from the Cygnus Region. The TeV image shows at least one new source MGRO J2019+37 as well as correlations with the matter density in the region as would be expected from cosmic-ray proton interactions. However, the TeV gamma-ray flux as measured at {approx}12 TeV from the Cygnus region (after excluding MGRO J2019+37) exceeds that predicted from a conventional model of cosmic ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region.

  10. Dissecting the Cygnus region with TeV gamma rays and neutrinos

    SciTech Connect

    Beacom, John F.; Kistler, Matthew D.

    2007-04-15

    Recent Milagro observations of the Cygnus region have revealed both diffuse TeV gamma-ray emission and a bright and extended TeV source, MGRO J2019+37, which seems to lack an obvious counterpart at other wavelengths. Additional study of this curious object also promises to provide important clues concerning one of the Milky Way's most active environments. We point out some of the principal facts involved by following three modes of attack. First, to gain insight into this mysterious source, we consider its relation to known objects in both the Cygnus region and the rest of the Galaxy. Second, we find that a simple hadronic model can easily accommodate Milagro's flux measurement (which is at a single energy), as well as other existing observations spanning nearly 7 orders of magnitude in gamma-ray energy. Third, since a hadronic gamma-ray spectrum necessitates an accompanying TeV neutrino flux, we show that IceCube observations may provide the first direct evidence of a Galactic cosmic-ray accelerator.

  11. Polarized mid-infrared synchrotron emission in the core of Cygnus A

    SciTech Connect

    Lopez-Rodriguez, E.; Packham, C.; Tadhunter, C.; Mason, R.; Perlman, E.; Alonso-Herrero, A.; Ramos Almeida, C.; Rodríguez-Espinosa, J. M.; Levenson, N. A.; Álvarez, C. A.; Ramírez, E. A.; Telesco, C. M.

    2014-10-01

    We present high-angular (∼0.''4) resolution mid-infrared (MIR) polarimetric observations in the 8.7 μm and 11.6 μm filters of Cygnus A using CanariCam on the 10.4 m Gran Telescopio CANARIAS. A highly polarized nucleus is observed with a degree of polarization of 11% ± 3% and 12% ± 3% and a position angle of polarization of 27° ± 8° and 35° ± 8° in a 0.''38 (∼380 pc) aperture for each filter. The observed rising of the polarized flux density with increasing wavelength is consistent with synchrotron radiation from the parsec-scale jet close to the core of Cygnus A. Based on our polarization model, the synchrotron emission from the parsec-scale jet is estimated to be 14% and 17% of the total flux density in the 8.7 μm and 11.6 μm filters, respectively. A blackbody component with a characteristic temperature of 220 K accounts for >75% of the observed MIR total flux density. The blackbody emission arises from a combination of (1) dust emission in the torus; and (2) diffuse dust emission around the nuclear region, but the contributions of the two components cannot be well-constrained in these observations.

  12. The nuclear jet and counterjet region of the radio galaxy Cygnus A.

    PubMed Central

    Bartel, N; Sorathia, B; Bietenholz, M F; Carilli, C L; Diamond, P

    1995-01-01

    Very-long-baseline interferometry images of the nuclear region of the radio galaxy Cygnus A reveal a pronounced "core" and a knotty jet and counterjet. The knots are moving away from the core at apparent speeds which are subluminal for h = 1 [h = H0/100 km.s-1.Mpc-1;1 parsec (pc) = 3.09 x 10(16)m] and about c for h = 0.5. The jet is aligned with the outer, kiloparsec-scale jet to within 2 degrees. The counterjet has a total flux density at 5 GHz of about one-fifth of that of the jet. In the context of the twin relativistic jet model for active galactic nuclei, the jet in Cygnus A is oriented at an angle to our line of sight of 35-80 degrees and 55-85 degrees, and the intrinsic velocity of the jet fluid is 0.4-0.6c and 0.6-1c for h = 1 and h = 0.5, respectively. PMID:11607600

  13. LOFAR imaging of Cygnus A - Direct detection of a turnover in the hotspot radio spectra

    NASA Astrophysics Data System (ADS)

    McKean, J. P.; Godfrey, L. E. H.; Vegetti, S.; Wise, M. W.; Morganti, R.; Hardcastle, M. J.; Rafferty, D.; Anderson, J.; Avruch, I. M.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Blaauw, R.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Cerrigone, L.; Ciardi, B.; de Gasperin, F.; Deller, A.; Duscha, S.; Engels, D.; Falcke, H.; Fallows, R. A.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J. M.; van Haarlem, M. P.; Heald, G.; Hoeft, M.; Horst, A. J. van der; Iacobelli, M.; Intema, H.; Juette, E.; Karastergiou, A.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pietka, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H. J.. A.; Rowlinson, A.; Scaife, A. M. M.; Serylak, M.; Shulevski, A.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2016-08-01

    The low-frequency radio spectra of the hotspots within powerful radio galaxies can provide valuable information about the physical processes operating at the site of the jet termination. These processes are responsible for the dissipation of jet kinetic energy, particle acceleration, and magnetic-field generation. Here we report new observations of the powerful radio galaxy Cygnus A using the Low Frequency Array (LOFAR) between 109 and 183 MHz, at an angular resolution of ˜3.5 arcsec. The radio emission of the lobes is found to have a complex spectral index distribution, with a spectral steepening found towards the centre of the source. For the first time, a turnover in the radio spectrum of the two main hotspots of Cygnus A has been directly observed. By combining our LOFAR imaging with data from the Very Large Array at higher frequencies, we show that the very rapid turnover in the hotspot spectra cannot be explained by a low-energy cut-off in the electron energy distribution, as has been previously suggested. Thermal (free-free) absorption or synchrotron self absorption models are able to describe the low-frequency spectral shape of the hotspots, however, as with previous studies, we find that the implied model parameters are unlikely, and interpreting the spectra of the hotspots remains problematic.

  14. Long-term studies with the Ariel 5 ASM. I - Hercules X-1, Vela X-1, and Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Kaluzienski, L. J.; Boldt, E. A.; Serlemitsos, P. A.

    1979-01-01

    Twelve hundred days of 3-6 keV X-ray data from Her X-1, Vela X-1, and Cen X-3 accumulated with the Ariel 5 All-Sky Monitor are interrogated. The binary periodicities of all three can be clearly observed, as can the 35 day variation of Her X-1, for which we can refine the period to 34.875 plus or minus 0.030 days. No such longer-term periodicity less than 200 days is observed from Vela X-1. The 26.6 days low-state recurrence period for Cen X-3 is not observed, but a 43.0 day candidate periodicity is found which may be consistent with the precession of an accretion disk in that system. The present results are illustrative of the long-term studies which can be performed on approximately 50 sources over a temporal base which will ultimately extend to at least 1800 days.

  15. X-1A in flight with flight data superimposed

    NASA Technical Reports Server (NTRS)

    1953-01-01

    This photo of the X-1A includes graphs of the flight data from Maj. Charles E. Yeager's Mach 2.44 flight on December 12, 1953. (This was only a few days short of the 50th anniversary of the Wright brothers' first powered flight.) After reaching Mach 2.44, then the highest speed ever reached by a piloted aircraft, the X-1A tumbled completely out of control. The motions were so violent that Yeager cracked the plastic canopy with his helmet. He finally recovered from a inverted spin and landed on Rogers Dry Lakebed. Among the data shown are Mach number and altitude (the two top graphs). The speed and altitude changes due to the tumble are visible as jagged lines. The third graph from the bottom shows the G-forces on the airplane. During the tumble, these twice reached 8 Gs or 8 times the normal pull of gravity at sea level. (At these G forces, a 200-pound human would, in effect, weigh 1,600 pounds if a scale were placed under him in the direction of the force vector.) Producing these graphs was a slow, difficult process. The raw data from on-board instrumentation recorded on oscillograph film. Human computers then reduced the data and recorded it on data sheets, correcting for such factors as temperature and instrument errors. They used adding machines or slide rules for their calculations, pocket calculators being 20 years in the future. Three second generation Bell Aircraft Corporations X-1s were built, though four were requested. They were the X-1A (48-1384); X-1B (48-1385); X-1C (canceled and never built); X-1D (48-1386). These aircraft were similar to the X-1s, except they were five feet longer, had conventional canopies, and were powered by Reaction Motors, Inc. XLR11-RM-5 rocket engines. The RM-5, like the previous engines, had no throttle and was controlled by igniting one or more of the four thrust chambers at will. The original program outline called for the X-1A and X-1B to be used for dynamic stability and air loads investigations. The X-1D was to be used

  16. X-1E launch from B-50 mothership

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Beginning in 1946, two XS-1 experimental research aircraft (later redesignated X-1s) conducted pioneering tests at Muroc Army Air Field (now Edwards Air Force Base) in California to obtain flight data on conditions in the transonic speed range. These early tests culminated on October 14, 1947, in the first piloted flight faster than Mach 1.0, the speed of sound. During November, 1947, the Air Force authorized studies that led to a contract (W-33-038-ac-20062) with Bell Aircraft to build four (later three) improved X-1 aircraft (the X-1C being cancelled). Designated X-1A (#48-1384), X-1B (#48-1385), and X-1D (#48-1386), the airplanes were ready by late 1950. The aircraft were about five feet longer and 2,500 lbs. heavier than the original X-craft planes. They used the 8-percent wing like the earlier X-craft. The D-model had a low-pressure turbo-pump and the B model was fitted with a prototype hydrogen peroxide reaction control system for later aircraft to use in exoatmospheric research flights. Access was through a lift-off canopy. The planes were finished in their bare metal color and white. The X-1D was ready first, but on what was intended to be its second flight (August 22, 1951) it was jettisoned and crashed at Muroc after an aerial explosion while still mated to its mother (B-50A [#46-006A]) ship. The long-delayed X-1 #3 airplane with the turbine pump was finally completed for the NACA in 1951. It made its first glide flight on July 20, 1951, with NACA pilot Joseph Cannon. Its second and final captive flight was on November 9, 1951. It was destroyed on the ground by an explosion and fire along with its B-50A mother ship while attempting to jettison fuel. The X-1A arrived at Muroc in January, 1953 and had its first powered flight on February 21, 1953. On December 8, 1953 with Yeager as pilot, the aircraft investigated high-speed stability and control issues. The X-1A was turned over to the NACA, but was lost to aerial explosion on August 8, 1955, shortly before

  17. Coordinated Xmm-Newton Spectroscopy of Circinus X-1

    NASA Astrophysics Data System (ADS)

    Shirey, Robert

    During absorption dips in the unusual LMXB Circinus X-1, a bright spectral component is obscured, revealing a faint scattered component. Using RXTE, we found a similar Fe Kalpha flux inside and outside dips, suggesting that Fe fluorescence occurs in the scattering medium. Our extensive RXTE study also revealed that intensity flares in Cir X-1 are associated with branches of a Z-source track. We discovered an unusual line- or edge-like feature near 10 keV on the normal and flaring branches. We propose observations with RXTE during our approved XMM- Newton AO-1 observations of Cir X-1 in order to perform simultaneous broad-band and high-resolution spectroscopy during dips and flares.

  18. Fatal verminous pharyngitis and esophagitis caused by Streptocara incognita in mute swans (Cygnus olor).

    PubMed

    Alić, A; Prasović, S; Hodzić, A; Besirović, H; Residbegović, Emina; Omeragić, J

    2013-03-01

    Streptocara spp. infections are reported to cause gastritis, proventriculitis, esophagitis, and pharyngitis in various waterfowls, especially diving ducks. In the present paper, we describe severe fatal diphtheritic pharyngitis and esophagitis caused by Streptocara incognita in three female mute swans (Cygnus olor) in Bosnia and Herzegovina. Prior to death, the swans were showing signs of lethargy, anorexia, and reluctance to move. At necropsy, in all swans severe diphtheritic pharyngitis and esophagitis with deep, dark red hemorrhagic ulcerations were observed. Numerous thin, white, up to 1-cm-long nematodes, identified as S. incognita, were observed embedded in the pharyngeal and esophageal mucosa under the diphtheritic membranes. Histopathology revealed severe fibrinonecrotic inflammation with numerous cross-sections of the parasites. To the authors' knowledge, this is the first report of severe, fatal streptocariasis in mute swans. PMID:23678745

  19. Kinematics of the Central Kiloparsec in Cygnus A from AO Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aylor, Kevin; Rude, G.; Medling, A.; Canalizo, G.; Max, C. E.; Antonucci, R. R.

    2013-01-01

    We present Keck Integral Field Unit observations and long-slit spectroscopy of the central regions of Cygnus A using laser guide star adaptive optics. Our near-IR images show a bi-conic structure clearly seen in Pa-alpha emission and a more flattened structure perpendicular to the axis of the radio jets that is only visible in H_2 emission. Both of these structures are strongly suggestive of an obscuring torus around a heavily extinguished quasar nucleus. We use the integral field spectroscopy to develop velocity maps and model the kinematics of the entire region. We thus set constraints on the torus geometry and obtain an estimate for the mass of the supermassive black hole.

  20. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; de Angelis, A; de Palma, F; Dermer, C D; do Couto E Silva, E; Drell, P S; Dumora, D; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Martin, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pohl, M; Prokhorov, D; Rainò, S; Rando, R; Razzano, M; Reposeur, T; Ritz, S; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Smith, P D; Spinelli, P; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Bontemps, S

    2011-11-25

    The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population. PMID:22116880

  1. Broadband Emission Spectra from the Cygnus X-3 Jet in the Soft Spectral State

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Fu; Lu, Ju-Fu

    2015-02-01

    In order to understand the main observational characteristics of the Galactic X-ray binary Cygnus X-3, we propose a radiation model in which high-energy electrons accelerate in the dissipation zone of a jet and produce nonthermal broadband emissions. Broadband spectral energy distributions are computed to compare the AGILE and Fermi LAT data with the multi-band data during soft X-ray spectral states. By fitting observations at different locations of the jet, we find that the emission region is rather compact and should be located at a distance of about one orbital radius. Our results can explain the current multi-frequency observations and also predict the TeV band emission. The model could be tested by a polarization measurement at IR band, and/or by a correlation study between the GeV and TeV bands once very-high-energy observations are available.

  2. Can Charge Exchange Explain Anomalous Soft X-Ray Emission in the Cygnus Loop?

    NASA Astrophysics Data System (ADS)

    Cumbee, R. S.; Henley, D. B.; Stancil, P. C.; Shelton, R. L.; Nolte, J. L.; Wu, Y.; Schultz, D. R.

    2014-06-01

    Recent X-ray studies have shown that supernova shock models are unable to satisfactorily explain X-ray emission in the rim of the Cygnus Loop. In an attempt to account for this "anomalously" enhanced X-ray flux, we fit the region with a model including theoretical charge exchange (CX) data along with shock and background X-ray models. The model includes the CX collisions of O8 +, O7 +, N7 +, N6 +, C6 +, and C5 + with H with an energy of 1 keV u-1 (438 km s-1). The observations reveal a strong emission feature near 0.7 keV that cannot fully be accounted for by a shock model, nor the current CX data. Inclusion of CX, specifically O7 + + H, does provide for a statistically significant improvement over a pure shock model.

  3. BROADBAND EMISSION SPECTRA FROM THE CYGNUS X-3 JET IN THE SOFT SPECTRAL STATE

    SciTech Connect

    Zhang, Jian-Fu; Lu, Ju-Fu E-mail: lujf@xmu.edu.cn

    2015-02-01

    In order to understand the main observational characteristics of the Galactic X-ray binary Cygnus X-3, we propose a radiation model in which high-energy electrons accelerate in the dissipation zone of a jet and produce nonthermal broadband emissions. Broadband spectral energy distributions are computed to compare the AGILE and Fermi LAT data with the multi-band data during soft X-ray spectral states. By fitting observations at different locations of the jet, we find that the emission region is rather compact and should be located at a distance of about one orbital radius. Our results can explain the current multi-frequency observations and also predict the TeV band emission. The model could be tested by a polarization measurement at IR band, and/or by a correlation study between the GeV and TeV bands once very-high-energy observations are available.

  4. VizieR Online Data Catalog: Young and embedded clusters in Cygnus-X (Maia+, 2016)

    NASA Astrophysics Data System (ADS)

    Maia, F. F. S.; Moraux, E.; Joncour, I.

    2016-02-01

    CFHT/WIRCam was used to acquire deep (960s, 1200s, 480s) JHK exposures of five fields covering ~1 degree squared in the Cygnus-X complex, in six nights between 04/09/2012 and 29/10/2012. The frames were detrended and coadded into a master mosaic where PSF photometry was carried out using SExtractor and PSFex software using a 2-sigma detection threshold. The resulting catalog was calibrated against the 2MASS catalog, but no transformation was done to our data. Instead, bright sources (brighter than the saturation magnitude) were recovered from 2MASS and calibrated to the WIRCam instrumental system to complement our catalog. The final table contains about 310000 stars spanning 12 magnitudes and reaching K=18.5 at 95% completeness. The fundamental parameters of 10 young stellar systems in the region were derived through this final catalogue. (2 data files).

  5. Joint BeppoSAX/RossiXTE Observation of Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Piraino, S.; Santangelo, A.; Kaaret, P.

    2001-09-01

    We report on a joint BeppoSAX/RossiXTe observation of the Z-type low mass X-ray binary Cygnus X-2. The source was in the so-called high overall intensity state and in less than 24 hours went through all three branches of the Z-track. The continuum X-ray spectrum could be described by the absorbed sum of a soft thermal component and a Comptonized component. The timing power spectrum showed several components including QPO in the ranges 28-50 Hz while the source was on the horizontal branch (HBO). We found that the HBO frequency was well correlated with the parameters of soft thermal component in the X-ray spectrum.

  6. Anatomy of a cosmic-ray neutrino source and the Cygnus X-3 system

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Harding, A. K.; Barnard, J. J.

    1985-01-01

    The effects of an intense beam of ultra-high energy cosmic rays from a compact object in the Cygnus X-3 binary system hitting the companion star, and of the subsequent production of secondary neutrinos, are examined. A maximum allowable beam luminosity of about 10 to the 42nd erg/s is found for a system containing a 1-10 solar mass main sequence target star. The proton beam must heat a relatively small area of the target star to satisfy observational constraints on the resulting stellar wind. With such a model, the neutrino to gamma-ray flux ratio of about 1000 can result from a combination of gamma-ray absorption and a large neutrino to gamma-ray duty cycle ratio. It is found that the high density of the atmosphere resulting from compression by the beam leads to pion cascading and a neutrino spectrum peaking at 1-10 GeV energies.

  7. Deeper Chandra Follow-up of Cygnus TeV Source Perpetuates Mystery

    NASA Astrophysics Data System (ADS)

    Butt, Yousaf M.; Drake, Jeremy; Benaglia, Paula; Combi, Jorge A.; Dame, Thomas; Miniati, Francesco; Romero, Gustavo E.

    2006-05-01

    A 50 ks Chandra observation of the unidentified TeV source in Cygnus reported by the HEGRA collaboration reveals no obvious diffuse X-ray counterpart. However, 240 pointlike X-ray sources are detected within or nearby the extended TeV J2032+4130 source region, of which at least 36 are massive stars and two may be radio emitters. That the HEGRA source is a composite, having as a counterpart the multiple pointlike X-ray sources we observe, cannot be ruled out. Indeed, the distribution of pointlike X-ray sources appears nonuniform and concentrated broadly within the extent of the TeV source region. We offer a hypothesis for the origin of the very high energy gamma-ray emission in Cyg OB2 based on the local acceleration of TeV-range cosmic rays and the differential distribution of OB versus less massive stars in this association.

  8. Multifrequency radio observations of Cygnus A - Spectral aging in powerful radio galaxies

    NASA Technical Reports Server (NTRS)

    Carilli, C. L.; Perley, R. A.; Dreher, J. W.; Leahy, J. P.

    1991-01-01

    A detailed analysis of the radio spectrum across the lobes of Cygnus A is presented in order to critically test the synchroton spectral aging theory. The results are in good agreement with the jet model for powerful radio galaxies, involving particle acceleration at the hot spots and outflow into the radio lobes, with subsequent energy loss due to synchrotron radiation. The hot spot spectra are well represented by a spectral aging model involving continuous injection of relativistic particles. Both hot spots have spectral break frequencies around 10 GHz. An injection index of 0.5 is found for both hot spots, consistent with diffusive shock acceleration at a strong nonrelativistic shock in a Newtonian fluid. The LF hot spot emission spectrum falls below the injected power law. This effect is isolated to the hot spots, and is best explained by a low-energy cutoff in the particle distribution.

  9. OPTICAL PHOTOMETRIC GTC/OSIRIS OBSERVATIONS OF THE YOUNG MASSIVE ASSOCIATION CYGNUS OB2

    SciTech Connect

    Guarcello, M. G.; Wright, N. J.; Drake, J. J.; Aldcroft, T.; Kashyap, V. L.; Garcia-Alvarez, D.; Drew, J. E.

    2012-10-15

    In order to fully understand the gravitational collapse of molecular clouds, the star formation process, and the evolution of circumstellar disks, these phenomena must be studied in different Galactic environments with a range of stellar contents and positions in the Galaxy. The young massive association Cygnus OB2, in the Cygnus-X region, is a unique target to study how star formation and the evolution of circumstellar disks proceed in the presence of a large number of massive stars. We present a catalog obtained with recent optical observations in the r, i, z filters with OSIRIS, mounted on the 10.4 m Gran Telescopio CANARIAS telescope, which is the deepest optical catalog of Cyg OB2 to date. The catalog consists of 64,157 sources down to M = 0.15 M{sub Sun} at the adopted distance and age of Cyg OB2. A total of 38,300 sources have good photometry in all three bands. We combined the optical catalog with existing X-ray data of this region, in order to define the cluster locus in the optical diagrams. The cluster locus in the r - i versus i - z diagram is compatible with an extinction of the optically selected cluster members in the 2.64{sup m} < A{sub V} < 5.57{sup m} range. We derive an extinction map of the region, finding a median value of A{sub V} = 4.33{sup m} in the center of the association, decreasing toward the northwest. In the color-magnitude diagrams, the shape of the distribution of main-sequence stars is compatible with the presence of an obscuring cloud in the foreground {approx}850 {+-} 25 pc from the Sun.

  10. Discovery of carbon radio recombination lines in absorption towards Cygnus A

    NASA Astrophysics Data System (ADS)

    Oonk, J. B. R.; van Weeren, R. J.; Salgado, F.; Morabito, L. K.; Tielens, A. G. G. M.; Rottgering, H. J. A.; Asgekar, A.; White, G. J.; Alexov, A.; Anderson, J.; Avruch, I. M.; Batejat, F.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Brentjens, M.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; Corstanje, A.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; van Enst, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Hamaker, J. P.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Horneffer, A.; van der Horst, A.; Iacobelli, M.; Jackson, N. J.; Juette, E.; Karastergiou, A.; Klijn, W.; Kohler, J.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Mann, G.; Markoff, S.; McKean, J. P.; Mevius, M.; Miller-Jones, J. C. A.; Mol, J. D.; Mulcahy, D. D.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Scaife, A. M. M.; Schoenmakers, A.; Schwarz, D.; Shulevski, A.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Veen, S. ter; Thoudam, S.; Toribio, C.; van Nieuwpoort, R.; Vermeulen, R.; Vocks, C.; Vogt, C.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    2014-02-01

    We present the first detection of carbon radio recombination line absorption along the line of sight to Cygnus A. The observations were carried out with the Low Frequency Array in the 33-57 MHz range. These low-frequency radio observations provide us with a new line of sight to study the diffuse, neutral gas in our Galaxy. To our knowledge this is the first time that foreground Milky Way recombination line absorption has been observed against a bright extragalactic background source. By stacking 48 carbon α lines in the observed frequency range we detect carbon absorption with a signal-to-noise ratio of about 5. The average carbon absorption has a peak optical depth of 2 × 10-4, a line width of 10 km s-1 and a velocity of +4 km s-1 with respect to the local standard of rest. The associated gas is found to have an electron temperature Te ˜ 110 K and density ne ˜ 0.06 cm-3. These properties imply that the observed carbon α absorption likely arises in the cold neutral medium of the Orion arm of the Milky Way. Hydrogen and helium lines were not detected to a 3σ peak optical depth limit of 1.5 × 10-4 for a 4 km s-1 channel width. Radio recombination lines associated with Cygnus A itself were also searched for, but are not detected. We set a 3σ upper limit of 1.5 × 10-4 for the peak optical depth of these lines for a 4 km s-1 channel width.

  11. Electron-ion equilibrium and shock precursors in the northeast limb of the Cygnus Loop

    SciTech Connect

    Medina, Amber A.; Raymond, John C.; Edgar, Richard J.; Caldwell, Nelson; Milisavljevic, Dan; Fesen, Robert A. E-mail: jraymond@cfa.harvard.edu E-mail: amedina7@nmsu.edu

    2014-08-10

    We present an observational study using high-resolution echelle spectroscopy of collisionless shocks in the Cygnus Loop supernova remnant. Measured Hα line profiles constrain pre-shock heating processes, shock speeds, and electron-ion equilibration (T{sub e} /T{sub i} ). The shocks produce faint Hα emission line profiles, which are characterized by narrow and broad components. The narrow component is representative of the pre-shock conditions, while the broad component is produced after charge transfer between neutrals entering the shock and protons in the post-shock gas, thus reflecting the properties of the post-shock gas. We observe a diffuse Hα region extending about 2.'5 ahead of the shock with line width ∼29 km s{sup –1}, while the Hα profile of the shock itself consists of broader than expected narrow (36 km s{sup –1}) and broad (250 km s{sup –1}) components. The observed diffuse emission arises in a photoionization precursor heated to about 18,000 K by He I and He II emission from the shock, with additional narrow component broadening originating from a thin cosmic-ray precursor. Broad to narrow component intensity ratios of ∼1.0 imply full electron-ion temperature equilibration T{sub e} ≅ T{sub i} in the post-shock region. Broad component line widths indicate shock velocities of about 400 km s{sup –1}. Combining the shock velocities with proper motions suggests that the distance to the Cygnus Loop is ∼890 pc, significantly greater than the generally accepted upper limit of 637 pc.

  12. P-23 Highlights 6/10/12: Cygnus Dual Beam Radiographic Facility Refurbishment completed at U1A tunnel in Nevada NNSS meeting Level 2 milestone

    SciTech Connect

    Deyoung, Anemarie; Smith, John R.

    2012-05-03

    A moratorium was placed on U.S. underground nuclear testing in 1992. In response, the Stockpile Stewardship Program was created to maintain readiness of the existing nuclear inventory through several efforts such as computer modeling, material analysis, and subcritical nuclear experiments (SCEs). As in the underground test era, the Nevada National Security Site (NNSS), formerly the Nevada Test Site, provides a safe and secure environment for SCEs by the nature of its isolated and secure facilities. A major tool for SCE diagnosis installed in the 05 drift laboratory is a high energy x-ray source used for time resolved imaging. This tool consists of two identical sources (Cygnus 1 and Cygnus 2) and is called the Cygnus Dual Beam Radiographic Facility (Figs. 2-6). Each Cygnus machine has 5 major elements: Marx Generator, Pulse Forming Line (PFL), Coaxial Transmission Line (CTL), 3-cell Inductive Voltage Adder (IVA), and Rod Pinch Diode. Each machine is independently triggered and may be fired in separate tests (staggered mode), or in a single test where there is submicrosecond separation between the pulses (dual mode). Cygnus must operate as a single shot machine since on each pulse the diode electrodes are destroyed. The diode is vented to atmosphere, cleaned, and new electrodes are inserted for each shot. There is normally two shots per day on each machine. Since its installation in 2003, Cygnus has participated in: 4 Subcritical Experiments (Armando, Bacchus, Barolo A, and Barolo B), a 12 shot plutonium physics series (Thermos), and 2 plutonium step wedge calibration series (2005, 2011), resulting in well over 1000 shots. Currently the Facility is in preparation for 2 SCEs scheduled for this calendar year - Castor and Pollux. Cygnus has performed well during 8 years of operations at NNSS. Many improvements in operations and performance have been implemented during this time. Throughout its service at U1a, major maintenance and replacement of many hardware items

  13. The X-Ray Spectral Changes of Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, C. F.; Geldzahler, B. J.; Fomalont, E. B.

    2003-07-01

    Rossi X-Ray Timing Explorer (RXTE) observations of Sco X-1 during 1997-1999 have been analyzed for spectral characteristics. All the X-ray branches of Sco X-1 were observed during these epochs. On the basis of our observations, we present a simple model for the behavior of Sco X-1 as a function of accretion rate and angle of the observer's line of sight that explains quantitatively the results of VLBA and RXTE observations. Our model presents a unified view of bright low-mass X-ray binaries as an accretion-driven system in which, at the Eddington accretion rate, material overflows the magnetosphere of the neutron star and quenches the jets of Sco X-1. We present supporting evidence of absorption as a function of X-ray branch. The model explains the two distinct color diagrams of observed Z source horizontal branches as variations in the observed line of sight to the accretion disk. The model also applies to the recently discovered Z traces in atoll sources.

  14. Response of the middle atmosphere to Sco X-1

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Barcus, J. R.; Mitchell, J. D.

    1985-01-01

    On the night of Mar. 9, 1983 (UT) at Punta Lobos Launch Site, Peru (12.5 deg S, 76.8 deg W, magnetic dip -0.7 deg), a sequence of sounding rockets was flown to study the electrical structure of the equatorial middle atmosphere and to evaluate perturbations on this environment induced by the X-ray star Sco X-1. The rocket series was anchored by two Nike Orion payloads (31.032 and 31.033) which were launched at 0327 and 0857 UT, near Sco X-1 star-rise and after it had attained an elevation angle of 70 deg E. An enhanced flux of X-rays was observed on the second Nike Orion flight (31.033). This increase is directly attributed to Sco X-1, both from the spectral properties of the measured X-ray distribution and by spatial information acquired from a spinning X-ray detector during the upleg portion of the 31.033 flight. Simultaneously, a growth in ion conductivity and density was seen to occur in the lower mesosphere between 60 and 80 km on the second flight, specifically in the region of maximum energy deposition by the Sco X-1 X-rays. The results imply the presence of a significant number of ionized heavy constituents within the lower mesosphere, with masses possibly in the submacroscopoic range.

  15. Sunspot 1520 Releases Strong (X1.4) Solar Flare

    NASA Video Gallery

    This movie shows the sun July 10-12, ending with the X1.4 class flare on July 12, 2012. It was captured by NASA’s Solar Dynamics Observatory in the 131 Angstrom wavelength - a wavelength that is...

  16. Preconceptual design requirements for the X-1 Advanced Radiation Source

    SciTech Connect

    Rochau, G.E.; Hands, J.A.; Raglin, P.S.; Ramirez, J.J.; Goldstein, S.A.; Cereghino, S.J.; MacLeod, G.

    1998-09-01

    The X-1 Advanced Radiation Source represents the next step in providing the US Department of Energy`s Stockpile Stewardship Program with the high-energy, large volume, laboratory x-ray source for the Radiation Effects Science and Simulation, Inertial Confinement Fusion, and Weapon Physics Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories` Z Accelerator provide sufficient basis for pursuing the development of X-1. The X-1 plan follows a strategy based on scaling the 2 MJ x-ray output on Z via a 3-fold increase in z-pinch load current. The large volume (>5 cm{sup 3}), high temperature (>150 eV), temporally long (>10 ns) hohlraums are unique outside of underground nuclear weapon testing. Analytical scaling arguments and hydrodynamic simulations indicate that these hohlraums at temperatures of 230--300 eV will ignite thermonuclear fuel and drive the reaction to a yield of 200 to 1,000 MJ in the laboratory. X-1 will provide the high-fidelity experimental capability to certify the survivability and performance of non-nuclear weapon components in hostile radiation environments. Non-ignition sources will provide cold x-ray environments (<15 keV), and high yield fusion burn sources will provide high fidelity warm x-ray environments (15 keV--80 keV).

  17. SMC X-1 variability observed from HEAO 1

    NASA Technical Reports Server (NTRS)

    Gruber, D. E.; Rothschild, R. E.

    1984-01-01

    Studies are reported of the slow variability of SMC X-1 and its spectrum. An analysis of red-noise random variability is based on a method discussed by Deeter and Boynton (1982). The 0.7 s X-ray pulsar SMC X-1 is in a 3.89 day eclipsing binary system with a B0 I supergiant companion. Observations of the pulsar were conducted with the aid of the UCSD/MIT instrument on HEAO 1 from 1977 August through 1979 January. A light curve was constructed for the period 1977 September to 1978 December. The apparent tendency of SMC X-1 to be in one of two states, high or low, suggests the acquisition of average spectra separately for each state. The total (steady plus pulsed) emission from SMC X-1 displays a continuum spectrum with a dominant exponential form which implies a temperature of 17 keV for thin thermal bremsstrahlung emission or 5 keV if the other limit of a Wien spectrum is assumed.

  18. Recurrent X-ray outbursts from Aquila X-1

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.

    1976-01-01

    Aquila X-1 observations by the All Sky Monitor on Ariel 5 are presented. Data is compared with that obtained by rocket survey, and by the Uhuru, OSO 7, and OAO 3 satellites. The variability of brightness is discussed as a connection between dwarf novae and long term transient X ray sources.

  19. Herschel Observations of Circinus X-1 during Outburst and Quiescence

    NASA Astrophysics Data System (ADS)

    Harrison, Thomas E.; Gelino, Dawn M.; Buxton, Michelle; Fost, Tyler

    2014-07-01

    We have used the Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging REceiver instruments on the Herschel Space Observatory to observe Cir X-1 both in and out of outburst. We detected Cir X-1 during outburst at 70 μm. Unfortunately, a cold background source dominates Cir X-1 at longer wavelengths. We have assembled optical and infrared (IR) data for Cir X-1 to model its spectral energy distribution (SED) in both quiescence and outburst and find that in both states it is consistent with a heavily reddened, 10,000 K blackbody. We believe this behavior is completely consistent with previous suggestions that these outbursts are due to accretion disk events, not unlike those of dwarf novae. To explore the behavior of other low-mass X-ray binaries with reported synchrotron jets, we have extracted and/or compiled optical and near- and mid-IR data sets for five such systems to construct their SEDs. The Z-source GX 349+2 and the black hole system GRS 1915+105 have strong and variable mid-IR excesses that suggest synchrotron emission. The other Z-sources have rather weak (or no) IR excesses that can be explained as reddened blackbody spectra with the addition of either synchrotron or bremsstrahlung components. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  20. Herschel observations of Circinus X-1 during outburst and quiescence

    SciTech Connect

    Harrison, Thomas E.; Gelino, Dawn M.; Buxton, Michelle; Fost, Tyler E-mail: dawn@ipac.caltech.edu E-mail: tyler.fost@gmail.com

    2014-07-01

    We have used the Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging REceiver instruments on the Herschel Space Observatory to observe Cir X-1 both in and out of outburst. We detected Cir X-1 during outburst at 70 μm. Unfortunately, a cold background source dominates Cir X-1 at longer wavelengths. We have assembled optical and infrared (IR) data for Cir X-1 to model its spectral energy distribution (SED) in both quiescence and outburst and find that in both states it is consistent with a heavily reddened, 10,000 K blackbody. We believe this behavior is completely consistent with previous suggestions that these outbursts are due to accretion disk events, not unlike those of dwarf novae. To explore the behavior of other low-mass X-ray binaries with reported synchrotron jets, we have extracted and/or compiled optical and near- and mid-IR data sets for five such systems to construct their SEDs. The Z-source GX 349+2 and the black hole system GRS 1915+105 have strong and variable mid-IR excesses that suggest synchrotron emission. The other Z-sources have rather weak (or no) IR excesses that can be explained as reddened blackbody spectra with the addition of either synchrotron or bremsstrahlung components.

  1. Multiband observations of Cygnus A: A study of pressure balance in the core of a powerful radio galaxy

    NASA Technical Reports Server (NTRS)

    Carilli, Chris; Conner, Sam; Dreher, John; Perley, Rick

    1990-01-01

    Cygnus A is a powerful double radio source associated with a giant elliptical galaxy at the center of a poor cluster of galaxies. The radio source also sits within the core radius of a dense, cooling flow, x ray emitting cluster gas. Optical spectroscopy and narrow band imaging have revealed copious amounts of narrow line emission from the inner 20 kpc of the associated galaxy. Researchers assume H sub o = 75 km sec (-1) Mpc(-1). Discussed here are the pressures in the three components of the Interstellar Medium (ISM) (i.e., the radio, x ray, and line emitting fluids) within a radius of about 15 kpc of the active nucleus of the Cygnus A galaxy.

  2. DISCOVERY OF A 7 mHz X-RAY QUASI-PERIODIC OSCILLATION FROM THE MOST MASSIVE STELLAR-MASS BLACK HOLE IC 10 X-1

    SciTech Connect

    Pasham, Dheeraj R.; Mushotzky, Richard F.; Strohmayer, Tod E. E-mail: richard@astro.umd.edu

    2013-07-10

    We report the discovery with XMM-Newton of an Almost-Equal-To 7 mHz X-ray (0.3-10.0 keV) quasi-periodic oscillation (QPO) from the eclipsing, high-inclination black hole binary IC 10 X-1. The QPO is significant at >4.33{sigma} confidence level and has a fractional amplitude (% rms) and a quality factor, Q {identical_to} {nu}/{Delta}{nu}, of Almost-Equal-To 11 and 4, respectively. The overall X-ray (0.3-10.0 keV) power spectrum in the frequency range 0.0001-0.1 Hz can be described by a power-law with an index of Almost-Equal-To - 2, and a QPO at 7 mHz. At frequencies {approx}>0.02 Hz there is no evidence for significant variability. The fractional amplitude (rms) of the QPO is roughly energy-independent in the energy range of 0.3-1.5 keV. Above 1.5 keV the low signal-to-noise ratio of the data does not allow us to detect the QPO. By directly comparing these properties with the wide range of QPOs currently known from accreting black hole and neutron stars, we suggest that the 7 mHz QPO of IC 10 X-1 may be linked to one of the following three categories of QPOs: (1) the 'heartbeat' mHz QPOs of the black hole sources GRS 1915+105 and IGR J17091-3624, or (2) the 0.6-2.4 Hz 'dipper QPOs' of high-inclination neutron star systems, or (3) the mHz QPOs of Cygnus X-3.

  3. Discovery of a 7 mHz X-Ray Quasi-Periodic Oscillation from the Most Massive Stellar-Mass Black Hole IC 10 X-1

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Mushotzky, Richard F.

    2013-01-01

    We report the discovery with XMM-Newton of an approx.. = 7 mHz X-ray (0.3-10.0 keV) quasi-periodic oscillation (QPO) from the eclipsing, high-inclination black hole binary IC 10 X-1. The QPO is significant at >4.33 sigma confidence level and has a fractional amplitude (% rms) and a quality factor, Q is identical with nu/delta nu, of approx. = 11 and 4, respectively. The overall X-ray (0.3-10.0 keV) power spectrum in the frequency range 0.0001-0.1 Hz can be described by a power-law with an index of approx. = -2, and a QPO at 7 mHz. At frequencies approx. > 0.02 Hz there is no evidence for significant variability. The fractional amplitude (rms) of the QPO is roughly energy-independent in the energy range of 0.3-1.5 keV. Above 1.5 keV the low signal-to-noise ratio of the data does not allow us to detect the QPO. By directly comparing these properties with the wide range of QPOs currently known from accreting black hole and neutron stars, we suggest that the 7 mHz QPO of IC 10 X-1 may be linked to one of the following three categories of QPOs: (1) the "heartbeat" mHz QPOs of the black hole sources GRS 1915+105 and IGR J17091-3624, or (2) the 0.6-2.4 Hz "dipper QPOs" of high-inclination neutron star systems, or (3) the mHz QPOs of Cygnus X-3.

  4. Aperiodic and Quasi-Periodic Variability in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Parker, Neil Ivan

    Low mass X-ray binary star systems (LMXBs) are among the brightest and most well-studied objects in the X-ray sky-indeed, the first extrasolar X-ray source discovered, Sco X-1, is an LMXB. But despite the wealth of available data, LMXBs remain enigmatic, in large part due to the fact that they show little or no coherent periodicity. LMXBs show aperiodic and quasi-periodic variability, for which the underlying mechanisms are poorly understood. Much information remains locked in archival data. Here we address this issue by re-analyzing archival EXOSAT data of Sco X-1 using modern time-series techniques, including multi-tapering, wavelet transforms and scalegrams, and nonlinear dynamical modelling, which are not yet commonly used in the analysis of astronomical data, with the goal of characterizing Sco X-1's variability and developing a formalism to take us from timing data to mathematical models to astrophysical models. The power spectra of Sco X-1 show several components: (i) very low frequency noise (VLFN), a colored noise component seen below ~0.25 Hz, (ii) high frequency noise (HFN), a colored noise component seen above ~30-40 Hz, and (iii) quasi-periodic oscillations (QPOs), localized excesses of Fourier power. The VLFN contains ~1.3% [1/over2]-peak-to-peak pulsed power on the average, can be described by a power law with an index of ~1.4, and is correlated with the 'flickeriness' of the source. QPOs contain ~4.6% [1/over2]-peak-to-peak pulsed power, have centroid frequencies of 6.7 Hz or 15 Hz, and are associated with extended 'quiescent' states and with brief gaps in 'flaring' states. HFN is difficult to characterize (though others have had success describing it as a damped power law), and is not strongly associated with any other source feature. It contains ~2.1% [1/over2]-peak-to-peak pulsed power. Several models have been proposed to explain the VLFN, QPOs, and HFN in Sco X-1, but none are completely satisfactory. Most models seek to explain only QPOs. Here

  5. High-Resolution Parallax Measurements of Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, C. F.; Fomalont, E. B.; Geldzahler, B. J.

    1999-02-01

    The results of eight VLBA observations at 5 GHz, spanning 3 yr, have yielded a measured trigonometric parallax for Sco X-1 of 0.00036"+/-0.00004" hence, its distance is 2.8+/-0.3 kpc. This is the most precise parallax measured to date. Although our measured distance is 40% farther away than previous estimates based on X-ray luminosity, our Rossi X-Ray Timing Explorer observations, with a measured luminosity of 2.3×1038 ergs s-1, and determined distance continue to support the hypothesis that Z-source low-mass X-ray binary systems, like Sco X-1, radiate at the Eddington luminosity at a particular point in their X-ray color-color diagram.

  6. High Resolution Spectroscopy of the LMXB SCO X-1

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2002-09-01

    Sco X-1 is by far the brightest persistent extrasolar X-ray source in the sky. Early observations showed a bright X-ray continuum and strong K (Fe XXV) line emission. The source has been well established as an LMXB Z-source spending most of its time on the so-called flaring branch. Low energy line emission has been detected in the EINSTEIN OGS, which most likely arises from a photoionized ADC. Through its variable radio emission it was established as a Galactic-jet radio source with strong similarities to luminous radio galaxies and quasars and we expect to observe P Cygni lines from a strong disk wind as observed in Cir X-1. We developed a specific observation strategy that allows to safely observe the source with the Chandra HETGS.

  7. Long-Term Observations of Her X-1 with BATSE

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Scott, D. M.; Finger, M. H.

    1991-01-01

    Pulsed emission from Her X-1 has been observed by BATSE during each Main High state throughout the CGRO (Compton Gamma-Ray Observatory) mission . This long observation set by a single instrument provides new information on long-term behavior of the Her X-1 system. The luminosity varies by more than a factor of 3 between different 35d cycles. Frequency and flux histories do not show a simple relationship between the source intensity and spin behavior, but do show that only spindown occurs when the source is in its lowest intensity state. Orbital analyses will be presented, including tests for consistency of the observed orbital epoch with the long-term ephemeris reported by (Deeter 1991). The intensity profile and onset times of cycles observed by both BATSE and the RXTE ASM (All Sky Monitor) will be compared. Behavior of the cycle start times versus source Main High peak intensity will be presented.

  8. EVN detection of Aql X-1 in outburst

    NASA Astrophysics Data System (ADS)

    Tudose, V.; Paragi, Z.; Miller-Jones, J.; Garrett, M.; Fender, R.; Rushton, A.; Spencer, R.

    2009-11-01

    The X-ray binary Aql X-1 has been in outburst in the last few weeks (ATEL #2288, #2296, #2299, #2302, #2303). We observed the system on 2009 November 19 between 14:30-19:00 UT at 5 GHz with the European VLBI Network (EVN) using the e-VLBI technique. The participating radio telescopes were Effelsberg (1 Gbps), Medicina (896 Mbps), Onsala 25m (1 Gbps), Torun (1 Gbps), Westerbork (1 Gbps), Yebes (896 Mbps), and Cambridge (128 Mbps).

  9. RXTE Observations of LMC X-1 and LMC X-3

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Nowak, M. A.; Dove, J. B.; Pottschmidt, K.; Heindl, W. A.; Begelman, M. C.; Staubert, R.

    1998-01-01

    Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170 ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma approximately 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50 keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3, we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its approximately 200d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.

  10. RXTE Observations of LMC X-1 and LMC X-3

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Nowak, M. A.; Dove, J. B.; Pottschmidt, K.; Heindl, W. A.; Begelman, M. C.; Staubert, R.

    1999-01-01

    Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170 ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma approximately 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50 keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3 , we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its approximately 200 d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.

  11. The Distance and Milliarcsecond Radio Structure of Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, C. F.; Fomalont, E. B.; Geldzahler, B. J.

    1997-07-01

    From three VLBA observations at 5 GHz, taken over 13 months, we have measured the trigonometric parallax of Sco X-1 as 0.00023" +/- 0.00028" hence, its distance is greater than 1300 pc. This supports the hypothesis that Sco X-1 radiates at or near the Eddington limit at the transition point between the normal and flaring branches of the X-ray color-color diagram. These results suggest that Sco X-1 and other Z-type quasi-periodic oscillators have a well defined luminosity and can be used as X-ray standard candles. All three VLBA observations contain a radio core of flux density 0.5 mJy and size greater than 4 mas. However, the third VLBA observation revealed two additional radio components (separated by 12 mas and on opposite sides of the radio core) not present in the two previous observations. The evolution of these two components will remain unknown until multiepoch radio imaging and coordinated radio and X-ray total flux density measurements can be made.

  12. Discovery of orbital decay in SMC X-1

    NASA Technical Reports Server (NTRS)

    Levine, A.; Rappaport, S.; Boynton, P.; Deeter, J.; Nagase, F.

    1992-01-01

    The results are reported of three observations of the binary X ray pulsar SMC X-1 with the Ginga satellite. Timing analyses of the 0.71 s X ray pulsations yield Doppler delay curves which, in turn, provide the most accurate determination of the SMC X-1 orbital parameters available to date. The orbital phase of the 3.9 day orbit is determined in May 1987, Aug. 1988, and Aug. 1988 with accuracies of 11, 1, and 3.5 s, respectively. These phases are combined with two previous determinations of the orbital phase to yield the rate of change in the orbital period: P sub orb/P sub orb = (-3.34 + or - 0.023) x 10(exp -6)/yr. An interpretation of this measurement and the known decay rate for the orbit of Cen X-3 is made in the context of tidal evolution. Finally, a discussion is presented of the relation among the stellar evolution, orbital decay, and neutron star spinup time scales for the SMC X-1 system.

  13. A Cornucopia of Massive Binary Star Systems in the Cygnus OB2 Association: Fifty and Counting

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.; Kiminki, D. C.; Burke, J. F.; Chapman, J. E.; Keller, E.; Lester, K. V.; Rolen, E.; Topel, E.; Lundquist, M. J.; Bhattacharjee, A.; Vargas Alvarez, C. A.; Runnoe, J. C.; Dale, D. A.

    2014-01-01

    Massive binary star systems produce nature's most energetic events, including some classes of supernovae, gamma-ray bursts, X-ray binaries, and double-degenerate objects that generate gravitational wave radiation. The Cygnus OB2 Association is the largest nearby collection of massive stars, consisting of several hundred O and early B stars at a distance of just 1.4 kpc. Our Cygnus OB2 Radial Velocity Survey team at the University of Wyoming has spectroscopically monitored 115 stars of type B2 or earlier between 1999 and 2013, accruing an average of 12 observations per star at a velocity precision of 2-6 km/s. We have identified fifty massive binary systems, nearly all of which have full orbital solutions. Periods range from 1.4 days - 12.5 years and velocity semi-amplitudes span 4-300 km/s. Monte-Carlo modeling indicates that as many as 90% of massive systems contain multiple stars and that 45% of these can be characterized as ``close'' binaries that will interact, exchanging matter during main-sequence or post-main-sequence evolution. Statistical analysis of the orbital parameters reveals a striking surplus of close, short-period systems with periods P=1.4--7 days, with fully 30% (17 out of 50 systems) of the known binaries falling in this tight range; their typical orbital separations are just a small fraction of an astronomical unit. The remainder of the binary systems are consistent with a period distribution described as flat in log(P) out to several thousand day periods. The mass ratio distribution appears flat over the interval q=M2/M1=0.1-1.0, meaning that massive stars preferentially have massive companions. These data constitute the largest and most complete homogeneous database on any single collection of massive stars in a common formation environment covering the full range of stars expected to explode as supernovae (B2V and earlier). As such, the Survey provides the raw data for modeling rates of cosmic supernova, gamma-ray bursts, and X-ray binaries

  14. XMM-Newton observations across the Cygnus Loop from northeastern rim to southwestern rim

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Tsunemi, Hiroshi

    We have observed the Cygnus Loop from the northeast (NE) to the southwest (SW) with XMM-Newton. We extracted spectra from 3‧-spaced annular regions across the Loop and fitted them either with a one-kTe-component non-equilibrium ionization (NEI) model or with two-kTe-component NEI model. We found that the two-kTe-component model yields significantly better fits in almost all the spectra than the one-kTe-component model. Judging from the abundances, the high-kTe-component in the two-temperature model must be fossil ejecta while the low-kTe-component comes from the swept-up interstellar medium (ISM). The distributions of Ne, Mg, Si, and S for fossil ejecta appear to retain the onion-skin structure at the time of a supernova explosion, suggesting that significant overturning of the ejecta has not occurred yet. Comparing the relative abundances of fossil ejecta estimated for the entire Cygnus Loop with those from theoretical calculations for Type-II SN, the mass of the progenitor star is likely to be ˜13 M⊙. The trends of the radial profiles of kTe and emission integral for the swept-up ISM are adequately described by the Sedov model, suggesting that the swept-up ISM is concentrated in a shell-like structure. Comparing our data with the Sedov model, we found the ambient medium density to be ˜0.7 cm-3. Then, we estimated the total mass of the swept-up ISM and the age of the remnant to be ˜130 M⊙ and 13,000 years, respectively. Note that if the explosion occurred within a stellar wind cavity, then the density in the cavity, the total swept-up mass in the cavity, and the age of the remnant are estimated to be ˜0.14 cm-3, ˜25 M⊙, and ˜10,000 years, respectively.

  15. Radio non-detection of Aql X-1

    NASA Astrophysics Data System (ADS)

    Tudose, V.; Paragi, Z.; Altamirano, D.; Miller-Jones, J. C. A.; Garrett, M.; Fender, R.; Rushton, A.; Spencer, R.; Maitra, D.

    2010-10-01

    The neutron star X-ray binary Aql X-1 is on the decaying phase of a major outburst that peaked at optical and X-ray bands in mid-September (ATEL #2850, #2871, #2891, #2902). We observed the object at 5 GHz with the European VLBI Network (EVN) in the e-VLBI mode on 2010 October 4th between 18:20-22:09 UT. The participating stations were Cambridge, Effelsberg, Jodrell Bank (MkII), Hartebeesthoek, Medicina, Onsala, Torun, Westerbork and Yebes.

  16. A radio nebula associated with Circinus X-1

    NASA Technical Reports Server (NTRS)

    Haynes, R. F.; Komesaroff, M. M.; Jauncey, D. L.; Caswell, J. L.; Milne, D. K.; Kesteven, M. J.; Wellington, K. J.; Preston, R. A.

    1986-01-01

    An investigation of the variable source Circinus X-1 is reported that reveals that this eccentric double-star system is embedded in a nebula of steady radio emission extending over several parsecs, orders of magnitude larger than the binary stellar system responsible for the fluctuating component of emission. This is in marked constrast to most X-ray binaries, where an envelope of radio emission in conspicuously absent. There are difficulties in explaining the emission, but analogies with SS433 and the Crab nebula suggest possible models.

  17. Short time transient periodicities from Cyg X-1

    NASA Technical Reports Server (NTRS)

    Auriemma, G.; Cardini, D.; Costa, E.; Giovannelli, F.; Ranieri, M.

    1976-01-01

    The temporal behavior of three new events of modulated optical emission from Cyg X1, detected in July 1975, is presented. Short time periodicities in the optical band are investigated. Single photon pulses from the photomultiplier are recorded on magnetic tape together with a very accurate 1 kHz reference frequency. During playback of the tape, the reference signal gives a 1 ms timing to a scaler interfaced with a small processor and the number of photon per millisecond is recorded on a digital tape.

  18. Pilot Joe Walker with the X-1E

    NASA Technical Reports Server (NTRS)

    1958-01-01

    A photo of the nose section of the X-1E with pilot Joe Walker suited for a flight at the NASA High-Speed Flight Station, Edwards, California. The dice and Little Joe are prominently displayed under the cockpit area. NASA employees and the crew chief of the plane worked long hours preparing a craft for flight. A break from the tedious task was a welcome reprieve at times; hence the private joke between a crew and their pilot evolved. If you know the craps game you've figured it out! (Little Joe is a dice player's slang term for two deuces.)

  19. Possible Charge Exchange X-Ray Emission from the Cygnus Loop detected with Suzaku

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Petre, Robert; Hwang, Una; Hewitt, John

    We present results of a spatially-resolved X-ray spectral analysis of nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that some of the spectra show a bump at ˜0.7 keV as a "shoulder" of the lines at ˜0.66 keV which is a combination of O H Lyα and O Heβ. The regions showing the "shoulder" is confined within narrow (< a few arcmin) regions behind the shock at position angles of 0-40, 110-160, and 270-330 degrees measured from north over east. Around the rim, the position angles where the X-ray excess is present correspond to relatively weak radio emission as well as optical emission from non-radiative Hα filaments. While other possibilities (e.g., Fe L emission) cannot be fully excluded, these correlations lead us to consider that the "shoulder" may be O Heγ + δ + etc lines produced by charge exchange between H-like O ions and neutral H. Whatever its origin, the "shoulder" significantly affects the spectral analysis; the best-fit parameters strongly depend on whether or not we include the "shoulder" in the spectral fitting. We will discuss this issue in terms of our previous results of our spectral analysis for the rim regions.

  20. Observation of muons from Cygnus X-3 in the NUSEX experiment

    NASA Technical Reports Server (NTRS)

    Piazzoli, B. D.

    1986-01-01

    Ground based observations by means of Cerenkov light detectors and air shower arrays have established that Cyngus X-3 is a powerful source of high energy particles. The detection of a 10 to the 15th power eV signal was first reported by the Kiel experiment. Air showers with large age parameter were accepted in order to select those generated by primary gamma rays. At variance with the expectation, the muon density associated with these events was found to be surprisingly high. This puzzling result stimulated a temporal analysis of the muons recorded in Nucleon Stability Experiment (NUSEX) coming from the region around the source. A positive signal was found suggesting the presentation of this result. The analysis of the data recorded during the 2.4 years of effective working time is presented with a fine tuning of the period and the energy spectrum of the muons from the Cygnus X-3 direction derived assuming consistency between NUSEX and SOUDAN results.

  1. On the nature of high reddening of Cygnus OB2 #12 hypergiant

    NASA Astrophysics Data System (ADS)

    Maryeva, O. V.; Chentsov, E. L.; Goranskij, V. P.; Dyachenko, V. V.; Karpov, S. V.; Malogolovets, E. V.; Rastegaev, D. A.

    2016-05-01

    To explain the nature of the high reddening (AV ≃ 10 mag) towards one of the most luminous stars in the Galaxy - Cyg OB2 #12 (B5 Ia-0), also known as MT304, we carried out spectrophotometric observations of 24 stars located in its vicinity. We included five new B-stars among the members of Cygnus OB2, and for five more photometrically selected stars we spectroscopically confirmed their membership. We constructed the map of interstellar extinction within 2.5 arcmin radius and found that interstellar extinction increases towards MT304. According to our results the most reddened OB-stars in the association after MT304 are J203240.35+411420.1 and J203239.90+411436.2, located about 15 arcsec away from it. Interstellar extinction towards these stars is about 9 mag. The increase of reddening towards MT304 suggests that the reddening excess may be caused by the circumstellar shell ejected by the star during its evolution. This shell absorbs 1 mag, but its chemical composition and temperature are unclear. We also report the detection of a second component of MT304, and discovery of an even fainter third component, based on data of speckle interferometric observations taken with the Russian 6-m telescope.

  2. CAN CHARGE EXCHANGE EXPLAIN ANOMALOUS SOFT X-RAY EMISSION IN THE CYGNUS LOOP?

    SciTech Connect

    Cumbee, R. S.; Henley, D. B.; Stancil, P. C.; Shelton, R. L.; Nolte, J. L.; Wu, Y.; Schultz, D. R.

    2014-06-01

    Recent X-ray studies have shown that supernova shock models are unable to satisfactorily explain X-ray emission in the rim of the Cygnus Loop. In an attempt to account for this ''anomalously'' enhanced X-ray flux, we fit the region with a model including theoretical charge exchange (CX) data along with shock and background X-ray models. The model includes the CX collisions of O{sup 8} {sup +}, O{sup 7} {sup +}, N{sup 7} {sup +}, N{sup 6} {sup +}, C{sup 6} {sup +}, and C{sup 5} {sup +} with H with an energy of 1 keV u{sup –1} (438 km s{sup –1}). The observations reveal a strong emission feature near 0.7 keV that cannot fully be accounted for by a shock model, nor the current CX data. Inclusion of CX, specifically O{sup 7} {sup +} + H, does provide for a statistically significant improvement over a pure shock model.

  3. The velocity dependence of X-ray emission due to Charge Exchange in the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata; Lyons, David; Mullen, Patrick Dean; Shelton, Robin L.; Stancil, Phillip C.; Schultz, David R.

    2016-01-01

    The fundamental collisional process of charge exchange (CX) has been been established as a primary source of X-ray emission from the heliosphere [1], planetary exospheres [2], and supernova remnants [3,4]. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly-excited, high charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays.To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross-sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics for collisions of bare and H-like C to Al ions with H, He, and H2. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant will be shown as an example with ion velocity dependence.[1] Henley, D. B. & Shelton, R. L. 2010, ApJSS, 187, 388[2] Dennerl, K. et al. 2002, A&A 386, 319[3] Katsuda, S. et al. 2011, ApJ 730 24[4] Cumbee, R. S. et al. 2014, ApJ 787 L31This work was partially supported by NASA grant NNX09AC46G.

  4. An R- and I-band Photometric Variability Survey of the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    Henderson, C. B.; Stanek, K. Z.; Pejcha, O.; Prieto, J. L.

    2011-06-01

    We present a catalog of photometrically variable stars discovered within two 21farcm3 × 21farcm3 fields centered on the Cygnus OB2 association (Cyg OB2). There have hitherto been no deep optical variability studies of Cyg OB2, despite it being replete with early-type massive stars, likely due to the high and variable extinction (up to AV ≈ 20) that permeates much of the region. Here, we provide results of the first variability study with this combination of spatial coverage (~0.5 deg) and photometric depth (R ~ 21 mag). We find 121 stars to be variable in both R and I bands, 115 of them newly discovered. Of the 121 variables, we identify 27 eclipsing binaries and eclipsing-binary candidates, 52 pulsating variables, and 20 potential Herbig Ae/Be stars. Confirming both the status and the cluster membership of the Herbig Ae/Be stars would address the uncertainty regarding the age and star formation history of Cyg OB2. We match our catalog to known variables and binaries in the region, Two Micron All Sky Survey near-IR data, and Chandra X-ray observations to find counterparts to new variables in other wavelengths. Based on observations obtained using the 1.3 m McGraw-Hill telescope at the MDM Observatory.

  5. DUST DESTRUCTION IN A NON-RADIATIVE SHOCK IN THE CYGNUS LOOP SUPERNOVA REMNANT

    SciTech Connect

    Sankrit, Ravi; Gaetz, Terrance J.; Raymond, John C.; Blair, William P.; Ghavamian, Parviz; Long, Knox S.

    2010-04-01

    We present 24 {mu}m and 70 {mu}m images of a non-radiative shock in the Cygnus Loop supernova remnant, obtained with the Multiband Imaging Photometer for Spitzer on board the Spitzer Space Telescope. The post-shock region is resolved in these images. The ratio of the 70 {mu}m to the 24 {mu}m flux rises from about 14 at a distance 0.'1 behind the shock front to about 22 in a zone 0.'75 further downstream, as grains are destroyed in the hot plasma. Models of dust emission and destruction using post-shock electron temperatures between 0.15 keV and 0.30 keV and post-shock densities, n{sub H}{approx} 2.0 cm{sup -3}, predict flux ratios that match the observations. Non-thermal sputtering (i.e., sputtering due to bulk motion of the grains relative to the gas) contributes significantly to the dust destruction under these shock conditions. From the model calculations, we infer that about 35% by mass of the grains are destroyed over a 0.14 pc region behind the shock front.

  6. High energy X-ray spectra of cygnus XR-1 observed from OSO-8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1978-01-01

    X-ray spectra of Cygnus XR-1 were measured with the scintillation spectrometer on board the OSO-8 satellite during a period of one and one-half to three weeks in each of the years from 1975 to 1977. Observations were made when the source was both in a high state and in a low state. Typical spectra of the source between 15 and 250 keV are presented. The observed pivoting effect is consistent with two temperature accretion disk models of the X-ray emitting region. No significant break in the spectrum occurred at energies up to 150 keV. The high state as defined in the 3 to 6 keV bandwidth was found to be the higher luminosity state of the X-ray source. One transition from a low to a high state occurred during observations. The time of occurrence of this and other transitions is consistent with the hypothesis that all intensity transitions occur near periastron of the binary system, and that such transitions are caused by changes in the mass transfer rate between the primary and the accretion disk around the secondary.

  7. Telecentric Zoom Lens Designed for the Cygnus X-Ray Source

    SciTech Connect

    Malone, R. M.; Baker, S. A.; Brown, K. K.; Curtis, A. H.; Esquibel, D. L.; Frayer, D. K.; Frogget, B. C.; Frogget, K. G.; Kaufman, M. I.; Smith, A. S.; Tibbitts, A.; Howe, R. A.; Huerta, J. A.; McGillivray, K. D.; Droemer, D. W.; Crain, M. D.; Haines, T. J.; King, S. P.

    2013-07-01

    Cygnus is a high-energy radiographic x-ray source. Three large zoom lenses have been assembled to collect images from large scintillators. A large elliptical pellicle (394 × 280 mm) deflects the scintillator light out of the x-ray path into an eleven-element zoom lens coupled to a CCD camera. The zoom lens and CCD must be as close as possible to the scintillator to maximize light collection. A telecentric lens design minimizes image blur from a volume source. To maximize the resolution of objects of different sizes, the scintillator and zoom lens are translated along the x-ray axis, and the zoom lens magnification changes. Zoom magnification is also changed when different-sized recording cameras are used (50 or 62 mm square format). The LYSO scintillator measures 200 × 200 mm and is 5 mm thick. The scintillator produces blue light peaking at 435 nm, so special lens materials are required. By swapping out one doublet and allowing all other lenses to be repositioned, the zoom lens can also use a CsI(Tl) scintillator that produces green light centered at 540 nm. All lenses have an anti-reflective coating for both wavelength bands. Two sets of doublets, the stop, the scintillator, and the CCD camera move during zoom operations. One doublet has x-y compensation. Each zoom lens uses 60 lb of glass inside the 425 lb mechanical structure and can be used in either a vertical or horizontal orientation.

  8. Simulation of the cygnus rod-pinch diode using the radiographic chain model

    SciTech Connect

    Kwan, Thomas Jt; Wang, Tai - Sen F; Berninger, Michael; Snell, Charles M; Lin, Yin

    2008-01-01

    The Cygnus radiographic machine is a relatively compact low-energy (<3 MV) x-ray source with some extremely desirable features for radiographic applications. These features include small spot size critical for high-spatial resolution and high dose in a low energy range. The x-ray source is based on bremsstrahlung production in a small diameter ({approx}0.75 mm) tungsten rod by a high-current ({approx}60 kA) electron beam converging at the tip of the rod. For quantitative analysis of radiographic data, it is essential to determine the bremsstrahlung spectrum accurately. We have used the radiographic chain model that self-consistently models the diode with a two-dimensional particle-in-cell code (Merlin) which links to an electron-photon Monte Carlo code to obtain the spectrum under three different situations. These are: steady state spectrum using a voltage puise of 2.5 MV, time-integrated spectrum using a time-dependent experimental voltage pulse, and inclusion of reflexing electrons at the anode in our particle-in-cell simulation. Detailed electron dynamics have been obtained in our study. Our investigations conclude that the time integrated bremsstrahlung spectrum is significantly softer than that of the steady state. In our latest simulations, we have included the effects of reflexing electrons around the anode rod and found the spectrum to be in better agreement with experimental data.

  9. Ultraviolet, Optical and X-Ray Imaging of Selected Cygnus Loop Fields

    NASA Technical Reports Server (NTRS)

    Danforth, C. W.; Cornett, R. H.; Blair, W. P.; Stecher, T. P.; Levenson, N. A.

    1999-01-01

    During the Astro-1 and Astro-2 Space Shuttle missions in 1990 and 1995, far ultraviolet (FUV) images of five 40 ft diameter fields around the rim of the Cygnus Loop Super Nova Remnants (SNR) were observed with the Ultraviolet Imaging Telescope (UIT). These fields sample a broad range of SNR conditions including both radiative and non-radiative shocks in various geometries and scales. The UIT B5 band images discussed here sample predominantly ion-C4 lambda 1550 and the 2-photon continuum. Smaller contributions are made by emission lines of ion He-2 lambda 1640 and ion 03 lambda 1666. A unique aspect of the B5 band is its ability to sample the hydrogen 2-photon continuum from regions where the gas is recombining. We present these new FUV images and compare them with optical H-alpha and [ion O13], and ROSAT HRI X-ray images. In non-radiative shocks, existing 2-photon flux measurements from spectra and the H-alpha images suggest we are seeing approximately equal contributions from 2-photon and ion C4 emission. In radiative filaments, however, shock models and our images suggest ion C4 should dominate while spectra of specific locations seem to indicate that 2-photon emission dominates. We surmise that spectral observations on specific bright filaments have decreased locally-observed levels of ion C41 emission due to resonance scattering in that line.

  10. SOFT X-RAY SPECTROSCOPY OF THE CYGNUS LOOP SUPERNOVA REMNANT

    SciTech Connect

    Oakley, Phil; McEntaffer, Randall; Cash, Webster

    2013-03-20

    We present the results of a suborbital rocket flight whose scientific target was the Cygnus Loop Supernova Remnant. The payload consists of wire grid collimators, off-plane grating arrays, and gaseous electron multiplier (GEM) detectors. The system is designed for spectral measurements in the 17-107 A bandpass with a resolution up to {approx}60 ({lambda}/{Delta}{lambda}). The Extended X-ray Off-plane Spectrometer (EXOS) was launched on a Terrier-Black Brant rocket on 2009 November 13 from White Sands Missile Range and obtained 340 s of useable scientific data. The X-ray emission is dominated by O VII and O VIII, including the He-like O VII triplet at {approx}22 A. Another emission feature at {approx}45 A is composed primarily of Si XI and Si XII. The best-fit model to this spectrum is an equilibrium plasma model at a temperature of log(T) = 6.4 (0.23 keV).

  11. Accretion and outflow in the proplyd-like objects near Cygnus OB2

    SciTech Connect

    Guarcello, M. G.; Drake, J. J.; Wright, N. J.; García-Alvarez, D.; Kraemer, K. E.

    2014-09-20

    Cygnus OB2 is the most massive association within 2 kpc from the Sun, hosting hundreds of massive stars, thousands of young low mass members, and some sights of active star formation in the surrounding cloud. Recently, 10 photoevaporating proplyd-like objects with tadpole-shaped morphology were discovered in the outskirts of the OB association, approximately 6-14 pc away from its center. The classification of these objects is ambiguous, being either evaporating residuals of the parental cloud that are hosting a protostar inside or disk-bearing stars with an evaporating disk, such as the evaporating proplyds observed in the Trapezium Cluster in Orion. In this paper, we present a study based on low-resolution optical spectroscopic observations made with the Optical System for Imaging and low Resolution Integrated Spectroscopy, mounted on the 10.4 m Gran Telescopio CANARIAS, of two of these protostars. The spectrum of one of the objects shows evidence of accretion but not of outflows. In the latter object, the spectra show several emission lines indicating the presence of an actively accreting disk with outflow. We present estimates of the mass loss rate and the accretion rate from the disk, showing that the former exceeds the latter as observed in other known objects with evaporating disks. We also show evidence of a strong variability in the integrated flux observed in these objects as well as in the accretion and outflow diagnostics.

  12. Multiwavelength study of Cygnus A - III. Evidence for relic lobe plasma

    NASA Astrophysics Data System (ADS)

    Steenbrugge, Katrien C.; Heywood, Ian; Blundell, Katherine M.

    2010-01-01

    We study the particle energy distribution in the cocoon surrounding Cygnus A, using radio images between 151 MHz and 15 GHz and a 200 ks Chandra Advanced CCD Imaging Spectrometer-Imaging (ACIS-I) image. We show that the excess low-frequency emission in the lobe further from the Earth cannot be explained by absorption or excess adiabatic expansion of the lobe or a combination of both. We show that this excess emission is consistent with emission from a relic counterlobe and a relic counterjet that are being re-energized by compression from the current lobe. We detect hints of a relic hotspot at the end of the relic X-ray jet in the more distant lobe. We do not detect relic emission in the lobe nearer to the Earth as expected from light traveltime effects assuming intrinsic symmetry. We determine that the duration of the previous jet activity phase was slightly less than that of the current jet-active phase. Further, we explain some features observed at 5 and 15 GHz as due to the presence of a relic jet.

  13. Soft X-Ray Spectroscopy of the Cygnus Loop Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Oakley, Phil; McEntaffer, Randall; Cash, Webster

    2013-03-01

    We present the results of a suborbital rocket flight whose scientific target was the Cygnus Loop Supernova Remnant. The payload consists of wire grid collimators, off-plane grating arrays, and gaseous electron multiplier (GEM) detectors. The system is designed for spectral measurements in the 17-107 Å bandpass with a resolution up to ~60 (λ/Δλ). The Extended X-ray Off-plane Spectrometer (EXOS) was launched on a Terrier-Black Brant rocket on 2009 November 13 from White Sands Missile Range and obtained 340 s of useable scientific data. The X-ray emission is dominated by O VII and O VIII, including the He-like O VII triplet at ~22 Å. Another emission feature at ~45 Å is composed primarily of Si XI and Si XII. The best-fit model to this spectrum is an equilibrium plasma model at a temperature of log(T) = 6.4 (0.23 keV).

  14. AN R- AND I-BAND PHOTOMETRIC VARIABILITY SURVEY OF THE CYGNUS OB2 ASSOCIATION

    SciTech Connect

    Henderson, C. B.; Stanek, K. Z.; Pejcha, O.; Prieto, J. L.

    2011-06-01

    We present a catalog of photometrically variable stars discovered within two 21.'3 x 21.'3 fields centered on the Cygnus OB2 association (Cyg OB2). There have hitherto been no deep optical variability studies of Cyg OB2, despite it being replete with early-type massive stars, likely due to the high and variable extinction (up to A{sub V} {approx} 20) that permeates much of the region. Here, we provide results of the first variability study with this combination of spatial coverage ({approx}0.5 deg) and photometric depth (R {approx} 21 mag). We find 121 stars to be variable in both R and I bands, 115 of them newly discovered. Of the 121 variables, we identify 27 eclipsing binaries and eclipsing-binary candidates, 52 pulsating variables, and 20 potential Herbig Ae/Be stars. Confirming both the status and the cluster membership of the Herbig Ae/Be stars would address the uncertainty regarding the age and star formation history of Cyg OB2. We match our catalog to known variables and binaries in the region, Two Micron All Sky Survey near-IR data, and Chandra X-ray observations to find counterparts to new variables in other wavelengths.

  15. Electron Energy Distributions at Relativistic Shock Sites: Observational Constraints from the Cygnus A Hotspots

    SciTech Connect

    Cheung, C.C.Teddy; Stawarz, L.; Harris, D.E.; Ostrowski, M.

    2007-10-15

    We report new detections of the hotspots in Cygnus A at 4.5 and 8.0 microns with the Spitzer Space Telescope. Together with detailed published radio observations and synchrotron self-Compton modeling of previous X-ray detections, we reconstruct the underlying electron energy spectra of the two brightest hotspots (A and D). The low-energy portion of the electron distributions have flat power-law slopes (s {approx} 1.5) up to the break energy which corresponds almost exactly to the mass ratio between protons and electrons; we argue that these features are most likely intrinsic rather than due to absorption effects. Beyond the break, the electron spectra continue to higher energies with very steep slopes s>3. Thus, there is no evidence for the 'canonical' s=2 slope expected in 1st order Fermi-type shocks within the whole observable electron energy range. We discuss the significance of these observations and the insight offered into high-energy particle acceleration processes in mildly relativistic shocks.

  16. Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant

    SciTech Connect

    Katagiri, H.; Tibaldo, L.; Ballet, J.; Giordano, F.; Grenier, I.A.; Porter, T.A.; Roth, M.; Tibolla, O.; Uchiyama, Y.; Yamazaki, R.; /Sagamihara, Aoyama Gakuin U.

    2011-11-08

    We present an analysis of the gamma-ray measurements by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Cygnus Loop (G74.0-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2-100 GeV. The gamma-ray spectrum shows a break in the range 2-3 GeV. The gamma-ray luminosity is {approx} 1 x 10{sup 33} erg s{sup -1} between 1-100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0{sup o}.7 {+-} 0{sup o}.1 and 1{sup o}.6 {+-} 0{sup o}.1. Given the association among X-ray rims, H{alpha} filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.

  17. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble

    NASA Astrophysics Data System (ADS)

    Grenier, Isabelle A.; Tibaldo, Luigi; Fermi-LAT Collaboration

    2013-02-01

    Conspicuous stellar clusters, with high densities of massive stars, powerful stellar winds, and intense UV flux, have formed over the past few million years in the large molecular clouds of the Cygnus X region, 1.4 kpc away from the Sun. By capturing the gamma-ray signal of young cosmic rays spreading in the interstellar medium surrounding the clusters, the Fermi Large Area Telescope (LAT) has confirmed the long-standing hypothesis that massive-star forming regions host cosmic-ray factories. The 50-pc wide cocoon of energetic particles appears to fill the interstellar cavities carved by the stellar activity. The cocoon provides a first test case to study the impact of wind-powered turbulence on the early phases of cosmic-ray diffusion (between the sources and the Galaxy at large) and to study the acceleration potential of this type of superbubble environment for in-situ cosmic-ray production or to energize Galactic cosmic rays passing by.

  18. Interferometric observation of Cygnus-A discrete radiosource scintillations at Irkutsk Incoherent Scatter radar

    NASA Astrophysics Data System (ADS)

    Globa, Mariya; Vasilev, Roman; Kushnaryov, Dmitriy; Medvedev, Andrey

    2016-03-01

    We propose a new method for analysis of data from Irkutsk Incoherent Scatter Radar. The method allows us to accomplish interferometric observation of discrete cosmic radio source characteristics. In this study, we analyzed ionospheric scintillations of the radio source Cygnus-A. Observations were made in 2013 during regular radar sessions within 5-15 days for different seasons, and the effective time of observation was 15-30 minutes per day. For interferometric analysis, the properties of correlation (coherence) coefficient of two independent recording channels were used. The statistical analysis of data from independent channels allows us to construct two-dimensional histograms of radio source brightness distribution with period of 18 s and to determine parameters (the maximum position and the histogram width) representing position and angular size of radio source for each histogram. It is shown that the change of statistical characteristics does not correlate with fluctuations in power (scintillations) of the signal caused by radio wave propagation through ionospheric irregularities.

  19. Zinc toxicosis in a free-flying trumpeter swan (Cygnus buccinator)

    USGS Publications Warehouse

    Carpenter, J.W.; Andrews, G.A.; Beyer, W.N.

    2004-01-01

    A trumpeter swan (Cygnus buccinator) was observed near it mill pond in Picher, Oklahoma. USA. It became weakened and emaciated after about 1 mo, was captured with little resistance, and taken into captivity for medical care. Serum chemistry results were consistent with hepatic, renal, and muscular damage. Serum zinc concentration was elevated at 11.2 parts per million (ppm). The swan was treated for suspected heavy-metal poisoning, but died overnight. Gross postmortem findings were emaciation and pectoral muscle atrophy. Histopathologic lesions in the pancreas included mild diffuse disruption of acinar architecture, severe diffuse depletion or absence of zymogen granules, occasional apoptotic bodies ics in acinar epithelial cells, and mild interstitial and capsular fibrosis. Zinc concentration in pancreas was 3,200 ppm wet weight, and was similar to that reported in the pancreases of waterfowl known to be killed by zinc toxicity. Zinc concentrations in liver (154 ppm) and kidneys (145 ppm) also were elevated. Acute tubular necrosis of the collecting tubules of the kidneys was also possibly due to zinc toxicity. To the authors' knowledge, this is the first confirmed case of zinc poisoning in a trumpeter swan associated with mining wastes..

  20. Innate Immunity in Lobsters: Partial Purification and Characterization of a Panulirus cygnus Anti-A Lectin.

    PubMed

    Flower, Robert L P

    2012-01-01

    A lectin detected in haemolymph from the Australian spiny lobster Panulirus cygnus agglutinated human ABO Group A cells to a higher titre than Group O or B. The lectin also agglutinated rat and sheep erythrocytes, with reactivity with rat erythrocytes strongly enhanced by treatment with the proteolytic enzyme papain, an observation consistent with reactivity via a glycolipid. The lectin, purified by affinity chromatography on fixed rat-erythrocyte stroma, was inhibited equally by N-acetylglucosamine and N-acetylgalactosamine. Comparison of data from gel filtration of haemolymph (behaving as a 1,800,000 Da macromolecule), and polyacrylamide gel electrophoresis of purified lectin (a single 67,000 Da band), suggested that in haemolymph the lecin was a multimer. The purified anti-A lectin autoprecipitated unless the storage solution contained chaotropic inhibitors (125 mmol/L sucrose: 500 mmol/L urea). The properties of this anti-A lectin and other similar lectins are consistent with a role in innate immunity in these invertebrates. PMID:22462000

  1. Multi-frequency observation of high mass X-ray binary Cygnus X-3 during flares

    NASA Astrophysics Data System (ADS)

    Pal, Sabyasachi; Patra, Dusmanta; Ishwara-Chandra, C. H.; Rao, A. P.

    2016-07-01

    We studied the multi-frequency properties of the Galactic high mass X-ray binary Cygnus X-3 during various flaring activities using The Rossi X-ray Timing Explorer (RXTE), the Giant Metrewave Radio Telescope (GMRT), Jansky Very Large Array (JVLA) etc. The flare of 2006 May-June was one of the largest flare in the history of the source which is thoroughly discussed. We also observed few large flares of this source between 2007 and 2009. We commented on correlation and lag between X-ray and radio emissions during flares. We construct the radio spectrum of the source in the rising and fading phase of flares using GMRT, JVLA and published results using RATAN. We clearly see that the turn-over frequency is shifting towards lower frequencies as the flares evolve gradually. The two point spectral index between 614 MHz and 235 MHz varies from positive (optically thick) and negative (optically thin) values which is consistent with the synchrotron self absorption model. We calculated some physical parameters of the source such as the size of emitting region using the synchrotron self absorption model. The size of the emitting region expands with the flare. We estimate the velocity of the expansion of the blob in the non-relativistic range from the expansion of the size of emitting region.

  2. Acute toxicity and sublethal effects of white phosphorus in mute swans, Cygnus olor

    USGS Publications Warehouse

    Sparling, D.W.; Day, D.; Klein, P.

    1999-01-01

    Among the waterfowl affected by white phosphorus (P4) at a military base in Alaska are tundra (Cygnus columbianus) and trumpeter (C. buccinator) swans. To estimate the toxicity of P4 to swans and compare the toxic effects to those of mallards (Anas platyrhynchos), we dosed 30 juvenile mute swans (C. olor) with 0 to 5.28 mg P4 /kg body weight. The estimated LD50 was 3.65 mg/kg (95% CI: 1.40 to 4.68 mg/kg). However, many of the swans still had P4 in their gizzards after dying, as determined by 'smoking gizzards', and a lower LD50 might be calculated if all of the P4 had passed into the small intestines. We attribute the retention of P4 in swans to the presence of coarse sandlike particles of grit which were of similar size as the P4 pellets. Most swans took 1 to 4.5 days to die in contrast to the few hours normally required in mallards and death appeared to related more to liver dysfunction than to hemolysis. White phosphorus affected several plasma constituents, most notably elevated aspartate amiontransferase, blood urea nitrogen, lactate dehydrogenase, and alanine aminotransferase.

  3. The Mass Donor of Scorpius X-1 Revealed

    NASA Astrophysics Data System (ADS)

    Steeghs, D.; Casares, J.

    2002-03-01

    We present the first detection of the mass donor star in the prototype X-ray binary Scorpius X-1. Phase-resolved spectroscopy revealed narrow emission line components from the irradiated secondary star. Radial velocity fits to the Bowen blend emission are used to establish an absolute orbital ephemeris and derive an accurate value for the systemic velocity, γ=-113.8+/-0.6 km s-1. Emission from the irradiated front side of the secondary leads to solid limits to the radial velocity of the mass donor of 87<~K2<~148 km s-1. In conjunction with an upper limit to the velocity of the primary K1<=53 km s-1, we derive a firm limit on the mass ratio of Sco X-1 of q<~0.61. A likely set of system parameters satisfying the various constraints as well as the recent inclination estimate by Fomalont, Geldzahler, & Bradshaw (2001) is K1=40 km s-1, K2=133 km s-1, q=0.30 corresponding to component masses of M1=1.4Msolar and M2=0.42Msolar for an orbital inclination of 38°.

  4. Broad-Band Spectroscopy of Hercules X-1 with Suzaku

    NASA Technical Reports Server (NTRS)

    Asami, Fumi; Enoto, Teruaki; Iwakiri, Wataru; Yamada, Shin'ya; Tamagawa, Toru; Mihara, Tatehiro; Nagase, Fumiaki

    2014-01-01

    Hercules X-1 was observed with Suzaku in the main-on state from 2005 to 2010. The 0.4- 100 keV wide-band spectra obtained in four observations showed a broad hump around 4-9 keV in addition to narrow Fe lines at 6.4 and 6.7 keV. The hump was seen in all the four observations regardless of the selection of the continuum models. Thus it is considered a stable and intrinsic spectral feature in Her X-1. The broad hump lacked a sharp structure like an absorption edge. Thus it was represented by two different spectral models: an ionized partial covering or an additional broad line at 6.5 keV. The former required a persistently existing ionized absorber, whose origin was unclear. In the latter case, the Gaussian fitting of the 6.5-keV line needs a large width of sigma = 1.0-1.5 keV and a large equivalent width of 400-900 eV. If the broad line originates from Fe fluorescence of accreting matter, its large width may be explained by the Doppler broadening in the accretion flow. However, the large equivalent width may be inconsistent with a simple accretion geometry.

  5. Circinus X-1 - X-ray observations with SAS 3

    NASA Technical Reports Server (NTRS)

    Dower, R. G.; Bradt, H. V.; Morgan, E. H.

    1982-01-01

    Eight observations of Cir X-1 with SAS 3, each lasting 1-6 days, have yielded a variety of new phenomena, viz., a luminous state of steady emission, rapid large-intensity dips, an extremely rapid X-ray transition, and bright flares. Through searches for periodic X-ray pulsations were carried out on data trains of duration up to 6 days; upper limits for pulsations with periods greater than 250 microsec range down to 0.3%. Aperiodic variability with characteristic times of 0.4-1.0 sec was observed but is not well characterized by a simple shot noise model. No millisecond bursts were observed during 40,000 sec in three separate observations. Spectral parameters derived before and after several X-ray transitions indicate that the transitions are not due to absorption of X-rays by intervening gas. Models previously proposed for the Cir X-1 system do not easily provide explanations for all the complex phenomena reported herein.

  6. Mass transfer and magnetic braking in Sco X-1

    NASA Astrophysics Data System (ADS)

    Pavlovskii, K.; Ivanova, N.

    2016-02-01

    Sco X-1 is a low-mass X-ray binary (LMXB) that has one of the most precisely determined set of binary parameters such as the mass accretion rate, companions mass ratio and the orbital period. For this system, as well as for a large fraction of other well-studied LMXBs, the observationally-inferred mass accretion rate is known to strongly exceed the theoretically expected mass transfer (MT) rate. We suggest that this discrepancy can be solved by applying a modified magnetic braking prescription, which accounts for increased wind mass-loss in evolved stars compared to main sequence stars. Using our MT framework based on MESA, we explore a large range of binaries at the onset of the MT. We identify the subset of binaries for which the MT tracks cross the Sco X-1 values for the mass ratio and the orbital period. We confirm that no solution can be found for which the standard magnetic braking can provide the observed accretion rates, while wind-boosted magnetic braking can provide the observed accretion rates for many progenitor binaries that evolve to the observed orbital period and mass ratio.

  7. The nature of the companion star in Circinus X-1

    NASA Astrophysics Data System (ADS)

    Johnston, Helen M.; Soria, Roberto; Gibson, Joel

    2016-02-01

    We present optical spectra and images of the X-ray binary Circinus X-1. The optical light curve of Cir X-1 is strongly variable, changing in brightness by 1.2 mag in the space of four days. The shape of the light curve is consistent with that seen in the 1980s, when the X-ray and radio counterparts of the source were at least ten times as bright as they are currently. We detect strong, variable H α emission lines, consisting of multiple components which vary with orbital phase. We estimate the extinction to the source from the strength of the diffuse interstellar bands and the Balmer decrement; the two methods give AV = 7.6 ± 0.6 mag and AV > 9.1 mag, respectively. The optical light curve can be modelled as arising from irradiation of the companion star by the central X-ray source, where a low-temperature star fills its Roche lobe in an orbit of moderate eccentricity (e ˜ 0.4). We suggest that the companion star is overluminous and underdense, due to the impact of the supernova which occurred less than 5000 yr ago.

  8. A Relativistic Fe Kα Emission Line in the Intermediate-Luminosity BeppoSAX Spectrum of the Galactic Microquasar V4641 Sgr

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Fabian, A. C.; in't Zand, J. J. M.; Reynolds, C. S.; Wijnands, R.; Nowak, M. A.; Lewin, W. H. G.

    2002-09-01

    Broad Fe Kα emission lines have recently been reported in a number of Galactic black holes. Such lines are useful accretion flow diagnostics because they may be produced at the inner accretion disk and shaped by relativistic effects, but in general they have been observed only at luminosities of LX~1037-1038 ergs s-1 in soft X-rays. The Galactic microquasar V4641 Sgr-widely known for its 12.2 Crab (1.5-12 keV) outburst in 1999 September-displayed low-level activity in 1999 March. BeppoSAX observed the source in this state, and Fe Kα line emission was found by in 't Zand et al. In reanalyzing these data, we find strong evidence that the Fe Kα line profile is broadened. For the most likely values of the source distance and black hole mass measured by Orosz et al., our fits to the total spectrum indicate that the source was observed at a luminosity of LX=1.9+1.0-0.8×1036 ergs s-1 (2-10 keV), or LX/LEdd=1.8+0.9- 0.8×10-3. Advection-dominated accretion flow models predict a radially recessed disk in this regime. In contrast, fits to the observed Fe Kα emission-line profile with a relativistic line model constrain the inner disk to be consistent with the marginally stable circular orbit of a Schwarzschild black hole.

  9. The showerfront time-structure of anomalous muon'' events associated with Hercules X-1. [Her X-1

    SciTech Connect

    Alexandreas, D.E. ); Berley, D.; Biller, S.D.; Burman, R.L.; Cady, D.R.; Chang, C.Y.; Dingus, B.L.; Dion, C.; Dion, G.M.; Ellsworth, R.W.; Goodman, J.A.; Haines, T.J.; Hoffman, C.M.; Krakauer, D.A.; Kwok, P.W.; Lloyd-Evans, J.; Lu, X.; Nagle, D.E.; Potter, M.E.; Sandberg, V.D.; Stark, M.J.; Vishwanath, P.R.; Yodh, G.B.; Zhang, W.P. The University of Maryland, College Park, Maryland 20742-4111 Los Alamos National Laboratory, Los Alamos, New Mexico 87545 The University of Notre Dame, Notre Dame, Indiana 46556 George Mason University, Fairfax, Virginia 22030-4444 Argonne National Laboratory, Argonne, Illinois, 60439-4843 ); Presented by S. Biller

    1991-04-05

    The 11 in-phase'' source events from the 1986 muon-rich bursts associated with Hercules X-1 (previously reported by this group) have been studied for indications of further anomalous behavior. The most significant effect observed resulted from an analysis of the showerfront time-structures of these events. This analysis was then applied {ital a} {ital priori} to the rest of the source day, where an additional {similar to}9 signal events are expected to remain. The same effect was observed at a chance probability level of {similar to}0.1%.

  10. First dynamic computations of synchrotron emission from the cygnus a radio cavity: Evidence for electron pair plasma in cavity

    SciTech Connect

    Mathews, William G.

    2014-03-01

    Cosmic rays, thermal gas and magnetic fields in FRII radio cavities are assumed to come entirely from winds flowing from just behind the jet shocks. Combining analytic and computational methods, it is shown that the computed radio-electron energy distribution and synchrotron emissivity spectra everywhere in the Cygnus A radio cavity agree with radio observations of the Cygnus A lobes. The magnetic field energy density is small everywhere and evolves passively in the post-shock wind. Most synchrotron emission arises in recent post-shock material as it flows back along the radio cavity wall. Because it experienced less adiabatic expansion, the magnetic field in this young backflow is larger than elsewhere in the radio lobe, explaining the observed radio synchrotron limb-brightening. The boundary backflow decelerates due to small cavity pressure gradients, causing large-scale fields perpendicular to the backflow (and synchrotron emission) to grow exponentially unlike observations. However, if the field is random on subgrid (sub-kpc) scales, the computed field reproduces both the magnitude and slowly decreasing radio synchrotron emissivity observed along the backflow. The radio synchrotron spectrum and image computed with a small-scale random field agree with Very Large Array observations. The total relativistic energy density in the post-jet shock region required in computations to inflate the radio cavity matches the energy density of relativistic electrons observed in the post-shock region of Cygnus A. This indicates that the component in the jet and cavity that dominates the dynamical evolution is a relativistic pair plasma.

  11. G141.2+5.0, A NEW PULSAR WIND NEBULA DISCOVERED IN THE CYGNUS ARM OF THE MILKY WAY

    SciTech Connect

    Kothes, R.; Foster, T. J.; Sun, X. H.; Reich, W.

    2014-04-01

    We report the discovery of the new pulsar wind nebula (PWN) G141.2+5.0 in data observed with the Dominion Radio Astrophysical Observatory's Synthesis Telescope at 1420 MHz. The new PWN has a diameter of about 3.'5, which translates to a spatial extent of about 4 pc at a distance of 4.0 kpc. It displays a radio spectral index of α ≈ –0.7, similar to the PWN G76.9+1.1. G141.2+5.0 is highly polarized up to 40% with an average of 15% in the 1420 MHz data. It is located in the center of a small spherical H I bubble, which is expanding at a velocity of 6 km s{sup –1} at a systemic velocity of v {sub LSR} = –53 km s{sup –1}. The bubble could be the result of the progenitor star's mass loss or the shell-type supernova remnant (SNR) created by the same supernova explosion in a highly advanced stage. The systemic LSR velocity of the bubble shares the velocity of H I associated with the Cygnus spiral arm, which is seen across the second and third quadrants and an active star-forming arm immediately beyond the Perseus arm. A kinematical distance of 4 ± 0.5 kpc is found for G141.2+5.0, similar to the optical distance of the Cygnus arm (3.8 ± 1.1 kpc). G141.2+5.0 represents the first radio PWN discovered in 17 years and the first SNR discovered in the Cygnus spiral arm, which is in stark contrast with the Perseus arm's overwhelming population of shell-type remnants.

  12. Discovery of Orbital Decay in SMC X-1

    NASA Technical Reports Server (NTRS)

    Levine, A.; Rappaport, S.; Deeter, J. E.; Boynton, P. E.; Nagase, F.

    1993-01-01

    We report on the results of three observations of the binary X-ray pulsar SMC X-1 with the Ginga satellite. Timing analyses of the 0.71 s X-ray pulsations yield Doppler delay curves which, in turn, enable the most accurate determination of the SMC X-1 orbital parameters available to date. Epochs of phase zero for the 3.9 day orbit were determined for 1987 May, 1988 August, and 1989 August with accuracies of 13, 0.6, and 3 s, respectively. These epochs are combined with two previous determinations of the orbital epoch to yield the rate of change in the orbital period dot-P(orb)/P(orb) = ( 3.36 +/- 0.02) x 10(exp -6) yr(exp -1). An interpretation of the orbital decay is made in the context of tidal evolution, with consideration of the influence of the increasing moment of inertia of the companion star due to its nuclear evolution. We find that, while the orbital decay is probably driven by tidal interactions, the asynchronism between the orbit and the rotation of the companion star is most likely maintained by the evolutionary expansion of the companion star (Sk 160) rather than via the Darwin instability. In this case Sk 160 is likely to be in the hydrogen shell burning phase of its evolution. Finally, a discussion is presented of the relation among the time scales for stellar evolution (less than 10(exp 7) yr), orbital decay (3 x 10(exp 5) yr), and neutron-star spin-up in the SMC X-1 system (2000 yr). In particular, we present the result of a self-consistent calculation for the histories of the spin of the neutron star and the mass transfer in this system. A plausible case can be made for the spin-up time scale being directly related to the lifetime of the luminous X-ray phase which will end in a common-envelope phase within a time of less than approx. 10(exp 4) yr.

  13. A fluorescent approach for identifying P2X1 ligands

    PubMed Central

    Ruepp, Marc-David; Brozik, James A.; de Esch, Iwan J.P.; Farndale, Richard W.; Murrell-Lagnado, Ruth D.; Thompson, Andrew J.

    2015-01-01

    There are no commercially available, small, receptor-specific P2X1 ligands. There are several synthetic derivatives of the natural agonist ATP and some structurally-complex antagonists including compounds such as PPADS, NTP-ATP, suramin and its derivatives (e.g. NF279, NF449). NF449 is the most potent and selective ligand, but potencies of many others are not particularly high and they can also act at other P2X, P2Y and non-purinergic receptors. While there is clearly scope for further work on P2X1 receptor pharmacology, screening can be difficult owing to rapid receptor desensitisation. To reduce desensitisation substitutions can be made within the N-terminus of the P2X1 receptor, but these could also affect ligand properties. An alternative is the use of fluorescent voltage-sensitive dyes that respond to membrane potential changes resulting from channel opening. Here we utilised this approach in conjunction with fragment-based drug-discovery. Using a single concentration (300 μM) we identified 46 novel leads from a library of 1443 fragments (hit rate = 3.2%). These hits were independently validated by measuring concentration-dependence with the same voltage-sensitive dye, and by visualising the competition of hits with an Alexa-647-ATP fluorophore using confocal microscopy; confocal yielded kon (1.142 × 106 M−1 s−1) and koff (0.136 s−1) for Alexa-647-ATP (Kd = 119 nM). The identified hit fragments had promising structural diversity. In summary, the measurement of functional responses using voltage-sensitive dyes was flexible and cost-effective because labelled competitors were not needed, effects were independent of a specific binding site, and both agonist and antagonist actions were probed in a single assay. The method is widely applicable and could be applied to all P2X family members, as well as other voltage-gated and ligand-gated ion channels. This article is part of the Special Issue entitled ‘Fluorescent Tools in Neuropharmacology

  14. Understanding accretion beyond the Eddington limit: NGC 5204 X-1

    NASA Astrophysics Data System (ADS)

    Sutton, Andrew

    2013-10-01

    It has been suggested that ULXs are in a new super-Eddington `ultraluminous' accretion state, and that they progress through a sequence of three spectral regimes with increasing accretion rate. However, our recent results (Sutton et al. 2013) indicate that inclination is also critical in determining the observed X-ray properties. These properties can broadly be explained by a massive radiatively-driven wind that emerges as the Eddington limit is exceeded, and forms a funnel around the black hole axis. Previous observations show NGC 5204 X-1 straddling the boundary between two ultraluminous regimes, marking it as a critical source in testing this scenario. Here we propose to obtain a further four 20 ks XMM-Newton EPIC observations, which will allow us to probe the validity of the proposed model.

  15. TIMESCALE-RESOLVED SPECTROSCOPY OF Cyg X-1

    SciTech Connect

    Wu, Y. X.; Li, T. P.; Belloni, T. M.; Wang, T. S.; Liu, H.

    2009-04-20

    We propose the timescale-resolved spectroscopy (TRS) as a new method to combine the timing and spectral study. The TRS is based on the time domain power spectrum and reflects the variable amplitudes of spectral components on different timescales. We produce the TRS with the RXTE PCA data for Cyg X-1 and study the spectral parameters (the power-law photon index and the equivalent width of the iron fluorescent line) as a function of timescale. The results of TRS and frequency-resolved spectra have been compared, and similarities have been found for the two methods with the identical motivations. We also discover the correspondences between the evolution of photon index with timescale and the evolution of the equivalent width with timescale. The observations can be divided into three types according to the correspondences and different type is connected with different spectral state.

  16. Energy dependence of normal branch oscillations in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chang, H.-K.; Liu, C.-Y.

    2012-11-01

    We report the energy dependence of normal branch oscillations (NBOs) in Scorpius X-1, a low-mass X-ray binary Z-source. Three characteristic quantities (centroid frequency, quality factor, and fractional root-mean-squared (rms) amplitude) of a quasi-periodic oscillation signal as functions of photon energy are investigated. We found that, although it is not yet statistically well established, there is a signature indicating that the NBO centroid frequency decreases with increasing photon energy when it is below 6-8 keV, which turns out to be positively correlated with the photon energy at the higher energy side. In addition, the rms amplitude increases significantly with the photon energy below 13 keV and then decreases in the energy band of 13-20 keV. There is no clear dependence on photon energy for the quality factor. Based on these results, we suggest that the NBO originates mainly in the transition layer.

  17. Discovery of orbital decay in SMC X-1

    NASA Technical Reports Server (NTRS)

    Levine, A.; Rappaport, S.; Deeter, J. E.; Boynton, P. E.; Nagase, F.

    1993-01-01

    Three observations of the binary X-ray pulsar SMC X-1 with the Ginga satellite, conducted on 3 days in 1987 May, 8.4 days in 1988 August-September, and 4 days in 1989 July-August, are reported. Based on the three observation epochs, the rate of change in the orbital period is estimated at (-3.36 +/- 0.02) x 10 exp -6/yr. An interpretation of the orbital decay is made in the context of tidal evolution with allowance for the effect of the increasing moment of inertia of the companion star due to its nuclear evolution. While the orbital decay is thought to be driven by tidal interactions, it is suggested that the asynchronism between the orbit and the rotation of the companion star is most likely maintained by the evolutionary expansion of the companion star (Sk 160) rather than via the Darwin instability.

  18. Joe Walker in pressure suit with X-1E

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Joe Walker in a pressure suit beside the X-1E at the NASA High-Speed Flight Station, Edwards,California. The dice and 'Little Joe' are prominently displayed under the cockpit area. (Little Joe is a dice players slang term for two deuces.) Walker is shown in the photo wearing an early Air Force partial pressure suit. This protected the pilot if cockpit pressure was lost above 50,000 feet. Similar suits were used in such aircraft as B-47s, B-52s, F-104s, U-2s, and the X-2 and D-558-II research aircraft. Five years later, Walker reached 354,200 feet in the X-15. Similar artwork - reading 'Little Joe the II' - was applied for the record flight. These cases are two of the few times that research aircraft carried such nose art.

  19. VELA X-1: how to produce asymmetric eclipses.

    NASA Astrophysics Data System (ADS)

    Feldmeier, A.; Anzer, U.; Boerner, G.; Nagase, F.

    1996-07-01

    Light curves of the X-ray pulsar Vela X-1 obtained with the ASCA satellite show a strong asymmetry in the hard energy band during the eclipse of the X-ray source: a steep drop at ingress is followed by a gradual decline, whereas only a steep increase is observed at egress. X-ray scattering off the dense accretion wake trailing the neutron star cannot explain the gradual decline because of the long persistence of the latter ({DELTA}φ=0.11). Instead we propose that scattering in an extended photoionization wake is responsible. This wake is caused by the switch-off of the radiative force that drives the B supergiant wind during the passage through the highly ionized Stroemgren region surrounding the X-ray source. The stalled gas then trails the neutron star, which moves relative to the B star surface (no corotation). A model for the Vela X-1 system which assumes that the B star does not rotate gives too large a phase extent for the dense wake and can be ruled out. Including the B star rotation in an approximate way, the relative azimuthal motion of the neutron star is slower and the wake covers a smaller phase interval. Finally, we assume that the Stroemgren sphere does not reach too deep into the wind accelerating region. The wind can then reach a certain fraction of the terminal velocity before the radiative force is switched off. This elongates the photoionization wake further and both its phase extent and its scattering efficiency match the observations.

  20. Alignment and Testing of a Telecentric Zoom Lens Used for the Cygnus X-ray Source

    SciTech Connect

    Malone, R. M.; Baker, S. A.; Brown, K. K.; Castaneda, J. J.; Curtis, A. H.; Danielson, J.; Droemer, D. W.; Esquibel, D. L.; Haines, T. J.; Hollabaugh, J. S.; Howe, R. A.; Huerta, J. A.; King, N. S. P.; Lutz, S. S.; Kaufman, M. I.; McGillivray, K. D.; Smith, A. D.; Stokes, B. M.; Tibbitts, A.

    2013-09-01

    Cygnus is a high-energy radiographic x-ray source. Three large zoom lenses have been assembled to collect images from large scintillators. A large elliptical pellicle (394 × 280 mm) deflects the scintillator light out of the x-ray path into an eleven-element zoom lens coupled to a CCD camera. The zoom lens and CCD must be as close as possible to the scintillator to maximize light collection. A telecentric lens design minimizes image blur from a volume source. To maximize the resolution of objects of different sizes, the scintillator and zoom lens are translated along the x-ray axis, and the zoom lens magnification changes. Zoom magnification is also changed when different-sized recording cameras are used (50 or 62 mm square format). The LYSO scintillator measures 200 × 200 mm and is 5 mm thick. The scintillator produces blue light peaking at 435 nm, so special lens materials are required. By swapping out one doublet and allowing all other lenses to be repositioned, the zoom lens can also use a CsI(Tl) scintillator that produces green light centered at 540 nm (for future operations). All lenses have an anti-reflective coating for both wavelength bands. Two sets of doublets, the stop, the scintillator, and the CCD camera move during zoom operations. One doublet has x-y compensation. Alignment of the optical elements was accomplished using counter propagating laser beams and monitoring the retro-reflections and steering collections of laser spots. Each zoom lens uses 60 lb of glass inside the 425 lb mechanical structure, and can be used in either vertical or horizontal orientation.

  1. Spitzer IRS observations of the XA region in the cygnus loop supernova remnant

    SciTech Connect

    Sankrit, Ravi; Bautista, Manuel; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Long, Knox S.

    2014-05-20

    We report on spectra of two positions in the XA region of the Cygnus Loop supernova remnant obtained with the InfraRed Spectrograph on the Spitzer Space Telescope. The spectra span the 10-35 μm wavelength range, which contains a number of collisionally excited forbidden lines. These data are supplemented by optical spectra obtained at the Whipple Observatory and an archival UV spectrum from the International Ultraviolet Explorer. Coverage from the UV through the IR provides tests of shock wave models and tight constraints on model parameters. Only lines from high ionization species are detected in the spectrum of a filament on the edge of the remnant. The filament traces a 180 km s{sup –1} shock that has just begun to cool, and the oxygen to neon abundance ratio lies in the normal range found for Galactic H II regions. Lines from both high and low ionization species are detected in the spectrum of the cusp of a shock-cloud interaction, which lies within the remnant boundary. The spectrum of the cusp region is matched by a shock of about 150 km s{sup –1} that has cooled and begun to recombine. The post-shock region has a swept-up column density of about 1.3 × 10{sup 18} cm{sup –2}, and the gas has reached a temperature of 7000-8000 K. The spectrum of the Cusp indicates that roughly half of the refractory silicon and iron atoms have been liberated from the grains. Dust emission is not detected at either position.

  2. NEAR-INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN THE STAR FORMATION REGION CYGNUS OB7

    SciTech Connect

    Wolk, Scott J.; Rice, Thomas S.; Aspin, Colin

    2013-08-20

    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 Degree-Sign Multiplication-Sign 1 Degree-Sign region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer, we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field Imaging Camera on the United Kingdom Infrared Telescope, we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J Almost-Equal-To 17. We study detailed light curves and color trajectories of {approx}50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on timescales of a few years. We divide the variability into four observational classes: (1) stars with periodic variability stable over long timescales, (2) variables which exhibit short-lived cyclic behavior, (3) long-duration variables, and (4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of <1 Myr, with at least one individual, wildly varying source {approx}100, 000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.

  3. Design and Assembly of a Telecentric Zoom Lens for the Cygnus X-ray Source

    SciTech Connect

    Malone, R M; Brown, K K; Curtis, A H; Esquibel, D L; Frayer, D K; Frogget, B C; Furlanetto, M R; Garten, J R; Haines, T J; Howe, R A; Huerta, J A; Kaufman, M I; King, N.S. P; Lutz, S S; McGillivray, K D; Smith, A S

    2012-10-01

    Cygnus is a high-energy radiographic x-ray source. The rod-pinch x-ray diode produces a point source measuring 1 mm diameter. The target object is placed 1.5 m from the x-ray source, with a large LYSO scintillator at 2.4 m. Different-sized objects are imploded within a containment vessel. A large pellicle deflects the scintillator light out of the x-ray path into an 11-element zoom lens coupled to a CCD camera. The zoom lens and CCD must be as close as possible to the scintillator to maximize light collection. A telecentric lens design minimizes image blur from a volume source. To maximize the resolution of test objects of different sizes, the scintillator and zoom lens can be translated along the x-ray axis. Zoom lens magnifications are changed when different-sized scintillators and recording cameras are used (50 or 62 mm square format). The LYSO scintillator measures 200 × 200 mm and is 5 mm thick. The scintillator produces blue light peaking at 435 nm, so special lens materials are required. By swapping out one lens element and allowing all lenses to move, the zoom lens can also use a CsI(Tl) scintillator that produces green light centered at 550 nm. All lenses are coated with anti-reflective coating for both wavelength bands. Two sets of doublets, the stop, and the CCD camera move during zoom operations. One doublet has XY compensation. The first three lenses use fused silica for radiation damage control. The 60 lb of glass inside the 340 lb mechanical structure is oriented vertically.

  4. Near Infrared Diffuse Interstellar Bands Toward the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    Hamano, Satoshi; Kobayashi, Naoto; Kondo, Sohei; Sameshima, Hiroaki; Nakanishi, Kenshi; Ikeda, Yuji; Yasui, Chikako; Mizumoto, Misaki; Matsunaga, Noriyuki; Fukue, Kei; Yamamoto, Ryo; Izumi, Natsuko; Mito, Hiroyuki; Nakaoka, Tetsuya; Kawanishi, Takafumi; Kitano, Ayaka; Otsubo, Shogo; Kinoshita, Masaomi; Kawakita, Hideyo

    2016-04-01

    We obtained the near-infrared (NIR) high-resolution (R ≡ λ/Δλ ∼ 20,000) spectra of the seven brightest early-type stars in the Cygnus OB2 association for investigating the environmental dependence of diffuse interstellar bands (DIBs). The WINERED spectrograph mounted on the Araki 1.3 m telescope in Japan was used to collect data. All 20 of the known DIBs within the wavelength coverage of WINERED (0.91 < λ < 1.36 μm) were clearly detected along all lines of sight because of their high flux density in the NIR wavelength range and the large extinction. The equivalent widths (EWs) of DIBs were not correlated with the column densities of C2 molecules, which trace the patchy dense component, suggesting that the NIR DIB carriers are distributed mainly in the diffuse component. On the basis of the correlations among the NIR DIBs both for stars in Cyg OB2 and stars observed previously, λλ10780, 10792, 11797, 12623, and 13175 are found to constitute a “family,” in which the DIBs are correlated well over the wide EW range. In contrast, the EW of λ10504 is found to remain almost constant over the stars in Cyg OB2. The extinction estimated from the average EW of λ10504 (AV ∼ 3.6 mag) roughly corresponds to the lower limit of the extinction distribution of OB stars in Cyg OB2. This suggests that λ10504 is absorbed only by the foreground clouds, implying that the carrier of λ10504 is completely destroyed in Cyg OB2, probably by the strong UV radiation field. The different behaviors of the DIBs may be caused by different properties of the DIB carriers.

  5. Toxicity of Anacostia River, Washington, DC, USA, sediment fed to mute swans (Cygnus olor)

    SciTech Connect

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-03-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for 6 weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, USA, to estimate the sediment's toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets, but none of 22 organochlorine compounds included in the analyses was detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg, and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies. However, the lack of accumulation in the livers of the treated swans suggested that these elements were not readily available from the ingested sediment. The authors did not study all potential toxic effects, but, on the basis of those that they did consider, they concluded that the treated swans were basically healthy after a chronic exposure to the sediment.

  6. Annual use of man-made wetlands by the mute swan (Cygnus olor).

    PubMed

    Gayet, Guillaume; Matthieu, Guillemain; François, Mesleard; Hervé, Fritz; Laurence, Curtet; Joël, Broyer

    2013-05-15

    This is essential to understand habitat selection by wildlife to manage habitats and populations. Studying the annual use of aquatic habitats provides information on how to manage wetlands for waterfowl, and to predict possible detrimental effects associated with extended usage by these birds. This is particularly important for species like the mute swan (Cygnus olor Gmelin), given its recent dramatic demographic expansion, causing concern in both Europe and America. We studied the extent of usage (swan.days.ha(-1)) of habitat patches by mute swans in a heterogeneous and fluctuating fishpond landscape. We assessed seasonal differences of swan usage of fishponds, annual variation for a given fishpond, and determined which habitat factors drive swan usage over the year. The seasonal use pattern was regular: a similar proportion of fishponds was used heavily, moderately or lightly in all seasons. Flocking throughout the year and breeding during summer were associated with heavy use of fishponds, i.e. large number of swan.days.ha(-1). Flocking on some fishponds during several successive seasons demonstrated that some waterbody provide valuable habitats over time for swans. However, swans did not use individual fishponds to the same extent each season, mostly depending on the fluctuating ecological requirements of swans and variation in habitat properties. Agricultural practices on fishponds drastically affected swan usage during autumn and winter: formerly dried fishponds were used preferentially once reflooded. The specific agricultural crops used during the drought period had no influence though. The large-sized fishponds and fishponds within a dense network of waterbody were the most heavily used by swans throughout the year. Our results may thus be helpful to predict and prevent possible habitat damage by swans. They also provide information on habitats that are valuable for waterfowl species in general, by using mute swans as a proxy for waterfowl requirements

  7. A Chandra X-ray Study of Cygnus A. 2; The Nucleus

    NASA Technical Reports Server (NTRS)

    Young, Andrew J.; Wilson, Andrew; Terashima, Yuichi; Arnaud, Keith A.; Smith, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report Chandra Advanced CCD Imaging Spectrometer and quasi-simultaneous Rossi X-Ray Timing Explorer (RXTE) observations of the nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the properties of the active nucleus. In the Chandra observation, the hard (less than a few keV) X-ray emission is spatially unresolved with a size is approximately 1" (1.5 kpc, H(sub 0) = 50 km/s/Mpc) and coincides with the radio and near-infrared nuclei. In contrast, the soft (less than 2 keV) emission exhibits a bipolar nebulosity that aligns with the optical bipolar continuum and emission-line structures and approximately with the radio jet. In particular, the soft X-ray emission corresponds very well with the [O III] (lambda)5007 and H(alpha) + [N II] lambda(lambda)6548, 6583 nebulosity imaged with Hubble Space Telescope. At the location of the nucleus, there is only weak soft X-ray emission, an effect that may be intrinsic or result from a dust lane that crosses the nucleus perpendicular to the source axis. The spectra of the various X-ray components have been obtained by simultaneous fits to the six detectors. The compact nucleus is detected to 100 keV and is well described by a heavily absorbed power-law spectrum with Gamma(sub h) = 1.52(sup + 0.12, sub -0.12) (similar to other 0.12 narrow-line radio galaxies) and equivalent hydrogen column N(sub H)(nuc) = 2.0(sup +0.1, sub -0.1) x 10(exp 23)/sq cm. This 0.2 column is compatible with the dust obscuration to the near-infrared source for a normal gas-to-dust ratio. The soft (less than 2 keV) emission from the nucleus may be described by a power-law spectrum with the same index (i.e., Gamma(sub l) = Gamma(sub h), although direct fits suggest a slightly larger value for Gamma(sub l). Narrow emission lines from highly ionized neon and silicon, as well as a "neutral" Fe K(alpha) line, are detected in the nucleus and its vicinity (r approximately less than 2 kpc). The equivalent width (EW) of the Fe K(alpha) line

  8. A Comparison of Ultraviolet, Optical, and X-Ray Imagery of Selected Fields in the Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Danforth, Charles W.; Cornett, Robert H.; Levenson, N. A.; Blair, William P.; Stecher, Theodore P.

    1999-01-01

    During the Astro-1 and Astro-2 Space Shuttle missions in 1090 and 199.5, far ultraviolet (FUV) images of five 40' diameter fields around the rim of the Cygnus Loop supernova remnant were observed with the Ultraviolet Imaging Telescope (UIT). These fields sampled a broad range of conditions including both radiative and nonradiative shocks in various geometries and physical scales. In these shocks, the UIT B5 band samples predominantly C IV Lambda-1550 and the hydrogen two-photon recombination continuum. Smaller contributions are made by emission lines of He II Lambda-1640 and O III] Lambda-1665. We present these new FUV images and compare them with optical H-alpha and [O III], and ROSAT HRI X-ray images. Comparing the UIT images with those from the other bands provides new insights into the spatial variations and locations of these different types of emission. By comparing against shock model calculations and published FUV spectroscopy at select locations, we surmise that resonance scattering in the strong FUV permitted lines is widespread in the Cygnus Loop. especially in the bright optical filaments typically selected for observation in most previous studies.

  9. SUPERORBITAL PHASE-RESOLVED ANALYSIS OF SMC X-1

    SciTech Connect

    Hu, Chin-Ping; Chou, Yi; Yang, Ting-Chang; Su, Yi-Hao E-mail: yichou@astro.ncu.edu.tw

    2013-08-10

    The high-mass X-ray binary SMC X-1 is an eclipsing binary with an orbital period of 3.89 days. This system exhibits a superorbital modulation with a period varying between {approx}40 days and {approx}65 days. The instantaneous frequency and the corresponding phase of the superorbital modulation can be obtained by a recently developed time-frequency analysis technique, the Hilbert-Huang transform (HHT). We present a phase-resolved analysis of both the spectra and the orbital profiles with the superorbital phase derived from the HHT. The X-ray spectra observed by the Proportional Counter Array on board the Rossi X-ray Timing Explorer are fitted well by a blackbody plus a Comptonized component. The plasma optical depth, which is a good indicator of the distribution of material along the line of sight, is significantly anti-correlated with the flux detected at 2.5-25 keV. However, the relationship between the plasma optical depth and the equivalent width of the iron line is not monotonic. There is no significant correlation for fluxes higher than {approx}35 mCrab but clear positive correlation when the intensity is lower than {approx}20 mCrab. This indicates that the iron line production is dominated by different regions of this binary system in different superorbital phases. To study the dependence of the orbital profile on the superorbital phase, we obtained the eclipse profiles by folding the All Sky Monitor light curve with the orbital period for different superorbital states. A dip feature, similar to the pre-eclipse dip in Her X-1, lying at orbital phase {approx}0.6-0.85, was discovered during the superorbital transition state. This indicates that the accretion disk has a bulge that absorbs considerable X-ray emission in the stream-disk interaction region. The dip width is anti-correlated with the flux, and this relation can be interpreted by the precessing tilted accretion disk scenario.

  10. Quasi-Periodic Variability in NGC 5408 X-1

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.; Winter, Lisa; Soria, Roberto; Uttley, Phil; Cropper, Mark

    2007-01-01

    We report the discovery with XMM-Newton of quasiperiodic variability in the 0.2 - 10 keV X-ray flux from the ultraluminous X-ray source NGC 5408 X-1. The average power spectrum of all EPIC-pn data reveals a strong 20 mHz QPO with an average amplitude (rms) of 9%, and a coherence, Q identical with nu(sub 0)/sigma approximately equal to 6. In a 33 ksec time interval when the 20 mHz QPO is strongest we also find evidence for a 2nd QPO peak at 15 mHz, the first indication for a close pair of QPOs in a ULX source. Interestingly, the frequency ratio of this QPO pair is inconsistent with 3:2 at the 3 sigma level, but is consistent with a 4:3 ratio. A powerlaw noise component with slope near 1.5 is also present below 0.1 Hz with evidence for a break to a flatter slope at about 3 mHz. The source shows substantial broadband variability, with a total amplitude (rms) of about 30% in the 0.1 - 100 mHz frequency band, and there is strong energy dependence to the variability. The power spectrum of hard X-ray photons (greater than 2 keV) shows a "classic" flat-topped continuum breaking to a power law with index 1.5 - 2. Both the break and 20 mHz QPO are detected in the hard band, and the 20 mHz QPO is essentially at the break. The QPO is both strong and narrow in this band, having an amplitude (rms) of 15%, and Q approx. equal to 25. The energy spectrum is well fit by three components, a "cool" disk with kT = 0.15 keV, a steep power law with index 2.56, and a thermal plasma at kT = 0.87 keV. The disk, power law, and thermal plasma components contribute 35, 60, and 5% of the 0.3 - 10 keV flux, respectively. Both the timing and spectral properties of NGC 5408 X-1 are strikingly reminiscent of Galactic black hole systems at high inferred accretion rates, but with its characteristic frequencies (QPO and break frequencies) scaled down by a factor of 10 - 100. We discuss the implications of these findings in the context of models for ULXs, and their implications for the object's mass.

  11. Infrared CO line for the X 1 Sigma(+) state

    NASA Technical Reports Server (NTRS)

    Goorvitch, D.

    1994-01-01

    A complete line list with improved accuracy for all the rotation-vibration transitions of the fundamental, first, and second overtone bands up to v = 20 and J = 149 of the gradual state X 1 Sigma(+) of the seven CO isotopes -- (12)C(16)O, (13)C(16)O, (12)C(17)O, (12)C(18)O, (13)C(18)O, (14)C(16)O, and (13)c(17)O -- is made available to the astronomical community. A line list of the pure rotational transitions up to v = 5 and J = 60 is also made available for these seven isotopes. This line list contains the transition frequency, the lower state energy, the Einstein A-value, the g f-value, the transition strength at 3000 K or 1000 K for the pure rotational transitions, the expectation value of the effective dipole moment operator, and the quantum numbers of each transition. Individual partition functions are reported in the temperature range of 500 to 10,000 K. This line list is available as four text files from the author using an anonymous file transfer protocol (ftp) transfer and in computer-readable form in the AAS CD-ROM Series, Vol. 3.

  12. FUSE observations of a full orbit of Scorpius X-1

    SciTech Connect

    Boroson, Bram; Vrtilek, Saeqa Dil; Raymond, John E-mail: svrtilek@cfa.harvard.edu

    2014-09-20

    We obtained UV spectra of X-ray binary Scorpius X-1 in the 900-1200 Å range with the Far Ultraviolet Spectroscopic Explorer over the full 0.79 day binary orbit. The strongest emission lines are the doublet of O VI at 1032,1038 Å and the C III complex at 1175 Å. The spectrum is affected by a multitude of narrow interstellar absorption lines, both atomic and molecular. Examination of line variability and Doppler tomograms suggests emission from both the neighborhood of the donor star and the accretion disk. Models of turbulence and Doppler broadened Keplerian disk lines Doppler shifted with the orbit of the neutron star added to narrow Gaussian emission lines with undetermined Doppler shift fit the data with consistent values of disk radius, inclination, and radial line brightness profile. The Doppler shift of the narrow component with the orbit suggests an association with the donor star. We test our line models with previously analyzed near UV spectra obtained with the Hubble Space Telescope (HST) Goddard High Resolution Spectrograph and archival spectra obtained with the HST Cosmic Origins Spectrograph.

  13. Temporal X-ray astronomy with a pinhole camera. [cygnus and scorpius constellation

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1975-01-01

    Preliminary results from the Ariel-5 all-sky X-ray monitor are presented, along with sufficient experiment details to define the experiment sensitivity. Periodic modulation of the X-ray emission was investigated from three sources with which specific periods were associated, with the results that the 4.8 hour variation from Cyg X-3 was confirmed, a long-term average 5.6 day variation from Cyg X-1 was discovered, and no detectable 0.787 day modulation of Sco X-1 was observed. Consistency of the long-term Sco X-1 emission with a shot-noise model is discussed, wherein the source behavior is shown to be interpretable as approximately 100 flares per day, each with a duration of several hours. A sudden increase in the Cyg X-1 intensity by almost a factor of three on 22 April 1975 is reported, after 5 months of relative source constancy. The light curve of a bright nova-like transient source in Triangulum is presented, and compared with previously observed transient sources. Preliminary evidence for the existence of X-ray bursts with duration less than 1 hour is offered.

  14. The Variable Warm Absorber in Circinus X-1

    NASA Astrophysics Data System (ADS)

    Schulz, N. S.; Kallman, T. E.; Galloway, D. K.; Brandt, W. N.

    2008-01-01

    We observed Circinus X-1 twice during a newly reached low-flux phase near zero orbital phase using the High-Energy Transmission Grating Spectrometer (HETGS) onboard Chandra. In both observations the source did not show the P Cygni lines we observed during the high-flux phases of the source in 2000 and 2001. During the prezero phase the source did not exhibit significant variability but did exhibit an emission-line spectrum rich in H- and He-like lines from high-Z elements such as Si, S, Ar, and Ca. The light curve in the postdip observation showed quiescent and flaring episodes. Only in these flaring episodes was the source luminosity significantly higher than observed during the prezero phase. We analyzed all high-resolution X-ray spectra by fitting photoionization and absorption models from the most recent version of the XSTAR code. The prezero-phase spectrum could be fully modeled with a very hot photoionized plasma with an ionization parameter of log ξ = 3.0, down from log ξ = 4.0 in the high-flux state. The ionization balances we measure from the spectra during the postzero-phase episodes are significantly different. Both episodes feature absorbers with variable high columns, ionization parameters, and luminosity. While cold absorption remains at levels quite similar to that observed in previous years, the new observations show unprecedented levels of variable warm absorption. The line emissivities also indicate that the observed low source luminosity is inconsistent with a static hot accretion disk corona (ADC), an effect that seems common to other near-edge-on ADC sources as well. We conclude that unless there exists some means of coronal heating other than X-rays, the true source luminosity is likely much higher, and we observe obscuration in analogy to the extragalactic Seyfert 2 sources. We discuss possible consequences and relate cold, lukewarm, warm, and hot absorbers to dynamic accretion scenarios.

  15. The Photoionized Accretion Disk in Her X-1

    NASA Astrophysics Data System (ADS)

    Ji, L.; Schulz, N.; Nowak, M.; Marshall, H. L.; Kallman, T.

    2009-08-01

    We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and superorbital phases. Our goal is to determine distinct properties of the photoionized emission and its dependence on phase-dependent variations of the continuum. We find that the continua can be described by a partial covering model which above 2 keV is consistent with recent results from Rossi X-Ray Timing Explorer studies and at low energies is consistent with recent XMM-Newton and BeppoSAX studies. Besides a power law with fixed index, an additional thermal blackbody of 114 eV is required to fit wavelengths above 12 Å (~1 keV). We find that likely all the variability is caused by highly variable absorption columns in the range (1-3) × 1023 cm-2. Strong Fe K line fluorescence in almost all observations reveals that dense, cool material is present not only in the outer regions of the disk but interspersed throughout the disk. Most spectra show strong line emission stemming from a photoionized accretion disk corona (ADC). We model the line emission with generic thermal plasma models as well as with the photoionization code XSTAR and investigate changes of the ionization balance with orbital and superorbital phases. Most accretion disk coronal properties such as disk radii, temperatures, and plasma densities are consistent with previous findings for the low state. We find that these properties change negligibly with respect to orbital and superorbital phases. A couple of the higher energy lines exhibit emissivities that are significantly in excess of expectations from a static ADC.

  16. Understanding star formation in molecular clouds. III. Probability distribution functions of molecular lines in Cygnus X

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Bontemps, S.; Motte, F.; Ossenkopf, V.; Klessen, R. S.; Simon, R.; Fechtenbaum, S.; Herpin, F.; Tremblin, P.; Csengeri, T.; Myers, P. C.; Hill, T.; Cunningham, M.; Federrath, C.

    2016-03-01

    The probability distribution function of column density (N-PDF) serves as a powerful tool to characterise the various physical processes that influence the structure of molecular clouds. Studies that use extinction maps or H2 column-density maps (N) that are derived from dust show that star-forming clouds can best be characterised by lognormal PDFs for the lower N range and a power-law tail for higher N, which is commonly attributed to turbulence and self-gravity and/or pressure, respectively. While PDFs from dust cover a large dynamic range (typically N ~ 1020-24 cm-2 or Av~ 0.1-1000), PDFs obtained from molecular lines - converted into H2 column density - potentially trace more selectively different regimes of (column) densities and temperatures. They also enable us to distinguish different clouds along the line of sight through using the velocity information. We report here on PDFs that were obtained from observations of 12CO, 13CO, C18O, CS, and N2H+ in the Cygnus X North region, and make a comparison to a PDF that was derived from dust observations with the Herschel satellite. The PDF of 12CO is lognormal for Av ~ 1-30, but is cut for higher Av because of optical depth effects. The PDFs of C18O and 13CO are mostly lognormal up to Av ~ 1-15, followed by excess up to Av ~ 40. Above that value, all CO PDFs drop, which is most likely due to depletion. The high density tracers CS and N2H+ exhibit only a power law distribution between Av ~ 15 and 400, respectively. The PDF from dust is lognormal for Av ~ 3-15 and has a power-law tail up to Av ~ 500. Absolute values for the molecular line column densities are, however, rather uncertain because of abundance and excitation temperature variations. If we take the dust PDF at face value, we "calibrate" the molecular line PDF of CS to that of the dust and determine an abundance [CS]/[H2] of 10-9. The slopes of the power-law tails of the CS, N2H+, and dust PDFs are -1.6, -1.4, and -2.3, respectively, and are thus consistent

  17. AN UPDATED LOOK AT BINARY CHARACTERISTICS OF MASSIVE STARS IN THE CYGNUS OB2 ASSOCIATION

    SciTech Connect

    Kiminki, Daniel C.; Kobulnicky, Henry A.

    2012-05-20

    This work provides a statistical analysis of the massive star binary characteristics in the Cygnus OB2 association using radial velocity information of 114 B3-O5 primary stars and orbital properties for the 24 known binaries. We compare these data to a series of Monte Carlo simulations to infer the intrinsic binary fraction and distributions of mass ratios, periods, and eccentricities. We model the distribution of mass ratio, log-period, and eccentricity as power laws and find best-fitting indices of {alpha} = 0.1 {+-} 0.5, {beta} = 0.2 {+-} 0.4, and {gamma} = -0.6 {+-} 0.3, respectively. These distributions indicate a preference for massive companions, short periods, and low eccentricities. Our analysis indicates that the binary fraction of the cluster is 44% {+-} 8% if all binary systems are (artificially) assumed to have P < 1000 days; if the power-law period distribution is extrapolated to 10{sup 4} years, then a plausible upper limit for bound systems, the binary fraction is {approx}90% {+-} 10%. Of these binary (or higher order) systems, {approx}45% will have companions close enough to interact during pre- or post-main-sequence evolution (semi-major axis {approx}<4.7 AU). The period distribution for P < 26 days is not well reproduced by any single power law owing to an excess of systems with periods around 3-5 days (0.08-0.31 AU) and a relative shortage of systems with periods around 7-14 days (0.14-0.62 AU). We explore the idea that these longer-period systems evolved to produce the observed excess of short-period systems. The best-fitting binary parameters imply that secondaries generate, on average, {approx}16% of the V-band light in young massive populations. This means that photometrically based distance measurements for young massive clusters and associations will be systematically low by {approx}8% (0.16 mag in the distance modulus) if the luminous contributions of unresolved secondaries are not taken into account.

  18. Delineation of Tundra Swan Cygnus c. columbianus populations in North America: geographic boundaries and interchange

    USGS Publications Warehouse

    Ely, Craig R.; Sladen, William J. L.; Wilson, Heather M.; Savage, Susan E.; Sowl, Kristine M.; Henry, Bill; Schwitters, Mike; Snowden, James

    2014-01-01

    North American Tundra Swans Cygnus c. columbianus are composed of two wellrecognised populations: an Eastern Population (EP) that breeds across northern Canada and north of the Brooks Range in Alaska, which migrates to the eastern seaboard of the United States, and a Western Population (WP) that breeds in coastal regions of Alaska south of the Brooks Range and migrates to western North America. We present results of a recent major ringing effort from across the breeding range in Alaska to provide a better definition of the geographic extent of the migratory divide in Alaska. We also reassess the staging and winter distributions of these populations based on locations of birds tracked using satellite transmitters, and recent recoveries and sightings of neck-collared birds. Summer sympatry of EP and WP Tundra Swans is very limited, and largely confined to a small area in northwest Alaska. Autumn migration pathways of EP and WP Tundra swans abut in southwest Saskatchewan, a region where migrating WP birds turn west, and EP birds deviate abruptly eastward. Overall, from 1989 to 2013 inclusive, 2.6% of recoveries or resightings reported to the USGS Bird Banding Laboratory were of birds that moved from the domain of the population in which they were initially captured to within the range of the other population; a proportion roughly comparable to the results of Limpert et al. (1991) for years before 1990. Of the 70 cross-boundary movements reported since 1989, 39% were of birds marked on breeding areas and 61% were of birds marked on wintering areas. Dispersing swans (i.e. those that made crossboundary movements) did not differ with respect to age or sex from those that did not move between populations. The Brooks Range in northern Alaska effectively separates the two populations within Alaska, but climate-induced changes in tundra breeding habitats and losses of wetlands on staging areas may alter the distribution for both of these populations.

  19. NEAR-INFRARED VARIABILITY IN YOUNG STARS IN CYGNUS OB7

    SciTech Connect

    Rice, Thomas S.; Wolk, Scott J.; Aspin, Colin

    2012-08-10

    We present the first results from a 124 night J, H, K near-infrared monitoring campaign of the dark cloud L 1003 in Cygnus OB7, an active star-forming region. Using three seasons of UKIRT observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. On the basis of near-infrared excesses from disks, we identify 30 pre-main-sequence stars, including 24 which are newly discovered. We analyze those stars and find that the NIR excesses are significantly variable. All 9200 stars were monitored for photometric variability; among the field star population, {approx}160 exhibited near-infrared variability (1.7% of the sample). Of the 30 young stellar objects (YSOs), 28 of them (93%) are variable at a significant level. Of the 30 YSOs, twenty-five have near-infrared excess consistent with simple disk-plus-star classical T Tauri models. Nine of these (36%) drift in color space over the course of these observations and/or since Two Micron All Sky Survey observations such that they cross the boundary defining the NIR excess criteria; effectively, they have a transient near-infrared excess. Thus, time-series JHK observations can be used to obtain a more complete sample of disk-bearing stars than single-epoch JHK observations. About half of the YSOs have color-space variations parallel to either the classical T Tauri star locus or a hybrid track which includes the dust reddening trajectory. This indicates that the NIR variability in YSOs that possess accretion disks arises from a combination of variable extinction and changes in the inner accretion disk: either in accretion rate, central hole size, and/or the inclination of the inner disk. While some variability may be due to stellar rotation, the level of variability on the individual stars can exceed a magnitude. This is a strong empirical suggestion that protoplanetary disks are quite dynamic and exhibit more complex activity on short

  20. CHANDRA IMAGING AND SPECTROSCOPY OF THE EASTERN XA REGION OF THE CYGNUS LOOP SUPERNOVA REMNANT

    SciTech Connect

    McEntaffer, R. L.; Brantseg, T.

    2011-04-01

    The XA region of the Cygnus Loop is a bright knot of X-ray emission on the eastern edge of the supernova remnant. The emission results from the interaction of the supernova blast wave with density enhancements at the edge of a precursor formed cavity. However, this interaction is complex given the irregular morphology of the cavity wall. To study the nature and origin of the X-ray emission, we use high spatial resolution images from Chandra. We extract spectra from these images to analyze the physical conditions of the plasma. Our goal is to probe the density of various regions to form a picture of the cavity wall and characterize the interaction between this supernova and the local interstellar medium. We find that a series of regions along the edge of the X-ray emission appears to trace out the location of the cavity wall. The best-fit plasma models result in two temperature component equilibrium models for each region. The low-temperature components have densities that are an order of magnitude higher than the high-temperature components. The high-density plasma may exist in the cavity wall where it equilibrates rapidly and cools efficiently. The low-density plasma is interior to the enhancement and heated further by a reverse shock from the wall. Calculations of shock velocities and timescales since shock heating are consistent with this interpretation. Furthermore, we find a bright knot of emission indicative of a discrete interaction of the blast wave with a high-density cloud in the cavity wall with a size scale {approx}0.1 pc. Aside from this, other extractions made interior to the X-ray edge are confused by line-of-sight projection of various components. Some of these regions show evidence of detecting the cavity wall but their location makes the interpretation difficult. In general, the softer plasmas are well fit at temperatures (kT){approx} 0.11 keV, with harder plasmas at temperatures of (kT){approx} 0.27 keV. All regions displayed consistent metal

  1. VizieR Online Data Catalog: Infrared photometry of YSOs in Cygnus-X DR15 (Rivera-Galvez+, 2015)

    NASA Astrophysics Data System (ADS)

    Rivera-Galvez, S.; Roman-Zuniga, C. G.; Jimenez-Bailon, E.; Ybarra, J. E.; Alves, J. F.; Lada, E. A.

    2016-06-01

    Near-infrared images of the Cygnus-X DR15 region were obtained with the OMEGA 2000 camera at the 3.5m telescope of the Calar Alto Observatory, atop Sierra de los Filabres in Almeria, Spain, during the nights of 2010, February 2nd and March 3rd. The data set consists of 900s co-added exposures in the J, H, and K bands (1.209, 1.648, and 2.208μm, respectively). The seeing values-measured directly from the average FWHM of stars in the final reduced mosaics-were 1.17, 1.13, and 0.98" in J, H, and K, respectively. The Spitzer Space Telescope has observed the DR15 cluster with the IRAC and MIPS detectors as part of the Spitzer Cygnus-X Legacy Survey (Hora et al. 2009 ASP Conf. Ser., Reionization to Exoplanets: Spitzer's Growing Legacy ed P. Ogle (San Francisco, CA: ASP) 26; hereafter CXLS). We obtained archival enhanced product mosaics from the Spitzer Heritage Archive as well as a photometric catalog coincident with our region of interest directly from the CXLS Data Release 1 (DR1). The catalog contains calibrated magnitudes for sources detected with IRAC in its four cryogenic mission channels (3.6, 4.5, 5.8, and 8.0μm), as well as in the 24μm channel of MIPS. The DR15 cluster was observed with the Imaging Array of the Chandra Advanced CCD Imaging Spectrometer (ACIS-I) on 2011 January 25 (ObsID12390, P.I. Wright). We made use of the Five College Radio Observatory (FCRAO) 13CO(1-0) molecular radio emission map of the south Cygnus-X region from the study of Schneider et al. (2011A&A...529A...1S). In Tables 2-4 we list YSO sources identified as Class I, Class II, and Class III in our region of study. (3 data files).

  2. Radio observations of comet C/2012 X1 LINEAR

    NASA Astrophysics Data System (ADS)

    Lovell, A.; Howell, E.

    2014-07-01

    We obtained radio OH spectra of comet C/2012 X1 LINEAR between 03 November 2013 and 13 January 2014 with the 305-m Gordon Telescope at Arecibo Observatory. Spectra at 1667 and 1665 MHz (18-cm wavelength) were obtained with an on-sky beam size of 2.9' and spectral resolution of 0.1 km s^{-1}, on most occasions mapping 7 positions of the OH coma within 4' of the nucleus. The observation range spans heliocentric distances from 2.2 au down to 1.7 au pre-perihelion, and geocentric distances ranging from 2.8-2.2 au, yielding a resolution of 300-400,000 km at the comet. Radio OH spectra are seen via a λ-doublet, with the excitation of the lines depending on the heliocentric velocity of the comet, changing the relative velocity of the cometary gas with respect to the UV spectrum of the Sun. We interpret the spectra via a vectorial Monte Carlo model, taking into account the OH inversion predictions of Despois et al. [1] as well as Schleicher & A'Hearn [2]. In highly productive comets, larger coma densities thermalize the line excitation, reducing the observed line strength near the nucleus. We treat this collisional quenching following that outlined by Schloerb [3] and Gérard [4]. Mapping observations can directly constrain the radius within which quenching is active, and thus yield a more accurate estimate of the gas production rate. Radio observations at high spectral resolution place excellent constraints on the gas outflow velocity in cometary comae. Best-fit models for these observations, processed based on spectra binned to a resolution of 0.34 km s^{-1}, yield gas outflow velocity of 0.78 ± 0.03 km s^{-1}, typical for comets outside 1 au heliocentric distance, and consistent with those of Tseng et al. [5]. Gas production rates differ by 20-30 percent for the two inversion models, but range between 2 × 10^{28} and 4 × 10^{28} mol s^{-1}, also similar to other comets observed at these heliocentric distances. We will present spectral line maps for these

  3. The Complete ``Z'' Track of Circinus X-1

    NASA Astrophysics Data System (ADS)

    Shirey, Robert E.; Bradt, Hale V.; Levine, Alan M.

    1999-05-01

    We carried out an extensive Rossi X-Ray Timing Explorer campaign, in 1997 June, to study Circinus X-1 during the active portion of its 16.55 day intensity cycle. The observations spanned 10 days, including 56% coverage for 7 days, and allowed us to find time segments that clearly demonstrate continuous evolution along the horizontal, normal, and flaring branches (HB/NB/FB) of a Z-source low-mass X-ray binary. These results confirm and extend the behavior we inferred from earlier observations. Here we study the continuous evolution of the Fourier power spectra and the energy spectra around the complete hardness-intensity track. A narrow quasi-periodic oscillation (QPO) peak, previously observed in the power spectra at 1.3-32 Hz, increases in frequency from 12 Hz to 25 Hz moving down a vertical extension of the horizontal branch in the hardness-intensity diagram. These horizontal branch QPOs (HBOs) occur near 30 Hz and fade in strength on the horizontal portion of the HB, while a broad peak in the power spectrum arises near 4 Hz. This peak becomes much more prominent along the normal branch and remains near 4 Hz (the normal branch QPOs, or NBOs). On the flaring branch, neither QPO is present and the power spectrum is dominated by very low frequency noise. We also found that each branch of the spectral track is associated with a specific type of evolution of the energy spectrum. We explored various models for the energy spectrum and parameterized the evolution of the spectrum in terms of a two-component model consisting of a multitemperature ``disk blackbody'' and a higher temperature (~2 keV) blackbody. We also show that an unusual line- or edgelike feature occurs at about 10 keV in energy spectra from the flaring branch and lower normal branch. This unusual feature is very similar to one seen on the FB and lower NB of the Z source GX 5-1.

  4. The Balmer-dominated northeast limb of the Cygnus loop supernova remnant

    NASA Technical Reports Server (NTRS)

    Hester, J. Jeff; Raymond, John C.; Blair, William P.

    1994-01-01

    We present a comprehensive investigation of the Balmar-dominated northeast limb of the Cygnus Loop supernova remnant. Data presented include H alpha (O III), and X-ray images, UV and visible spectrophotometry, and high-resolution spectroscophy. The two relatively bright Balmer-dominated filaments visible on the POSS prints are seen to be part of a very smooth and regular complex of filaments. These filaments mark the current location of the blast wave and are seen to bound the sharply limb-brightened X-ray emission, including the previously reported X-ray, 'halo.' The (O III)/h beta ratio throughout the region is approximately 0.1, except for regions in which the shock is undergoing a transition from nonradiative to incomplete radiative to incomplete radiative conditions. At these locations (O III) emission from the cooling region is quite strong, while collisionally excited Balmer-line emission can be weak because of photoionization of the preshock medium by UV from the nascent cooling region. As a result (O III)/H beta is greater than 100 in some locations. The nonradiative/radiative transition is best studied along the length of the northwestern of the two brightest filaments, where the shock velocity and swept-up column go from approximately 180 km/s and 10(exp 17)/sq cm at one end to approximately 140 km/s and 8 x 10(exp 17)/cm at the other. There are also a number of locations of such incomplete radiative emission where the shock has recently encountered denser regions with characteristic sizes of approximately 10(exp 18) cm. There is a considerable amount of evidence that the shock has decelerated from approximately 400 km/s to less than 200 km/s in the last 1000 yr. We interpret this as the result of the blast wave hitting the wall of a cavity which surround the supernova precursor and succeed in matching a wide range of data with a reflected shock model in which the density ofthe cavity wall is approximately 1.2/cu cm and the density in the interior of the

  5. An optical and near-infrared exploration of the star formation region in Cygnus surrounding RNO 127

    NASA Astrophysics Data System (ADS)

    Movsessian, T.; Khanzadyan, T.; Magakian, T.; Smith, M. D.; Nikogosian, E.

    2003-12-01

    We investigate a relatively unstudied star formation region in Cygnus centered on RNO 127, finding numerous Herbig-Haro flows, many identified in optical [SII], Hα , and near-infrared H2 tracers of shock waves. Several protostars and young stars are thus located, including one conspicuously brightened object, which illuminates a variable reflection nebula. In total, the coordinates of 17 optical HH knots and jets, 4 associated cometary nebulae and 3 NIR objects are given. Individual structures are discussed including a central complex which has the characteristics of superposed HH flows. This star-forming cloud is not isolated but is part of a much larger region of distributed star formation, including HH 380 and HH 381. Based on observations collected at the Byurakan Astrophysical Observatory, Byurakan, Armenia. Includes observations made at German-Spanish Astronomical Centre, Calar Alto, operated by the Max-Planck-Institut für Astronomie.

  6. Global O VI line emission from the Cygnus Loop supernova remnant and direct kinematic measurement of the associated shock

    NASA Technical Reports Server (NTRS)

    Rasmussen, Andrew; Martin, Christopher

    1992-01-01

    A far-ultraviolet spectrophotometric emission-line mapping of the Cygnus Loop supernova remnant is presented. These are results from the first flight of the rocket-borne, High Resolution Emission Line Spectrometer. The spatial distribution of the emission is that of a limb-brightened shell, and similar to soft X-ray maps. The emission-line profiles, which are broader than the instrument resolution, were consistent with uniformly expanding shell models. Best-fit values give a radial expansion velocity to the emissive region of 185(+/-19) km/s and a reddening-corrected average surface brightness of 8.8(+/-3.6) x 10 exp -6 ergs/sq cm s sr in the doublet. Comparison of the observed brightness with predictions of both radiative and nonradiative shock models provides constraints for the global blast wave ram pressure as well as a "covering factor" of the intermediate velocity shock.

  7. Dipping in CygnusX-2 in a multi-wavelength campaign due to absorption of extended ADC emission

    NASA Astrophysics Data System (ADS)

    Bałucińska-Church, M.; Schulz, N. S.; Wilms, J.; Gibiec, A.; Hanke, M.; Spencer, R. E.; Rushton, A.; Church, M. J.

    2011-06-01

    We report results of one-day simultaneous multiwavelength observations of CygnusX-2 using XMM, Chandra, the European VLBI Network and the XMM Optical Monitor. During the observations, the source did not exhibit Z-track movement, but remained in the vicinity of the soft apex. It was in a radio quiescent/quiet state of <150 μJy. Strong dip events were seen as 25% reductions in X-ray intensity. The use of broadband CCD spectra in combination with narrow-band grating spectra has now demonstrated for the first time that these dipping events in CygnusX-2 are caused by absorption in cool material in quite a unique way. In the band 0.2 - 10 keV, dipping appears to be due to progressive covering of the Comptonized emission of an extended accretion disk corona, the covering factor rising to 40% in deep dipping with an associated column density of 3 × 1023 atom cm-2. Remarkably, the blackbody emission of the neutron star is not affected by these dips, in strong contrast with observations of typical low mass X-ray binary dipping sources. The Chandra and XMM gratings directly measure the optical depths in absorption edges such as Ne K, Fe L, and O K and a comparison of the optical depths in the edges of non-dip and dip data reveals no increase of optical depth during dipping even though the continuum emission sharply decreases. Based on these findings, at orbital phase 0.35, we propose that dipping in this observation is caused by absorption in the outer disk by structures located opposite to the impact bulge of the accretion stream. With an inclination angle >60° these structures can still cover large parts of the extended ADC, without absorbing emission from the central neutral star.

  8. Spatially Resolved Spectroscopy of a Balmer-dominated Shock in the Cygnus Loop: An Extremely Thin Cosmic-Ray Precursor?

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Maeda, Keiichi; Ohira, Yutaka; Yatsu, Yoichi; Mori, Koji; Aoki, Wako; Morihana, Kumiko; Raymond, John C.; Ghavamian, Parviz; Lee, Jae-Joon; Shimoda, Jiro; Yamazaki, Ryo

    2016-03-01

    We present high-resolution long-slit spectroscopy of a Balmer-dominated shock in the northeastern limb of the Cygnus Loop with the Subaru high dispersion spectrograph. By setting the slit angle along the shock normal, we investigate variations of the flux and profile of the Hα line from preshock to postshock regions with a spatial resolution of ˜4 × 1015 cm. The Hα line profile can be represented by a narrow (28.9 ± 0.7 km s-1) Gaussian in a diffuse region ahead of the shock, i.e., a photoionization precursor, and narrow (33.1 ± 0.2 km s-1) plus broad (130-230 km s-1) Gaussians at the shock itself. We find that the width of the narrow component abruptly increases up to 33.1 ± 0.2 km s-1, or 38.8 ± 0.4 km s-1 if we eliminate projected emission originating from the photoionization precursor, in an unresolved thin layer (≲4 × 1015 cm at a distance of 540 pc) at the shock. We show that the sudden broadening can be best explained by heating via damping of Alfvén waves in a thin cosmic-ray (CR) precursor, although other possibilities are not fully ruled out. The thickness of the CR precursor in the Cygnus Loop (a soft gamma-ray emitter) is an order of magnitude thinner than that in Tycho’s Knot g (a hard gamma-ray emitter), which may be caused by the different energy distribution of accelerated particles between the two sources. In this context, systematic studies might reveal a positive correlation between the thickness of the CR precursor and the hardness of the CR energy distribution.

  9. Sco X-1 - A galactic radio source with an extragalactic radio morphology

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Corey, B. E.; Fomalont, E. B.; Hilldrup, K.

    1981-01-01

    VLA observations of radio emissions at 1465 and 4885 MHz, of Sco X-1 confirm the existence of a colinear triple structure. Evidence that the three components of Sco X-1 are physically associated is presented, including the morphology, spectrum, variability, volume emissivity and magnetic field strength. The possibility of a physical phenomenon occurring in Sco X-1 similar to that occurring in extragalactic radio sources is discussed, and two galactic sources are found having extended emission similar to that in extragalactic objects. The extended structure of Sco X-1 is also observed to be similar to that of the hot spots in luminous extragalactic sources, and a radio source 20 arcmin from Sco X-1 is found to lie nearly along the radio axis formed by the components of Sco X-1.

  10. Molecular analysis of PinX1 in human hepatocellular carcinoma.

    PubMed

    Oh, Bong-Kyeong; Chae, Kwang Jo; Park, Chanil; Park, Young Nyun

    2004-10-01

    PinX1 is located at 8p23, a region with frequent loss of heterozygosity in hepatocellular carcinomas (HCCs). Overexpression of PinX1 is known to inhibit telomerase activity, shorten telomeres and induce crisis while its depletion increases tumorigenesis in nude mice. These results suggest that PinX1 might be critical for hepatocarcinogenesis. In this study, we assessed transcript expression of PinX1, the correlation between PinX1 mRNA level and telomere length and telomerase activity, as well as sequence alteration, in 24 HCCs and their adjacent non-HCC tissues from patients with B viral chronic hepatitis/cirrhosis. There was no significant difference between the levels of PinX1 mRNA in HCCs and those in non-HCCs. The PinX1 mRNA tended to increase as the telomere shortened in the HCCs (p=0.067, R(2)=0.166), but no correlation was found in non-HCCs. The PinX1 level revealed no significant relationship with telomerase activity in HCCs and non-HCCs. The missense mutations of PinX1, at the 254 and 265 residues, were found in 17% of the HCCs and their adjacent non-HCCs. The mutations were located in the non-conserved region and revealed no relation with PinX1 expression, telomere length and telomerase activity, suggesting that they are likely polymorphisms. Our findings suggest that PinX1 may not play a major role in hepatocarcinogenesis as a target tumor suppressor gene. PinX1, however, might be involved in the telomere length regulation of HCCs. PMID:15375513

  11. Observation of an excess of cosmic ray muons of energies 2 TeV from the direction of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Battistoni, G.; Bellotti, E.; Bloise, C.; Bologna, G.; Campana, P.; Castagnoli, C.; Castellina, A.; Chiarella, V.; Ciocio, A.; Cundy, D.

    1985-01-01

    A high flux of muons from the Cygnus X-3 direction has been observed in NUSEX experiment at depths greater than 4600 hg/sq cm s.r. The excess muons show the 4.8 hour modulation in arrival time typical of this source. A study of this modulation was done in order to find the best value of the period and of the period derivative. The muon flux underground from NUSEX and SOUDAN (1800 hg/sq cm) experiments are used to determine the energy spectrum at sea level. The shape and the absolute intensities are found similar to those attributed to gamma rays responsible for production of air showers detected in direction of Cygnus X-3 in the energy range 10 to the 12th power to 10 to the 15th power eV.

  12. Discovery of kHz Quasi-periodic Oscillations in the Z Source Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Wijnands, Rudy; Homan, Jeroen; van der Klis, Michiel; Kuulkers, Erik; van Paradijs, Jan; Lewin, Walter H. G.; Lamb, Frederick K.; Psaltis, Dimitrios; Vaughan, Brian

    1998-02-01

    During observations with the Rossi X-Ray Timing Explorer from 1997 June 31 to July 3 we discovered two simultaneous kHz quasi-periodic oscillations (QPOs) near 500 and 860 Hz in the low-mass X-ray binary and Z source Cygnus X-2. In the X-ray color-color diagram and hardness-intensity diagram (HID), a clear Z track was traced out, which shifted in the HID within 1 day to higher count rates at the end of the observation. Z track shifts are well known to occur in Cyg X-2 our observation for the first time catches the source in the act. A single kHz QPO peak was detected at the left end of the horizontal branch (HB) of the Z track, with a frequency of 731+/-20 Hz and an amplitude of 4.7+0.8-0.6% rms in the energy band 5.0-60 keV. Further to the right on the HB, at somewhat higher count rates, an additional peak at 532+/-43 Hz was detected with an rms amplitude of 3.0+1.0-0.7%. When the source moved down the HB, thus when the inferred mass accretion rate increased, the frequency of the higher frequency QPO increased to 839+/-13 Hz, and its amplitude decreased to 3.5+0.4-0.3% rms. The higher frequency QPO was also detected on the upper normal branch (NB) with an rms amplitude of 1.8+0.6-0.4% and a frequency of 1007+/-15 Hz; its peak width did not show a clear correlation with inferred mass accretion rate. The lower frequency QPO was most of the time undetectable, with typical upper limits of 2% rms; no conclusion on how this QPO behaved with mass accretion rate can be drawn. If the peak separation between the QPOs is the neutron star spin frequency (as required in some beat-frequency models), then the neutron star spin period is 2.9+/-0.2 ms (346+/-29 Hz). This discovery makes Cyg X-2 the fourth Z source that displays kHz QPOs. The properties of the kHz QPOs in Cyg X-2 are similar to those of other Z sources. Simultaneous with the kHz QPOs, the well-known horizontal-branch QPOs (HBOs) were visible in the power spectra. At the left end of the HB, the second harmonic of

  13. Correlations between X-Ray Spectral and Timing Characteristics in Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Kuznetsov, Sergey; Shaposhnikov, Nickolai

    2007-09-01

    Correlations between the quasi-periodic oscillations (QPOs) and the spectral power-law index have been reported for a number of black hole candidate sources and for four neutron star (NS) sources, 4U 0614+09, 4U 1608-52, 4U 1728-34, and Sco X-1. An examination of QPO frequencies and index relationship in Cyg X-2 is reported herein. The RXTE spectrum of Cyg X-2 can be adequately represented by a simple two-component model of Compton upscattering with a soft photon electron temperature of about 0.7 keV and an iron K line. Inferred spectral power-law index shows correlation with the low QPO frequencies. We find that the Thomson optical depth of the Compton cloud (CC) τ, in framework of spherical geometry, is in the range of ~4-6, which is consistent with the surface of the neutron star (NS) being obscured. The NS high-frequency pulsations are presumably suppressed as a result of photon scattering off CC electrons because of such high values of τ. We also point out a number of similarities in terms of timing (presence of low- and high-frequency QPOs) and spectral (high CC optical depth and low CC plasma temperature) appearances between Cyg X-2 and Sco X-1.

  14. X-1-2 on ramp with pilots Robert Champine and Herb Hoover

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The Bell Aircraft Corporation X-1-2 and two of the NACA pilots that flew the aircraft. The one on the viewer's left is Robert Champine with the other being Herbert Hoover. Champine made a total of 13 flights in the X-1, plus 9 in the D-558-1 and 12 in the D-558-2. Hoover made 14 flights in the X-1. On March 10, 1948, he reached Mach 1.065, becoming the first NACA pilot to fly faster than the speed of sound. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on Jan. 25, 1946. Powered flights began in December 1946. On Oct. 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft

  15. Long-Term X-Ray Variability of Circinus X-1

    NASA Technical Reports Server (NTRS)

    Saz Parkinson, P. M.; Tournear, D. M.; Bloom, E. D.; Focke, W. B.; Reilly, K. T.

    2003-01-01

    We present an analysis of long term X-ray monitoring observations of Circinus X-1 (Cir X-1) made with four different instruments: Vela 5B, Ariel V ASM, Ginga ASM, and RXTE ASM, over the course of more than 30 years. We use Lomb-Scargle periodograms to search for the approx. 16.5 day orbital period of Cir X-1 in each of these data sets and from this derive a new orbital ephemeris based solely on X-ray measurements, which we compare to the previous ephemerides obtained from radio observations. We also use the Phase Dispersion Minimization (PDM) technique, as well as FFT analysis, to verify the periods obtained from periodograms. We obtain dynamic periodograms (both Lomb-Scargle and PDM) of Cir X-1 during the RXTE era, showing the period evolution of Cir X-1, and also displaying some unexplained discrete jumps in the location of the peak power.

  16. The Cosmic-Ray and Gas Content of the Cygnus Region as Measured in Gamma Rays by the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Harding, A. K.; Hays, E.; Thompson, D. J.; Troja, E.

    2011-01-01

    Context. The Cygnus region hosts a giant molecular-cloud complex which actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at y-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyse the gamma-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 Me V to 100 Ge V in order to probe the gas and cosmic-ray content over the scale of the whole Cygnus complex. The gamma-ray emission on the scale of the central massive stellar clusters and from individual sources is addressed elsewhere. Methods. The signal from bright pulsars is largely reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. and a global model of the region, including other pulsars and gamma-ray sources, is sought. Results. The integral H I emissivity above 100 MeV averaged over the whole Cygnus complex amounts to 12.06 +/- 0.11 (stat.) (+0.15 -0.84) (syst.J] x 10(exp -26) photons /s / sr / H-atom, where the systematic error is dominated by the uncertainty on the H I opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average X(sub co) N(H2)/W(sub co) ratio is found to be [1.68 +/- 0.05 (stat.) (H I opacity)] x 1020 molecules cm-2 (K km/s /r, consistent with other LAT measurements in the Local Arm. We detect significant gamma-ray emission from dark neutral gas for a mass corresponding to approx 40% of that traced by CO. The total interstellar mass in the Cygnus complex inferred from its gamma-ray emission amounts to 8(+5 -1) x 10(exp 6) Solar M at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and large

  17. Lithium synthesis in microquasar accretion.

    PubMed

    Iocco, Fabio; Pato, Miguel

    2012-07-13

    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 10(-2) M⊙ for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pregalactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis. PMID:23030150

  18. Dunham coefficients for the X1Σ+ ground state of BH and BD

    NASA Astrophysics Data System (ADS)

    Shayesteh, Alireza; Ghazizadeh, Ehsan

    2015-06-01

    All available spectroscopic data for the X1Σ+, A1Π and B1Σ+ states of BH and BD have been combined in a multi-isotopologue fit to obtain Dunham coefficients for the X1Σ+ ground state. With no vibration-rotation data available for BD, the only way to determine the v = 1 ← 0 interval in the X1Σ+ ground state of BD was to use the 1-1 and 1-0 bands of the B1Σ+ - X1Σ+ system. An incorrect J assignment was found in the published data of the 1-0 band of the B1Σ+ - X1Σ+ system of BD, making them inconsistent with the more accurate data from the A1Π - X1Σ+ system. With the correct J assignment, the v = 1 ← 0 interval in the X1Σ+, A1Π and B1Σ+ states of 11BD were determined to be 1690.773, 1581.095 and 1687.90 cm-1, respectively. The values listed in Huber and Herzberg's book differ from the above values by ∼2B, because they are based on an incorrect J assignment.

  19. Long-term studies with the Ariel-5 asm. 1: Her X-1, Vela X-1 and Cen X-3. [periodic variations

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Kaluzienski, L. J.; Boldt, E. A.; Serlemitsos, P. J.

    1978-01-01

    Twelve hundred days of 3-6 keV X-ray data from Her X-1, Vela X-1 and Cen X-3 accumulated with the Ariel-5 all-sky monitor are interrogated. The binary periodicities of all three can be clearly observed, as can the approximately 35-d variation of Her X-1, for which we can refine the period to 34.875 plus or minus .030-d. No such longer-term periodicity less than 200-d is observed from Vela X-1. The 26.6-d low-state recurrence period for Cen X-3 previously suggested is not observed, but a 43.0-d candidate periodicity is found which may be consistent with the precession of an accretion disk in that system. The present results are illustrative of the long-term studies which can be performed on approximately 50 sources over a temporal base which will ultimately extend to at least 1800 days.

  20. Discovery of the binary nature of SMC X-1 from Uhuru.

    NASA Technical Reports Server (NTRS)

    Schreier, E.; Giacconi, R.; Gursky, H.; Kellogg, E.; Tananbaum, H.

    1972-01-01

    The X-ray source in the Small Magellanic Cloud SMC X-1 was observed by Uhuru on numerous occasions from December 1970 through April 1972. As previously reported by Leong et al. (1971), the source was seen to be variable. It was found that SMC X-1 occults with a period of 3.8927 days. The energy spectrum is cut off at low energies and flat. There is no large-amplitude periodic pulsation. The luminosity observed makes the binary source SMC X-1 comparable in strength to both the stronger galactic sources and the discrete sources in the Large Magellanic Cloud.

  1. X-ray time lags and non-linear variability in the ultraluminous X-ray sources NGC 5408 X-1 and NGC 6946 X-1

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; Vaughan, S.; Roberts, T. P.; Middleton, M.

    2015-11-01

    We present our analysis of the X-ray variability of two ultraluminous X-ray sources (ULXs) based on multiple XMM-Newton observations. We show that the linear rms-flux relation is present in eight observations of NGC 5408 X-1 and also in three observations of NGC 6946 X-1, but data from other ULXs are generally not sufficient to constrain any rms-flux relation. The presence of this relation was previously reported in only two observations of NGC 5408 X-1; our results show that this is a persistent property of the variability of NGC 5408 X-1 and extends to at least one other variable ULX. We speculate this is a ubiquitous property of ULX variability, as it is for X-ray variability in other luminous accreting sources. We also recover the time delay between hard and soft bands in NGC 5408 X-1, with the soft band (<1 keV) delayed with respect to the hard band (>1 keV) by up to ˜10 s (˜0.2 rad) at frequencies above ˜few mHz. For the first time, we extend the lag analysis to lower frequencies and find some evidence for a reversal of the lag, a hard lag of ˜1 ks at frequencies of ˜0.1 mHz. Our energy-resolved analysis shows that the time delays are energy dependent. We argue that the lag is unlikely to be a result of reflection from an accretion disc (`reverberation') based on the lack of reflection features in the spectra, and the large size of the reflector inferred from the magnitude of the lag. We also argue that associating the soft lag with a quasi-periodic oscillation (QPO) in these ULXs - and drawing an analogy between soft lags in ULXs and soft lags seen in some low-frequency QPOs of Galactic X-ray binaries - is premature.

  2. VERY LARGE ARRAY H I ZEEMAN OBSERVATIONS OF THE CYGNUS X REGION: DR 22 AND ON 2

    SciTech Connect

    Mayo, E. A.; Troland, T. H. E-mail: troland@pa.uky.edu

    2012-02-15

    We have used the Very Large Array to study the Zeeman effect in 21 cm H I absorption lines from two star-forming regions in the Cygnus X complex, DR 22 and ON 2. We measure the line-of-sight magnetic field toward these regions, finding B{sub los} = -84 {+-} 11 {mu}G toward the DR 22 H II region and B{sub los} < 50 {mu}G toward each of the two H II regions in ON 2. We interpret these results in terms of two different models. In one model, we assume that the H I Zeeman effect is a measure of magnetic fields in the associated molecular clouds. If so, then the DR 22 molecular cloud is magnetically subcritical, that is, magnetically dominated. The ON 2 molecular clouds are magnetically supercritical. In a second model, we assume that the H I Zeeman effect is a measure of magnetic fields in photon-dominated regions where the gas has been compressed (and the field amplified) by absorption of stellar radiation. We find that this second model, where the measured field strength has been affected by star formation, accounts well for the DR 22 H I Zeeman effect. This same model, however, overpredicts the magnetic field in ON 2. ON 2 may be a region where the magnetic field is energetically insignificant or where the field happens to lie nearly in the plane of the sky.

  3. Chemical abundances of the secondary star in the neutron star X-ray binary Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Suárez-Andrés, L.; González Hernández, J. I.; Israelian, G.; Casares, J.; Rebolo, R.

    2015-03-01

    We present Utrecht Echelle Spectrograph@William Herschel Telescope high-resolution spectra of the low-mass X-ray binary (LMXB) Cygnus X-2. We have derived the stellar parameters of the secondary star using χ2 minimization procedure, and taking into account any possible veiling from the accretion disc. We determine a metallicity higher than solar ([Fe/H] = 0.27 ± 0.19), as seen also in the neutron star X-ray binary Centaurus X-4. The high quality of the secondary's spectrum allow us to determine the chemical abundances of O, Mg, Si, Ca, S, Ti, Fe, and Ni. We found that some α-elements (Mg, Si, S, Ti) are enhanced, consistent with a scenario of contamination of the secondary star during the supernova event. Surprisingly oxygen appears to be underabundant, whereas enhanced abundances of Fe and Ni are measured. Assuming that these abundances come from matter that has been processed in the SN and then captured by the secondary star, we explore different SN explosion scenarios with diverse geometries. A non-spherically symmetric SN explosion, with a low mass cut, seems to reproduce better the observed abundance pattern of the secondary star compared to the spherical case.

  4. The velocity dependence of X-ray emission due to Charge Exchange: Applications in the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata; Lyons, David; Mullen, Patrick; Shelton, Robin L.; Stancil, Phillip C.; Schultz, David R.

    2016-04-01

    The fundamental collisional process of charge exchange (CX) has been been established as a primary source of X-ray emission from the heliosphere [1], planetary exospheres [2], and supernova remnants [3,4]. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly-excited, high charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays.To provide reliable CX-induced X-ray spectral models to realistically simulate high-energy astrophysical environments, line ratios and spectra are computed using theoretical CX cross-sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for various collisional velocities. Collisions of bare and H-like C to Al ions with H, He, and H2 are considered. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant will be shown as an example with ion velocity dependence.[1] Henley, D. B. & Shelton, R. L. 2010, ApJSS, 187, 388[2] Dennerl, K. et al. 2002, A&A 386, 319[3] Katsuda, S. et al. 2011, ApJ 730 24[4] Cumbee, R. S. et al. 2014, ApJ 787 L31

  5. Detection of a novel circovirus in mute swans (Cygnus olor) by using nested broad-spectrum PCR.

    PubMed

    Halami, M Y; Nieper, H; Müller, H; Johne, R

    2008-03-01

    Circoviruses are the causative agents of acute and chronic diseases in several animal species. Clinical symptoms of circovirus infections range from depression and diarrhoea to immunosuppression and feather disorders in birds. Eleven different members of the genus Circovirus are known so far, which infect pigs and birds in a species-specific manner. Here, a nested PCR was developed for the detection of a broad range of different circoviruses in clinical samples. Using this assay, a novel circovirus was detected in mute swans (Cygnus olor) found dead in Germany in 2006. Sequence analysis of the swan circovirus (SwCV) genome, amplified by multiply primed rolling-circle amplification and PCR, indicates that SwCV is a distinct virus most closely related to the goose circovirus (73.2% genome sequence similarity). Sequence variations between SwCV genomes derived from two different individuals were high (15.5% divergence) and mainly confined to the capsid protein-encoding region. By PCR testing of 32 samples derived from swans found dead in two different regions of Germany, detection rates of 20.0 and 77.3% were determined, thus indicating a high incidence of SwCV infection. The clinical significance of SwCV infection, however, needs to be investigated further. PMID:18082907

  6. Theoretical interpretation of the HEAO-3 observations of Cygnus X-3 under the HEAO-3 Guest Investigator Program

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.

    1987-01-01

    A model of the galactic X-ray source Cygnus X-3 (Cyg X-3) is presented which deviates from previous models by positing that the X-rays originate in a jet rather than a binary system consiting of an ordinary star and a collapsed object. In the new model, the 4.8 hour period of Cyg X-3 is caused by variable absorption which occurs as the jet precesses. The primary role of the accretion disk corona (ADC) in modulating Cyg X-3 radiation is to make the observed intensity of a blob of material in a jet appear dimmer by absorption. The needed derivation of the positional dependence of the density of the ADC is freed of some complications by assuming that only the inner regions of the disk are precessing, with a period shorter than 4.8 hours. This model permits the secondary star to be a supergiant, as indicated by the luminosity of the system. The model is especially helpful in interpreting production of radio outbursts and very high energy gamma rays.

  7. First 3 mm-VLBI imaging of the two-sided jet in Cygnus A. Zooming into the launching region

    NASA Astrophysics Data System (ADS)

    Boccardi, B.; Krichbaum, T. P.; Bach, U.; Bremer, M.; Zensus, J. A.

    2016-04-01

    Aims: We present for the first time Very Long Baseline Interferometry images of the radio galaxy Cygnus A at the frequency of 86 GHz. Thanks to the high spatial resolution of only ~200 Schwarzschild radii (RS), such observations provide an extremely detailed view of the nuclear regions in this archetypal object and allow us to derive important constraints for theoretical models describing the launching of relativistic jets. Methods: A pixel-based analysis of the jet outflow, which still appears two-sided on the scales probed, was performed. By fitting Gaussian functions to the transverse intensity profiles, we could determine the jet width in the nuclear region. Results: The base of the jets appears wide. The minimum measured transverse width of ~(227 ± 98) RS is significantly larger than the radius of the innermost stable circular orbit, suggesting that the outer accretion disk is contributing to the jet launching. The existence of a faster and Doppler de-boosted inner section, powered either from the rotation of the inner regions of the accretion disk or by the spinning black hole, is suggested by the kinematic properties and by the observed limb brightening of the flow.

  8. Behaviour of wintering Tundra Swans Cygnus columbianus columbianus at the Eel River delta and Humboldt Bay, California, USA

    USGS Publications Warehouse

    Black, Jeffrey M.; Gress, Carol; Byers, Jacob W.; Jennings, Emily; Ely, Craig

    2010-01-01

    Tundra Swan Cygnus columbianus columbinanus phenology and behaviour at the Eel River delta and southern Humboldt Bay in northern California, USA, is described. Counts made each January from 1963 onwards peaked at 1,502 swans in 1988. Monthly counts recorded during the 2006/07 and 2008/09 winters peaked in February, at 1,033 and 772 swans respectively. Swans roosted on ephemeral ponds at the Humboldt Bay National Wildlife Refuge, on ephemeral ponds within grassland pastures in the vicinity of the Refuge, and perhaps also used the Eel River as a roost. Flights between Refuge roosts and the pastures and ponds occurred in the two hours after sunrise and before dark. In winters 2008/09 and 2009/10, the percentage of cygnets in the flocks was 10.6% and 21.4% respectively, and increased to =31% cygnets each year after most swans had departed from the area in March. Average brood size in 2009/10 was 2.1 cygnets. Daily activities consisted of foraging (44.9% of activities recorded), comfort behaviour (22.1%), locomotion (16.2%) and vigilance (15.5%). Eight neck-collared swans identified in the wintering flock were marked at four locations in different parts of Alaska, up to 1,300 km apart.

  9. OBSERVATION OF TeV GAMMA RAYS FROM THE CYGNUS REGION WITH THE ARGO-YBJ EXPERIMENT

    SciTech Connect

    Bartoli, B.; Catalanotti, S.; Bernardini, P.; Bleve, C.; Bi, X. J.; Cao, Z.; Chen, S. Z.; Chen, Y.; Bolognino, I.; Branchini, P.; Budano, A.; Calabrese Melcarne, A. K.; Cardarelli, R.; Cattaneo, C.; Chen, T. L.; Creti, P.; Cui, S. W.; Dai, B. Z.; D'Ali Staiti, G.; Collaboration: ARGO-YBJ Collaboration; and others

    2012-02-15

    We report the observation of TeV {gamma}-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at the 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) {gamma}-ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by Milagro.

  10. A WIDE-FIELD NARROWBAND OPTICAL SURVEY OF THE BRAID NEBULA STAR FORMATION REGION IN CYGNUS OB7

    SciTech Connect

    Magakian, Tigran Yu.; Nikogossian, Elena H.; Movsessian, Tigran; Aspin, Colin; Pyo, Tae-Soo; Khanzadyan, Tigran; Smith, Michael D.; Mitchison, Sharon; Davis, Chris J.; Beck, Tracy L.; Moriarty-Schieven, Gerald H. E-mail: elena@bao.sci.am E-mail: pyo@subaru.naoj.org E-mail: smm23@kent.ac.uk E-mail: c.davis@jach.hawaii.edu E-mail: gerald.schieven@nrc-cnrc.gc.ca

    2010-03-15

    We study the population of Herbig-Haro (HH) flows and jets in an area of Cygnus OB7 designated the Braid Nebula star formation region. This complex forms part of the L 1003 dark cloud, and hosts two FU Orionis (FUor)-like objects as well as several other active young stars. To trace outflow activity and to relate both known and newly discovered flows to young star hosts we intercompare new, deep, narrowband H{alpha} and [S II] optical images taken on the Subaru 8 m Telescope on Mauna Kea, Hawaii. Our images show that there is considerable outflow and jet activity in this region suggesting the presence of an extensive young star population. We confirm that both of the FUor-like objects drive extensive HH flows and document further members of the flows in both objects. The L 1003 star formation complex is a highly kinematically active region with young stars in several different stages of evolution. We trace collimated outflows from numerous young stars although the origin of some HH objects remains elusive.

  11. The complete mitochondrial genomes of the whistling duck (Dendrocygna javanica) and black swan (Cygnus atratus): dating evolutionary divergence in Galloanserae.

    PubMed

    Jiang, Feng; Miao, Yongwang; Liang, Wei; Ye, Haiyan; Liu, Hailin; Liu, Bin

    2010-07-01

    Galloanserae is an ancient and diverse avian group, for which comprehensive molecular evidence relevant to phylogenetic analysis in the context of molecular chronology is lacking. In this study, we present two additional mitochondrial genome sequences of Galloanserae (the whistling duck, Dendrocygna javanica, and the black swan, Cygnus atratus) to broaden the scope of molecular phylogenetic reconstruction. The lengths of the whistling duck's and black swan's mitochondrial genomes are 16,753 and 16,748 bases, respectively. Phylogenetic analyses suggest that Dendrocygna is more likely to be in a basal position of the branch consisting of Anatinae and Anserinae, an affiliation that does not conform to its traditional classification. Bayesian approaches were employed to provide a rough timescale for Galloanserae evolution. In general, a narrow range of 95% confidence intervals gave younger estimates than those based on limited genes and estimated that at least two lineages originated before the Coniacian epoch around 90 MYA, well before the Cretaceous-Tertiary boundary. In addition, these results, which were compatible with estimates from fossil evidence, also imply that the origin of numerous genera in Anseriformes took place in the late Oligocene to early Miocene. Taken together, the results presented here provide a working framework for future research on Galloanserae evolution, and they underline the utility of whole mitochondrial genome sequences for the resolution of deep divergence. PMID:19823953

  12. Discovery of Correlated Behavior Between the Hard X-Ray and the Radio Bands in Cygnus X-3

    NASA Technical Reports Server (NTRS)

    McCollough, M. L.; Robinson, C. R.; Zhang, S. N.; Harmon, B. A.; Hjellming, R. M.; Waltman, E. B.; Foster, R. S.; Ghigo, F. D.; Johnston, K. J.

    1998-01-01

    Using CGRO/BATSE hard X-ray data and GHz radio monitoring data from the Green Bank Interferometer (GBI), we have performed a long term study (approximately 1800 days) of the unusual X-ray binary Cygnus X-3 resulting in the discovery of a remarkable relationship between the two wavelength bands. We find that quiescent radio states are strongly anticorrelated with the intensity of the hard X-ray emission. With the onset of a flaring state the relationship switches to a correlation. This is most easily seen in the larger (> or = 1 Jy) flares where the preflare quenched radio emission is accompanied by a very low hard X-ray intensity, and recovery of the hard X-ray flux during the radio flare. The injection of plasma into the radio jets, associated with Cyg X-3, can be directly related to changes in the hard X-ray emission, and suggests the possibility of accretion-related and jet-related components of the high energy emission.

  13. Multiple Views of X1.4 Solar Flare on July 12, 2012

    NASA Video Gallery

    This video shows the July 12, 2012 X1.4 class solar flare in a variety of wavelength; 131- Teal colored, 335 - blue colored, 171 - yellow colored and finally a combined wavelength view. All video w...

  14. X1.6 Class Solar Flare on Sept. 10, 2014

    NASA Video Gallery

    An X1.6 class solar flare flashes in the middle of the sun on Sept. 10, 2014. These images were captured by NASA's Solar Dynamics Observatory. It first shows the flare in the 171 Angstrom wavelengt...

  15. Observation of the X-ray source Sco X-1 from Skylab. [radiant flux density

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1977-01-01

    An attempt to observe the discrete X-ray source Sco X-1 on 20 September 1973 between 0856 and 0920 UT is reported. Data obtained with the ATM/S-056 X-ray event analyzer, in particular the flux observed with the 1.71 to 4.96 KeV counter, is analyzed. No photographic image of the source was obtained because Sco X-1 was outside the field of view of the X-ray telescope.

  16. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors.

    PubMed

    Mulryan, K; Gitterman, D P; Lewis, C J; Vial, C; Leckie, B J; Cobb, A L; Brown, J E; Conley, E C; Buell, G; Pritchard, C A; Evans, R J

    2000-01-01

    P2X1 receptors for ATP are ligand-gated cation channels, present on many excitable cells including vas deferens smooth muscle cells. A substantial component of the contractile response of the vas deferens to sympathetic nerve stimulation, which propels sperm into the ejaculate, is mediated through P2X receptors. Here we show that male fertility is reduced by approximately 90% in mice with a targeted deletion of the P2X1 receptor gene. Male mice copulate normally--reduced fertility results from a reduction of sperm in the ejaculate and not from sperm dysfunction. Female mice and heterozygote mice are unaffected. In P2X1-receptor-deficient mice, contraction of the vas deferens to sympathetic nerve stimulation is reduced by up to 60% and responses to P2X receptor agonists are abolished. These results show that P2X1 receptors are essential for normal male reproductive function and suggest that the development of selective P2X1 receptor antagonists may provide an effective non-hormonal male contraceptive pill. Also, agents that potentiate the actions of ATP at P2X1 receptors may be useful in the treatment of male infertility. PMID:10638758

  17. Spectroscopy of Thorium Monoxide, ThO; E(O+),F(O+),-X 1Σ+ Bands

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Steimle, Timothy C.; Heaven, Michael

    2011-06-01

    Thorium monoxide, ThO, has recently attracted interest as a possible venue for the determination of the electric dipole moment of the electron, DE. Here we report on the results of an optical Stark study of the E(O+)-X1Σ+(1,0) band and the field-free study of the F(O+)-X1Σ+(0,0) band. A supersonic molecular beam of ThO was generated using a laser ablation technique and probed using laser excitation spectroscopy. The determined values for the permanent electric dipole moments, μEl, for the E(O+)(v=1) and X1Σ+(v=0) vibronic states were determined to be 3.534±0.010 D and 2.782±0.012 D, respectively. The dispersed laser induced fluorescence resulting from the excitation of the E(O+)-X1Σ+(1,0) and F(O+)-X1Σ+(0,0) bands have been recorded and the results are compared to Franck-Condon predictions. The radiative lifetimes for the E(O+)-X1Σ+(1,0) band F(O+)-X1Σ+(0,0) bands were determined. A. C. Vutha, W. C. Campbell, Y. V. Gurevich, N. R. Hutzler, M. Parsons, D. Patterson, E. Petrik, B. Spaun, J. M. Doyle, G. Gabrielse, and D. DeMille, J. Phys. B: At., Mol. Opt. Phys., 43, 074007/1 2010. G. Edvinsson and A. Lagerqvist, Physica Scripta, 32, 602, 1985. F. Wang, T. C. Steimle and M.C. Heaven, J. Chem. Phys.,{134

  18. Timing and spectral studies of the peculiar x-ray binary Circinus X-1

    NASA Astrophysics Data System (ADS)

    Parkinson, Pablo Miguel Saz

    Cir X-1 is a unique Galactic X-ray binary which was initially classified as a black hole candidate but later reclassified as a neutron star due primarily to the observation of Type I X-ray Bursts by EXOSAT in 1985. In this work, I examine the timing and spectral properties of Cir X-1. FFT analyses are used to study the short (<1 s) timescales while Lomb-Scargle and Phase Dispersion Minimization periodograms are computed to study longer timing properties. I analyze Quasi-Periodic Oscillations (QPO) in the 1-50 Hz range and divide them into lower frequency (˜3--20 Hz) and higher frequency ones (˜15--50 Hz). The high frequency QPOs decrease in strength (% rms) with increasing frequency, while the lower frequency ones stay constant. The energy dependence of the QPOs implies the frequency is not representative of different locations in the disk. The power spectrum of Cir X-1 in its softest state is compared to Cyg X-1. Both show breaks. By using scaling arguments, I hypothesize that Cir X-1 has a mass of ˜3 M⊙ , greater than the canonical 1.4 M⊙ mass of a neutron star. I study the energy spectrum evolution of Cir X-1 by constructing both instrument-independent and model-independent color-color diagrams. Spectral fits were performed on USA data, from which physical parameters were derived. The spectral parameters indicate that a two-component model is valid for describing the Cir X-1 spectrum: a multicolor blackbody emission from an accretion disk and a Comptonized emission from a hot plasma (boundary layer or corona). The temperature of the disk remains constant, while there is an indication that the Comptonizing component increases in temperature with orbital phase. From the relative contribution of the disk I infer the neutron star is spinning very rapidly (>1 kHz). The long-term variability of Cir X-1 is studied using data from instruments going back over thirty years. I derive an X-ray ephemeris based showing that the period of Cir X-1 decreases rapidly (P

  19. Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior

    PubMed Central

    Inscho, Edward W.; Cook, Anthony K.; Imig, John D.; Vial, Catherine; Evans, Richard J.

    2003-01-01

    This study tests the hypothesis that P2X1 receptors mediate pressure-induced afferent arteriolar autoregulatory responses. Afferent arterioles from rats and P2X1 KO mice were examined using the juxtamedullary nephron technique. Arteriolar diameter was measured in response to step increases in renal perfusion pressure (RPP). Autoregulatory adjustments in diameter were measured before and during P2X receptor blockade with NF279 or A1 receptor blockade with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). Acute papillectomy or furosemide perfusion was performed to interrupt distal tubular fluid flow past the macula densa, thus minimizing tubuloglomerular feedback–dependent influences on afferent arteriolar function. Under control conditions, arteriolar diameter decreased by 17% and 29% at RPP of 130 and 160 mmHg, respectively. Blockade of P2X1 receptors with NF279 blocked pressure-mediated vasoconstriction, reflecting an attenuated autoregulatory response. The A1 receptor blocker DPCPX did not alter autoregulatory behavior or the response to ATP. Deletion of P2X1 receptors in KO mice significantly blunted autoregulatory responses induced by an increase in RPP, and this response was not further impaired by papillectomy or furosemide. WT control mice exhibited typical RPP-dependent vasoconstriction that was significantly attenuated by papillectomy. These data provide compelling new evidence indicating that tubuloglomerular feedback signals are coupled to autoregulatory preglomerular vasoconstriction through ATP-mediated activation of P2X1 receptors. PMID:14679185

  20. Correlations between X-Ray Spectral Characteristics and Quasi-Periodic Oscillations in Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, Charles F.; Titarchuk, Lev; Kuznetsov, Sergey

    2007-07-01

    Correlations between 1-10 Hz quasi-periodic oscillations (QPOs) and spectral power-law index have been reported for black hole (BH) candidate sources and one neutron star source, 4U 1728-34. An examination of QPO frequency and index relationships in Sco X-1 is reported here. We discover that Sco X-1, representing Z-source groups, can be adequately modeled by a simple two-component model of Compton up-scattering with a soft photon electron temperature of about 0.4 keV, plus an Iron K line. The results show a strong correlation between spectral power-law index and kHz QPOs. Because Sco X-1 radiates near the Eddington limit, one can infer that the geometrical configuration of the Compton cloud (CC) is quasi-spherical from high radiation pressure in the CC. Thus, we conclude that the high Thomson optical depth of the Compton cloud, in the range of ~5-6 from the best-fit model parameters, is consistent with the neutron star's surface being obscured by material. Moreover, a spin frequency of Sco X-1 is likely suppressed due to photon scattering off CC electrons. In addition, we demonstrate how the power spectrum evolves when Sco X-1 transitions from the horizontal branch to the normal branch.

  1. Correlations between X-ray Spectra and kHz QPOS in Sco X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, Charles F.; Titarchuk, Lev; Kuznetsov, Sergey

    2008-05-01

    Recent analysis of the RXTE X-ray spectra of Sco X-1 discovered that Sco X-1 can be adequately modeled by a simple two-component model of Compton up-scattering with a soft photon electron temperature of about 0.4 keV, plus an Iron K-line. The results show a strong correlation between spectral power law index and kHz QPOs. Sco X-1 is the prototypical Z-source low-mass X-ray binary (LMXB) system radiating near the Eddington limit. This radiation produces a high radiation pressure in its Compton cloud. We infer that the radiation pressure produces a geometrical configuration of the cloud that is quasi-spherical. We conclude that the high Thomson optical depth of the Compton cloud, in the range of 5-6 from the best-fit model parameters, is consistent with the neutron star's surface being obscured by material, which would likely suppress a spin frequency of Sco X-1 due to photon scattering off cloud electrons. We also demonstrate the evolution of its power spectrum when Sco X-1 transitions from the horizontal branch to the normal branch.

  2. TOWARD COMPLETE STATISTICS OF MASSIVE BINARY STARS: PENULTIMATE RESULTS FROM THE CYGNUS OB2 RADIAL VELOCITY SURVEY

    SciTech Connect

    Kobulnicky, Henry A.; Lundquist, Michael J.; Burke, Jamison; Chapman, James; Keller, Erica; Lester, Kathryn; Rolen, Emily K.; Topel, Eric; Bhattacharjee, Anirban; Smullen, Rachel A.; Álvarez, Carlos A. Vargas; Runnoe, Jessie C.; Dale, Daniel A.; Brotherton, Michael M.; Kiminki, Daniel C. E-mail: jburke2@swarthmore.edu E-mail: kelle22e@mtholyoke.edu E-mail: emily.k.rolen@vanderbilt.edu

    2014-08-01

    We analyze orbital solutions for 48 massive multiple-star systems in the Cygnus OB2 association, 23 of which are newly presented here, to find that the observed distribution of orbital periods is approximately uniform in log P for P < 45 days, but it is not scale-free. Inflections in the cumulative distribution near 6 days, 14 days, and 45 days suggest key physical scales of ≅0.2, ≅0.4, and ≅1 A.U. where yet-to-be-identified phenomena create distinct features. No single power law provides a statistically compelling prescription, but if features are ignored, a power law with exponent β ≅ –0.22 provides a crude approximation over P = 1.4-2000 days, as does a piece-wise linear function with a break near 45 days. The cumulative period distribution flattens at P > 45 days, even after correction for completeness, indicating either a lower binary fraction or a shift toward low-mass companions. A high degree of similarity (91% likelihood) between the Cyg OB2 period distribution and that of other surveys suggests that the binary properties at P ≲ 25 days are determined by local physics of disk/clump fragmentation and are relatively insensitive to environmental and evolutionary factors. Fully 30% of the unbiased parent sample is a binary with period P < 45 days. Completeness corrections imply a binary fraction near 55% for P < 5000 days. The observed distribution of mass ratios 0.2 < q < 1 is consistent with uniform, while the observed distribution of eccentricities 0.1 < e < 0.6 is consistent with uniform plus an excess of e ≅ 0 systems. We identify six stars, all supergiants, that exhibit aperiodic velocity variations of ∼30 km s{sup –1} attributed to atmospheric fluctuations.

  3. Migration of Tundra Swans (Cygnus columbianus) Wintering in Japan Using Satellite Tracking: Identification of the Eastern Palearctic Flyway.

    PubMed

    Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi

    2016-02-01

    Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk. PMID:26853870

  4. Avian paramyxovirus serotype 1 (Newcastle disease virus), avian influenza virus and salmonella spp. in mute swans (Cygnus olor) in the great lakes region and atlantic coast of the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since their introduction to the United States in the late 19th century, mute swans (Cygnus olor) have become a nuisance species by causing damage to aquatic habitats, acting aggressive towards humans, competing with native waterfowl, and by potentially serving as a reservoir of infectious diseases t...

  5. M82 X-1 ---The Hyper Luminous X-Ray Source---

    NASA Astrophysics Data System (ADS)

    Tsuru, T. G.; Matsumoto, H.; Inui, T.; Matsushita, S.; Kawabe, R.; Harashima, T.; Maihara, T.; Iwamuro, F.

    By using ASCA and Chandra, we discovered a bright X-ray source M82 X-1 in the starburst galaxy M82. The peak luminosity of ˜ 1× 1041 ergs sec-1 and the location of off-center position of M82 in the starburst galaxy M82 suggest that M82 X-1 is a new type of black hole, intermediate massive black hole (IMBH). We also found an expanding molecular super bubble (EMSB) surrounding the IMBH. We propose a hypothesis that the IMBH was formed in the starburst activity 10^6˜ 10^7 yrs ago. We review the course of the discovery and show recent progress on studies of the X-ray spectrum and the position of M82 X-1.

  6. Systems analysis and engineering of the X-1 Advanced Radiation Source

    SciTech Connect

    Rochau, G.E.; Hands, J.A.; Raglin, P.S.; Ramirez, J.J.

    1998-10-01

    The X-1 Advanced Radiation Source, which will produce {approximately} 16 MJ in x-rays, represents the next step in providing US Department of Energy`s Stockpile Stewardship program with the high-energy, large volume, laboratory x-ray sources needed for the Radiation Effects Science and Simulation (RES), Inertial Confinement Fusion (ICF), and Weapon Physics (WP) Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories` Z Accelerator in 1997 provide sufficient basis for pursuing the development of X-1. This paper will introduce the X-1 Advanced Radiation Source Facility Project, describe the systems analysis and engineering approach being used, and identify critical technology areas being researched.

  7. New results from long-term observations of Cyg X-1

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Kaluzienski, L. J.

    1975-01-01

    Observations of Cyg X-1 between October 1974 and July 1975 reveal a persistent 5.6 day modulation of the 3 to 6 keV X-ray intensity, having a minimum in phase with superior conjunction of the HDE 226868 binary system. The modulation is found to be most pronounced just prior to the April-May 1975 increase of Cyg X-1, after which both the modulation and intensity are at their lowest values for the entire duration of the observations. These data imply that the X-ray emission from Cyg X-1 arises from the compact member of HDE 226868, and that the increase of April-May 1975 may have represented the depletion of accreting material which was not mixed into a cylindrically symmetric accretion disk about the compact member.

  8. New results from long-term observations of Cyg X-1

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Kaluzienski, L. J.

    1976-01-01

    Observations of Cyg X-1 between October 1974 and July 1975 reveal a persistent 5.6 day modulation of the 3-6 keV X-ray intensity, having a minimum in phase with superior conjunction of the HDE 226868 binary system. The modulation is found to be most pronounced just prior to the April-May 1975 increase of Cyg X-1, after which both the modulation and intensity are at their lowest values for the entire duration of the observations. These data imply that the X-ray emission from Cyg X-1 arises from the compact member of HDE 226868, and that the increase of April-May 1975 may have represented the depletion of accreting material which had not yet been mixed into a cylindrically symmetric accretion disk about the compact member.

  9. Long-Term Evolution of the Correlated Spectral and Timing Properties of CIR X-1

    NASA Astrophysics Data System (ADS)

    Shirey, Robert

    Our previous RXTE results demonstrate that at the baseline intensity level of 1.0 Crab, Cir X-1 exhibits Z-source behavior, but with QPOs which shift to lower than usual frequencies. In contrast, EXOSAT observations at lower baseline intensity showed behavior that resembled that of atoll sources. Recent RXTE ASM observations show that the baseline intensity of Cir X-1 has decreased to below 750 mCrab in the most recent few 16.55-d cycles. In order to monitor the evolution of the timing and spectral properties of Cir X-1 and to search for type-1 bursts as its baseline intensity evolves, we propose observations at several intensity trigger levels. We also propose observations if radio flares (which are now faint) return to the high intensities of the 1970's and early 1980's.

  10. Evolution of the Correlated Spectral and Timing Properties of Circinus X-1

    NASA Astrophysics Data System (ADS)

    Shirey, Robert

    Circinus X-1 has maintained a bright 1-Crab baseline during the entire RXTE mission to date, and shows absorption dips and flares near phase zero of its 16.55-d orbital cycle. Our recent RXTE PCA results demonstrate that Cir X-1 currently exhibits Z-source behavior, i.e., 1.3-35 Hz QPOs on the horizontal branch, a 4-Hz QPO on the normal branch, and only VLFN on the flaring branch. However, EXOSAT observations at lower intensity showed behavior that resembled that of atoll sources. In order to search for such an unprecedented switch in behavior, we propose TOO observations of Cir X-1 if the baseline intensity level returns to the previously observed low levels. We also propose observations if radio flares (which are now faint), return to the high intensities of the 1970s and early 1980s.

  11. Scaling of the F_2 structure function in nuclei and quark distributions at x>1

    SciTech Connect

    Fomin, N; Arrington, J; Gaskell, D; Daniel, A; Seely, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Boillat, B; Bosted, P; Bruell, A; Bukhari, M.H.S.; Christy, M E; Chudakov, E; Clasie, B; Connell, S H; Dalton, M M; Dutta, D; Ent, R; El Fassi, L; Fenker, H; Filippone, B W; Garrow, K; Hill, C; Holt, R J; Horn, T; Jones, M K; Jourdan, J; Kalantarians, N; Keppel, C E; Kiselev, D; Kotulla, M; Lindgren, R; Lung, A F; Malace, S; Markowitz, P; McKee, P; Meekins, D G; Miyoshi, T; Mkrtchyan, H; Navasardyan, T; Niculescu, G; Okayasu, Y; Opper, A K; Perdrisat, C; Potterveld, D H; Punjabi, V; Qian, X; Reimer, P E; Roche, J; Rodriguez, V M; Rondon, O; Schulte, E; Segbefia, E; Slifer, K; Smith, G R; Solvignon, P; Tadevosyan, V; Tajima, S; Tang, L; Testa, G; Tvaskis, V; Vulcan, W F; Wasko, C; Wesselmann, F R; Wood, S A; Wright, J; Zheng, X

    2010-11-01

    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in ^2H and ^3He, but nearly identical for all heavier nuclei.

  12. The Behavior of the Optical and X-Ray Emission from Scorpius X-1

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Harrison, T. E.; Zavala, R. T.; Galvan, Eduardo; Galvan, Javier; Jarvis, T.; Killgore, GeeAnn; Mireles, O. R.; Olivares, D.; Rodriquez, B. A.; Sanchez, M.; Silva, Allison L.; Silva, Andrea L.; Silva-Velarde, E.; Templeton, M. R.

    2003-03-01

    In 1970, Hiltner & Mook reported the results of the first multiyear study of the optical emission from Sco X-1. They found that the Sco X-1 B-magnitude histograms changed from year to year. Subsequent multiwavelength campaigns confirmed the variable nature of these optical histograms and also found that the X-ray and optical emissions were only correlated when Sco X-1 was brighter than about B=12.6. Models had suggested that the optical emission from this source arose from X-rays reprocessed in an accretion disk surrounding the central neutron star. It was therefore difficult to explain why the optical and X-ray fluxes were not more closely correlated. In 1994 and 1995, two new simultaneous optical and X-ray campaigns on Sco X-1 were conducted with the Burst and Transient Source Experiment on the Compton Gamma Ray Observatory and the 1 m Yale telescope at Cerro Tololo Inter-American Observatory. Using these data and models by Psaltis, Lamb, & Miller, it is now possible to provide a qualitative picture of how the X-ray and optical emissions from Sco X-1 are related. Differences in the B-magnitude histograms are caused by variations in the mass accretion rate and the relatively short time period typically covered by optical investigations. The tilted-Γ pattern seen in plots of the simultaneous X-ray and optical emission from Sco X-1 arises from (1) the nearly linear relation between the optical B magnitude and the mass accretion rate in the range 13.3>=B>=12.3 and an asymptotic behavior in the B magnitude outside this range, and (2) a double-valued relation between the X-ray emission and mass accretion rate along the normal branch and lower flaring branch of this source.

  13. Purinergic control of inflammation and thrombosis: Role of P2X1 receptors

    PubMed Central

    Oury, Cécile; Lecut, Christelle; Hego, Alexandre; Wéra, Odile; Delierneux, Céline

    2014-01-01

    Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Upon tissue damage or infection, a sudden increase of extracellular ATP occurs, that might contribute to the crosstalk between inflammation and thrombosis. On platelets, P2X1 receptors act to amplify platelet activation and aggregation induced by other platelet agonists. These receptors critically contribute to thrombus stability in small arteries. Besides platelets, studies by our group indicate that these receptors are expressed by neutrophils. They promote neutrophil chemotaxis, both in vitro and in vivo. In a laser-induced injury mouse model of thrombosis, it appears that neutrophils are required to initiate thrombus formation and coagulation activation on inflamed arteriolar endothelia. In this model, by using P2X1−/ − mice, we recently showed that P2X1 receptors, expressed on platelets and neutrophils, play a key role in thrombus growth and fibrin generation. Intriguingly, in a model of endotoxemia, P2X1−/ − mice exhibited aggravated oxidative tissue damage, along with exacerbated thrombocytopenia and increased activation of coagulation, which translated into higher susceptibility to septic shock. Thus, besides its ability to recruit neutrophils and platelets on inflamed endothelia, the P2X1 receptor also contributes to limit the activation of circulating neutrophils under systemic inflammatory conditions. Taken together, these data suggest that P2X1 receptors are involved in the interplay between platelets, neutrophils and thrombosis. We propose that activation of these receptors by ATP on neutrophils and platelets represents a new mechanism that regulates thrombo-inflammation. PMID:25709760

  14. Long-term X-ray studies of Sco X-1. [emission spectra of constellations

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Boldt, E. A.; Serlemitsos, P. J.; Kaluzienski, L. J.

    1975-01-01

    No modulation of the 3-6 keV X-ray intensity of Sco X-1 at a level of excess of 1% was observed at the optical period of .787313d. Evidence is found for shot-noise character in a large fraction of the X-ray emission. Almost all of the Sco X-1 emission can be synthesized in terms of approximately 200 shots per day, each with a duration of approximately 1/3 day. A pinhole camera was used to obtain data and the data were statistically analyzed.

  15. Activities of X-ray binaries accompanied by a neutron star with weak magnetic field: Cir X-1, Aql X-1 and 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masaru; Mihara, Tatehiro; Asai, Kazumi

    This paper is presented on X-ray activities of X-ray binaries accompanied by a neutron star with weak magnetic field. Neutron star low mass X-ray binaries (NS-LMXBs) have been well studied so far, but there are still unknown problems concerning activities of outbursts and X-ray spectral features. We can define the soft and hard states which show different spectra created from each disk structure. These states depend on the gas accretion rate causing viscosity change in the disk, whereas we have pointed out an importance of magnetic field in NS-LMXB for X-ray activities (Matsuoka & Asai 2013). Thus, we have obtained decay features occurred by a propeller effect for Aql X-1 and 4U1608-52, and thus, we have defined the propeller effect levels of these sources (Asai et al. 2013). A companion star of Cir X-1 is a star of B5~A0 type, but it has X-ray spectral feature similar to NS-LMXB as well as it produced type I X-ray bursts. A long history over 40 years of X-ray observations has provided that Cir X-1 X-ray intensities have many varieties from continuous variable fluxes with Z-type feature of NS-LMXB to recurrent outburst fluxes with Atoll-type feature on a time scale of years. Recent MAXI observations have revealed a strange sudden decay feature in some outbursts. It is difficult to explain this decay feature by the simple picture which causes by ordinary mechanisms known in NS-LMXB such as a state transition, a propeller effect and a brink due to disk irradiation (Powell et al. 2007). Therefore, we introduced new type of instability of the accretion disk in relation to stellar wind stripping effect (Asai et al. 2014) which may be common to a system consisting of a compact star and an ordinary massive star.

  16. Surface brightness measurements of supernova remanants in the energy band 0.15 - 4 keV and an XUV survey from an altitude controlled rocket

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.; Riegler, G.

    1973-01-01

    Reports are presented concerning the flight of Aerobee 170, 13.063 UG. The papers presented include: soft X-rays for Cygnus X-1 and Cygnus X-2; X-ray spectrum of the entire Cygnus loop; X-ray surface brightness of the Cygnus loop; and observations of He II 304 A and He I 584 a nightglow.

  17. A search for an X-ray scattering halo around Scorpius X-1

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Green, James

    1995-01-01

    Results are presented of an experiment to detect the presence of X-ray scattering by interstellar dust grains in the form of a halo around Sco X-1. We utilize te principle that X-ray scattering off an optical is reduced by 1/sin theta for reflections out of the plane of incidence, thus reducing instrumental scattering off our moderate quality (1 arcminute) X-ray optic. We find an upper limit X-ray flux from Sco X-1 in the form of a halo at a mean energy of 0.69 keV of 7.6% of the point source flux at the 1 sigma confidence level. From this we derive an upper limit of E(B-V) = 0.12 towards Sco X-1. This is about half the value (E(B-V) approximately 0.3) derived toward Sco X-1 using the 2200 A interstellar absorption feature, indicating probable circumstellar origin to the 2200 A feature.

  18. SWIFT/BAT possible detection of a new outburst from Aql X-1

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Riggio, A.; Pintore, F.; Altamirano, D.; Burderi, L.; Di Salvo, T.

    2016-07-01

    The Swift/BAT X-ray monitor observed significant X-ray activity from the direction of the accreting millisecond X-ray pulsar Aql X-1 starting on 2016 July 29 (MJD 57598), with a count rate of 0.0011 +/- 0.003 counts/s/cm^2.

  19. Swift/XRT confirms the new outburst of Aql X-1

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Riggio, A.; Pintore, F.; Altamirano, D.; Burderi, L.; Di Salvo, T.

    2016-08-01

    Triggered by the X-ray enhancement observed by Swift/BAT on 2016 July 29 at a position compatible with the low mass X-ray binary Aql X-1 (Atel #9287), a 500 s observation with Swift/XRT was promptly carried out. Swift/XRT operating in Photon Counting mode detected a single bright X-ray source.

  20. Circinus X-1 revisited: Fast-timing properties in relation to spectral state

    NASA Technical Reports Server (NTRS)

    Oosterbroek, T.; Van Der Klis, M.; Kuulkers, E.; Van Paradijs, J.; Lewin, W. H. G.

    1995-01-01

    We have studied the X-ray spectral and fast-timing variations of Cir X-1 by performing a homogenous analysis of all EXOSAT ME data on this source using X-ray hardness-intensity diagrams (HIDs), color-color diagrams (CDs), and power spectra. Cir X-1 exhibits a wide range of power spectral shapes and a large variety in X-ray spectral shapes. At different epochs the power spectra variously resemble those of an atoll source, a Z source, a black-hole candidate, or are unlike any of these. At some epochs one-dimensional connected-branch patterns are seen in HID and CD, and at other times more complex structures are found. We interpret the complex behavior of Cir X-1 in terms of a model where accretion rate, orbital phase and epoch are the main determinants of the source behavior, and where the unique properties of the source are due to two special circumstances: (1) the source is the only known atoll source (accreting neutron star with a very low magnetic field) that can reach the Eddington critical accretion rate, and (2) it has a unique, highly eccentric and probably precessing orbit. Property (1) makes Cir X-1 a very important source for our understanding of the similarities in the observable properties of neutron stars and black holes as it allows to separate out black hole signatures from properties that are merely due to the presence of accretion compact with a low magnetic field.

  1. THE RETURN OF THE BURSTS: THERMONUCLEAR FLASHES FROM CIRCINUS X-1

    SciTech Connect

    Linares, M.; Homan, J.; Chakrabarty, D.; Watts, A.; Altamirano, D.; Degenaar, N.; Yang, Y.; Wijnands, R.; Armas-Padilla, M.; Cavecchi, Y.; Kalamkar, M.; Kaur, R.; Patruno, A.; Van der Klis, M.; Soleri, P.; Casella, P.; Rea, N.

    2010-08-10

    We report the detection of 15 X-ray bursts with RXTE and Swift observations of the peculiar X-ray binary Circinus X-1 (Cir X-1) during its 2010 May X-ray re-brightening. These are the first X-ray bursts observed from the source after the initial discovery by Tennant and collaborators, 25 years ago. By studying their spectral evolution, we firmly identify nine of the bursts as type I (thermonuclear) X-ray bursts. We obtain an arcsecond location of the bursts that confirms once and for all the identification of Cir X-1 as a type I X-ray burst source, and therefore as a low magnetic field accreting neutron star. The first five bursts observed by RXTE are weak and show approximately symmetric light curves, without detectable signs of cooling along the burst decay. We discuss their possible nature. Finally, we explore a scenario to explain why Cir X-1 shows thermonuclear bursts now but not in the past, when it was extensively observed and accreting at a similar rate.

  2. SDO Captures X1.4 Solar Flare on July 12, 2012

    NASA Video Gallery

    This movie shows the sun July 11-12, ending with the X1.4 class flare on July 12, 2012. It was captured by NASA’s Solar Dynamics Observatory in the 304 Angstrom wavelength - a wavelength coloriz...

  3. The Hard X-ray Emission from Scorpius X-1 as Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have concentrated on investigating the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component of the spectrum and its possible correlations with the location of the source on the X-ray color-color diagram. We find that Sco X-1 has two distinct spectral when the 20-40 keV count rate is greater than 140 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows no evidence for a powerlaw tail whatsoever. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram.

  4. On the Spin of the Black Hole in IC 10 X-1

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; Walton, Dominic J.; García, Javier A.; McClintock, Jeffrey E.; Laycock, Silas G. T.; Middleton, Matthew J.; Barnard, Robin; Madsen, Kristin K.

    2016-02-01

    The compact X-ray source in the eclipsing X-ray binary IC 10 X-1 has reigned for years as ostensibly the most massive stellar-mass black hole, with a mass estimated to be about twice that of its closest rival. However, striking results presented recently by Laycock et al. reveal that the mass estimate, based on emission-line velocities, is unreliable and that the mass of the X-ray source is essentially unconstrained. Using Chandra and NuSTAR data, we rule against a neutron-star model and conclude that IC 10 X-1 contains a black hole. The eclipse duration of IC 10 X-1 is shorter and its depth shallower at higher energies, an effect consistent with the X-ray emission being obscured during eclipse by a Compton-thick core of a dense wind. The spectrum is strongly disk-dominated, which allows us to constrain the spin of the black hole via X-ray continuum fitting. Three other wind-fed black hole systems are known; the masses and spins of their black holes are high: M˜ 10{--}15{M}⊙ and {a}*\\gt 0.8. If the mass of IC 10 X-1's black hole is comparable, then its spin is likewise high.

  5. Development of a 1K x 1K GaAs QWIP Far IR Imaging Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Goldberg, A.; La, A.; Gunapala, S.

    2003-01-01

    In the on-going evolution of GaAs Quantum Well Infrared Photodetectors (QWIPs) we have developed a 1,024 x 1,024 (1K x1K), 8.4-9 microns infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using the Rockwell TCM 8050 silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). The finished hybrid is thinned at the Jet Propulsion Lab. Prior to this development the largest format array was a 512 x 640 FPA. We have integrated the 1K x 1K array into an imaging camera system and performed tests over the 40K-90K temperature range achieving BLIP performance at an operating temperature of 76K (f/2 camera system). The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. In this paper we will present the first results of our 1K x 1K QWIP array development including fabrication methodology, test data and our imaging results.

  6. Potential enhancement of osteoclastogenesis by severe acute respiratory syndrome coronavirus 3a/X1 protein.

    PubMed

    Obitsu, Saemi; Ahmed, Nursarat; Nishitsuji, Hironori; Hasegawa, Atsuhiko; Nakahama, Ken-ichi; Morita, Ikuo; Nishigaki, Kazuo; Hayashi, Takaya; Masuda, Takao; Kannagi, Mari

    2009-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) causes a lung disease with high mortality. In addition, osteonecrosis and bone abnormalities with reduced bone density have been observed in patients following recovery from SARS, which were partly but not entirely explained by the short-term use of steroids. Here, we demonstrate that human monocytes, potential precursors of osteoclasts, partly express angiotensin converting enzyme 2 (ACE2), a cellular receptor of SARS-CoV, and that expression of an accessory protein of SARS-CoV, 3a/X1, in murine macrophage cell line RAW264.7 cells, enhanced NF-kappaB activity and differentiation into osteoclast-like cells in the presence of receptor activator of NF-kappaB ligand (RANKL). Furthermore, human epithelial A549 cells expressed ACE2, and expression of 3a/X1 in these cells up-regulated TNF-alpha, which is known to accelerate osteoclastogenesis. 3a/X1 also enhanced RANKL expression in mouse stromal ST2 cells. These findings indicate that SARS-CoV 3a/X1 might promote osteoclastogenesis by direct and indirect mechanisms. PMID:19685004

  7. Low frequency QPOs and Variable Broad Iron line from LMC X-1

    NASA Astrophysics Data System (ADS)

    Dewangan, G.; Alam, S.; Belloni, T.; Mukherjee, D.; Jhingan, S.

    2014-07-01

    We have performed temporal and energy spectral study of the persistent black hole X-ray binary LMC X-1 using XMM-Newton, Suzaku and RXTE observations. We report the discovery of low frequency (26-56 mHz) QPOs and variable broad iron line from LMC X-1. The QPOs are generally weak with rms amplitudes in the 1-6% range and coherence (quality factor Q˜2-10). The QPOs are accompanied by weak red-noise with rms variability in the 1.3-4% level. The energy spectra of LMC X-1 consist of three components - multicolor disk blackbody (kT˜0.7-0.9 keV), high energy power law tail (photon index ˜2.4-3.3), and broad iron line at 6.4-6.9 keV. The QPOs were detected only in the presence of a strong powerlaw component. The strong broad and relativistic iron line was observed in the presence of both the strong powerlaw and an accretion disk extending to the innermost regions. The iron line is found to be weaker when the disk is truncated and absent when the powerlaw component almost vanished. Our results imply that LMC X-1 does not always remain in the canonical soft state but also transits to the soft intermediate or the steep powerlaw state.

  8. The Hard X-Ray Emission from Scorpius X-1 Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, Steve; Shrader, C. R.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have investigated the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component and its possible correlations with the location of the source on the soft X-ray color-color diagram. We find that Sco X-1 follows two distinct spectral tracks when the 20-40 keV count rate is greater than 130 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows a much less significant high-energy component. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram. We have searched for similar behavior in 2 other Z sources: GX 17+2 and GX 5-1 with negative results.

  9. Evidence for a Broad Relativistic Iron Line from the Neutron Star LMXB Ser X-1

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.

    2007-01-01

    We report on an analysis of XMM-Newton data from the neutron star low mass X-ray binary (LMXB) Serpens X-1 (Ser X-1). Spectral analysis of EPIC PN data indicates that the previously known broad iron Ka emission line in this source has a significantly skewed structure with a moderately extended red wing. The asymmetric shape of the line is well described with the laor and diskline models in XSPEC, which strongly supports an inner accretion disk origin of the line. To our knowledge this is the first strong evidence for a relativistic line in a neutron star LMXB. This finding suggests that the broad lines seen in other neutron star LMXBs likely originate from the inner disk as well. Detailed study of such lines opens up a new way to probe neutron star parameters and their strong gravitational fields. The laor model describes the line from Ser X-1 somewhat better than diskline, and suggests that the inner accretion disk radius is less than 6GM/c(exp 2). This is consistent with the weak magnetic fields of LMXBs, and may point towards a high compactness and rapid spin of the neutron star. Finally, the inferred source inclination angle in the approximate range 50-60 deg is consistent with the lack of dipping from Ser X-1.

  10. EVOLUTION OF THE RADIO-X-RAY COUPLING THROUGHOUT AN ENTIRE OUTBURST OF AQUILA X-1

    SciTech Connect

    Miller-Jones, J. C. A.; Sivakoff, G. R.; Sarazin, C. L.; Altamirano, D.; Markoff, S.; Russell, D. M.; Tudose, V.; Migliari, S.; Fender, R. P.; Rushton, A.; Garrett, M. A.; Heinz, S.; Koerding, E. G.; Krimm, H. A.; Maitra, D.; Paragi, Z.

    2010-06-20

    The 2009 November outburst of the neutron star X-ray binary Aquila X-1 (Aql X-1) was observed with unprecedented radio coverage and simultaneous pointed X-ray observations, tracing the radio emission around the full X-ray hysteresis loop of the outburst for the first time. We use these data to discuss the disk-jet coupling, finding the radio emission to be consistent with being triggered at state transitions, both from the hard to the soft spectral state and vice versa. Our data appear to confirm previous suggestions of radio quenching in the soft state above a threshold X-ray luminosity of {approx}10% of the Eddington luminosity. We also present the first detections of Aql X-1 with very long baseline interferometry, showing that any extended emission is relatively diffuse and consistent with steady jets rather than arising from discrete, compact knots. In all cases where multi-frequency data were available, the source radio spectrum is consistent with being flat or slightly inverted, suggesting that the internal shock mechanism that is believed to produce optically thin transient radio ejecta in black hole X-ray binaries is not active in Aql X-1.

  11. A Note on the Visibility in the [1, N ] x [1, N ] Integer Domain

    ERIC Educational Resources Information Center

    Kim, G. D.; Engelhardt, J.

    2007-01-01

    A k-dimensional integer point is called visible if the line segment joining the point and the origin contains no proper integer points. This note proposes an explicit formula that represents the number of visible points on the two-dimensional [1,N]x[1,N] integer domain. Simulations and theoretical work are presented. (Contains 5 figures and 2…

  12. Discovery of iron line emission in the Hercules X-1 low state spectrum with HEAO-1

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Boldt, E. A.; Holt, S. S.; Rothschild, R. E.; Serlemitsos, P. J.

    1978-01-01

    The line energy, equivalent width, binary phase dependence, and intrinsic width of the iron line emission feature observed in the low state sepctrum of Hercules X-1 are examined. Deductions are made concerning secondary X-ray emission from this binary system.

  13. H{sub 2}D{sup +} IN THE HIGH-MASS STAR-FORMING REGION CYGNUS X

    SciTech Connect

    Pillai, T.; Lis, D. C.; Caselli, P.; Kauffmann, J.; Zhang, Q.; Thompson, M. A.

    2012-06-01

    H{sub 2}D{sup +} is a primary ion that dominates the gas-phase chemistry of cold dense gas. Therefore, it is hailed as a unique tool in probing the earliest, prestellar phase of star formation. Observationally, its abundance and distribution is, however, just beginning to be understood in low-mass prestellar and cluster-forming cores. In high-mass star-forming regions, H{sub 2}D{sup +} has been detected only in two cores, and its spatial distribution remains unknown. Here, we present the first map of the ortho-H{sub 2}D{sup +} J{sub k{sup +},k{sup -}} = 1{sub 1,0} {yields} 1{sub 1,1} and N{sub 2}H{sup +} 4-3 transition in the DR21 filament of Cygnus X with the James Clerk Maxwell Telescope, and N{sub 2}D{sup +} 3-2 and dust continuum with the Submillimeter Array. We have discovered five very extended ({<=}34, 000 AU diameter) weak structures in H{sub 2}D{sup +} in the vicinity of, but distinctly offset from, embedded protostars. More surprisingly, the H{sub 2}D{sup +} peak is not associated with either a dust continuum or N{sub 2}D{sup +} peak. We have therefore uncovered extended massive cold dense gas that was undetected with previous molecular line and dust continuum surveys of the region. This work also shows that our picture of the structure of cores is too simplistic for cluster-forming cores and needs to be refined: neither dust continuum with existing capabilities nor emission in tracers like N{sub 2}D{sup +} can provide a complete census of the total prestellar gas in such regions. Sensitive H{sub 2}D{sup +} mapping of the entire DR21 filament is likely to discover more of such cold quiescent gas reservoirs in an otherwise active high-mass star-forming region.

  14. Low-Energy Line Emission in Cygnus X--2: a Study with ASCA, BBXRT and the Einstein SSS

    NASA Astrophysics Data System (ADS)

    Smale, A. P.; Angelini, L.; White, N. E.; Mitsuda, K.; Dotani, T.

    1994-12-01

    Cygnus X--2 was observed on 1993 June 18--19 for 29 hours using the ASCA GIS and SIS detectors. The observation covered orbital phases phi =0.99--0.12 of the 9.84-day binary cycle (where phi =0.0 is the inferior conjunction of the neutron star). The deadtime-corrected 2--10 keV luminosity of the source is 9times 10(37) ergs s(-1) , and irregular dipping activity is observed with dip durations of order 1000s and depths of 15--20%, superimposed on a smooth longer-term variation of ~ 8%. The dips are not associated with an increase in absorption, and we see no overall correlation between hardness and intensity. This temporal and spectral behavior implies that the source was observed in a interval of relatively stable accretion, probably on the Horizontal Branch of its Z-diagram. The model that best fits the continuum emission consists of a Comptonized component with kTee=1.7 keV and tau =24, plus a blackbody with kTbb=0.6 keV, with the blackbody contributing 12% of the total flux. We observe a strong, low-energy emission feature in the SIS spectrum, which can be modeled using a Gaussian with energy E=1.02+/-0.2 keV, FWHM 325+/-50 eV, and equivalent width EW=60+/-15 eV, but is more likely due to a complex of unresolved Fe L-shell (XVIII-XXIV) lines. Reanalysis of Cyg X--2 data from BBXRT (December 1990; Smale et al. 1993, 410, 796) and the Einstein SSS (June 1979) show that this line emission varies strongly. The BBXRT data show the source on the lower portion of the Normal Branch, with only marginal evidence for E=1 keV emission (EW ~ 10 eV). The SSS data reveal emission at E=1.0 keV with equivalent width 55 eV, plus an additional feature at E=0.78 keV with EW=20 eV. Collating these findings with other archival (Einstein OGS, EXOSAT) results, we find no clear pattern relating the line emission parameters to source spectrum, phase or intensity.

  15. The binary systems IC 10 X-1 and NGC 300 X-1: Accretion of matter from an intense Wolf-Rayet stellar wind onto a black hole

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.; Fedorova, A. V.

    2016-01-01

    The current evolutionary stage of the binary systems IC 10 X-1 and NGC 300 X-1, which contain a massive black hole and a Wolf-Rayet star with a strong stellar wind that does not fill its Roche lobe, is considered. The high X-ray luminosity and X-ray properties testify to the presence of accretion disks in these systems. The consistency of the conditions for the existence of such a disk and the possibility of reproducing the observed X-ray luminosity in the framework of the Bondi-Hoyle-Littleton theory for a spherically symmetric stellar wind is analyzed. A brief review of information about the mass-loss rates of Wolf-Rayet stars and the speeds of their stellar winds is given. The evolution of these systems at the current stage is computed. Estimates made using the derived parameters show that it is not possible to achieve consistency, since the conditions for the existence of an accretion disk require that the speed of the Wolf-Rayetwind be appreciably lower than is required to reproduce the observedX-ray luminosity. Several explanations of this situation are possible: (1) the real pattern of the motion of the stellar-wind material in the binary is substantially more complex than is assumed in the Bondi-Hoyle-Littleton theory, changing the conditions for the formation of an accretion disk and influencing the accretion rate onto the black hole; (2) some of the accreting material leaves the accretor due to X-ray heating; (3) the accretion efficiency in these systems is nearly an order of magnitude lower than in the case of accretion through a thin disk onto a non-rotating black hole; (4) the intensity of the Wolf-Rayet wind is one to two orders of magnitude lower than has been suggested by modern studies.

  16. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  17. BLACK HOLE POWERED NEBULAE AND A CASE STUDY OF THE ULTRALUMINOUS X-RAY SOURCE IC 342 X-1

    SciTech Connect

    Cseh, David; Corbel, Stephane; Paragi, Zsolt; Tzioumis, Anastasios; Tudose, Valeriu; Feng Hua

    2012-04-10

    We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebula of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 Multiplication-Sign 10{sup 52} erg. The minimum energy needed to supply the associated radio nebula is 9.2 Multiplication-Sign 10{sup 50} erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the 'fundamental plane' of accreting black holes and obtain M{sub BH} {<=} (1.0 {+-} 0.3) Multiplication-Sign 10{sup 3} M{sub Sun }. Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.

  18. Bimodal quasi-oscillatory and spectral behavior in Scorpius X-1

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Hasinger, G.; Lewin, W. H. G.; Middleditch, J.; Parmar, A.

    1986-01-01

    Exosat observations of Sco X-1 obtained using the Xe and/or Ar detectors for a total of about 80,000 s during four runs on August 24-27, 1985 are reported and analyzed. Two modes of quasi-periodic oscillations (QPOs) corresponding to the quiescent and active states of Sco X-1 and to two modes of spectral behavior are identified and characterized, confirming the findings of Priedhorsky (1985) and Middleditch and Priedhorsky (1986). In the quiescent state, the QPO frequency is about 6 Hz and is anticorrelated with intensity, and the spectral hardness ratio (14-21 vs 2-7 keV) varies steeply with intensity; in the active state, QPO frequency is correlated with intensity and varies from 10 to 20 Hz, and the spectral-hardness-ratio/intensity curve is flatter. Previous observations of bimodal behavior in other bands are summarized, and theoretical models proposed to explain them are discussed.

  19. Coordinated Axaf/rxte Zero Phase Spectroscopy of Circinus X-1

    NASA Astrophysics Data System (ADS)

    Brandt, William

    ASCA and RXTE studies of Cir X-1 suggest that its variable iron K spectral features can be explained using a model in which we see both direct flux and flux scattered by an accretion disk corona (ADC). As part of the AXAF Cycle 1 program, we will make a 30 ks observation of Cir X-1 using the AXAF High Energy Transmission Grating Spectrometer. We plan to study line emission from the ADC as well as iron K line/edge features thought to be associated with the accretion disk. Here we propose a simultaneous RXTE observation to precisely define the broad- band continuum shape and variability during our AXAF observation. We need the high-energy response of RXTE to constrain the covering fraction and column density of the heavy absorption known to occur during zero phase.

  20. A Performance Evaluation of the Cray X1 for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Borrill, Julian; Canning, Andrew; Carter, Jonathan; Djomehri, M. Jahed; Shan, Hongzhang; Skinner, David

    2003-01-01

    The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and capacity computers because of their generality, scalability, and cost effectiveness. However, the recent development of massively parallel vector systems is having a significant effect on the supercomputing landscape. In this paper, we compare the performance of the recently-released Cray X1 vector system with that of the cacheless NEC SX-6 vector machine, and the superscalar cache-based IBM Power3 and Power4 architectures for scientific applications. Overall results demonstrate that the X1 is quite promising, but performance improvements are expected as the hardware, systems software, and numerical libraries mature. Code reengineering to effectively utilize the complex architecture may also lead to significant efficiency enhancements.