Science.gov

Sample records for microrna alterations characterize

  1. microRNAs in circulation are altered in response to influenza A virus infection in humans.

    PubMed

    Tambyah, Paul A; Sepramaniam, Sugunavathi; Mohamed Ali, Jaminah; Chai, Siaw Ching; Swaminathan, Priyadharshini; Armugam, Arunmozhiarasi; Jeyaseelan, Kandiah

    2013-01-01

    Changes in microRNA expression have been detected in vitro in influenza infected cells, yet little is known about them in patients. microRNA profiling was performed on whole blood of H1N1 patients to identify signature microRNAs to better understand the gene regulation involved and possibly improve diagnosis. Total RNA extracted from blood samples of influenza infected patients and healthy controls were subjected to microRNA microarray. Expression profiles of circulating microRNAs were altered and distinctly different in influenza patients. Expression of highly dysregulated microRNAs were validated using quantitative PCR. Fourteen highly dysregulated miRNAs, identified from the blood of influenza infected patients, provided a clear distinction between infected and healthy individuals. Of these, expression of miR-1260, -26a, -335*, -576-3p, -628-3p and -664 were consistently dysregulated in both whole blood and H1N1 infected cells. Potential host and viral gene targets were identified and the impact of microRNA dysregulation on the host proteome was studied. Consequences of their altered expression were extrapolated to changes in the host proteome expression. These highly dysregulated microRNAs may have crucial roles in influenza pathogenesis and are potential biomarkers of influenza. PMID:24116168

  2. microRNAs in Circulation Are Altered in Response to Influenza A Virus Infection in Humans

    PubMed Central

    Mohamed Ali, Jaminah; Chai, Siaw Ching; Swaminathan, Priyadharshini; Armugam, Arunmozhiarasi; Jeyaseelan, Kandiah

    2013-01-01

    Changes in microRNA expression have been detected in vitro in influenza infected cells, yet little is known about them in patients. microRNA profiling was performed on whole blood of H1N1 patients to identify signature microRNAs to better understand the gene regulation involved and possibly improve diagnosis. Total RNA extracted from blood samples of influenza infected patients and healthy controls were subjected to microRNA microarray. Expression profiles of circulating microRNAs were altered and distinctly different in influenza patients. Expression of highly dysregulated microRNAs were validated using quantitative PCR. Fourteen highly dysregulated miRNAs, identified from the blood of influenza infected patients, provided a clear distinction between infected and healthy individuals. Of these, expression of miR-1260, -26a, -335*, -576-3p, -628-3p and -664 were consistently dysregulated in both whole blood and H1N1 infected cells. Potential host and viral gene targets were identified and the impact of microRNA dysregulation on the host proteome was studied. Consequences of their altered expression were extrapolated to changes in the host proteome expression. These highly dysregulated microRNAs may have crucial roles in influenza pathogenesis and are potential biomarkers of influenza. PMID:24116168

  3. Characterization of the rainbow trout oocyte microRNA transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNA molecules that regulate post-transcriptional expression of target genes and play important roles in animal development. The objectives of this study were to characterize the egg miRNA transcriptome and identify novel egg-specific miRN...

  4. Polychlorinated biphenyl exposure alters the expression profile of microRNAs associated with vascular diseases.

    PubMed

    Wahlang, Banrida; Petriello, Michael C; Perkins, Jordan T; Shen, Shu; Hennig, Bernhard

    2016-09-01

    Exposure to persistent organic pollutants, including polychlorinated biphenyls (PCBs) is correlated with multiple vascular complications including endothelial cell dysfunction and atherosclerosis. PCB-induced activation of the vasculature subsequently leads to oxidative stress and induction of pro-inflammatory cytokines and adhesion proteins. Gene expression of these cytokines/proteins is known to be regulated by small, endogenous oligonucleotides known as microRNAs that interact with messenger RNA. MicroRNAs are an acknowledged component of the epigenome, but the role of environmentally-driven epigenetic changes such as toxicant-induced changes in microRNA profiles is currently understudied. The objective of this study was to determine the effects of PCB exposure on microRNA expression profile in primary human endothelial cells using the commercial PCB mixture Aroclor 1260. Samples were analyzed using Affymetrix GeneChip® miRNA 4.0 arrays for high throughput detection and selected microRNA gene expression was validated (RT-PCR). Microarray analysis identified 557 out of 6658 microRNAs that were changed with PCB exposure (p<0.05). In-silico analysis using MetaCore database identified 21 of these microRNAs to be associated with vascular diseases. Further validation showed that Aroclor 1260 increased miR-21, miR-31, miR-126, miR-221 and miR-222 expression levels. Upregulated miR-21 has been reported in cardiac injury while miR-126 and miR-31 modulate inflammation. Our results demonstrated evidence of altered microRNA expression with PCB exposure, thus providing novel insights into mechanisms of PCB toxicity. PMID:27288564

  5. Smoking alters circulating plasma microvesicle pattern and microRNA signatures.

    PubMed

    Badrnya, S; Baumgartner, R; Assinger, A

    2014-07-01

    Circulating plasma microvesicles (PMVs) and their microRNA content are involved in the development of atherosclerosis and could serve as biomarkers for cardiovascular disease (CVD) progression. However, little is known on how smoking influences the levels of PMVs and microRNA signatures in vivo. Therefore, we aimed to investigate the effects of smoking on circulating PMV levels and CVD-related PMV-derived microRNAs in young, healthy smokers. Twenty young (10 female, 10 male; 25 ± 4 years) healthy smokers (16 ± 6 cigarettes per day for 8 ± 4 years) and age- and sex-matched controls were included in this study. While complete blood count revealed no differences between both groups, smoking significantly enhanced intracellular reactive oxygen species in platelets and leukocytes as well as platelet-leukocyte aggregate formation. Total circulating PMV counts were significantly reduced in smokers, which could be attributed to decreased platelet-derived PMVs. While the number of endothelial PMVs remained unaffected, smoking propagated circulating leukocyte-derived PMVs. Despite reduced total PMVs, PMV-derived microRNA-profiling of six smoker/control pairs revealed a decrease of only a single microRNA, the major platelet-derived microRNA miR-223. Conversely, miR-29b, a microRNA associated with aortic aneurysm and fibrosis, and RNU6-2, a commonly used reference-RNA, were significantly up-regulated. Smoking leads to alterations in the circulating PMV profile and changes in the PMV-derived microRNA signature already in young, healthy adults. These changes may contribute to the development of smoking-related cardiovascular pathologies. Moreover, these smoking-related changes have to be considered when microRNA or PMV profiles are used as disease-specific biomarkers. PMID:24573468

  6. Altered microRNA expression in bovine skeletal muscle with age

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age dependent decline in skeletal muscle function leads to several inherited and acquired muscular disorders in elderly individuals. The levels of microRNAs (miRNAs) could be altered during muscle maintenance and repair. Therefore, we performed a comprehensive investigation for miRNAs from 5 differe...

  7. Deregulated KLF4 Expression in Myeloid Leukemias Alters Cell Proliferation and Differentiation through MicroRNA and Gene Targets

    PubMed Central

    Morris, Valerie A.; Cummings, Carrie L.; Korb, Brendan; Boaglio, Sean

    2015-01-01

    Acute myeloid leukemia (AML) is characterized by increased proliferation and blocked differentiation of hematopoietic progenitors mediated, in part, by altered myeloid transcription factor expression. Decreased Krüppel-like factor 4 (KLF4) expression has been observed in AML, but how decreased KLF4 contributes to AML pathogenesis is largely unknown. We demonstrate decreased KLF4 expression in AML patient samples with various cytogenetic aberrations, confirm that KLF4 overexpression promotes myeloid differentiation and inhibits cell proliferation in AML cell lines, and identify new targets of KLF4. We have demonstrated that microRNA 150 (miR-150) expression is decreased in AML and that reintroducing miR-150 expression induces myeloid differentiation and inhibits proliferation of AML cells. We show that KLF family DNA binding sites are necessary for miR-150 promoter activity and that KLF2 or KLF4 overexpression induces miR-150 expression. miR-150 silencing, alone or in combination with silencing of CDKN1A, a well-described KLF4 target, did not fully reverse KLF4-mediated effects. Gene expression profiling and validation identified putative KLF4-regulated genes, including decreased MYC and downstream MYC-regulated gene expression in KLF4-overexpressing cells. Our findings indicate that decreased KLF4 expression mediates antileukemic effects through regulation of gene and microRNA networks, containing miR-150, CDKN1A, and MYC, and provide mechanistic support for therapeutic strategies increasing KLF4 expression. PMID:26644403

  8. Altered Spinal MicroRNA-146a and the MicroRNA-183 Cluster Contribute to Osteoarthritic Pain in Knee Joints

    PubMed Central

    Li, Xin; Kroin, Jeffrey S; Kc, Ranjan; Gibson, Gary; Chen, Di; Corbett, Grant T; Pahan, Kalipada; Fayyaz, Sana; Kim, Jae-Sung; van Wijnen, Andre J.; Suh, Joon; Kim, Su-Gwan; Im, Hee-Jeong

    2015-01-01

    Objective Examine whether altered expression of microRNAs in central nervous system components is pathologically linked to chronic knee joint pain in osteoarthritis. Methods A surgical animal model for knee joint OA was generated by medial meniscus transection in rats followed by behavioral pain tests. Relationships between pathological changes in knee joint and development of chronic joint pain were examined by histology and imaging analyses. Alterations in microRNAs associated with OA-evoked pain sensation were determined in bilateral lumbar dorsal root ganglia (DRG) and the spinal dorsal horn by microRNA array followed by individual microRNA analyses. Gain- and loss-of-function studies of selected microRNAs (miR-146a and miR-183 cluster) were conducted to identify target pain mediators regulated by these selective microRNAs in glial cells. Results The ipsilateral hind leg displayed significantly increased hyperalgesia after 4 weeks of surgery and sensitivity was sustained for the remainder of the 8 week experimental period (F=341, P<0.001). The development of OA-induced chronic pain was correlated with pathological changes in the knee joints as assessed by histological and imaging analyses. MicroRNA analyses showed that miR-146a and the miR-183 cluster were markedly reduced in the sensory neurons in DRG (L4/L5) and spinal cord from animals experiencing knee joint OA pain. The downregulation of miR-146a and/or the miR-183 cluster in the central compartments (DRG and spinal cord) are closely associated with the upregulation of inflammatory pain mediators. The corroboration between decreases in these signature microRNAs and their specific target pain mediators were further confirmed by gain- and loss-of-function analyses in glia, the major cellular component of the central nervous system (CNS). Conclusion MicroRNA therapy using miR-146a and the miR-183 cluster could be powerful therapeutic intervention for OA in alleviating joint pain and concomitantly regenerating

  9. Computational Characterization of Exogenous MicroRNAs that Can Be Transferred into Human Circulation

    PubMed Central

    Shu, Jiang; Chiang, Kevin; Zempleni, Janos; Cui, Juan

    2015-01-01

    MicroRNAs have been long considered synthesized endogenously until very recent discoveries showing that human can absorb dietary microRNAs from animal and plant origins while the mechanism remains unknown. Compelling evidences of microRNAs from rice, milk, and honeysuckle transported to human blood and tissues have created a high volume of interests in the fundamental questions that which and how exogenous microRNAs can be transferred into human circulation and possibly exert functions in humans. Here we present an integrated genomics and computational analysis to study the potential deciding features of transportable microRNAs. Specifically, we analyzed all publicly available microRNAs, a total of 34,612 from 194 species, with 1,102 features derived from the microRNA sequence and structure. Through in-depth bioinformatics analysis, 8 groups of discriminative features have been used to characterize human circulating microRNAs and infer the likelihood that a microRNA will get transferred into human circulation. For example, 345 dietary microRNAs have been predicted as highly transportable candidates where 117 of them have identical sequences with their homologs in human and 73 are known to be associated with exosomes. Through a milk feeding experiment, we have validated 9 cow-milk microRNAs in human plasma using microRNA-sequencing analysis, including the top ranked microRNAs such as bta-miR-487b, miR-181b, and miR-421. The implications in health-related processes have been illustrated in the functional analysis. This work demonstrates the data-driven computational analysis is highly promising to study novel molecular characteristics of transportable microRNAs while bypassing the complex mechanistic details. PMID:26528912

  10. Computational Characterization of Exogenous MicroRNAs that Can Be Transferred into Human Circulation.

    PubMed

    Shu, Jiang; Chiang, Kevin; Zempleni, Janos; Cui, Juan

    2015-01-01

    MicroRNAs have been long considered synthesized endogenously until very recent discoveries showing that human can absorb dietary microRNAs from animal and plant origins while the mechanism remains unknown. Compelling evidences of microRNAs from rice, milk, and honeysuckle transported to human blood and tissues have created a high volume of interests in the fundamental questions that which and how exogenous microRNAs can be transferred into human circulation and possibly exert functions in humans. Here we present an integrated genomics and computational analysis to study the potential deciding features of transportable microRNAs. Specifically, we analyzed all publicly available microRNAs, a total of 34,612 from 194 species, with 1,102 features derived from the microRNA sequence and structure. Through in-depth bioinformatics analysis, 8 groups of discriminative features have been used to characterize human circulating microRNAs and infer the likelihood that a microRNA will get transferred into human circulation. For example, 345 dietary microRNAs have been predicted as highly transportable candidates where 117 of them have identical sequences with their homologs in human and 73 are known to be associated with exosomes. Through a milk feeding experiment, we have validated 9 cow-milk microRNAs in human plasma using microRNA-sequencing analysis, including the top ranked microRNAs such as bta-miR-487b, miR-181b, and miR-421. The implications in health-related processes have been illustrated in the functional analysis. This work demonstrates the data-driven computational analysis is highly promising to study novel molecular characteristics of transportable microRNAs while bypassing the complex mechanistic details. PMID:26528912

  11. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    SciTech Connect

    Cameron, Jennifer E. Fewell, Claire Yin, Qinyan McBride, Jane Wang Xia Lin Zhen

    2008-12-20

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lower in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers.

  12. Bisphenol A Exposure Leads to Specific MicroRNA Alterations in Placental Cells

    PubMed Central

    Avissar-Whiting, Michele; Veiga, Keila; Uhl, Kristen; Maccani, Matthew; Gagne, Luc; Moen, Erika; Marsit, Carmen J.

    2010-01-01

    Exposure to bisphenol-A (BPA) has been observed to alter developmental pathways and cell processes, at least in part, through epigenetic mechanisms. This study sought to investigate the effect of BPA on microRNAs (miRNAs) in human placental cells. miRNA microarray was performed following BPA treatment in three immortalized cytotrophoblast cell lines and the results validated using quantitative real-time PCR. For functional analysis, overexpression constructs were stably transfected into cells that were then assayed for changes in proliferation and response to toxicants. Microarray analysis revealed several miRNAs to be significantly altered in response to BPA treatment in two cell lines. Real-time PCR results confirmed that miR-146a was particularly strongly induced and its overexpression in cells led to slower proliferation as well as higher sensitivity to the DNA damaging agent, bleomycin. Overall, these results suggest that BPA can alter miRNA expression in placental cells, a potentially novel mode of BPA toxicity. PMID:20417706

  13. Global characterization of microRNAs in Trichomonas gallinae

    PubMed Central

    2014-01-01

    Background Trichomonas gallinae is a protozoan parasite causing trichomonosis in many species of domestic poultry and birds world-wide. microRNAs (miRNAs) are a class of small non-coding RNAs that play key roles in gene regulation. However, no miRNAs have been characterized from T. gallinae. Methods Here, we investigated the global miRNA profile of this parasite by high throughput sequencing technology, bioinformatics platform analysis and quantitative RT-PCR. Results Three miRNA candidates, with typical precursor stem-loop structures, were identified from 11.13 million raw sequencing reads. Three miRNAs, Tga-miR-1, Tga-miR-2 and Tga-miR-3 had no homologues in publically available miRNA databases, suggesting that they may be T. gallinae-specific. Tga-miR-2 and Tga-miR-3 occupied only one location each on the reference genome, while Tga-miR-1 was found at 3 locations. Conclusions The results of the present study provided a sound basis for the further understanding of gene regulation in this parasite of animal health significance, with the potential to inform the development of novel control reagents and strategies and also inform a more in-depth understanding of the evolution of miRNAs. PMID:24612519

  14. Transcriptional profiling reveals that C5a alters microRNA in brain endothelial cells.

    PubMed

    Eadon, Michael T; Jacob, Alexander; Cunningham, Patrick N; Quigg, Richard J; Garcia, Joe G N; Alexander, Jessy J

    2014-11-01

    Blood-brain barrier (BBB) disturbance is a crucial occurrence in many neurological diseases, including systemic lupus erythematosus (SLE). Our previous studies showed that experimental lupus serum altered the integrity of the mouse brain endothelial layer, an important constituent of the BBB. Complement activation occurs in lupus with increased circulating complement components. Using a genomics approach, we identified the microRNA (miRNA) altered in mouse brain endothelial cells (bEnd3) by lupus serum and the complement protein, C5a. Of the 318 miRNA evaluated, 23 miRNAs were altered by lupus serum and 32 were altered by C5a alone compared with controls. Seven miRNAs (P < 0 · 05) were differentially expressed by both treatments: mmu-miR-133a*, mmu-miR-193*, mmu-miR-26b, mmu-miR-28*, mmu-miR-320a, mmu-miR-423-3p and mmu-miR-509-5p. The microarray results were validated by quantitative RT-PCR. In line with the in vitro results, expression of miR-26b and miR-28* were also significantly up-regulated in lupus mouse brain which was reduced by C5a receptor inhibition. Target prediction analysis revealed miR gene targets encoding components involved in inflammation, matrix arrangement, and apoptosis, pathways known to play important roles in central nervous system lupus. Our findings suggest that the miRNAs reported in this study may represent novel therapeutic targets in central nervous system lupus and other similar neuroinflammatory settings. PMID:24801999

  15. Transcriptional profiling reveals that C5a alters microRNA in brain endothelial cells

    PubMed Central

    Eadon, Michael T; Jacob, Alexander; Cunningham, Patrick N; Quigg, Richard J; Garcia, Joe G N; Alexander, Jessy J

    2014-01-01

    Blood–brain barrier (BBB) disturbance is a crucial occurrence in many neurological diseases, including systemic lupus erythematosus (SLE). Our previous studies showed that experimental lupus serum altered the integrity of the mouse brain endothelial layer, an important constituent of the BBB. Complement activation occurs in lupus with increased circulating complement components. Using a genomics approach, we identified the microRNA (miRNA) altered in mouse brain endothelial cells (bEnd3) by lupus serum and the complement protein, C5a. Of the 318 miRNA evaluated, 23 miRNAs were altered by lupus serum and 32 were altered by C5a alone compared with controls. Seven miRNAs (P < 0·05) were differentially expressed by both treatments: mmu-miR-133a*, mmu-miR-193*, mmu-miR-26b, mmu-miR-28*, mmu-miR-320a, mmu-miR-423-3p and mmu-miR-509-5p. The microarray results were validated by quantitative RT-PCR. In line with the in vitro results, expression of miR-26b and miR-28* were also significantly up-regulated in lupus mouse brain which was reduced by C5a receptor inhibition. Target prediction analysis revealed miR gene targets encoding components involved in inflammation, matrix arrangement, and apoptosis, pathways known to play important roles in central nervous system lupus. Our findings suggest that the miRNAs reported in this study may represent novel therapeutic targets in central nervous system lupus and other similar neuroinflammatory settings. PMID:24801999

  16. Polymicrobial infection alter inflammatory microRNA in rat salivary glands during periodontal disease.

    PubMed

    Nayar, Gautam; Gauna, Adrienne; Chukkapalli, Sasanka; Velsko, Irina; Kesavalu, Lakshmyya; Cha, Seunghee

    2016-04-01

    Periodontal disease initiated by subgingival pathogens is linked with diminished secretion of saliva, and implies pathogenic bacteria dissemination to or affects secondary sites such as the salivary glands. MicroRNAs activated in response to bacteria may modulate immune responses against pathogens. Therefore, Sprague-Dawley rats were infected by oral lavage consisting of polymicrobial inocula, namely Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, or sham-infected for 12 weeks (n = 6). We quantified inflammatory miRNA expression levels of miRNA-132, miR-146a, and miR-155 at secondary sites to the primary infection of the gingiva, including submandibular salivary glands, lacrimal glands, and pancreas. The presence of bacteria was detected in situ at secondary sites. Infected rat gingiva showed increased relative expression of miR-155. In contrast, miRNA-155 expression was decreased in submandibular salivary glands, along with positive identification of P. gingivalis in 2/6 and T. denticola in 1/6 rat salivary glands. Furthermore, miRNA-132 and miRNA-146a were significantly decreased in the pancreas of infected rats. This study is the first to show primary periodontal infections can alter miRNA profiles in secondary sites such as the salivary gland and pancreas. Whether these alterations contribute to pathologies of salivary glands in Sjögren's syndrome or of pancreas in diabetes warrants further investigation. PMID:26481834

  17. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects

    SciTech Connect

    Takahashi, Kei; Yokota, Shin-ichi; Tatsumi, Naoyuki; Fukami, Tatsuki; Yokoi, Tsuyoshi; Nakajima, Miki

    2013-10-01

    Circulating microRNAs (miRNAs) are receiving attention as potential biomarkers of various diseases, including cancers, chronic obstructive pulmonary disease, and cardiovascular disease. However, it is unknown whether the levels of circulating miRNAs in a healthy subject might vary with external factors in daily life. In this study, we investigated whether cigarette smoking, a habit that has spread throughout the world and is a risk factor for various diseases, affects plasma miRNA profiles. We determined the profiles of 11 smokers and 7 non-smokers by TaqMan MicroRNA array analysis. A larger number of miRNAs were detected in smokers than in non-smokers, and the plasma levels of two-thirds of the detected miRNAs (43 miRNAs) were significantly higher in smokers than in non-smokers. A principal component analysis of the plasma miRNA profiles clearly separated smokers and non-smokers. Twenty-four of the miRNAs were previously reported to be potential biomarkers of disease, suggesting the possibility that smoking status might interfere with the diagnosis of disease. Interestingly, we found that quitting smoking altered the plasma miRNA profiles to resemble those of non-smokers. These results suggested that the differences in the plasma miRNA profiles between smokers and non-smokers could be attributed to cigarette smoking. In addition, we found that an acute exposure of ex-smokers to cigarette smoke (smoking one cigarette) did not cause a dramatic change in the plasma miRNA profile. In conclusion, we found that repeated cigarette smoking substantially alters the plasma miRNA profile, interfering with the diagnosis of disease or signaling potential smoking-related diseases. - Highlights: • Plasma miRNA profiles were unambiguously different between smokers and non-smokers. • Smoking status might interfere with the diagnosis of disease using plasma miRNAs. • Changes of plasma miRNA profiles may be a signal of smoking-related diseases.

  18. Characterization of the rainbow trout egg microRNA transcriptome.

    PubMed

    Ma, Hao; Hostuttler, Mark; Wei, Hairong; Rexroad, Caird E; Yao, Jianbo

    2012-01-01

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNA molecules that regulate post-transcriptional expression of target genes and play important roles in animal development. The objectives of this study were to characterize the egg miRNA transcriptome and identify novel egg-predominant miRNAs in rainbow trout. Small RNAs isolated from mature unfertilized rainbow trout eggs were subjected to deep sequencing using an Illumina Genome Analyzer. The massive sequencing produced 24,621,741 quality reads, among which, 266 known miRNAs were identified and 230 putatively novel miRNAs were predicted. The most abundantly known miRNAs are let-7 and miR-21, accounting for 24.06% and 18.71% of the known miRNAs, respectively. Other known miRNAs which are abundantly present in eggs include miR-24, miR-202, miR-148, miR-30, miR-10, miR-146, miR-25, and miR-143. Real time PCR analysis using cDNAs derived from 10 tissues validated 87 out of 90 selected putative miRNAs and identified three novel miRNAs predominantly expressed in rainbow trout eggs. Each of these novel egg-predominant miRNAs is predicted to target a significant number of genes, most of which are significantly down-regulated in naturally ovulated rainbow trout eggs based on analysis of publicly available microarray data sets. Quantitative real time PCR analysis also demonstrated low expression of a selected number of target genes in eggs relative to liver and muscle tissues. This study represents the first complete survey of miRNAs in fish eggs and provides a starting point for future studies aimed at understanding the roles of miRNAs in controlling egg quality and early embryogenesis in rainbow trout. PMID:22761856

  19. Spaceflight alters expression of microRNA during T-cell activation.

    PubMed

    Hughes-Fulford, Millie; Chang, Tammy T; Martinez, Emily M; Li, Chai-Fei

    2015-12-01

    Altered immune function has been demonstrated in astronauts during spaceflights dating back to Apollo and Skylab; this could be a major barrier to long-term space exploration. We tested the hypothesis that spaceflight causes changes in microRNA (miRNA) expression. Human leukocytes were stimulated with mitogens on board the International Space Station using an onboard normal gravity control. Bioinformatics showed that miR-21 was significantly up-regulated 2-fold during early T-cell activation in normal gravity, and gene expression was suppressed under microgravity. This was confirmed using quantitative real-time PCR (n = 4). This is the first report that spaceflight regulates miRNA expression. Global microarray analysis showed significant (P < 0.05) suppression of 85 genes under microgravity conditions compared to normal gravity samples. EGR3, FASLG, BTG2, SPRY2, and TAGAP are biologically confirmed targets and are co-up-regulated with miR-21. These genes share common promoter regions with pre-mir-21; as the miR-21 matures and accumulates, it most likely will inhibit translation of its target genes and limit the immune response. These data suggest that gravity regulates T-cell activation not only by transcription promotion but also by blocking translation via noncoding RNA mechanisms. Moreover, this study suggests that T-cell activation itself may induce a sequence of gene expressions that is self-limited by miR-21. PMID:26276131

  20. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression

    PubMed Central

    Yu, Mengying; Wu, Haibo; Ai, Zhiying; Wu, Yongyan; Liu, Hongliang; Du, Juan; Guo, Zekun; Zhang, Yong

    2015-01-01

    Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs. PMID:26162091

  1. Peripheral whole blood microRNA alterations in major depression and bipolar disorder.

    PubMed

    Maffioletti, Elisabetta; Cattaneo, Annamaria; Rosso, Gianluca; Maina, Giuseppe; Maj, Carlo; Gennarelli, Massimo; Tardito, Daniela; Bocchio-Chiavetto, Luisella

    2016-08-01

    Major depression (MD) and bipolar disorder (BD) are severe and potentially life-threating mood disorders whose etiology is to date not completely understood. MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein synthesis post-transcriptionally by base-pairing to target gene mRNAs. Growing evidence indicated that miRNAs might play a key role in the pathogenesis of neuropsychiatric disorders and in the action of psychotropic drugs. On these bases, in this study we evaluated the expression levels of 1733 mature miRNAs annotated in miRBase v.17, through a microarray technique, in the blood of 20 MD and 20 BD patients and 20 healthy controls, in order to identify putative miRNA signatures associated with mood disorders. We found that 5 miRNAs (hsa-let-7a-5p, hsa-let-7d-5p, hsa-let-7f-5p, hsa-miR-24-3p and hsa-miR-425-3p) were specifically altered in MD patients and 5 (hsa-miR-140-3p, hsa-miR-30d-5p, hsa-miR-330-5p, hsa-miR-378a-5p and hsa-miR-21-3p) in BD patients, whereas 2 miRNAs (hsa-miR-330-3p and hsa-miR-345-5p) were dysregulated in both the diseases. The bioinformatic prediction of the genes targeted by the altered miRNAs revealed the possible involvement of neural pathways relevant for psychiatric disorders. In conclusion, the observed results indicate a dysregulation of miRNA blood expression in mood disorders and could indicate new avenues for a better understanding of their pathogenetic mechanisms. The identified alterations may represent potential peripheral biomarkers to be complemented with other clinical and biological features for the improvement of diagnostic accuracy. PMID:27152760

  2. Altered microRNA expression in bovine skeletal muscle with age.

    PubMed

    Sun, J; Sonstegard, T S; Li, C; Huang, Y; Li, Z; Lan, X; Zhang, C; Lei, C; Zhao, X; Chen, H

    2015-06-01

    Age-dependent decline in skeletal muscle function leads to several inherited and acquired muscular disorders in elderly individuals. The levels of microRNAs (miRNAs) could be altered during muscle maintenance and repair. We therefore performed a comprehensive investigation for miRNAs from five different periods of bovine skeletal muscle development using next-generation small RNA sequencing. In total, 511 miRNAs, including one putatively novel miRNA, were identified. Thirty-six miRNAs were differentially expressed between prenatal and postnatal stages of muscle development including several myomiRs (miR-1, miR-206 and let-7 families). Compared with miRNA expression between different muscle tissues, 14 miRNAs were up-regulated and 22 miRNAs were down-regulated in the muscle of postnatal stage. In addition, a novel miRNA was predicted and submitted to the miRBase database as bta-mir-10020. A dual luciferase reporter assay was used to demonstrate that bta-mir-10020 directly targeted the 3'-UTR of the bovine ANGPT1 gene. The overexpression of bta-mir-10020 significantly decreased the DsRed fluorescence in the wild-type expression cassette compared to the mutant type. Using three computational approaches - miranda, pita and rnahybrid - these differentially expressed miRNAs were also predicted to target 3609 bovine genes. Disease and biological function analyses and the KEGG pathway analysis revealed that these targets were statistically enriched in functionality for muscle growth and disease. Our miRNA expression analysis findings from different states of muscle development and aging significantly expand the repertoire of bovine miRNAs now shown to be expressed in muscle and could contribute to further studies on growth and developmental disorders in this tissue type. PMID:25703017

  3. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection

    PubMed Central

    2012-01-01

    Background Pulmonary tuberculosis (TB) is a highly lethal infectious disease and early diagnosis of TB is critical for the control of disease progression. The objective of this study was to profile a panel of serum microRNAs (miRNAs) as potential biomarkers for the early diagnosis of pulmonary TB infection. Methods Using TaqMan Low-Density Array (TLDA) analysis followed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) validation, expression levels of miRNAs in serum samples from 30 patients with active tuberculosis and 60 patients with Bordetella pertussis (BP), varicella-zoster virus (VZV) and enterovirus (EV) were analyzed. Results The Low-Density Array data showed that 97 miRNAs were differentially expressed in pulmonary TB patient sera compared with healthy controls (90 up-regulated and 7 down-regulated). Following qRT-PCR confirmation and receiver operational curve (ROC) analysis, three miRNAs (miR-361-5p, miR-889 and miR-576-3p) were shown to distinguish TB infected patients from healthy controls and other microbial infections with moderate sensitivity and specificity (area under curve (AUC) value range, 0.711-0.848). Multiple logistic regression analysis of a combination of these three miRNAs showed an enhanced ability to discriminate between these two groups with an AUC value of 0.863. Conclusions Our study suggests that altered levels of serum miRNAs have great potential to serve as non-invasive biomarkers for early detection of pulmonary TB infection. PMID:23272999

  4. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells.

    PubMed

    Chen, Yinghua; Mohammed, Arshad; Oubaidin, Maysaa; Evans, Carla A; Zhou, Xiaofeng; Luan, Xianghong; Diekwisch, Thomas G H; Atsawasuwan, Phimon

    2015-07-15

    MicroRNAs (miRs) play an important role in the development and remodeling of tissues through the regulation of large cohorts of extracellular matrix (ECM) genes. The purpose of the present study was to determine the response of miR-29 family expression to loading forces and their effects on ECM gene expression in periodontal ligament cells, the key effector cell population during orthodontic tooth movement. In a comparison between miRs from human periodontal ligament cells (PDLCs) and alveolar bone cells (ABCs) from healthy human subjects, the ABC cohort of miRs was substantially greater than the corresponding PDLC cohort. Cyclic mechanical stretch forces at 12% deformation at 0.1Hz for 24h decreased expression of miR-29 family member miRs about 0.5 fold while 2g/cm(2) compression force for 24h increased miR-29 family member expression in PDLCs 1.8-4 folds. Cyclic stretch up-regulated major ECM genes in PDLCs, such as COL1A1, COL3A1 and COL5A1, while the compression force resulted in a down-regulation of these ECM genes. Direct interactions of miR-29 and Col1a1, Col3a1 and Col5a1 were confirmed using a dual luciferase reporter gene assay. In addition, transient transfection of a miR-29b mimic in mouse PDLCs down-regulated Col1a1, Col3a1 and Col5a1 while the transfection of miR-29b inhibitor up-regulated these genes compared to control transfection indicating that these target ECM genes directly responded to the altered level of miR-29b. These results provided a possible explanation for the effects of the miR-29 family on loaded PDLCS and their roles in extracellular matrix gene expression. PMID:25827718

  5. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets.

    PubMed

    Guedes, Elaine Castilho; França, Gustavo Starvaggi; Lino, Caroline Antunes; Koyama, Fernanda Christtanini; Moreira, Luana do Nascimento; Alexandre, Juliana Gomes; Barreto-Chaves, Maria Luiza M; Galante, Pedro Alexandre Favoretto; Diniz, Gabriela Placoná

    2016-08-01

    Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc. PMID:26638879

  6. Association of Altered Serum MicroRNAs with Perihematomal Edema after Acute Intracerebral Hemorrhage

    PubMed Central

    Zhu, Ying; Wang, Jia-Lu; He, Zhi-Yi; Jin, Feng; Tang, Ling

    2015-01-01

    Background and Purpose Perihematomal edema (PHE) contributes to secondary brain damage and aggravates patient outcomes after intracerebral hemorrhage (ICH). MicroRNAs (miRNAs) are stable in circulation, and their unique expression profiles have fundamental roles in modulating vascular disease. The objective of this study was to test the hypothesis that altered miRNA levels are associated with PHE in ICH patients. Methods Hematoma and PHE volumes of ICH patients were measured on admission and in follow-up computed tomography scans. Whole-genome miRNA profiles of ICH patients and healthy controls were determined using the Exiqon miRCURY LNA Array, and validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Bioinformatics analysis investigated dysregulated miRNA target genes and the signaling pathways involved. Results We identified 55 miRNAs that were differentially expressed in ICH patients compared with normal controls, of which 54 were down-regulated and one was up-regulated. qRT-PCR confirmation showed decreases in miR-126 (0.63-fold), miR-146a (0.64-fold), miR-let-7a (0.50-fold), and miR-26a (0.54-fold) in ICH patients relative to controls. Serum miR-126, but not miR-146a, miR-let-7a or miR-26a, levels were significantly correlated with relative PHE volume on days 3–4 (r = −0.714; P<0.001) in patients with ICH. Conclusions ICH patients appear to have a specific miRNA expression profile. Low expression of miR-126 was positively correlated with the extent of PHE, suggesting it may have a pathogenic role in the development of PHE after ICH. PMID:26207814

  7. Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects

    PubMed Central

    Fry, Rebecca C.; Rager, Julia E.; Bauer, Rebecca; Sebastian, Elizabeth; Peden, David B.; Jaspers, Ilona

    2014-01-01

    Ozone (O3) is a criteria air pollutant that is associated with numerous adverse health effects, including altered respiratory immune responses. Despite its deleterious health effects, possible epigenetic mechanisms underlying O3-induced health effects remain understudied. MicroRNAs (miRNAs) are epigenetic regulators of genomic response to environmental insults and unstudied in relationship to O3 inhalation exposure. Our objective was to test whether O3 inhalation exposure significantly alters miRNA expression profiles within the human bronchial airways. Twenty healthy adult human volunteers were exposed to 0.4 ppm O3 for 2 h. Induced sputum samples were collected from each subject 48 h preexposure and 6 h postexposure for evaluation of miRNA expression and markers of inflammation in the airways. Genomewide miRNA expression profiles were evaluated by microarray analysis, and in silico predicted mRNA targets of the O3-responsive miRNAs were identified and validated against previously measured O3-induced changes in mRNA targets. Biological network analysis was performed on the O3-associated miRNAs and mRNA targets to reveal potential associated response signaling and functional enrichment. Expression analysis of the sputum samples revealed that O3 exposure significantly increased the expression levels of 10 miRNAs, namely miR-132, miR-143, miR-145, miR-199a*, miR-199b-5p, miR-222, miR-223, miR-25, miR-424, and miR-582-5p. The miRNAs and their predicted targets were associated with a diverse range of biological functions and disease signatures, noted among them inflammation and immune-related disease. The present study shows that O3 inhalation exposure disrupts select miRNA expression profiles that are associated with inflammatory and immune response signaling. These findings provide novel insight into epigenetic regulation of responses to O3 exposure. PMID:24771714

  8. A potential role for estrogen in cigarette smoke-induced microRNA alterations and lung cancer

    PubMed Central

    Cohen, Amit; Smith, Yoav

    2016-01-01

    Alteration in the expression of microRNAs (miRNAs) is associated with oncogenesis and cancer progression. In this review we aim to suggest that elevated levels of estrogens and their metabolites inside the lungs as a result of cigarette smoke exposure can cause widespread repression of miRNA and contribute to lung tumor development. Anti-estrogenic compounds, such as the components of cruciferous vegetables, can attenuate this effect and potentially reduce the risk of lung cancer (LC) among smokers. PMID:27413713

  9. A potential role for estrogen in cigarette smoke-induced microRNA alterations and lung cancer.

    PubMed

    Cohen, Amit; Burgos-Aceves, Mario Alberto; Smith, Yoav

    2016-06-01

    Alteration in the expression of microRNAs (miRNAs) is associated with oncogenesis and cancer progression. In this review we aim to suggest that elevated levels of estrogens and their metabolites inside the lungs as a result of cigarette smoke exposure can cause widespread repression of miRNA and contribute to lung tumor development. Anti-estrogenic compounds, such as the components of cruciferous vegetables, can attenuate this effect and potentially reduce the risk of lung cancer (LC) among smokers. PMID:27413713

  10. MicroRNA abundance is altered in synaptoneurosomes during prion disease.

    PubMed

    Boese, Amrit S; Saba, Reuben; Campbell, Kristyn; Majer, Anna; Medina, Sarah; Burton, Lynn; Booth, Timothy F; Chong, Patrick; Westmacott, Garrett; Dutta, Sucharita M; Saba, Julian A; Booth, Stephanie A

    2016-03-01

    Discrepancy in synaptic structural plasticity is one of the earliest manifestations of the neurodegenerative state. In prion diseases, a reduction in synapses and dendritic spine densities is observed during preclinical disease in neurons of the cortex and hippocampus. The underlying molecular mechanisms of these alterations have not been identified but microRNAs (miRNAs), many of which are enriched at the synapse, likely regulate local protein synthesis in rapid response to stressors such as replicating prions. MiRNAs are therefore candidate regulators of these early neurodegenerative changes and may provide clues as to the molecular pathways involved. We therefore determined changes in mature miRNA abundance within synaptoneurosomes isolated from prion-infected, as compared to mock-infected animals, at asymptomatic and symptomatic stages of disease. During preclinical disease, miRNAs that are enriched in neurons including miR-124a-3p, miR-136-5p and miR-376a-3p were elevated. At later stages of disease we found increases in miRNAs that have previously been identified as deregulated in brain tissues of prion infected mice, as well as in Alzheimer's disease (AD) models. These include miR-146a-5p, miR-142-3p, miR-143-3p, miR-145a-5p, miR-451a, miR-let-7b, miR-320 and miR-150-5p. A number of miRNAs also decreased in abundance during clinical disease. These included almost all members of the related miR-200 family (miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-141-3p, and miR-429-3p) and the 182 cluster (miR-182-5p and miR-183-5p). PMID:26658803

  11. MicroRNA expression is altered in lateral septum across reproductive stages.

    PubMed

    Saul, M C; Zhao, C; Driessen, T M; Eisinger, B E; Gammie, S C

    2016-01-15

    MicroRNAs (miRNAs) inhibit RNA targets and may contribute to postpartum central nervous system (CNS) gene expression changes, although this has never been tested. In the present study, we directly evaluated miRNA levels using RNA sequencing during reproduction in female mice in the lateral septum (LS). We found the reliable and robust changes of miRNAs away from the virgin stage at the three other stages, namely pregnant, day 1 postpartum, and day 8 postpartum. For a given miRNA that was significantly different from the virgin condition in more than one group, the direction of change was always the same. Overall, we identified 32 upregulated miRNAs and 25 downregulated miRNAs that were consistently different from the virgin state. 'Arm switching' occurs for miR-433-3 and miR-7b. Unexpectedly, a third of upregulated miRNAs (relative to virgin) were highly localized within the 12qF1 region of chromosome 12 that includes the Dlk1-Dio3 gene cluster implicated in stem cell and neuronal differentiation. Over 1500 genes were targeted by multiple upregulated miRNAs with about 100 genes targeted by five or more miRNAs. Over 1000 genes were targeted by multiple downregulated miRNAs with about 50 genes targeted by five or more miRNAs. Half of the target genes were regulated by up and downregulated miRNAs, indicating homeostatic regulation. Transcriptional regulation was the most enriched pathway for genes linked to up or down regulated miRNAs. Other enriched pathways included protein kinase activity (e.g., MAP kinase), CNS development, axon guidance, neurotrophin signaling, neuron development/differentiation, and neurogenesis. Previously published postpartum LS gene expression changes were enrichment for LS miRNA targets, as expected. Surprisingly, postpartum gene expression changes from other regions were also enriched against LS miRNA targets, suggesting a core group of miRNAs may act across the CNS during reproduction. Together, we directly examine miRNAs and find

  12. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

    PubMed

    Paugh, Steven W; Coss, David R; Bao, Ju; Laudermilk, Lucas T; Grace, Christy R; Ferreira, Antonio M; Waddell, M Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F; Panetta, John C; Wilkinson, Mark R; Pui, Ching-Hon; Naeve, Clayton W; Uberbacher, Edward C; Bonten, Erik J; Evans, William E

    2016-02-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16)) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  13. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE PAGESBeta

    Paugh, Steven W.; Coss, David R.; Bao, Ju; Laudermilk, Lucas T.; Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael Rex; et al

    2016-02-04

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10-16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  14. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression

    PubMed Central

    Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching-Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.

    2016-01-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  15. Cloning and characterization of micro-RNAs from moss.

    PubMed

    Arazi, Tzahi; Talmor-Neiman, Mali; Stav, Ran; Riese, Maike; Huijser, Peter; Baulcombe, David C

    2005-09-01

    Micro-RNAs (miRNAs) are one class of endogenous tiny RNAs that play important regulatory roles in plant development and responses to external stimuli. To date, miRNAs have been cloned from higher plants such as Arabidopsis, rice and pumpkin, and there is limited information on their identity in lower plants including Bryophytes. Bryophytes are among the oldest groups of land plants among the earth's flora, and are important for our understanding of the transition to life on land. To identify miRNAs that might have played a role early in land plant evolution, we constructed a library of small RNAs from the juvenile gametophyte (protonema) of the moss Physcomitrella patens. Sequence analysis revealed five higher plant miRNA homologues, including three members of the miR319 family, previously shown to be involved in the regulation of leaf morphogenesis, and miR156, which has been suggested to regulate several members of the SQUAMOSA PROMOTER BINDING-LIKE (SPL) family in Arabidopsis. We have cloned PpSBP3, a moss SPL homologue that contains an miR156 complementary site, and demonstrated that its mRNA is cleaved within that site suggesting that it is an miR156 target in moss. Six additional candidate moss miRNAs were identified and shown to be expressed in the gametophyte, some of which were developmentally regulated or upregulated by auxin. Our observations suggest that miRNAs play important regulatory roles in mosses. PMID:16146523

  16. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition.

    PubMed

    Cava, Claudia; Bertoli, Gloria; Ripamonti, Marilena; Mauri, Giancarlo; Zoppis, Italo; Della Rosa, Pasquale Anthony; Gilardi, Maria Carla; Castiglioni, Isabella

    2014-01-01

    Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number. PMID:24866763

  17. Altered microRNA Expression Profiles and Regulation of INK4A/CDKN2A Tumor Suppressor Genes in Canine Breast Cancer Models.

    PubMed

    Lutful Kabir, Farruk Mohammad; DeInnocentes, Patricia; Bird, Richard Curtis

    2015-12-01

    microRNA (miRNA) expression profiling of cancer versus normal cells may reveal the characteristic regulatory features that can be correlated to altered gene expression in both human and animal models of cancers. In this study, the comprehensive expression profiles of the 277 highly characterized miRNAs from the canine genome were evaluated in spontaneous canine mammary tumor (CMT) models harboring defects in a group of cell cycle regulatory and potent tumor suppressor genes of INK4/CDKN2 family including p16/INK4A, p14ARF, and p15/INK4B. A large number of differentially expressed miRNAs were identified in three CMT cell lines to potentially target oncogenes, tumor suppressor genes and cancer biomarkers. A group of the altered miRNAs were identified by miRNA target prediction tools for regulation of the INK4/CDKN2 family tumor suppressor genes. miRNA-141 was experimentally validated for INK4A 3'-UTR target binding in the CMT cell lines providing an essential mechanism for the post-transcriptional regulation of the INK4A tumor suppressor gene in CMT models. A well-recognized group of miRNAs including miR-21, miR-155, miR-9, miR-34a, miR-143/145, and miR-31 were found to be altered in both CMTs and human breast cancer. These altered miRNAs might serve as potential targets for advancing the development of future therapeutic reagents. These findings further strengthen the validity and use of canine breast cancers as appropriate models for the study of human breast cancers. PMID:26095675

  18. Atrial fibrillation alters the microRNA expression profiles of the left atria of patients with mitral stenosis

    PubMed Central

    2014-01-01

    Background Structural changes of the left and right atria associated with atrial fibrillation (AF) in mitral stenosis (MS) patients are well known, and alterations in microRNA (miRNA) expression profiles of the right atria have also been investigated. However, miRNA changes in the left atria still require delineation. This study evaluated alterations in miRNA expression profiles of left atrial tissues from MS patients with AF relative to those with normal sinus rhythm (NSR). Methods Sample tissues from left atrial appendages were obtained from 12 MS patients (6 with AF) during mitral valve replacement surgery. From these tissues, miRNA expression profiles were created and analyzed using a human miRNA microarray. Results were validated via reverse-transcription and quantitative PCR for 5 selected miRNAs. Potential miRNA targets were predicted and their functions and potential pathways analyzed via the miRFocus database. Results The expression levels of 22 miRNAs differed between the AF and NSR groups. Relative to NSR patients, in those with AF the expression levels of 45% (10/22) of these miRNAs were significantly higher, while those of the balance (55%, 12/22) were significantly lower. Potential miRNA targets and molecular pathways were identified. Conclusions AF alters the miRNA expression profiles of the left atria of MS patients. These findings may be useful for the biological understanding of AF in MS patients. PMID:24461008

  19. Neuroprotection induced by post-conditioning following ischemia/reperfusion in mice is associated with altered microRNA expression.

    PubMed

    Miao, Wei; Bao, Tian-Hao; Han, Jian-Hong; Yin, Mei; Zhang, Jie; Yan, Yong; Zhu, Yu-Hong

    2016-09-01

    Ischemic preconditioning and ischemic postconditioning (IPostC) represent promising strategies to reduce ischemia-reperfusion (I/R) injury and attenuate the lethal ischemic damage following stroke. However, the mechanism underlying this attenuation remains to be elucidated. It was hypothesized that alterations in microRNA (miRNA) expression in the cerebral cortex and hippocampus of mice following I/R is associated with the functional improvement induced by IPostC. Behavioral changes were assessed in a mouse model of I/R in the absence or presence of IPostC, followed by microarray analyses to investigate the expressional alterations of miRNAs in the cerebral cortex and hippocampus of mice. The results of the present study revealed that IPostC abrogated the neurological impairment and hippocampus‑associated cognitive deficits induced by I/R, and upregulated or downregulated the expression levels of numerous miRNAs. Furthermore, the upregulation of miR‑19a, and the downregulation of miR‑1, let‑7f and miR‑124 expression levels following IPostC was confirmed utilizing reverse transcription‑quantitative polymerase chain reaction. The results of the present study demonstrated that alterations in miRNA expression in the cerebral cortex and hippocampus of mice following I/R was associated with the neuroprotection induced by IPostC. PMID:27485299

  20. Neuroprotection induced by post-conditioning following ischemia/reperfusion in mice is associated with altered microRNA expression

    PubMed Central

    Miao, Wei; Bao, Tian-Hao; Han, Jian-Hong; Yin, Mei; Zhang, Jie; Yan, Yong; Zhu, Yu-Hong

    2016-01-01

    Ischemic preconditioning and ischemic postconditioning (IPostC) represent promising strategies to reduce ischemia-reperfusion (I/R) injury and attenuate the lethal ischemic damage following stroke. However, the mechanism underlying this attenuation remains to be elucidated. It was hypothesized that alterations in microRNA (miRNA) expression in the cerebral cortex and hippocampus of mice following I/R is associated with the functional improvement induced by IPostC. Behavioral changes were assessed in a mouse model of I/R in the absence or presence of IPostC, followed by microarray analyses to investigate the expressional alterations of miRNAs in the cerebral cortex and hippocampus of mice. The results of the present study revealed that IPostC abrogated the neurological impairment and hippocampus-associated cognitive deficits induced by I/R, and upregulated or downregulated the expression levels of numerous miRNAs. Furthermore, the upregulation of miR-19a, and the downregulation of miR-1, let-7f and miR-124 expression levels following IPostC was confirmed utilizing reverse transcription-quantitative polymerase chain reaction. The results of the present study demonstrated that alterations in miRNA expression in the cerebral cortex and hippocampus of mice following I/R was associated with the neuroprotection induced by IPostC. PMID:27485299

  1. Altered hippocampal microRNA expression profiles in neonatal rats caused by sevoflurane anesthesia: MicroRNA profiling and bioinformatics target analysis

    PubMed Central

    Ye, Jishi; Zhang, Zongze; Wang, Yanlin; Chen, Chang; Xu, Xing; Yu, Hui; Peng, Mian

    2016-01-01

    Although accumulating evidence has suggested that microRNAs (miRNAs) have a serious impact on cognitive function and are associated with the etiology of several neuropsychiatric disorders, their expression in sevoflurane-induced neurotoxicity in the developing brain has not been characterized. In the present study, the miRNAs expression pattern in neonatal hippocampus samples (24 h after sevoflurane exposure) was investigated and 9 miRNAs were selected, which were associated with brain development and cognition in order to perform a bioinformatic analysis. Previous microfluidic chip assay had detected 29 upregulated and 24 downregulated miRNAs in the neonatal rat hippocampus, of which 7 selected deregulated miRNAs were identified by the quantitative polymerase chain reaction. A total of 85 targets of selected deregulated miRNAs were analyzed using bioinformatics and the main enriched metabolic pathways, mitogen-activated protein kinase and Wnt pathways may have been involved in molecular mechanisms with regard to neuronal cell body, dendrite and synapse. The observations of the present study provided a novel understanding regarding the regulatory mechanism of miRNAs underlying sevoflurane-induced neurotoxicity, therefore benefitting the improvement of the prevention and treatment strategies of volatile anesthetics related neurotoxicity. PMID:27588052

  2. Altered Gene Expression Associated with microRNA Binding Site Polymorphisms

    PubMed Central

    Võsa, Urmo; Esko, Tõnu; Kasela, Silva; Annilo, Tarmo

    2015-01-01

    Allele-specific gene expression associated with genetic variation in regulatory regions can play an important role in the development of complex traits. We hypothesized that polymorphisms in microRNA (miRNA) response elements (MRE-SNPs) that either disrupt a miRNA binding site or create a new miRNA binding site can affect the allele-specific expression of target genes. By integrating public expression quantitative trait locus (eQTL) data, miRNA binding site predictions, small RNA sequencing, and Argonaute crosslinking immunoprecipitation (AGO-CLIP) datasets, we identified genetic variants that can affect gene expression by modulating miRNA binding efficiency. We also identified MRE-SNPs located in regions associated with complex traits, indicating possible causative mechanisms associated with these loci. The results of this study expand the current understanding of gene expression regulation and help to interpret the mechanisms underlying eQTL effects. PMID:26496489

  3. Molecular cytogenetic characterization of cancer cell alterations.

    PubMed

    Popescu, N C; Zimonjic, D B

    1997-01-01

    Chromosomal abnormalities are the hallmark of cancer cells. Recurring and highly consistent structural and numerical alterations have been identified in a large number of leukemias, lymphomas, and solid tumors. The identification of recurrent genetic alterations and the isolation of molecular markers have clinical applications in the diagnosis and prognosis of neoplasia and in the detection of minimal residual disease that are essential for designing the most effective therapeutic approach. Polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH) are powerful techniques for detection of genomic alterations. The battery of FISH methods and DNA probes that are available can resolve virtually any chromosomal alterations regardless of their complexity. Combined chromosome banding, multifluor or spectral karyotype, and comparative genomic hybridization (CGH) allow identification of structural and numerical alterations on a global basis, mapping of the DNA copy number on the entire tumor genome, complete derivation of complex rearrangements, and localization of the breakpoints of translocations and deletions. Regions of recurrent alterations can be microdisected, amplified, microclone libraries constructed and probes localized on extended chromosomes or chromatin fibers for construction of high resolution physical maps that are critical for positional cloning and gene identification. In this review we attempted to cover the current trends in cancer molecular cytogenetics, and to outline the importance of molecular chromosome analysis in the understanding of oncogenesis and its clinical applications. PMID:9062575

  4. Human papillomavirus alters microRNA profiles in squamous cell carcinoma of the head and neck (SCCHN) cell lines

    PubMed Central

    Wald, Abigail I.; Hoskins, Elizabeth E.; Wells, Susanne I.; Ferris, Robert L.; Khan, Saleem A.

    2010-01-01

    Background Human papillomavirus (HPV) positive cases of squamous cell carcinoma of the head and neck (SCCHN) have a much better disease outcome compared to SCCHN cases lacking HPVs. Differences in microRNA (miRNA) expression may affect their clinical outcomes. Methods miRNA expression was studied using microarrays and quantitative RT-PCR in HPV-16 positive and HPV-negative SCCHN cell lines. The role of HPV-16 E6 and E7 oncogenes in altering miRNA expression was investigated using human foreskin keratinocytes (HFKs). Results MiRNAs miR-363, miR-33 and miR-497 were upregulated while miR-155, miR-181a, miR-181b, miR-29a, miR-218, miR-222, miR-221 and miR-142-5p were downregulated in HPV-positive cells compared to both HPV-negative SCCHN and normal oral keratinocytes. HPV-16 E6 oncogene altered miRNA expression in HFKs and in an HPV-16 positive cell line with E6 knockdown using siRNA. Conclusions MiRNAs differentially expressed in the presence of HPV-16 may provide biomarkers for SCCHN and identify cellular pathways targeted by this virus. PMID:20652977

  5. Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects

    EPA Science Inventory

    Ozone (03) is a criteria air pollutant that is associated with numerous adverse health effects, including altered respiratory immune responses. Despite its deleterious health effects, possible epigenetic mechanisms underlying 03-induced health effects remain understudied. MicroRN...

  6. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    PubMed

    Jung, Il Lae; Ryu, Moonyoung; Cho, Seok Keun; Shah, Pratik; Lee, Ju Hye; Bae, Hansol; Kim, In Gyu; Yang, Seong Wook

    2015-01-01

    MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1)-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism. PMID:25946015

  7. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana

    PubMed Central

    Cho, Seok Keun; Shah, Pratik; Lee, Ju Hye; Bae, Hansol; Kim, In Gyu; Yang, Seong Wook

    2015-01-01

    MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1)-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism. PMID:25946015

  8. Altered microRNA expression profile in hepatitis B virus-related hepatocellular carcinoma.

    PubMed

    Park, Keon Uk; Seo, Young-Su; Lee, Yun-Han; Park, Jungwook; Hwang, Ilseon; Kang, Koo Jeong; Nam, Jehyun; Kim, Sang-Woo; Kim, Jin Young

    2015-12-01

    Hepatocellular carcinoma (HCC) is one of the most lethal cancers, accounting for about 600,000 cancer deaths worldwide. Despite aggressive chemotherapy, the 5-year survival rate is less than 30% in the United States. This underscores the need for a better understanding of the molecular and cellular disease features. Many studies have demonstrated that aberrant regulation of microRNA (miRNA) expression plays a critical role in the development of various types of cancers including HCC. Here we analyzed the miRNA expression profile of HCC cases associated with chronic hepatitis B virus infection, one of the major etiologies of HCC. Our study identified 267 miRNAs that were differentially regulated in HCC specimens compared to adjacent normal tissues. We next analyzed putative target genes and the relevant signaling pathways that are regulated by these miRNAs. Our findings support the notion that dysfunction of miRNAs is linked to HCC pathogenesis and may lead to the identification of novel targets for diagnosing and treating HCC. PMID:26190160

  9. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease

    PubMed Central

    Gui, YaXing; Liu, Hai; Zhang, LiShan; Lv, Wen; Hu, XingYue

    2015-01-01

    The differential diagnosis of Parkinson's diseases (PD) is challenging, especially in the early stages of the disease. We developed a microRNA profiling strategy for exosomal miRNAs isolated from cerebrospinal fluid (CSF) in PD and AD. Sixteen exosomal miRNAs were up regulated and 11 miRNAs were under regulated significantly in PD CSF when compared with those in healthy controls (relative fold > 2, p < 0.05). MiR-1 and miR-19b-3p were validated and significantly reduced in independent samples. While miR-153, miR-409-3p, miR-10a-5p, and let-7g-3p were significantly over expressed in PD CSF exosome. Bioinformatic analysis by DIANA-mirPath demonstrated that Neurotrophin signaling, mTOR signaling, Ubiquitin mediated proteolysis, Dopaminergic synapse, and Glutamatergic synapse were the most prominent pathways enriched in quantiles with PD miRNA patterns. Messenger RNA (mRNA) transcripts [amyloid precursor protein, APP), α-synuclein (α-syn), Tau, neurofilament, light gene (NF-L), DJ-1/PARK7, Fractalkine and Neurosin] and long non-coding RNAs (RP11-462G22.1 and PCA3) were differentially expressed in CSF exosomes in PD and AD patients. These data demonstrated that CSF exosomal RNA molecules are reliable biomarkers with fair robustness in regard to specificity and sensitivity in differentiating PD from healthy and diseased (AD) controls. PMID:26497684

  10. Intestinal Epithelial Barrier Disruption through Altered Mucosal MicroRNA Expression in Human Immunodeficiency Virus and Simian Immunodeficiency Virus Infections

    PubMed Central

    Gaulke, Christopher A.; Porter, Matthew; Han, Yan-Hong; Sankaran-Walters, Sumathi; Grishina, Irina; George, Michael D.; Dang, Angeline T.; Ding, Shou-Wei; Jiang, Guochun; Korf, Ian

    2014-01-01

    ABSTRACT Epithelial barrier dysfunction during human immunodeficiency virus (HIV) infection has largely been attributed to the rapid and severe depletion of CD4+ T cells in the gastrointestinal (GI) tract. Although it is known that changes in mucosal gene expression contribute to intestinal enteropathy, the role of small noncoding RNAs, specifically microRNA (miRNA), has not been investigated. Using the simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV pathogenesis, we investigated the effect of viral infection on miRNA expression in intestinal mucosa. SIV infection led to a striking decrease in the expression of mucosal miRNA compared to that in uninfected controls. This decrease coincided with an increase in 5′-3′-exoribonuclease 2 protein and alterations in DICER1 and Argonaute 2 expression. Targets of depleted miRNA belonged to molecular pathways involved in epithelial proliferation, differentiation, and immune response. Decreased expression of several miRNA involved in maintaining epithelial homeostasis in the gut was localized to the proliferative crypt region of the intestinal epithelium. Our findings suggest that SIV-induced decreased expression of miRNA involved in epithelial homeostasis, disrupted expression of miRNA biogenesis machinery, and increased expression of XRN2 are involved in the development of epithelial barrier dysfunction and gastroenteropathy. IMPORTANCE MicroRNA (miRNA) regulate the development and function of intestinal epithelial cells, and many viruses disrupt normal host miRNA expression. In this study, we demonstrate that SIV and HIV disrupt expression of miRNA in the small intestine during infection. The depletion of several key miRNA is localized to the proliferative crypt region of the gut epithelium. These miRNA are known to control expression of genes involved in inflammation, cell death, and epithelial maturation. Our data indicate that this disruption might be caused by altered expression of mi

  11. Isolation and characterization of vesicular and non-vesicular microRNAs circulating in sera of partially hepatectomized rats.

    PubMed

    Castoldi, Mirco; Kordes, Claus; Sawitza, Iris; Häussinger, Dieter

    2016-01-01

    Circulating microRNAs are protected from degradation by their association with either vesicles or components of the RNAi machinery. Although increasing evidence indicates that cell-free microRNAs are transported in body fluids by different types of vesicles, current research mainly focuses on the characterization of exosome-associated microRNAs. However, as isolation and characterization of exosomes is challenging, it is yet unclear whether exosomes or other vesicular elements circulating in serum are the most reliable source for discovering disease-associated biomarkers. In this study, circulating microRNAs associated to the vesicular and non-vesicular fraction of sera isolated from partially hepatectomized rats were measured. Here we show that independently from their origin, levels of miR-122, miR-192, miR-194 and Let-7a are up-regulated two days after partial hepatectomy. The inflammation-associated miR-150 and miR-155 are up-regulated in the vesicular-fraction only, while the regeneration-associated miR-21 and miR-33 are up-regulated in the vesicular- and down-regulated in the non-vesicular fraction. Our study shows for the first time the modulation of non-vesicular microRNAs in animals recovering from partial hepatectomy, suggesting that, in the search for novel disease-associated biomarkers, the profiling of either vesicular or non-vesicular microRNAs may be more relevant than the analysis of microRNAs isolated from unfractionated serum. PMID:27535708

  12. Isolation and characterization of vesicular and non-vesicular microRNAs circulating in sera of partially hepatectomized rats

    PubMed Central

    Castoldi, Mirco; Kordes, Claus; Sawitza, Iris; Häussinger, Dieter

    2016-01-01

    Circulating microRNAs are protected from degradation by their association with either vesicles or components of the RNAi machinery. Although increasing evidence indicates that cell-free microRNAs are transported in body fluids by different types of vesicles, current research mainly focuses on the characterization of exosome-associated microRNAs. However, as isolation and characterization of exosomes is challenging, it is yet unclear whether exosomes or other vesicular elements circulating in serum are the most reliable source for discovering disease-associated biomarkers. In this study, circulating microRNAs associated to the vesicular and non-vesicular fraction of sera isolated from partially hepatectomized rats were measured. Here we show that independently from their origin, levels of miR-122, miR-192, miR-194 and Let-7a are up-regulated two days after partial hepatectomy. The inflammation-associated miR-150 and miR-155 are up-regulated in the vesicular-fraction only, while the regeneration-associated miR-21 and miR-33 are up-regulated in the vesicular- and down-regulated in the non-vesicular fraction. Our study shows for the first time the modulation of non-vesicular microRNAs in animals recovering from partial hepatectomy, suggesting that, in the search for novel disease-associated biomarkers, the profiling of either vesicular or non-vesicular microRNAs may be more relevant than the analysis of microRNAs isolated from unfractionated serum. PMID:27535708

  13. Altered microRNA expression profiles in a rat model of spina bifida.

    PubMed

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-Liang; Chen, Xin-Rang; Yang, He-Ying; Fan, Ying-Zhong; Wang, Jia-Xiang

    2016-03-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida. PMID:27127493

  14. Altered microRNA expression profiles in a rat model of spina bifida

    PubMed Central

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-liang; Chen, Xin-rang; Yang, He-ying; Fan, Ying-zhong; Wang, Jia-xiang

    2016-01-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida. PMID:27127493

  15. PUFA diets alter the microRNA expression profiles in an inflammation rat model

    PubMed Central

    ZHENG, ZHENG; GE, YINLIN; ZHANG, JINYU; XUE, MEILAN; LI, QUAN; LIN, DONGLIANG; MA, WENHUI

    2015-01-01

    Omega-3 and -6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA-regulated inflammatory processes. Here, we established PUFA diet-induced autoimmune-prone (AP) and autoimmune-averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno-miR-19b-3p, -146b-5p and -183-5p expression were validated using stem-loop reverse transcription-quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA-regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA-regulated inflammatory pathways included the Toll-like receptor (TLR), T cell receptor (TCR), NOD-like receptor (NLR), RIG-I-like receptor (RLR), mitogen-activated protein kinase (MAPK) and the transforming growth factor-β (TGF-β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet-induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA-regulated miRNAs in immune homeostasis. PMID:25672643

  16. Chronic Nicotine Exposure Systemically Alters MicroRNA Expression Profiles during Post-embryonic Stages in Caenorhabditis elegans

    PubMed Central

    Taki, Faten A; Pan, Xiaoping; Zhang, Baohong

    2014-01-01

    Tobacco smoking is associated with many diseases. Addiction is of the most notorious tobacco-related syndrome and is majorly attributed to nicotine. In this study, we employed C. elegans as a biological model to systemically investigate the effect of chronic nicotine exposure on microRNA (miRNA) expression profile and their regulated biochemical pathways. Nicotine treatment (20μM and 20mM) was limited to the post-embryonic stage from L1–L4 (~31 hours) period after which worms were collected for genome-wide miRNA profiling. Our results show that nicotine significantly altered the expression patterns of 40 miRNAs. The effect was proportional to the nicotine dose and was expected to have an additive, more robust response. Based on pathway enrichment analyses coupled with nicotine-induced miRNA patterns, we inferred that miRNAs as a system mediates “regulatory hormesis”, manifested in biphasic behavioral and physiological phenotypes. We proposed a model where nicotine addiction is mediated by miRNAs’ regulation of fos-1 and is maintained by epigenetic factors. Thus, our study offers new insights for a better understanding of the sensitivity of early developmental stages to nicotine. PMID:23765240

  17. Rare Cytogenetic Abnormalities and Alteration of microRNAs in Acute Myeloid Leukemia and Response to Therapy

    PubMed Central

    Shahjahani, Mohammad; Khodadi, Elahe; Seghatoleslami, Mohammad; Asl, Javad Mohammadi; Golchin, Neda; Zaieri, Zeynab Deris

    2015-01-01

    Acute myeloid leukemia (AML) is the most common acute leukemia in adults, which is heterogeneous in terms of morphological, cytogenetic and clinical features. Cytogenetic abnormalities, including karyotype aberrations, gene mutations and gene expression abnormalities are the most important diagnostic tools in diagnosis, classification and prognosis in acute myeloid leukemias. Based on World Health Organization (WHO) classification, acute myeloid leukemias can be divided to four groups. Due to the heterogeneous nature of AML and since most therapeutic protocols in AML are based on genetic alterations, gathering further information in the field of rare disorders as well as common cytogenetic abnormalities would be helpful in determining the prognosis and treatment in this group of diseases. Recently, the role of microRNAs (miRNAs) in both normal hematopoiesis and myeloid leukemic cell differentiation in myeloid lineage has been specified. miRNAs can be used instead of genes for AML diagnosis and classification in the future, and can also play a decisive role in the evaluation of relapse as well as response to treatment in the patients. Therefore, their use in clinical trials can affect treatment protocols and play a role in therapeutic strategies for these patients. In this review, we have examined rare cytogenetic abnormalities in different groups of acute myeloid leukemias according to WHO classification, and the role of miRNA expression in classification, diagnosis and response to treatment of these disorders has also been dealt with. PMID:26779308

  18. Hydraulic characterization of hydrothermally altered Nopal tuff

    SciTech Connect

    Green, R.T.; Meyer-James, K.A.; Rice, G.

    1995-07-01

    Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

  19. Characterizing neuromorphologic alterations with additive shape functionals

    NASA Astrophysics Data System (ADS)

    Barbosa, M. S.; Costa, L. Da F.; Bernardes, E. S.; Ramakers, G.; van Pelt, J.

    2004-01-01

    The complexity of a neuronal cell shape is known to be related to its function. Specifically, among other indicators, a decreased complexity in the dendritic trees of cortical pyramidal neurons has been associated with mental retardation. In this paper we develop a procedure to address the characterization of morphological changes induced in cultured neurons by over-expressing a gene involved in mental retardation. Measures associated with the multiscale connectivity, an additive image functional, are found to give a reasonable separation criterion between two categories of cells. One category consists of a control group and two transfected groups of neurons, and the other, a class of cat ganglionary cells. The reported framework also identified a trend towards lower complexity in one of the transfected groups. Such results establish the suggested measures as an effective descriptors of cell shape.

  20. The sum of many small changes: microRNAs are specifically and potentially globally altered by vitamin D3 metabolites

    PubMed Central

    Giangreco, Angeline A.; Nonn, Larisa

    2013-01-01

    Vitamin D3 deficiency is rampant which may contribute to increased risk of many diseases including cancer, cardiovascular disease and autoimmune disorders. Genomic activity of the active metabolite 1,25-dihydroxyvitamin D (1,25D) mediates most vitamin D3's actions and many gene targets of 1,25D have been characterized. As the importance of non-coding RNAs has emerged, the ability of vitamin D3 via 1,25D to regulate microRNAs (miRNAs) has been demonstrated in several cancer cell lines, patient tissue and sera. In vitamin D3 intervention patient trials, significant differences in miRNAs are observed between treatment groups and/or between baseline and followup. In patient sera from population studies, specific miRNA differences associate with serum levels of 25D. The findings thus far indicate that dietary vitamin D3 in patients and 1,25D in vitro not only regulate specific miRNA(s), but may also globally upregulate miRNA levels. This article is part of a Special Issue entitled ‘Vitamin D Workshop’. PMID:23333596

  1. Rapamycin (Sirolimus) alters mechanistic target of rapamycin pathway regulation and microRNA expression in mouse meiotic spermatocytes.

    PubMed

    Mukherjee, A; Koli, S; Reddy, K V R

    2015-09-01

    Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of

  2. Alterations in MicroRNA Expression Contribute to Fatty Acid–Induced Pancreatic β-Cell Dysfunction

    PubMed Central

    Lovis, Pascal; Roggli, Elodie; Laybutt, D. Ross; Gattesco, Sonia; Yang, Jiang-Yan; Widmann, Christian; Abderrahmani, Amar; Regazzi, Romano

    2008-01-01

    OBJECTIVE—Visceral obesity and elevated plasma free fatty acids are predisposing factors for type 2 diabetes. Chronic exposure to these lipids is detrimental for pancreatic β-cells, resulting in reduced insulin content, defective insulin secretion, and apoptosis. We investigated the involvement in this phenomenon of microRNAs (miRNAs), a class of noncoding RNAs regulating gene expression by sequence-specific inhibition of mRNA translation. RESEARCH DESIGN AND METHODS—We analyzed miRNA expression in insulin-secreting cell lines or pancreatic islets exposed to palmitate for 3 days and in islets from diabetic db/db mice. We studied the signaling pathways triggering the changes in miRNA expression and determined the impact of the miRNAs affected by palmitate on insulin secretion and apoptosis. RESULTS—Prolonged exposure of the β-cell line MIN6B1 and pancreatic islets to palmitate causes a time- and dose-dependent increase of miR34a and miR146. Elevated levels of these miRNAs are also observed in islets of diabetic db/db mice. miR34a rise is linked to activation of p53 and results in sensitization to apoptosis and impaired nutrient-induced secretion. The latter effect is associated with inhibition of the expression of vesicle-associated membrane protein 2, a key player in β-cell exocytosis. Higher miR146 levels do not affect the capacity to release insulin but contribute to increased apoptosis. Treatment with oligonucleotides that block miR34a or miR146 activity partially protects palmitate-treated cells from apoptosis but is insufficient to restore normal secretion. CONCLUSIONS—Our findings suggest that at least part of the detrimental effects of palmitate on β-cells is caused by alterations in the level of specific miRNAs. PMID:18633110

  3. Niacin in Pharmacological Doses Alters MicroRNA Expression in Skeletal Muscle of Obese Zucker Rats

    PubMed Central

    Most, Erika; Ringseis, Robert; Eder, Klaus

    2014-01-01

    Administration of pharmacological niacin doses was recently reported to have pronounced effects on skeletal muscle gene expression and phenotype in obese Zucker rats, with the molecular mechanisms underlying the alteration of gene expression being completely unknown. Since miRNAs have been shown to play a critical role for gene expression through inducing miRNA-mRNA interactions which results in the degradation of specific mRNAs or the repression of protein translation, we herein aimed to investigate the influence of niacin at pharmacological doses on the miRNA expression profile in skeletal muscle of obese Zucker rats fed either a control diet with 30 mg supplemented niacin/kg diet or a high-niacin diet with 780 mg supplemented niacin/kg diet for 4 wk. miRNA microarray analysis revealed that 42 out of a total of 259 miRNAs were differentially expressed (adjusted P-value <0.05), 20 being down-regulated and 22 being up-regulated, between the niacin group and the control group. Using a biostatistics approach, we could demonstrate that the most strongly up-regulated (log2 ratio ≥0.5) and down-regulated (log2 ratio ≤−0.5) miRNAs target approximately 1,800 mRNAs. Gene-term enrichment analysis showed that many of the predicted target mRNAs from the most strongly regulated miRNAs were involved in molecular processes dealing with gene transcription such as DNA binding, transcription regulator activity, transcription factor binding and in important regulatory pathways such as Wnt signaling and MAPK signaling. In conclusion, the present study shows for the first time that pharmacological niacin doses alter the expression of miRNAs in skeletal muscle of obese Zucker rats and that the niacin-regulated miRNAs target a large set of genes and pathways which are involved in gene regulatory activity indicating that at least some of the recently reported effects of niacin on skeletal muscle gene expression and phenotype in obese Zucker rats are mediated through mi

  4. MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential.

    PubMed

    Churov, Alexey V; Oleinik, Eugenia K; Knip, Mikael

    2015-11-01

    Rheumatoid arthritis (RA) is a polygenic disease characterized by autoimmunity and systemic inflammation with progressive impairment of joints that results in lifelong disability and increased mortality. Early diagnosis and therapeutic intervention or treatment can prevent severe disease manifestations in patients suffering from RA. The use of appropriate predictive biomarkers may improve the efficiency of RA therapy. The general aim of this review is to highlight the most recent findings on miRNAs expression profiles in RA patients and to discuss their potential as new biomarkers for diagnostic purposes. The current literature demonstrates that a variety of miRNAs is frequently dysregulated in RA patients. To date, the majority of miRNAs have been found to be overexpressed during the natural course of RA. MiR-16, miR-146a/b, miR-150, miR-155, and miR-223 described here were shown to be overexpressed at the systemic level: in both the periphery and RA joints. Circulating peripheral blood miRNAs, especially miR-16, miR-21, miR-24, miR-26a, miR-125a-5p, miR-125b, miR-126-3p, miR-223, and miR-451, which are elevated in the plasma or serum, are considered to be the most promising non-invasive biomarkers for the detection of RA. PMID:26164649

  5. Analysis of Altered MicroRNA Expression Profiles in Proximal Renal Tubular Cells in Response to Calcium Oxalate Monohydrate Crystal Adhesion: Implications for Kidney Stone Disease

    PubMed Central

    Wang, Bohan; Wu, Bolin; Liu, Jun; Yao, Weimin; Xia, Ding; Li, Lu; Chen, Zhiqiang; Ye, Zhangqun; Yu, Xiao

    2014-01-01

    Background Calcium oxalate monohydrate (COM) is the major crystalline component in kidney stones and its adhesion to renal tubular cells leads to tubular injury. However, COM-induced toxic effects in renal tubular cells remain ambiguous. MicroRNAs (miRNAs) play an important role in gene regulation at the posttranscriptional levels. Objective The present study aimed to assess the potential changes in microRNAs of proximal renal tubular cells in response to the adhesion of calcium oxalate monohydrate (COM) crystals. Methodology Lactate dehydrogenase (LDH) activity and DAPI staining were used to measure the toxic effects of HK-2 cells exposed to COM crystals. MicroRNA microarray and mRNA microarray were applied to evaluate the expression of HK-2 cells exposed to COM crystals. Quantitative real-time PCR (qRT-PCR) technology was used to validate the microarray results. Target prediction, Gene Ontology (GO) analysis and pathway analysis were applied to predict the potential roles of microRNAs in biological processes. Principal Findings Our study showed that COM crystals significantly altered the global expression profile of miRNAs in vitro. After 24 h treatment with a dose (1 mmol/L), 25 miRNAs were differentially expressed with a more than 1.5-fold change, of these miRNAs, 16 were up-regulated and 9 were down-regulated. A majority of these differentially expressed miRNAs were associated with cell death, mitochondrion and metabolic process. Target prediction and GO analysis suggested that these differentially expressed miRNAs potentially targeted many genes which were related to apoptosis, regulation of metabolic process, intracellular signaling cascade, insulin signaling pathway and type 2 diabetes. Conclusion Our study provides new insights into the role of miRNAs in the pathogenesis associated with nephrolithiasis. PMID:24983625

  6. EpCAM knockdown alters microRNA expression in retinoblastoma--functional implication of EpCAM regulated miRNA in tumor progression.

    PubMed

    Beta, Madhu; Khetan, Vikas; Chatterjee, Nivedita; Suganeswari, Ganesan; Rishi, Pukhraj; Biswas, Jyotirmay; Krishnakumar, Subramanian

    2014-01-01

    The co-ordinated regulation of oncogenes along with miRNAs play crucial role in carcinogenesis. In retinoblastoma (RB), several miRNAs are known to be differentially expressed. Epithelial cell adhesion molecule (EpCAM) gene is involved in many epithelial cancers including, retinoblastoma (RB) tumorigenesis. EpCAM silencing effectively reduces the oncogenic miR-17-92 cluster. In order to investigate whether EpCAM has wider effect as an inducer or silencer of miRNAs, we performed a global microRNA expression profile in EpCAM siRNA knockdown Y79 cells. MicroRNA profiling in EpCAM silenced Y79 cells showed seventy-three significantly up regulated and thirty-six down regulated miRNAs. A subset of these miRNAs was also validated in tumors. Functional studies on Y79 and WERI-Rb-1 cells transfected with antagomirs against two miRNAs of miR-181c and miR-130b showed striking changes in tumor cell properties in RB cells. Treatment with anti-miR-181c and miR-130b showed significant decrease in cell viability and cell invasion. Increase in caspase-3 level was noticed in antagomir transfected cell lines indicating the induction of apoptosis. Possible genes altered by EpCAM influenced microRNAs were predicted by bioinformatic tools. Many of these belong to pathways implicated in cancer. The study shows significant influence of EpCAM on global microRNA expression. EpCAM regulated miR-181c and miR-130b may play significant roles in RB progression. EpCAM based targeted therapies may reduce carcinogenesis through several miRNAs and target genes. PMID:25502397

  7. EpCAM Knockdown Alters MicroRNA Expression in Retinoblastoma- Functional Implication of EpCAM Regulated MiRNA in Tumor Progression

    PubMed Central

    Beta, Madhu; Khetan, Vikas; Chatterjee, Nivedita; Suganeswari, Ganesan; Rishi, Pukhraj; Biswas, Jyotirmay; Krishnakumar, Subramanian

    2014-01-01

    The co-ordinated regulation of oncogenes along with miRNAs play crucial role in carcinogenesis. In retinoblastoma (RB), several miRNAs are known to be differentially expressed. Epithelial cell adhesion molecule (EpCAM) gene is involved in many epithelial cancers including, retinoblastoma (RB) tumorigenesis. EpCAM silencing effectively reduces the oncogenic miR-17-92 cluster. In order to investigate whether EpCAM has wider effect as an inducer or silencer of miRNAs, we performed a global microRNA expression profile in EpCAM siRNA knockdown Y79 cells. MicroRNA profiling in EpCAM silenced Y79 cells showed seventy-three significantly up regulated and thirty-six down regulated miRNAs. A subset of these miRNAs was also validated in tumors. Functional studies on Y79 and WERI-Rb-1 cells transfected with antagomirs against two miRNAs of miR-181c and miR-130b showed striking changes in tumor cell properties in RB cells. Treatment with anti-miR-181c and miR-130b showed significant decrease in cell viability and cell invasion. Increase in caspase-3 level was noticed in antagomir transfected cell lines indicating the induction of apoptosis. Possible genes altered by EpCAM influenced microRNAs were predicted by bioinformatic tools. Many of these belong to pathways implicated in cancer. The study shows significant influence of EpCAM on global microRNA expression. EpCAM regulated miR-181c and miR-130b may play significant roles in RB progression. EpCAM based targeted therapies may reduce carcinogenesis through several miRNAs and target genes. PMID:25502397

  8. Characterizing genomic alterations in cancer by complementary functional associations.

    PubMed

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes. PMID:27088724

  9. Systems and evolutionary characterization of microRNAs and their underlying regulatory networks in soybean cotyledons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cotyledons have evolved as a sink organ to synthesize and deposit the storage protein and oil reserve over seed maturation. MicroRNAs represent a class of key components in gene regulatory networks underlying diverse biological processes. However, our understanding of the microRNAs in soybea...

  10. Identification and characterization of MicroRNAs expressed in chicken skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs, miRs) encompass a class of small noncoding RNAs that negatively regulate gene expression. MicroRNAs play an essential role in skeletal muscle, determining the proper development and maintenance of this tissue. In comparison to other organs and tissues, the full set of muscle miRNA...

  11. microRNAs of parasitic helminths - Identification, characterization and potential as drug targets.

    PubMed

    Britton, Collette; Winter, Alan D; Gillan, Victoria; Devaney, Eileen

    2014-08-01

    microRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. They were first identified in the free-living nematode Caenorhabditis elegans, where the miRNAs lin-4 and let-7 were shown to be essential for regulating correct developmental progression. The sequence of let-7 was subsequently found to be conserved in higher organisms and changes in expression of let-7, as well as other miRNAs, are associated with certain cancers, indicating important regulatory roles. Some miRNAs have been shown to have essential functions, but the roles of many are currently unknown. With the increasing availability of genome sequence data, miRNAs have now been identified from a number of parasitic helminths, by deep sequencing of small RNA libraries and bioinformatic approaches. While some miRNAs are widely conserved in a range of organisms, others are helminth-specific and many are novel to each species. Here we review the potential roles of miRNAs in regulating helminth development, in interacting with the host environment and in development of drug resistance. Use of fluorescently-labeled small RNAs demonstrates uptake by parasites, at least in vitro. Therefore delivery of miRNA inhibitors or mimics has potential to alter miRNA activity, providing a useful tool for probing the roles of miRNAs and suggesting novel routes to therapeutics for parasite control. PMID:25057458

  12. microRNAs of parasitic helminths – Identification, characterization and potential as drug targets

    PubMed Central

    Britton, Collette; Winter, Alan D.; Gillan, Victoria; Devaney, Eileen

    2014-01-01

    microRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. They were first identified in the free-living nematode Caenorhabditis elegans, where the miRNAs lin-4 and let-7 were shown to be essential for regulating correct developmental progression. The sequence of let-7 was subsequently found to be conserved in higher organisms and changes in expression of let-7, as well as other miRNAs, are associated with certain cancers, indicating important regulatory roles. Some miRNAs have been shown to have essential functions, but the roles of many are currently unknown. With the increasing availability of genome sequence data, miRNAs have now been identified from a number of parasitic helminths, by deep sequencing of small RNA libraries and bioinformatic approaches. While some miRNAs are widely conserved in a range of organisms, others are helminth-specific and many are novel to each species. Here we review the potential roles of miRNAs in regulating helminth development, in interacting with the host environment and in development of drug resistance. Use of fluorescently-labeled small RNAs demonstrates uptake by parasites, at least in vitro. Therefore delivery of miRNA inhibitors or mimics has potential to alter miRNA activity, providing a useful tool for probing the roles of miRNAs and suggesting novel routes to therapeutics for parasite control. PMID:25057458

  13. microRNA Alterations Driving Acute and Late Stages of Radiation-Induced Fibrosis in a Murine Skin Model

    SciTech Connect

    Simone, Brittany A.; Ly, David; Savage, Jason E.; Hewitt, Stephen M.; Dan, Tu D.; Ylaya, Kris; Shankavaram, Uma; Lim, Meng; Jin, Lianjin; Camphausen, Kevin; Mitchell, James B.; Simone, Nicole L.

    2014-09-01

    Purpose: Although ionizing radiation is critical in treating cancer, radiation-induced fibrosis (RIF) can have a devastating impact on patients' quality of life. The molecular changes leading to radiation-induced fibrosis must be elucidated so that novel treatments can be designed. Methods and Materials: To determine whether microRNAs (miRs) could be responsible for RIF, the fibrotic process was induced in the right hind legs of 9-week old CH3 mice by a single-fraction dose of irradiation to 35 Gy, and the left leg served as an unirradiated control. Fibrosis was quantified by measurements of leg length compared with control leg length. By 120 days after irradiation, the irradiated legs were 20% (P=.013) shorter on average than were the control legs. Results: Tissue analysis was done on muscle, skin, and subcutaneous tissue from irradiated and control legs. Fibrosis was noted on both gross and histologic examination by use of a pentachrome stain. Microarrays were performed at various times after irradiation, including 7 days, 14 days, 50 days, 90 days, and 120 days after irradiation. miR-15a, miR-21, miR-30a, and miR-34a were the miRs with the most significant alteration by array with miR-34a, proving most significant on confirmation by reverse transcriptase polymerase chain reaction, c-Met, a known effector of fibrosis and downstream molecule of miR-34a, was evaluated by use of 2 cell lines: HCT116 and 1522. The cell lines were exposed to various stressors to induce miR changes, specifically ionizing radiation. Additionally, in vitro transfections with pre-miRs and anti-miRs confirmed the relationship of miR-34a and c-Met. Conclusions: Our data demonstrate an inverse relationship with miR-34a and c-Met; the upregulation of miR-34a in RIF causes inhibition of c-Met production. miRs may play a role in RIF; in particular, miR-34a should be investigated as a potential target to prevent or treat this devastating side effect of irradiation.

  14. Preliminary analysis of microRNA transcriptome altered by vaccine and Marek’s disease virus in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs are a class of small, non-coding RNAs that regulate gene expression at the post-transcriptional level and play important roles in many biological processes such as development, cell signaling and immune response. Mature miRNAs are about 22 nucleotides in length. Reportedly, the growth of v...

  15. Systems and Evolutionary Characterization of MicroRNAs and Their Underlying Regulatory Networks in Soybean Cotyledons

    PubMed Central

    Liu, Zongrang; Xia, Jing; Zhang, Weixiong; Zhao, Patrick X.

    2014-01-01

    MicroRNAs (miRNAs) are an emerging class of small RNAs regulating a wide range of biological processes. Soybean cotyledons evolved as sink tissues to synthesize and store seed reserves which directly affect soybean seed yield and quality. However, little is known about miRNAs and their regulatory networks in soybean cotyledons. We sequenced 292 million small RNA reads expressed in soybean cotyledons, and discovered 130 novel miRNA genes and 72 novel miRNA families. The cotyledon miRNAs arose at various stages of land plant evolution. Evolutionary analysis of the miRNA genes in duplicated genome segments from the recent Glycine whole genome duplication revealed that the majority of novel soybean cotyledon miRNAs were young, and likely arose after the duplication event 13 million years ago. We revealed the evolutionary pathway of a soybean cotyledon miRNA family (soy-miR15/49) that evolved from a neutral invertase gene through an inverted duplication and a series of DNA amplification and deletion events. A total of 304 miRNA genes were expressed in soybean cotyledons. The miRNAs were predicted to target 1910 genes, and form complex miRNA networks regulating a wide range of biological pathways in cotyledons. The comprehensive characterization of the miRNAs and their underlying regulatory networks at gene, pathway and system levels provides a foundation for further studies of miRNAs in cotyledons. PMID:24475082

  16. Identification and characterization of microRNAs in the zoonotic fluke Fasciolopsis buski.

    PubMed

    Chen, Mu-Xin; Hu, Wei; Li, Juan; He, Jun-Jun; Ai, Lin; Chen, Jia-Xu

    2016-06-01

    Fasciolopsis buski is a food-borne zoonotic parasite which is transmitted by aquatic plants, with pigs and humans as the definitive hosts. The objective of the present study was to characterize the microRNA (miRNA) profiles of this parasite by Solexa deep sequencing and bioinformatic analysis. Approximately 12 million high-quality reads were obtained from adult F. buski. A total of 286 miRNA candidates were found and 24 miRNA candidates were conserved miRNAs in the miRBase database. Three novel miRNAs were identified and confirmed by stem-loop reverse transcriptase polymerase chain reaction (RT-PCR). The miRNAs found in the present study belong to 13 families whose members showed high bias. The guanine (G) was the dominant nucleotide at the beginning and middle of the conserved miRNAs, particularly at the positions of 2nd, 6th, and 13th. To our knowledge, this is the first report of the miRNA profiles of F. buski, which would lay a foundation for further functional studies of miRNAs of F. buski. PMID:27021181

  17. Comparative Characterization of Cardiac Development Specific microRNAs: Fetal Regulators for Future

    PubMed Central

    Rustagi, Yashika; Jaiswal, Hitesh K.; Rawal, Kamal; Kundu, Gopal C.; Rani, Vibha

    2015-01-01

    MicroRNAs (miRNAs) are small, conserved RNAs known to regulate several biological processes by influencing gene expression in eukaryotes. The implication of miRNAs as another player of regulatory layers during heart development and diseases has recently been explored. However, there is no study which elucidates the profiling of miRNAs during development of heart till date. Very limited miRNAs have been reported to date in cardiac context. In addition, integration of large scale experimental data with computational and comparative approaches remains an unsolved challenge.The present study was designed to identify the microRNAs implicated in heart development using next generation sequencing, bioinformatics and experimental approaches. We sequenced six small RNA libraries prepared from different developmental stages of the heart using chicken as a model system to produce millions of short sequence reads. We detected 353 known and 703 novel miRNAs involved in heart development. Out of total 1056 microRNAs identified, 32.7% of total dataset of known microRNAs displayed differential expression whereas seven well studied microRNAs namely let–7, miR–140, miR–181, miR–30, miR–205, miR–103 and miR–22 were found to be conserved throughout the heart development. The 3’UTR sequences of genes were screened from Gallus gallus genome for potential microRNA targets. The target mRNAs were appeared to be enriched with genes related to cell cycle, apoptosis, signaling pathways, extracellular remodeling, metabolism, chromatin remodeling and transcriptional regulators. Our study presents the first comprehensive overview of microRNA profiling during heart development and prediction of possible cardiac specific targets and has a big potential in future to develop microRNA based therapeutics against cardiac pathologies where fetal gene re-expression is witnessed in adult heart. PMID:26465880

  18. The altered expression of inflammation-related microRNAs with microRNA-155 expression correlates with Th17 differentiation in patients with acute coronary syndrome.

    PubMed

    Yao, Rui; Ma, Yulan; Du, Youyou; Liao, Mengyang; Li, Huanhuan; Liang, Wei; Yuan, Jing; Ma, Zhijun; Yu, Xian; Xiao, Hong; Liao, Yuhua

    2011-11-01

    MicroRNAs (miRNAs) are a novel class of small, non-coding RNAs that play a significant role in both inflammatory and cardiovascular diseases. Immune cells, especially T helper (Th) cells, are critical in the development of atherosclerosis and the onset of acute coronary syndrome (ACS). To assess whether inflammation-related miRNAs (such as miR-155, 146a, 21, 125a-5p, 125b, 31) are involved in the imbalance of Th cell subsets in patients with ACS, we measured the expression of related miRNAs in patients with acute myocardial infarction (AMI), unstable angina (UA), stable angina (SA) and chest pain syndrome (CPS); analyzed the relationship between miRNA expression and the frequency of Th cell subsets; and observed the co-expression of miR-155 and IL-17A in peripheral blood mononuclear cells (PBMCs) of patients with ACS. The results showed that the expression of miR-155 in the PBMCs of patients with ACS was decreased by approximately 60%, while the expression of both miR-21 and miR-146a was increased by approximately twofold. The expression patterns of miRNAs in plasma correlated with those in PBMCs, except for miR-21, which was increased by approximately sixfold in the AMI group and showed no significant difference between the UA group and the CPS group. We also found that the expression of miR-155 inversely correlated with the frequency of Th17 cells (r=-0.896, P<0.01) and that miR-155 was co-expressed with IL-17A in patients with ACS. In conclusion, our study revealed the expression patterns of inflammation-related miRNAs in patients with ACS and found that miR-155 may be associated with Th17 cell differentiation. PMID:21804579

  19. Genome-wide identification and characterization of Eutrema salsugineum microRNAs for salt tolerance.

    PubMed

    Wu, Ying; Guo, Jing; Cai, Yimei; Gong, Xiaolin; Xiong, Xuemei; Qi, Wenwen; Pang, Qiuying; Wang, Xumin; Wang, Yang

    2016-08-01

    Eutrema salsugineum, a close relative of Arabidopsis thaliana, is a valuable halophytic model plant that has extreme tolerance to salinity. As posttranscriptional gene regulators, microRNAs (miRNAs) control gene expression and a variety of biological processes, including plant-stress responses. To identify salt-stress responsive miRNAs in E. salsugineum and reveal their possible roles in the adaptive response to salt stress, we chose the Solexa sequencing platform to screen the miRNAs in 4-week-old E. salsugineum seedlings under salt treatment. A total of 82 conserved miRNAs belonging to 27 miRNA families and 17 novel miRNAs were identified and 11 conserved miRNA families and 4 novel miRNAs showed a significant response to salt stress. To investigate the possible biological roles of miRNAs, 1060 potential targets were predicted. Moreover, 35 gene ontology (GO) categories and 1 pathway, including a few terms that were directly and indirectly related to salt stress, were significantly enriched in the salt-stress-responsive miRNAs targets. The relative expression analysis of six target genes was analyzed using quantitative real-time polymerase chain reaction (PCR) and showed a negative correlation with their corresponding miRNAs. Many stress regulatory and phytohormone regulatory cis-regulatory elements were widely present in the promoter region of the salt-responsive miRNA precursors. This study describes the large-scale characterization of E. salsugineum miRNAs and provides a useful resource for further understanding of miRNA functions in the regulation of the E. salsugineum salt-stress response. PMID:26806325

  20. Characterization of host microRNAs that respond to DNA virus infection in a crustacean

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are key posttranscriptional regulators of gene expression that are implicated in many processes of eukaryotic cells. It is known that the expression profiles of host miRNAs can be reshaped by viruses. However, a systematic investigation of marine invertebrate miRNAs that respond to virus infection has not yet been performed. Results In this study, the shrimp Marsupenaeus japonicus was challenged by white spot syndrome virus (WSSV). Small RNA sequencing of WSSV-infected shrimp at different time post-infection (0, 6, 24 and 48 h) identified 63 host miRNAs, 48 of which were conserved in other animals, representing 43 distinct families. Of the identified host miRNAs, 31 were differentially expressed in response to virus infection, of which 25 were up-regulated and six down-regulated. The results were confirmed by northern blots. The TargetScan and miRanda algorithms showed that most target genes of the differentially expressed miRNAs were related to immune responses. Gene ontology analysis revealed that immune signaling pathways were mediated by these miRNAs. Evolutionary analysis showed that three of them, miR-1, miR-7 and miR-34, are highly conserved in shrimp, fruit fly and humans and function in the similar pathways. Conclusions Our study provides the first large-scale characterization of marine invertebrate miRNAs that respond to virus infection. This will help to reveal the molecular events involved in virus-host interactions mediated by miRNAs and their evolution in animals. PMID:22545795

  1. Identification and characterization of the microRNA transcriptome of a moth orchid Phalaenopsis aphrodite.

    PubMed

    Chao, Ya-Ting; Su, Chun-Lin; Jean, Wen-Han; Chen, Wan-Chieh; Chang, Yao-Chien Alex; Shih, Ming-Che

    2014-03-01

    Orchids display unique phenotypes, functional characteristics and ecological adaptations that are not found in model plants. In this study, we aimed to characterize the microRNA (miRNA) transcriptome and identify species- and tissue-specific miRNAs in Phalaenopsis aphrodite. After data filtering and cleanup, a total of 59,387,374 reads, representing 1,649,996 unique reads, were obtained from four P. aphrodite small RNA libraries. A systematic bioinformatics analysis pipeline was developed that can be used for miRNA and precursor mining, and target gene prediction in non-model plants. A total of 3,251 unique reads for 181 known plant miRNAs (belonging to 88 miRNA families), 23 new miRNAs and 91 precursors were identified. All the miRNA star sequences (miRNA*), the complementary strands of miRNA that from miRNA/miRNA* duplexes, of the predicted new miRNAs were detected in our small RNA libraries, providing additional evidence for their existence as new miRNAs in P. aphrodite. Furthermore, 240 potential miRNA-targets that appear to be involved in many different biological activities and molecular functions, especially transcription factors, were identified, suggesting that miRNAs can impact multiple processes in P. aphrodite. We also verified the cleavage sites for six targets using RNA ligase-mediated rapid amplification of 5' ends assay. The results provide valuable information about the composition, expression and function of miRNA in P. aphrodite, and will aid functional genomics studies of orchids. PMID:24173913

  2. Characterization of microRNAs Expressed during Secondary Wall Biosynthesis in Acacia mangium

    PubMed Central

    Ong, Seong Siang; Wickneswari, Ratnam

    2012-01-01

    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants. PMID:23251324

  3. Characterization of microRNA expression profiles in patients with intervertebral disc degeneration

    PubMed Central

    ZHAO, BO; YU, QIANG; LI, HAOPENG; GUO, XIONG; HE, XIJING

    2014-01-01

    Intervertebral disc degeneration (IDD) is associated with lower back pain and is a global burden with severe healthcare and socioeconomic consequences. However, the underlying mechanisms of IDD remain largely unelucidated. Accumulating evidence has indicasted that newly defined gene regulators, microRNAs (miRNAs), play a vital role in neurodegenerative, pathophysiological and certain reproductive disorders. To characterize the differential miRNA expression profiles between IDD and spinal cord injury, specimens from 3 patients with IDD and 3 with spinal cord injury were selected for microarray analysis. Total RNA from these 6 specimens was extracted and subjected to global miRNA expression analysis using the Exiqon miRCURY™ LNA Array (v.16.0). The microarray data were then validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, bioinformatics analysis was performed to investigate the dysregulated miRNA target genes and signaling pathways involved. Among the miRNAs analyzed, 25 miRNAs were found to be upregulated and 26 were found to be downregulated in the IDD group compared with the spinal cord injury group. The qRT-PCR results validated the microarray data. Bioinformatics analysis indicated that the signaling pathways most likely to be controlled by these miRNAs were the phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR; ErbB) and Wnt pathways. Our results demonstrated that the miRNA expression in patients with IDD differed significantly from that in patients who sustained injury to the intervertebral disc. Our data indicate that the dysregulated miRNAs control the signaling pathways important for the maintenance of IDD. Further studies on miRNA target gene identification and biological functions may address the specific regulatory mechanisms of miRNAs in IDD, and may provide valuable insight into the diagnosis and treatment of IDD. PMID:24173697

  4. Characterization of microRNA expression profiles in patients with intervertebral disc degeneration.

    PubMed

    Zhao, Bo; Yu, Qiang; Li, Haopeng; Guo, Xiong; He, Xijing

    2014-01-01

    Intervertebral disc degeneration (IDD) is associated with lower back pain and is a global burden with severe healthcare and socioeconomic consequences. However, the underlying mechanisms of IDD remain largely unelucidated. Accumulating evidence has indicasted that newly defined gene regulators, microRNAs (miRNAs), play a vital role in neurodegenerative, pathophysiological and certain reproductive disorders. To characterize the differential miRNA expression profiles between IDD and spinal cord injury, specimens from 3 patients with IDD and 3 with spinal cord injury were selected for microarray analysis. Total RNA from these 6 specimens was extracted and subjected to global miRNA expression analysis using the Exiqon miRCURY™ LNA Array (v.16.0). The microarray data were then validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, bioinformatics analysis was performed to investigate the dysregulated miRNA target genes and signaling pathways involved. Among the miRNAs analyzed, 25 miRNAs were found to be upregulated and 26 were found to be downregulated in the IDD group compared with the spinal cord injury group. The qRT-PCR results validated the microarray data. Bioinformatics analysis indicated that the signaling pathways most likely to be controlled by these miRNAs were the phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR; ErbB) and Wnt pathways. Our results demonstrated that the miRNA expression in patients with IDD differed significantly from that in patients who sustained injury to the intervertebral disc. Our data indicate that the dysregulated miRNAs control the signaling pathways important for the maintenance of IDD. Further studies on miRNA target gene identification and biological functions may address the specific regulatory mechanisms of miRNAs in IDD, and may provide valuable insight into the diagnosis and treatment of IDD. PMID:24173697

  5. Characterization of microRNAs expressed during secondary wall biosynthesis in Acacia mangium.

    PubMed

    Ong, Seong Siang; Wickneswari, Ratnam

    2012-01-01

    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants. PMID:23251324

  6. Expression Profiling and Structural Characterization of MicroRNAs in Adipose Tissues of Hibernating Ground Squirrels

    PubMed Central

    Wu, Cheng-Wei; Biggar, Kyle K.; Storey, Kenneth B.

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P < 0.05), which was 16%–54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32–2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%–70% of control), while only expression of miR-138 was significantly upregulated (2.91 ± 0.8-fold of the control, P < 0.05). Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK) signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked

  7. Expression profiling and structural characterization of microRNAs in adipose tissues of hibernating ground squirrels.

    PubMed

    Wu, Cheng-Wei; Biggar, Kyle K; Storey, Kenneth B

    2014-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P<0.05), which was 16%-54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32-2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%-70% of control), while only expression of miR-138 was significantly upregulated (2.91±0.8-fold of the control, P<0.05). Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK) signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked to distinct

  8. MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity

    PubMed Central

    Plank, Maximilian W.; Maltby, Steven; Tay, Hock L.; Stewart, Jessica; Eyers, Fiona; Hansbro, Philip M.; Foster, Paul S.

    2015-01-01

    MicroRNAs are post-transcriptional regulators of gene expression that are differentially regulated during development and in inflammatory diseases. A role for miRNAs in allergic asthma is emerging and further investigation is required to determine whether they may serve as potential therapeutic targets. We profiled miRNA expression in murine lungs from an ovalbumin-induced allergic airways disease model, and compared expression to animals receiving dexamethasone treatment and non-allergic controls. Our analysis identified 29 miRNAs that were significantly altered during allergic inflammation. Target prediction analysis revealed novel genes with altered expression in allergic airways disease and suggests synergistic miRNA regulation of target mRNAs. To assess the impacts of one induced miRNA on pathology, we targeted miR-155-5p using a specific antagomir. Antagomir administration successfully reduced miR-155-5p expression with high specificity, but failed to alter the disease phenotype. Interestingly, further investigation revealed that antagomir delivery has variable efficacy across different immune cell types, effectively targeting myeloid cell populations, but exhibiting poor uptake in lymphocytes. Our findings demonstrate that antagomir-based targeting of miRNA function in the lung is highly specific, but highlights cell-specificity as a key limitation to be considered for antagomir-based strategies as therapeutics. PMID:26693910

  9. Altered microRNA expression profiles are involved in resistance to low-dose ionizing radiation in the absence of BMI1 in human dermal fibroblasts.

    PubMed

    Bae, Seunghee; Kim, Karam; Cha, Hwa Jun; Choi, Yeongmin; Shin, Shang Hun; An, In-Sook; Lee, Jae Ho; Song, Jie-Young; Yang, Kwang Hee; Nam, Seon Young; An, Sungkwan

    2014-10-01

    The polycomb group RING finger protein, B-cell‑specific moloney murine leukemia virus integration site 1 (BMI1), has emerged as a key regulator of cell proliferation, cell cycle, cell immortalization, chemoresistance and radioresistance. Although the radioresistant effect of BMI1 has been thoroughly investigated, the effectiveness of this factor on low-dose radiation (LDR) resistance has not been explored. Here, we demonstrate that BMI1 is not critical for altering cell viability or cell growth in response to LDR, but BMI1 changes cellular gene expression profiles in response to LDR. Normal human dermal fibroblasts (NHDFs) stably expressing BMI1 short hairpin RNA (shRNA) did not exhibit changes in cell viability or cell cycle distribution assays following exposure to 0.1 Gy of γ-radiation. However, microRNA (miRNA) microarrays revealed that a lack of BMI1 leads to changes in miRNA expression in response to LDR. Bioinformatics analyses demonstrated that predicted target genes of the altered miRNAs are functionally involved in both negative and positive regulation of cell growth, cell proliferation, cell cycle and apoptosis. Therefore, these results indicate that low radiosensitivity even in the absence of the radioresistant factor BMI1 is related with the altered miRNA expression profiles in NHDF. PMID:25016973

  10. Epigallocatechin Gallate-Mediated Alteration of the MicroRNA Expression Profile in 5α-Dihydrotestosterone-Treated Human Dermal Papilla Cells

    PubMed Central

    Shin, Shanghun; Kim, Karam; Lee, Myung Joo; Lee, Jeongju; Choi, Sungjin; Kim, Kyung-Suk; Ko, Jung-Min; Han, Hyunjoo; Kim, Su Young; Youn, Hae Jeong; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan

    2016-01-01

    Background Dihydrotestosterone (DHT) induces androgenic alopecia by shortening the hair follicle growth phase, resulting in hair loss. We previously demonstrated how changes in the microRNA (miRNA) expression profile influenced DHT-mediated cell death, cell cycle arrest, cell viability, the generation of reactive oxygen species (ROS), and senescence. Protective effects against DHT have not, however, been elucidated at the genome level. Objective We showed that epigallocatechin gallate (EGCG), a major component of green tea, protects DHT-induced cell death by regulating the cellular miRNA expression profile. Methods We used a miRNA microarray to identify miRNA expression levels in human dermal papilla cells (DPCs). We investigated whether the miRNA expression influenced the protective effects of EGCG against DHT-induced cell death, growth arrest, intracellular ROS levels, and senescence. Results EGCG protected against the effects of DHT by altering the miRNA expression profile in human DPCs. In addition, EGCG attenuated DHT-mediated cell death and growth arrest and decreased intracellular ROS levels and senescence. A bioinformatics analysis elucidated the relationship between the altered miRNA expression and EGCG-mediated protective effects against DHT. Conclusion Overall, our results suggest that EGCG ameliorates the negative effects of DHT by altering the miRNA expression profile in human DPCs. PMID:27274631

  11. Characterization of Herpes Simplex Virus 2 Primary MicroRNA Transcript Regulation

    PubMed Central

    Bosch-Marce, Marta; Patel, Amita; Margolis, Todd P.

    2015-01-01

    ABSTRACT In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phenotypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcription initiation sites of both HSV-2 LAT (pri-miRNA for miR-I and miR-II, which target ICP34.5, and miR-III, which targets ICP0) and L/ST (a pri-miRNA for miR-I and miR-II) but not at that of the primary miR-H6 (for which the target is unknown). We confirmed activity of the putative HSV-2 L/ST promoter and found that ICP4 trans-activates the L/ST promoter when the ICP4-binding site at its transcription initiation site is mutated, suggesting that ICP4 may play a dual role in regulating transcription of L/ST and, consequently, of miR-I and miR-II. LAT exon 1 (containing LAT enhancer sequences), together with the LAT promoter region, comprises a bidirectional promoter required for the expression of both LAT-encoded miRNAs and miR-H6 in latently infected mouse ganglia. The ability of ICP4 to suppress ICP34.5-targeting miRNAs and to activate lytic viral genes suggests that ICP4 could play a key role in the switch between latency and reactivation. IMPORTANCE The HSV-2 LAT and viral miRNAs expressed in the LAT region are the most abundant viral transcripts during HSV latency. The balance between the expression of LAT and LAT-associated miRNAs and the expression of lytic viral transcripts from the opposite strand appears to influence whether individual HSV-infected neurons will be latently or productively infected. The outcome of neuronal infection may thus depend on regulation of gene expression of the corresponding primary miRNAs. In the present study, we characterize promoter sequences responsible for miRNA expression, including identification of the primary miRNA 5′ ends and evaluation of

  12. Characterization of microRNAs in Mud Crab Scylla paramamosain under Vibrio parahaemolyticus Infection

    PubMed Central

    Li, Chuanbiao; Zhang, Zhao; Zhou, Lizhen; Wang, Shijia; Wang, Shuqi; Zhang, Yueling; Wen, Xiaobo

    2013-01-01

    Background Infection of bacterial Vibrio parahaemolyticus is common in mud crab farms. However, the mechanisms of the crab’s response to pathogenic V. parahaemolyticus infection are not fully understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs that function as regulators of gene expression and play essential roles in various biological processes. To understand the underlying mechanisms of the molecular immune response of the crab to the pathogens, high-throughput Illumina/Solexa deep sequencing technology was used to investigate the expression profiles of miRNAs in S. paramamosain under V. parahaemolyticus infection. Methodology/Principal Findings Two mixed RNA pools of 7 tissues (intestine, heart, liver, gill, brain, muscle and blood) were obtained from V. parahaemolyticus infected crabs and the control groups, respectively. By aligning the sequencing data with known miRNAs, we characterized 421 miRNA families, and 133 conserved miRNA families in mud crab S. paramamosain were either identical or very similar to existing miRNAs in miRBase. Stem-loop qRT-PCRs were used to scan the expression levels of four randomly chosen differentially expressed miRNAs and tissue distribution. Eight novel potential miRNAs were confirmed by qRT-PCR analysis and the precursors of these novel miRNAs were verified by PCR amplification, cloning and sequencing in S. paramamosain. 161 miRNAs (106 of which up-regulated and 55 down-regulated) were significantly differentially expressed during the challenge and the potential targets of these differentially expressed miRNAs were predicted. Furthermore, we demonstrated evolutionary conservation of mud crab miRNAs in the animal evolution process. Conclusions/Significance In this study, a large number of miRNAs were identified in S. paramamosain when challenged with V. parahaemolyticus, some of which were differentially expressed. The results show that miRNAs might play some important roles in regulating gene expression in mud

  13. Early Life Ozone Exposure Results in Dysregulated Innate Immune Function and Altered microRNA Expression in Airway Epithelium

    PubMed Central

    Gerriets, Joan E.; Wang, Theodore T.; Postlethwait, Edward M.; Evans, Michael J.; Fontaine, Justin H.; Miller, Lisa A.

    2014-01-01

    Exposure to ozone has been associated with increased incidence of respiratory morbidity in humans; however the mechanism(s) behind the enhancement of susceptibility are unclear. We have previously reported that exposure to episodic ozone during postnatal development results in an attenuated peripheral blood cytokine response to lipopolysaccharide (LPS) that persists with maturity. As the lung is closely interfaced with the external environment, we hypothesized that the conducting airway epithelium of neonates may also be a target of immunomodulation by ozone. To test this hypothesis, we evaluated primary airway epithelial cell cultures derived from juvenile rhesus macaque monkeys with a prior history of episodic postnatal ozone exposure. Innate immune function was measured by expression of the proinflammatory cytokines IL-6 and IL-8 in primary cultures established following in vivo LPS challenge or, in response to in vitro LPS treatment. Postnatal ozone exposure resulted in significantly attenuated IL-6 mRNA and protein expression in primary cultures from juvenile animals; IL-8 mRNA was also significantly reduced. The effect of antecedent ozone exposure was modulated by in vivo LPS challenge, as primary cultures exhibited enhanced cytokine expression upon secondary in vitro LPS treatment. Assessment of potential IL-6-targeting microRNAs miR-149, miR-202, and miR-410 showed differential expression in primary cultures based upon animal exposure history. Functional assays revealed that miR-149 is capable of binding to the IL-6 3′ UTR and decreasing IL-6 protein synthesis in airway epithelial cell lines. Cumulatively, our findings suggest that episodic ozone during early life contributes to the molecular programming of airway epithelium, such that memory from prior exposures is retained in the form of a dysregulated IL-6 and IL-8 response to LPS; differentially expressed microRNAs such as miR-149 may play a role in the persistent modulation of the epithelial innate

  14. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus) Over-Expressing MicroRNA394.

    PubMed

    Song, Jian Bo; Shu, Xia Xia; Shen, Qi; Li, Bo Wen; Song, Jun; Yang, Zhi Min

    2015-01-01

    Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus) miR394 with its target gene Brassica napus leaf curling responsiveness (BnLCR) to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS) and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA) composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including leafy cotyledon1 (BnLEC1), BnLEC2, and FUSCA3 (FUS3). Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development. PMID:25978066

  15. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus) Over-Expressing MicroRNA394

    PubMed Central

    Song, Jian Bo; Shu, Xia Xia; Shen, Qi; Li, Bo Wen; Song, Jun; Yang, Zhi Min

    2015-01-01

    Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus) miR394 with its target gene Brassica napus LEAF CURLING RESPONSIVENESS (BnLCR) to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS) and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA) composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and FUSCA3 (FUS3). Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development. PMID:25978066

  16. Identification and Characterization of MicroRNAs in Snakehead Fish Cell Line upon Snakehead Fish Vesiculovirus Infection.

    PubMed

    Liu, Xiaodan; Tu, Jiagang; Yuan, Junfa; Liu, Xueqin; Zhao, Lijuan; Dawar, Farman Ullah; Khattak, Muhammad Nasir Khan; Hegazy, Abeer M; Chen, Nan; Vakharia, Vikram N; Lin, Li

    2016-01-01

    MicroRNAs (miRNAs) play important roles in mediating multiple biological processes in eukaryotes and are being increasingly studied to evaluate their roles associated with cellular changes following viral infection. Snakehead fish Vesiculovirus (SHVV) has caused mass mortality in snakehead fish during the past few years. To identify specific miRNAs involved in SHVV infection, we performed microRNA deep sequencing on a snakehead fish cell line (SSN-1) with or without SHVV infection. A total of 205 known miRNAs were identified when they were aligned with the known zebrafish miRNAs, and nine novel miRNAs were identified using MiRDeep2 software. Eighteen and 143 of the 205 known miRNAs were differentially expressed at three and 24 h post-infection (poi), respectively. From the differentially-expressed miRNAs, five were randomly selected to validate their expression profiles using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and their expression profiles were consistent with the microRNA sequencing results. In addition, the target gene prediction of the SHVV genome was performed for the differentially-expressed host miRNAs, and a total of 10 and 58 differentially-expressed miRNAs were predicted to bind to the SHVV genome at three and 24 h poi, respectively. The effects of three selected miRNAs (miR-130-5p, miR-214 and miR-216b) on SHVV multiplication were evaluated using their mimics and inhibitors via qRT-PCR and Western blotting. The results showed that all three miRNAs were able to inhibit the multiplication of SHVV; whereas the mechanisms underlying the SHVV multiplication inhibited by the specific miRNAs need to be further characterized in the future. PMID:26821019

  17. Systematic Identification, Characterization and Target Gene Analysis of microRNAs Involved in Osteoarthritis Subchondral Bone Pathogenesis.

    PubMed

    Prasadam, Indira; Batra, Jyotsna; Perry, Samuel; Gu, Wenyi; Crawford, Ross; Xiao, Yin

    2016-07-01

    This study aimed to identify the microRNAs associated with sclerotic status of subchondral bone in the pathogenesis of osteoarthritis (OA). Total RNA was extracted from non-sclerotic and sclerotic OA subchondral bone from patients undergoing knee replacement surgeries. miRCURY™ LNA miRNA chip and qRT-PCR were used to profile and validate differential microRNA expression. In addition, we further confirmed profiles of altered miRNAs in an OA rat meniscectomy animal model and their putative targets of the miRNAs were predicted using ingenuity (IPA) software. Finally, five short-listed miRNAs were reactivated by transient in vitro overexpression (miRNA mimics) in subchondral bone osteoblasts and their phenotypes were assessed. Functional screening identified 30 differentiated miRNAs in sclerotic subchondral bone compared to non-sclerotic bone of OA patients. Data integration resulted in confirmation of the eight miRNAs, with aberrant expression in independent human OA bone sample set. In silico analysis (IPA) identified 732 mRNA transcripts as putative targets of the eight altered miRNAs, of which twenty genes were validated to be differentially expressed in sclerotic compared to non-sclerotic bone samples. Out of eight dysregulated miRNA's, five of them showed consistent time-dependent downregulation in a rat OA model. Furthermore, synthetic miR-199a-3p, miR-199a-5p, miR-590-5p, and miR-211-5p mimics rescued the abnormal osteoarthritic subchondral bone osteoblast gene expression and mineralization. We have identified four novel miRNAs that play important roles in subchondral bone pathogenesis in OA. Additional studies are required to develop these miRNAs into therapeutic modalities for OA. PMID:26944279

  18. N-methylnicotinamide and nicotinamide N-methyltransferase are associated with microRNA-1291-altered pancreatic carcinoma cell metabolome and suppressed tumorigenesis

    PubMed Central

    Bi, Hui-Chang; Pan, Yu-Zhuo; Qiu, Jing-Xin; Krausz, Kristopher W.; Li, Fei; Johnson, Caroline H.; Jiang, Chang-Tao; Gonzalez, Frank J.; Yu, Ai-Ming

    2014-01-01

    The cell metabolome comprises abundant information that may be predictive of cell functions in response to epigenetic or genetic changes at different stages of cell proliferation and metastasis. An unbiased ultra-performance liquid chromatography–mass spectrometry-based metabolomics study revealed a significantly altered metabolome for human pancreatic carcinoma PANC-1 cells with gain-of-function non-coding microRNA-1291 (miR-1291), which led to a lower migration and invasion capacity as well as suppressed tumorigenesis in a xenograft tumor mouse model. A number of metabolites, including N-methylnicotinamide, involved in nicotinamide metabolism, and l-carnitine, isobutyryl-carnitine and isovaleryl-carnitine, involved in fatty acid metabolism, were elevated in miR-1291-expressing PANC-1. Notably, N-methylnicotinamide was elevated to the greatest extent, and this was associated with a sharp increase in nicotinamide N-methyltransferase (NNMT) mRNA level in miR-1291-expressing PANC-1 cells. In addition, expression of NNMT mRNA was inversely correlated with pancreatic tumor size in the xenograft mouse model. These results indicate that miR-1291-altered PANC-1 cell function is associated with the increase in N-methylnicotinamide level and NNMT expression, and in turn NNMT may be indicative of the extent of pancreatic carcinogenesis. PMID:25115443

  19. DIANA-miRGen v3.0: accurate characterization of microRNA promoters and their regulators

    PubMed Central

    Georgakilas, Georgios; Vlachos, Ioannis S.; Zagganas, Konstantinos; Vergoulis, Thanasis; Paraskevopoulou, Maria D.; Kanellos, Ilias; Tsanakas, Panayiotis; Dellis, Dimitris; Fevgas, Athanasios; Dalamagas, Theodore; Hatzigeorgiou, Artemis G.

    2016-01-01

    microRNAs (miRNAs) are small non-coding RNAs that actively fine-tune gene expression. The accurate characterization of the mechanisms underlying miRNA transcription regulation will further expand our knowledge regarding their implication in homeostatic and pathobiological networks. Aim of DIANA-miRGen v3.0 (http://www.microrna.gr/mirgen) is to provide for the first time accurate cell-line-specific miRNA gene transcription start sites (TSSs), coupled with genome-wide maps of transcription factor (TF) binding sites in order to unveil the mechanisms of miRNA transcription regulation. To this end, more than 7.3 billion RNA-, ChIP- and DNase-Seq next generation sequencing reads were analyzed/assembled and combined with state-of-the-art miRNA TSS prediction and TF binding site identification algorithms. The new database schema and web interface facilitates user interaction, provides advanced queries and innate connection with other DIANA resources for miRNA target identification and pathway analysis. The database currently supports 276 miRNA TSSs that correspond to 428 precursors and >19M binding sites of 202 TFs on a genome-wide scale in nine cell-lines and six tissues of Homo sapiens and Mus musculus. PMID:26586797

  20. DIANA-miRGen v3.0: accurate characterization of microRNA promoters and their regulators.

    PubMed

    Georgakilas, Georgios; Vlachos, Ioannis S; Zagganas, Konstantinos; Vergoulis, Thanasis; Paraskevopoulou, Maria D; Kanellos, Ilias; Tsanakas, Panayiotis; Dellis, Dimitris; Fevgas, Athanasios; Dalamagas, Theodore; Hatzigeorgiou, Artemis G

    2016-01-01

    microRNAs (miRNAs) are small non-coding RNAs that actively fine-tune gene expression. The accurate characterization of the mechanisms underlying miRNA transcription regulation will further expand our knowledge regarding their implication in homeostatic and pathobiological networks. Aim of DIANA-miRGen v3.0 (http://www.microrna.gr/mirgen) is to provide for the first time accurate cell-line-specific miRNA gene transcription start sites (TSSs), coupled with genome-wide maps of transcription factor (TF) binding sites in order to unveil the mechanisms of miRNA transcription regulation. To this end, more than 7.3 billion RNA-, ChIP- and DNase-Seq next generation sequencing reads were analyzed/assembled and combined with state-of-the-art miRNA TSS prediction and TF binding site identification algorithms. The new database schema and web interface facilitates user interaction, provides advanced queries and innate connection with other DIANA resources for miRNA target identification and pathway analysis. The database currently supports 276 miRNA TSSs that correspond to 428 precursors and >19M binding sites of 202 TFs on a genome-wide scale in nine cell-lines and six tissues of Homo sapiens and Mus musculus. PMID:26586797

  1. Altered MicroRNA Expression Profile in Exosomes during Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2014-01-01

    The physiological role of microRNAs (miRNAs) in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs) culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84%) could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05) when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221) were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation. PMID:25503309

  2. Altered microRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism

    SciTech Connect

    Ilnytskyy, Yaroslav; Zemp, Franz J.; Koturbash, Igor; Kovalchuk, Olga

    2008-12-05

    To investigate involvement of miRNAs in radiation responses we used microRNAome profiling to analyze the sex-specific response of radiation sensitive hematopoietic lymphoid tissues. We show that radiation exposure resulted in a significant and sex-specific deregulation of microRNA expression in murine spleen and thymus tissues. Among the regulated miRNAs, we found that changes in expression of miR-34a and miR-7 may be involved in important protective mechanisms counteracting radiation cytotoxicity. We observed a significant increase in the expression of tumor-suppressor miR-34a, paralleled by a decrease in the expression of its target oncogenes NOTCH1, MYC, E2F3 and cyclin D1. Additionally, we show that miR-7 targets the lymphoid-specific helicase LSH, a pivotal regulator of DNA methylation and genome stability. While miR-7 was significantly down-regulated LSH was significantly up-regulated. These cellular changes may constitute an attempt to counteract radiation-induced hypomethylation. Tissue specificity of miRNA responses and possible regulation of miRNA expression upon irradiation are discussed.

  3. Identification and characteristics of microRNAs with altered expression patterns in a rat model of abdominal aortic aneurysms.

    PubMed

    Liu, Guang; Huang, Ying; Lu, Xinwu; Lu, Min; Huang, Xintian; Li, Weimin; Jiang, Mier

    2010-11-01

    Abdominal aortic aneurysm (AAA) is a lethal disease, occurring mostly in men more than 65 years of age. Until recently, the pathogenesis of AAA remains poorly understood. MicroRNAs (miRNAs) are a novel class of endogenous small non-coding RNAs that play important roles in diverse biological and pathological processes including cardiovascular diseases. However, their biological roles in AAA formation have not been elucidated. In this study, we employed oligonucleotide microarrays to detect and compare miRNA expression profiles in a rat model of AAA. The abdominal aorta was exposed and incubated for 20 min with saline supplemented with calcium chloride and collagenase. After 28 days, the treated aortas were evaluated by digital measurement and angiography. A 50% increase over the normal diameter is considered as AAA. Our results revealed a set of differentially expressed miRNAs, with 10 significantly up-regulated and 5 significantly down-regulated miRNAs in AAA tissues. Four miRNAs (miR-19a, miR-19b, miR-132, and miR-221) were randomly selected for validation using real-time RT-PCR. Functional annotations of all putative targets of differentially expressed miRNAs via bioinformatics approaches revealed that predicted targets were highly enriched and involved in several key signaling pathways important for AAA formation, including pathways in cancer and signaling pathways involving mitogen-activated protein kinase, Wnt, neurotrophin, and ErbB. In summary, this study indicates that miRNAs might contribute to AAA formation probably by affecting multiple target genes and signaling pathways, which is expected to provide new clues to develop targeted therapies against this calamitous disease. PMID:21030819

  4. Constitutive Expression of Rice MicroRNA528 Alters Plant Development and Enhances Tolerance to Salinity Stress and Nitrogen Starvation in Creeping Bentgrass.

    PubMed

    Yuan, Shuangrong; Li, Zhigang; Li, Dayong; Yuan, Ning; Hu, Qian; Luo, Hong

    2015-09-01

    MicroRNA528 (miR528) is a conserved monocot-specific small RNA that has the potential of mediating multiple stress responses. So far, however, experimental functional studies of miR528 are lacking. Here, we report that overexpression of a rice (Oryza sativa) miR528 (Osa-miR528) in transgenic creeping bentgrass (Agrostis stolonifera) alters plant development and improves plant salt stress and nitrogen (N) deficiency tolerance. Morphologically, miR528-overexpressing transgenic plants display shortened internodes, increased tiller number, and upright growth. Improved salt stress resistance is associated with increased water retention, cell membrane integrity, chlorophyll content, capacity for maintaining potassium homeostasis, CATALASE activity, and reduced ASCORBIC ACID OXIDASE (AAO) activity; while enhanced tolerance to N deficiency is associated with increased biomass, total N accumulation and chlorophyll synthesis, nitrite reductase activity, and reduced AAO activity. In addition, AsAAO and COPPER ION BINDING PROTEIN1 are identified as two putative targets of miR528 in creeping bentgrass. Both of them respond to salinity and N starvation and are significantly down-regulated in miR528-overexpressing transgenics. Our data establish a key role that miR528 plays in modulating plant growth and development and in the plant response to salinity and N deficiency and indicate the potential of manipulating miR528 in improving plant abiotic stress resistance. PMID:26224802

  5. Prolonged ovarian hormone deprivation alters the effects of 17β-estradiol on microRNA expression in the aged female rat hypothalamus

    PubMed Central

    Rao, Yathindar S.; Shults, Cody L.; Pinceti, Elena; Pak, Toni R.

    2015-01-01

    Administration of 17β-estradiol (E2) has beneficial effects on cognitive function in peri- but not post-menopausal women, yet the molecular mechanisms underlying age-related changes in E2 action remain unclear. We propose that there is a biological switch in E2 action that occurs coincident with age and length of time after ovarian hormone depletion, and we hypothesized that age-dependent regulation of microRNAs (miRNAs) could be the molecular basis for that switch. Previously we showed that miRNAs are regulated by E2 in young compared to aged female rats. Here we tested whether increasing lengths of ovarian hormone deprivation in aged females altered E2 regulation of these mature miRNAs. In addition, we determined where along the miRNA biogenesis pathway E2 exerted its effects. Our results showed that age and increased lengths of ovarian hormone deprivation abolished the ability of E2 to regulate mature miRNA expression in the brain. Further, we show that E2 acted at specific points along the miRNA biogenesis pathway. PMID:26460619

  6. Constitutive Expression of Rice MicroRNA528 Alters Plant Development and Enhances Tolerance to Salinity Stress and Nitrogen Starvation in Creeping Bentgrass1[OPEN

    PubMed Central

    Yuan, Shuangrong; Li, Zhigang; Li, Dayong; Yuan, Ning; Hu, Qian; Luo, Hong

    2015-01-01

    MicroRNA528 (miR528) is a conserved monocot-specific small RNA that has the potential of mediating multiple stress responses. So far, however, experimental functional studies of miR528 are lacking. Here, we report that overexpression of a rice (Oryza sativa) miR528 (Osa-miR528) in transgenic creeping bentgrass (Agrostis stolonifera) alters plant development and improves plant salt stress and nitrogen (N) deficiency tolerance. Morphologically, miR528-overexpressing transgenic plants display shortened internodes, increased tiller number, and upright growth. Improved salt stress resistance is associated with increased water retention, cell membrane integrity, chlorophyll content, capacity for maintaining potassium homeostasis, CATALASE activity, and reduced ASCORBIC ACID OXIDASE (AAO) activity; while enhanced tolerance to N deficiency is associated with increased biomass, total N accumulation and chlorophyll synthesis, nitrite reductase activity, and reduced AAO activity. In addition, AsAAO and COPPER ION BINDING PROTEIN1 are identified as two putative targets of miR528 in creeping bentgrass. Both of them respond to salinity and N starvation and are significantly down-regulated in miR528-overexpressing transgenics. Our data establish a key role that miR528 plays in modulating plant growth and development and in the plant response to salinity and N deficiency and indicate the potential of manipulating miR528 in improving plant abiotic stress resistance. PMID:26224802

  7. Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome.

    PubMed

    Sellier, Chantal; Freyermuth, Fernande; Tabet, Ricardos; Tran, Tuan; He, Fang; Ruffenach, Frank; Alunni, Violaine; Moine, Herve; Thibault, Christelle; Page, Adeline; Tassone, Flora; Willemsen, Rob; Disney, Matthew D; Hagerman, Paul J; Todd, Peter K; Charlet-Berguerand, Nicolas

    2013-03-28

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by the expansion of 55-200 CGG repeats in the 5' UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs) is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery. PMID:23478018

  8. Sequestration of DROSHA and DGCR8 by Expanded CGG RNA Repeats Alters MicroRNA Processing in Fragile X-Associated Tremor/Ataxia Syndrome

    PubMed Central

    Sellier, Chantal; Freyermuth, Fernande; Tabet, Ricardos; Tran, Tuan; He, Fang; Ruffenach, Frank; Alunni, Violaine; Moine, Herve; Thibault, Christelle; Page, Adeline; Tassone, Flora; Willemsen, Rob; Disney, Matthew D.; Hagerman, Paul J.; Todd, Peter K.; Charlet-Berguerand, Nicolas

    2013-01-01

    SUMMARY Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by the expansion of 55–200 CGG repeats in the 5′ UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of micro-RNAs (miRNAs) is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery. PMID:23478018

  9. Altered Expression of Circulating MicroRNA in Plasma of Patients with Primary Osteoarthritis and In Silico Analysis of Their Pathways

    PubMed Central

    Borgonio Cuadra, Verónica M.; González-Huerta, Norma Celia; Romero-Córdoba, Sandra; Hidalgo-Miranda, Alfredo; Miranda-Duarte, Antonio

    2014-01-01

    Objective To analyze a set of circulating microRNA (miRNA) in plasma from patients with primary Osteoarthritis (OA) and describe the biological significance of altered miRNA in OA based on an in silico analysis of their target genes. Methods miRNA expression was analyzed using TaqMan Low Density Arrays and independent assays. The search for potential messenger RNA (mRNA) targets of the differentially expressed miRNA was performed by means of the miRWalk and miRecords database; we conducted the biological relevance of the predicted miRNA targets by pathway analysis with the Reactome and DAVID databases. Results We measured the expression of 380 miRNA in OA; 12 miRNA were overexpressed under the OA condition (p value, ≤0.05; fold change, >2). These results were validated by the detection of some selected miRNA by quantitative PCR (qPCR). In silico analysis showed that target messenger RNA (mRNA) were potentially regulated by these miRNA, including genes such as SMAD1, IL-1B, COL3A, VEGFA, and FGFR1, important in chondrocyte maintenance and differentiation. Some metabolic pathways affected by the miRNA: mRNA ratio are signaling Bone morphogenetic proteins (BMP), Platelet-derived growth factor (PDGF), and Nerve growth factor (NGF), these latter two involved in the process of pain. Conclusions We identified 12 miRNA in the plasma of patients with primary OA. Specific miRNA that are altered in the disease could be released into plasma, either due to cartilage damage or to an inherent cellular mechanism. Several miRNA could regulate genes and pathways related with development of the disease; eight of these circulating miRNA are described, to our knowledge, for first time in OA. PMID:24901787

  10. Alterations of prefrontal cortical microRNAs in methamphetamine self-administering rats: From controlled drug intake to escalated drug intake.

    PubMed

    Du, Hao-Yue; Cao, Dan-Ni; Chen, Ying; Wang, Lv; Wu, Ning; Li, Jin

    2016-01-12

    Drug addiction is a process that transits from recreative and regular drug use into compulsive drug use. The two patterns of drug use, controlled drug intake and escalated drug intake, represent different stages in the development of drug addiction; and escalation of drug use is a hallmark of addiction. Accumulating studies indicate that microRNAs (miRNAs) play key regulatory roles in drug addiction. However, the molecular adaptations in escalation of drug use, as well as the difference in the adaptations between escalated and controlled drug use, remain unclear. In the present study, 28 altered miRNAs in the prefrontal cortex (PFC) were found in the groups of controlled methamphetamine self-administration (1h/session) and escalated self-administration (6h/session), and some of them were validated. Compared with saline control group, miR-186 was verified to be up-regulated while miR-195 and miR-329 were down-regulated in the rats with controlled methamphetamine use. In the rats with escalated drug use, miR-127, miR-186, miR-222 and miR-24 were verified to be up-regulated while miR-329 was down-regulated compared with controls. Furthermore, bioinformatic analysis indicated that the predicted targets of these verified miRNAs involved in the processes of neuronal apoptosis and synaptic plasticity. However, the putative regulated molecules may be different between controlled and escalated drug use groups. Taken together, we detected the altered miRNAs in rat PFC under the conditions of controlled methamphetamine use and escalated use respectively, which may extend our understanding of the molecular adaptations underlying the transition from controlled drug use to addiction. PMID:26592480

  11. Alterations of microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment patients with major depressive disorder.

    PubMed

    He, Shen; Liu, Xiaohua; Jiang, Kaida; Peng, Daihui; Hong, Wu; Fang, Yiru; Qian, Yiping; Yu, Shunying; Li, Huafang

    2016-07-01

    Recently, increasing evidence has indicated that dysfunction of microRNA-124 (miR-124) might be involved in the pathophysiology and treatment of major depressive disorder (MDD) in some animal models of depression. However, the role of miR-124 in MDD patients remains unclear. The objective of this study was to investigate whether the miR-124 expression levels in peripheral blood mononuclear cells (PBMCs) were associated with MDD and to evaluate the effects of antidepressant treatment on miR-124 levels. Quantitative real-time PCR was applied to detect miR-124 expression in 32 pre- and post-treatment MDD patients and 30 healthy controls. Our results showed that expression levels of miR-124 from PBMCs in MDD patients were significantly higher than those in healthy controls (p < 0.001), and that the area under the curve of miR-124 from ROC analysis was 0.762 with a sensitivity of 83.33% and specificity of 66.67% in distinguishing MDD patients from healthy controls. In addition, the expression levels of miR-124 were significantly down-regulated after eight weeks of treatment (p < 0.001). MiRNA target gene prediction and functional annotation analysis indicated that altered miR-124 was involved in affecting some important biological processes and pathways related to MDD. These results provide new information on miR-124 involvement in the biological alterations of MDD and in antidepressant effects. PMID:27078210

  12. Oncogenic MicroRNAs Characterization in Clear Cell Renal Cell Carcinoma

    PubMed Central

    Petrozza, Vincenzo; Carbone, Antonio; Bellissimo, Teresa; Porta, Natale; Palleschi, Giovanni; Pastore, Antonio Luigi; Di Carlo, Angelina; Della Rocca, Carlo; Fazi, Francesco

    2015-01-01

    A key challenge for the improvement of clear cell renal cell carcinoma (ccRCC) management could derive from a deeper characterization of the biology of these neoplasms that could greatly improve the diagnosis, prognosis and treatment choice. The aim of this study was to identify specific miRNAs that are deregulated in tumor vs. normal kidney tissues and that could impact on the biology of ccRCC. To this end we selected four miRNAs (miR-21-5p, miR-210-3p, miR-185-5p and miR-221-3p) and their expression has been evaluated in a retrospective cohort of formalin-fixed paraffin-embedded (FFPE) tissues from 20 ccRCC patients who underwent surgical nephrectomy resection. miR-21-5p and miR-210-3p resulted the most significantly up-regulated miRNAs in this patient cohort, highlighting these onco-miRNAs as possible relevant players involved in ccRCC tumorigenesis. Thus, this study reports the identification of specific oncogenic miRNAs that are altered in ccRCC tissues and suggests that they might be useful biomarkers in ccRCC management. PMID:26670229

  13. Characterization of Micro-RNA Changes during the Progression of Type 2 Diabetes in Zucker Diabetic Fatty Rats

    PubMed Central

    Delic, Denis; Eisele, Claudia; Schmid, Ramona; Luippold, Gerd; Mayoux, Eric; Grempler, Rolf

    2016-01-01

    The aim of the present pilot study was the identification of micro-RNA changes over time during the development and progression of type 2 diabetes (T2D) in Zucker diabetic fatty rats (ZDF rats). T2D is a complex metabolic disorder that is characterized, inter alia, by progressive failure of pancreatic β cells to produce insulin, but also by functional or morphological modifications of others organ, such as liver, adipose tissue and the cardiovascular system. Micro-RNAs are a novel class of biomarkers that have the potential to represent biomarkers of disease progression. In this study, the onset and progression of diabetes was followed in ZDF rats from six weeks until 17 weeks of age. After an initial phase of hyperinsulinemia, the animals developed T2D and lost the capacity to produce sufficient insulin. Circulating miRNAs were measured from plasma samples at four time points: pre-diabetes (six weeks of age), hyperinsulinemia (eight weeks), β cell failure (11 weeks) and late-stage diabetes (17 weeks) using TaqMan miRNA arrays. Bioinformatic analysis revealed distinct changes of circulating miRNAs over time. Several miRNAs were found to be increased over the course of the disease progression, such as miR-122, miR-133, miR-210 and miR-375. The most significantly decreased miRNAs were miR-140, miR-151-3p, miR-185, miR-203, miR-434-3p and miR-450a. Some of the miRNAs have also been identified in type 2 diabetic patients recently and, therefore, may have the potential to be useful biomarkers for the disease progression of T2D and/or the treatment response for anti-diabetic medications. PMID:27153060

  14. Characterization of Micro-RNA Changes during the Progression of Type 2 Diabetes in Zucker Diabetic Fatty Rats.

    PubMed

    Delic, Denis; Eisele, Claudia; Schmid, Ramona; Luippold, Gerd; Mayoux, Eric; Grempler, Rolf

    2016-01-01

    The aim of the present pilot study was the identification of micro-RNA changes over time during the development and progression of type 2 diabetes (T2D) in Zucker diabetic fatty rats (ZDF rats). T2D is a complex metabolic disorder that is characterized, inter alia, by progressive failure of pancreatic β cells to produce insulin, but also by functional or morphological modifications of others organ, such as liver, adipose tissue and the cardiovascular system. Micro-RNAs are a novel class of biomarkers that have the potential to represent biomarkers of disease progression. In this study, the onset and progression of diabetes was followed in ZDF rats from six weeks until 17 weeks of age. After an initial phase of hyperinsulinemia, the animals developed T2D and lost the capacity to produce sufficient insulin. Circulating miRNAs were measured from plasma samples at four time points: pre-diabetes (six weeks of age), hyperinsulinemia (eight weeks), β cell failure (11 weeks) and late-stage diabetes (17 weeks) using TaqMan miRNA arrays. Bioinformatic analysis revealed distinct changes of circulating miRNAs over time. Several miRNAs were found to be increased over the course of the disease progression, such as miR-122, miR-133, miR-210 and miR-375. The most significantly decreased miRNAs were miR-140, miR-151-3p, miR-185, miR-203, miR-434-3p and miR-450a. Some of the miRNAs have also been identified in type 2 diabetic patients recently and, therefore, may have the potential to be useful biomarkers for the disease progression of T2D and/or the treatment response for anti-diabetic medications. PMID:27153060

  15. Increase of microRNA-210, Decrease of Raptor Gene Expression and Alteration of Mammalian Target of Rapamycin Regulated Proteins following Mithramycin Treatment of Human Erythroid Cells

    PubMed Central

    Bianchi, Nicoletta; Finotti, Alessia; Ferracin, Manuela; Lampronti, Ilaria; Zuccato, Cristina; Breveglieri, Giulia; Brognara, Eleonora; Fabbri, Enrica; Borgatti, Monica; Negrini, Massimo; Gambari, Roberto

    2015-01-01

    Expression and regulation of microRNAs is an emerging issue in erythroid differentiation and globin gene expression in hemoglobin disorders. In the first part of this study microarray analysis was performed both in mithramycin-induced K562 cells and erythroid precursors from healthy subjects or β-thalassemia patients producing low or high levels of fetal hemoglobin. We demonstrated that: (a) microRNA-210 expression is higher in erythroid precursors from β-thalassemia patients with high production of fetal hemoglobin; (b) microRNA-210 increases as a consequence of mithramycin treatment of K562 cells and human erythroid progenitors both from healthy and β-thalassemia subjects; (c) this increase is associated with erythroid induction and elevated expression of γ-globin genes; (d) an anti-microRNA against microRNA-210 interferes with the mithramycin-induced changes of gene expression. In the second part of the study we have obtained convergent evidences suggesting raptor mRNA as a putative target of microRNA-210. Indeed, microRNA-210 binding sites of its 3’-UTR region were involved in expression and are targets of microRNA-210-mediated modulation in a luciferase reporter assays. Furthermore, (i) raptor mRNA and protein are down-regulated upon mithramycin-induction both in K562 cells and erythroid progenitors from healthy and β-thalassemia subjects. In addition, (ii) administration of anti-microRNA-210 to K562 cells decreased endogenous microRNA-210 and increased raptor mRNA and protein expression. Finally, (iii) treatment of K562 cells with premicroRNA-210 led to a decrease of raptor mRNA and protein. In conclusion, microRNA-210 and raptor are involved in mithramycin-mediated erythroid differentiation of K562 cells and participate to the fine-tuning and control of γ-globin gene expression in erythroid precursor cells. PMID:25849663

  16. MicroRNA-208b progressively declines after spinal cord injury in humans and is inversely related to myostatin expression

    PubMed Central

    Boon, Hanneke; Sjögren, Rasmus J O; Massart, Julie; Egan, Brendan; Kostovski, Emil; Iversen, Per O; Hjeltnes, Nils; Chibalin, Alexander V; Widegren, Ulrika; Zierath, Juleen R

    2015-01-01

    The effects of long-term physical inactivity on the expression of microRNAs involved in the regulation of skeletal muscle mass in humans are largely unknown. MicroRNAs are short, noncoding RNAs that fine-tune target expression through mRNA degradation or by inhibiting protein translation. Intronic to the slow, type I, muscle fiber type genes MYH7 and MYH7b, microRNA-208b and microRNA-499-5p are thought to fine-tune the expression of genes important for muscle growth, such as myostatin. Spinal cord injured humans are characterized by both skeletal muscle atrophy and transformation toward fast-twitch, type II fibers. We determined the expression of microRNA-208b, microRNA-499-5p, and myostatin in human skeletal muscle after complete cervical spinal cord injury. We also determined whether these microRNAs altered myostatin expression in rodent skeletal muscle. A progressive decline in skeletal muscle microRNA-208b and microRNA-499-5p expression occurred in humans during the first year after spinal cord injury and with long-standing spinal cord injury. Expression of myostatin was inversely correlated with microRNA-208b and microRNA-499-5p in human skeletal muscle after spinal cord injury. Overexpression of microRNA-208b in intact mouse skeletal muscle decreased myostatin expression, whereas microRNA-499-5p was without effect. In conclusion, we provide evidence for an inverse relationship between expression of microRNA-208b and its previously validated target myostatin in humans with severe skeletal muscle atrophy. Moreover, we provide direct evidence that microRNA-208b overexpression decreases myostatin gene expression in intact rodent muscle. Our results implicate that microRNA-208b modulates myostatin expression and this may play a role in the regulation of skeletal muscle mass following spinal cord injury. PMID:26603456

  17. MicroRNA 138, let-7b, and 125a inhibitors differentially alter sleep and EEG delta-wave activity in rats

    PubMed Central

    Clinton, James M.; Krueger, James M.

    2012-01-01

    Sleep deprivation was previously reported to alter microRNA (miRNA) levels in the brain; however, the direct effects of any miRNA on sleep have only been described recently. We determined miRNA 138 (miR-138), miRNA let-7b (let-7b), and miRNA 125a-5p (miR-125a) levels in different brain areas at the transitions between light and dark. In addition, we examined the extent to which inhibiting these miRNAs affects sleep and EEG measures. We report that the levels of multiple miRNAs differ at the end of the sleep-dominant light period vs. the end of the wake-dominant dark period in cortical areas, hippocampus, and hypothalamus. For instance, in multiple regions of the cortex, miR-138, let-7b, and miR-125a expression was higher at the end of the dark period compared with the end of the light period. Intracerebroventricular injection of a specific inhibitor (antiMIR) to miR-138 suppressed sleep and nonrapid eye movement sleep (NREMS) EEG delta power. The antiMIR to let-7b did not affect time in state but decreased NREMS EEG delta power, whereas the antiMIR to miR-125a failed to affect sleep until after 3 days and did not affect EEG delta power on any day. We conclude that miRNAs are uniquely expressed at different times and in different structures in the brain and have discrete effects and varied timings on several sleep phenotypes and therefore, likely play a role in the regulation of sleep. PMID:23104698

  18. Identification of Candidate Target Cyp Genes for microRNAs Whose Expression Is Altered by PCN and TCPOBOP, Representative Ligands of PXR and CAR.

    PubMed

    Moriya, Nozomu; Kataoka, Hiromi; Nishikawa, Jun-Ichi; Kugawa, Fumihiko

    2016-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are involved in mRNA post-transcriptional regulation. The deregulation of miRNAs affects the expression of drug-metabolizing enzymes, drug transporters, and nuclear receptors, all of which are important in regulating drug metabolism. miRNA expression can be altered by several endogenous or exogenous agents, such as steroid hormones, carcinogens, and therapeutic drugs. However, it is unclear whether hepatic miRNA expression is regulated by nuclear receptors, such as pregnane X receptor (PXR) and constitutive androstane receptor (CAR), which are indispensable for the expression of the CYPs. Here we investigated the effects of the mouse PXR and CAR ligands pregnenolone-16α-carbonitrile (PCN) and 1,4-bis[(3,5-dichloropyridin-2-yl)oxy]benzene (TCPOBOP) on hepatic miRNA expression in mice. We found that the expression of 9 miRNAs was increased (>2-fold) and of 4 miRNAs was decreased (>50%) in response to PCN, while TCPOBOP treatment led to the up-regulation of 8 miRNAs and down-regulation of 6 miRNAs. Using several miRNA target prediction algorithms, we found that the predicted target genes included several lesser known Cyp genes (Cyp1a1, Cyp1b1, Cyp2b10, Cyp2c38, Cyp2u1, Cyp4a12a/b, Cyp4v3, Cyp17a1, Cyp39a1, and Cyp51). We analyzed the expression of these genes in response to PCN and TCPOBOP and found changes in their mRNA levels, some of which were negatively correlated with the expression of their corresponding miRNAs, suggesting that miRNAs may play a role in regulating Cyp enzyme expression. Further studies will be required to fully elucidate the miRNA regulatory mechanisms that contribute to modulating CYP expression. PMID:27237601

  19. Characterization and Expression Analysis of MicroRNAs in the Tube Foot of Sea Cucumber Apostichopus japonicus

    PubMed Central

    Cui, Jun; Li, Chengze; Qiu, Xuemei; Chang, Yaqing; Liu, Zhanjiang; Wang, Xiuli

    2014-01-01

    MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA with average length of 22 nucleotides, participating in the post-transcriptional regulation of gene expression. In this study, we report the identification and characterization of miRNAs in the tube foot of sea cucumber (Apostichopus japonicus) by next generation sequencing with Illumina HiSeq 2000 platform. Through the bioinformatic analysis, we identified 260 conserved miRNAs and six novel miRNAs from the tube foot small RNA transcriptome. Quantitative realtime PCR (qRT-PCR) was performed to characterize the specific expression in the tube foot. The results indicated that four miRNAs, including miR-29a, miR-29b, miR-2005 and miR-278-3p, were significantly up-regulated in the tube foot. The target genes of the four specifically expressed miRNAs were predicted in silico and validated by performing qRT-PCR. Gene ontology (GO) and KEGG pathway analyses with the target genes of these four miRNAs were conducted to further understand the regulatory function in the tube foot. This is the first study to profile the miRNA transcriptome of the tube foot in sea cucumber. This work will provide valuable genomic resources to understand the mechanisms of gene regulation in the tube foot, and will be useful to assist the molecular breeding in sea cucumber. PMID:25372871

  20. Dengue virus infection alters post-transcriptional modification of microRNAs in the mosquito vector Aedes aegypti.

    PubMed

    Etebari, Kayvan; Osei-Amo, Solomon; Blomberg, Simon Phillip; Asgari, Sassan

    2015-01-01

    Recent discoveries regarding the importance of isomiRs have increased our understanding of the regulatory complexities of the miRNAome. Observed changes in the miRNA profiles in mosquitoes infected with flaviviruses have implicated small RNAs in the interactions between viruses and their vectors. Here we analysed the isomiR profiles of both uninfected and infected Aedes aegypti mosquitoes with the major human pathogen dengue virus (DENV). We found that several specific isomiRs were significantly altered in their abundance patterns in response to DENV infection potentially affecting their target repertoire. Notable among these were isomiR variants which displayed arm-switching. We also demonstrate that modifications to the 3p end of miRNAs are vastly more prevalent than those at the 5p ends. We also observed that in only 45% of Ae. aegypti miRNAs the most abundant read matches the exact sequence reported in miRBase. Further, we found positive correlations between the number of mature miRNA reads, pre-miRNA length, GC content and secondary structure minimum free energy with the number of isomiRs. The findings presented here provide some evidence that isomiR production is not a random phenomenon and may be important in DENV replication in its vector. PMID:26514826

  1. Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress.

    PubMed

    Jacometo, Carolina B; Osorio, Johan S; Socha, Michael; Corrêa, Marcio N; Piccioli-Cappelli, Fiorenzo; Trevisi, Erminio; Loor, Juan J

    2015-11-01

    Organic trace mineral (ORG) supplementation to dairy cows in substitution of sulfate (INO) sources has been associated with improvement in immune function during stressful states such as the peripartal period. However, the effect of supplemental ORG during pregnancy on the neonatal calf is unknown. Therefore, our aim was to investigate the effects of ORG supplementation during late pregnancy on the immune system and growth of the neonatal calf. Of specific interest was the evaluation of inflammation-related microRNA (miRNA) and target gene expression in blood neutrophils as indicators of possible nutritional programming. Forty multiparous cows were supplemented for 30d prepartum with 40 mg/kg of Zn, 20 mg/kg of Mn, 5 mg/kg of Cu, and 1mg/kg of Co from either organic (ORG) or sulfate (INO) sources (total diet contained supplemental 75 mg/kg of Zn, 65 mg/kg of Mn, 11 mg/kg of Cu, and 1 mg/kg of Co, and additional Zn, Mn, and Co provided by sulfates), and a subset of calves (n=8/treatment) was used for blood immunometabolic marker and polymorphonuclear leukocyte (PMNL) gene and miRNA expression analyses. Samples were collected at birth (before colostrum feeding), 1d (24 h after colostrum intake), and 7 and 21d of age. Data were analyzed as a factorial design with the PROC MIXED procedure of SAS. No differences were detected in BW, but maternal ORG tended to increase calf withers height. Calves from INO-fed cows had greater concentrations of blood glucose, GOT, paraoxonase, myeloperoxidase, and reactive oxygen metabolites. Antioxidant capacity also was greater in INO calves. The PMNL expression of toll-like receptor pathway genes indicated a pro-inflammatory state in INO calves, with greater expression of the inflammatory mediators MYD88, IRAK1, TRAF6, NFKB, and NFKBIA. The lower expression of miR-155 and miR-125b in ORG calves indicated the potential for maternal organic trace minerals in regulating the PMNL inflammatory response at least via alterations in mRNA and

  2. Identification and Characterization of Sex-Biased MicroRNAs in Bactrocera dorsalis (Hendel).

    PubMed

    Peng, Wei; Tariq, Kaleem; Xie, Junfei; Zhang, Hongyu

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate various biological processes including sexual dimorphism. The oriental fruit fly Bactrocera dorsalis is one of the most destructive agricultural insect pests in many Asian countries. However, no miRNAs have been identified from the separate sex and gonads to elucidate sex gonad differentiation in B. dorsalis. In this study, we constructed four small RNA libraries from whole body of females, males (except ovaries and testes) and ovaries, testes of B. dorsalis for deep sequencing. The data analysis revealed 183 known and 120 novel miRNAs from these libraries. 18 female-biased and 16 male-biased miRNAs that may be involved in sexual differentiation were found by comparing the miRNA expression profiles in the four libraries. Using a bioinformatic approach, we predicted doublesex (dsx) as a target gene of the female-biased miR-989-3p which is considered as the key switch gene in the sex determination of tephritid insects. This study reveals the first miRNA profile related to the sex differentiation and gives a first insight into sex differences in miRNA expression of B. dorsalis which could facilitate studies of the reproductive organ specific roles of miRNAs. PMID:27441641

  3. Identification and Characterization of microRNAs during Maize Grain Filling.

    PubMed

    Jin, Xining; Fu, Zhiyuan; Lv, Panqing; Peng, Qian; Ding, Dong; Li, Weihua; Tang, Jihua

    2015-01-01

    The grain filling rate is closely associated with final grain yield of maize during the period of maize grain filling. To identify the key microRNAs (miRNAs) and miRNA-dependent gene regulation networks of grain filling in maize, a deep-sequencing technique was used to research the dynamic expression patterns of miRNAs at four distinct developmental grain filling stages in Zhengdan 958, which is an elite hybrid and cultivated widely in China. The sequencing result showed that the expression amount of almost all miRNAs was changing with the development of the grain filling and formed in seven groups. After normalization, 77 conserved miRNAs and 74 novel miRNAs were co-detected in these four samples. Eighty-one out of 162 targets of the conserved miRNAs belonged to transcriptional regulation (81, 50%), followed by oxidoreductase activity (18, 11%), signal transduction (16, 10%) and development (15, 9%). The result showed that miRNA 156, 393, 396 and 397, with their respective targets, might play key roles in the grain filling rate by regulating maize growth, development and environment stress response. The result also offered novel insights into the dynamic change of miRNAs during the developing process of maize kernels and assisted in the understanding of how miRNAs are functioning about the grain filling rate. PMID:25951054

  4. Identification and Characterization of Sex-Biased MicroRNAs in Bactrocera dorsalis (Hendel)

    PubMed Central

    Peng, Wei; Tariq, Kaleem; Xie, Junfei; Zhang, Hongyu

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate various biological processes including sexual dimorphism. The oriental fruit fly Bactrocera dorsalis is one of the most destructive agricultural insect pests in many Asian countries. However, no miRNAs have been identified from the separate sex and gonads to elucidate sex gonad differentiation in B. dorsalis. In this study, we constructed four small RNA libraries from whole body of females, males (except ovaries and testes) and ovaries, testes of B. dorsalis for deep sequencing. The data analysis revealed 183 known and 120 novel miRNAs from these libraries. 18 female-biased and 16 male-biased miRNAs that may be involved in sexual differentiation were found by comparing the miRNA expression profiles in the four libraries. Using a bioinformatic approach, we predicted doublesex (dsx) as a target gene of the female-biased miR-989-3p which is considered as the key switch gene in the sex determination of tephritid insects. This study reveals the first miRNA profile related to the sex differentiation and gives a first insight into sex differences in miRNA expression of B. dorsalis which could facilitate studies of the reproductive organ specific roles of miRNAs. PMID:27441641

  5. Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia.

    PubMed

    Sanghvi, Viraj R; Mavrakis, Konstantinos J; Van der Meulen, Joni; Boice, Michael; Wolfe, Andrew L; Carty, Mark; Mohan, Prathibha; Rondou, Pieter; Socci, Nicholas D; Benoit, Yves; Taghon, Tom; Van Vlierberghe, Pieter; Leslie, Christina S; Speleman, Frank; Wendel, Hans-Guido

    2014-11-18

    The posttranscriptional control of gene expression by microRNAs (miRNAs) is highly redundant, and compensatory effects limit the consequences of the inactivation of individual miRNAs. This implies that only a few miRNAs can function as effective tumor suppressors. It is also the basis of our strategy to define functionally relevant miRNA target genes that are not under redundant control by other miRNAs. We identified a functionally interconnected group of miRNAs that exhibited a reduced abundance in leukemia cells from patients with T cell acute lymphoblastic leukemia (T-ALL). To pinpoint relevant target genes, we applied a machine learning approach to eliminate genes that were subject to redundant miRNA-mediated control and to identify those genes that were exclusively targeted by tumor-suppressive miRNAs. This strategy revealed the convergence of a small group of tumor suppressor miRNAs on the Myb oncogene, as well as their effects on HBP1, which encodes a transcription factor. The expression of both genes was increased in T-ALL patient samples, and each gene promoted the progression of T-ALL in mice. Hence, our systematic analysis of tumor suppressor miRNA action identified a widespread mechanism of oncogene activation in T-ALL. PMID:25406379

  6. Characterization of microRNA Expression Profiles in Leishmania Infected Human Phagocytes

    PubMed Central

    Geraci, Nicholas S.; Tan, John C.; McDowell, Mary Ann

    2014-01-01

    Leishmania are intracellular protozoa that influence host immune responses eliciting parasite species specific pathologies. MicroRNAs (miRNA) are short single stranded ribonucleic acids that complement gene transcripts to block protein translation and have been shown to regulate immune system molecular mechanisms. Human monocyte derived dendritic cells (DC) and macrophages (MP) were infected in vitro with Leishmania major or Leishmania donovani parasites. Small RNAs were isolated from total RNA and sequenced to identify mature miRNAs associated with leishmanial infections. Normalized sequence read count profiles revealed a global down-regulation in miRNA expression among host cells following infection. Most identified miRNAs were expressed at higher levels in L. donovani infected cells relative to L. major infected cells. Pathway enrichments using in silico predicted gene targets of differentially expressed miRNAs showed evidence of potentially universal MAP kinase signaling pathway effects. Whereas JAK-STAT and TGF-β signaling pathways were more highly enriched using targets of miRNAs up-regulated in L. donovani infected cells. These data provide evidence in support of a selective influence on host cell miRNA expression and regulation in response to differential Leishmania infections. PMID:25376316

  7. Identification and characterization of microRNAs and their target genes from Nile tilapia (Oreochromis niloticus).

    PubMed

    Huang, Yong; Ma, Xiu Ying; Yang, You Bing; Ren, Hong Tao; Sun, Xi Hong; Wang, Li Rui

    2016-01-01

    MicroRNAs (miRNAs) are a class of small single-stranded, endogenous 21-22 nt non-coding RNAs that regulate their target mRNA levels by causing either inactivation or degradation of the mRNAs. In recent years, miRNA genes have been identified from mammals, insects, worms, plants, and viruses. In this research, bioinformatics approaches were used to predict potential miRNAs and their targets in Nile tilapia from the expressed sequence tag (EST) and genomic survey sequence (GSS) database, respectively, based on the conservation of miRNAs in many animal species. A total of 19 potential miRNAs were detected following a range of strict filtering criteria. To test the validity of the bioinformatics method, seven predicted Nile tilapia miRNA genes were selected for further biological validation, and their mature miRNA transcripts were successfully detected by stem-loop RT-PCR experiments. Using these potential miRNAs, we found 56 potential targets in this species. Most of the target mRNAs appear to be involved in development, metabolism, signal transduction, transcription regulation and stress responses. Overall, our findings will provide an important foundation for further research on miRNAs function in the Nile tilapia. PMID:27305701

  8. Insilco Prediction and Characterization of microRNAs from Oncopeltus fasciatus (Hemiptera: Lygaeidae) Genome.

    PubMed

    Ellango, R; Asokan, R; Ramamurthy, V V

    2016-08-01

    For studies on functional genomics, small RNAs, especially microRNAs (miRNAs), have emerged as a hot topic due to their importance in cellular and developmental processes. Identification of insect miRNAs largely depends on the availability of genomic sequences in the public domain. The large milkweed bug, Oncopeltus fasciatus (Dallas) is a hemimetabolous insect which has become a model hemipteran system for various molecular studies. In this study, we identified 96 candidate mature miRNAs from O. fasciatus genome using a blast search with the previously reported animal miRNAs. The secondary structure of predicted miRNA sequences was determined online using "mfold" web server and verified by calculating the minimal free energy index (MFEI). Six miRNAs let-7e, miR-133c, miR-219b, mir-466d, mir-669f, and mir-669l are reported for the first time in Insecta. Comparison of O. fasciatus mir-2 and mir-71 family clusters to those of diverse insect species showed that they are highly conserved. The phylogenetic analysis of miRNAs revealed the evolutionary relationship of conserved miRNAs of O. fasciatus with other insect species. Using a classical rule-based algorithm method, we predicted the possible targets of the new miRNAs. Our study not only identified the list of miRNAs in O. fasciatus but also provides a basic platform for developing novel pest management strategies based on artificial miRNAs. PMID:27075458

  9. Constructing and characterizing a bioactive small molecule and microRNA association network for Alzheimer's disease

    PubMed Central

    Meng, Fanlin; Dai, Enyu; Yu, Xuexin; Zhang, Yan; Chen, Xiaowen; Liu, Xinyi; Wang, Shuyuan; Wang, Lihua; Jiang, Wei

    2014-01-01

    Alzheimer's disease (AD) is an incurable neurodegenerative disorder. Much effort has been devoted to developing effective therapeutic agents. Recently, targeting microRNAs (miRNAs) with small molecules has become a novel therapy for human diseases. In this study, we present a systematic computational approach to construct a bioactive Small molecule and miRNA association Network in AD (SmiRN-AD), which is based on the gene expression signatures of bioactive small molecule perturbation and AD-related miRNA regulation. We also performed topological and functional analysis of the SmiRN-AD from multiple perspectives. At the significance level of p ≤ 0.01, 496 small molecule–miRNA associations, including 25 AD-related miRNAs and 275 small molecules, were recognized and used to construct the SmiRN-AD. The drugs that were connected with the same miRNA tended to share common drug targets (p = 1.72 × 10−4) and belong to the same therapeutic category (p = 4.22 × 10−8). The miRNAs that were linked to the same small molecule regulated more common miRNA targets (p = 6.07 × 10−3). Further analysis of the positive connections (quinostatin and miR-148b, amantadine and miR-15a) and the negative connections (melatonin and miR-30e-5p) indicated that our large-scale predictions afforded specific biological insights into AD pathogenesis and therapy. This study proposes a holistic strategy for deciphering the associations between small molecules and miRNAs in AD, which may be helpful for developing a novel effective miRNA-associated therapeutic strategy for AD. A comprehensive database for the SmiRN-AD and the differential expression patterns of the miRNA targets in AD is freely available at http://bioinfo.hrbmu.edu.cn/SmiRN-AD/. PMID:24352679

  10. Circulating MicroRNAs Characterizing Patients with Insufficient Coronary Collateral Artery Function

    PubMed Central

    Hakimzadeh, Nazanin; Nossent, A. Yaël; van der Laan, Anja M.; Schirmer, Stephan H.; de Ronde, Maurice W. J.; Pinto-Sietsma, Sara-Joan; van Royen, Niels; Quax, Paul H. A.; Hoefer, Imo E.; Piek, Jan J.

    2015-01-01

    Background Coronary collateral arteries function as natural bypasses in the event of coronary obstruction. The degree of collateral network development significantly impacts the outcome of patients after an acute myocardial infarction (AMI). MicroRNAs (miRNAs, miRs) have arisen as biomarkers to identify heterogeneous patients, as well as new therapeutic targets in cardiovascular disease. We sought to identify miRNAs that are differentially expressed in chronic total occlusion (CTO) patients with well or poorly developed collateral arteries. Methods and Results Forty-one CTO patients undergoing coronary angiography and invasive assessment of their coronary collateralization were dichotomized based on their collateral flow index (CFI). After miRNA profiling was conducted on aortic plasma, four miRNAs were selected for validation by real-time quantitative reverse transcription polymerase chain reaction in patients with low (CFI<0.39) and high (CFI>0.39) collateral artery capacity. We confirmed significantly elevated levels of miR423-5p (p<0.05), miR10b (p<0.05), miR30d (p<0.05) and miR126 (p<0.001) in patients with insufficient collateral network development. We further demonstrated that each of these miRNAs could serve as circulating biomarkers to discriminate patients with low collateral capacity (p<0.01 for each miRNA). We also determined significantly greater expression of miR30d (p<0.05) and miR126 (p<0.001) in CTO patients relative to healthy controls. Conclusion The present study identifies differentially expressed miRNAs in patients with high versus low coronary collateral capacity. We have shown that these miRNAs can function as circulating biomarkers to discriminate between patients with insufficient or sufficient collateralization. This is the first study to identify miRNAs linked to coronary collateral vessel function in humans. PMID:26331273

  11. Identification and Characterization of MicroRNAs in Ginkgo biloba var. epiphylla Mak

    PubMed Central

    Zhang, Qian; Li, Jihong; Sang, Yalin; Xing, Shiyan; Wu, Qikui; Liu, Xiaojing

    2015-01-01

    Ginkgo biloba, a dioecious plant known as a living fossil, is an ancient gymnosperm that stands distinct from other gymnosperms and angiosperms. Ginkgo biloba var. epiphylla (G. biloba var. epiphylla), with ovules borne on the leaf blade, is an unusual germplasm derived from G. biloba. MicroRNAs (miRNAs) are post-transcriptional gene regulators that play critical roles in diverse biological and metabolic processes. Currently, little is known about the miRNAs involved in the key stage of partly epiphyllous ovule germination in G. biloba var. epiphylla. Two small RNA libraries constructed from epiphyllous ovule leaves and normal leaves of G. biloba var. epiphylla were sequenced on an Illumina/Solexa platform. A total of 82 miRNA sequences belonging to 23 families and 53 putative novel miRNAs were identified in the two libraries. Differential expression analysis showed that 25 conserved and 21 novel miRNAs were differentially expressed between epiphyllous ovule leaves and normal leaves. The expression patterns of partially differentially expressed miRNAs and the transcript levels of their predicted target genes were validated by quantitative real time RT-PCR. All the expression profiles of the 21 selected miRNAs were similar to those detected by Solexa deep sequencing. Additionally, the transcript levels of almost all the putative target genes of 9 selected miRNAs were opposite to those of the corresponding miRNAs. The putative target genes of the differentially expressed miRNAs were annotated with Gene Ontology terms related to reproductive process, metabolic process and responding to stimulus. This work presents a broad range of small RNA transcriptome data obtained from epiphyllous ovule and normal leaves of G. biloba var. epiphylla, which may provide insights into the miRNA-mediated regulation in the epiphyllous ovule germination process. PMID:25978425

  12. Characterization of the role of microRNA-517a expression in low birth weight infants.

    PubMed

    Song, G Y; Song, W W; Han, Y; Wang, D; Na, Q

    2013-12-01

    The purpose of this study was to analyze the expression of the placenta-specific microRNA miR-517a in maternal serum and in placental tissue from low birth weight newborns and try to detect the effects of miR-517a expression on invasion potential of trophoblasts. Placental tissue and maternal serum were collected from both low birth weight newborns (n = 10) and normal birth weight newborns (n = 20). Expression of miR-517a was assessed in placenta and serum samples by real-time qRT-PCR. In addition, human trophoblast HTR8/SVneo cells were transfected with a miR-517a 2'-O-methyl oligonucleotide or a negative control RNA, and invasion was measured using transwell migration assays. Expression of miR-517a was significantly increased in placentas from low birth weight newborns (61.79 ± 23.06) in comparison with those of normal birth weight newborns (5.01 ± 1.97; P < 0.05). The expression of miR-517a was also increased in maternal serum isolated from the low birth weight newborn (25.78 ± 8.69) compared with the normal birth weight newborn (3.21 ± 1.07; P < 0.05). Overexpression of miR-517a significantly inhibited invasion of HTR8/SVneo cells (P < 0.05). These data indicate that miR-517a overexpression could potentially lead to low birth weight, likely through the inhibition of trophoblast invasion. PMID:24924231

  13. Identification and characterization of microRNAs in the white-backed planthopper, Sogatella furcifera.

    PubMed

    Chang, Zhao-Xia; Tang, Nan; Wang, Lin; Zhang, Li-Qing; Akinyemi, Ibukun A; Wu, Qing-Fa

    2016-06-01

    MicroRNAs (miRNAs) are a novel class of small, non-coding endogenous RNAs that play critical regulatory roles in many metabolic activities in eukaryotes. Reports of the identification of miRNAs in Sogatella furcifera (white-backed planthopper), the insect that acts as the only confirmed vector of the southern rice black-streaked dwarf virus (SRBSDV), are limited. In this study, a total of 382 miRNAs were identified in S. furcifera, including 106 conserved and 276 novel miRNAs, using high-throughput sequencing based on two small RNA libraries from viruliferous and non-viruliferous S. furcifera, and these miRNAs belonged to 52 conserved miRNA families and 58 S. furcifera-specific families, respectively. Comparison with miRNAs from 26 insect species and five other species in miRBase showed that more than half of the conserved miRNA families are highly conserved in Hexapoda, while other miRNAs are only conserved in non-dipterans. Furthermore, 4 117 target genes predicted for the 382 identified miRNAs could be categorized into 45 functional groups annotated by Gene Ontology. Compared with non-viruliferous cells, eight up-regulated miRNAs and four down-regulated miRNAs were identified in cells inoculated with SRBSDV, among which miR-14 and miR-n98a may be involved in the immune response to SRBSDV infection. Analyses of the identified miRNAs will provide insights into the roles of these miRNAs in the regulation and expression of genes involved in the metabolism, development and viral infection of S. furcifera. PMID:27060479

  14. Identification and Characterization of MicroRNAs in Ginkgo biloba var. epiphylla Mak.

    PubMed

    Zhang, Qian; Li, Jihong; Sang, Yalin; Xing, Shiyan; Wu, Qikui; Liu, Xiaojing

    2015-01-01

    Ginkgo biloba, a dioecious plant known as a living fossil, is an ancient gymnosperm that stands distinct from other gymnosperms and angiosperms. Ginkgo biloba var. epiphylla (G. biloba var. epiphylla), with ovules borne on the leaf blade, is an unusual germplasm derived from G. biloba. MicroRNAs (miRNAs) are post-transcriptional gene regulators that play critical roles in diverse biological and metabolic processes. Currently, little is known about the miRNAs involved in the key stage of partly epiphyllous ovule germination in G. biloba var. epiphylla. Two small RNA libraries constructed from epiphyllous ovule leaves and normal leaves of G. biloba var. epiphylla were sequenced on an Illumina/Solexa platform. A total of 82 miRNA sequences belonging to 23 families and 53 putative novel miRNAs were identified in the two libraries. Differential expression analysis showed that 25 conserved and 21 novel miRNAs were differentially expressed between epiphyllous ovule leaves and normal leaves. The expression patterns of partially differentially expressed miRNAs and the transcript levels of their predicted target genes were validated by quantitative real time RT-PCR. All the expression profiles of the 21 selected miRNAs were similar to those detected by Solexa deep sequencing. Additionally, the transcript levels of almost all the putative target genes of 9 selected miRNAs were opposite to those of the corresponding miRNAs. The putative target genes of the differentially expressed miRNAs were annotated with Gene Ontology terms related to reproductive process, metabolic process and responding to stimulus. This work presents a broad range of small RNA transcriptome data obtained from epiphyllous ovule and normal leaves of G. biloba var. epiphylla, which may provide insights into the miRNA-mediated regulation in the epiphyllous ovule germination process. PMID:25978425

  15. Identification and characterization of cucumber microRNAs in response to Pseudoperonospora cubensis infection.

    PubMed

    Jin, Weibo; Wu, Fangli

    2015-09-15

    MicroRNAs (miRNAs) regulate the expression of genes related to several stress responses, including fungal infection, in plants. However, the miRNA-mediated gene regulatory networks in cucumbers that respond to Pseudoperonospora cubensis stress remain unexplored. In this study, the miRNA expression patterns in response to P. cubensis stress in cucumbers were investigated through high-throughput sequencing. A total of 123 known miRNAs and 4 novel miRNAs were identified, and their corresponding expressions were detected in mock- and P. cubensis-inoculated leaves. Three novel and 39 known miRNAs were found to be differentially expressed in P. cubensis-infected leaves. The results of 5'-RLM-RACE confirmed that miR164b, miR156h, miR171e, miR160b, and miR159f targeted No Apical Meristem domain protein, squamosa promoter binding protein-like class transcription factor, GRAS family transcription factor, Auxin response factor ARF16, and a conserved gene of unknown function, respectively. The expression patterns of these miRNAs were also determined through quantitative reverse transcription polymerase chain reaction (qRT-PCR). All of these miRNAs, except for miR156h, can respond to P. cubensis infection in cucumber leaves. In addition, the results of qRT-PCR revealed that the targets negatively correlated with their corresponding miRNAs (miR164b, miR171e, miR160b, and miR159f). PMID:26071186

  16. Characterization of Pseudomonas aeruginosa mutants with altered piliation.

    PubMed Central

    Johnson, K; Lory, S

    1987-01-01

    The pilus-specific Pseudomonas aeruginosa bacteriophage P04 was used to select spontaneous mutants of strain PAK which have altered piliation. The largest class of phage-resistant mutants synthesized the pilin polypeptide, but did not assemble pili. These mutants are likely to contain mutations in genes required for pilus assembly and not mutations in the pilin structural gene, as they could not be complemented by a normal copy of the pilin gene. In addition, two alterations in pilin gene transcription were found among the mutants--hyperpiliated mutants which overproduce pilin mRNA, and a mutant with temperature-sensitive pilin gene transcription. We also present a model for the regulation of pilin gene transcription by a feedback mechanism sensitive to the relative rates of pilus assembly and disassembly. Images PMID:2445731

  17. Identification and characterization of novel serum microRNA candidates from deep sequencing in cervical cancer patients

    PubMed Central

    Juan, Li; Tong, Hong-li; Zhang, Pengjun; Guo, Guanghong; Wang, Zi; Wen, Xinyu; Dong, Zhennan; Tian, Ya-ping

    2014-01-01

    Small non-coding microRNAs (miRNAs) are involved in cancer development and progression, and serum profiles of cervical cancer patients may be useful for identifying novel miRNAs. We performed deep sequencing on serum pools of cervical cancer patients and healthy controls with 3 replicates and constructed a small RNA library. We used MIREAP to predict novel miRNAs and identified 2 putative novel miRNAs between serum pools of cervical cancer patients and healthy controls after filtering out pseudo-pre-miRNAs using Triplet-SVM analysis. The 2 putative novel miRNAs were validated by real time PCR and were significantly decreased in cervical cancer patients compared with healthy controls. One novel miRNA had an area under curve (AUC) of 0.921 (95% CI: 0.883, 0.959) with a sensitivity of 85.7% and a specificity of 88.2% when discriminating between cervical cancer patients and healthy controls. Our results suggest that characterizing serum profiles of cervical cancers by Solexa sequencing may be a good method for identifying novel miRNAs and that the validated novel miRNAs described here may be cervical cancer-associated biomarkers. PMID:25182173

  18. Altered microRNA expression after infection with human cytomegalovirus leads to TIMP3 downregulation and increased shedding of metalloprotease substrates, including MICA.

    PubMed

    Esteso, Gloria; Luzón, Elisa; Sarmiento, Elisabeth; Gómez-Caro, Ruth; Steinle, Alexander; Murphy, Gillian; Carbone, Javier; Valés-Gómez, Mar; Reyburn, Hugh T

    2014-08-01

    Proteolytic shedding of ligands for the NK group 2D (NKG2D) receptor is a strategy used by tumors to modulate immune recognition by NK cells and cytotoxic T cells. A number of metalloproteases, especially those of the A disintegrin and metalloprotease (ADAM) family, can mediate NKG2D ligand cleavage and this process can be modulated by expression of the thiol isomerase ERp5. In this article, we describe that an increased shedding of the NKG2D ligand MICA is observed postinfection with several strains of human CMV due to an enhanced activity of ADAM17 (TNF-α converting enzyme) and matrix metalloprotease 14 caused by a reduction in the expression of the endogenous inhibitor of metalloproteases tissue inhibitors of metalloproteinase 3 (TIMP3). This decrease in TIMP3 expression correlates with increased expression of a cellular miRNA known to target TIMP3, and we also identify a human CMV-encoded microRNA able to modulate TIMP3 expression. These observations characterize a novel viral strategy to influence the shedding of cell-surface molecules involved in immune response modulation. They also provide an explanation for previous reports of increased levels of various ADAM17 substrates in the serum from patients with CMV disease. Consistent with this hypothesis, we detected soluble MICA in serum of transplant recipients with CMV disease. Finally, these data suggest that it might be worthwhile to prospectively study ADAM17 activity in a larger group of patients to assay whether this might be a useful biomarker to identify patients at risk for development of CMV disease. PMID:24973455

  19. Identification and characterization of immune-related microRNAs in blunt snout bream, Megalobrama amblycephala.

    PubMed

    Yuhong, Jiang; Leilei, Tang; Fuyun, Zhang; Hongyang, Jiang; Xiaowen, Liu; Liying, Yang; Lei, Zhang; Jingrong, Mao; Jinpeng, Yan

    2016-02-01

    MicroRNAs (miRNAs) play vital roles in diverse biological processes, including in immune response. Blunt snout bream (Megalobrama amblycephala) is a prevalent and important commercial endemic freshwater fish species in China's intensive polyculture systems. To identify immune-related miRNAs of M. amblycephala, two small RNA (sRNA) libraries from immune tissues with or without lipopolysaccharide (LPS) stimulation were constructed and sequenced using the high-throughput sequencing technology. Totally, 16,425,543 and 15,076,813 raw reads, corresponding to 14,156,755 and 13,445,869 clean reads, were obtained in the normal and infected libraries, respectively. A total of 324 miRNAs, including 218 known miRNAs and 106 putative novel miRNAs were identified by bioinformatic analysis. We analyzed differentially expressed miRNAs between two libraries using pairwise comparison. 113 (34.88%) miRNAs were found to be significantly differentially expressed between two libraries, with 63 (55.75%) exhibiting elevated expression in LPS stimulation sample. Thereinto, a number of known miRNAs were identified immune-related. Real-time quantitative PCR (RT-qPCR) were implemented for 12 miRNAs of two samples, and agreement was confirmed between the sequencing and RT-qPCR data. Target genes likely regulated by these differentially expressed miRNAs were predicted using computational prediction. The functional annotation of target genes by Gene Ontology enrichment (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis (KEGG) indicated that a majority of differential miRNAs might involved in immune response. To our knowledge, this is the first comprehensive study of miRNAs in response to LPS stimulation in M. amblycephala, even in fish. These results deepened our understanding of the role of miRNAs in the intricate host's immune system, and should be useful to develop new control strategies for host immune defense against various bacterial invasions in M. amblycephala. PMID

  20. In-Depth Characterization of microRNA Transcriptome in Melanoma

    PubMed Central

    Fleming, Elizabeth; Duggan, Tatiana; Wu, Rong; Shin, Dong-Guk; Dadras, Soheil S.

    2013-01-01

    The full repertoire of human microRNAs (miRNAs) that could distinguish common (benign) nevi from cutaneous (malignant) melanomas remains to be established. In an effort to gain further insight into the role of miRNAs in melanoma, we applied Illumina next-generation sequencing (NGS) platform to carry out an in-depth analysis of miRNA transcriptome in biopsies of nevi, thick primary (>4.0 mm) and metastatic melanomas with matched normal skin in parallel to melanocytes and melanoma cell lines (both primary and metastatic) (n = 28). From this data representing 698 known miRNAs, we defined a set of top-40 list, which properly classified normal from cancer; also confirming 23 (58%) previously discovered miRNAs while introducing an additional 17 (42%) known and top-15 putative novel candidate miRNAs deregulated during melanoma progression. Surprisingly, the miRNA signature distinguishing specimens of melanoma from nevus was significantly different than that of melanoma cell lines from melanocytes. Among the top list, miR-203, miR-204-5p, miR-205-5p, miR-211-5p, miR-23b-3p, miR-26a-5p and miR-26b-5p were decreased in melanomas vs. nevi. In a validation cohort (n = 101), we verified the NGS results by qRT-PCR and showed that receiver-operating characteristic curves for miR-211-5p expression accurately discriminated invasive melanoma (AUC = 0.933), melanoma in situ (AUC = 0.933) and dysplastic (atypical) nevi (AUC = 0.951) from common nevi. Target prediction analysis of co-transcribed miRNAs showed a cooperative regulation of key elements in the MAPK signaling pathway. Furthermore, we found extensive sequence variations (isomiRs) and other non-coding small RNAs revealing a complex melanoma transcriptome. Deep-sequencing small RNAs directly from clinically defined specimens provides a robust strategy to improve melanoma diagnostics. PMID:24023765

  1. Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV-Infected Brain: Novel Analysis of Retrospective Cases

    PubMed Central

    Nguyen, Timothy B.; Salaria, Shahid; Banerjee, Sugato; Moore, David J.; Masliah, Eliezer; Achim, Cristian L.; Everall, Ian P.

    2010-01-01

    HIV infection disturbs the central nervous system (CNS) through inflammation and glial activation. Evidence suggests roles for microRNA (miRNA) in host defense and neuronal homeostasis, though little is known about miRNAs' role in HIV CNS infection. MiRNAs are non-coding RNAs that regulate gene translation through post-transcriptional mechanisms. Messenger-RNA profiling alone is insufficient to elucidate the dynamic dance of molecular expression of the genome. We sought to clarify RNA alterations in the frontal cortex (FC) of HIV-infected individuals and those concurrently infected and diagnosed with major depressive disorder (MDD). This report is the first published study of large-scale miRNA profiling from human HIV-infected FC. The goals of this study were to: 1. Identify changes in miRNA expression that occurred in the frontal cortex (FC) of HIV individuals, 2. Determine whether miRNA expression profiles of the FC could differentiate HIV from HIV/MDD, and 3. Adapt a method to meaningfully integrate gene expression data and miRNA expression data in clinical samples. We isolated RNA from the FC (n = 3) of three separate groups (uninfected controls, HIV, and HIV/MDD) and then pooled the RNA within each group for use in large-scale miRNA profiling. RNA from HIV and HIV/MDD patients (n = 4 per group) were also used for non-pooled mRNA analysis on Affymetrix U133 Plus 2.0 arrays. We then utilized a method for integrating the two datasets in a Target Bias Analysis. We found miRNAs of three types: A) Those with many dysregulated mRNA targets of less stringent statistical significance, B) Fewer dysregulated target-genes of highly stringent statistical significance, and C) unclear bias. In HIV/MDD, more miRNAs were downregulated than in HIV alone. Specific miRNA families at targeted chromosomal loci were dysregulated. The dysregulated miRNAs clustered on Chromosomes 14, 17, 19, and X. A small subset of dysregulated genes had many 3′ untranslated region (3

  2. TGF-β and Iron Differently Alter HBV Replication in Human Hepatocytes through TGF-β/BMP Signaling and Cellular MicroRNA Expression

    PubMed Central

    Park, Sun O.; Kumar, Mukesh; Gupta, Sanjeev

    2012-01-01

    The nature of host-virus interactions in hepatitis B virus infection is incompletely understood. Since soluble factors, e.g., cytokines and metals, may exacerbate liver injury in chronic hepatitis, we considered that defining the effects of receptor-mediated signaling upon viral replication will be significant. Consequently, we studied effects of iron or TGF-β-induced TGF-β/BMP signaling in the HepG2 2.2.15 cell model of hepatitis B virus replication. We found iron and TGF-β increased hepcidin mRNA expression or TGF-β receptor kinase activity, respectively, which indicated that 2.2.15 cells responded appropriately to these substances. However, iron increased but TGF-β decreased hepatitis B virus mRNA and DNA expression. TGF-β induced expression at the mRNA level of multiple TGF-β/BMP pathway genes. This change was not observed in iron-treated cells. On the other hand, presence of SMAD proteins in iron or TGF-β-treated cells, including of SMAD4, did confirm convergence of TGF-β/BMP signaling pathways under these conditions. Since transcription factors in TGF-β/BMP signaling pathways could not have directly targeted hepatitis B virus itself, we studied whether iron or TGF-β exerted their effects through alternative mechanisms, such as by involvement of antiviral cellular microRNAs. We discovered cellular microRNA expression profiles were significantly different in iron or TGF-β-treated cells compared with untreated control cells. In many cases, exposure to iron or TGF-β changed microRNA expression in opposite directions. Introduction in cells of sequences representing such differentially expressed microRNAs, e.g., hsa-miR-125a-5p and -151-5p, even reproduced effects on virus replication of iron- or TGF-β. We surmised that TGF-β/BMP pathway members, i.e., SMADs, likely governed iron or TGF-β-induced microRNA expression. Iron may have mediated Drosha/DGCR8/heme-mediated processing of microRNAs. In turn, cellular microRNAs regulated replication of

  3. 3,39-Diindolylmethane Ameliorates Staphylococcal Enterotoxin B–Induced Acute Lung Injury through Alterations in the Expression of MicroRNA that Target Apoptosis and Cell-Cycle Arrest in Activated T Cells.

    PubMed

    Elliott, David M; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2016-04-01

    3,39-Diindolylmethane (DIM), a natural indole found in cruciferous vegetables, has significant anti-cancer and anti-inflammatory properties. In this current study, we investigated the effects of DIM on acute lung injury (ALI) induced by exposure to staphylococcal enterotoxin B (SEB). We found that pretreatment of mice with DIM led to attenuation of SEB-induced inflammation in the lungs, vascular leak, and IFN-g secretion. Additionally, DIM could induce cell-cycle arrest and cell death in SEB-activated T cells in a concentration-dependent manner. Interestingly, microRNA (miRNA) microarray analysis uncovered an altered miRNA profile in lung-infiltrating mononuclear cells after DIM treatment of SEB-exposed mice. Moreover, computational analysis of miRNA gene targets and regulation networks indicated that DIM alters miRNA in the cell death and cell-cycle progression pathways. Specifically, DIM treatment significantly downregulated several miRNA and a correlative increase associated gene targets. Furthermore, overexpression and inhibition studies demonstrated that DIM-induced cell death, at least in part, used miR-222. Collectively, these studies demonstrate for the first time that DIM treatment attenuates SEB-induced ALI and may do so through the induction of microRNAs that promote apoptosis and cell-cycle arrest in SEB-activated T cells. PMID:26818958

  4. The altered expression profile of microRNAs in cardiopulmonary bypass canine models and the effects of mir-499 on myocardial ischemic reperfusion injury

    PubMed Central

    2013-01-01

    Background MicroRNAs were enrolled in various cardiovascular disease especially ischemic heart diseases, but the microRNA changes during myocardial ischemia reperfusion injury underwent cardiopulmonary bypass are still unknown. This study screens the microRNA differences in CPB canines and evaluates the relationship of microRNAs with myocardial ischemia reperfusion injury. Methods 13 healthy canines received CPB with 60 minutes of aortic clamping and cardioplegic arrest, followed by 90 minutes reperfusion. Left ventricular myocardial samples, blood samples and hemodynamic data were taken at different time points. We performed microRNAs microarray experiments upon the left ventricle myocardium tissue of canines before CPB and after reperfusion for 90 minutes by pooling 3 tissue samples together and used qRT-PCR for confirmation. Results Statistically significant difference was found in mir-499 level before CPB and after reperfusion (T1 vs. T4, p = 0.041). We further examined the mir-499 levels by using qRT-PCR in all 13 canines at 4 different time points (T1 vs. T4, p = 0.029). Mir-499 expression was negatively correlated with cardiac troponin T (cTnT) and creatine kinase- MB (CK-MB) levels of canines in all time points samples (r = 0.469, p < 0.001 and r = 0.273, p = 0.050 respectively). Moreover, higher mir-499 expression level was associated with higher dP/dtmax at 25 minutes and 90 minutes after reperfusion. Conclusion Myocardial ischemic reperfusion injury with cardiopulmonary bypass results in declining level of mir-499 expression in left ventricle myocardium of canines, suggesting mir-499 would be a potential therapeutic target in cardiac protection during open heart surgery. PMID:23800236

  5. Identification and Characterization of microRNAs from Peanut (Arachis hypogaea L.) by High-Throughput Sequencing

    PubMed Central

    Chen, Xiaoping; Wang, Jinyan; Pan, Lijuan; Chen, Mingna; Yang, Zhen; He, Yanan; Liang, Xuanqiang; Yu, Shanlin

    2011-01-01

    Background MicroRNAs (miRNAs) are noncoding RNAs of approximately 21 nt that regulate gene expression in plants post-transcriptionally by endonucleolytic cleavage or translational inhibition. miRNAs play essential roles in numerous developmental and physiological processes and many of them are conserved across species. Extensive studies of miRNAs have been done in a few model plants; however, less is known about the diversity of these regulatory RNAs in peanut (Arachis hypogaea L.), one of the most important oilseed crops cultivated worldwide. Results A library of small RNA from peanut was constructed for deep sequencing. In addition to 126 known miRNAs from 33 families, 25 novel peanut miRNAs were identified. The miRNA* sequences of four novel miRNAs were discovered, providing additional evidence for the existence of miRNAs. Twenty of the novel miRNAs were considered to be species-specific because no homolog has been found for other plant species. qRT-PCR was used to analyze the expression of seven miRNAs in different tissues and in seed at different developmental stages and some showed tissue- and/or growth stage-specific expression. Furthermore, potential targets of these putative miRNAs were predicted on the basis of the sequence homology search. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library. This study of the identification and characterization of miRNAs in peanut can initiate further study on peanut miRNA regulation mechanisms, and help toward a greater understanding of the important roles of miRNAs in peanut. PMID:22110666

  6. Identification and characterization of microRNAs in Eucheuma denticulatum by high-throughput sequencing and bioinformatics analysis.

    PubMed

    Gao, Fan; Nan, Fangru; Feng, Jia; Lv, Junping; Liu, Qi; Xie, Shulian

    2016-01-01

    Eucheuma denticulatum, an economically and industrially important red alga, is a valuable marine resource. Although microRNAs (miRNAs) play an essential role in gene post-transcriptional regulation, no research has been conducted to identify and characterize miRNAs in E. denticulatum. In this study, we identified 134 miRNAs (133 conserved miRNAs and one novel miRNA) from 2,997,135 small-RNA reads by high-throughput sequencing combined with bioinformatics analysis. BLAST searching against miRBase uncovered 126 potential miRNA families. A conservation and diversity analysis of predicted miRNA families in different plant species was performed by comparative alignment and homology searching. A total of 4 and 13 randomly selected miRNAs were respectively validated by northern blotting and stem-loop reverse transcription PCR, thereby demonstrating the reliability of the miRNA sequencing data. Altogether, 871 potential target genes were predicted using psRobot and TargetFinder. Target genes classification and enrichment were conducted based on Gene Ontology analysis. The functions of target gene products and associated metabolic pathways were predicted by Kyoto Encyclopedia of Genes and Genomes pathway analysis. A Cytoscape network was constructed to explore the interrelationships of miRNAs, miRNA-target genes and target genes. A large number of miRNAs with diverse target genes will play important roles for further understanding some essential biological processes in E. denticulatum. The uncovered information can serve as an important reference for the protection and utilization of this unique red alga in the future. PMID:26717154

  7. Characterization of MicroRNAs from Orientobilharzia turkestanicum, a Neglected Blood Fluke of Human and Animal Health Significance

    PubMed Central

    Fu, Jing-Hua; Nisbet, Alasdair J.; Chang, Qiao-Cheng; Zhou, Dong-Hui; Huang, Si-Yang; Zou, Feng-Cai; Zhu, Xing-Quan

    2012-01-01

    The neglected blood flukes Orientobilharzia spp. belonging to the Platyhelminthes, infect animals in a number of countries of the world, and cause cercarial dermatitis in humans, as well as significant diseases and even death in economically-important animals. MicroRNAs (miRNAs) are now considered to be a key mechanism of gene regulation. Herein, we investigated the global miRNA expression profile of adult O. turkestanicum using next-generation sequencing technology and real-time quantitative PCR, to gain further information on the role of these molecules in host invasion and the parasitic lifestyle of this species. A total of 13.48 million high quality reads were obtained out of 13.78 million raw sequencing reads, with 828 expressed miRNAs identified. Phylogenetic analysis showed that the miRNAs of O. turkestanicum were still rapidly evolving and there was a “directed mutation” pattern compared with that of other species. Target mRNAs were successfully predicted to 518 miRNAs. These targets included energy metabolism, transcription initiation factors, signal transduction, growth factor receptors. miRNAs targeting egg proteins, including major egg antigen p40, and heat shock proteins were also found. Enrichment analysis indicated enrichment for mRNAs involved in catalytic, binding, transcription regulators and translation regulators. The present study represented the first large-scale characterization of O. turkestanicum miRNAs, which provides novel resources for better understanding the complex biology of this zoonotic parasite, which, in turn, has implications for the effective control of the disease it causes. PMID:23071694

  8. MicroRNA dysregulation in multiple sclerosis

    PubMed Central

    Jr, Omar de Faria; Moore, Craig S.; Kennedy, Timothy E.; Antel, Jack P.; Bar-Or, Amit; Dhaunchak, Ajit S.

    2013-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS) demyelination and axonal degeneration. Although the cause of MS is still unknown, it is widely accepted that novel drug targets need to focus on both decreasing inflammation and promoting CNS repair. In MS and experimental autoimmune encephalomyelitis, non-coding small microRNAs (miRNAs) are dysregulated in the immune system and CNS. Since individual miRNAs are able to down-regulate multiple targeted mRNA transcripts, even minor changes in miRNA expression may lead to significant alterations in gene expression. Herein, we review miRNA signatures reported in CNS tissue and immune cells of MS patients and consider how altered miRNA expression may influence MS pathology. PMID:23346094

  9. 'Atherothrombosis-associated microRNAs in Antiphospholipid syndrome and Systemic Lupus Erythematosus patients'.

    PubMed

    Pérez-Sánchez, C; Aguirre, M A; Ruiz-Limón, P; Barbarroja, N; Jiménez-Gómez, Y; de la Rosa, I Arias; Rodriguez-Ariza, A; Collantes-Estévez, E; Segui, P; Velasco, F; Cuadrado, M J; Teruel, R; González-Conejero, R; Martínez, C; López-Pedrera, Ch

    2016-01-01

    MicroRNAs markedly affect the immune system, and have a relevant role in CVD and autoimmune diseases. Yet, no study has analyzed their involvement in atherothrombosis related to APS and SLE patients. This study intended to: 1) identify and characterize microRNAs linked to CVD in APS and SLE; 2) assess the effects of specific autoantibodies. Six microRNAs, involved in atherothrombosis development, were quantified in purified leukocytes from 23 APS and 64 SLE patients, and 56 healthy donors. Levels of microRNAs in neutrophils were lower in APS and SLE than in healthy donors. Gene and protein expression of miRNA biogenesis-related molecules were also reduced. Accordingly, more than 75% of identified miRNAs by miRNA profiling were underexpressed. In monocytes, miR124a and -125a were low, while miR-146a and miR-155 appeared elevated. Altered microRNAs' expression was linked to autoimmunity, thrombosis, early atherosclerosis, and oxidative stress in both pathologies. In vitro treatment of neutrophils, monocytes, and ECs with aPL-IgG or anti-dsDNA-IgG antibodies deregulated microRNAs expression, and decreased miRNA biogenesis-related proteins. Monocyte transfections with pre-miR-124a and/or -125a caused reduction in atherothrombosis-related target molecules. In conclusion, microRNA biogenesis, significantly altered in neutrophils of APS and SLE patients, is associated to their atherothrombotic status, further modulated by specific autoantibodies. PMID:27502756

  10. Characterization of microRNA transcriptome in lung cancer by next-generation deep sequencing

    PubMed Central

    Ma, Jie; Mannoor, Kaiissar; Gao, Lu; Tan, Afang; Guarnera, Maria A.; Zhan, Min; Shetty, Amol; Stass, Sanford A; Xing, Lingxiao; Jiang, Feng

    2014-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer death. Systematically characterizing miRNAs in NSCLC will help develop biomarkers for its diagnosis and subclassification, and identify therapeutic targets for the treatment. We used next-generation deep sequencing to comprehensively characterize miRNA profiles in eight lung tumor tissues consisting of two major types of NSCLC, squamous cell carcinoma (SCC) and adenocarcinoma (AC). We used quantitative PCR (qPCR) to verify the findings in 40 pairs of stage I NSCLC tissues and the paired normal tissues, and 60 NSCLC tissues of different types and stages. We also investigated the function of identified miRNAs in lung tumorigenesis. Deep sequencing identified 896 known miRNAs and 14 novel miRNAs, of which, 24 miRNAs displayed dysregulation with fold change ≥4.5 in either stage I ACs or SCCs or both relative to normal tissues. qPCR validation showed that 14 of 24 miRNAs exhibited consistent changes with deep sequencing data. Seven miRNAs displayed distinctive expressions between SCC and AC, from which, a panel of four miRNAs (miRs-944, 205-3p, 135a-5p, and 577) was identified that cold differentiate SCC from AC with 93.3% sensitivity and 86.7% specificity. Manipulation of miR-944 expression in NSCLC cells affected cell growth, proliferation, and invasion by targeting a tumor suppressor, SOCS4. Evaluating miR-944 in 52 formalin-fixed paraffin-embedded SCC tissues revealed that miR-944 expression was associated with lymph node metastasis. This study presents the earliest use of deep sequencing for profiling miRNAs in lung tumor specimens. The identified miRNA signatures may provide biomarkers for early detection, subclassification, and predicting metastasis, and potential therapeutic targets of NSCLC. PMID:24785186

  11. Cloning and characterization of microRNAs from rainbow trout (Oncorhynchus mykiss): their expression during early embryonic development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current literature and our results on expression patterns of oocyte specific genes and transcription factors suggest a global but highly regulated maternal mRNA degradation at the time of embryonic genome activation (EGA). We hypothesized that microRNAs (miRNAs), naturally occurring 19-21bp long pos...

  12. MicroRNA Regulation of Brain Tumour Initiating Cells in Central Nervous System Tumours

    PubMed Central

    Vijayakumar, Thusyanth; Bakhshinyan, David; Venugopal, Chitra; Singh, Sheila K.

    2015-01-01

    CNS tumours occur in both pediatric and adult patients and many of these tumours are associated with poor clinical outcome. Due to a paradigm shift in thinking for the last several years, these tumours are now considered to originate from a small population of stem-like cells within the bulk tumour tissue. These cells, termed as brain tumour initiating cells (BTICs), are perceived to be regulated by microRNAs at the posttranscriptional/translational levels. Proliferation, stemness, differentiation, invasion, angiogenesis, metastasis, apoptosis, and cell cycle constitute some of the significant processes modulated by microRNAs in cancer initiation and progression. Characterization and functional studies on oncogenic or tumour suppressive microRNAs are made possible because of developments in sequencing and microarray techniques. In the current review, we bring recent knowledge of the role of microRNAs in BTIC formation and therapy. Special attention is paid to two highly aggressive and well-characterized brain tumours: gliomas and medulloblastoma. As microRNA seems to be altered in the pathogenesis of many human diseases, “microRNA therapy” may now have potential to improve outcomes for brain tumour patients. In this rapidly evolving field, further understanding of miRNA biology and its contribution towards cancer can be mined for new therapeutic tools. PMID:26064134

  13. MicroRNA involvement in glioblastoma pathogenesis

    SciTech Connect

    Novakova, Jana; Slaby, Ondrej; Vyzula, Rostislav; Michalek, Jaroslav

    2009-08-14

    MicroRNAs are endogenously expressed regulatory noncoding RNAs. Altered expression levels of several microRNAs have been observed in glioblastomas. Functions and direct mRNA targets for these microRNAs have been relatively well studied over the last years. According to these data, it is now evident, that impairment of microRNA regulatory network is one of the key mechanisms in glioblastoma pathogenesis. MicroRNA deregulation is involved in processes such as cell proliferation, apoptosis, cell cycle regulation, invasion, glioma stem cell behavior, and angiogenesis. In this review, we summarize the current knowledge of miRNA functions in glioblastoma with an emphasis on its significance in glioblastoma oncogenic signaling and its potential to serve as a disease biomarker and a novel therapeutic target in oncology.

  14. Differentiation-Associated MicroRNA Alterations in Mouse Heart-Derived Sca-1+CD31− and Sca-1+CD31+ Cells

    PubMed Central

    Wu, Qiong; Zhan, Jinxi; Li, Yun; Wang, Xiaoxia; Xu, Lu; Yu, Juan; Pu, Shiming; Zhou, Zuping

    2016-01-01

    Cardiac resident stem/progenitor cells (CSC/CPCs) are critical to the cellular and functional integrity of the heart because they maintain myocardial cell homeostasis. Several populations of CSC/CPCs have been identified based on expression of different stem cell-associated antigens. Sca-1+ cells in the cardiac tissue may be the most common CSC/CPCs. However, they are a heterogeneous cell population and, in transplants, clinicians might transplant more endothelial cells, cardiomyocytes, or other cells than stem cells. The purposes of this study were to (1) isolate CSC/CPCs with Lin−CD45−Sca-1+CD31− and Lin−CD45−Sca-1+CD31+ surface antigens using flow-activated cell sorting; (2) investigate their differentiation potential; and (3) determine the molecular basis for differences in stemness characteristics between cell subtypes. The results indicated that mouse heart-derived Sca-1+CD31− cells were multipotent and retained the ability to differentiate into different cardiac cell lineages, but Sca-1+CD31+ cells did not. Integrated analysis of microRNA and mRNA expression indicated that 20 microRNAs and 49 mRNAs were inversely associated with Sca-1+CD31− and Sca-1+CD31+ subtype stemness characteristics. In particular, mmu-miR-322-5p had more targeted and inversely associated genes and transcription factors and might have higher potential for CSC/CPCs differentiation. PMID:27298624

  15. Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants

    PubMed Central

    Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Silva, Filipi Nascimento; da Fontoura Costa, Luciano; Ferreira, Leandro Rodrigues; Furlanetto, Glaucio; Chacur, Paulo; Zerbini, Maria Claudia Nogueira; Carneiro-Sampaio, Magda

    2016-01-01

    Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue - obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT) - and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the “canonical” way of thymus functioning. Conversely, DS networks represent a “non-canonical” way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes. PMID:26848775

  16. Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants.

    PubMed

    Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Silva, Filipi Nascimento; Costa, Luciano da Fontoura; Ferreira, Leandro Rodrigues; Furlanetto, Glaucio; Chacur, Paulo; Zerbini, Maria Claudia Nogueira; Carneiro-Sampaio, Magda

    2016-02-16

    Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes. PMID:26848775

  17. Microvesicle-associated microRNA expression is altered upon particulate matter exposure in healthy workers and in A549 cells

    PubMed Central

    Bollati, Valentina; Angelici, Laura; Rizzo, Giovanna; Pergoli, Laura; Rota, Federica; Hoxha, Mirjam; Nordio, Francesco; Bonzini, Matteo; Tarantini, Letizia; Cantone, Laura; Pesatori, Angela C; Apostoli, Pietro; Baccarelli, Andrea A; Bertazzi, Pier Alberto

    2015-01-01

    Cardiovascular disease risk has been consistently linked with particulate matter (PM) exposure. Cell-derived microvesicles (MVs) are released into plasma and transfer microRNAs (miRNAs) between tissues. MVs can be produced by the respiratory system in response to proinflammatory triggers, enter the circulatory system and remotely modify gene expression in cardiovascular tissues. However, whether PM affects MV signaling has never been investigated. In this study, we evaluated expression of microRNAs contained within plasma MVs upon PM exposure both in vivo and in vitro. In the in vivo study, we isolated plasma MVs from healthy steel plant workers before and after workplace PM exposure. We measured the expression of 88 MV-associated miRNAs by real-time polymerase chain reaction. To assess a possible source of the MV miRNAs identified in vivo, we measured their miRNA expression in PM-treated A549 pulmonary cell lines in vitro. MiRNA profiling of plasma MVs showed 5.62- and 13.95-fold increased expression of miR-128 and miR-302c, respectively, after 3 days of workplace PM exposure (P < 0.001). According to Ingenuity Pathway Analysis, miR-128 is part of coronary artery disease pathways, and miR-302c is part of coronary artery disease, cardiac hypertrophy and heart failure pathways. In vitro experiments confirmed a dose-dependent expression of miR-128 in MVs released from A549 cells after 6 h of PM treatment (P = 0.030). MiR-302c was expressed neither from A549 cells nor in reference lung RNA. These results suggest novel PM-activated molecular mechanisms that may mediate the effects of air pollution and could lead to the identification of new diagnostic and therapeutic interventions. Copyright © 2014 The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd. Cell-derived microvesicles (MVs) are found in plasma and may transfer signals between tissues. In this article, we report in-vivo and in-vitro studies demonstrating that Particulate

  18. MicroRNA-9 and MicroRNA-326 Regulate Human Dopamine D2 Receptor Expression, and the MicroRNA-mediated Expression Regulation Is Altered by a Genetic Variant*

    PubMed Central

    Shi, Sandra; Leites, Catherine; He, Deli; Schwartz, Daniel; Moy, Winton; Shi, Jianxin; Duan, Jubao

    2014-01-01

    The human dopamine receptor D2 (DRD2) has been implicated in the pathophysiology of schizophrenia and other neuropsychiatric disorders. Most antipsychotic drugs influence dopaminergic transmission through blocking dopamine receptors, primarily DRD2. We report here the post-transcriptional regulation of DRD2 expression by two brain-expressed microRNAs (miRs), miR-326 and miR-9, in an ex vivo mode, and show the relevance of miR-mediated DRD2 expression regulation in human dopaminergic neurons and in developing human brains. Both miRs targeted the 3′-UTR (untranslated region) of DRD2 in NT2 (neuron-committed teratocarcinoma, which endogenously expresses DRD2) and CHO (Chinese hamster ovary) cell lines, decreasing luciferase activity measured by a luciferase reporter gene assay. miR-326 overexpression reduced DRD2 mRNA and DRD2 receptor synthesis. Both antisense miR-326 and antisense miR-9 increased DRD2 protein abundance, suggesting an endogenous repression of DRD2 expression by both miRs. Furthermore, a genetic variant (rs1130354) within the DRD2 3′-UTR miR-targeting site interferes with miR-326-mediated repression of DRD2 expression. Finally, co-expression analysis identified an inverse correlation of DRD2 expression with both miR-326 and miR-9 in differentiating dopaminergic neurons derived from human induced pluripotent stem cells (iPSCs) and in developing human brain regions implicated in schizophrenia. Our study provides empirical evidence suggesting that miR-326 and miR-9 may regulate dopaminergic signaling, and miR-326 and miR-9 may be considered as potential drug targets for the treatment of disorders involving abnormal DRD2 function, such as schizophrenia. PMID:24675081

  19. ‘Atherothrombosis-associated microRNAs in Antiphospholipid syndrome and Systemic Lupus Erythematosus patients’

    PubMed Central

    Pérez-Sánchez, C.; Aguirre, M. A.; Ruiz-Limón, P.; Barbarroja, N.; Jiménez-Gómez, Y.; de la Rosa, I. Arias; Rodriguez-Ariza, A.; Collantes-Estévez, E.; Segui, P.; Velasco, F.; Cuadrado, M. J.; Teruel, R.; González-Conejero, R.; Martínez, C.; López-Pedrera, Ch.

    2016-01-01

    MicroRNAs markedly affect the immune system, and have a relevant role in CVD and autoimmune diseases. Yet, no study has analyzed their involvement in atherothrombosis related to APS and SLE patients. This study intended to: 1) identify and characterize microRNAs linked to CVD in APS and SLE; 2) assess the effects of specific autoantibodies. Six microRNAs, involved in atherothrombosis development, were quantified in purified leukocytes from 23 APS and 64 SLE patients, and 56 healthy donors. Levels of microRNAs in neutrophils were lower in APS and SLE than in healthy donors. Gene and protein expression of miRNA biogenesis-related molecules were also reduced. Accordingly, more than 75% of identified miRNAs by miRNA profiling were underexpressed. In monocytes, miR124a and -125a were low, while miR-146a and miR-155 appeared elevated. Altered microRNAs’ expression was linked to autoimmunity, thrombosis, early atherosclerosis, and oxidative stress in both pathologies. In vitro treatment of neutrophils, monocytes, and ECs with aPL-IgG or anti-dsDNA-IgG antibodies deregulated microRNAs expression, and decreased miRNA biogenesis-related proteins. Monocyte transfections with pre-miR-124a and/or -125a caused reduction in atherothrombosis-related target molecules. In conclusion, microRNA biogenesis, significantly altered in neutrophils of APS and SLE patients, is associated to their atherothrombotic status, further modulated by specific autoantibodies. PMID:27502756

  20. Characterization of diagenetically altered carbonate reservoirs, South Cowden Grayburg Reservoir, West Texas

    SciTech Connect

    Lucia, F.J.; Ruppel, S.C.

    1996-12-31

    Much of the difficulty in constructing carbonate reservoir models for fluid-flow simulation results from diagenetic overprinting of depositional permeability patterns. In the South Cowden field, diagenetic effects result in (1) low porosity and permeability in the western and northern areas due to reduction of porosity by means of dolomitization and post-dolomitization compaction, (2) elimination of the petrophysical effects of depositional texture resulting from changes in particle size due to dolomitization, and (3) creation of a touching-vug pore system due to anhydrite dissolution. The extent of anhydrite alteration can be mapped to show three distinct diagenetic areas: those dominated by unaltered, altered, or dissolved anhydrite. Each alteration type has a unique acoustic-porosity transform that can be used to map the diagenetic areas and to calculate porosity when only acoustic logs are available. A single porosity-permeability transform characterizes the areas having unaltered and altered anhydrite, and the depositional stratigraphy is useful in constructing a reservoir model. A more favorable transform characterizes the area of dissolved anhydrite, and depositional stratigraphy is not useful in constructing a reservoir model because of the large effect of the diagenetic overprint.

  1. Raman spectroscopic characterization of a highly weathered basalt: Igneous mineralogy, alteration products, and a microorganism

    NASA Astrophysics Data System (ADS)

    Wang, Alian; Jolliff, Bradley L.; Haskin, Larry A.

    On-surface identification of minerals on Mars is likely to depend mainly on observations of rocks and soils as found, without access to fresh surfaces or other sample preparation. Both the original mineralogy of rocks and their alteration mineralogy will be important. To determine the capability of Raman spectroscopy to provide good mineralogical characterization of an altered igneous rock such as might be encountered on Mars, we have analyzed the heavily weathered, exterior surface of a cobble of Keweenawan basalt and compared the results with those from a roughly cut, unpolished interior surface, using a Raman point-counting method. Despite ubiquitous hematite, a strong Raman scatterer, and despite considerable alteration, original igneous plagioclase and pyroxene were identified and their approximate proportions determined from point-counting traverses on the original surface of the rock. Saponite, an alteration product, was easily identified on the freshly cut surface but could only occasionally be identified on the weathered surface, where saponite-rich areas were highly photoluminescent. Amygdular fill gave strong spectra of calcite and thomsonite (a zeolite). Tiny, sparse crustose lichen gave clear spectra of their waxy organic coating. On the basis of the surface Raman spectra alone, the rock could be identified as a mafic rock, probably basaltic, that was hydrothermally altered in an oxidizing environment at a temperature between ~250 and ~350°C.

  2. Differences in Circulating microRNAs between Grazing and Grain-Fed Wagyu Cattle Are Associated with Altered Expression of Intramuscular microRNA, the Potential Target PTEN, and Lipogenic Genes.

    PubMed

    Muroya, Susumu; Shibata, Masahiro; Hayashi, Masayuki; Oe, Mika; Ojima, Koichi

    2016-01-01

    We aimed to understand the roles of miRNAs in the muscle tissue maturation and those of circulating microRNAs (c-miRNAs) in beef production of Japanese Black (JB) cattle (Wagyu), a breed with genetically background of superior intermuscular fat depot, by comparing different feeding conditions (indoor grain-feeding vs. grazing on pasture). The cattle at 18 months old were assigned to pasture feeding or conventional indoor grain feeding conditions for 5 months. Microarray analysis of c-miRNAs from the plasma extracellular vesicles led to the detection of a total of 202 bovine miRNAs in the plasma, including 15 miRNAs that differed between the feeding conditions. Validation of the microarray results by qPCR showed that the circulating miR-10b level in the grazing cattle was upregulated compared to that of the grain-fed cattle. In contrast, the levels of miR-17-5p, miR-19b, miR-29b, miR-30b-5p, miR-98, miR-142-5p, miR-301a, miR-374b, miR-425-5p, and miR-652 were lower in the grazing cattle than in the grain-fed cattle. Bioinformatic analysis indicated that the predicted target genes of those c-miRNAs were enriched in gene ontology terms associated with blood vessel morphogenesis, plasma membrane, focal adhesion, endocytosis, collagen, ECM-receptor interaction, and phosphorylation. In the grazing cattle, the elevation of miR-10b expression in the plasma was coincident with its elevation in the longissimus lumborum (LL) muscle. Expression of bovine-specific miR-2478, the most plasma-enriched miRNA, tended to be also upregulated in the muscle but not in the plasma. Furthermore, grazing caused the downregulated mRNA expression of predicted miR-10b and/or miR-2478 target genes, such as DNAJB2, PTEN, and SCD1. Thus, the feeding system used for JB cattle affected the c-miRNAs that could be indicators of grain feeding. Among these, miR-10b expression was especially associated with feeding-induced changes and with the expression of the potential target genes responsible for

  3. MicroRNA-30c-1-3p is a silencer of the pregnane X receptor by targeting the 3'-untranslated region and alters the expression of its target gene cytochrome P450 3A4.

    PubMed

    Vachirayonstien, Thaveechai; Yan, Bingfang

    2016-09-01

    The pregnane X receptor (PXR) is a master regulator of genes involved in drug elimination. Recently, activation of PXR has also been linked to the development of many disease conditions such as metabolic disorders and malignancies. MicroRNAs (miRs) emerge as important molecular species involved in these conditions. This study was undertaken to test a large number of miRs for their ability to regulate PXR expression. As many as 58 miRs were tested and miR-30c-1-3p was identified to suppress PXR expression. The suppression was achieved by targeting the 3'-untranslated region, 438 nucleotides from the stop codon. The suppression was detected in multiple cell lines from different organ origins. In addition, miR-30c-1-3p altered basal and induced expression of cytochrome P450 3A4 (CYP3A4), a prototypical target gene of PXR. The alteration varied depending on the time and amounts of miR-30c-1-3p. CYP3A4 is responsible for the metabolism of more than 50% medicines. The interconnection between miR-30c-1-3p and PXR signifies a role of miRs in drug-drug interactions and chemosensitivity. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:27085140

  4. Identification and Characterization of Progesterone- and Estrogen-Regulated MicroRNAs in Mouse Endometrial Epithelial Cells

    PubMed Central

    Yuan, Dong-zhi; Yu, Lin-lin; Qu, Ting; Zhang, Shi-mao; Zhao, You-bo; Pan, Jun-li; Xu, Qian; He, Ya-ping; Zhang, Jin-hu

    2015-01-01

    In endometrial epithelial cells, progesterone (P4) functions in regulating the cell structure and opposing the effects of estrogen. However, the mechanisms of P4 that oppose the effects of estrogen remain unclear. MicroRNAs (miRNAs) are important posttranscriptional regulators that are involved in various physiological and pathological processes. Whether P4 directly induces miRNA expression to antagonize estrogen in endometrial epithelium is unclear. In this study, total RNAs were extracted from endometrial epithelium of ovariectomized mice, which were treated with estrogen alone or a combination of estrogen and P4. MicroRNA high-throughput sequencing with bioinformatics analysis was used to identify P4-induced miRNAs, predict their potential target genes, and analyze their possible biological functions. We observed that 146 mature miRNAs in endometrial epithelial cells were significantly upregulated by P4. These miRNAs were extensively involved in multiple biological processes. The miRNA-145a demonstrated a possible function in the antiproliferative action of P4 on endometrial epithelial cells. PMID:24925854

  5. microRNAs: key triggers of neuronal cell fate

    PubMed Central

    Meza-Sosa, Karla F.; Pedraza-Alva, Gustavo; Pérez-Martínez, Leonor

    2014-01-01

    Development of the central nervous system (CNS) requires a precisely coordinated series of events. During embryonic development, different intra- and extracellular signals stimulate neural stem cells to become neural progenitors, which eventually irreversibly exit from the cell cycle to begin the first stage of neurogenesis. However, before this event occurs, the self-renewal and proliferative capacities of neural stem cells and neural progenitors must be tightly regulated. Accordingly, the participation of various evolutionary conserved microRNAs is key in distinct central nervous system (CNS) developmental processes of many organisms including human, mouse, chicken, frog, and zebrafish. microRNAs specifically recognize and regulate the expression of target mRNAs by sequence complementarity within the mRNAs 3′ untranslated region and importantly, a single microRNA can have several target mRNAs to regulate a process; likewise, a unique mRNA can be targeted by more than one microRNA. Thus, by regulating different target genes, microRNAs let-7, microRNA-124, and microRNA-9 have been shown to promote the differentiation of neural stem cells and neural progenitors into specific neural cell types while microRNA-134, microRNA-25 and microRNA-137 have been characterized as microRNAs that induce the proliferation of neural stem cells and neural progenitors. Here we review the mechanisms of action of these two sets of microRNAs and their functional implications during the transition from neural stem cells and neural progenitors to fully differentiated neurons. The genetic and epigenetic mechanisms that regulate the expression of these microRNAs as well as the role of the recently described natural RNA circles which act as natural microRNA sponges regulating post-transcriptional microRNA expression and function during the early stages of neurogenesis is also discussed. PMID:25009466

  6. Identification of altered MicroRNA expression in canine lymphoid cell lines and cases of B- and T-Cell lymphomas.

    PubMed

    Uhl, Elizabeth; Krimer, Paula; Schliekelman, Paul; Tompkins, S Mark; Suter, Steven

    2011-11-01

    Canine lymphoma is a common spontaneous tumor with many similarities to human lymphoma, and thus has potential to be an important animal model of lymphomagenesis. This study determined that microRNA (miRNA) expression in canine tumors can be assessed using a commercially available human cancer miRNA qPCR array. miRNA expression in six different canine lymphoid cell lines and in naturally occurring canine B- and T-cell lymphomas was compared using RNA harvested from normal canine peripheral blood mononuclear cells (PBMC) and normal lymph nodes (LN) as controls. We found that false discovery rate (FDR) correction for multiple testing after quantile normalization controlled for variation across arrays and that they were the best methods for normalization and statistical analysis. Increases in miRNAs known to upregulate oncogenes (miR19a+b, miR17-5p) and decreased expression of miRNAs with tumor suppressor functions (miR-203, miR-218, and miR-181a) also seen in human lymphoid malignancies were observed. However, there were few similarities between canine groups. The results of this study indicate that the use of both PBMC and LN cells as controls provides different, but potentially equally important targets for further analysis. Our findings of miRNA dysregulation in canine lymphoid cell lines and clinical cases of lymphoma emphasize the potential of canine lymphoma as an important spontaneous, large animal model of human B- and T-cell lymphomas. PMID:21910161

  7. Microparticles Mediate the Intercellular Regulation of microRNA-503 and Proline-Rich Tyrosine Kinase 2 to Alter the Migration and Invasion Capacity of Breast Cancer Cells

    PubMed Central

    Gong, Joyce; Luk, Frederick; Jaiswal, Ritu; Bebawy, Mary

    2014-01-01

    The successful treatment of cancer is hampered by drug resistance and metastasis. While these two obstacles were once considered separately, recent evidence associates resistance with an enhanced metastatic capacity. However, the underlying mechanisms remain undefined. We previously described the intercellular transfer of drug resistance via submicron vesicles called microparticles (MPs). We now propose that MPs derived from drug-resistant cells are also involved in the intercellular transfer of components to enhance the migration and invasion capacity of cells. Thus, MPs may be a conduit between resistance and metastasis. We used microarray analysis to identify regulatory microRNAs (miRNAs), which contribute to the dissemination of metastatic traits. miR-503 was downregulated in recipient cells following co-culture with MPs isolated from drug-resistant cells. miR-503 was inversely associated with metastasis, as demonstrated using wound healing/scratch migration assays and Matrigel®-coated transwell invasion assays. Proline-rich tyrosine kinase 2 (PYK2) was upregulated in recipient cells and associated with increased migration and invasion, with these phenotypes being reversed using a pharmacological inhibitor of PYK2 phosphorylation, tyrphostin A9. However, the MP-mediated promotion of metastatic traits was not due to the presence of these effectors in the MP cargo but rather due to down stream effector molecules in these pathways. This is the first demonstration that the role of MPs in trait acquisition extends beyond the direct transfer of vesicle components and also includes transfer of intermediary regulators that induce down stream mediators following transfer to recipient cells. This implicates an expanding role of MPs in cancer pathogenesis. PMID:25177548

  8. Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation

    PubMed Central

    LI, YAO-DONG; HONG, YI-FAN; YUSUFUAJI, YUEERGULI; TANG, BAO-PENG; ZHOU, XIAN-HUI; XU, GUO-JUN; LI, JIN-XIN; SUN, LIN; ZHANG, JIANG-HUA; XIN, QIANG; XIONG, JIAN; JI, YU-TONG; ZHANG, YU

    2015-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels mediate pacemaker currents in the atrium. The microRNA (miR) families miR-1 and miR-133 regulate the expression of multiple genes involved in myocardial function, including HCN channels. It was hypothesized that age-dependent changes in HCN2, HCN4, miR-1 and miR-133 expression may contribute to age-associated atrial fibrillation, and therefore the correlation between expression levels, among adult (≤65 years) and aged patients (≥65 years), and sinus rhythm was determined. Right atrial appendage samples were collected from 60 patients undergoing coronary artery bypass grafting. Reverse transcription-quantitative polymerase chain reaction (PCR) and western blot analyses were performed in order to determine target RNA and protein expression levels. Compared with aged patients with sinus rhythm, aged patients with atrial fibrillation exhibited significantly higher HCN2 and HCN4 channel mRNA and protein expression levels (P<0.05), but significantly lower expression levels of miR-1 and miR-133 (P<0.05). In addition, aged patients with sinus rhythm exhibited significantly higher expression levels of HCN2 and HCN4 channel mRNA and protein (P<0.05), but significantly lower expression levels of miR-1 and -133 (P<0.05), compared with those of adult patients with sinus rhythm. Expression levels of HCN2 and HCN4 increased with age, and a greater increase was identified in patients with age-associated atrial fibrillation compared with that in those with aged sinus rhythm. These electrophysiological changes may contribute to the induction of ectopic premature beats that trigger atrial fibrillation. PMID:26005035

  9. A Functional 3'UTR Polymorphism (rs2235749) of Prodynorphin Alters microRNA-365 Binding in Ventral Striatonigral Neurons to Influence Novelty Seeking and Positive Reward Traits.

    PubMed

    Egervari, Gabor; Jutras-Aswad, Didier; Landry, Joseph; Miller, Michael L; Anderson, Sarah Ann; Michaelides, Michael; Jacobs, Michelle M; Peter, Cyril; Yiannoulos, Georgia; Liu, Xun; Hurd, Yasmin L

    2016-09-01

    Genetic factors impact behavioral traits relevant to numerous psychiatric disorders and risk-taking behaviors, and different lines of evidence have indicated that discrete neurobiological systems contribute to such individual differences. In this study, we explored the relationship of genetic variants of the prodynorphin (PDYN) gene, which is enriched in the striatonigral/striatomesencephalic pathway, a key neuronal circuit implicated in positive 'Go' behavioral choice and action. Our multidisciplinary approach revealed that the single nucleotide polymorphism (SNP) rs2235749 (in high linkage disequilibrium with rs910080) modifies striatal PDYN expression via impaired binding of miR-365, a microRNA that targets the PDYN 3'-untranslated region (3'UTR), and is significantly associated to novelty- and reward-related behavioral traits in humans and translational animal models. Carriers of the rs2235749G allele exhibited increased levels of PDYN 3'UTR in vitro and had elevated mRNA expression in the medial nucleus accumbens shell (NAcSh) and caudate nucleus in postmortem human brains. There was an association of rs2235749 with novelty-seeking trait and a strong genotype-dose association with positive reinforcement behavior in control subjects, which differed in cannabis-dependent individuals. Using lentiviral miRZip-365 constructs selectively expressed in Pdyn-neurons of the NAcSh, we demonstrated that the Pdyn-miR365 interaction in the NAcSh directly influences novelty-seeking exploratory behavior and facilitates self-administration of natural reward. Overall, this translational study suggests that genetically determined miR-365-mediated epigenetic regulation of PDYN expression in mesolimbic striatonigral/striatomesencephalic circuits possibly contributes to novelty seeking and positive reinforcement traits. PMID:27074815

  10. MicroRNA in late lung development and bronchopulmonary dysplasia: the need to demonstrate causality.

    PubMed

    Nardiello, Claudio; Morty, Rory E

    2016-12-01

    MicroRNA are emerging as powerful regulators of cell differentiation and tissue and organ development. Several microRNA have been described to play a role in branching morphogenesis, a key step in early lung development. However, considerably less attention has been paid to microRNA as regulators of the process of secondary septation, which drives lung alveolarization during late lung development. Secondary septation is severely perturbed in bronchopulmonary dysplasia (BPD), a common complication of preterm birth characterized by blunted alveolarization. A number of studies to date have reported microRNA microarray screens in animal models of BPD; however, only two studies have attempted to demonstrate causality. Although the expression of miR-150 was altered in experimental BPD, a miR-150(-/-) knockout mouse did not exhibit appreciable protection in a BPD animal model. Similarly, while the expression of miR-489 in the lung was reduced in clinical and experimental BPD, antagomiR and over-expression approaches could not validate a role for miR-489 in the impaired alveolarization associated with experimental BPD. This mini-review aims to highlight microRNA that have been revealed by multiple microarray studies to be potential causal players in normal and pathological alveolarization. Additionally, the challenges faced in attempting to demonstrate a causal role for microRNA in lung alveolarization are discussed. These include the tremendous variability in the animal models employed, and the limitations and advantages offered by the available tools, including antagomiRs and approaches for the validation of a specific microRNA-mRNA interaction during lung alveolarization. PMID:27216745

  11. Low-dose γ-irradiation induces dual radio-adaptive responses depending on the post-irradiation time by altering microRNA expression profiles in normal human dermal fibroblasts.

    PubMed

    Bae, Seunghee; Kim, Karam; Cha, Hwa Jun; Choi, Yeongmin; Shin, Shang Hun; An, In-Sook; Lee, Jae Ho; Lee, Su Jae; Kim, Ji Young; Nam, Seon Young; An, Sungkwan

    2015-01-01

    Exposure to high-dose ionizing radiation, including γ-radiation, induces severe skin disorders. However, the biological consequences and molecular mechanisms responsible for the response of human skin to low-dose γ-radiation (LDR) are largely unknown. In the present study, we demonstrate that LDR (0.1 Gy) induces distinct cellular responses in normal human dermal fibroblasts (NHDFs) depending on the post-irradiation time point. A MTT-based cell viability assay and propidium iodide staining-based cell cycle assay revealed that the viability and proportion of the cells in the G2/M phase were differed at 6 and 24 h post-irradiation. Reverse transcription quantitative PCR (RT-qPCR) revealed that LDR significantly upregulated the mRNA expression of collagen type I alpha 1 (COL1A1), but downregulated the mRNA expression of matrix metalloproteinase 1 (MMP1) at 24 h post-irradiation. MicroRNA (miRNA) microarray analysis further demonstrated that LDR induced changes in the expression profiles of specific miRNAs and that some of the deregulated miRNAs were specific to either the early or late radio-adaptive response. Our results suggest that LDR generates dual radio-adaptive responses depending on the post-irradiation time by altering specific miRNA expression profiles in NHDFs. PMID:25384363

  12. Alterations in microRNA expression profile in HCV-infected hepatoma cells: Involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway

    SciTech Connect

    Ishida, Hisashi; Tatsumi, Tomohide; Hosui, Atsushi; Nawa, Takatoshi; Kodama, Takahiro; Shimizu, Satoshi; Hikita, Hayato; Hiramatsu, Naoki; Kanto, Tatsuya; Hayashi, Norio; Takehara, Tetsuo

    2011-08-19

    Highlights: {yields} HCV infection upregulated miR-192, -194, -215, downregulated miR-320, -491. {yields} Transfection of miR-192, -215, and -491 enhanced HCV replication. {yields} Transfection of miR-491 inhibited Akt phosphorylation. {yields} Akt inhibition could be responsible for augmentation of HCV replication by miR-491. -- Abstract: The aim of this study was to investigate the role of microRNA (miRNA) on hepatitis C virus (HCV) replication in hepatoma cells. Using miRNA array analysis, miR-192/miR-215, miR-194, miR-320, and miR-491 were identified as miRNAs whose expression levels were altered by HCV infection. Among them, miR-192/miR-215 and miR-491 were capable of enhancing replication of the HCV replicon as well as HCV itself. HCV IRES activity or cell proliferation was not increased by forced expression of miR-192/miR-215 or miR-491. Investigation of signaling pathways revealed that miR-491 specifically suppressed the phosphoinositol-3 (PI3) kinase/Akt pathway. Under inhibition of PI3 kinase by LY294002, the suppressive effect of miR-491 on HCV replication was abolished, indicating that suppression of HCV replication by miR-491 was dependent on the PI3 kinase/Akt pathway. miRNAs altered by HCV infection would then affect HCV replication, which implies a complicated mechanism for regulating HCV replication. HCV-induced miRNA may be involved in changes in cellular properties including hepatocarcinogenesis.

  13. Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake.

    PubMed

    Al-Husseini, Wijdan; Chen, Yizhou; Gondro, Cedric; Herd, Robert M; Gibson, John P; Arthur, Paul F

    2016-10-01

    MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some

  14. Pervasive microRNA Duplication in Chelicerates: Insights from the Embryonic microRNA Repertoire of the Spider Parasteatoda tepidariorum.

    PubMed

    Leite, Daniel J; Ninova, Maria; Hilbrant, Maarten; Arif, Saad; Griffiths-Jones, Sam; Ronshaugen, Matthew; McGregor, Alistair P

    2016-01-01

    MicroRNAs are small (∼22 nt) noncoding RNAs that repress translation and therefore regulate the production of proteins from specific target mRNAs. microRNAs have been found to function in diverse aspects of gene regulation within animal development and many other processes. Among invertebrates, both conserved and novel, lineage specific, microRNAs have been extensively studied predominantly in holometabolous insects such as Drosophila melanogaster However little is known about microRNA repertoires in other arthropod lineages such as the chelicerates. To understand the evolution of microRNAs in this poorly sampled subphylum, we characterized the microRNA repertoire expressed during embryogenesis of the common house spider Parasteatoda tepidariorum We identified a total of 148 microRNAs in P. tepidariorum representing 66 families. Approximately half of these microRNA families are conserved in other metazoans, while the remainder are specific to this spider. Of the 35 conserved microRNAs families 15 had at least two copies in the P. tepidariorum genome. A BLAST-based approach revealed a similar pattern of duplication in other spiders and a scorpion, but not among other chelicerates and arthropods, with the exception of a horseshoe crab. Among the duplicated microRNAs we found examples of lineage-specific tandem duplications, and the duplication of entire microRNA clusters in three spiders, a scorpion, and in a horseshoe crab. Furthermore, we found that paralogs of many P. tepidariorum microRNA families exhibit arm switching, which suggests that duplication was often followed by sub- or neofunctionalization. Our work shows that understanding the evolution of microRNAs in the chelicerates has great potential to provide insights into the process of microRNA duplication and divergence and the evolution of animal development. PMID:27324919

  15. Pervasive microRNA Duplication in Chelicerates: Insights from the Embryonic microRNA Repertoire of the Spider Parasteatoda tepidariorum

    PubMed Central

    Leite, Daniel J.; Ninova, Maria; Hilbrant, Maarten; Arif, Saad; Griffiths-Jones, Sam; Ronshaugen, Matthew; McGregor, Alistair P.

    2016-01-01

    MicroRNAs are small (∼22 nt) noncoding RNAs that repress translation and therefore regulate the production of proteins from specific target mRNAs. microRNAs have been found to function in diverse aspects of gene regulation within animal development and many other processes. Among invertebrates, both conserved and novel, lineage specific, microRNAs have been extensively studied predominantly in holometabolous insects such as Drosophila melanogaster. However little is known about microRNA repertoires in other arthropod lineages such as the chelicerates. To understand the evolution of microRNAs in this poorly sampled subphylum, we characterized the microRNA repertoire expressed during embryogenesis of the common house spider Parasteatoda tepidariorum. We identified a total of 148 microRNAs in P. tepidariorum representing 66 families. Approximately half of these microRNA families are conserved in other metazoans, while the remainder are specific to this spider. Of the 35 conserved microRNAs families 15 had at least two copies in the P. tepidariorum genome. A BLAST-based approach revealed a similar pattern of duplication in other spiders and a scorpion, but not among other chelicerates and arthropods, with the exception of a horseshoe crab. Among the duplicated microRNAs we found examples of lineage-specific tandem duplications, and the duplication of entire microRNA clusters in three spiders, a scorpion, and in a horseshoe crab. Furthermore, we found that paralogs of many P. tepidariorum microRNA families exhibit arm switching, which suggests that duplication was often followed by sub- or neofunctionalization. Our work shows that understanding the evolution of microRNAs in the chelicerates has great potential to provide insights into the process of microRNA duplication and divergence and the evolution of animal development. PMID:27324919

  16. A Common Genetic Variant in the 3′-UTR of Vacuolar H+-ATPase ATP6V0A1 Creates a Micro-RNA Motif to Alter Chromogranin A (CHGA) Processing and Hypertension Risk

    PubMed Central

    Wei, Zhiyun; Biswas, Nilima; Wang, Lei; Courel, Maite; Zhang, Kuixing; Soler-Jover, Alex; Taupenot, Laurent; O’Connor, Daniel T.

    2012-01-01

    differential micro-RNA effects, altering vacuolar pH and consequently CHGA processing and exocytotic secretion. PMID:21558123

  17. Identification and Characterization of MicroRNAs from Tree Peony (Paeonia ostii) and Their Response to Copper Stress

    PubMed Central

    Jin, Qijiang; Xue, Zeyun; Dong, Chunlan; Wang, Yanjie; Chu, Lingling; Xu, Yingchun

    2015-01-01

    MicroRNAs (miRNAs) are a class of non-coding, small RNAs recognized as important regulators of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data, including Paeonia ostii. In this work, we used high-throughput sequencing to identify conserved and nonconserved miRNAs and other short RNAs in Paeonia ostii under control and copper stressed condition. 102 previously known plant miRNAs were identified and classified into 89 families according to their gene sequence identity. Some miRNAs were highly conserved in the plant kingdom suggesting that these miRNA play important and conserved roles. Combined our transcriptome sequencing data of Paeonia ostii under same conditions, 34 novel potential miRNAs were identified. The potential targets of the identified known and novel miRNAs were also predicted based on sequence homology search. Comparing the two libraries, it was observed that 12 conserved miRNAs and 18 novel miRNAs showed significantly changes in response to copper stress. Some of the new identified potential miRNAs might be involved in Paeonia ostii-specific regulating mechanisms under copper stress. These results provide a framework for further analysis of miRNAs and their role in regulating Paeonia ostii response to copper stress. PMID:25658957

  18. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs), a family of small non-coding RNA molecules, appear to regulate animal lipid metabolism and preadipocyte conversion to form lipid-assimilating adipocytes (i.e. adipogenesis). However, no miRNA to date has been reported to modulate adipogenesis and lipid deposition in beef cattle. Results The expression patterns of 89 miRNAs including four bovine specific miRNAs in subcutaneous adipose tissues from three groups of crossbred steers differing in backfat thickness were compared using qRT-PCR analysis. Eighty-six miRNAs were detectable in all samples, with 42 miRNAs differing among crossbreds (P < 0.05) and 15 miRNAs differentially expressed between tissues with high and low backfat thickness (P < 0.05). The expression levels of 18 miRNAs were correlated with backfat thickness (P < 0.05). The miRNA most differentially expressed and the most strongly associated with backfat thickness was miR-378, with a 1.99-fold increase in high backfat thickness tissues (r = 0.72). Conclusions MiRNA expression patterns differed significantly in response to host genetic components. Approximately 20% of the miRNAs in this study were identified as being correlated with backfat thickness. This result suggests that miRNAs may play a regulatory role in white adipose tissue development in beef animals. PMID:20423511

  19. A critical appraisal of the use of microRNA data in phylogenetics.

    PubMed

    Thomson, Robert C; Plachetzki, David C; Mahler, D Luke; Moore, Brian R

    2014-09-01

    Recent progress in resolving the tree of life continues to expose relationships that resist resolution, which drives the search for novel sources of information to solve these difficult phylogenetic problems. A recent example, the presence and absence of microRNA families, has been vigorously promoted as an ideal source of phylogenetic data and has been applied to several perennial phylogenetic problems. The utility of such data for phylogenetic inference hinges critically both on developing stochastic models that provide a reasonable description of the process that give rise to these data, and also on the careful validation of those models in real inference scenarios. Remarkably, however, the statistical behavior and phylogenetic utility of microRNA data have not yet been rigorously characterized. Here we explore the behavior and performance of microRNA presence/absence data under a variety of evolutionary models and reexamine datasets from several previous studies. We find that highly heterogeneous rates of microRNA gain and loss, pervasive secondary loss, and sampling error collectively render microRNA-based inference of phylogeny difficult. Moreover, our reanalyses fundamentally alter the conclusions for four of the five studies that we reexamined. Our results indicate that the capacity of miRNA data to resolve the tree of life has been overstated, and we urge caution in their application and interpretation. PMID:25071211

  20. A critical appraisal of the use of microRNA data in phylogenetics

    PubMed Central

    Thomson, Robert C.; Plachetzki, David C.; Mahler, D. Luke; Moore, Brian R.

    2014-01-01

    Recent progress in resolving the tree of life continues to expose relationships that resist resolution, which drives the search for novel sources of information to solve these difficult phylogenetic problems. A recent example, the presence and absence of microRNA families, has been vigorously promoted as an ideal source of phylogenetic data and has been applied to several perennial phylogenetic problems. The utility of such data for phylogenetic inference hinges critically both on developing stochastic models that provide a reasonable description of the process that give rise to these data, and also on the careful validation of those models in real inference scenarios. Remarkably, however, the statistical behavior and phylogenetic utility of microRNA data have not yet been rigorously characterized. Here we explore the behavior and performance of microRNA presence/absence data under a variety of evolutionary models and reexamine datasets from several previous studies. We find that highly heterogeneous rates of microRNA gain and loss, pervasive secondary loss, and sampling error collectively render microRNA-based inference of phylogeny difficult. Moreover, our reanalyses fundamentally alter the conclusions for four of the five studies that we reexamined. Our results indicate that the capacity of miRNA data to resolve the tree of life has been overstated, and we urge caution in their application and interpretation. PMID:25071211

  1. Hydrothermal Alteration Mineralogy Characterized Through Multiple Analytical Methods: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Black, S.; Hynek, B. M.; Kierein-Young, K. S.; Avard, G.; Alvarado-Induni, G.

    2015-12-01

    Proper characterization of mineralogy is an essential part of geologic interpretation. This process becomes even more critical when attempting to interpret the history of a region remotely, via satellites and/or landed spacecraft. Orbiters and landed missions to Mars carry with them a wide range of analytical tools to aid in the interpretation of Mars' geologic history. However, many instruments make a single type of measurement (e.g., APXS: elemental chemistry; XRD: mineralogy), and multiple data sets must be utilized to develop a comprehensive understanding of a sample. Hydrothermal alteration products often exist in intimate mixtures, and vary widely across a site due to changing pH, temperature, and fluid/gas chemistries. These characteristics require that we develop a detailed understanding regarding the possible mineral mixtures that may exist, and their detectability in different instrument data sets. This comparative analysis study utilized several analytical methods on existing or planned Mars rovers (XRD Raman, LIBS, Mössbauer, and APXS) combined with additional characterization (thin section, VNIR, XRF, SEM-EMP) to develop a comprehensive suite of data for hydrothermal alteration products collected from Poás and Turrialba volcanoes in Costa Rica. Analyzing the same samples across a wide range of instruments allows for direct comparisons of results, and identification of instrumentation "blind spots." This provides insight into the ability of in-situ analyses to comprehensively characterize sites on Mars exhibiting putative hydrothermal characteristics, such as the silica and sulfate deposits at Gusev crater [eg: Squyres et al., 2008], as well as valuable information for future mission planning and data interpretation. References: Squyres et al. (2008), Detection of Silica-Rich Deposits on Mars, Science, 320, 1063-1067, doi:10.1126/science.1155429.

  2. MicroRNAs: Emerging Novel Clinical Biomarkers for Hepatocellular Carcinomas

    PubMed Central

    Anwar, Sumadi Lukman; Lehmann, Ulrich

    2015-01-01

    The discovery of small non-coding RNAs known as microRNAs has refined our view of the complexity of gene expression regulation. In hepatocellular carcinoma (HCC), the fifth most frequent cancer and the third leading cause of cancer death worldwide, dysregulation of microRNAs has been implicated in all aspects of hepatocarcinogenesis. In addition, alterations of microRNA expression have also been reported in non-cancerous liver diseases including chronic hepatitis and liver cirrhosis. MicroRNAs have been proposed as clinically useful diagnostic biomarkers to differentiate HCC from different liver pathologies and healthy controls. Unique patterns of microRNA expression have also been implicated as biomarkers for prognosis as well as to predict and monitor therapeutic responses in HCC. Since dysregulation has been detected in various specimens including primary liver cancer tissues, serum, plasma, and urine, microRNAs represent novel non-invasive markers for HCC screening and predicting therapeutic responses. However, despite a significant number of studies, a consensus on which microRNA panels, sample types, and methodologies for microRNA expression analysis have to be used has not yet been established. This review focuses on potential values, benefits, and limitations of microRNAs as new clinical markers for diagnosis, prognosis, prediction, and therapeutic monitoring in HCC. PMID:26295264

  3. MicroRNA signatures characterizing caste-independent ovarian activity in queen and worker honeybees (Apis mellifera L.).

    PubMed

    Macedo, L M F; Nunes, F M F; Freitas, F C P; Pires, C V; Tanaka, E D; Martins, J R; Piulachs, M-D; Cristino, A S; Pinheiro, D G; Simões, Z L P

    2016-06-01

    Queen and worker honeybees differ profoundly in reproductive capacity. The queen of this complex society, with 200 highly active ovarioles in each ovary, is the fertile caste, whereas the workers have approximately 20 ovarioles as a result of receiving a different diet during larval development. In a regular queenright colony, the workers have inactive ovaries and do not reproduce. However, if the queen is sensed to be absent, some of the workers activate their ovaries, producing viable haploid eggs that develop into males. Here, a deep-sequenced ovary transcriptome library of reproductive workers was used as supporting data to assess the dynamic expression of the regulatory molecules and microRNAs (miRNAs) of reproductive and nonreproductive honeybee females. In this library, most of the differentially expressed miRNAs are related to ovary physiology or oogenesis. When we quantified the dynamic expression of 19 miRNAs in the active and inactive worker ovaries and compared their expression in the ovaries of virgin and mated queens, we noted that some miRNAs (miR-1, miR-31a, miR-13b, miR-125, let-7 RNA, miR-100, miR-276, miR-12, miR-263a, miR-306, miR-317, miR-92a and miR-9a) could be used to identify reproductive and nonreproductive statuses independent of caste. Furthermore, integrative gene networks suggested that some candidate miRNAs function in the process of ovary activation in worker bees. PMID:26853694

  4. Characterization and identification of differentially expressed microRNAs during the process of the peribiliary fibrosis induced by Clonorchis sinensis.

    PubMed

    Yan, Chao; Shen, Li-Ping; Ma, Rui; Li, Bo; Li, Xiang-Yang; Hua, Hui; Zhang, Bo; Yu, Qian; Wang, Yu-Gang; Tang, Ren-Xian; Zheng, Kui-Yang

    2016-09-01

    Clonorchis sinensis (C. sinensis) infection can lead to biliary fibrosis. MicroRNAs (miRNAs) play important roles in regulation of genes expression in the liver diseases. However, the differential expression of miRNAs that probably regulates the portal fibrogenesis caused by C. sinensis has not yet been investigated. Hepatic miRNAs expression profiles from C. sinensis-infected mice at different time-points were analyzed by miRNA microarray and validated by quantitative real-time PCR (qRT-PCR). 349 miRNAs were differentially expressed in the liver of the C. sinensis-infected mice at 2, 8 or 16weeks post infection (p.i.), compared with those at 0week p.i., and there were 143 down-regulated and 206 up-regulated miRNAs among them. These all dysregulated miRNAs were potentially involved in the pathological processes of clonorchiasis by regulation of cancer-related signaling pathway, TGF-β signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway, PI3K /AKT signaling pathway, etc. 169 of these dysregulated miRNAs were predicted to be involved in the TGF/Smads signaling pathway which plays an important role in the biliary fibrosis caused by C. sinensis. Additionally, miRNA-32, miRNA-34a, miRNA-125b and miRNA-497 were negatively correlated with Smad7 expression, indicating these miRNAs may specifically down-regulate Smad7 expression and participate in regulation of biliary fibrosis caused by C. sinensis. The results of the present study for the first time demonstrated that miRNAs were differentially expressed in the liver of mice infected by C. sinensis, and these miRNAs may play important roles in regulation of peribiliary fibrosis caused by C. sinensis, which may provide possible therapeutic targets for clonorchiasis. PMID:27267304

  5. Identification, characterization and target gene analysis of testicular microRNAs in the oriental fruit fly Bactrocera dorsalis.

    PubMed

    Tariq, K; Peng, W; Saccone, G; Zhang, H

    2016-02-01

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate various diverse biological processes including insect spermatogenesis. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive horticultural pests in East Asia and the Pacific region. Although developmental miRNA profiles of B. dorsalis have enriched our knowledge, specific testicular miRNAs in this dipteran species are unexplored. In this study, we identified miRNAs from B. dorsalis testes by deep sequencing, which provided an overview of miRNA expression during spermatogenesis. Small RNA libraries were constructed from the testes of fully mature (FM), immature (IM) and middle-aged (MA) adult flies of B. dorsalis. Small RNA sequencing and data analysis revealed 172 known and 78 novel miRNAs amongst these libraries. Pairwise comparisons of libraries led to the identification of 24, 15 and 14 differentially expressed miRNAs in FM vs. IM, FM vs. MA and IM vs. MA insects, respectively. Using a bioinformatic approach, we predicted 124 target genes against the 13 most differentially expressed miRNAs. Furthermore, the expression patterns of six randomly selected miRNAs (from the 13 most differentially expressed miRNAs) and their putative target genes (from the 124 predicted target genes) were analysed in the testis of B. dorsalis by quantitative real-time PCR, which showed that out of six, four tested miRNAs-mRNAs had an inverse expression pattern and are probably co-regulated. This study is the first comparative profile of the miRNA transcriptome in three developmental stages of the testis, and provides a useful resource for further studies on the role of miRNAs in spermatogenesis in B. dorsalis. PMID:26486729

  6. AFM characterization of nanobubble formation and slip condition in oxygenated and electrokinetically altered fluids.

    PubMed

    Bhushan, Bharat; Pan, Yunlu; Daniels, Stephanie

    2013-02-15

    Nanobubbles are gas-filled features that spontaneously form at the interface of hydrophobic surfaces and aqueous solutions. In this study, an atomic force microscope (AFM) was used to characterize the morphology of nanobubbles formed on hydrophobic polystyrene (PS) and octadecyltrichlorosilane (OTS) films immersed in DI water, saline, saline with oxygen and an electrokinetically altered saline solution produced with Taylor-Couette-Poiseuille flow under elevated oxygen pressure. AFM force spectroscopy was used to evaluate hydrodynamic and electrostatic forces and boundary slip condition in various fluids. The effect of solution, electric field and surface charge on shape, size and density of nanobubbles as well as slip length was quantified and the results and underlying mechanisms are presented in this paper. PMID:23123096

  7. Elemental, stable isotopic and biochemical characterization of soil organic matter alteration across a natural peatland gradient

    NASA Astrophysics Data System (ADS)

    Cowie, G.; Mowbray, S.; Belyea, L.; Laing, C.; Allton, K.; Abbott, G.; Muhammad, A.

    2010-12-01

    Northern peatlands store around one third of global soil C and thus represent a key reservoir. To elucidate how these systems might respond to climate change, field- and laboratory-based experimental incubation studies are being conducted at sites across a natural peatland gradient in the boreonemoral zone of central Sweden (Ryggmossen). The site comprises four successional stages, from edge to centre; Swamp Forest (SF), Lagg Fen (LF), Bog Margin (BM) and Bog Plateau (BP). The well-preserved succession shows strong decreases in mineral cations and pH, and distinct changes in vegetation and water-table depth. As an underpinning to these experiments, comprehensive characterization of natural soil organic matter (SOM) alteration has been carried out through detailed analyses of vegetation and downcore profiles at contrasting topographic sites (hummock vs hollow) in each of the four locations. As illustrated in Figure 1, while some similarities occur in downcore trends, contrasts are observed in C and N elemental and stable isotopic compositions, between stages and, in some cases, between microtopographic settings. Downcore trends and intersite differences are also observed in biochemical yields and molecular composition (carbohydrates, amino acids, phenols, lipids and D/L amino acid ratios). These reflect SOM decay and alteration combined with the effects of contrasting hydrologic, redox and nutrient regimes and differing vegetation and microbial inputs at each of the study sites. Multivariate analysis is used to to elucidate compositional patterns that characterize and delineate progressive SOM decay, specific vegetation types, and the effects of contrasting environmental conditions at the different sites. Figure 1. A. Organic carbon content (wt %), B. Atomic ratio of organic C to total N, C. Stable C isotopic composition of organic C (d13Corg), and D. Stable N isotopic composition of total nitrogen (d15N), all for core profiles from contrasting settings (hummock and

  8. Identification and Characterization of Wilt and Salt Stress-Responsive MicroRNAs in Chickpea through High-Throughput Sequencing

    PubMed Central

    Deokar, Amit Atmaram; Bhardwaj, Ankur R.; Agarwal, Manu; Katiyar-Agarwal, Surekha; Srinivasan, Ramamurthy; Jain, Pradeep Kumar

    2014-01-01

    Chickpea (Cicer arietinum) is the second most widely grown legume worldwide and is the most important pulse crop in the Indian subcontinent. Chickpea productivity is adversely affected by a large number of biotic and abiotic stresses. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several biotic and abiotic stresses. This study is the first attempt to identify chickpea miRNAs that are associated with biotic and abiotic stresses. The wilt infection that is caused by the fungus Fusarium oxysporum f.sp. ciceris is one of the major diseases severely affecting chickpea yields. Of late, increasing soil salinization has become a major problem in realizing these potential yields. Three chickpea libraries using fungal-infected, salt-treated and untreated seedlings were constructed and sequenced using next-generation sequencing technology. A total of 12,135,571 unique reads were obtained. In addition to 122 conserved miRNAs belonging to 25 different families, 59 novel miRNAs along with their star sequences were identified. Four legume-specific miRNAs, including miR5213, miR5232, miR2111 and miR2118, were found in all of the libraries. Poly(A)-based qRT-PCR (Quantitative real-time PCR) was used to validate eleven conserved and five novel miRNAs. miR530 was highly up regulated in response to fungal infection, which targets genes encoding zinc knuckle- and microtubule-associated proteins. Many miRNAs responded in a similar fashion under both biotic and abiotic stresses, indicating the existence of cross talk between the pathways that are involved in regulating these stresses. The potential target genes for the conserved and novel miRNAs were predicted based on sequence homologies. miR166 targets a HD-ZIPIII transcription factor and was validated by 5′ RLM-RACE. This study has identified several conserved and novel miRNAs in the chickpea that are associated with gene regulation following exposure to wilt and salt stress. PMID:25295754

  9. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron–sulfur deficiency and pulmonary hypertension

    PubMed Central

    White, Kevin; Lu, Yu; Annis, Sofia; Hale, Andrew E; Chau, B Nelson; Dahlman, James E; Hemann, Craig; Opotowsky, Alexander R; Vargas, Sara O; Rosas, Ivan; Perrella, Mark A; Osorio, Juan C; Haley, Kathleen J; Graham, Brian B; Kumar, Rahul; Saggar, Rajan; Saggar, Rajeev; Wallace, W Dean; Ross, David J; Khan, Omar F; Bader, Andrew; Gochuico, Bernadette R; Matar, Majed; Polach, Kevin; Johannessen, Nicolai M; Prosser, Haydn M; Anderson, Daniel G; Langer, Robert; Zweier, Jay L; Bindoff, Laurence A; Systrom, David; Waxman, Aaron B; Jin, Richard C; Chan, Stephen Y

    2015-01-01

    Iron–sulfur (Fe-S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR-210-ISCU1/2 axis cause Fe-S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR-210 and repression of the miR-210 targets ISCU1/2 down-regulated Fe-S levels. In mouse and human vascular and endothelial tissue affected by PH, miR-210 was elevated accompanied by decreased ISCU1/2 and Fe-S integrity. In mice, miR-210 repressed ISCU1/2 and promoted PH. Mice deficient in miR-210, via genetic/pharmacologic means or via an endothelial-specific manner, displayed increased ISCU1/2 and were resistant to Fe-S-dependent pathophenotypes and PH. Similar to hypoxia or miR-210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise-induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR-210-ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe-S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings. PMID:25825391

  10. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension.

    PubMed

    White, Kevin; Lu, Yu; Annis, Sofia; Hale, Andrew E; Chau, B Nelson; Dahlman, James E; Hemann, Craig; Opotowsky, Alexander R; Vargas, Sara O; Rosas, Ivan; Perrella, Mark A; Osorio, Juan C; Haley, Kathleen J; Graham, Brian B; Kumar, Rahul; Saggar, Rajan; Saggar, Rajeev; Wallace, W Dean; Ross, David J; Khan, Omar F; Bader, Andrew; Gochuico, Bernadette R; Matar, Majed; Polach, Kevin; Johannessen, Nicolai M; Prosser, Haydn M; Anderson, Daniel G; Langer, Robert; Zweier, Jay L; Bindoff, Laurence A; Systrom, David; Waxman, Aaron B; Jin, Richard C; Chan, Stephen Y

    2015-06-01

    Iron-sulfur (Fe-S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR-210-ISCU1/2 axis cause Fe-S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR-210 and repression of the miR-210 targets ISCU1/2 down-regulated Fe-S levels. In mouse and human vascular and endothelial tissue affected by PH, miR-210 was elevated accompanied by decreased ISCU1/2 and Fe-S integrity. In mice, miR-210 repressed ISCU1/2 and promoted PH. Mice deficient in miR-210, via genetic/pharmacologic means or via an endothelial-specific manner, displayed increased ISCU1/2 and were resistant to Fe-S-dependent pathophenotypes and PH. Similar to hypoxia or miR-210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise-induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR-210-ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe-S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings. PMID:25825391

  11. Phenotypic characterization of nanshi oral liquid alters metabolic signatures during disease prevention

    PubMed Central

    Zhang, Aihua; Liu, Qi; Zhao, Hongwei; Zhou, Xiaohang; Sun, Hui; Nan, Yang; Zou, Shiyu; Ma, Chung Wah; Wang, Xijun

    2016-01-01

    This paper was designed to investigate the phenotypic characterization of Nanshi Oral Liquid (NOL) alters metabolic signatures of the ‘Kidney Yang Deficiency syndrome’ (KYDS). Urine metabolites were profiled by UPLC-ESI-Q-TOF-HDMS. The significantly changed metabolites such as xanthurenic acid, 4,8-dihydroxyquinoline, 3-methyldioxyindole, 4,6-dihydroxyquinoline, kynurenic acid, hippuric acid, taurine, tyramine, and 3-metanephrine, had been identified, and were related to the disturbance in tyrosine metabolism, steroid hormone biosynthesis, taurine and hypotaurine metabolism, tryptophan metabolism, phenylalanine metabolism and lysine degradation, which were helpful to further understanding the KYDS and intervention mechanism of NOL. The biochemical result showed that NOL can alleviate the kidney impairment induced by KYDS. Metabolomics results indicated the significantly changed metabolites were found to be reasonable in explaining the action mechanism of NOL. Interestingly, the effectiveness of NOL against KYDS was proved using the established metabolomics method and regulated the biomarkers as well as adjusted the metabolic disorder pathways. NOL had potentially pharmacological effect through regulating multiple perturbed pathways to normal state. This work showed that the metabolomics method was a powerful approach for studying the phenotypic characterization of disease’s syndrome during disease prevention and its intervention mechanism. PMID:26785698

  12. Early-Life Exposure to Lead (Pb) Alters the Expression of microRNA that Target Proteins Associated with Alzheimer's Disease.

    PubMed

    Masoud, Anwar M; Bihaqi, Syed W; Machan, Jason T; Zawia, Nasser H; Renehan, William E

    2016-02-25

    There is a growing recognition of the impact of environmental toxins on the epigenetic regulation of gene expression, including the genes that play a critical role in neural development, neural function, and neurodegeneration. We have shown previously that exposure to the heavy metal lead (Pb) in early life results in a latent over-expression of AD-related proteins in rodents and primates. The present study provides evidence that early postnatal exposure to Pb also alters the expression of select miRNA. Mice were exposed to 0.2% Pb acetate from Postnatal Day 1 (PND 1, first 24 h after birth) to PND 20 via their mother's milk. Brain tissue was harvested at PND 20, 180, or 700, and miRNA were isolated and quantified by qPCR. This exposure produced a transient increase (relative to control) in the expression of miR-106b (binds to AβPP mRNA), miR-29b (targets the mRNA for the transcription factor SP1) and two miRNAs (miR-29b and miR-132) that have the ability to inhibit translation of proteins involved in promoter methylation. The expression of miR-106b decreased over time in the Pb-exposed animals and was significantly less than the levels exhibited by the control animals at PND700. The level of miR-124, which binds to SP1 mRNA, was also reduced (relative to controls) at PND700. In summary, we show that exposure to the heavy metal Pb in early life has a significant impact on the short- and long-term expression of miRNA that target epigenetic mediators and neurotoxic proteins. PMID:26923026

  13. MicroRNA Dysregulation in Cystic Fibrosis

    PubMed Central

    McKiernan, Paul J.; Greene, Catherine M.

    2015-01-01

    The cystic fibrosis lung is a complex milieu comprising multiple factors that coordinate its physiology. MicroRNAs are regulatory factors involved in most biological processes and it is becoming increasingly clear that they play a key role in the development and manifestations of CF lung disease. These small noncoding RNAs act posttranscriptionally to inhibit protein production. Their involvement in the pathogenesis of CF lung disease stems from the fact that their expression is altered in vivo in the CF lung due to intrinsic and extrinsic factors; to date defective chloride ion conductance, endoplasmic reticulum stress, inflammation, and infection have been implicated in altering endogenous miRNA expression in this setting. Here, the current state-of-the-art and biological consequences of altered microRNA expression in cystic fibrosis are reviewed. PMID:26185362

  14. Characterization of microRNA expression profiles in blood and saliva using the Ion Personal Genome Machine(®) System (Ion PGM™ System).

    PubMed

    Wang, Zheng; Zhou, Di; Cao, Yandong; Hu, Zhen; Zhang, Suhua; Bian, Yingnan; Hou, Yiping; Li, Chengtao

    2016-01-01

    MicroRNA (miRNA) expression profiling is gaining interest in the forensic community because the intrinsically short fragment and tissue-specific expression pattern enable miRNAs as a useful biomarker for body fluid identification. Measuring the quantity of miRNAs in forensically relevant body fluids is an important step to screen specific miRNAs for body fluid identification. The recent introduction of massively parallel sequencing (MPS) has the potential for screening miRNA biomarkers at the genome-wide level, which allows both the detection of expression pattern and miRNA sequences. In this study, we employed the Ion Personal Genome Machine(®) System (Ion PGM™ System, Thermo Fisher) to characterize the distribution and expression of 2588 human mature miRNAs (miRBase v21) in 5 blood samples and 5 saliva samples. An average of 1,885,000 and 1,356,000 sequence reads were generated in blood and saliva respectively. Based on miRDong, a Perl-based tool developed for semi-automated miRNA distribution designations, and manually ascertained, 6 and 19 miRNAs were identified respectively as potentially blood and saliva-specific biomarkers. Herein, this study describes a complete and reliable miRNA workflow solution based on Ion PGM™ System, starting from efficient RNA extraction, followed by small RNA library construction and sequencing. With this workflow solution and miRDong analysis it will be possible to measure miRNA expression pattern at the genome-wide level in other forensically relevant body fluids. PMID:26600000

  15. Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots.

    PubMed

    Xu, Liang; Wang, Yan; Zhai, Lulu; Xu, Yuanyuan; Wang, Liangju; Zhu, Xianwen; Gong, Yiqin; Yu, Rugang; Limera, Cecilia; Liu, Liwang

    2013-11-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs that play vital regulatory roles in plant growth, development, and environmental stress responses. Cadmium (Cd) is a non-essential heavy metal that is highly toxic to living organisms. To date, a number of conserved and non-conserved miRNAs have been identified to be involved in response to Cd stress in some plant species. However, the miRNA-mediated gene regulatory networks responsive to Cd stress in radish (Raphanus sativus L.) remain largely unexplored. To dissect Cd-responsive miRNAs and their targets systematically at the global level, two small RNA libraries were constructed from Cd-treated and Cd-free roots of radish seedlings. Using Solexa sequencing technology, 93 conserved and 16 non-conserved miRNAs (representing 26 miRNA families) and 28 novel miRNAs (representing 22 miRNA families) were identified. In all, 15 known and eight novel miRNA families were significantly differently regulated under Cd stress. The expression patterns of a set of Cd-responsive miRNAs were validated by quantitative real-time PCR. Based on the radish mRNA transcriptome, 18 and 71 targets for novel and known miRNA families, respectively, were identified by the degradome sequencing approach. Furthermore, a few target transcripts including phytochelatin synthase 1 (PCS1), iron transporter protein, and ABC transporter protein were involved in plant response to Cd stress. This study represents the first transcriptome-based analysis of miRNAs and their targets responsive to Cd stress in radish roots. These findings could provide valuable information for functional characterization of miRNAs and their targets in regulatory networks responsive to Cd stress in radish. PMID:24014874

  16. Identification and Characterization of MicroRNAs from Longitudinal Muscle and Respiratory Tree in Sea Cucumber (Apostichopus japonicus) Using High-Throughput Sequencing.

    PubMed

    Wang, Hongdi; Liu, Shikai; Cui, Jun; Li, Chengze; Hu, Yucai; Zhou, Wei; Chang, Yaqing; Qiu, Xuemei; Liu, Zhanjiang; Wang, Xiuli

    2015-01-01

    MicroRNAs (miRNAs), as a family of non-coding small RNAs, play important roles in the post-transcriptional regulation of gene expression. Sea cucumber (Apostichopus japonicus) is an important economic species which is widely cultured in East Asia. The longitudinal muscle (LTM) and respiratory tree (RPT) are two important tissues in sea cucumber, playing important roles such as respiration and movement. In this study, we identified and characterized miRNAs in the LTM and RPT of sea cucumber (Apostichopus japonicus) using Illumina HiSeq 2000 platform. A total of 314 and 221 conserved miRNAs were identified in LTM and RPT, respectively. In addition, 27 and 34 novel miRNAs were identified in the LTM and RPT, respectively. A set of 58 miRNAs were identified to be differentially expressed between LTM and RPT. Among them, 9 miRNAs (miR-31a-3p, miR-738, miR-1692, let-7a, miR-72a, miR-100b-5p, miR-31b-5p, miR-429-3p, and miR-2008) in RPT and 7 miRNAs (miR-127, miR-340, miR-381, miR-3543, miR-434-5p, miR-136-3p, and miR-300-3p) in LTM were differentially expressed with foldchange value being greater than 10. A total of 14,207 and 12,174 target genes of these miRNAs were predicted, respectively. Functional analysis of these target genes of miRNAs were performed by GO analysis and pathway analysis. This result provided in this work will be useful for understanding biological characteristics of the LTM and RPT of sea cucumber and assisting molecular breeding of sea cucumber for aquaculture. PMID:26244987

  17. Identification and Characterization of MicroRNAs from Longitudinal Muscle and Respiratory Tree in Sea Cucumber (Apostichopus japonicus) Using High-Throughput Sequencing

    PubMed Central

    Li, Chengze; Hu, Yucai; Zhou, Wei; Chang, Yaqing; Qiu, Xuemei; Liu, Zhanjiang; Wang, Xiuli

    2015-01-01

    MicroRNAs (miRNAs), as a family of non-coding small RNAs, play important roles in the post-transcriptional regulation of gene expression. Sea cucumber (Apostichopus japonicus) is an important economic species which is widely cultured in East Asia. The longitudinal muscle (LTM) and respiratory tree (RPT) are two important tissues in sea cucumber, playing important roles such as respiration and movement. In this study, we identified and characterized miRNAs in the LTM and RPT of sea cucumber (Apostichopus japonicus) using Illumina HiSeq 2000 platform. A total of 314 and 221 conserved miRNAs were identified in LTM and RPT, respectively. In addition, 27 and 34 novel miRNAs were identified in the LTM and RPT, respectively. A set of 58 miRNAs were identified to be differentially expressed between LTM and RPT. Among them, 9 miRNAs (miR-31a-3p, miR-738, miR-1692, let-7a, miR-72a, miR-100b-5p, miR-31b-5p, miR-429-3p, and miR-2008) in RPT and 7 miRNAs (miR-127, miR-340, miR-381, miR-3543, miR-434-5p, miR-136-3p, and miR-300-3p) in LTM were differentially expressed with foldchange value being greater than 10. A total of 14,207 and 12,174 target genes of these miRNAs were predicted, respectively. Functional analysis of these target genes of miRNAs were performed by GO analysis and pathway analysis. This result provided in this work will be useful for understanding biological characteristics of the LTM and RPT of sea cucumber and assisting molecular breeding of sea cucumber for aquaculture. PMID:26244987

  18. Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots

    PubMed Central

    Liu, Liwang

    2013-01-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs that play vital regulatory roles in plant growth, development, and environmental stress responses. Cadmium (Cd) is a non-essential heavy metal that is highly toxic to living organisms. To date, a number of conserved and non-conserved miRNAs have been identified to be involved in response to Cd stress in some plant species. However, the miRNA-mediated gene regulatory networks responsive to Cd stress in radish (Raphanus sativus L.) remain largely unexplored. To dissect Cd-responsive miRNAs and their targets systematically at the global level, two small RNA libraries were constructed from Cd-treated and Cd-free roots of radish seedlings. Using Solexa sequencing technology, 93 conserved and 16 non-conserved miRNAs (representing 26 miRNA families) and 28 novel miRNAs (representing 22 miRNA families) were identified. In all, 15 known and eight novel miRNA families were significantly differently regulated under Cd stress. The expression patterns of a set of Cd-responsive miRNAs were validated by quantitative real-time PCR. Based on the radish mRNA transcriptome, 18 and 71 targets for novel and known miRNA families, respectively, were identified by the degradome sequencing approach. Furthermore, a few target transcripts including phytochelatin synthase 1 (PCS1), iron transporter protein, and ABC transporter protein were involved in plant response to Cd stress. This study represents the first transcriptome-based analysis of miRNAs and their targets responsive to Cd stress in radish roots. These findings could provide valuable information for functional characterization of miRNAs and their targets in regulatory networks responsive to Cd stress in radish. PMID:24014874

  19. Epigenetic and microRNA regulation during osteoarthritis development

    PubMed Central

    Chen, Di; Shen, Jie; Hui, Tianqian

    2015-01-01

    Osteoarthritis (OA) is a common degenerative joint disease, the pathological mechanism of which is currently unknown. Genetic alteration is one of the key contributing factors for OA pathology. Recent evidence suggests that epigenetic and microRNA regulation of critical genes may contribute to OA development. In this article, we review the epigenetic and microRNA regulations of genes related to OA development. Potential therapeutic strategies may be developed on the basis of novel findings.

  20. Characterizing structural association alterations within brain networks in normal aging using Gaussian Bayesian networks

    PubMed Central

    Guo, Xiaojuan; Wang, Yan; Chen, Kewei; Wu, Xia; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li

    2014-01-01

    Recent multivariate neuroimaging studies have revealed aging-related alterations in brain structural networks. However, the sensory/motor networks such as the auditory, visual and motor networks, have obtained much less attention in normal aging research. In this study, we used Gaussian Bayesian networks (BN), an approach investigating possible inter-regional directed relationship, to characterize aging effects on structural associations between core brain regions within each of these structural sensory/motor networks using volumetric MRI data. We then further examined the discriminability of BN models for the young (N = 109; mean age =22.73 years, range 20–28) and old (N = 82; mean age =74.37 years, range 60–90) groups. The results of the BN modeling demonstrated that structural associations exist between two homotopic brain regions from the left and right hemispheres in each of the three networks. In particular, compared with the young group, the old group had significant connection reductions in each of the three networks and lesser connection numbers in the visual network. Moreover, it was found that the aging-related BN models could distinguish the young and old individuals with 90.05, 73.82, and 88.48% accuracy for the auditory, visual, and motor networks, respectively. Our findings suggest that BN models can be used to investigate the normal aging process with reliable statistical power. Moreover, these differences in structural inter-regional interactions may help elucidate the neuronal mechanism of anatomical changes in normal aging. PMID:25324771

  1. Characterization of a novel RNA polymerase mutant that alters DksA activity.

    PubMed

    Satory, Dominik; Halliday, Jennifer A; Sivaramakrishnan, Priya; Lua, Rhonald C; Herman, Christophe

    2013-09-01

    The auxiliary factor DksA is a global transcription regulator and, with the help of ppGpp, controls the nutritional stress response in Escherichia coli. Although the consequences of its modulation of RNA polymerase (RNAP) are becoming better explained, it is still not fully understood how the two proteins interact. We employed a series of genetic suppressor selections to find residues in RNAP that alter its sensitivity to DksA. Our approach allowed us to identify and genetically characterize in vivo three single amino acid substitutions: β' E677G, β V146F, and β G534D. We demonstrate that the mutation β' E677G affects the activity of both DksA and its homolog, TraR, but does not affect the action of other secondary interactors, such as GreA or GreB. Our mutants provide insight into how different auxiliary transcription factors interact with RNAP and contribute to our understanding of how different stages of transcription are regulated through the secondary channel of RNAP in vivo. PMID:23852871

  2. Characterization of proteome alterations in Phanerochaete chrysosporium in response to lead exposure

    PubMed Central

    2011-01-01

    Background Total soluble proteome alterations of white rot fungus Phanerochaete chrysosporium in response to different doses (25, 50 and 100 μM) of Pb (II) were characterized by 2DE in combination with MALDI-TOF-MS. Results Dose-dependent molecular response to Pb (II) involved a total of 14 up-regulated and 21 down-regulated proteins. The induction of an isoform of glyceraldehyde 3-phosphate dehydrogenase, alcohol dehydrogenase class V, mRNA splicing factor, ATP-dependent RNA helicase, thioredoxin reductase and actin required a Pb (II) dose of at least 50 μM. Analysis of the proteome dynamics of mid-exponential phase cells of P. chrysosporium subjected to 50 μM lead at exposure time intervals of 1, 2, 4 and 8 h, identified a total of 23 proteins in increased and 67 proteins in decreased amount. Overall, the newly induced/strongly up-regulated proteins involved in (i) amelioration of lipid peroxidation products, (ii) defense against oxidative damage and redox metabolism, (iii) transcription, recombination and DNA repair (iv) a yet unknown function represented by a putative protein. Conclusion The present study implicated the particular role of the elements of DNA repair, post-tanscriptional regulation and heterotrimeric G protein signaling in response to Pb (II) stress as shown for the first time for a basidiomycete. PMID:21388532

  3. Involvement and Clinical Aspects of MicroRNA in Osteosarcoma.

    PubMed

    Ram Kumar, Ram Mohan; Boro, Aleksandar; Fuchs, Bruno

    2016-01-01

    Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents, but its pathogenesis has been difficult to establish because of its well-known heterogeneous nature. OS has been associated with genetic and cytogenetic abnormalities, which include function-impairing mutations in tumor suppressors and the activation of oncogenes. OS tumorigenesis has been linked to alterations of several genes characterized by a high level of genetic instability and recurrent DNA amplifications and deletions. MicroRNAs (miRNAs), 18-25-nucleotide noncoding RNAs, are critical for various biological processes like differentiation, cell growth and cell death. Dysregulation of miRNA expression leads to phenotypic and genotypic changes in cells, which leads to cancer. Studies on miRNAs have initiated a significant effect in both diagnosis and treatment of cancer. This review focuses on the current knowledge of clinical applications of miRNAs for the better diagnosis and management of OS. PMID:27271607

  4. Involvement and Clinical Aspects of MicroRNA in Osteosarcoma

    PubMed Central

    Ram Kumar, Ram Mohan; Boro, Aleksandar; Fuchs, Bruno

    2016-01-01

    Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents, but its pathogenesis has been difficult to establish because of its well-known heterogeneous nature. OS has been associated with genetic and cytogenetic abnormalities, which include function-impairing mutations in tumor suppressors and the activation of oncogenes. OS tumorigenesis has been linked to alterations of several genes characterized by a high level of genetic instability and recurrent DNA amplifications and deletions. MicroRNAs (miRNAs), 18–25-nucleotide noncoding RNAs, are critical for various biological processes like differentiation, cell growth and cell death. Dysregulation of miRNA expression leads to phenotypic and genotypic changes in cells, which leads to cancer. Studies on miRNAs have initiated a significant effect in both diagnosis and treatment of cancer. This review focuses on the current knowledge of clinical applications of miRNAs for the better diagnosis and management of OS. PMID:27271607

  5. Missing Pieces in the Puzzle of Plant MicroRNAs.

    PubMed

    Reis, Rodrigo S; Eamens, Andrew L; Waterhouse, Peter M

    2015-11-01

    Plant microRNAs (miRNAs) are important regulatory switches. Recent advances have revealed many regulatory layers between the two essential processes, miRNA biogenesis and function. However, how these multilayered regulatory processes ultimately control miRNA gene regulation and connects miRNAs and plant responses with the surrounding environment is still largely unknown. In this opinion article, we propose that the miRNA pathway is highly dynamic and plastic. The apparent flexibility of the miRNA pathway in plants appears to be controlled by a number recently identified proteins and poorly characterized signaling cascades. We further propose that altered miRNA accumulation can be a direct consequence of the rewiring of interactions between proteins that function in the miRNA pathway, an avenue that remains largely unexplored. PMID:26442682

  6. MicroRNA Expression in the Glaucomatous Retina

    PubMed Central

    Jayaram, Hari; Cepurna, William O.; Johnson, Elaine C.; Morrison, John C.

    2015-01-01

    Purpose MicroRNAs are small, endogenous noncoding RNAs that modulate posttranscriptional gene expression. Although the contribution of microRNAs to the pathogenesis of glaucomatous damage is unknown, supporting evidence from central nervous system (CNS) research suggests they may play a role. It was therefore hypothesized that microRNAs known to be altered in CNS injury are also altered in experimental glaucoma. Methods Intraocular pressure (IOP) was elevated in rats by unilateral injection of hypertonic saline and IOP monitored for 5 weeks. After rats were killed, retrobulbar optic nerve sections were graded for damage. MicroRNA was extracted from whole retinae of eyes with advanced nerve damage (n = 8) and from normal, noninjected control eyes (n = 8). Quantitative PCRs were performed using a panel of 17 microRNAs, reported from CNS research to be implicated in mechanisms also linked to glaucomatous damage. Computationally and experimentally derived gene targets were identified for the differentially expressed microRNAs. These were then integrated with existing gene array data. Functional interpretation was performed using the Molecular Signatures Database and DAVID Functional Annotation Clustering. Results Eight microRNAs were significantly downregulated in glaucomatous retinae compared with controls (miR-181c, miR-497, miR-204, let-7a, miR-29b, miR-16, miR106b, and miR-25); miR-27a was significantly upregulated. Enrichment of targets associated with extracellular matrix/cell proliferation, immune system, and regulation of apoptosis were observed. Cholesterol homeostasis and mTORC-1 pathways showed reduced expression. Conclusions MicroRNAs are differentially expressed in retinae of eyes with advanced glaucomatous damage compared with normal controls. Integrating microRNA with gene expression data may improve understanding of the complex biological responses produced by chronically elevated IOP. PMID:26720444

  7. Placental microRNA expression in pregnancies complicated by preeclampsia

    PubMed Central

    Enquobahrie, Daniel A.; Abetew, Dejene F.; Sorensen, Tanya K.; Willoughby, David; Chidambaram, Kumaravel; Williams, Michelle A.

    2010-01-01

    Objective The role of post-transcription regulation in preeclampsia is largely unknown. We investigated preeclampsia related placental microRNA (miRNA) expression using microarray and confirmatory qRT-PCR experiments. Study design Placental expressions of characterized and novel miRNAs (1,295 probes) were measured in samples collected from 20 preeclampsia cases and 20 controls. Differential expression was evaluated using Students T-test and fold change analyses. In pathway analysis, we examined functions/functional relationships of targets of differentially expressed miRNAs. Results Eight miRNAs were differentially expressed (1 up- and 7 down-regulated) among preeclampsia cases compared with controls. These included previously identified candidates (miR-210, miR-1 and a miRNA in the 14q32.31 cluster region) and others that are novel (miR- 584 and miR-34c-5p). These miRNAs target genes that participate in organ/system development (cardiovascular and reproductive system), immunologic dysfunction, cell adhesion, cell cycle and signaling. Conclusion Expression of microRNAs that target genes in diverse pathophysiological processes is altered in the setting of preeclampsia. PMID:21093846

  8. Identification and characterization of microRNAs by deep-sequencing in Hyalomma anatolicum anatolicum (Acari: Ixodidae) ticks.

    PubMed

    Luo, Jin; Liu, Guang-Yuan; Chen, Ze; Ren, Qiao-Yun; Yin, Hong; Luo, Jian-Xun; Wang, Hui

    2015-06-15

    Hyalomma anatolicum anatolicum (H.a. anatolicum) (Acari: Ixodidae) ticks are globally distributed ectoparasites with veterinary and medical importance. These ticks not only weaken animals by sucking their blood but also transmit different species of parasitic protozoans. Multiple factors influence these parasitic infections including miRNAs, which are non-coding, small regulatory RNA molecules essential for the complex life cycle of parasites. To identify and characterize miRNAs in H.a. anatolicum, we developed an integrative approach combining deep sequencing, bioinformatics and real-time PCR analysis. Here we report the use of this approach to identify miRNA expression, family distribution, and nucleotide characteristics, and discovered novel miRNAs in H.a. anatolicum. The result showed that miR-1-3p, miR-275-3p, and miR-92a were expressed abundantly. There was a strong bias on miRNA, family members, and nucleotide compositions at certain positions in H.a. anatolicum miRNA. Uracil was the dominant nucleotide, particularly at positions 1, 6, 16, and 18, which were located approximately at the beginning, middle, and end of conserved miRNAs. Analysis of the conserved miRNAs indicated that miRNAs in H.a. anatolicum were concentrated along three diverse phylogenetic branches of bilaterians, insects and coelomates. Two possible roles for the use of miRNA in H.a. anatolicum could be presumed based on its parasitic life cycle: to maintain a large category of miRNA families of different animals, and/or to preserve stringent conserved seed regions with active changes in other places of miRNAs mainly in the middle and the end regions. These might help the parasite to undergo its complex life style in different hosts and adapt more readily to the host changes. The present study represents the first large scale characterization of H.a. anatolicum miRNAs, which could further the understanding of the complex biology of this zoonotic parasite, as well as initiate miRNA studies

  9. Epigenetics, microRNA, and addiction

    PubMed Central

    Kenny, Paul J.

    2014-01-01

    Drug addiction is characterized by uncontrolled drug consumption and high rates of relapse to drug taking during periods of attempted abstinence. Addiction is now largely considered a disorder of experience-dependent neuroplasticity, driven by remodeling of synapses in reward and motivation relevant brain circuits in response to a history of prolonged drug intake. Alterations in gene expression play a central role in addiction-relevant neuroplasticity, but the mechanisms by which additive drugs remodel brain motivation circuits remains unclear. MicroRNAs (miRNAs) are a class of noncoding RNA that can regulate the expression of large numbers of protein-coding mRNA transcripts by binding to the 3' untranslated region (3' UTR) of target transcripts and blocking their translation into the encoded protein or triggering their destabilization and degradation. Emerging evidence has implicated miRNAs in regulating addiction-relevant neuroplasticity in the brain, and in controlling the motivational properties of cocaine and other drugs of abuse. Here, the role for miRNAs in regulating basic aspects of neuronal function is reviewed. The involvement of miRNAs in controlling the motivational properties of addictive drugs is also summarized. Finally, mechanisms by which miRNAs exert their actions on drug intake, when known, are considered. PMID:25364284

  10. MicroRNA Methylation in Colorectal Cancer.

    PubMed

    Kaur, Sippy; Lotsari-Salomaa, Johanna E; Seppänen-Kaijansinkko, Riitta; Peltomäki, Päivi

    2016-01-01

    Epigenetic alterations such as DNA methylation, histone modifications and non-coding RNA (including microRNA) associated gene silencing have been identified as a major characteristic in human cancers. These alterations may occur more frequently than genetic mutations and play a key role in silencing tumor suppressor genes or activating oncogenes, thereby affecting multiple cellular processes. In recent years, studies have shown that microRNAs, that act as posttranscriptional regulators of gene expression are frequently deregulated in colorectal cancer (CRC), via aberrant DNA methylation. Over the past decade, technological advances have revolutionized the field of epigenetics and have led to the identification of numerous epigenetically dysregulated miRNAs in CRC, which are regulated by CpG island hypermethylation and DNA hypomethylation. In addition, aberrant DNA methylation of miRNA genes holds a great promise in several clinical applications such as biomarkers for early screening, prognosis, and therapeutic applications in CRC. PMID:27573897

  11. Bioengineering Novel Chimeric microRNA-34a for Prodrug Cancer Therapy: High-Yield Expression and Purification, and Structural and Functional Characterization.

    PubMed

    Wang, Wei-Peng; Ho, Pui Yan; Chen, Qiu-Xia; Addepalli, Balasubrahmanyam; Limbach, Patrick A; Li, Mei-Mei; Wu, Wen-Juan; Jilek, Joseph L; Qiu, Jing-Xin; Zhang, Hong-Jian; Li, Tianhong; Wun, Theodore; White, Ralph DeVere; Lam, Kit S; Yu, Ai-Ming

    2015-08-01

    Development of anticancer treatments based on microRNA (miRNA/miR) such as miR-34a replacement therapy is limited to the use of synthetic RNAs with artificial modifications. Herein, we present a new approach to a high-yield and large-scale biosynthesis, in Escherichia coli using transfer RNA (tRNA) scaffold, of chimeric miR-34a agent, which may act as a prodrug for anticancer therapy. The recombinant tRNA fusion pre-miR-34a (tRNA/mir-34a) was quickly purified to a high degree of homogeneity (>98%) using anion-exchange fast protein liquid chromatography, whose primary sequence and post-transcriptional modifications were directly characterized by mass spectrometric analyses. Chimeric tRNA/mir-34a showed a favorable cellular stability while it was degradable by several ribonucleases. Deep sequencing and quantitative real-time polymerase chain reaction studies revealed that tRNA-carried pre-miR-34a was precisely processed to mature miR-34a within human carcinoma cells, and the same tRNA fragments were produced from tRNA/mir-34a and the control tRNA scaffold (tRNA/MSA). Consequently, tRNA/mir-34a inhibited the proliferation of various types of human carcinoma cells in a dose-dependent manner and to a much greater degree than the control tRNA/MSA, which was mechanistically attributable to the reduction of miR-34a target genes. Furthermore, tRNA/mir-34a significantly suppressed the growth of human non-small-cell lung cancer A549 and hepatocarcinoma HepG2 xenograft tumors in mice, compared with the same dose of tRNA/MSA. In addition, recombinant tRNA/mir-34a had no or minimal effect on blood chemistry and interleukin-6 level in mouse models, suggesting that recombinant RNAs were well tolerated. These findings provoke a conversation on producing biologic miRNAs to perform miRNA actions, and point toward a new direction in developing miRNA-based therapies. PMID:26022002

  12. Bioengineering Novel Chimeric microRNA-34a for Prodrug Cancer Therapy: High-Yield Expression and Purification, and Structural and Functional Characterization

    PubMed Central

    Wang, Wei-Peng; Ho, Pui Yan; Chen, Qiu-Xia; Addepalli, Balasubrahmanyam; Limbach, Patrick A.; Li, Mei-Mei; Wu, Wen-Juan; Jilek, Joseph L.; Qiu, Jing-Xin; Zhang, Hong-Jian; Li, Tianhong; Wun, Theodore; White, Ralph DeVere; Lam, Kit S.

    2015-01-01

    Development of anticancer treatments based on microRNA (miRNA/miR) such as miR-34a replacement therapy is limited to the use of synthetic RNAs with artificial modifications. Herein, we present a new approach to a high-yield and large-scale biosynthesis, in Escherichia coli using transfer RNA (tRNA) scaffold, of chimeric miR-34a agent, which may act as a prodrug for anticancer therapy. The recombinant tRNA fusion pre–miR-34a (tRNA/mir-34a) was quickly purified to a high degree of homogeneity (>98%) using anion-exchange fast protein liquid chromatography, whose primary sequence and post-transcriptional modifications were directly characterized by mass spectrometric analyses. Chimeric tRNA/mir-34a showed a favorable cellular stability while it was degradable by several ribonucleases. Deep sequencing and quantitative real-time polymerase chain reaction studies revealed that tRNA-carried pre–miR-34a was precisely processed to mature miR-34a within human carcinoma cells, and the same tRNA fragments were produced from tRNA/mir-34a and the control tRNA scaffold (tRNA/MSA). Consequently, tRNA/mir-34a inhibited the proliferation of various types of human carcinoma cells in a dose-dependent manner and to a much greater degree than the control tRNA/MSA, which was mechanistically attributable to the reduction of miR-34a target genes. Furthermore, tRNA/mir-34a significantly suppressed the growth of human non–small-cell lung cancer A549 and hepatocarcinoma HepG2 xenograft tumors in mice, compared with the same dose of tRNA/MSA. In addition, recombinant tRNA/mir-34a had no or minimal effect on blood chemistry and interleukin-6 level in mouse models, suggesting that recombinant RNAs were well tolerated. These findings provoke a conversation on producing biologic miRNAs to perform miRNA actions, and point toward a new direction in developing miRNA-based therapies. PMID:26022002

  13. Identification and Characterization of MicroRNAs in Ovary and Testis of Nile Tilapia (Oreochromis niloticus) by Using Solexa Sequencing Technology

    PubMed Central

    Zhou, Yi; Yu, Fan; Gao, Yun; Luo, Yongju; Tang, Zhanyang; Guo, Zhongbao; Guo, Enyan; Gan, Xi; Zhang, Ming; Zhang, Yaping

    2014-01-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs which play important roles in the regulation of gene expression by cleaving or inhibiting the translation of target gene transcripts. Thereinto, some specific miRNAs show regulatory activities in gonad development via translational control. In order to further understand the role of miRNA-mediated posttranscriptional regulation in Nile tilapia (Oreochromis niloticus) ovary and testis, two small RNA libraries of Nile tilapia were sequenced by Solexa small RNA deep sequencing methods. A total of 9,731,431 and 8,880,497 raw reads, representing 5,407,800 and 4,396,281 unique sequences were obtained from the sexually mature ovaries and testes, respectively. After comparing the small RNA sequences with the Rfam database, 1,432,210 reads in ovaries and 984,146 reads in testes were matched to the genome sequence of Nile tilapia. Bioinformatic analysis identified 764 mature miRNA, 209 miRNA-5p and 202 miRNA-3p were found in the two libraries, of which 525 known miRNAs are both expressed in the ovary and testis of Nile tilapia. Comparison of expression profiles of the testis, miR-727, miR-129 and miR-29 families were highly expressed in tilapia ovary. Additionally, miR-132, miR-212, miR-33a and miR-135b families, showed significant higher expression in testis compared with that in ovary. Furthermore, the expression patterns of the miRNAs were analyzed in different developmental stages of gonad. The result showed different expression patterns were observed during development of testis and ovary. In addition, the identification and characterization of differentially expressed miRNAs in the ovaries and testis of Nile tilapia provides important information on the role of miRNA in the regulation of the ovarian and testicular development and function. This data will be helpful to facilitate studies on the regulation of miRNAs during teleosts reproduction. PMID:24466258

  14. ENVIRONMENTAL AND MOLECULAR CHARACTERIZATION OF SYSTEMS WHICH ALTER GENOME STABILITY IN PSEUDOMONAS

    EPA Science Inventory

    Pseudomonas aeruginosa was used a model organism to study mechanisms that lead to genome alteration in freshwater microbial populations. ur studies demonstrated horizontal transmission by both transduction and conjugation in freshwater ecosystems and provided data that suggest th...

  15. Characterizing genomic alterations in cancer by complementary functional associations | Office of Cancer Genomics

    Cancer.gov

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment.

  16. MicroRNAs in colorectal cancer as markers and targets: Recent advances

    PubMed Central

    Ye, Jing-Jia; Cao, Jiang

    2014-01-01

    MicroRNAs are evolutionarily conserved small non-coding RNA molecules encoded by eukaryotic genomic DNA, and function in post-transcriptional regulation of gene expression via base-pairing with complementary sequences in target mRNAs, resulting in translational repression or degradation of target mRNAs. They represent one of the major types of epigenetic modification and play important roles in all aspects of cellular activities. Altered expression of microRNAs has been found in various human diseases including cancer. Many efforts have been made to discover the characteristic microRNA expression profiles, to understand the roles of aberrantly expressed microRNAs and underlying mechanisms in different cancers. With the application of DNA microarray, real-time quantitative polymerase chain reaction and other molecular biology techniques, increasing evidence has been accumulated which reveal that aberrant microRNAs can be detected not only intracellularly within the cancer cells, but also extracellularly in plasma of patients, postulating the potential of aberrant microRNAs as promising diagnostic/prognostic markers and attracting therapeutic targets. This review is intended to provide the most recent advances in microRNA studies in one of the most common cancers, colorectal cancer, especially the identification of those specifically altered microRNAs in colorectal cancer, validation for their relevance to clinical pathological parameters of patients, functional analyses and potential applications of these microRNAs. PMID:24764666

  17. [Digital droplet PCR - a prospective technological approach to quantitative profiling of microRNA].

    PubMed

    Kiseleva, Y Y; Ptitsyn, K G; Radko, S P; Zgoda, V G; Archakov, A I

    2016-05-01

    MicroRNA is a special type of regulatory molecules governing gene expression. Circulating microRNAs found in blood and other biological fluids are considered today as potential biomarkers of human pathology. Presently, quantitative alterations of particular microRNAs are revealed for a large number of oncological diseases and other disorders. The recently emerged method of digital droplet PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of human pathologies. Among these advantages are the high accuracy and reproducibility of microRNA quantification as well as the capability to directly measure the absolute number of microRNA copies with the large dynamic range and a high throughput. The paper reviews microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make it an attractive method both for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed. PMID:27562993

  18. Functional MicroRNA Involved in Endometriosis

    PubMed Central

    Creighton, Chad J.; Han, Derek Y.; Zariff, Azam; Anderson, Matthew L.; Gunaratne, Preethi H.; Matzuk, Martin M.

    2011-01-01

    Endometriosis is a common disease seen by gynecologists. Clinical features involve pelvic pain and unexplained infertility. Although endometriosis is pathologically characterized by endometrial tissue outside the normal uterine location, endometriosis is otherwise not easily explained. Endometriomas, endometriotic cysts of the ovary, typically cause pain and distortion of pelvic anatomy. To begin to understand the pathogenesis of endometriomas, we describe the first transcriptome-microRNAome analysis of endometriomas and eutopic endometrium using next-generation sequencing technology. Using this approach, we generated a total of more than 54 million independent small RNA reads from our 19 clinical samples. At the microRNA level, we found 10 microRNA that were up-regulated (miR-202, 193a-3p, 29c, 708, 509-3-5p, 574-3p, 193a-5p, 485-3p, 100, and 720) and 12 microRNA that were down-regulated (miR-504, 141, 429, 203, 10a, 200b, 873, 200c, 200a, 449b, 375, and 34c-5p) in endometriomas compared with endometrium. Using in silico prediction algorithms, we correlated these microRNA with their corresponding differentially expressed mRNA targets. To validate the functional roles of microRNA, we manipulated levels of miR-29c in an in vitro system of primary cultures of human endometrial stromal fibroblasts. Extracellular matrix genes that were potential targets of miR-29c in silico were significantly down-regulated using this biological in vitro system. In vitro functional studies using luciferase reporter constructs further confirmed that miR-29c directly affects specific extracellular matrix genes that are dysregulated in endometriomas. Thus, miR-29c and other abnormally regulated microRNA appear to play important roles in the pathophysiology of uterine function and dysfunction. PMID:21436257

  19. Partial purification and characterization of an escherichia coli toxic factor that induces morphological cell alterations.

    PubMed Central

    Caprioli, A; Falbo, V; Roda, L G; Ruggeri, F M; Zona, C

    1983-01-01

    A factor produced by several strains of Escherichia coli isolated from enteritis-affected children has been shown to produce both a necrotizing effect on rabbit skin and striking morphological alterations on CHO, Vero, and HeLa cells. The same strains were found to have hemolytic activity on sheep erythrocytes. The toxic, cell-altering factor was demonstrated to be different from both heat-labile and heat-stable enterotoxins and from Vero toxin. The main effect induced by the isolated factor on cultured cells was the formation of large multinucleated cells. The partial purification achieved suggests that the same factor (most likely a protein with a molecular weight of 70,000 to 80,000) is responsible for toxic and cell-altering activities, whereas a different molecular species is responsible for hemolytic activity. Images PMID:6341235

  20. [Characterization of genetic alterations in primary human melanomas carrying BRAF or NRAS mutation].

    PubMed

    Lázár, Viktória

    2013-06-01

    Human malignant melanoma is one of the most aggressive forms of skin cancer with an exceptionally bad prognosis. Melanoma often displays constitutively activated MAPK pathway through BRAF or NRAS mutations. It is also known that these mutations are almost never simultaneously present and that they appear at early stages and preserved throughout tumor progression, although it is proved that these alterations alone are insufficient to cause tumor progression. Therefore the first aim of our study was to evaluate those distinct genetic alterations which can properly differentiate the three important molecular subtypes of primary melanomas with a) BRAF, b) NRAS mutation and c) WT (wild type for both loci). High-resolution array comparative genomic hybridization (array CGH) was used to assess genome-wide analysis of DNA copy number alterations. Primary melanomas with BRAF mutation more frequently exhibited losses on 10q23-10q26 and gains on chromosome 7 and 1q23-1q25 compared to melanomas with NRAS mutation. Loss on the 11q23-11q25 sequence was found mainly in conjunction with NRAS mutation. Based on these results, we proved the existence of marked differences in the genetic pattern of the BRAF and NRAS mutated melanoma subgroups, which might suggest that these mutations contribute to the development of malignant melanoma in conjunction with distinct cooperating oncogenic events. In general, it is an interesting phenomenon suggesting that these mutations provide probably the "guiding force" for these tumors and it also suggests that there are alternative genetic pathways to melanoma. These additional oncogenic events which are associated with BRAF or NRAS mutations can provide rational additional targets for a combination therapy with kinase inhibitors. In this study we also investigated the specific dynamic activities among different signalling pathways highlighting the frequent alterations of genes involved in the signalling interactions between the MAPK-JAK pathways

  1. Advanced shotgun lipidomics for characterization of altered lipid patterns in neurodegenerative diseases and brain injury

    PubMed Central

    Wang, Miao; Han, Xianlin

    2016-01-01

    Summary Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) is a powerful technology platform among current lipidomics practices due to its high efficiency, sensitivity, and reproducibility, as well as its broad coverage. This platform has been broadly used to determine the altered lipid profiles induced by diseases, injury, genetic manipulations, drug treatments, and aging, among others. Herein, we summarized the principles underlying this platform and presented a protocol for analysis of many of the lipid classes and subclasses covered by MDMS-SL directly from lipid extracts of brain samples. We believe that this protocol could aid the researchers in the field to determine the altered lipid patterns in neurodegenerative diseases and brain injury. PMID:26235081

  2. Characterization of post-surgical alterations in the bile duct-cannulated rat.

    PubMed

    Bachir-Cherif, Dalila; Blum, Denise; Braendli-Baiocco, Annamaria; Chaput, Evelyne; Pacheco, Gonzalo Christiano Duran; Flint, Nicholas; Haiker, Monika; Hoflack, Jean-Christophe; Justies, Nicole; Neff, Rachel; Starke, Volkmar; Steiner, Guido; Tournillac, Charles Alexandre; Singer, Thomas; Ubeaud-Séquier, Geneviève; Schuler, Franz

    2011-08-01

    The bile duct-cannulated (BDC) rat is a standard animal model used in ADME experiments. The aim of this study was to investigate post-surgical alterations that are relevant to ADME investigations in BDC rats compared with sham- and non-operated animals. Water and food intake was reduced in the animals' post-surgery. This led to a lower body weight in operated animals. In BDC animals, aspartate aminotransferase (AST) levels in plasma were transiently elevated and total bile acid levels were reduced. Alpha(1)-acid glycoprotein (AGP) in plasma and the concentration of bile components in bile were elevated. Histopathology showed inflammation in the area of the cannulation between the liver and the small intestine. A microarray-based gene expression and RTq-PCR analysis identified altered expression for several genes involved in drug disposition including the down-regulation of cytochrome P450 enzymes. This led to reduced cytochrome P450 content in the liver and lower metabolic activity in microsomes from BDC and sham-operated rats compared with naïve animals. The results of the study suggest that the post-surgical inflammation leads to physiological changes relevant for drug absorption and disposition. These alterations should be accounted for in the interpretation of ADME studies in BDC animals. PMID:21521079

  3. IODP Expedition 345: Characterizing Hydrothermal Alteration of Fast-Spreading EPR Lower Crust using O, Sr and Nd isotopics

    NASA Astrophysics Data System (ADS)

    Marks, N.; Gillis, K. M.; Lindvall, R. E.; Schorzman, K.

    2014-12-01

    The Integrated Ocean Drilling Program (IODP) Expedition 345 sampled lower crustal primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise (EPR) and are exposed at the Hess Deep Rift. The metamorphic mineral assemblages in the rocks recovered at Site U1415 record the cooling of primitive gabbroic lithologies from magmatic (>1000°C) to zeolite facies conditions (<200°C) associated with EPR spreading, Cocos-Nazca rifting and exposure onto the seafloor. The dominant alteration assemblage is characterized by lower grade greenschist (<400°C) and subgreenschist facies (<200°C) alteration of olivine to talc, serpentine, or clay minerals, and is commonly accompanied by prehnite microveins in plagioclase. The intensity of alteration varies with igneous lithology, in particular, the modal abundance of olivine, as well as proximity to zones of brittle fracturing and cataclasis. We have attempted to characterize the nature and extent of isotopic exchange associated alteration and cooling and present a record of variations in O, Sr, and Nd isotopic compositions in altered rocks from the lower plutonic crust at Hess Deep. The Rb-Sr and 18O/16O systems exhibit sensitivity to hydrothermal interactions with seawater; whereas the Sm-Nd system appears essentially undisturbed by the minimal alteration experienced by the rocks drilled at Site U1415. The 87Sr/86Sr isotopic compositions of olivine gabbros (Mg# 0.81-0.89) range from 0.702536-0.703950 (±0.000008). Higher 87Sr/86Sr ratios are strongly correlated with percentage of hydrous minerals, and are higher in samples with a greater modal abundance of olivine. These rocks have somewhat higher 87Sr/86Sr ratios than upper plutonic rocks from the Northern Escarpment at Hess Deep (Kirchner and Gillis, 2012), although their percentage of hydrous phases is apparently similar. The d18O in these rocks ranges from 0.23‰ to 4.65‰ (±0.67); troctolites have systematically lower d18O than the gabbro and gabbronorites

  4. MicroRNAs: the underlying mediators of pathogenetic processes in vascular complications of diabetes.

    PubMed

    Ruiz, Michael Anthony; Chakrabarti, Subrata

    2013-10-01

    Diabetes mellitus causes chronic complications primarily affecting the vasculature of various organs, risking patients for renal failure, vision loss and heart failure. A newly discovered class of molecules, microRNAs, may be important in the genesis of these pathologic processes. microRNAs regulate gene expression at the post-transcriptional level by inhibiting target messenger RNA translation. In disease states, however, the expression of microRNAs often is altered, resulting in further altered expression (mostly overexpression) of downstream target genes. Interestingly, restoring microRNA expression to normal levels can correct downstream effects and prevent diabetes-associated changes. Investigations into microRNA involved in various pathogenetic processes mediating diabetic nephropathy, retinopathy and cardiomyopathy are highlighted in this review. Future directions of microRNA in therapeutics and diagnostics are also discussed. It is our intent to help the reader appreciate the diverse interactions microRNAs have in cellular signalling and how understanding epigenetic elements, such as microRNAs, potentially can yield new therapeutic strategies. PMID:24500562

  5. MicroRNAs, HIV and HCV: a complex relation towards pathology.

    PubMed

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-05-01

    MicroRNAs are small non-coding RNAs that modulate protein production by post-transcriptional gene regulation. They impose gene expression control by interfering with mRNA translation and stability in cell cytoplasm through a mechanism involving specific binding to mRNA based on base pair complementarity. Because of their intracellular replication cycle it is no surprise that viruses evolved in a way that allows them to use microRNAs to infect, replicate and persist in host cells. Several ways of interference between virus and host-cell microRNA machinery have been described. Most of the time, viruses drastically alter host-cell microRNA expression or synthesize their own microRNA to facilitate infection and pathogenesis. HIV and HCV are two prominent examples of this complex interplay revealing how fine-tuning of microRNA expression is crucial for controlling key host pathways that allow viral infection and replication, immune escape and persistence. In this review we delve into the mechanisms underlying cellular and viral-encoded microRNA functions in the context of HIV and HCV infections. We focus on which microRNAs are differently expressed and deregulated upon viral infection and how these alterations dictate the fate of virus and cell. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27059433

  6. Temporal Dynamics of the Default Mode Network Characterize Meditation-Induced Alterations in Consciousness.

    PubMed

    Panda, Rajanikant; Bharath, Rose D; Upadhyay, Neeraj; Mangalore, Sandhya; Chennu, Srivas; Rao, Shobini L

    2016-01-01

    Current research suggests that human consciousness is associated with complex, synchronous interactions between multiple cortical networks. In particular, the default mode network (DMN) of the resting brain is thought to be altered by changes in consciousness, including the meditative state. However, it remains unclear how meditation alters the fast and ever-changing dynamics of brain activity within this network. Here we addressed this question using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to compare the spatial extents and temporal dynamics of the DMN during rest and meditation. Using fMRI, we identified key reductions in the posterior cingulate hub of the DMN, along with increases in right frontal and left temporal areas, in experienced meditators during rest and during meditation, in comparison to healthy controls (HCs). We employed the simultaneously recorded EEG data to identify the topographical microstate corresponding to activation of the DMN. Analysis of the temporal dynamics of this microstate revealed that the average duration and frequency of occurrence of DMN microstate was higher in meditators compared to HCs. Both these temporal parameters increased during meditation, reflecting the state effect of meditation. In particular, we found that the alteration in the duration of the DMN microstate when meditators entered the meditative state correlated negatively with their years of meditation experience. This reflected a trait effect of meditation, highlighting its role in producing durable changes in temporal dynamics of the DMN. Taken together, these findings shed new light on short and long-term consequences of meditation practice on this key brain network. PMID:27499738

  7. Temporal Dynamics of the Default Mode Network Characterize Meditation-Induced Alterations in Consciousness

    PubMed Central

    Panda, Rajanikant; Bharath, Rose D.; Upadhyay, Neeraj; Mangalore, Sandhya; Chennu, Srivas; Rao, Shobini L.

    2016-01-01

    Current research suggests that human consciousness is associated with complex, synchronous interactions between multiple cortical networks. In particular, the default mode network (DMN) of the resting brain is thought to be altered by changes in consciousness, including the meditative state. However, it remains unclear how meditation alters the fast and ever-changing dynamics of brain activity within this network. Here we addressed this question using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to compare the spatial extents and temporal dynamics of the DMN during rest and meditation. Using fMRI, we identified key reductions in the posterior cingulate hub of the DMN, along with increases in right frontal and left temporal areas, in experienced meditators during rest and during meditation, in comparison to healthy controls (HCs). We employed the simultaneously recorded EEG data to identify the topographical microstate corresponding to activation of the DMN. Analysis of the temporal dynamics of this microstate revealed that the average duration and frequency of occurrence of DMN microstate was higher in meditators compared to HCs. Both these temporal parameters increased during meditation, reflecting the state effect of meditation. In particular, we found that the alteration in the duration of the DMN microstate when meditators entered the meditative state correlated negatively with their years of meditation experience. This reflected a trait effect of meditation, highlighting its role in producing durable changes in temporal dynamics of the DMN. Taken together, these findings shed new light on short and long-term consequences of meditation practice on this key brain network. PMID:27499738

  8. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco–Pseudomonas syringae Interactions

    PubMed Central

    Bozsó, Zoltán; Ott, Péter G.; Kámán-Tóth, Evelin; Bognár, Gábor F.; Pogány, Miklós; Szatmári, Ágnes

    2016-01-01

    In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco–Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca2+ influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were

  9. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco-Pseudomonas syringae Interactions.

    PubMed

    Bozsó, Zoltán; Ott, Péter G; Kámán-Tóth, Evelin; Bognár, Gábor F; Pogány, Miklós; Szatmári, Ágnes

    2016-01-01

    In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco-Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca(2+) influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were

  10. Targeted RNA Sequencing Assay to Characterize Gene Expression and Genomic Alterations.

    PubMed

    Martin, Dorrelyn P; Miya, Jharna; Reeser, Julie W; Roychowdhury, Sameek

    2016-01-01

    RNA sequencing (RNAseq) is a versatile method that can be utilized to detect and characterize gene expression, mutations, gene fusions, and noncoding RNAs. Standard RNAseq requires 30 - 100 million sequencing reads and can include multiple RNA products such as mRNA and noncoding RNAs. We demonstrate how targeted RNAseq (capture) permits a focused study on selected RNA products using a desktop sequencer. RNAseq capture can characterize unannotated, low, or transiently expressed transcripts that may otherwise be missed using traditional RNAseq methods. Here we describe the extraction of RNA from cell lines, ribosomal RNA depletion, cDNA synthesis, preparation of barcoded libraries, hybridization and capture of targeted transcripts and multiplex sequencing on a desktop sequencer. We also outline the computational analysis pipeline, which includes quality control assessment, alignment, fusion detection, gene expression quantification and identification of single nucleotide variants. This assay allows for targeted transcript sequencing to characterize gene expression, gene fusions, and mutations. PMID:27585245

  11. DNA-Damage Foci to Detect and Characterize DNA Repair Alterations in Children Treated for Pediatric Malignancies

    PubMed Central

    Kaiser, Mareike; Betten, Dominik; Furtwängler, Rhoikos; Rübe, Christian; Graf, Norbert; Rübe, Claudia E.

    2014-01-01

    Purpose In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB) repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA) suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. Methods and Materials In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. Results Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. Conclusions Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies. PMID:24637877

  12. Deregulation of microRNAs by HIV-1 Vpr Protein Leads to the Development of Neurocognitive Disorders*

    PubMed Central

    Mukerjee, Ruma; Chang, J. Robert; Del Valle, Luis; Bagashev, Asen; Gayed, Monika M.; Lyde, Randolph B.; Hawkins, Brian J.; Brailoiu, Eugen; Cohen, Eric; Power, Chris; Azizi, S. Ausim; Gelman, Benjamin B.; Sawaya, Bassel E.

    2011-01-01

    Studies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein encoded by HIV-1, has been shown to alter the expression of various important cytokines and inflammatory proteins in infected and uninfected cells; however the mechanisms involved remain unclear. Using a human neuronal cell line, we found that Vpr can be taken up by neurons causing: (i) deregulation of calcium homeostasis, (ii) endoplasmic reticulum-calcium release, (iii) activation of the oxidative stress pathway, (iv) mitochondrial dysfunction and v- synaptic retraction. In search for the cellular factors involved, we performed microRNAs and gene array assays using human neurons (primary cultures or cell line, SH-SY5Y) that we treated with recombinant Vpr proteins. Interestingly, Vpr deregulates the levels of several microRNAs (e.g. miR-34a) and their target genes (e.g. CREB), which could lead to neuronal dysfunctions. Therefore, we conclude that Vpr plays a major role in neuronal dysfunction through deregulating microRNAs and their target genes, a phenomenon that could lead to the development of neurocognitive disorders. PMID:21816823

  13. microRNA Profiles in Parkinson's Disease Prefrontal Cortex

    PubMed Central

    Hoss, Andrew G.; Labadorf, Adam; Beach, Thomas G.; Latourelle, Jeanne C.; Myers, Richard H.

    2016-01-01

    Objective: The goal of this study was to compare the microRNA (miRNA) profile of Parkinson's disease (PD) frontal cortex with normal control brain, allowing for the identification of PD specific signatures as well as study the disease-related phenotypes of onset age and dementia. Methods: Small RNA sequence analysis was performed from prefrontal cortex for 29 PD samples and 33 control samples. After sample QC, normalization and batch correction, linear regression was employed to identify miRNAs altered in PD, and a PD classifier was developed using weighted voting class prediction. The relationship of miRNA levels to onset age and PD with dementia (PDD) was also characterized in case-only analyses. Results: One twenty five miRNAs were differentially expressed in PD at a genome-wide level of significance (FDR q < 0.05). A set of 29 miRNAs classified PD from non-diseased brain (93.9% specificity, 96.6% sensitivity). The majority of differentially expressed miRNAs (105/125) showed an ordinal relationship from control, to PD without dementia (PDN), to PDD. Among PD brains, 36 miRNAs classified PDD from PDN (sensitivity = 81.2%, specificity = 88.9%). Among differentially expressed miRNAs, miR-10b-5p had a positive association with onset age (q = 4.7e-2). Conclusions: Based on cortical miRNA levels, PD brains were accurately classified from non-diseased brains. Additionally, the PDD miRNA profile exhibited a more severe pattern of alteration among those differentially expressed in PD. To evaluate the clinical utility of miRNAs as potential clinical biomarkers, further characterization and testing of brain-related miRNA alterations in peripheral biofluids is warranted. PMID:26973511

  14. Transcription alterations of microRNAs, cytochrome P4501A1 and 3A65, and AhR and PXR in the liver of zebrafish exposed to crude microcystins.

    PubMed

    Li, Xiaoyu; Ma, Junguo; Fang, Qian; Li, Yuanyuan

    2013-10-01

    MicroRNAs are small non-coding regulatory RNAs that not only control diverse cellular processes but also regulate gene expression induced by environmental chemicals. However, little is known about the role of microRNAs in liver response of fish to the exposure of cyanobacterial hepatotoxin microcystins (MCs). In the present study, the transcription levels of 4 miRNAs (dre-miR-21, dre-miR-122, dre-miR-27b, and dre-miR-148), cytochromes P450s CYP1A1 and CYP3A65, and their receptors, aryl hydrocarbon receptor (AhR, for CYP1A1) and pregnane X receptor (PXR, for CYP3A65), in the liver of zebrafish were evaluated after 24 h of 50, 200, or 800 μg/L of crude MCs exposure by using the quantitative real-time PCR method. The results showed that MCs-exposure elevated the transcription levels of dre-miR-21 and dre-miR-27b while down-regulated the expressions of dre-miR-122 and dre-miR-148. However, CYP1A1 transcription remained unchanged while mRNA levels of AhRR1 and AhR2 were significantly higher than that of control. Furthermore, the expressions of CYP3A65 and its receptor PXR were up-regulated by MCs-exposure at higher concentrations (200, or 800 μg/L of crude MCs). Therefore we suggest that CYP3A65 and PXR may be involved in the metabolization and detoxification of MCs in zebrafish, which may be regulated by dre-miR-27b. This work might be beneficial for the discovery of new potential diagnostic biomarker and drug target for hepatosis caused by MC. PMID:23851223

  15. Identification and characterization of Photorhabdus temperata mutants altered in hemolysis and virulence.

    PubMed

    Chapman, Christine; Tisa, Louis S

    2016-08-01

    Photorhabdus temperata is a symbiont of the entomopathogenic nematode Heterorhabditis bacteriophora and an insect pathogen. This bacterium produces a wide variety of virulence factors and hemolytic activity. The goal of this study was to identify hemolysin-defective mutants and test their virulence. A genetic approach was used to identify mutants with altered hemolytic activity by screening a library of 10 000 P. temperata transposon mutants. Three classes of mutants were identified: (i) defective (no hemolytic activity), (ii) delayed (delayed initiation of hemolytic activity), and (iii) early (early initiation of hemolytic activity). The transposon insertion sites for these mutants were identified and used to investigate other physiological properties, including insect pathogenesis and motility. The hemolysin-defective mutants, P10A-C11, P10A-H12, and P79-B5, had inserts in genes involved in RNA turnover (RNase II and 5'-pentaphospho-5'-adenosine pyrophosphohydrolase) and showed reduced virulence and production of extracellular factors. These data support the role of RNA turnover in insect pathogenesis and other physiological functions. PMID:27300499

  16. A mouse model of anxiety molecularly characterized by altered protein networks in the brain proteome.

    PubMed

    Szego, Eva M; Janáky, Tamás; Szabó, Zoltán; Csorba, Attila; Kompagne, Hajnalka; Müller, Géza; Lévay, György; Simor, Attila; Juhász, Gábor; Kékesi, Katalin A

    2010-02-01

    Recently, several attempts have been made to describe changes related to certain anxiety states in the proteome of experimental animal models. However, these studies are restricted by limitations regarding the number and correct identification of separated proteins. Moreover, the application of a systems biology approach to discover the molecular mechanisms of anxiety requires genetically homogenous inbred animal models. Therefore, we developed a novel mouse model of anxiety using a combination of crossbreeding (inbred for 35 generations) and behavioral selection. We found significant changes in 82 proteins in the total brain proteome compared to the control proteome. Thirty-four of these proteins had been previously identified in other anxiety, depression or repeated psychosocial stress studies. The identified proteins are associated with different cellular functions, including synaptic transmission, metabolism, proteolysis, protein biosynthesis and folding, cytoskeletal proteins, brain development and neurogenesis, oxidative stress, signal transduction. Our proteomics data suggest that alterations in serotonin receptor-associated proteins, in the carbohydrate metabolism, in the cellular redox system and in synaptic docking are all involved in anxiety. PMID:20015620

  17. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    SciTech Connect

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Wong, C. Shun; Nieman, Brian J.

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  18. Characterization of Gaucher disease bone marrow mesenchymal stromal cells reveals an altered inflammatory secretome

    PubMed Central

    Campeau, Philippe M.; Rafei, Moutih; Boivin, Marie-Noëlle; Sun, Ying; Grabowski, Gregory A.

    2009-01-01

    Gaucher disease causes pathologic skeletal changes that are not fully explained. Considering the important role of mesenchymal stromal cells (MSCs) in bone structural development and maintenance, we analyzed the cellular biochemistry of MSCs from an adult patient with Gaucher disease type 1 (N370S/L444P mutations). Gaucher MSCs possessed a low glucocerebrosidase activity and consequently had a 3-fold increase in cellular glucosylceramide. Gaucher MSCs have a typical MSC marker phenotype, normal osteocytic and adipocytic differentiation, growth, exogenous lactosylceramide trafficking, cholesterol content, lysosomal morphology, and total lysosomal content, and a marked increase in COX-2, prostaglandin E2, interleukin-8, and CCL2 production compared with normal controls. Transcriptome analysis on normal MSCs treated with the glucocerebrosidase inhibitor conduritol B epoxide showed an up-regulation of an array of inflammatory mediators, including CCL2, and other differentially regulated pathways. These cells also showed a decrease in sphingosine-1-phosphate. In conclusion, Gaucher disease MSCs display an altered secretome that could contribute to skeletal disease and immune disease manifestations in a manner distinct and additive to Gaucher macrophages themselves. PMID:19587377

  19. Coupled Radon and Water Temperature Measurements to Characterize the Effects of Altered Stream Channel Planform

    NASA Astrophysics Data System (ADS)

    Amerson, B. E.; Poole, G. C.; O'Daniel, S. J.

    2013-12-01

    In summer 2011, a 2.6 km reach of Meacham Creek, Oregon, USA, was altered from a straight, steep wall-based channel to more a sinuous, low-gradient channel. Key objectives of this restoration project were to increase the rate and magnitude of hyporheic exchange. The overarching goal was to initiate increased buffering and lagging of water temperature in the subsurface to mitigate warm surface water temperature in Meacham Creek, an important spawning and rearing stream for depressed populations of Chinook salmon and summer steelhead. To evaluate progress toward project goals and objectives, stream temperature and groundwater temperature in 22 wells have been measured hourly at the restoration site since March 2011. In addition, the radioactive isotope 222Rn was measured in each well and in the surface water on two occasions. The relative residence time of down welling stream water measured in the wells can be determined by ranked amplitude depression and lagged phase of annual temperature signals in the wells relative to that of the open channel flow. Residence times predicted by annual temperature signal dynamics are corroborated by 222Rn concentrations in each well. The data collected to date provide a foundation for developing a groundwater thermal model to predict the effects of channel reconfiguration on ground-surface water exchange and associated temperature effects at the reach scale.

  20. Characteristics of microRNA co-target networks

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Yong

    2011-07-01

    The database of microRNAs and their predicted target genes in humans were used to extract a microRNA co-target network. Based on the finding that more than two miRNAs can target the same gene, we constructed a microRNA co-target network and analyzed it from the perspective of the complex network. We found that a network having a positive assortative mixing can be characterized by small-world and scale-free characteristics which are found in most complex networks. The network was further analyzed by the nearest-neighbor average connectivity, and it was shown that the more assortative a microRNA network is, the wider the range of increasing average connectivity. In particular, an assortative network has a power-law relationship of the average connectivity with a positive exponent. A percolation analysis of the network showed that, although the network is diluted, there is no percolation transition in the network. From these findings, we infer that the microRNAs in the network are clustered together, forming a core group. The same analyses carried out on different species confirmed the robustness of the main results found in the microRNA networks of humans.

  1. Direct transcriptional regulation by nuclear microRNAs.

    PubMed

    Salmanidis, Marika; Pillman, Katherine; Goodall, Gregory; Bracken, Cameron

    2014-09-01

    The function of microRNAs is well characterized in the cytoplasm, where they direct an Argonaute-containing complex to target and repress mRNAs. More recently, regulatory roles for microRNAs and Argonaute have also been reported in the nucleus where microRNAs guide Argonaute to target gene promoters and directly regulate transcription in either a positive or a negative manner. Deep sequencing has revealed a high abundance of endogenous microRNAs within the nucleus, and in silico target prediction suggests thousands of potential microRNA:promoter interaction sites. The predicted high frequency of miRNA:promoter interactions is supported by chromatin immunoprecipitation, indicating the microRNA-dependent recruitment of Argonaute to thousands of transcriptional start sites and the subsequent regulation of RNA polymerase-II occupancy and chromatin modifiers. In this review we discuss the evidence for, and mechanisms associated with, direct transcriptional regulation by microRNAs which may represent a significant and largely unexplored aspect of microRNA function. This article is part of a Directed Issue entitled: The non-coding RNA revolution. PMID:24680896

  2. MicroRNA: a small molecule with a big biological impact.

    PubMed

    Zhou, Xiaofeng; Yang, Pan-Chyr

    2012-01-01

    One of the most significant achievements in biological science in the last decade is the discovery of RNA interference (RNAi), a process within living cells that regulates gene expression at post-transcriptional levels. Historically, this process was described by other more generic names, such as co-suppression and post transcriptional gene silencing. Only after the molecular mechanism underlying these apparently unrelated processes was fully understood did it become apparent that they all described the RNAi phenomenon. In 2006, Dr. Andrew Fire and Dr. Craig C. Mello were awarded the Nobel Prize in Physiology or Medicine for their work on RNAi interference. RNAi is an RNA-dependent gene silencing process that is controlled by the RNA-induced silencing complex (RISC) and is initiated by two types of small RNA molecules - microRNA (miRNA) and small interfering RNA (siRNA). However, the function of microRNA appears to be far beyond RNAi alone, including direct interaction with the gene promoter and epigenetic regulation of the DNA methylation and histone modification. By regulating gene expression, miRNAs are likely to be involved in diverse biological activities, such as tumorigenesis, immune response, insulin secretion, neurotransmitter synthesis, and circadian rhythm, to name a few. MicroRNAs are 21-23 nucleotide single stranded RNA molecules found in eukaryotic cells. The first miRNA, lin-4, was characterized in C. elegans in the early 1990s [1]. In the early years, the progress on microRNA research was slow and experienced substantial growing pains. The short length and uniqueness of each microRNA rendered many conventional hybridization based methods ineffective; very small RNAs are difficult to reliably amplify or label without introducing bias. In addition, hybridization-based methods for microRNA profiling relied on probes designed to detect known microRNAs or known microRNA species previously identified by sequencing or homology search. Recent evidence of

  3. Complementary MS Methods Assist Conformational Characterization of Antibodies with Altered S-S Bonding Networks

    NASA Astrophysics Data System (ADS)

    Jones, Lisa M.; Zhang, Hao; Cui, Weidong; Kumar, Sandeep; Sperry, Justin B.; Carroll, James A.; Gross, Michael L.

    2013-06-01

    As therapeutic monoclonal antibodies (mAbs) become a major focus in biotechnology and a source of the next-generation drugs, new analytical methods or combination methods are needed for monitoring changes in higher order structure and effects of post-translational modifications. The complexity of these molecules and their vulnerability to structural change provide a serious challenge. We describe here the use of complementary mass spectrometry methods that not only characterize mutant mAbs but also may provide a general framework for characterizing higher order structure of other protein therapeutics and biosimilars. To frame the challenge, we selected members of the IgG2 subclass that have distinct disulfide isomeric structures as a model to evaluate an overall approach that uses ion mobility, top-down MS sequencing, and protein footprinting in the form of fast photochemical oxidation of proteins (FPOP). These three methods are rapid, sensitive, respond to subtle changes in conformation of Cys → Ser mutants of an IgG2, each representing a single disulfide isoform, and may be used in series to probe higher order structure. The outcome suggests that this approach of using various methods in combination can assist the development and quality control of protein therapeutics.

  4. Complementary MS Methods Assist Conformational Characterization of Antibodies with Altered S–S Bonding Networks

    PubMed Central

    Jones, Lisa M.; Zhang, Hao; Cui, Weidong; Kumar, Sandeep; Sperry, Justin B.; Carroll, James A.; Gross, Michael L.

    2013-01-01

    As therapeutic monoclonal antibodies (mAbs) become a major focus in biotechnology and a source of the next-generation drugs, new analytical methods or combination methods are needed for monitoring changes in higher order structure and effects of post-translational modifications. The complexity of these molecules and their vulnerability to structural change provide a serious challenge. We describe here the use of complementary mass spectrometry methods that not only characterize mutant mAbs but also may provide a general framework for characterizing higher order structure of other protein therapeutics and biosimilars. To frame the challenge, we selected members of the IgG2 subclass that have distinct disulfide isomeric structures as a model to evaluate an overall approach that uses ion mobility, top-down MS sequencing, and protein footprinting in the form of fast photochemical oxidation of proteins (FPOP). These three methods are rapid, sensitive, respond to subtle changes in conformation of Cys→Ser mutants of an IgG2, each representing a single disulfide isoform, and may be used in series to probe higher order structure. The outcome suggests that this approach of using various methods in combination can assist the development and quality control of protein therapeutics. PMID:23483515

  5. MicroRNA biogenesis pathways in cancer

    PubMed Central

    Lin, Shuibin; Gregory, Richard I.

    2016-01-01

    MicroRNAs (miRNAs) are critical regulators of gene expression. Amplification and overexpression of individual ‘oncomiRs’ or genetic loss of tumour suppressor miRNAs are associated with human cancer and are sufficient to drive tumorigenesis in mouse models. Furthermore, global miRNA depletion caused by genetic and epigenetic alterations in components of the miRNA biogenesis machinery is oncogenic. This, together with the recent identification of novel miRNA regulatory factors and pathways, highlights the importance of miRNA dysregulation in cancer. PMID:25998712

  6. Characterization of singlet oxygen-accumulating mutants isolated in a screen for altered oxidative stress response in Chlamydomonas reinhardtii

    PubMed Central

    2010-01-01

    Background When photosynthetic organisms are exposed to harsh environmental conditions such as high light intensities or cold stress, the production of reactive oxygen species like singlet oxygen is stimulated in the chloroplast. In Chlamydomonas reinhardtii singlet oxygen was shown to act as a specific signal inducing the expression of the nuclear glutathione peroxidase gene GPXH/GPX5 during high light stress, but little is known about the cellular mechanisms involved in this response. To investigate components affecting singlet oxygen signaling in C. reinhardtii, a mutant screen was performed. Results Mutants with altered GPXH response were isolated from UV-mutagenized cells containing a GPXH-arylsulfatase reporter gene construct. Out of 5500 clones tested, no mutant deficient in GPXH induction was isolated, whereas several clones showed constitutive high GPXH expression under normal light conditions. Many of these GPXH overexpressor (gox) mutants exhibited higher resistance to oxidative stress conditions whereas others were sensitive to high light intensities. Interestingly, most gox mutants produced increased singlet oxygen levels correlating with high GPXH expression. Furthermore, different patterns of altered photoprotective parameters like non-photochemical quenching, carotenoid contents and α-tocopherol levels were detected in the various gox mutants. Conclusions Screening for mutants with altered GPXH expression resulted in the isolation of many gox mutants with increased singlet oxygen production, showing the relevance of controlling the production of this ROS in photosynthetic organisms. Phenotypic characterization of these gox mutants indicated that the mutations might lead to either stimulated triplet chlorophyll and singlet oxygen formation or reduced detoxification of singlet oxygen in the chloroplast. Furthermore, changes in multiple protection mechanisms might be responsible for high singlet oxygen formation and GPXH expression, which could either

  7. MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics

    PubMed Central

    Nieto-Diaz, Manuel; Esteban, Francisco J.; Reigada, David; Muñoz-Galdeano, Teresa; Yunta, Mónica; Caballero-López, Marcos; Navarro-Ruiz, Rosa; del Águila, Ángela; Maza, Rodrigo M.

    2014-01-01

    Trauma to the spinal cord causes permanent disability to more than 180,000 people every year worldwide. The initial mechanical damage triggers a complex set of secondary events involving the neural, vascular, and immune systems that largely determine the functional outcome of the spinal cord injury (SCI). Cellular and biochemical mechanisms responsible for this secondary injury largely depend on activation and inactivation of specific gene programs. Recent studies indicate that microRNAs function as gene expression switches in key processes of the SCI. Microarray data from rodent contusion models reveal that SCI induces changes in the global microRNA expression patterns. Variations in microRNA abundance largely result from alterations in the expression of the cells at the damaged spinal cord. However, microRNA expression levels after SCI are also influenced by the infiltration of immune cells to the injury site and the death and migration of specific neural cells after injury. Evidences on the role of microRNAs in the SCI pathophysiology have come from different sources. Bioinformatic analysis of microarray data has been used to identify specific variations in microRNA expression underlying transcriptional changes in target genes, which are involved in key processes in the SCI. Direct evidences on the role of microRNAs in SCI are scarcer, although recent studies have identified several microRNAs (miR-21, miR-486, miR-20) involved in key mechanisms of the SCI such as cell death or astrogliosis, among others. From a clinical perspective, different evidences make clear that microRNAs can be potent therapeutic tools to manipulate cell state and molecular processes in order to enhance functional recovery. The present article reviews the actual knowledge on how injury affects microRNA expression and the meaning of these changes in the SCI pathophysiology, to finally explore the clinical potential of microRNAs in the SCI. PMID:24701199

  8. Alteration in delayed fluorescence characterize the effect of heat stress on plants

    NASA Astrophysics Data System (ADS)

    Zeng, Lizhang; Xing, Da

    2005-02-01

    High temperature affects the photosynthetic functions of plants by its effects on the rate of chemical reactions and on structural organization. Delayed fluorescence originated from the reaction center of photosystem II (PSII) during the photosynthesis process shortly after stopped illumination. With lamina of soybean as a testing model, the effects of high temperature stress on plant photosynthesis capability were studied with various spectral analysis methods. Experimental results show that DF spectrum and Excitation spectrum can probably characterize the changes of soybean photosynthesis capability after different high temperature treatments. Meanwhile, the injury and harm degree of heat stress on soybean leaves were further studied by the variability of its chloroplast absorption spectrum. DF spectroscopy method may provide a new approach for fast detection of the effects of environment stresses on plant photosynthesis capability.

  9. The Cathedral of S. Giorgio in Ragusa Ibla (Italy): characterization of construction materials and their chromatic alteration

    NASA Astrophysics Data System (ADS)

    Barone, Germana; La Russa, Mauro Francesco; Lo Giudice, Antonino; Mazzoleni, Paolo; Pezzino, Antonino

    2008-08-01

    The Cathedral of St. Giorgio in Ragusa Ibla (Sicily) is one of the most important Baroque monuments of eastern Sicily. The restoration of the monument underway has put forward notable questions regarding the stone materials used and their state of degradation. The façade appears to be made mainly of a creamy white calcarenite, and of mortars and plasters. However, detailed analysis has highlighted a more complex use of the raw material. The mortar and plaster have a different composition in regards to their architectural use while the natural stone material is distinguished not only by a creamy-white calcarenite but also by a dark coloured bituminous calcarenite (pitch rock), which now appears whiter because of superficial chromatic alterations. This process was reproduced in the laboratory using an accelerated aging technique on samples of bituminous calcarenite, which allowed the cause of the alternation to be identified as photo-oxidation of the asphaltenes. Following this process of photo-oxidation, other forms of chromatic alterations affected the façade (brown orange-coloured patinas). FTIR, Scanning Electron Microscope and thin section microscopic observation allowed the characterization of also the products of this process to be carried out, highlighting the complex mechanism which the processes underwent.

  10. Heterogeneity of microRNAs expression in cervical cancer cells: over-expression of miR-196a

    PubMed Central

    Villegas-Ruiz, Vanessa; Juárez-Méndez, Sergio; Pérez-González, Oscar A; Arreola, Hugo; Paniagua-García, Lucero; Parra-Melquiadez, Miriam; Peralta-Rodríguez, Raúl; López-Romero, Ricardo; Monroy-García, Alberto; Mantilla-Morales, Alejandra; Gómez-Gutiérrez, Guillermo; Román-Bassaure, Edgar; Salcedo, Mauricio

    2014-01-01

    In recent years, the study of microRNAs associated with neoplastic processes has increased. Patterns of microRNA expression in different cell lines and different kinds of tumors have been identified; however, little is known about the alterations in regulatory pathways and genes involved in aberrant set of microRNAs. The identification of these altered microRNAs in several cervical cancer cells and potentially deregulated pathways involved constitute the principal goals of the present study. In the present work, the expression profiles of cellular microRNAs in Cervical Cancer tissues and cell lines were explored using microRNA microarray, Affymetrix. The most over-expressed was miR-196a, which was evaluated by real time PCR, and HOXC8 protein as potential target by immunohistochemistry assay. One hundred and twenty three human microRNAs differentially expressed in the cell tumor, 64 (52%) over-expressed and 59 (48%) under-expressed were observed. Among the microRNAs over-expressed, we focused on miR-196a; at present this microRNA is poorly studied in CC. The expression of this microRNA was evaluated by qRT-PCR, and HOXC8 by immunohistochemistry assay. There is not a specific microRNA expression profile in the CC cells, neither a microRNA related to HPV presence. Furthermore, the miR-196a was over-expressed, while an absence of HOXC8 expression was observed. We suggest that miR-196a could be played as oncomiR in CC. PMID:24817935

  11. Multimodal Characterization of Proliferative Diabetic Retinopathy Reveals Alterations in Outer Retinal Function and Structure

    PubMed Central

    Boynton, Grace E.; Stem, Maxwell S.; Kwark, Leon; Jackson, Gregory R.; Farsiu, Sina; Gardner, Thomas W.

    2014-01-01

    diffusely thinned RPE layers (p=0.031) compared to controls. Conclusions Patients with untreated PDR exhibit inner retinal dysfunction, as evidenced by reduced contrast sensitivity and FDP performance, accompanied by alterations in inner and outer retinal structure. PRP-treated patients had more profound changes in outer retinal structure and function. Distinguishing the effects of PDR and PRP may guide the development of restorative vision therapies for patients with advanced diabetic retinopathy. PMID:25601533

  12. A conformation-induced fluorescence method for microRNA detection.

    PubMed

    Aw, Sherry S; Tang, Melissa Xm; Teo, Yin Nah; Cohen, Stephen M

    2016-06-01

    MicroRNAs play important roles in a large variety of biological systems and processes through their regulation of target mRNA expression, and show promise as clinical biomarkers. However, their small size presents challenges for tagging or direct detection. Innovation in techniques to sense and quantify microRNAs may aid research into novel aspects of microRNA biology and contribute to the development of diagnostics. By introducing an additional stem loop into the fluorescent RNA Spinach and altering its 3' and 5' ends, we have generated a new RNA, Pandan, that functions as the basis for a microRNA sensor. Pandan contains two sequence-variable stem loops that encode complementary sequence for a target microRNA of interest. In its sensor form, it requires the binding of a target microRNA in order to reconstitute the RNA scaffold for fluorophore binding and fluorescence. Binding of the target microRNA resulted in large changes in fluorescence intensity. The median fold change in fluorescence observed for the sensors tested was ∼50-fold. Pandan RNA sensors exhibit good signal-to-noise ratios, and can detect their target microRNAs within complex RNA mixtures. PMID:26951376

  13. A conformation-induced fluorescence method for microRNA detection

    PubMed Central

    Aw, Sherry S.; Tang, Melissa XM; Teo, Yin Nah; Cohen, Stephen M.

    2016-01-01

    MicroRNAs play important roles in a large variety of biological systems and processes through their regulation of target mRNA expression, and show promise as clinical biomarkers. However, their small size presents challenges for tagging or direct detection. Innovation in techniques to sense and quantify microRNAs may aid research into novel aspects of microRNA biology and contribute to the development of diagnostics. By introducing an additional stem loop into the fluorescent RNA Spinach and altering its 3′ and 5′ ends, we have generated a new RNA, Pandan, that functions as the basis for a microRNA sensor. Pandan contains two sequence-variable stem loops that encode complementary sequence for a target microRNA of interest. In its sensor form, it requires the binding of a target microRNA in order to reconstitute the RNA scaffold for fluorophore binding and fluorescence. Binding of the target microRNA resulted in large changes in fluorescence intensity. The median fold change in fluorescence observed for the sensors tested was ∼50-fold. Pandan RNA sensors exhibit good signal-to-noise ratios, and can detect their target microRNAs within complex RNA mixtures. PMID:26951376

  14. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma

    PubMed Central

    Anwar, Sumadi Lukman; Lehmann, Ulrich

    2014-01-01

    Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC. PMID:24976726

  15. Identification and characterization of microRNAs at different flowering developmental stages in moso bamboo (Phyllostachys edulis) by high-throughput sequencing.

    PubMed

    Gao, Jian; Ge, Wei; Zhang, Ying; Cheng, Zhanchao; Li, Long; Hou, Dan; Hou, Chenglin

    2015-12-01

    Researching moso bamboo flowering has been difficult because of its unknown flowering interval and the rarity of florescent samples. To identify microRNAs (miRNAs) and study their expression patterns during the flower developmental process of moso bamboo, small RNAs from non-flowering leaves and four flower developmental periods were sequenced using Illumina technology. In total, 409 known miRNAs and 492 differentially expressed novel miRNAs were identified in moso bamboo. Of the known miRNAs that were differentially expressed between non-flowering and flowering samples, 64 were predicted to have a total of 308 targets. Among the miRNAs, seven known and five novel miRNAs were selected, as were four of their target genes, and their expression profiles were validated using qRT-PCR. The results indicated that the miRNA expression levels were negatively correlated with those of their targets. The research comprehensively revealed that the differentially expressed miRNAs and their targets participated in diverse biological pathways and played significant regulatory roles in moso bamboo flowering. The data provide a significant resource for understanding the molecular mechanisms in moso bamboo flowering and senescence, and serve as the primary foundation for further studies on metabolic regulatory networks that involve miRNAs. PMID:26044981

  16. An altered redox balance and increased genetic instability characterize primary fibroblasts derived from xeroderma pigmentosum group A patients.

    PubMed

    Parlanti, Eleonora; Pietraforte, Donatella; Iorio, Egidio; Visentin, Sergio; De Nuccio, Chiara; Zijno, Andrea; D'Errico, Mariarosaria; Simonelli, Valeria; Sanchez, Massimo; Fattibene, Paola; Falchi, Mario; Dogliotti, Eugenia

    2015-12-01

    Xeroderma pigmentosum (XP)-A patients are characterized by increased solar skin carcinogenesis and present also neurodegeneration. XPA deficiency is associated with defective nucleotide excision repair (NER) and increased basal levels of oxidatively induced DNA damage. In this study we search for the origin of increased levels of oxidatively generated DNA lesions in XP-A cell genome and then address the question of whether increased oxidative stress might drive genetic instability. We show that XP-A human primary fibroblasts present increased levels and different types of intracellular reactive oxygen species (ROS) as compared to normal fibroblasts, with O₂₋• and H₂O₂ being the major reactive species. Moreover, XP-A cells are characterized by decreased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios as compared to normal fibroblasts. The significant increase of ROS levels and the alteration of the glutathione redox state following silencing of XPA confirmed the causal relationship between a functional XPA and the control of redox balance. Proton nuclear magnetic resonance (¹H NMR) analysis of the metabolic profile revealed a more glycolytic metabolism and higher ATP levels in XP-A than in normal primary fibroblasts. This perturbation of bioenergetics is associated with different morphology and response of mitochondria to targeted toxicants. In line with cancer susceptibility, XP-A primary fibroblasts showed increased spontaneous micronuclei (MN) frequency, a hallmark of cancer risk. The increased MN frequency was not affected by inhibition of ROS to normal levels by N-acetyl-L-cysteine. PMID:26546826

  17. Characterization of muscle alteration in oral submucous fibrosis-seeking new evidence

    PubMed Central

    Urs, Aadithya-Basavaraj; Augustine, Jeyaseelan; Kumar, Priya

    2015-01-01

    Background The aim of the study was to assess the progression of Oral Submucous Fibrosis (OSF) by investigating the correlation between clinical mouth opening and muscle-epithelial distance in tissue sections. Characterization of changes involving muscle was ascertained. Material and Methods 50 cases and 10 controls were included in this case-control study. Inter-incisal mouth opening was measured and classified according to Lai et al. as Group A (more than 35mm), Group B (30 to 35mm), Group C (20 to 30mm), Group D (less than 20mm). Histopathological sections were graded as very early, early, moderately advanced, advanced OSF. Muscle-epithelial distance was calculated using image analysis software. The four most common degenerative changes observed in muscles, namely fragmentation, highly eosinophilic areas with loss of striations, nucleus internalization and multiple pyknotic nuclei were also assessed. Results Comparisons of muscle-epithelial distance were made between the clinical and histopathological groups to those of controls. The mean muscle-epithelial distance was: Group A-626.8±309.36 µm, B-827.5±549.72 µm, C-673.2±321.93 µm, D-439.9±173.84µm, Controls-1222.19 ±441.7µm. Post-hoc Bonferroni Test revealed a statistically significant reduction in the muscle-epithelial distance in Group C (p-value = 0.001) and D (p-value = 0.001) as compared to controls. The mean muscle-epithelial distance in very early, early, moderately advanced and advanced OSF was 732.73±232.81µm, 726.54±361.63 µm, 548.36±273.13 and 172.40±58.41 µm respectively. Highly significant difference in muscle-epithelial distance was seen between controls as compared to early (p-value =0.002), moderately advanced (p-value = 0.001) and advanced OSF (p-value = 0.001. Fragmentation and highly eosinophilic areas were invariably noticed in advanced OSF. Multiple pyknotic nuclei were variable with no specificity. Conclusions Reduction in muscle-epithelial distance may prove to be a

  18. MicroRNA response to environmental mutagens in liver.

    PubMed

    Elamin, Bahaeldin K; Callegari, Elisa; Gramantieri, Laura; Sabbioni, Silvia; Negrini, Massimo

    2011-12-01

    During the recent few years, microRNAs emerged as key molecules in the regulation of mammalian cell functions. It was also shown that their altered expression can promote pathologic conditions, such as cancer and other common diseases. Because environmental exposure to biological, chemical or physical agents may be responsible for human diseases, including cancer, uncovering relationships between exposure to environmental carcinogens and expression of microRNAs may help to disclose early mechanisms of disease and it may potentially lead to the development of useful indicators of toxic exposure or novel biomarkers for carcinogenicity testing. The unique expression profile of microRNAs in different types and at different stages of cancer coupled to their remarkable stability in tissues and in serum/plasma suggests that these little molecules may find application as sensitive biomarkers. This review will concentrate on the alterations in microRNA expression in response to environmental factors in relation to the risk of developing liver cancer. PMID:21514310

  19. Placental Microparticles and MicroRNAs in Pregnant Women with Plasmodium falciparum or HIV Infection

    PubMed Central

    Moro, Laura; Bardají, Azucena; Macete, Eusebio; Barrios, Diana; Morales-Prieto, Diana M.; España, Carolina; Mandomando, Inacio; Sigaúque, Betuel; Dobaño, Carlota; Markert, Udo R.; Benitez-Ribas, Daniel; Alonso, Pedro L.; Menéndez, Clara; Mayor, Alfredo

    2016-01-01

    Background During pregnancy, syncytiotrophoblast vesicles contribute to maternal tolerance towards the fetus, but also to pathologies such as pre-eclampsia. The aim of the study was to address whether Plasmodium falciparum and HIV infections in pregnancy affect the secretion, microRNA content and function of trophoblast microparticles. Methods Microparticles were isolated and characterized from 122 peripheral plasmas of Mozambican pregnant women, malaria- and/or HIV-infected and non-infected. Expression of placenta-related microRNAs in microparticles was analysed by qPCR and the effect of circulating microparticles on dendritic cells assessed by phenotype analysis and cytokine/chemokine measurement. Results Concentrations of total and trophoblast microparticles detected by flow cytometry were higher in HIV-positive (P = 0.005 and P = 0.030, respectively) compared to non-infected mothers, as well as in women delivering low birthweight newborns (P = 0.032 and P = 0.021, respectively). miR-517c was overexpressed in mothers with placental malaria (P = 0.034), compared to non-infected. Microparticles from HIV-positive induced a higher expression of MHCII (P = 0.021) and lower production of MCP1 (P = 0.008) than microparticles from non-infected women. Conclusions In summary, alterations in total and trophoblast microparticles associated with malaria and HIV in pregnant women may have an immunopathogenic role. The potential for placental-derived vesicles and microRNAs as biomarkers of adverse outcomes during pregnancy and malaria infection should be confirmed in future studies. PMID:26757431

  20. Enzymatic Synthesis and Functional Characterization of Bioactive Microcin C-Like Compounds with Altered Peptide Sequence and Length

    PubMed Central

    Bantysh, Olga; Serebryakova, Marina; Zukher, Inna; Kulikovsky, Alexey; Tsibulskaya, Darya; Dubiley, Svetlana

    2015-01-01

    ABSTRACT Escherichia coli microcin C (McC) consists of a ribosomally synthesized heptapeptide attached to a modified adenosine. McC is actively taken up by sensitive Escherichia coli strains through the YejABEF transporter. Inside the cell, McC is processed by aminopeptidases, which release nonhydrolyzable aminoacyl adenylate, an inhibitor of aspartyl-tRNA synthetase. McC is synthesized by the MccB enzyme, which terminally adenylates the MccA heptapeptide precursor MRTGNAN. Earlier, McC analogs with shortened peptide lengths were prepared by total chemical synthesis and were shown to have strongly reduced biological activity due to decreased uptake. Variants with longer peptides were difficult to synthesize, however. Here, we used recombinant MccB to prepare and characterize McC-like molecules with altered peptide moieties, including extended peptide lengths. We find that N-terminal extensions of E. coli MccA heptapeptide do not affect MccB-catalyzed adenylation and that some extended-peptide-length McC analogs show improved biological activity. When the peptide length reaches 20 amino acids, both YejABEF and SbmA can perform facilitated transport of toxic peptide adenylates inside the cell. A C-terminal fusion of the carrier maltose-binding protein (MBP) with the MccA peptide is also recognized by MccB in vivo and in vitro, allowing highly specific adenylation and/or radioactive labeling of cellular proteins. IMPORTANCE Enzymatic adenylation of chemically synthesized peptides allowed us to generate biologically active derivatives of the peptide-nucleotide antibiotic microcin C with improved bioactivity and altered entry routes into target cells, opening the way for development of various McC-based antibacterial compounds not found in nature. PMID:26195597

  1. Phenotypic MicroRNA Microarrays

    PubMed Central

    Kwon, Yong-Jun; Heo, Jin Yeong; Kim, Hi Chul; Kim, Jin Yeop; Liuzzi, Michel; Soloveva, Veronica

    2013-01-01

    Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the biology of selected cellular models. After reverse-transfection of microRNAs and siRNA, the cellular phenotype generated by microRNAs regulated NF-κB expression comparably to the siRNA. The ability to print microRNA molecules for reverse transfection into cells is opening up the wide horizon for the phenotypic high content screening of microRNA libraries using cellular disease models.

  2. Identification and Characterization of Erysiphe necator-Responsive MicroRNAs in Chinese Wild Vitis pseudoreticulata by High-Throughput Sequencing

    PubMed Central

    Han, Lijuan; Weng, Kai; Ma, Hui; Xiang, Gaoqing; Li, Zhiqian; Wang, Yuejin; Liu, Guotian; Xu, Yan

    2016-01-01

    Grapevine powdery mildew is one of the most damaging fungal diseases. Therefore, a precise understanding of the grapevine disease resistance system becomes a subject of significant importance. Plant microRNAs(miRNAs) have been implicated to play regulatory roles in plant biotic stress responses. In this study, high-throughput sequencing and miRDeep-P were employed to identify miRNAs in Chinese wild Vitis pseudoreticulata leaves following inoculation with Erysiphe necator. Altogether, 126 previously identified microRNAs and 124 novel candidates of miRNA genes were detected. Among them, 43 conserved miRNAs belong to 20 families and 23 non-conserved but previously-known miRNAs belong to 15 families. Following E. necator inoculation, 119 miRNAs were down-regulated and 131 were up-regulated. Furthermore, the expression changes occurring in 32 miRNAs were significant. The expression patterns of some miRNAs were validated by semi-quantitative RT-PCR and qRT-PCR. A total of 485 target genes were predicted and categorized by Gene Ontology (GO). In addition, 14 vvi-miRNAs were screened with 36 targets which may be involved in powdery mildew resistance in grape. Highly accumulated vvi-NewmiR2118 was detected from accession “Baihe-35-1,” whose targets were mostly NBS-LRR resistance genes. It was down-regulated rapidly and strongly in “Baihe-35-1” leaves after inoculated with E. necator, indicating its involvement in grape powdery mildew resistance. Finally, the study verified interaction between vvi-NewmiR2118 and RPP13 by histochemical staining and GUS fluorescence quantitative assay. PMID:27303408

  3. Characterization and differential expression patterns of conserved microRNAs and mRNAs in three genders of the rice field eel (Monopterus albus).

    PubMed

    Gao, Yu; Guo, Wei; Hu, Qing; Zou, Ming; Tang, Rong; Chi, Wei; Li, Dapeng

    2014-01-01

    MicroRNAs (miRNAs) are endogenous small RNAs that can regulate target mRNAs by binding to their sequences in the 3' untranslated region. The expression of miRNAs and their biogenetic pathway are involved in sexual differentiation and in the regulation of the development of germ cells and gonadal somatic cells. The rice field eel (Monopterus albus) undergoes a natural sexual transformation from female to male via an intersex stage during its life cycle. To investigate the molecular mechanisms of this sexual transformation, miRNAs present in the different sexual stages of the rice field eel were identified by high-throughput sequencing technology. A significantly differential expression among the 3 genders (p < 0.001) was observed for 48 unique miRNAs and 3 miRNAs*. Only 9 unique miRNAs showed a more than 8-fold change in their expression among the 3 genders, including mal-miR-430a and mal-miR-430c which were higher in females than in males. However, mal-miR-430b was only detected in males. Several potential miRNA target genes (cyp19a, cyp19b, nr5a1b, foxl2 amh, and vasa) were also investigated. Real-time RT-PCR demonstrated highly specific expression patterns of these genes in the 3 genders of the rice field eel. Many of these genes are targets of mal-miR-430b according to the TargetScan and miRTarBase. These results suggest that the miR-430 family may be involved in the sexual transformation of the rice field eel. PMID:25427634

  4. Potential clinical insights into microRNAs and their target genes in esophageal carcinoma.

    PubMed

    Li, Su Q; Wang, He M; Cao, Xiu F

    2011-12-01

    Esophageal carcinoma (EC) are characterized by dysregulation of microRNAs, which play an important roles as a posttranscriptional regulators in protein synthesis, and are involved in cellular processes, such as proliferation, apoptosis, and differentiation. Recently, altered miRNAs expression has been comprehensively studied in EC by high-throughput technology. Increased understanding of miRNAs target genes and their potential regulatory mechanisms have clarified the miRNAs activities and may provide exciting opportunities for cancer diagnosis and miRNA-based genetherapy. Here, we reviewed the most recently discovered miRNA target genes, with particular emphasis on the deciphering of their possible mechanisms and the potential roles in miRNAs-based tumour therapeutics. PMID:21870994

  5. The role of microRNA in esophageal squamous cell carcinoma.

    PubMed

    Harada, Kazuto; Baba, Yoshifumi; Ishimoto, Takatsugu; Shigaki, Hironobu; Kosumi, Keisuke; Yoshida, Naoya; Watanabe, Masayuki; Baba, Hideo

    2016-06-01

    MicroRNAs (miRNA) are 22-nucleotide non-coding RNAs that post-transcriptionally regulate gene expression by base pairing to partially complementary sequences in the 3'-untranslated region of their target messenger RNA. Altered miRNA expression also changes the expression of oncogenes and tumor suppressors, affecting the proliferation, apoptosis, motility and invasibility of gastrointestinal cancer cells, including the cells of esophageal squamous cell carcinoma (ESCC). It has been suggested that various miRNA expression profiles may provide useful biomarkers and therapeutic targets, but to date few studies have been published on the role of miRNA in ESCC. In this review we summarize the identification and characterization of miRNAs involved in ESCC and discuss their potential as biomarkers and therapeutic targets. PMID:26794004

  6. MicroRNAs in pancreatic cancer metabolism

    PubMed Central

    Singh, Pankaj K.; Brand, Randall E.; Mehla, Kamiya

    2014-01-01

    Advances in understanding the biology of tumour progression and metastasis have clearly highlighted the importance of aberrant tumour metabolism, which supports not only the energy requirements but also the enormous biosynthetic needs of tumour cells. Such metabolic alterations modulate glucose, amino acid and fatty-acid-dependent metabolite bio-synthesis and energy production. Although much progress has been made in understanding the somatic mutations and expression genomics behind these alterations, the regulation of these processes by microRNAs (miRNAs) is only beginning to be appreciated. This Review focuses on the miRNAs that are potential regulators of the expression of genes whose protein products either directly regulate metabolic machinery or serve as master regulators, indirectly modulating the expression of metabolic enzymes. We focus particularly on miRNAs in pancreatic cancer. PMID:22508159

  7. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.

    PubMed

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph-Alexander; Fan, Longjiang; Cai, Daguang

    2014-11-01

    Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for miRNA prediction and characterization. We identified 893 B. napus miRNAs representing 360 conserved and 533 novel miRNAs, and mapped 429 and 464 miRNAs to the AA and CC genomes, respectively. Microsynteny analysis with the conserved miRNAs and their flanking protein coding sequences revealed 137 AA-CC genome syntenic miRNA pairs and 61 AA and 42 CC genome-unique miRNAs. Sixty-two miRNAs were responsive to the V. longisporum infection. We present data for specific interactions and simultaneously reciprocal changes in the expression levels of the miRNAs and their targets in the infected roots. We demonstrate that miRNAs are involved in the plant-fungus interaction and that miRNA168-Argonaute 1 (AGO1) expression modulation might act as a key regulatory module in a compatible plant-V. longisporum interaction. Our results suggest that V. longisporum may have evolved a virulence mechanism by interference with plant miRNAs to reprogram plant gene expression and achieve infection. PMID:25132374

  8. Identification and characterization of hydrothermally altered zones in granite by combining synthetic clay content logs with magnetic mineralogical investigations of drilled rock cuttings

    NASA Astrophysics Data System (ADS)

    Meller, Carola; Kontny, Agnes; Kohl, Thomas

    2014-10-01

    Clay minerals as products of hydrothermal alteration significantly influence the hydraulic and mechanical properties of crystalline rock. Therefore, the localization and characterization of alteration zones by downhole measurements is a great challenge for the development of geothermal reservoirs. The magnetite bearing granite of the geothermal site in Soultz-sous-Forêts (France) experienced hydrothermal alteration during several tectonic events and clay mineral formation is especially observed in alteration halos around fracture zones. During the formation of clay minerals, magnetite was oxidized into hematite, which significantly reduces the magnetic susceptibility of the granite from ferrimagnetic to mostly paramagnetic values. The aim of this study was to find out if there exists a correlation between synthetic clay content logs (SCCLs) and measurements of magnetic susceptibility on cuttings in the granite in order to characterize their alteration mineralogy. Such a correlation has been proven for core samples of the EPS1 reference well. SCCLs were created from gamma ray and fracture density logs using a neural network. These logs can localize altered fracture zones in the GPK1-4 wells, where no core material is available. Mass susceptibility from 261 cutting samples of the wells GPK1-GPK4 was compared with the neural network derived synthetic logs. We applied a combination of temperature dependent magnetic susceptibility measurements with optical and electron microscopy, and energy dispersive X-ray spectroscopy to discriminate different stages of alteration. We found, that also in the granite cuttings an increasing alteration grade is characterized by an advancing oxidation of magnetite into hematite and a reduction of magnetic susceptibility. A challenge to face for the interpretation of magnetic susceptibility data from cuttings material is that extreme alteration grades can also display increased susceptibilities due to the formation of secondary magnetite

  9. A MicroRNA Network Dysregulated in Asthma Controls IL-6 Production in Bronchial Epithelial Cells

    PubMed Central

    Louafi, Fethi; Francisco-Garcia, Ana S.; Rupani, Hitasha; Bedke, Nicole; Holgate, Stephen; Howarth, Peter H.; Davies, Donna E.; Sanchez-Elsner, Tilman

    2014-01-01

    MicroRNAs are short non-coding single stranded RNAs that regulate gene expression. While much is known about the effects of individual microRNAs, there is now growing evidence that they can work in co-operative networks. MicroRNAs are known to be dysregulated in many diseases and affect pathways involved in the pathology. We investigated dysregulation of microRNA networks using asthma as the disease model. Asthma is a chronic inflammatory disease of the airways characterized by bronchial hyperresponsiveness and airway remodelling. The airway epithelium is a major contributor to asthma pathology and has been shown to produce an excess of inflammatory and pro-remodelling cytokines such as TGF-β, IL-6 and IL-8 as well as deficient amounts of anti-viral interferons. After performing microRNA arrays, we found that microRNAs -18a, -27a, -128 and -155 are down-regulated in asthmatic bronchial epithelial cells, compared to cells from healthy donors. Interestingly, these microRNAs are predicted in silico to target several components of the TGF-β, IL-6, IL-8 and interferons pathways. Manipulation of the levels of individual microRNAs in bronchial epithelial cells did not have an effect on any of these pathways. Importantly, knock-down of the network of microRNAs miR-18a, -27a, -128 and -155 led to a significant increase of IL-8 and IL-6 expression. Interestingly, despite strong in silico predictions, down-regulation of the pool of microRNAs did not have an effect on the TGF-β and Interferon pathways. In conclusion, using both bioinformatics and experimental tools we found a highly relevant potential role for microRNA dysregulation in the control of IL-6 and IL-8 expression in asthma. Our results suggest that microRNAs may have different roles depending on the presence of other microRNAs. Thus, interpretation of in silico analysis of microRNA function should be confirmed experimentally in the relevant cellular context taking into account interactions with other microRNAs

  10. MicroRNA regulation in extreme environments: differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia.

    PubMed

    Biggar, Kyle K; Kornfeld, Samantha F; Maistrovski, Yulia; Storey, Kenneth B

    2012-10-01

    Several recent studies of vertebrate adaptation to environmental stress have suggested roles for microRNAs (miRNAs) in regulating global suppression of protein synthesis and/or restructuring protein expression patterns. The present study is the first to characterize stress-responsive alterations in the expression of miRNAs during natural freezing or anoxia exposures in an invertebrate species, the intertidal gastropod Littorina littorea. These snails are exposed to anoxia and freezing conditions as their environment constantly fluctuates on both a tidal and seasonal basis. The expression of selected miRNAs that are known to influence the cell cycle, cellular signaling pathways, carbohydrate metabolism and apoptosis was evaluated using RT-PCR. Compared to controls, significant changes in expression were observed for miR-1a-1, miR-34a and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-125b, miR-29b and miR-2a in foot muscle after freezing exposure at -6 °C for 24 h (P<0.05). In addition, in response to anoxia stress for 24 h, significant changes in expression were also observed for miR-1a-1, miR-210 and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-29b and miR-2a in foot muscle (P<0.05). Moreover, protein expression of Dicer, an enzyme responsible for mature microRNA processing, was increased in foot muscle during freezing and anoxia and in hepatopancreas during freezing. Alterations in expression of these miRNAs in L. littorea tissues may contribute to organismal survival under freezing and anoxia. PMID:23200140

  11. Identification and Pathway Analysis of microRNAs with No Previous Involvement in Breast Cancer

    PubMed Central

    Rebollar-Vega, Rosa; Quintanar-Jurado, Valeria; Maffuz-Aziz, Antonio; Jimenez-Sanchez, Gerardo; Bautista-Piña, Veronica; Arellano-Llamas, Rocio; Hidalgo-Miranda, Alfredo

    2012-01-01

    microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described. PMID:22438871

  12. Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy

    PubMed Central

    Zhang, Hongliang; Liu, Shenghua; Dong, Tianwei; Yang, Jun; Xie, Yuanyuan; Wu, Yike; Kang, Kang; Hu, Shengshou; Gou, Deming; Wei, Yingjie

    2016-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a kind of primary cardiomyopathy characterized by the fibro-fatty replacement of right ventricular myocardium. Currently, myocardial microRNAs have been reported to play critical role in the pathophysiology of cardiovascular pathophysiology. So far, the profiling of microRNAs in ARVC has not been described. In this study, we applied S-Poly (T) Plus method to investigate the expression profile of microRNAs in 24 ARVC patients heart samples. The tissue levels of 1078 human microRNAs were assessed and were compared with levels in a group of 24 healthy controls. Analysis of the area under the receiver operating characteristic curve (ROC) supported the 21 validated microRNAs to be miRNA signatures of ARVC, eleven microRNAs were significantly increased in ARVC heart tissues and ten microRNAs were significantly decreased. After functional enrichment analysis, miR-21-5p and miR-135b were correlated with Wnt and Hippo pathway, which might involve in the molecular pathophysiology of ARVC. Overall, our data suggested that myocardial microRNAs were involved in the pathophysiology of ARVC, miR-21-5p and miR-135b were significantly associated with both the myocardium adipose and fibrosis, which was a potential disease pathway for ARVC and might to be useful as therapeutic targets for ARVC. PMID:27307080

  13. MicroRNAs Implicated in the Immunopathogenesis of Lupus Nephritis

    PubMed Central

    Chafin, Cristen B.; Reilly, Christopher M.

    2013-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the deposition of immune complexes due to widespread loss of immune tolerance to nuclear self-antigens. Deposition in the renal glomeruli results in the development of lupus nephritis (LN), the leading cause of morbidity and mortality in SLE. In addition to the well-recognized genetic susceptibility to SLE, disease pathogenesis is influenced by epigenetic regulators such as microRNAs (miRNAs). miRNAs are small, noncoding RNAs that bind to the 3′ untranslated region of target mRNAs resulting in posttranscriptional gene modulation. miRNAs play an important and dynamic role in the activation of innate immune cells and are critical in regulating the adaptive immune response. Immune stimulation and the resulting cytokine milieu alter miRNA expression while miRNAs themselves modify cellular responses to stimulation. Here we examine dysregulated miRNAs implicated in LN pathogenesis from human SLE patients and murine lupus models. The effects of LN-associated miRNAs in the kidney, peripheral blood mononuclear cells, macrophages, mesangial cells, dendritic cells, and splenocytes are discussed. As the role of miRNAs in immunopathogenesis becomes delineated, it is likely that specific miRNAs may serve as targets for therapeutic intervention in the treatment of LN and other pathologies. PMID:23983769

  14. MicroRNAs Related to Polycystic Ovary Syndrome (PCOS)

    PubMed Central

    Sørensen, Anja Elaine; Wissing, Marie Louise; Salö, Sofia; Englund, Anne Lis Mikkelsen; Dalgaard, Louise Torp

    2014-01-01

    Polycystic ovary syndrome (PCOS) is the most common, though heterogeneous, endocrine aberration in women of reproductive age, with high prevalence and socioeconomic costs. The syndrome is characterized by polycystic ovaries, chronic anovulation and hyperandrogenism, as well as being associated with infertility, insulin resistance, chronic low-grade inflammation and an increased life time risk of type 2 diabetes. MicroRNAs (miRNAs) are small, non-coding RNAs that are able to regulate gene expression at the post-transcriptional level. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that they might serve as potential biomarkers and a new approach for the diagnosis of PCOS. In this review, recent work on miRNAs with respect to PCOS will be summarized. Our understanding of miRNAs, particularly in relation to PCOS, is currently at a very early stage, and additional studies will yield important insight into the molecular mechanisms behind this complex and heterogenic syndrome. PMID:25158044

  15. Isolation and characterization of RNA polymerase rpoB mutations that alter transcription slippage during elongation in Escherichia coli.

    PubMed

    Zhou, Yan Ning; Lubkowska, Lucyna; Hui, Monica; Court, Carolyn; Chen, Shuo; Court, Donald L; Strathern, Jeffrey; Jin, Ding Jun; Kashlev, Mikhail

    2013-01-25

    Transcription fidelity is critical for maintaining the accurate flow of genetic information. The study of transcription fidelity has been limited because the intrinsic error rate of transcription is obscured by the higher error rate of translation, making identification of phenotypes associated with transcription infidelity challenging. Slippage of elongating RNA polymerase (RNAP) on homopolymeric A/T tracts in DNA represents a special type of transcription error leading to disruption of open reading frames in Escherichia coli mRNA. However, the regions in RNAP involved in elongation slippage and its molecular mechanism are unknown. We constructed an A/T tract that is out of frame relative to a downstream lacZ gene on the chromosome to examine transcriptional slippage during elongation. Further, we developed a genetic system that enabled us for the first time to isolate and characterize E. coli RNAP mutants with altered transcriptional slippage in vivo. We identified several amino acid residues in the β subunit of RNAP that affect slippage in vivo and in vitro. Interestingly, these highly clustered residues are located near the RNA strand of the RNA-DNA hybrid in the elongation complex. Our E. coli study complements an accompanying study of slippage by yeast RNAP II and provides the basis for future studies on the mechanism of transcription fidelity. PMID:23223236

  16. Isolation and Characterization of RNA Polymerase rpoB Mutations That Alter Transcription Slippage during Elongation in Escherichia coli*

    PubMed Central

    Zhou, Yan Ning; Lubkowska, Lucyna; Hui, Monica; Court, Carolyn; Chen, Shuo; Court, Donald L.; Strathern, Jeffrey; Jin, Ding Jun; Kashlev, Mikhail

    2013-01-01

    Transcription fidelity is critical for maintaining the accurate flow of genetic information. The study of transcription fidelity has been limited because the intrinsic error rate of transcription is obscured by the higher error rate of translation, making identification of phenotypes associated with transcription infidelity challenging. Slippage of elongating RNA polymerase (RNAP) on homopolymeric A/T tracts in DNA represents a special type of transcription error leading to disruption of open reading frames in Escherichia coli mRNA. However, the regions in RNAP involved in elongation slippage and its molecular mechanism are unknown. We constructed an A/T tract that is out of frame relative to a downstream lacZ gene on the chromosome to examine transcriptional slippage during elongation. Further, we developed a genetic system that enabled us for the first time to isolate and characterize E. coli RNAP mutants with altered transcriptional slippage in vivo. We identified several amino acid residues in the β subunit of RNAP that affect slippage in vivo and in vitro. Interestingly, these highly clustered residues are located near the RNA strand of the RNA-DNA hybrid in the elongation complex. Our E. coli study complements an accompanying study of slippage by yeast RNAP II and provides the basis for future studies on the mechanism of transcription fidelity. PMID:23223236

  17. Characterization and petrophysical properties of hydrothemally altered lacustrine volcanistic rock in Geyser Valley (Kamchatka) and its transformation by weathering

    NASA Astrophysics Data System (ADS)

    Gvozdeva, Irina; Zerkal, Oleg; Samarin, Evgeny

    2013-04-01

    smectite causes high hygroscopy of deposits. Rocks are highly porous - of 37-65%, primarily low density - 0,9-1,65 g/cm3 wave velocities - from 0.74 km/s for porous to 3.42 km/sec for dense varieties. All samples are characterized by low strength characteristics: uniaxial compressive strength - 1.2 - 21.7 MPa, uniaxial tension - 0,6-4,7 MPa. By water saturation strength decreases rapidly. Soft coefficient ranges from 0.22 to 0.57. Proving to be on the land surface as a result of slope deformation, volcanic-sedimentary hydrothermally altered rocks are destroyed quickly by precipitation and temperature fluctuations Rock turned to sand, silt and clay depending on the original composition. It was found that often weathered to clayey state tuffites inherit structural and textural features of the primary species. The composition also varies: increased content of clay minerals (to 90%), decreasing the content of zeolites (not to exceed 10%). Quartz and plagioclase form sans fraction. Physical and mechanical properties vary widely: the density of the soil increases slightly up to 1,57-1,59 g/cm3 for sands, 1,2-1,79 g/cm3 for clays, porosity of 51-52% and 49-78% respectively, moisture 22-23% and 43-98/ Clays are in a state of semi-solid to fluid. The high content of smectite determines high plastic properties. Plasticity Index varies widely from 11 to 57. Cohesion and the internal friction angle obtained from shear tests also change widely. For clayey sand grip reaches 137 kPa, internal friction angle - 17 degrees. In clay grip ranges from 13 kPa to 120 kPa, and the internal friction angle - from 11 degrees to 31 degrees. Large variation of properties of the investigated soils is explained by the inhomogeneity of volcano-sedimentary formations both vertically and laterally, varying degrees of hydrothermal alteration and of weathering, fracturing and cracks filling The obtained datas can adequately characterize the volcanic-lacustrine sediments in the valley of the Geysernaya river

  18. Skeletal Muscle MicroRNAs: Their Diagnostic and Therapeutic Potential in Human Muscle Diseases

    PubMed Central

    Alexander, Matthew S.; Kunkel, Louis M.

    2016-01-01

    MicroRNAs (miRNAs) are small 21–24 nucleotide RNAs that are capable of regulating multiple signaling pathways across multiple tissues. MicroRNAs are dynamically regulated and change in expression levels during periods of early development, tissue regeneration, cancer, and various other disease states. Recently, microRNAs have been isolated from whole serum and muscle biopsies to identify unique diagnostic signatures for specific neuromuscular disease states. Functional studies of microRNAs in cell lines and animal models of neuromuscular diseases have elucidated their importance in contributing to neuromuscular disease progression and pathologies. The ability of microRNAs to alter the expression of an entire signaling pathway opens up their unique ability to be used as potential therapeutic entry points for the treatment of disease. Here, we will review the recent findings of key microRNAs and their dysregulation in various neuromuscular diseases. Additionally, we will highlight the current strategies being used to regulate the expression of key microRNAs as they have become important players in the clinical treatment of some of the neuromuscular diseases.

  19. MicroRNAs Involved in Tumor Suppressor and Oncogene Pathways; Implications for Hepatobiliary Neoplasia

    PubMed Central

    Mott, Justin L.

    2009-01-01

    MicroRNAs are a class of small regulatory RNAs that function to modulate protein expression. This control allows for fine-tuning of the cellular phenotype, including regulation of proliferation, cell signaling, and apoptosis; not surprisingly, microRNAs contribute to liver cancer biology. Recent investigations in human liver cancers and tumor-derived cell lines have demonstrated decreased or increased expression of particular microRNAs in hepatobiliary cancer cells. Based on predicted and validated protein targets as well as functional consequences of altered expression, microRNAs with decreased expression in liver tumor cells may normally aid in limiting neoplastic transformation. Conversely, selected microRNAs that are upregulated in liver tumor cells can promote malignant features, contributing to carcinogenesis. In addition, microRNAs themselves are subject to regulated expression, including regulation by tumor suppressor and oncogene pathways. This review will focus on the expression and function of cancer-related microRNAs, including their intimate involvement in tumor suppressor and oncogene signaling networks relevant to hepatobiliary neoplasia. PMID:19585622

  20. Role of microRNAs in Alcohol-Induced Multi-Organ Injury

    PubMed Central

    Natarajan, Sathish Kumar; Pachunka, Joseph M.; Mott, Justin L.

    2015-01-01

    Alcohol consumption and its abuse is a major health problem resulting in significant healthcare cost in the United States. Chronic alcoholism results in damage to most of the vital organs in the human body. Among the alcohol-induced injuries, alcoholic liver disease is one of the most prevalent in the United States. Remarkably, ethanol alters expression of a wide variety of microRNAs that can regulate alcohol-induced complications or dysfunctions. In this review, we will discuss the role of microRNAs in alcoholic pancreatitis, alcohol-induced liver damage, intestinal epithelial barrier dysfunction, and brain damage including altered hippocampus structure and function, and neuronal loss, alcoholic cardiomyopathy, and muscle damage. Further, we have reviewed the role of altered microRNAs in the circulation, teratogenic effects of alcohol, and during maternal or paternal alcohol consumption. PMID:26610589

  1. Epigenetic Deregulation of MicroRNAs in Rhabdomyosarcoma and Neuroblastoma and Translational Perspectives

    PubMed Central

    Romania, Paolo; Bertaina, Alice; Bracaglia, Giorgia; Locatelli, Franco; Fruci, Doriana; Rota, Rossella

    2012-01-01

    Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed. PMID:23443118

  2. Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems.

    PubMed

    Su, Mei-Ju; Aldawsari, Hibah; Amiji, Mansoor

    2016-01-01

    Exosomes are nano-sized endosome-derived small intraluminal vesicles, which are important facilitators of intercellular communication by transporting contents, such as protein, mRNA, and microRNAs, between neighboring cells, such as in the tumor microenvironment. The purpose of this study was to understand the mechanisms of exosomes-mediated cellular communication between human pancreatic cancer (Panc-1) cells and macrophages (J771.A1) using a Transwell co-culture system. Following characterization of exosome-mediated cellular communication and pro-tumoral baseline M2 macrophage polarization, the Panc-1 cells were transfected with microRNA-155 (miR-155) and microRNA-125b-2 (miR-125b2) expressing plasmid DNA using hyaluronic acid-poly(ethylene imine)/hyaluronic acid-poly(ethylene glycol) (HA-PEI/HA-PEG) self-assembling nanoparticle-based non-viral vectors. Our results show that upon successful transfection of Panc-1 cells, the exosome content was altered leading to differential communication and reprogramming of the J774.A1 cells to an M1 phenotype. Based on these results, genetic therapies targeted towards selective manipulation of tumor cell-derived exosome content may be very promising for cancer therapy. PMID:27443190

  3. Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems

    PubMed Central

    Su, Mei-Ju; Aldawsari, Hibah; Amiji, Mansoor

    2016-01-01

    Exosomes are nano-sized endosome-derived small intraluminal vesicles, which are important facilitators of intercellular communication by transporting contents, such as protein, mRNA, and microRNAs, between neighboring cells, such as in the tumor microenvironment. The purpose of this study was to understand the mechanisms of exosomes-mediated cellular communication between human pancreatic cancer (Panc-1) cells and macrophages (J771.A1) using a Transwell co-culture system. Following characterization of exosome-mediated cellular communication and pro-tumoral baseline M2 macrophage polarization, the Panc-1 cells were transfected with microRNA-155 (miR-155) and microRNA-125b-2 (miR-125b2) expressing plasmid DNA using hyaluronic acid-poly(ethylene imine)/hyaluronic acid-poly(ethylene glycol) (HA-PEI/HA-PEG) self-assembling nanoparticle-based non-viral vectors. Our results show that upon successful transfection of Panc-1 cells, the exosome content was altered leading to differential communication and reprogramming of the J774.A1 cells to an M1 phenotype. Based on these results, genetic therapies targeted towards selective manipulation of tumor cell-derived exosome content may be very promising for cancer therapy. PMID:27443190

  4. MicroRNA expression profiling using microarrays.

    PubMed

    Love, Cassandra; Dave, Sandeep

    2013-01-01

    MicroRNAs are small noncoding RNAs which are able to regulate gene expression at both the transcriptional and translational levels. There is a growing recognition of the role of microRNAs in nearly every tissue type and cellular process. Thus there is an increasing need for accurate quantitation of microRNA expression in a variety of tissues. Microarrays provide a robust method for the examination of microRNA expression. In this chapter, we describe detailed methods for the use of microarrays to measure microRNA expression and discuss methods for the analysis of microRNA expression data. PMID:23666707

  5. Identification of Reference Genes for Relative Quantification of Circulating MicroRNAs in Bovine Serum

    PubMed Central

    Bae, In-Seon; Chung, Ki Yong; Yi, Jongmin; Kim, Tae Il; Choi, Hwa-Sik; Cho, Young-Moo; Choi, Inho; Kim, Sang Hoon

    2015-01-01

    Circulating microRNAs in body fluids have been implicated as promising biomarkers for physiopathology disorders. Currently, the expression levels of circulating microRNAs are estimated by reverse transcription quantitative real-time polymerase chain reaction. Use of appropriate reference microRNAs for normalization is critical for accurate microRNA expression analysis. However, no study has systematically investigated reference genes for evaluating circulating microRNA expression in cattle. In this study, we describe the identification and characterization of appropriate reference microRNAs for use in the normalization of circulating microRNA levels in bovine serum. We evaluated the expression stability of ten candidate reference genes in bovine serum by using reverse transcription quantitative real-time polymerase chain reaction. Data were analyzed using geNorm, NormFinder, and BestKeeper statistical algorithms. The results consistently showed that a combination of miR-93 and miR-127 provided the most stably expressed reference. The suitability of these microRNAs was validated, and even when compared among different genders or breeds, the combination of miR-93 and miR-127 was ranked as the most stable microRNA reference. Therefore, we conclude that this combination is the optimal endogenous reference for reverse transcription quantitative real-time polymerase chain reaction-based detection of microRNAs in bovine serum. The data presented in this study are crucial to successful biomarker discovery and validation for the diagnosis of physiopathological conditions in cattle. PMID:25826387

  6. microRNAs and Personalized Medicine: Evaluating Their Potential as Cancer Biomarkers.

    PubMed

    Saumet, Anne; Lecellier, Charles-Henri

    2015-01-01

    microRNA deregulations are often, if not invariably, associated with human malignancies, including cancers. Though most of these deregulations may not be functionally implicated in tumorigenesis, the fact that microRNA expression can be monitored in a variety of human specimens, including biological fluids, supports studies aimed at characterizing microRNA signatures able to detect various cancers (diagnosis), predict their outcome (prognosis), monitor their treatment (theranosis), and adapt therapy to a patient (precision medicine). Here, we review and discuss pros and cons of microRNA-based approaches that can support their exploitation as cancer biomarkers. PMID:26663176

  7. Gene Expression Changes in the Septum: Possible Implications for MicroRNAs in Sculpting the Maternal Brain

    PubMed Central

    Zhao, Changjiu; Saul, Michael C.; Driessen, Terri; Gammie, Stephen C.

    2012-01-01

    The transition from the non-maternal to the maternal state is characterized by a variety of CNS alterations that support the care of offspring. The septum (including lateral and medial portions) is a brain region previously linked to various emotional and motivational processes, including maternal care. In this study, we used microarrays (PLIER algorithm) to examine gene expression changes in the septum of postpartum mice and employed gene set enrichment analysis (GSEA) to identify possible regulators of altered gene expression. Genes of interest identified as differentially regulated with microarray analysis were validated with quantitative real-time PCR. We found that fatty acid binding protein 7 (Fabp7) and galanin (Gal) were downregulated, whereas insulin-like growth factor binding protein 3 (Igfbp3) was upregulated in postpartum mice compared to virgin females. These genes were previously found to be differentially regulated in other brain regions during lactation. We also identified altered expression of novel genes not previously linked to maternal behavior, but that could play a role in postpartum processes, including glutamate-ammonia ligase (Glul) and somatostatin receptor 1 (Sstr1) (both upregulated in postpartum). Genes implicated in metabolism, cell differentiation, or proliferation also exhibited altered expression. Unexpectedly, enrichment analysis revealed a high number of microRNAs, transcription factors, or conserved binding sites (177 with corrected P-value <0.05) that were significantly linked to maternal upregulated genes, while none were linked to downregulated genes. MicroRNAs have been linked to placenta and mammary gland development, but this is the first indication they may also play a key role in sculpting the maternal brain. Together, this study provides new insights into genes (along with possible mechanisms for their regulation) that are involved in septum-mediated adaptations during the postpartum period. PMID:22701680

  8. Functional Implications of Human-Specific Changes in Great Ape microRNAs

    PubMed Central

    García-Ramallo, Eva; Torruella-Loran, Ignasi; Fernández-Bellon, Hugo; Abelló, Teresa; Kondova, Ivanela; Bontrop, Ronald; Hvilsom, Christina; Navarro, Arcadi; Marquès-Bonet, Tomàs; Espinosa-Parrilla, Yolanda

    2016-01-01

    microRNAs are crucial post-transcriptional regulators of gene expression involved in a wide range of biological processes. Although microRNAs are highly conserved among species, the functional implications of existing lineage-specific changes and their role in determining differences between humans and other great apes have not been specifically addressed. We analyzed the recent evolutionary history of 1,595 human microRNAs by looking at their intra- and inter-species variation in great apes using high-coverage sequenced genomes of 82 individuals including gorillas, orangutans, bonobos, chimpanzees and humans. We explored the strength of purifying selection among microRNA regions and found that the seed and mature regions are under similar and stronger constraint than the precursor region. We further constructed a comprehensive catalogue of microRNA species-specific nucleotide substitutions among great apes and, for the first time, investigated the biological relevance that human-specific changes in microRNAs may have had in great ape evolution. Expression and functional analyses of four microRNAs (miR-299-3p, miR-503-3p, miR-508-3p and miR-541-3p) revealed that lineage-specific nucleotide substitutions and changes in the length of these microRNAs alter their expression as well as the repertoires of target genes and regulatory networks. We suggest that the studied molecular changes could have modified crucial microRNA functions shaping phenotypes that, ultimately, became human-specific. Our work provides a frame to study the impact that regulatory changes may have in the recent evolution of our species. PMID:27105073

  9. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells

    PubMed Central

    Izar, Benjamin; Mannala, Gopala Krishna; Mraheil, Mobarak Abu; Chakraborty, Trinad; Hain, Torsten

    2012-01-01

    microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We investigated whether infection with a Gram-positive bacterium leads to altered expression of microRNAs involved in the host cell response in epithelial cells. Caco-2 cells were infected with Listeria monocytogenes EGD-e, a mutant strain (ΔinlAB or Δhly) or incubated with purified listeriolysin (LLO). Total RNA was isolated and microRNA and target gene expression was compared to the expression in non-infected cells using microRNA microarrays and qRT-PCR. We identified and validated five microRNAs (miR- 146b, miR-16, let-7a1, miR-145 and miR-155) that were significantly deregulated following listerial infection. We show that expression patterns of particular microRNAs strongly depend on pathogen localization and the presence of bacterial effector proteins. Strikingly, miR-155 which was shown to have an important role in inflammatory responses during infection was induced by wild-type bacteria, by LLO-deficient bacteria and following incubation with purified LLO. It was downregulated following ΔinlAB infection indicating a new potent role for internalins in listerial pathogenicity and miRNA regulation. Concurrently, we observed differences in target transcript expression of the investigated miRNAs. We provide first evidence that L. monocytogenes infection leads to deregulation of a set of microRNAs with important roles in host response. Distinct microRNA expression depends on both LLO and pathogen localization. PMID:22312311

  10. Functional Implications of Human-Specific Changes in Great Ape microRNAs.

    PubMed

    Gallego, Alicia; Melé, Marta; Balcells, Ingrid; García-Ramallo, Eva; Torruella-Loran, Ignasi; Fernández-Bellon, Hugo; Abelló, Teresa; Kondova, Ivanela; Bontrop, Ronald; Hvilsom, Christina; Navarro, Arcadi; Marquès-Bonet, Tomàs; Espinosa-Parrilla, Yolanda

    2016-01-01

    microRNAs are crucial post-transcriptional regulators of gene expression involved in a wide range of biological processes. Although microRNAs are highly conserved among species, the functional implications of existing lineage-specific changes and their role in determining differences between humans and other great apes have not been specifically addressed. We analyzed the recent evolutionary history of 1,595 human microRNAs by looking at their intra- and inter-species variation in great apes using high-coverage sequenced genomes of 82 individuals including gorillas, orangutans, bonobos, chimpanzees and humans. We explored the strength of purifying selection among microRNA regions and found that the seed and mature regions are under similar and stronger constraint than the precursor region. We further constructed a comprehensive catalogue of microRNA species-specific nucleotide substitutions among great apes and, for the first time, investigated the biological relevance that human-specific changes in microRNAs may have had in great ape evolution. Expression and functional analyses of four microRNAs (miR-299-3p, miR-503-3p, miR-508-3p and miR-541-3p) revealed that lineage-specific nucleotide substitutions and changes in the length of these microRNAs alter their expression as well as the repertoires of target genes and regulatory networks. We suggest that the studied molecular changes could have modified crucial microRNA functions shaping phenotypes that, ultimately, became human-specific. Our work provides a frame to study the impact that regulatory changes may have in the recent evolution of our species. PMID:27105073

  11. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome

    PubMed Central

    de la Morena, M. Teresa; Eitson, Jennifer L.; Dozmorov, Igor M.; Belkaya, Serkan; Hoover, Ashley R.; Anguiano, Esperanza; Pascual, M. Virginia; van Oers, Nicolai S.C.

    2013-01-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3 Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance. PMID:23454892

  12. New wheat microRNA using whole-genome sequence.

    PubMed

    Kurtoglu, Kuaybe Yucebilgili; Kantar, Melda; Budak, Hikmet

    2014-06-01

    MicroRNAs are post-transcriptional regulators of gene expression, taking roles in a variety of fundamental biological processes. Hence, their identification, annotation and characterization are of great significance, especially in bread wheat, one of the main food sources for humans. The recent availability of 5× coverage Triticum aestivum L. whole-genome sequence provided us with the opportunity to perform a systematic prediction of a complete catalogue of wheat microRNAs. Using an in silico homology-based approach, stem-loop coding regions were derived from two assemblies, constructed from wheat 454 reads. To avoid the presence of pseudo-microRNAs in the final data set, transposable element related stem-loops were eliminated by repeat analysis. Overall, 52 putative wheat microRNAs were predicted, including seven, which have not been previously published. Moreover, with distinct analysis of the two different assemblies, both variety and representation of putative microRNA-coding stem-loops were found to be predominant in the intergenic regions. By searching available expressed sequences and small RNA library databases, expression evidence for 39 (out of 52) putative wheat microRNAs was provided. Expression of three of the predicted microRNAs (miR166, miR396 and miR528) was also comparatively quantified with real-time quantitative reverse transcription PCR. This is the first report on in silico prediction of a whole repertoire of bread wheat microRNAs, supported by the wet-lab validation. PMID:24395439

  13. Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting MAP3K8.

    PubMed

    Huang, Xin; Liu, Chang; Hao, Cuifang; Tang, Qianqing; Liu, Riming; Lin, Shaoxia; Zhang, Luping; Yan, Wei

    2016-06-01

    Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women and is characterised by polycystic ovaries, hyperandrogenism and chronic anovulation. Although the clinical and biochemical signs of PCOS are typically heterogeneous, abnormal folliculogenesis is considered a common characteristic of PCOS. Our aim is to identify the altered miRNA and mRNA expression profiles in the cumulus cells of PCOS patients to investigate their molecular function in the aetiology and pathophysiology of PCOS. In this study, the miRNA expression profiles of the cumulus cell samples isolated from five PCOS and five control patients were determined by an miRNA microarray. At the same time, the altered mRNA profiles of the same cumulus cell samples were also identified by a cDNA microarray. From the microarray data, 17 miRNAs and 1263 mRNAs showed significantly different expression in the PCOS cumulus cells. The differentially expressed miRNA-509-3p and its potential target gene (MAP3K8) were identified from the miRNA and mRNA microarrays respectively. The expression of miRNA-509-3p was up-regulated and MAP3K8 was down-regulated in the PCOS cumulus cells. The direct interaction between miRNA-509-3p and MAP3K8 was confirmed by a luciferase activity assay in KGN cells. In addition, miRNA-509-3p mimics or inhibitor transfection tests in KGN cells further confirmed that miRNA-509-3p improved oestradiol (E2) secretion by inhibiting the expression of MAP3K8 These results help to characterise the pathogenesis of anovulation in PCOS, especially the regulation of E2 production. PMID:27001999

  14. MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells.

    PubMed

    Cardinali, B; Cappella, M; Provenzano, C; Garcia-Manteiga, J M; Lazarevic, D; Cittaro, D; Martelli, F; Falcone, G

    2016-01-01

    A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protein. PMID:26844700

  15. MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells

    PubMed Central

    Cardinali, B; Cappella, M; Provenzano, C; Garcia-Manteiga, J M; Lazarevic, D; Cittaro, D; Martelli, F; Falcone, G

    2016-01-01

    A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protein. PMID:26844700

  16. MicroRNA processing without Dicer

    PubMed Central

    2010-01-01

    The canonical processing of precursor microRNAs requires the endonuclease Dicer. A recent study shows that microRNAs can be processed independently of Dicer but instead require Argonaute 2. PMID:20565849

  17. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA).

    PubMed

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA. PMID:26258776

  18. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA)

    PubMed Central

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA. PMID:26258776

  19. Aqueous Alteration Rinds in Basalt: Mineralogic Characterization from Hand Sample to Outcrop with Hyperspectral Imaging and Implications for Mars 2020

    NASA Astrophysics Data System (ADS)

    Greenberger, R. N.; Mustard, J. F.; Cloutis, E. A.; Mann, P.; Wilson, J. H.

    2014-07-01

    Hydrothermally altered lacustrine pillow basalts show strong gradients in mineralogy, chemistry, and redox state from interior to exterior at thick section, hand sample, and outcrop scales identified with hyperspectral imaging and elemental mapping.

  20. Cellular microRNAs and Picornaviral Infections

    PubMed Central

    Wang, Miao; Gao, Zeqian; Pan, Li; Zhang, Yongguang

    2014-01-01

    microRNAs (miRNAs) are a subtype of short, endogenous, and non-coding RNAs, which post-transcriptionally regulate gene expression. The miRNA-mediated gene silencing mechanism is involved in a wide spectrum of biological processes, such as cellular proliferation, differentiation, and immune responses. Picornaviridae is a large family of RNA viruses, which includes a number of causative agents of many human and animal diseases viz., poliovirus, foot-and-mouth disease virus (FMDV), and coxsackievirus B3 (CVB3). Accumulated evidences have demonstrated that replication of picornaviruses can be regulated by miRNAs and picornaviral infections can alter the expression of cellular miRNAs. Herein, we outline the intricate interactions between miRNAs and picornaviral infections. PMID:24921242

  1. Altered characteristics of silica nanoparticles in bovine and human serum: the importance of nanomaterial characterization prior to its toxicological evaluation

    PubMed Central

    2013-01-01

    Background Many toxicological studies on silica nanoparticles (NPs) have been reported, however, the literature often shows various conclusions concerning the same material. This is mainly due to a lack of sufficient NPs characterization as synthesized as well as in operando. Many characteristics of NPs may be affected by the chemistry of their surroundings and the presence of inorganic and biological moieties. Consequently, understanding the behavior of NPs at the time of toxicological assay may play a crucial role in the interpretation of its results. The present study examines changes in properties of differently functionalized fluorescent 50 nm silica NPs in a variety of environments and assesses their ability to absorb proteins from cell culture medium containing either bovine or human serum. Methods The colloidal stability depending on surface functionalization of NPs, their concentration and time of exposure was investigated in water, standard biological buffers, and cell culture media by dynamic light scattering (DLS), zeta potential measurements and transmission electron microscopy (TEM). Interactions of the particles with biological media were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in bovine and human serum, and extracted proteins were assessed using matrix-assisted laser desorption/ionization-time of flight technique (MALDI-TOF). Results It was recognized that all of the studied silica NPs tended to agglomerate after relatively short time in buffers and biological media. The agglomeration depended not only on the NPs functionalization but also on their concentration and the incubation time. Agglomeration was much diminished in a medium containing serum. The protein corona formation depended on time and functionalization of NP, and varied significantly in different types of serum. Conclusions Surface charge, ionic strength and biological molecules alter the properties of silica NPs and potentially affect

  2. The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns

    PubMed Central

    Hadj-Moussa, Hanane; Moggridge, Jason A.; Luu, Bryan E.; Quintero-Galvis, Julian F.; Gaitán-Espitia, Juan Diego; Nespolo, Roberto F.; Storey, Kenneth B.

    2016-01-01

    When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy. PMID:27090740

  3. MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma

    PubMed Central

    Roccaro, Aldo M.; Sacco, Antonio; Thompson, Brian; Leleu, Xavier; Azab, Abdel Kareem; Azab, Feda; Runnels, Judith; Jia, Xiaoying; Ngo, Hai T.; Melhem, Molly R.; Lin, Charles P.; Ribatti, Domenico; Rollins, Barrett J.; Witzig, Thomas E.; Anderson, Kenneth C.

    2009-01-01

    Detailed genomic studies have shown that cytogenetic abnormalities contribute to multiple myeloma (MM) pathogenesis and disease progression. Nevertheless, little is known about the characteristics of MM at the epigenetic level and specifically how microRNAs regulate MM progression in the context of the bone marrow milieu. Therefore, we performed microRNA expression profiling of bone marrow derived CD138+ MM cells versus their normal cellular counterparts and validated data by qRT-PCR. We identified a MM-specific microRNA signature characterized by down-expression of microRNA-15a/-16 and overexpression of microRNA-222/-221/-382/-181a/-181b (P < .01). We investigated the functional role of microRNA-15a and -16 and showed that they regulate proliferation and growth of MM cells in vitro and in vivo by inhibiting AKT serine/threonine-protein-kinase (AKT3), ribosomal-protein-S6, MAP-kinases, and NF-κB-activator MAP3KIP3. Moreover, miRNA-15a and -16 exerted their anti-MM activity even in the context of the bone marrow milieu in vitro and in vivo. These data indicate that microRNAs play a pivotal role in the biology of MM and represent important targets for novel therapies in MM. PMID:19401561

  4. The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns.

    PubMed

    Hadj-Moussa, Hanane; Moggridge, Jason A; Luu, Bryan E; Quintero-Galvis, Julian F; Gaitán-Espitia, Juan Diego; Nespolo, Roberto F; Storey, Kenneth B

    2016-01-01

    When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy. PMID:27090740

  5. MicroRNAs in Abdominal Aortic Aneurysm.

    PubMed

    Adam, Matti; Raaz, Uwe; Spin, Joshua M; Tsao, Philip S

    2015-01-01

    Abdominal aortic aneurysms (AAA) are an important source of morbidity and mortality in the U.S. and worldwide. Treatment options are limited, with open surgery or endovascular repair remaining the only curative treatments. Classical cardiovascular medications have generally failed to prevent or significantly alter AAA formation or progression. Therefore, there is a tremendous need for better therapeutic approaches. With increasing knowledge of microRNA (miR) regulation in the context of cardiovascular disease, and with improving technical options permitting alteration of miRexpression levels in vitro and in vivo, we are offered a glimpse into the diagnostic and therapeutic possibilities of using miRs to treat vascular pathobiology. This review focuses on the role of miRs in aneurysmal disease of the abdominal aorta, summarizing recent publications regarding this topic, and outlining known effects of relevant miRs in AAA formation, including miR-21 and miR-29b. Despite there being only limited studies available, several other miRs also display clear potential for alteration of the disease process including miR-26a, the miR-17-92-cluster, miRs-221/222, miR-133 and miR-146a. While studies have shown that miRs can regulate the activity and interplay of vascular inflammatory cells, endothelial cells, smooth muscle cells and fibroblasts, all key elements leading to AAA formation, much work remains to be done. PMID:23713862

  6. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells.

    PubMed

    Su, Ming-Wei; Yu, Sung-Liang; Lin, Wen-Chang; Tsai, Ching-Hui; Chen, Po-Hua; Lee, Yungling Leo

    2016-08-15

    Teenager smoking is of great importance in public health. Functional roles of microRNAs have been documented in smoke-induced gene expression changes, but comprehensive mechanisms of microRNA-mRNA regulation and benefits remained poorly understood. We conducted the Teenager Smoking Reduction Trial (TSRT) to investigate the causal association between active smoking reduction and whole-genome microRNA and mRNA expression changes in human peripheral blood mononuclear cells (PBMC). A total of 12 teenagers with a substantial reduction in smoke quantity and a decrease in urine cotinine/creatinine ratio were enrolled in genomic analyses. In Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA), differentially expressed genes altered by smoke reduction were mainly associated with glucocorticoid receptor signaling pathway. The integrative analysis of microRNA and mRNA found eleven differentially expressed microRNAs negatively correlated with predicted target genes. CD83 molecule regulated by miR-4498 in human PBMC, was critical for the canonical pathway of communication between innate and adaptive immune cells. Our data demonstrated that microRNAs could regulate immune responses in human PBMC after habitual smokers quit smoking and support the potential translational value of microRNAs in regulating disease-relevant gene expression caused by tobacco smoke. PMID:27321975

  7. Circulating microRNAs as potential biomarkers for diagnosis of congenital heart defects

    PubMed Central

    Xie, Wan-qin; Zhou, Lin; Chen, Yong; Ni, Bin

    2016-01-01

    BACKGROUND: MicroRNAs are small non-coding RNAs of approximately 22 nucleotides in length, and play important regulatory roles in normal heart development and the pathogenesis of heart diseases. Recently, a few prospective studies have implicated the diagnostic role of microRNAs in congenital heart defects (CHD). DATA RESOURCES: This review retrieved the research articles in PubMed focusing on the altered microRNAs in cardiac tissue or serum of patients with CHD versus healthy normal controls, as well as the studies exploring circulating microRNAs as potential biomarkers for (fetal) CHD. RESULTS: Most of the studies of interest were conducted in recent years, implicating that the topic in this review is a newly emerging field and is drawing much attention. Moreover, a number of differentially expressed microRNAs between CHD specimens and normal controls have been reported. CONCLUSION: Circulating microRNAs may serve as potential biomarkers for diagnosis of CHD in the future, with more efforts paving the road to the aim. PMID:27313801

  8. TWIST1-induced microRNA-424 reversibly drives mesenchymal programming while inhibiting tumor initiation

    PubMed Central

    Drasin, David J.; Guarnieri, Anna L.; Neelakantan, Deepika; Kim, Jihye; Cabrera, Joshua H.; Wang, Chu-An; Zaberezhnyy, Vadym; Gasparini, Pierluigi; Cascione, Luciano; Huebner, Kay; Tan, Aik-Choon; Ford, Heide L.

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) is a dynamic process that relies on cellular plasticity. Recently, the process of an oncogenic EMT, followed by a reverse mesenchymal-to-epithelial transition (MET), has been implicated as critical in the metastatic colonization of carcinomas. Unlike governance of epithelial programming, regulation of mesenchymal programming is not well understood in EMT. Here, we describe and characterize the first microRNA that enhances exclusively mesenchymal programming. We demonstrate that microRNA-424 is upregulated early during a TWIST1 or SNAI1-induced EMT, and that it causes cells to express mesenchymal genes without affecting epithelial genes, resulting in a mixed/intermediate EMT. Furthermore, microRNA-424 increases motility, decreases adhesion and induces a growth arrest, changes associated with a complete EMT, that can be reversed when microRNA-424 expression is lowered, concomitant with an MET-like process. Breast cancer patient microRNA-424 levels positively associate with TWIST1/2 and EMT-like gene signatures, and miR-424 is increased in primary tumors versus matched normal breast. However, microRNA-424 is downregulated in patient metastases versus matched primary tumors. Correspondingly, microRNA-424 decreases tumor initiation and is post-transcriptionally downregulated in macrometastases in mice, suggesting the need for biphasic expression of miR-424 to transit the EMT-MET axis. Next-generation RNA sequencing revealed microRNA-424 regulates numerous EMT and cancer stemness-associated genes, including TGFBR3, whose downregulation promotes mesenchymal phenotypes, but not tumor-initiating phenotypes. Instead, we demonstrate that increased MAPK/ERK signaling is critical for miR-424-mediated decreases in tumor-initiating phenotypes. These findings suggest microRNA-424 plays distinct roles in tumor progression, potentially facilitating earlier, but repressing later, stages of metastasis by regulating an EMT-MET axis. PMID

  9. Mineralogical characterization of pristine, bio-eroded and fossil bivalve shell material for the evaluation of a species-specific alteration potential

    NASA Astrophysics Data System (ADS)

    Hippler, Dorothee; Goetschl, Katja Elisabeth; Gerstmann, Brigitte Simone; Rafael Garcia-March, Jose; Dietzel, Martin

    2015-04-01

    Biogenic carbonates of marine calcifiers can provide a wealth of information for the reconstruction of modern and palaeo-environments. However, their composite carbonate shells are often prone to different alteration processes that might occur during their lifetime, post-mortem or during early diagenesis. In order to use these calcifiers as palaeo-archives or proxy carriers, it is thus of crucial importance to assess their alteration potential. Here, we present the mineral phase composition of four different Mediterranean bivalve species (Spondylus, Lithophaga, Arca, Glycymeris) using spatially selected, powder XRD analysis, as well as in-situ high-resolution Raman spectroscopy. The sample set thereby comprises pristine-modern, bioeroded-modern, Holocene and Pleistocene specimens of the same bivalve species in order to characterize and evaluate the species-specific susceptibility to bioerosion and diagenetic alteration. We reveal species-specific shell compositions that are validated by both analytical methods. Differences in shell mineralogy occur between the outermost (periostracum), the outer (ostracum) and inner (hypostracum) layer, with the outer layer mainly composed of calcite and the inner layers of aragonite with variable portions of calcite. Considerable species-specific changes in mineralogy of the respective shell layers with increasing geological age are not found. Our results indicate that the original shell mineralogy (calcite, aragonite and carbonate fluorapatite) as well as the composition, structure and thickness of the respective shell layers are important factors favouring or preventing alteration to occur. Moreover, our findings highlight the effect of bioerosion during the alteration process. The analysis of distinct areas of the shells hinting at microbial activity reveals slight changes in shell mineralogy. We thus postulate that processes related to shell taphonomy are crucial for the shell's alteration/preservational potential and thus

  10. MicroRNAs and Epithelial Immunity

    PubMed Central

    Liu, Jun; Drescher, Kristen M.; Chen, Xian-Ming

    2009-01-01

    MicroRNAs are required for development and maintenance of the epithelial barrier. It is hypothesized that microRNAs are involved in regulating epithelial anti-microbial defenses by targeting key epithelial effector molecules and/or influencing intracellular signaling pathways. Additionally, aberrant microRNA expression has been implicated in the pathogenesis of various diseases at the skin and mucosa. Increased understanding of the role of microRNAs in epithelial immunoregulation and identification of microRNAs of pathogenetic significance will enhance our understanding of epithelial immunobiology and immunopathology. PMID:19811319

  11. Large-scale profiling of microRNAs for The Cancer Genome Atlas

    PubMed Central

    Chu, Andy; Robertson, Gordon; Brooks, Denise; Mungall, Andrew J.; Birol, Inanc; Coope, Robin; Ma, Yussanne; Jones, Steven; Marra, Marco A.

    2016-01-01

    The comprehensive multiplatform genomics data generated by The Cancer Genome Atlas (TCGA) Research Network is an enabling resource for cancer research. It includes an unprecedented amount of microRNA sequence data: ∼11 000 libraries across 33 cancer types. Combined with initiatives like the National Cancer Institute Genomics Cloud Pilots, such data resources will make intensive analysis of large-scale cancer genomics data widely accessible. To support such initiatives, and to enable comparison of TCGA microRNA data to data from other projects, we describe the process that we developed and used to generate the microRNA sequence data, from library construction through to submission of data to repositories. In the context of this process, we describe the computational pipeline that we used to characterize microRNA expression across large patient cohorts. PMID:26271990

  12. Large-scale profiling of microRNAs for The Cancer Genome Atlas.

    PubMed

    Chu, Andy; Robertson, Gordon; Brooks, Denise; Mungall, Andrew J; Birol, Inanc; Coope, Robin; Ma, Yussanne; Jones, Steven; Marra, Marco A

    2016-01-01

    The comprehensive multiplatform genomics data generated by The Cancer Genome Atlas (TCGA) Research Network is an enabling resource for cancer research. It includes an unprecedented amount of microRNA sequence data: ~11 000 libraries across 33 cancer types. Combined with initiatives like the National Cancer Institute Genomics Cloud Pilots, such data resources will make intensive analysis of large-scale cancer genomics data widely accessible. To support such initiatives, and to enable comparison of TCGA microRNA data to data from other projects, we describe the process that we developed and used to generate the microRNA sequence data, from library construction through to submission of data to repositories. In the context of this process, we describe the computational pipeline that we used to characterize microRNA expression across large patient cohorts. PMID:26271990

  13. MicroRNA Expression In Lymphohematopoietic Malignancies And Following Formaldehyde Exposure [Poster 2015

    EPA Science Inventory

    Altered microRNA (miRNA) expression is an emerging area that promises future identification of epigenetic biomarkers of disease and exposure to environmental agents. In addition to other carcinogenic mechanisms, such as genotoxicity, miRNAs have been shown to play an important r...

  14. MicroRNA Expression In Lymphohematopoietic Malignancies And Following Formaldehyde Exposure

    EPA Science Inventory

    Altered microRNA (miRNA) expression is an emerging area promising future identification of epigenetic biomarkers of disease and exposure to environmental agents. In addition to other carcinogenic mechanisms, such as genotoxicity, miRNAs have been shown to play an important role ...

  15. A cytometry microparticle platform approach for screening tobacco microRNA changes after agrobacterium delivery.

    PubMed

    Powell, Joshua D; Chen, Qiang; Mason, Hugh S

    2016-08-01

    MicroRNAs are a class of non-coding regulatory RNAs that can modulate development as well as alter innate antiviral defenses in plants. In this study we explored changes in Nicotiana benthamiana tobacco microRNA expression as it relates to expression of a recombinant anti-Ebola GP1 antibody. The antibody was delivered to tobacco leaves through a bacterial Agrobacterium tumefaciens "agroinfiltration" expression strategy. A multiplex microparticle-based cytometry assay tracked the expression changes of 53 host tobacco microRNAs. Our results revealed that the most abundant microRNAs in actively growing leaves corresponded to nanoparticle probes specific to nta-mir-6149 and nta-miR-168b. After agroinfiltration, probes specific for nta-mir-398, and nta-mir-482d were significantly altered in their respective expression levels, however changes were partially attributed to the infiltration broth medium used in the antibody delivery process. Confirmation of nta-mir-398 and nta-mir-482d expression changes was also verified through RT-qPCR. To our knowledge this study is the first to profile medium and Agrobacterium injection at the microRNA level through a multiplex microparticle approach. PMID:27343681

  16. Gastric adenocarcinoma microRNA profiles in fixed tissue and in plasma reveal cancer-associated and Epstein-Barr virus-related expression patterns.

    PubMed

    Treece, Amanda L; Duncan, Daniel L; Tang, Weihua; Elmore, Sandra; Morgan, Douglas R; Dominguez, Ricardo L; Speck, Olga; Meyers, Michael O; Gulley, Margaret L

    2016-06-01

    MicroRNA expression in formalin-fixed paraffin-embedded tissue (FFPE) or plasma may add value for cancer management. The GastroGenus miR Panel was developed to measure 55 cancer-specific human microRNAs, Epstein-Barr virus (EBV)-encoded microRNAs, and controls. This Q-rtPCR panel was applied to 100 FFPEs enriched for adenocarcinoma or adjacent non-malignant mucosa, and to plasma of 31 patients. In FFPE, microRNAs upregulated in malignant versus adjacent benign gastric mucosa were hsa-miR-21, -155, -196a, -196b, -185, and -let-7i. Hsa-miR-18a, 34a, 187, -200a, -423-3p, -484, and -744 were downregulated. Plasma of cancer versus non-cancer controls had upregulated hsa-miR-23a, -103, and -221 and downregulated hsa-miR-378, -346, -486-5p, -200b, -196a, -141, and -484. EBV-infected versus uninfected cancers expressed multiple EBV-encoded microRNAs, and concomitant dysregulation of four human microRNAs suggests that viral infection may alter cellular biochemical pathways. Human microRNAs were dysregulated between malignant and benign gastric mucosa and between plasma of cancer patients and non-cancer controls. Strong association of EBV microRNA expression with known EBV status underscores the ability of microRNA technology to reflect disease biology. Expression of viral microRNAs in concert with unique human microRNAs provides novel insights into viral oncogenesis and reinforces the potential for microRNA profiles to aid in classifying gastric cancer subtypes. Pilot studies of plasma suggest the potential for a noninvasive addition to cancer diagnostics. PMID:26950485

  17. Emerging roles of chicken and viral microRNAs in avian disease

    PubMed Central

    2011-01-01

    Abstract Background MicroRNAs are short RNAs (~22 nt) expressed by plants, animals and viruses that regulate gene expression post-transcriptionally, and their importance is highlighted by distinct patterns of expression in many physiological processes, including development, hematopoeisis, stress resistance, and disease. Our group has characterized the microRNAs encoded by the avian herpesviruses; namely, oncogenic Marek’s disease (MD) virus (MDV1), non-oncogenic MDV (MDV2) herpesvirus of turkeys (HVT), and infectious laryngotracheitis virus (ILTV). Methods MicroRNAs encoded by the avian herpesviruses were identified using next generation sequencing technologies (454, Illumina). Results The microRNAs of each the avian herpesviruses have unique sequences, but the genomic locations are similar, in that the microRNAs tend to be clustered in the rapidly evolving repeat regions of the viral genomes. For a given viral species the microRNA sequence is highly conserved in different strains with the exception of a virulence-associated polymorphism in the putative promoter of the MDV1 microRNAs upstream of the meq oncogene. These microRNAs are relatively highly expressed in tumors produced by very virulent MDV1 isolates compared to tumors produced by less virulent strains. MDV1 and HVT encode homologs of the host microRNA, miR-221, which targets a gene important in cell cycle regulation. MDV1 encodes a microRNA (mdv1-miR-M4) that shares a seed sequence with miR-155, a microRNA important in immune function. Mdv-miR-M4 is highly expressed in MDV induced tumors, while miR-155 is present at very low levels. Conclusions MicroRNAs are highly conserved among different field strains of MDV1, and they are expressed in lytic and latent infections and in MDV1-derived tumors. This suggests that these small molecules are very important to the virus, and roles in immune evasion, anti-apoptosis, or proliferation are likely. PMID:21645299

  18. microRNAs in Cancer Cell Response to Ionizing Radiation

    PubMed Central

    Czochor, Jennifer R.

    2014-01-01

    Abstract Significance: microRNAs (miRNA) have been characterized as master regulators of the genome. As such, miRNAs are responsible for regulating almost every cellular pathway, including the DNA damage response (DDR) after ionizing radiation (IR). IR is a therapeutic tool that is used for the treatment of several types of cancer, yet the mechanism behind radiation response is not fully understood. Recent Advances: It has been demonstrated that IR can alter miRNA expression profiles, varying greatly from one cell type to the next. It is possible that this variation contributes to the range of tumor cell responsiveness that is observed after radiotherapy, especially considering the extensive role for miRNAs in regulating the DDR. In addition, individual miRNAs or miRNA families have been shown to play a multifaceted role in the DDR, regulating multiple members in a single pathway. Critical Issues: In this review, we will discuss the effects of radiation on miRNA expression as well as explore the function of miRNAs in regulating the cellular response to radiation-induced damage. We will discuss the importance of miRNA regulation at each stage of the DDR, including signal transduction, DNA damage sensing, cell cycle checkpoint activation, DNA double-strand break repair, and apoptosis. We will focus on emphasizing the importance of a single miRNA targeting several mediators within a pathway. Future Directions: miRNAs will continue to emerge as critical regulators of the DDR. Understanding the role of miRNAs in the response to IR will provide insights for improving the current standard therapy. Antioxid. Redox Signal. 21, 293–312. PMID:24206455

  19. MicroRNA polymorphisms and risk of colorectal cancer

    PubMed Central

    Schmit, Stephanie L.; Gollub, Jeremy; Shapero, Michael H.; Huang, Shu-Chen; Rennert, Hedy S.; Finn, Andrea; Rennert, Gad; Gruber, Stephen B.

    2016-01-01

    Background MicroRNAs (miRNAs) act as post-transcriptional regulators of gene expression. Genetic variation in miRNA-encoding sequences or their corresponding binding sites may affect the fidelity of the miRNA-messenger RNA interaction and subsequently alter risk of cancer development. Methods This study expanded the search for miRNA-related polymorphisms contributing to the etiology of colorectal cancer (CRC) across the genome using a novel platform, the Axiom® miRNA Target Site Genotyping Array (237,858 markers). After quality control, the study included 596 cases and 429 controls from the Molecular Epidemiology of Colorectal Cancer study, a population-based case-control study of CRC in northern Israel. The association between each marker and CRC status was examined assuming a log-additive genetic model using logistic regression adjusted for sex, age, and two principal components. Results Twenty-three markers had p-values less than 5.0E-04, and the most statistically significant association involved rs2985 (chr6:34845648; intronic of UHRF1BP1; OR=0.66; p-value=3.7E-05). Further, this study replicated a previously published locus, rs1051690 in the 3’-untranslated region of the insulin receptor gene INSR (OR = 1.38; p = 0.03), with strong evidence of differences in INSR gene expression by genotype. Conclusions This study is the first to examine associations between genetic variation in miRNA target sites and CRC using a genome-wide approach. Functional studies to identify allele-specific effects on miRNA binding are needed to confirm the regulatory capacity of genetic variation to influence risk of CRC. Impact This study demonstrates the potential for a miRNA-targeted genome-wide association study to identify candidate susceptibility loci and prioritize them for functional characterization. PMID:25342389

  20. Murine Models of CLL: Role of microRNA-16 in the NZB mouse model

    PubMed Central

    Scaglione, Brian J.; Salerno, Erica; Balan, Murugabaskar; Coffman, Frederick; Landgraf, Pablo; Abbasi, Fatima; Kotenko, Sergei; Marti, Gerald E.; Raveche, Elizabeth S.

    2009-01-01

    Summary Mouse models are valuable tools in the study of human chronic lymphocytic leukemia (CLL). The New Zealand Black (NZB) strain is a naturally occurring model of late-onset CLL characterized by B cell hyperproliferation and autoimmunity early in life, followed by progression to CLL. Other genetically engineered models of CLL that have been developed include (NZB × NZW) F1 mice engineered to express IL5, mice expressing human TCL1A, and mice overexpressing both BCL2 and a tumour necrosis factor receptor associated factor. The applicability to human CLL varies with each model, suggesting that CLL is a multifactorial disease. Our work with the de novo NZB model has revealed many similarities to the human situation, particularly familial CLL. In NZB, the malignant clones express CD5, zap-70, and have chromosomal instability and germline Ig sequence. We also identified a point mutation in the 3’ flanking sequence of Mirn16-1, which resulted in decreased levels of the microRNA, miR-16 in lymphoid tissue. Exogenous restoration of miR-16 to an NZB malignant B-1 cell line resulted in cell cycle alterations, suggesting that the altered expression of Mirn15a/16-1 is an important molecular lesion in CLL. Future studies utilizing the NZB mouse could ascertain the role of environmental triggers, such as low dose radiation and organic chemicals in the augmentation of a pre-existing propensity to develop CLL. PMID:17941951

  1. Therapeutic microRNAs targeting the NF-kappa B Signaling Circuits of Cancers

    PubMed Central

    Tong, Lingying; Yuan, Ye; Wu, Shiyong

    2014-01-01

    MicroRNAs (miRNAs) not only directly regulate NF-κB expression, but also up- or down-regulate NF-κB activity via upstream and downstream signaling pathways of NF-κB. In many cancer cells, miRNA expressions are altered accompanied with an elevation of NF-κB, which often plays a role in promoting cancer development and progression as well as hindering the effectiveness of chemo and radiation therapies. Thus NF-κB-targeting miRNAs have been identified and characterized as potential therapeutics for cancer treatment and sensitizers of chemo and radiotherapies. However, due to cross-targeting and instability of miRNAs, some limitations of using miRNA as cancer therapeutics still exist. In this review, the mechanisms for miRNA-mediated alteration of NF-κB expression and activation in different types of cancers will be discussed. The results of therapeutic use of NF-κB-targeting miRNA for cancer treatment will be examined. Some limitations, challenges and potential strategies in future development of miRNA as cancer therapeutics are also assessed. PMID:25220353

  2. Therapeutic microRNAs targeting the NF-kappa B signaling circuits of cancers.

    PubMed

    Tong, Lingying; Yuan, Ye; Wu, Shiyong

    2015-01-01

    MicroRNAs (miRNAs) not only directly regulate NF-κB expression, but also up- or down-regulate NF-κB activity via upstream and downstream signaling pathways of NF-κB. In many cancer cells, miRNA expressions are altered accompanied with an elevation of NF-κB activity, which often plays a role in promoting cancer development and progression as well as hindering the effectiveness of chemo and radiation therapies. Thus NF-κB-targeting miRNAs have been identified and characterized as potential therapeutics for cancer treatment and sensitizers of chemo and radiotherapies. However, due to cross-targeting and instability of miRNAs, some limitations of using miRNA as cancer therapeutics still exist. In this review, the mechanisms for miRNA-mediated alteration of NF-κB expression and activation in different types of cancers will be discussed. The results of therapeutic use of NF-κB-targeting miRNA for cancer treatment will be examined. Some limitations, challenges and potential strategies in future development of miRNA as cancer therapeutics are also assessed. PMID:25220353

  3. Seed microRNA Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are key regulatory molecules that play critical roles in gene expression. The biological functions of miRNAs are important for developmental processes in plants and animals. Little is known about the functions of miRNAs in seeds. To gain a better understand-ing of the regulation o...

  4. MicroRNA-155 Reinforces HIV Latency.

    PubMed

    Ruelas, Debbie S; Chan, Jonathan K; Oh, Eugene; Heidersbach, Amy J; Hebbeler, Andrew M; Chavez, Leonard; Verdin, Eric; Rape, Michael; Greene, Warner C

    2015-05-29

    The presence of a small number of infected but transcriptionally dormant cells currently thwarts a cure for the more than 35 million individuals infected with HIV. Reactivation of these latently infected cells may result in three fates: 1) cell death due to a viral cytopathic effect, 2) cell death due to immune clearance, or 3) a retreat into latency. Uncovering the dynamics of HIV gene expression and silencing in the latent reservoir will be crucial for developing an HIV-1 cure. Here we identify and characterize an intracellular circuit involving TRIM32, an HIV activator, and miR-155, a microRNA that may promote a return to latency in these transiently activated reservoir cells. Notably, we demonstrate that TRIM32, an E3 ubiquitin ligase, promotes reactivation from latency by directly modifying IκBα, leading to a novel mechanism of NF-κB induction not involving IκB kinase activation. PMID:25873391

  5. MicroRNAs tune cerebral cortical neurogenesis

    PubMed Central

    Volvert, M-L; Rogister, F; Moonen, G; Malgrange, B; Nguyen, L

    2012-01-01

    MicroRNAs (miRNAs) are non-coding RNAs that promote post-transcriptional silencing of genes involved in a wide range of developmental and pathological processes. It is estimated that most protein-coding genes harbor miRNA recognition sequences in their 3′ untranslated region and are thus putative targets. While functions of miRNAs have been extensively characterized in various tissues, their multiple contributions to cerebral cortical development are just beginning to be unveiled. This review aims to outline the evidence collected to date demonstrating a role for miRNAs in cerebral corticogenesis with a particular emphasis on pathways that control the birth and maturation of functional excitatory projection neurons. PMID:22858543

  6. MicroRNA-155 Reinforces HIV Latency*

    PubMed Central

    Ruelas, Debbie S.; Chan, Jonathan K.; Oh, Eugene; Heidersbach, Amy J.; Hebbeler, Andrew M.; Chavez, Leonard; Verdin, Eric; Rape, Michael; Greene, Warner C.

    2015-01-01

    The presence of a small number of infected but transcriptionally dormant cells currently thwarts a cure for the more than 35 million individuals infected with HIV. Reactivation of these latently infected cells may result in three fates: 1) cell death due to a viral cytopathic effect, 2) cell death due to immune clearance, or 3) a retreat into latency. Uncovering the dynamics of HIV gene expression and silencing in the latent reservoir will be crucial for developing an HIV-1 cure. Here we identify and characterize an intracellular circuit involving TRIM32, an HIV activator, and miR-155, a microRNA that may promote a return to latency in these transiently activated reservoir cells. Notably, we demonstrate that TRIM32, an E3 ubiquitin ligase, promotes reactivation from latency by directly modifying IκBα, leading to a novel mechanism of NF-κB induction not involving IκB kinase activation. PMID:25873391

  7. MicroRNA Processing and Human Cancer

    PubMed Central

    Ohtsuka, Masahisa; Ling, Hui; Doki, Yuichiro; Mori, Masaki; Calin, George Adrian

    2015-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs of 20 to 25 nucleotides that regulate gene expression post-transcriptionally mainly by binding to a specific sequence of the 3′ end of the untranslated region (3′UTR) of target genes. Since the first report on the clinical relevance of miRNAs in cancer, many miRNAs have been demonstrated to act as oncogenes, whereas others function as tumor suppressors. Furthermore, global miRNA dysregulation, due to alterations in miRNA processing factors, has been observed in a large variety of human cancer types. As previous studies have shown, the sequential miRNA processing can be divided into three steps: processing by RNAse in the nucleus; transportation by Exportin-5 (XPO5) from the nucleus; and processing by the RNA-induced silencing complex (RISC) in the cytoplasm. Alteration in miRNA processing genes, by genomic mutations, aberrant expression or other means, could significantly affect cancer initiation, progression and metastasis. In this review, we focus on the biogenesis of miRNAs with emphasis on the potential of miRNA processing factors in human cancers. PMID:26308063

  8. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR.

    PubMed

    Kleinman, Claudia L; Gerges, Noha; Papillon-Cavanagh, Simon; Sin-Chan, Patrick; Pramatarova, Albena; Quang, Dong-Anh Khuong; Adoue, Véronique; Busche, Stephan; Caron, Maxime; Djambazian, Haig; Bemmo, Amandine; Fontebasso, Adam M; Spence, Tara; Schwartzentruber, Jeremy; Albrecht, Steffen; Hauser, Peter; Garami, Miklos; Klekner, Almos; Bognar, Laszlo; Montes, Jose-Luis; Staffa, Alfredo; Montpetit, Alexandre; Berube, Pierre; Zakrzewska, Magdalena; Zakrzewski, Krzysztof; Liberski, Pawel P; Dong, Zhifeng; Siegel, Peter M; Duchaine, Thomas; Perotti, Christian; Fleming, Adam; Faury, Damien; Remke, Marc; Gallo, Marco; Dirks, Peter; Taylor, Michael D; Sladek, Robert; Pastinen, Tomi; Chan, Jennifer A; Huang, Annie; Majewski, Jacek; Jabado, Nada

    2014-01-01

    Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform. PMID:24316981

  9. MicroRNA as Type I Interferon-Regulated Transcripts and Modulators of the Innate Immune Response

    PubMed Central

    Forster, Samuel C.; Tate, Michelle D.; Hertzog, Paul J.

    2015-01-01

    Type I interferons (IFNs) are an important family of cytokines that regulate innate and adaptive immune responses to pathogens, in cancer and inflammatory diseases. While the regulation and role of protein-coding genes involved in these responses are well characterized, the role of non-coding microRNAs in the IFN responses is less developed. We review the emerging picture of microRNA regulation of the IFN response at the transcriptional and post-transcriptional level. This response forms an important regulatory loop; several microRNAs target transcripts encoding components at many steps of the type I IFN response, both production and action, at the receptor, signaling, transcription factor, and regulated gene level. Not only do IFNs regulate positive signaling molecules but also negative regulators such as SOCS1. In total, 36 microRNA are reported as IFN regulated. Given this apparent multipronged targeting of the IFN response by microRNAs and their well-characterized capacity to “buffer” responses in other situations, the prospects of improved sequencing and microRNA targeting technologies will facilitate the elucidation of the broader regulatory networks of microRNA in this important biological context, and their therapeutic and diagnostic potential. PMID:26217335

  10. Characterization of hydrated silicate-bearing outcrops in Tyrrhena Terra, Mars: Implications to the alteration history of Mars

    NASA Astrophysics Data System (ADS)

    Loizeau, D.; Carter, J.; Bouley, S.; Mangold, N.; Poulet, F.; Bibring, J.-P.; Costard, F.; Langevin, Y.; Gondet, B.; Murchie, S. L.

    2012-05-01

    The Tyrrhena Terra region of Mars is studied with the imaging spectrometers OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) onboard Mars Express and CRISM (Compact Reconnaissance Infrared Spectrometer for Mars) onboard Mars Reconnaissance Orbiter, through the observation of tens of craters that impacted into this part of the martian highlands. The 175 detections of hydrated silicates are reported, mainly associated with ejecta blankets, crater walls and rims, and central up-lifts. Sizes of craters where hydrated silicates are detected are highly variable, diameters range from less than 1 km to 42 km. We report the presence of zeolites and phyllosilicates like prehnite, Mg-chlorite, Mg-rich smectites and mixed-layer chlorites-smectites and chlorite-vermiculite from comparison of hyperspectral infrared observations with laboratory spectra. These minerals are associated with fresh craters post-dating any aqueous activity. They likely represent ancient hydrated terrains excavated by the crater-forming impacts, and hence reveal the composition of the altered Noachian crust, although crater-related hydrothermal activity may have played a minor role for the largest craters (>20 km in diameter). Most detected minerals formed over relatively high temperatures (100-300 °C), likely due to aqueous alteration of the Noachian crust by regional low grade metamorphism from the Noachian thermal gradient and/or by extended hydrothermal systems associated with Noachian volcanism and ancient large impact craters. This is in contrast with some other phyllosilicate-bearing regions like Mawrth Vallis where smectites, kaolinites and hydrated silica were mainly identified, pointing to a predominance of surface/shallow sub-surface alteration; and where excavation by impacts played only a minor role. Smooth plains containing hydrated silicates are observed at the boundary between the Noachian altered crust, dissected by fluvial valleys, and the Hesperian

  11. MicroRNA modulation combined with sunitinib as a novel therapeutic strategy for pancreatic cancer

    PubMed Central

    Passadouro, Marta; Pedroso de Lima, Maria C; Faneca, Henrique

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and mortal cancer, characterized by a set of known mutations, invasive features, and aberrant microRNA expression that have been associated with hallmark malignant properties of PDAC. The lack of effective PDAC treatment options prompted us to investigate whether microRNAs would constitute promising therapeutic targets toward the generation of a gene therapy approach with clinical significance for this disease. In this work, we show that the developed human serum albumin–1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine:cholesterol/anti-microRNA oligonucleotides (+/−) (4/1) nanosystem exhibits the ability to efficiently deliver anti-microRNA oligonucleotides targeting the overexpressed microRNAs miR-21, miR-221, miR-222, and miR-10 in PDCA cells, promoting an almost complete abolishment of microRNA expression. Silencing of these microRNAs resulted in a significant increase in the levels of their targets. Moreover, the combination of microRNA silencing, namely miR-21, with low amounts of the chemotherapeutic drug sunitinib resulted in a strong and synergistic antitumor effect, showing that this combined strategy could be of great importance for therapeutic application in PDAC. PMID:25061297

  12. Pore-space characterization of an altered tonalite by X-ray computed microtomography and the 14C-labeled-polymethylmethacrylate method

    NASA Astrophysics Data System (ADS)

    Voutilainen, M.; Siitari-Kauppi, M.; Sardini, P.; Lindberg, A.; Timonen, J.

    2012-01-01

    The structure of geological materials strongly affects migration processes that take place in them and are also important in their weathering and alteration processes. Further information of that structure will also be important for many applications that involve geological materials. The emphasis of this study was thus to characterize the pore structure and porosity of altered tonalite by combining different measuring techniques: X-ray tomography, the14C-polymethylmethacrylate method, electron microscopy, and argon pycnometry. Intragranular porosities were determined using chemical staining of rock surfaces. Three-dimensional distributions of minerals and porosities were evaluated with consistent values for the total porosity. Porosity and pore size distributions together with pore connectivities were also determined. Combining the results of different methods, a 3-D porosity map was outlined for one sample. This porosity map enabled us to model, for example, diffusion in a more realistic environment. Scanning electron microscopy was used to identify the minerals and to obtain information on mineral texture and alteration state. The methods introduced here can be applied to many porous materials.

  13. MicroRNA Profiling of Primary Cutaneous Large B-Cell Lymphomas

    PubMed Central

    Koens, Lianne; Qin, Yongjun; Leung, Wai Y.; Corver, Willem E.; Jansen, Patty M.; Willemze, Rein; Vermeer, Maarten H.; Tensen, Cornelis P.

    2013-01-01

    Aberrant expression of microRNAs is widely accepted to be pathogenetically involved in nodal diffuse large B-cell lymphomas (DLBCLs). However, the microRNAs profiles of primary cutaneous large B-cell lymphomas (PCLBCLs) are not yet described. Its two main subtypes, i.e., primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL-LT) and primary cutaneous follicle center lymphoma (PCFCL) are characterized by an activated B-cell (ABC)-genotype and a germinal center B-cell (GCB)-genotype, respectively. We performed high-throughput sequencing analysis on frozen tumor biopsies from 19 cases of PCFCL and PCLBCL-LT to establish microRNA profiles. Cluster analysis of the complete microRNome could not distinguish between the two subtypes, but 16 single microRNAs were found to be differentially expressed. Single microRNA RT-qPCR was conducted on formalin-fixed paraffin-embedded tumor biopsies of 20 additional cases, confirming higher expression of miR-9-5p, miR-31-5p, miR-129-2-3p and miR-214-3p in PCFCL as compared to PCLBCL-LT. MicroRNAs previously described to be higher expressed in ABC-type as compared to GCB-type nodal DLBCL were not differentially expressed between PCFCL and PCLBCL-LT. In conclusion, PCFCL and PCLBCL-LT differ in their microRNA profiles. In contrast to their gene expression profile, they only show slight resemblance with the microRNA profiles found in GCB- and ABC-type nodal DLBCL. PMID:24358187

  14. MicroRNA profiling of primary cutaneous large B-cell lymphomas.

    PubMed

    Koens, Lianne; Qin, Yongjun; Leung, Wai Y; Corver, Willem E; Jansen, Patty M; Willemze, Rein; Vermeer, Maarten H; Tensen, Cornelis P

    2013-01-01

    Aberrant expression of microRNAs is widely accepted to be pathogenetically involved in nodal diffuse large B-cell lymphomas (DLBCLs). However, the microRNAs profiles of primary cutaneous large B-cell lymphomas (PCLBCLs) are not yet described. Its two main subtypes, i.e., primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL-LT) and primary cutaneous follicle center lymphoma (PCFCL) are characterized by an activated B-cell (ABC)-genotype and a germinal center B-cell (GCB)-genotype, respectively. We performed high-throughput sequencing analysis on frozen tumor biopsies from 19 cases of PCFCL and PCLBCL-LT to establish microRNA profiles. Cluster analysis of the complete microRNome could not distinguish between the two subtypes, but 16 single microRNAs were found to be differentially expressed. Single microRNA RT-qPCR was conducted on formalin-fixed paraffin-embedded tumor biopsies of 20 additional cases, confirming higher expression of miR-9-5p, miR-31-5p, miR-129-2-3p and miR-214-3p in PCFCL as compared to PCLBCL-LT. MicroRNAs previously described to be higher expressed in ABC-type as compared to GCB-type nodal DLBCL were not differentially expressed between PCFCL and PCLBCL-LT. In conclusion, PCFCL and PCLBCL-LT differ in their microRNA profiles. In contrast to their gene expression profile, they only show slight resemblance with the microRNA profiles found in GCB- and ABC-type nodal DLBCL. PMID:24358187

  15. Biochemical and genetic characterization of a yeast TFIID mutant that alters transcription in vivo and DNA binding in vitro.

    PubMed Central

    Arndt, K M; Ricupero, S L; Eisenmann, D M; Winston, F

    1992-01-01

    A mutation in the gene that encodes Saccharomyces cerevisiae TFIID (SPT15), which was isolated in a selection for mutations that alter transcription in vivo, changes a single amino acid in a highly conserved region of the second direct repeat in TFIID. Among eight independent spt15 mutations, seven cause this same amino acid change, Leu-205 to Phe. The mutant TFIID protein (L205F) binds with greater affinity than that of wild-type TFIID to at least two nonconsensus TATA sites in vitro, showing that the mutant protein has altered DNA binding specificity. Site-directed mutations that change Leu-205 to five different amino acids cause five different phenotypes, demonstrating the importance of this amino acid in vivo. Virtually identical phenotypes were observed when the same amino acid changes were made at the analogous position, Leu-114, in the first repeat of TFIID. Analysis of these mutations and additional mutations in the most conserved regions of the repeats, in conjunction with our DNA binding results, suggests that these regions of the repeats play equivalent roles in TFIID function, possibly in TATA box recognition. Images PMID:1569955

  16. Characterization of oncogene-induced metabolic alterations in hepatic cells by using ultrahigh performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Tang, Zhi; Cao, Tingting; Lin, Shuhai; Fu, Li; Li, Shangfu; Guan, Xin-Yuan; Cai, Zongwei

    2016-05-15

    Elucidation of altered metabolic pathways by using metabolomics may open new avenues for basic research on disease mechanisms and facilitate the development of novel therapeutic strategies. Here, we report the development of ultrahigh performance liquid chromatography-tandem mass spectrometry-based metabolomics platform with capability of measuring both cationic and anionic intermediates in cellular metabolism. The platform was established based on the hydrophobic ion-pairing interaction chromatography coupled with tandem mass spectrometry in multiple reaction monitoring (MRM) mode. The MRM transitions were created and optimized via energy-resolved collision-induced dissociation experiments, serving as an essential reference point for the quantification and identification. For chromatographic separation, application of hydrophobic ion-pairing interaction led to dramatic enhancement on retention of water-soluble metabolites and provision of good peak shapes. Two volatile ion-pairing reagents, namely heptafluorobutyric acid and tributylamine, were used with dedicated C18 columns as complementary separation systems coupled with the MRM analysis, allowing measurement of the metabolites of interest at nanomolar levels. The developed platform was successfully applied to investigate the altered metabolism in hepatic cells with over-expression of an oncogene, thus can provide important information on the rewired metabolism. PMID:26992502

  17. microRNAs and microRNA Targets Involved in Alfalfa Stem Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the possible involvement of microRNAs in alfalfa stem development, we hybridized 32P-labled total microRNAs purified from elongating and post-elongation stem internodes (ES and PES, respectively) of the alfalfa Clone 252 to a microRNA dot blot that contains a total of 70 reference anti-mi...

  18. Contribution of MicroRNAs to autoimmune diseases.

    PubMed

    Garo, Lucien P; Murugaiyan, Gopal

    2016-05-01

    MicroRNAs are a class of evolutionarily conserved, short non-coding RNAs that post-transcriptionally modulate the expression of multiple target genes. They are implicated in almost every biological process, including pathways involved in immune homeostasis, such as immune cell development, central and peripheral tolerance, and T helper cell differentiation. Alterations in miRNA expression and function can lead to major dysfunction of the immune system and mediate susceptibility to autoimmune disease. Here, we discuss the role of miRNAs in the maintenance of immune tolerance to self-antigens and the gain or loss of miRNA functions on tissue inflammation and autoimmunity. PMID:26943802

  19. Roles and mechanisms of microRNAs in pancreatic cancer.

    PubMed

    Zhang, Lidong; Jamaluddin, Md Saha; Weakley, Sarah M; Yao, Qizhi; Chen, Changyi

    2011-08-01

    Pancreatic cancer (PC) is an aggressive malignancy with poor survival. The discovery of microRNAs (miRNAs) has provided a new opportunity to study the disease. Thus far, altered expression of miRNAs has been reported in a wide range of malignancies, including PC, and some miRNAs are associated with PC cell proliferation, invasion, chemoresistance, and patient survival. This review summarizes recent advances with respect to the roles and mechanisms of miRNAs in PC and discusses potential clinical applications. PMID:21222121

  20. Roles and Mechanisms of MicroRNAs in Pancreatic Cancer

    PubMed Central

    Zhang, Lidong; Jamaluddin, Md Saha; Weakley, Sarah M.; Yao, Qizhi

    2012-01-01

    Pancreatic cancer (PC) is an aggressive malignancy with poor survival. The discovery of micro-RNAs (miRNAs) has provided a new opportunity to study the disease. Thus far, altered expression of miRNAs has been reported in a wide range of malignancies, including PC, and some miRNAs are associated with PC cell proliferation, invasion, chemoresistance, and patient survival. This review summarizes recent advances with respect to the roles and mechanisms of miRNAs in PC and discusses potential clinical applications. PMID:21222121

  1. microRNAs and Endometrial Pathophysiology.

    PubMed

    Chill, Henry H; Dior, Uri P; Kogan, Liron; Revel, Ariel

    2015-01-01

    Embryo implantation requires a reciprocal interaction between the blastocyst and endometrium and is associated with complex regulatory mechanisms. Since their discovery, microRNAs became prominent candidates providing missing links for many biological pathways. In recent years, microRNAs were implicated as one of the important players in regulation of various biological and physiological endometrial related processes. This chapter aims to present recent knowledge pertaining to the diverse aspects of microRNAs in the embryo-endometrial relationship. We will focus on the role of microRNAs in decidualization and their part in natural and stimulated cycles. Next, we will present recent studies deliberating the role of microRNAs in recurrent pregnancy loss and in the important phenomenon of recurrent implantation failure. Lastly, demonstrating an important aspect of embryo implantation and invasion, we will outline few microRNA related shared pathways of implantation and carcinogenesis. PMID:26662990

  2. Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages.

    PubMed

    Zhang, Yingying; Zhang, Mengying; Li, Xueqin; Tang, Zongsheng; Wang, Xiangmin; Zhong, Min; Suo, Qifeng; Zhang, Yao; Lv, Kun

    2016-01-01

    Macrophage infiltration is a hallmark feature of viral myocarditis. As studies have shown that microRNA-155 regulates the differentiation of macrophages, we aimed to investigate the role of microRNA-155 in VM. We report that silencing microRNA-155 protects mice from coxsackievirus B3 induced myocarditis. We found that microRNA-155 expression was upregulated and localized primarily in heart-infiltrating macrophages and CD4(+) T lymphocytes during acute myocarditis. In contrast with wildtype (WT) mice, microRNA-155(-/-) mice developed attenuated viral myocarditis, which was characterized by decreased cardiac inflammation and decreased intracardiac CD45(+) leukocytes. Hearts of microRNA-155(-/-) mice expressed decreased levels of the IFN-γ and increased levels of the cytokines IL-4 and IL-13. Although total CD4(+) and regulatory T cells were unchanged in miR-155(-/-) spleen proportionally, the activation of T cells and CD4(+) T cell proliferation in miR-155(-/-) mice were significantly decreased. Beyond the acute phase, microRNA-15(5-/-) mice had reduced mortality and improved cardiac function during 5 weeks of follow-up. Moreover, silencing microRNA-155 led to increased levels of alternatively-activated macrophages (M2) and decreased levels of classically-activated macrophages (M1) in the heart. Combined, our studies suggest that microRNA-155 confers susceptibility to viral myocarditis by affecting macrophage polarization, and thus may be a potential therapeutic target for viral myocarditis. PMID:26931072

  3. Differentially expressed microRNAs in colorectal cancer metastasis.

    PubMed

    Abba, Mohammed; Benner, Axel; Patil, Nitin; Heil, Oliver; Allgayer, Heike

    2015-12-01

    Tumor metastasis continues to be the most significant contributor to cancer related mortality, and although several studies have examined expression profiles emanating from patients with metastatic disease, very little information is available about signatures that differentiate metastatic lesions from primary tumors and associated normal tissues, largely because such matched tissue sample series are rare. This study was specifically designed to identify the metastasis relevant microRNAs in colorectal cancer and characterize microRNAs that modulate the metastatic phenotype. Here we describe in detail how the data, deposited in the Gene Expression Omnibus (GEO) with the accession number GSE54088, was generated including the basic analysis as contained in the manuscript published in Cancer Research with the PMID 26069251. PMID:26697326

  4. Differentially expressed microRNAs in colorectal cancer metastasis

    PubMed Central

    Abba, Mohammed; Benner, Axel; Patil, Nitin; Heil, Oliver; Allgayer, Heike

    2015-01-01

    Tumor metastasis continues to be the most significant contributor to cancer related mortality, and although several studies have examined expression profiles emanating from patients with metastatic disease, very little information is available about signatures that differentiate metastatic lesions from primary tumors and associated normal tissues, largely because such matched tissue sample series are rare. This study was specifically designed to identify the metastasis relevant microRNAs in colorectal cancer and characterize microRNAs that modulate the metastatic phenotype. Here we describe in detail how the data, deposited in the Gene Expression Omnibus (GEO) with the accession number GSE54088, was generated including the basic analysis as contained in the manuscript published in Cancer Research with the PMID 26069251. PMID:26697326

  5. Extracellular MicroRNA in liquid biopsy: applicability in cancer diagnosis and prevention

    PubMed Central

    Izzotti, Alberto; Carozzo, Stefano; Pulliero, Alessandra; Zhabayeva, Dinara; Ravetti, Jean Louis; Bersimbaev, Rakhmet

    2016-01-01

    One of the goals of contemporary cancer research is the development of new markers that facilitate earlier and non-invasive diagnosis. MicroRNAs are non-coding RNA molecules that regulate gene expression; studies have shown that their expression levels are altered in cancer. Recently, extra-cellular microRNAs have been detected in biological fluids and studied as possible cancer markers that can be detected by noninvasive procedures. In this review, we analyze the current understanding of extracellular miRNAs based on clinical studies to establish their possible use for the prevention of the most common tumors. Despite discrepancies among different studies of the same cancers, panels of specific extracellular microRNAs are emerging as a new tool for the secondary (selection of high-risk individuals to undergo screening) and tertiary (relapse) prevention of cancer. PMID:27508091

  6. Cytokines and MicroRNAs as Candidate Biomarkers for Systemic Lupus Erythematosus

    PubMed Central

    Stypińska, Barbara; Paradowska-Gorycka, Agnieszka

    2015-01-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, with varied course and symptoms. Its etiology is very complex and not clearly understood. There is growing evidence of the important role of cytokines in SLE pathogenesis, as well as their utility as biomarkers and targets in new therapies. Other potential new SLE biomarkers are microRNAs. Recently, over one hundred different microRNAs have been demonstrated to have a significant impact on the immune system. Various alterations in these microRNAs, associated with disease pathogenesis, have been described. They influence the signaling pathways and functions of immune response cells. Here, we aim to review the emerging new data on SLE etiology and pathogenesis. PMID:26473848

  7. MicroRNAs take part in pathophysiology and pathogenesis of Male Pattern Baldness.

    PubMed

    Goodarzi, Hamed R; Abbasi, Ali; Saffari, Mojtaba; Tabei, Mohammad B; Noori Daloii, Mohammad R

    2010-07-01

    Male Pattern Baldness (MPB) or androgenetic alopecia is a common form of hair loss with androgens and genetics having etiological significance. Androgens are thought to pathophysiologically power on cascades of chronically dramatic alterations in genetically susceptible scalp dermal papillas, specialized cells in hair follicles in which androgens react, and finally resulting in a patterned alopecia. However, the exact mechanisms through which androgens, positive regulators of growth and anabolism in most body sites, paradoxically exert their effects on balding hair follicles, are not yet known. The role of microRNAs, a recently discovered class of non-coding RNAs, with a wide range of regulatory functions, has been documented in hair follicle formation and their deregulation in cancer of prostate, a target organ of androgens has also been delineated. Yet, there is a lack of knowledge in agreement with microRNAs' contribution in pathophysiology of MPB. To investigate the role of microRNAs in pathogenesis of MPB, we selected seven microRNAs, predicted bioinformatically on a reverse engineering basis, from previously published microarray gene expression data and analyzed their expression in balding relative to non-balding dermal papillas. We found for the first time upregulation of four microRNAs (miR-221, miR-125b, miR-106b and miR-410) that could participate in pathogenesis of MPB. Regarding microRNAs' therapeutic potential and accessibility of hair follicles for gene therapy, these microRNAs can be considered as good candidates for a new revolutionized generation of treatments. PMID:19821055

  8. MicroRNA Transcriptome Profiling in Heart of Trypanosoma cruzi-Infected Mice: Parasitological and Cardiological Outcomes

    PubMed Central

    Navarro, Isabela Cunha; Ferreira, Frederico Moraes; Nakaya, Helder I.; Baron, Monique Andrade; Vilar-Pereira, Gláucia; Pereira, Isabela Resende; Silva, Ana Maria Gonçalves; Real, Juliana Monte; De Brito, Thales; Chevillard, Christophe; Lannes-Vieira, Joseli; Kalil, Jorge; Cunha-Neto, Edecio; Ferreira, Ludmila Rodrigues Pinto

    2015-01-01

    Chagas disease is caused by the parasite Trypanosoma cruzi, and it begins with a short acute phase characterized by high parasitemia followed by a life-long chronic phase with scarce parasitism. Cardiac involvement is the most prominent manifestation, as 30% of infected subjects will develop abnormal ventricular repolarization with myocarditis, fibrosis and cardiomyocyte hypertrophy by undefined mechanisms. Nevertheless, follow-up studies in chagasic patients, as well as studies with murine models, suggest that the intensity of clinical symptoms and pathophysiological events that occur during the acute phase of disease are associated with the severity of cardiac disease observed during the chronic phase. In the present study we investigated the role of microRNAs (miRNAs) in the disease progression in response to T. cruzi infection, as alterations in miRNA levels are known to be associated with many cardiovascular disorders. We screened 641 rodent miRNAs in heart samples of mice during an acute infection with the Colombiana T.cruzi strain and identified multiple miRNAs significantly altered upon infection. Seventeen miRNAs were found significantly deregulated in all three analyzed time points post infection. Among these, six miRNAs had their expression correlated with clinical parameters relevant to the disease, such as parasitemia and maximal heart rate-corrected QT (QTc) interval. Computational analyses identified that the gene targets for these six miRNAs were involved in networks and signaling pathways related to increased ventricular depolarization and repolarization times, important factors for QTc interval prolongation. The data presented here will guide further studies about the contribution of microRNAs to Chagas heart disease pathogenesis. PMID:26086673

  9. Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy.

    PubMed Central

    Nguyen, T M; Morris, G E

    1993-01-01

    The majority of mutations in Xp21-linked muscular dystrophy (MD) can be identified by PCR or Southern blotting, as deletions or duplications of groups of exons in the dystrophin gene, but it is not always possible to predict how much altered dystrophin, if any, will be produced. Use of exon-specific monoclonal antibodies (mAbs) on muscle biopsies from MD patients can, in principle, provide information on both the amount of altered dystrophin produced and, when dystrophin is present, the nature of the genetic deletion or point mutation. For this purpose, mAbs which recognize regions of dystrophin encoded by known exons and whose binding is unaffected by the absence of adjacent exons are required. To map mAbs to specific exons, random "libraries" of expressed dystrophin fragments were created by cloning DNAseI digestion fragments of a 4.3-kb dystrophin cDNA into a pTEX expression vector. The libraries were then used to locate the epitopes recognized by 48 mAbs to fragments of 25-60 amino acids within the 1,434-amino-acid dystrophin fragment used to produce the antibodies. This is sufficiently detailed to allow further refinement by using synthetic peptides and, in many cases, to identify the exon in the DMD (Duchenne MD) gene which encodes the epitope. To illustrate their use in dystrophin analysis, a Duchenne patient with a frameshift deletion of exons 42 and 43 makes a truncated dystrophin encoded by exons 1-41, and we now show that this can be detected in the sarcolemma by mAbs up to and including those specific for exon 41 epitopes but not by mAbs specific for exon 43 or later epitopes. Images Figure 4 Figure 1 PMID:7684887

  10. Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy

    SciTech Connect

    Nguyen thi Man; Morris, G.E. )

    1993-06-01

    The majority of mutations in Xp21-linked muscular dystrophy (MD) can be identified by PCR or Southern blotting, as deletions or duplications of groups of exons in the dystrophin gene, but it is not always possible to predict how much altered dystrophin, if any, will be produced. Use of exon-specific monoclonal antibodies (mAbs) on muscle biopsies from MD patients can, in principle, provide information on both the amount of altered dystrophin produced and, when dystrophin is present, the nature of the genetic deletion or point mutation. For this purpose, mAbs which recognize regions of dystrophin encoded by known exons and whose binding is unaffected by the absence of adjacent exons are required. To map mAbs to specific exons, random [open quotes]libraries[close quotes] of expressed dystrophin fragments were created by cloning DNAseI digestion fragments of a 4.3-kb dystrophin cDNA into a pTEX expression vector. The libraries were then used to locate the epitopes recognized by 48 mAbs to fragments of 25--60 amino acids within the 1,434-amino-acid dystrophin fragment used to produce the antibodies. This is sufficiently detailed to allow further refinement by using synthetic peptides and, in many cases, to identify the exon in the DMD (Duchenne MD) gene which encodes the epitope. To illustrate their use in dystrophin analysis, a Duchenne patient with a frameshift deletion of exons 42 and 43 makes a truncated dystrophin encoded by exons 1--41, and the authors now show that this can be detected in the sarcolemma by mAbs up to and including those specific for exon 41 epitopes but not by mAbs specific for exon 43 or later epitopes. 38 refs., 2 figs., 4 tabs.

  11. MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients

    PubMed Central

    Pichler, M; Calin, G A

    2015-01-01

    Several discoveries have paved the way to personalise cancer medicine and a tremendous gain of knowledge in genomics and molecular mechanisms of cancer progression cumulated over the last years. Big stories in biology commonly start in a simple model system. No wonder microRNAs have been identified as regulators of embryonic development in the nematode Caenorhabditis elegans. From the first identification in worms to the first-in-man microRNA-based clinical trial in humans, almost 20 years passed. In this review we follow the story of understanding microRNA alterations in cancer, describe recent developments in the microRNA field and critically discuss their potential as diagnostic, prognostic and therapeutics factors in cancer medicine. We will explain the rationale behind the use of microRNAs in cancer diagnosis and prognosis prediction, but also discuss the limitations and pitfalls associated with this. Novel developments of combined microRNA/siRNA pharmacological approaches will be discussed and most recently data about MXR34, the first-tested microRNA drug will be described. PMID:26158421

  12. Gap junctions modulate glioma invasion by direct transfer of microRNA.

    PubMed

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L; Naus, Christian C

    2015-06-20

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity. PMID:25978028

  13. MicroRNAs in brain metastases: big things come in small packages.

    PubMed

    McDermott, Ryan; Gabikian, Patrik; Sarvaiya, Purvaba; Ulasov, Ilya; Lesniak, Maciej S

    2013-01-01

    Metastatic brain tumors provide a formidable obstacle in the survival of affected cancer patients, an obstacle that current treatment is essentially ineffective against. Our understanding of the metastatic cascade has demonstrated the role of incorrectly regulated protein expression and proved it to be a crucial component of this process. Recently, molecular studies have emphasized the role of microRNAs, small non-coding RNAs that alter protein expression, in the regulation of both normal and abnormal biological processes, including cancer and its metastasis to the brain. Furthermore, studies have demonstrated the ability to distinguish normal from cancerous cells, primary from secondary brain tumors, and correctly categorize metastatic brain tumor tissue of origin based solely on microRNA profiles. Interestingly, manipulation of microRNAs has proven effective in cancer treatment. With the promise of reduced toxicity, increased efficacy, and individually directed therapy, using microRNA in the treatment of metastatic brain tumors may prove very useful. In this review, we focus on the multiple potential microRNA targets for the treatment of metastatic brain lesions as well as current and future directions for its use in gene therapy. PMID:23138927

  14. Circulating MicroRNAs as Promising Biomarkers in Forensic Body Fluids Identification.

    PubMed

    Dumache, Raluca; Ciocan, Veronica; Muresan, Camelia; Rogobete, Alexandru Florin; Enache, Alexandra

    2015-01-01

    In the last 20 years, DNA molecular analysis has become an important tool in forensic investigations. Currently, it is possible to genotype all types of biological traces or micro-traces containing nucleated cells if they are not entirely destroyed, chemically or bacterial. The DNA profiling is based on the short tandem repeats (STR) and aids in human identification from biological samples, but due to the recent advances in molecular genetics, other biomarkers have been proposed to be used in forensic identifications, such as: messenger RNA(mRNA), microRNA (miRNA), and DNA methylation. MicroRNAs are part of a class of small, non-coding RNAs that contain 19 - 23 nucleotides. MicroRNAs play an important role in the regulation of biochemical mechanisms, cell proliferation and other cellular mechanisms in the human body. The level of microRNAs in blood and other body fluids (urine, saliva, sweat) increases as a consequence of altered pathophysiological mechanisms and tissue insult. Moreover, the stability and specificity of microRNAs make them ideal candidates for circulating biomarkers in forensic bioanalytical procedures. In this review, we want to present a brief overview of biogenesis, functions, and applications of miRNAs in the identification of forensic body fluids. PMID:26554231

  15. Frontotemporal Lobar Degeneration and MicroRNAs

    PubMed Central

    Piscopo, Paola; Albani, Diego; Castellano, Anna E.; Forloni, Gianluigi; Confaloni, Annamaria

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) includes a spectrum of disorders characterized by changes of personality and social behavior and, often, a gradual and progressive language dysfunction. In the last years, several efforts have been fulfilled in identifying both genetic mutations and pathological proteins associated with FTLD. The molecular bases undergoing the onset and progression of the disease remain still unknown. Recent literature prompts an involvement of RNA metabolism in FTLD, particularly microRNAs (miRNAs). Dysregulation of miRNAs in several disorders, including neurodegenerative diseases, and increasing importance of circulating miRNAs in different pathologies has suggested to implement the study of their possible application as biological markers and new therapeutic targets; moreover, miRNA-based therapy is becoming a powerful tool to deepen the function of a gene, the mechanism of a disease, and validate therapeutic targets. Regarding FTLD, different studies showed that miRNAs are playing an important role. For example, several reports have evaluated miRNA regulation of the progranulin gene suggesting that it is under their control, as described for miR-29b, miR-107, and miR-659. More recently, it has been demonstrated that TMEM106B gene, which protein is elevated in FTLD-TDP brains, is repressed by miR-132/212 cluster; this post-transcriptional mechanism increases intracellular levels of progranulin, affecting its pathways. These findings if confirmed could suggest that these microRNAs have a role as potential targets for some related-FTLD genes. In this review, we focus on the emerging roles of the miRNAs in the pathogenesis of FTLD. PMID:26903860

  16. Geochemical, petrographic and physical characterizations and associated alterations of the volcanic rocks of the Romanesque San Nicola Church (Ottana, central Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Columbu, Stefano; Palomba, Marcella; Sitzia, Fabio

    2015-04-01

    In this research, the volcanic rocks belonging to the Sardinia Oligo-Miocene volcanic cycle (32 - 11 Ma) and building up the structure of the San Nicola church, one of the most representative churches of the Romanesque architecture, were studied. These stones were widely used in medieval architecture for the excellent workability, but they present some disadvantages, since they are greatly affected by alteration phenomena. The main objectives of this research are i) to focus the mineral, chemical and petrographic compositions of the San Nicola stones, ii) the chemical and physical alteration processes affecting these materials, and iii) to establish the exactly provenance of the volcanic rocks. Furthermore, a comparative study between the rocks from the ancient quarries and those forming the structure of the church was performed. In the ancient quarries, where presumably a more advanced alteration occurs due to the vertical alteration gradient, different facies of the same volcanic lithology, characterized by macroscopical evidences of chemical-physical degradation degree, were sampled. Petrographic, geochemical (both major elements that the traces) and physical-mechanical features of the collected samples were determined to highlight the compositional differences (density, porosity, water-absorption kinetics, mechanical resistance) as a function of the different alteration degree. Moreover, chemical-mineralogical analysis of the sample surfaces from the church, was performed, to highlight possible presence and nature of secondary newly-formed phases (e.g., salt efflorescence). Several methodologies were applied to carry out physical-chemical and petrographic analysis: X-Ray fluorescence (XRF) and Inductively Coupled Mass Spectrometry (ICP-MS), X-Ray Diffractometry (XRD) for chemical and mineral composition; Optical and Scanning Electron Microscopy (SEM) for textures, mineral assemblages and microstructures studies; He-picnometry, water-absorption and mechanical

  17. Structural characterization of altered nucleoporin Nup153 expression in human cells by thin-section electron microscopy

    PubMed Central

    Duheron, Vincent; Chatel, Guillaume; Sauder, Ursula; Oliveri, Vesna; Fahrenkrog, Birthe

    2014-01-01

    Nuclear pore complexes (NPCs) span the 2 membranes of the nuclear envelope (NE) and facilitate nucleocytoplasmic exchange of macromolecules. NPCs have a roughly tripartite structural organization with the so-called nuclear basket emanating from the NPC scaffold into the nucleoplasm. The nuclear basket is composed of the 3 nucleoporins Nup153, Nup50, and Tpr, but their specific role for the structural organization of this NPC substructure is, however, not well established. In this study, we have used thin-section transmission electron microscopy to determine the structural consequences of altering the expression of Nup153 in human cells. We show that the assembly and integrity of the nuclear basket is not affected by Nup153 depletion, whereas its integrity is perturbed in cells expressing high concentrations of the zinc-finger domain of Nup153. Moreover, even mild over-expression of Nup153 is coinciding with massive changes in nuclear organization and it is the excess of the zinc-finger domain of Nup153 that is sufficient to induce these rearrangements. Our data indicate a central function of Nup153 in the organization of the nucleus, not only at the periphery, but throughout the entire nuclear interior. PMID:25485891

  18. Altered Tnnt3 characterizes selective weakness of fast fibers in mice overexpressing FSHD region gene 1 (FRG1)

    PubMed Central

    Sancisi, Valentina; Germinario, Elena; Esposito, Alessandra; Morini, Elisabetta; Peron, Samantha; Moggio, Maurizio; Tomelleri, Giuliano; Danieli-Betto, Daniela

    2013-01-01

    Facioscapulohumeral muscular dystrophy (FSHD), a common hereditary myopathy, is characterized by atrophy and weakness of selective muscle groups. FSHD is considered an autosomal dominant disease with incomplete penetrance and unpredictable variability of clinical expression within families. Mice overexpressing FRG1 (FSHD region gene 1), a candidate gene for this disease, develop a progressive myopathy with features of the human disorder. Here, we show that in FRG1-overexpressing mice, fast muscles, which are the most affected by the dystrophic process, display anomalous fast skeletal troponin T (fTnT) isoform, resulting from the aberrant splicing of the Tnnt3 mRNA that precedes the appearance of dystrophic signs. We determine that muscles of FRG1 mice develop less strength due to impaired contractile properties of fast-twitch fibers associated with an anomalous MyHC-actin ratio and a reduced sensitivity to Ca2+. We demonstrate that the decrease of Ca2+ sensitivity of fast-twitch fibers depends on the anomalous troponin complex and can be rescued by the substitution with the wild-type proteins. Finally, we find that the presence of aberrant splicing isoforms of TNNT3 characterizes dystrophic muscles in FSHD patients. Collectively, our results suggest that anomalous TNNT3 profile correlates with the muscle impairment in both humans and mice. On the basis of these results, we propose that aberrant fTnT represents a biological marker of muscle phenotype severity and disease progression. PMID:24305066

  19. Characterization of altered intrinsic excitability in hippocampal CA1 pyramidal cells of the Aβ-overproducing PDAPP mouse.

    PubMed

    Kerrigan, T L; Brown, J T; Randall, A D

    2014-04-01

    Transgenic mice that accumulate Aβ peptides in the CNS are commonly used to interrogate functional consequences of Alzheimer's disease-associated amyloidopathy. In addition to changes to synaptic function, there is also growing evidence that changes to intrinsic excitability of neurones can arise in these models of amyloidopathy. Furthermore, some of these alterations to intrinsic properties may occur relatively early within the age-related progression of experimental amyloidopathy. Here we report a detailed comparison between the intrinsic excitability properties of hippocampal CA1 pyramidal neurones in wild-type (WT) and PDAPP mice. The latter is a well-established model of Aβ accumulation which expresses human APP harbouring the Indiana (V717F) mutation. At the age employed in this study (9-10 months) CNS Abeta was elevated in PDAPP mice but significant plaque pathology was absent. PDAPP mice exhibited no differences in subthreshold intrinsic properties including resting potential, input resistance, membrane time constant and sag. When CA1 cells of PDAPP mice were given depolarizing stimuli of various amplitudes they initially fired at a higher frequency than WT cells. Commensurate with this, PDAPP cells exhibited a larger fast afterdepolarizing potential. PDAPP mice had narrower spikes but action potential threshold, rate of rise and peak were not different. Thus not all changes seen in our previous studies of amyloidopathy models were present in PDAPP mice; however, narrower spikes, larger ADPs and the propensity to fire at higher frequencies were consistent with our prior work and thus may represent robust, cross-model, indices of amyloidopathy. This article is part of a Special Issue entitled 'Neurodevelopment Disorder'. PMID:24055500

  20. Characterization of altered intrinsic excitability in hippocampal CA1 pyramidal cells of the Aβ-overproducing PDAPP mouse☆

    PubMed Central

    Kerrigan, T.L.; Brown, J.T.; Randall, A.D.

    2014-01-01

    Transgenic mice that accumulate Aβ peptides in the CNS are commonly used to interrogate functional consequences of Alzheimer's disease-associated amyloidopathy. In addition to changes to synaptic function, there is also growing evidence that changes to intrinsic excitability of neurones can arise in these models of amyloidopathy. Furthermore, some of these alterations to intrinsic properties may occur relatively early within the age-related progression of experimental amyloidopathy. Here we report a detailed comparison between the intrinsic excitability properties of hippocampal CA1 pyramidal neurones in wild-type (WT) and PDAPP mice. The latter is a well-established model of Aβ accumulation which expresses human APP harbouring the Indiana (V717F) mutation. At the age employed in this study (9–10 months) CNS Abeta was elevated in PDAPP mice but significant plaque pathology was absent. PDAPP mice exhibited no differences in subthreshold intrinsic properties including resting potential, input resistance, membrane time constant and sag. When CA1 cells of PDAPP mice were given depolarizing stimuli of various amplitudes they initially fired at a higher frequency than WT cells. Commensurate with this, PDAPP cells exhibited a larger fast afterdepolarizing potential. PDAPP mice had narrower spikes but action potential threshold, rate of rise and peak were not different. Thus not all changes seen in our previous studies of amyloidopathy models were present in PDAPP mice; however, narrower spikes, larger ADPs and the propensity to fire at higher frequencies were consistent with our prior work and thus may represent robust, cross-model, indices of amyloidopathy. This article is part of a Special Issue entitled ‘Neurodevelopment Disorder’. PMID:24055500

  1. Isolation and characterization of a new mutant of Saccharomyces cerevisiae with altered synthesis of 5-aminolevulinic acid.

    PubMed Central

    Carvajal, E; Panek, A D; Mattoon, J R

    1990-01-01

    A new gene, RHM1, required for normal production of 5-aminolevulinic acid by Saccharomyces cerevisiae, was identified by a novel screening method. Ethyl methanesulfonate treatment of a fluorescent porphyric strain bearing the pop3-1 mutation produced nonfluorescent or weakly fluorescent mutants with defects in early stages of tetrapyrrole biosynthesis. Class I mutants defective in synthesis of 5-aminolevulinate regained fluorescence when grown on medium supplemented with 5-aminolevulinate, whereas class II mutants altered in later biosynthetic steps did not. Among six recessive class I mutants, at least three complementation groups were found. One mutant contained an allele of HEM1, the structural gene for 5-aminolevulinate synthase, and two mutants contained alleles of the regulatory gene CYC4. The remaining mutants contained genes complementary to both hem1 and cyc4. Mutant strain DA3-RS3/68 contained mutant gene rhm1, which segregated independently of hem1 and cyc4 during meiosis. 5-Aminolevulinate synthase activity of the rhm1 mutant was 35 to 40% of that of the parental pop3-1 strain, whereas intracellular 5-aminolevulinate concentration was only 3 to 4% of the parental value. Transformation of an rhm1 strain with a multicopy plasmid containing the cloned HEM1 gene restored normal levels of 5-aminolevulinate synthase activity, but intracellular 5-aminolevulinate was increased to only 9 to 10% of normal. We concluded that RHM1 could control either targeting of 5-aminolevulinate synthase to the mitochondrial matrix or the activity of the enzyme in vivo. PMID:2188943

  2. Regulation of Extracellular Protease Production in Bacillus cereus T: Characterization of Mutants Producing Altered Amounts of Protease

    PubMed Central

    Aronson, A. I.; Angelo, N.; Holt, S. C.

    1971-01-01

    Twenty-nine mutants of Bacillus cereus T were selected on casein agar for their inability to produce large amounts of extracellular protease. They all formed spores, and 27 were also auxotrophs for purines or pyrimidines. Upon reversion to prototrophy, a large fraction regained the capacity to produce protease. Conversely, reversion to normal protease production resulted in loss of the purine or pyrimidine requirement in a large fraction of the revertants. One spontaneous low-protease-producing pyrimidine auxotroph studied in detail grew as well as the wild type and produced spores which were identical to those produced by the wild type on the basis of heat resistance, dipicolinic acid content, density, and appearance in the electron microscope. The rate of protein turnover in the mutant was the same as the wild type. The mutant did grow poorly, however, when casein was the principal carbon source. A mutant excreting 5 to 10 times as much protease as the wild type was isolated as a secondary mutation from the hypoproducer discussed above. Loss of the pyrimidine requirement in this case did not alter the regulation of protease production. Although the secondary mutant grew somewhat faster in most media than the wild type, the final cell yield was lower. The spores of this mutant appeared to have excess coat on the basis of both electron microscopic and chemical studies. There appear to be closely related but distinct catabolic controls for both extracellular protease and spore formation. These controls can be dissociated as for the hypoproducers but can also appear integrated as for the hyperprotease producer. Images PMID:4104235

  3. Isolation and Characterization of Mutant Sinorhizobium meliloti NodD1 Proteins with Altered Responses to Luteolin

    PubMed Central

    Peck, Melicent C.; Bliss, Robert

    2013-01-01

    NodD1, a member of the NodD family of LysR-type transcriptional regulators (LTTRs), mediates nodulation (nod) gene expression in the soil bacterium Sinorhizobium meliloti in response to the plant-secreted flavonoid luteolin. We used genetic screens and targeted approaches to identify NodD1 residues that show altered responses to luteolin during the activation of nod gene transcription. Here we report four types of NodD1 mutants. Type I (NodD1 L69F, S104L, D134N, and M193I mutants) displays reduced or no activation of nod gene expression. Type II (NodD1 K205N) is constitutively active but repressed by luteolin. Type III (NodD1 L280F) demonstrates enhanced activity with luteolin compared to that of wild-type NodD1. Type IV (NodD1 D284N) shows moderate constitutive activity yet can still be induced by luteolin. In the absence of luteolin, many mutants display a low binding affinity for nod gene promoter DNA in vitro. Several mutants also show, as does wild-type NodD1, increased affinity for nod gene promoters with added luteolin. All of the NodD1 mutant proteins can homodimerize and heterodimerize with wild-type NodD1. Based on these data and the crystal structures of several LTTRs, we present a structural model of wild-type NodD1, identifying residues important for inducer binding, protein multimerization, and interaction with RNA polymerase at nod gene promoters. PMID:23772067

  4. microRNAs as Potential Biomarkers in Adrenocortical Cancer: Progress and Challenges

    PubMed Central

    Cherradi, Nadia

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare malignancy with poor prognosis and limited therapeutic options. Over the last decade, pan-genomic analyses of genetic and epigenetic alterations and genome-wide expression profile studies allowed major advances in the understanding of the molecular genetics of ACC. Besides the well-known dysfunctional molecular pathways in adrenocortical tumors, such as the IGF2 pathway, the Wnt pathway, and TP53, high-throughput technologies enabled a more comprehensive genomic characterization of adrenocortical cancer. Integration of expression profile data with exome sequencing, SNP array analysis, methylation, and microRNA (miRNA) profiling led to the identification of subgroups of malignant tumors with distinct molecular alterations and clinical outcomes. miRNAs post-transcriptionally silence their target gene expression either by degrading mRNA or by inhibiting translation. Although our knowledge of the contribution of deregulated miRNAs to the pathogenesis of ACC is still in its infancy, recent studies support their relevance in gene expression alterations in these tumors. Some miRNAs have been shown to carry potential diagnostic and prognostic values, while others may be good candidates for therapeutic interventions. With the emergence of disease-specific blood-borne miRNAs signatures, analyses of small cohorts of patients with ACC suggest that circulating miRNAs represent promising non-invasive biomarkers of malignancy or recurrence. However, some technical challenges still remain, and most of the miRNAs reported in the literature have not yet been validated in sufficiently powered and longitudinal studies. In this review, we discuss the current knowledge regarding the deregulation of tumor-associated and circulating miRNAs in ACC patients, while emphasizing their potential significance in pathogenic pathways in light of recent insights into the role of miRNAs in shaping the tumor microenvironment. PMID:26834703

  5. MicroRNA Regulation of Epithelial to Mesenchymal Transition

    PubMed Central

    Abba, Mohammed L.; Patil, Nitin; Leupold, Jörg Hendrik; Allgayer, Heike

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is a central regulatory program that is similar in many aspects to several steps of embryonic morphogenesis. In addition to its physiological role in tissue repair and wound healing, EMT contributes to chemo resistance, metastatic dissemination and fibrosis, amongst others. Classically, the morphological change from epithelial to mesenchymal phenotype is characterized by the appearance or loss of a group of proteins which have come to be recognized as markers of the EMT process. As with all proteins, these molecules are controlled at the transcriptional and translational level by transcription factors and microRNAs, respectively. A group of developmental transcription factors form the backbone of the EMT cascade and a large body of evidence shows that microRNAs are heavily involved in the successful coordination of mesenchymal transformation and vice versa, either by suppressing the expression of different groups of transcription factors, or otherwise acting as their functional mediators in orchestrating EMT. This article dissects the contribution of microRNAs to EMT and analyzes the molecular basis for their roles in this cellular process. Here, we emphasize their interaction with core transcription factors like the zinc finger enhancer (E)-box binding homeobox (ZEB), Snail and Twist families as well as some pluripotency transcription factors. PMID:26784241

  6. MicroRNA Regulation of Epithelial to Mesenchymal Transition.

    PubMed

    Abba, Mohammed L; Patil, Nitin; Leupold, Jörg Hendrik; Allgayer, Heike

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is a central regulatory program that is similar in many aspects to several steps of embryonic morphogenesis. In addition to its physiological role in tissue repair and wound healing, EMT contributes to chemo resistance, metastatic dissemination and fibrosis, amongst others. Classically, the morphological change from epithelial to mesenchymal phenotype is characterized by the appearance or loss of a group of proteins which have come to be recognized as markers of the EMT process. As with all proteins, these molecules are controlled at the transcriptional and translational level by transcription factors and microRNAs, respectively. A group of developmental transcription factors form the backbone of the EMT cascade and a large body of evidence shows that microRNAs are heavily involved in the successful coordination of mesenchymal transformation and vice versa, either by suppressing the expression of different groups of transcription factors, or otherwise acting as their functional mediators in orchestrating EMT. This article dissects the contribution of microRNAs to EMT and analyzes the molecular basis for their roles in this cellular process. Here, we emphasize their interaction with core transcription factors like the zinc finger enhancer (E)-box binding homeobox (ZEB), Snail and Twist families as well as some pluripotency transcription factors. PMID:26784241

  7. Estrogen Regulation of MicroRNA Expression

    PubMed Central

    Klinge, Carolyn M

    2009-01-01

    Women outlive men, but life expectancy is not influenced by hormone replacement (estrogen + progestin) therapy. Estrogens appear to protect brain, cardiovascular tissues, and bone from aging. Estrogens regulate genes directly through binding to estrogen receptors alpha and beta (ERα and ERβ) that are ligand-activated transcription factors and indirectly by activating plasma membrane-associated ER which, in turns, activates intracellular signaling cascades leading to altered gene expression. MicroRNAs (miRNAs) are short (19-25 nucleotides), naturally-occurring, non-coding RNA molecules that base-pair with the 3’ untranslated region of target mRNAs. This interaction either blocks translation of the mRNA or targets the mRNA transcript to be degraded. The human genome contains ~ 700-1,200 miRNAs. Aberrant patterns of miRNA expression are implicated in human diseases including breast cancer. Recent studies have identified miRNAs regulated by estrogens in human breast cancer cells, human endometrial stromal and myometrial smooth muscle cells, rat mammary gland, and mouse uterus. The decline of estradiol levels in postmenopausal women has been implicated in various age-associated disorders. The role of estrogen-regulated miRNA expression, the target genes of these miRNAs, and the role of miRNAs in aging has yet to be explored. PMID:19881910

  8. MicroRNAs in aortic disease.

    PubMed

    Vavuranakis, Manolis; Kariori, Maria; Vrachatis, Dimitrios; Aznaouridis, Konstantinos; Siasos, Gerasimos; Kokkou, Eleni; Mazaris, Savvas; Moldovan, Carmen; Kalogeras, Konstantinos; Tousoulis, Dimitris; Stefanadis, Christodoulos

    2013-01-01

    MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides which act as down regulators of gene expression in the post-transcription level and/or in the translation level. Several studies have shown that the process of their maturation is rather crucial for the development of cardiovascular system thus their regulation (up-,down-) is implicated with many cardiac pathologies. This is evaluated through their circulating levels which are reliable, stable and the changes in their serum profiles are representative of tissue alterations serum levels. Furthermore, they have been shown to participate in cardiovascular disease pathogenesis including atherosclerosis, coronary artery disease, myocardial infarction, heart failure cardiac arrhythmias and aortic stenosis. In the present review, we will first describe i) the process of miRNAs' maturation ii) their role in the cardiovascular development, iii) their role as biomarkers of cardiac diseases, iv) the cardiac myo-miR families and the v) their role in cardiac remodeling and the development of cardiac diseases. Second we will review the miRNA families that participate in aortic stenosis separated according to its main pathways (imflammation, fibrosis, calcification). Finally, we will describe the miRNAs that participate in the development of aortic aneurysm and aortic dissection according to their serum levels. PMID:23745808

  9. Involvement of microRNAs in epileptogenesis.

    PubMed

    Cattani, Adriano A; Allene, Camille; Seifert, Volker; Rosenow, Felix; Henshall, David C; Freiman, Thomas M

    2016-07-01

    Patients who have sustained brain injury or had developmental brain lesions present a non-negligible risk for developing delayed epilepsy. Finding therapeutic strategies to prevent development of epilepsy in at-risk patients represents a crucial medical challenge. Noncoding microRNA molecules (miRNAs) are promising candidates in this area. Indeed, deregulation of diverse brain-specific miRNAs has been observed in animal models of epilepsy as well as in patients with epilepsy, mostly in temporal lobe epilepsy (TLE). Herein we review deregulated miRNAs reported in epilepsy with potential roles in key molecular and cellular processes underlying epileptogenesis, namely neuroinflammation, cell proliferation and differentiation, migration, apoptosis, and synaptic remodeling. We provide an up-to-date listing of miRNAs altered in epileptogenesis and assess recent functional studies that have interrogated their role in epilepsy. Last, we discuss potential applications of these findings for the future development of disease-modifying therapeutic strategies for antiepileptogenesis. PMID:27207608

  10. Prefrontal microRNA-221 Mediates Environmental Enrichment-Induced Increase of Locomotor Sensitivity to Nicotine

    PubMed Central

    Gomez, Adrian M.; Altomare, Diego; Sun, Wei-Lun; Midde, Narasimha M.; Ji, Hao; Shtutman, Michael; Turner, Jill R.; Creek, Kim E.

    2016-01-01

    Background: Environmental enrichment alters susceptibility in developing drug addiction. We have demonstrated that rats raised in an enriched condition are more sensitive than rats raised in an impoverished condition to nicotine-induced locomotor activity, and this is associated with alterations of phosphorylated extracellular signal-regulated kinase 1/2 within the prefrontal cortex. This study determined the impact of microRNA-221 in the prefrontal cortex on phosphorylated extracellular signal-regulated kinase 1/2 and the enriched environment-dependent behavioral changes in response to nicotine. Methods: A microRNA array was conducted to profile microRNA expression in the prefrontal cortex of enriched condition and impoverished condition rats in response to repeated nicotine (0.35mg/kg, s.c.) administration. microRNA-221 in the prefrontal cortex, nucleus accumbens, and striatum was further verified by quantitative real-time PCR. Lentiviral-mediated overexpression of microRNA-221 in PC12 cells and the medial prefrontal cortex was performed to determine the effects of microRNA-221 on nicotine-mediated phosphorylated extracellular signal-regulated kinase 1/2, phosphorylated cAMP-response element-binding protein, and locomotor activity. Results: microRNA-221 was profoundly upregulated in the prefrontal cortex but not in nucleus accumbens and striatum of enriched condition rats relative to impoverished condition rats following repeated administration of nicotine. Overexpression of lentiviral-microRNA-221 attenuated nicotine-induced increase in phosphorylated extracellular signal-regulated kinase 1/2 in PC12 cells. Lentiviral-microRNA-221 overexpression in the medial prefrontal cortex further increased locomotor activity in impoverished condition but not in enriched condition rats in response to repeated nicotine administration. Accordingly, lentiviral-microRNA-221 attenuated nicotine-induced increases in phosphorylated extracellular signal-regulated kinase 1/2 and

  11. Stage-Specific MicroRNAs and Their Role in the Anticancer Effects of Calorie Restriction in a Rat Model of ER-Positive Luminal Breast Cancer.

    PubMed

    Devlin, Kaylyn L; Sanford, Tiffany; Harrison, Lauren M; LeBourgeois, Paul; Lashinger, Laura M; Mambo, Elizabeth; Hursting, Stephen D

    2016-01-01

    MicroRNAs have emerged as ubiquitous post-transcriptional regulators that coordinate many fundamental processes within cells, including those commonly linked to cancer when dysregulated. Profiling microRNAs across stages of cancer progression provides focus as to which microRNAs are key players in cancer development and are therefore important to manipulate with interventions to delay cancer onset and progression. Calorie restriction is one of the most effective preventive interventions across many types of cancer, although its effects on microRNAs have not been well characterized. We used the dimethylbenz[a]-anthracene-induced model of luminal mammary cancer in Sprague Dawley rats to elucidate which microRNAs are linked to progression in this type of cancer and, subsequently, to study how calorie restriction affects such microRNAs. We identified eight microRNAs (miR-10a, miR-10b, miR-21, miR-124, miR-125b, miR-126, miR-145 and miR-200a) to be associated with DMBA-induced mammary tumor progression. Calorie restriction, which greatly increased tumor-free survival and decreased the overall size of tumors that did develop, significantly decreased the expression of one microRNA, miR-200a, which was positively associated with tumor progression. We further showed that inhibition of miR-200a function, mimicking the effect of calorie restriction on this microRNA, inhibited proliferation in both rat (LA7) and human (MCF7) luminal mammary cancer cell lines. These findings present, for the first time, a stage-specific profile of microRNAs in a rodent model of luminal mammary cancer. Furthermore, we have identified the regulation of miR-200a, a microRNA that is positively associated with progression in this model, as a possible mechanism contributing to the anticancer effects of calorie restriction. PMID:27433802

  12. Stage-Specific MicroRNAs and Their Role in the Anticancer Effects of Calorie Restriction in a Rat Model of ER-Positive Luminal Breast Cancer

    PubMed Central

    Devlin, Kaylyn L.; Sanford, Tiffany; Harrison, Lauren M.; LeBourgeois, Paul; Lashinger, Laura M.; Mambo, Elizabeth; Hursting, Stephen D.

    2016-01-01

    MicroRNAs have emerged as ubiquitous post-transcriptional regulators that coordinate many fundamental processes within cells, including those commonly linked to cancer when dysregulated. Profiling microRNAs across stages of cancer progression provides focus as to which microRNAs are key players in cancer development and are therefore important to manipulate with interventions to delay cancer onset and progression. Calorie restriction is one of the most effective preventive interventions across many types of cancer, although its effects on microRNAs have not been well characterized. We used the dimethylbenz[a]-anthracene-induced model of luminal mammary cancer in Sprague Dawley rats to elucidate which microRNAs are linked to progression in this type of cancer and, subsequently, to study how calorie restriction affects such microRNAs. We identified eight microRNAs (miR-10a, miR-10b, miR-21, miR-124, miR-125b, miR-126, miR-145 and miR-200a) to be associated with DMBA-induced mammary tumor progression. Calorie restriction, which greatly increased tumor-free survival and decreased the overall size of tumors that did develop, significantly decreased the expression of one microRNA, miR-200a, which was positively associated with tumor progression. We further showed that inhibition of miR-200a function, mimicking the effect of calorie restriction on this microRNA, inhibited proliferation in both rat (LA7) and human (MCF7) luminal mammary cancer cell lines. These findings present, for the first time, a stage-specific profile of microRNAs in a rodent model of luminal mammary cancer. Furthermore, we have identified the regulation of miR-200a, a microRNA that is positively associated with progression in this model, as a possible mechanism contributing to the anticancer effects of calorie restriction. PMID:27433802

  13. Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence

    PubMed Central

    Houston, Kelly; McKim, Sarah M.; Comadran, Jordi; Bonar, Nicola; Druka, Ilze; Uzrek, Nicola; Cirillo, Elisa; Guzy-Wrobelska, Justyna; Collins, Nicholas C.; Halpin, Claire; Hansson, Mats; Dockter, Christoph; Druka, Arnis; Waugh, Robbie

    2013-01-01

    Within the cereal grasses, variation in inflorescence architecture results in a conspicuous morphological diversity that in crop species influences the yield of cereal grains. Although significant progress has been made in identifying some of the genes underlying this variation in maize and rice, in the temperate cereals, a group that includes wheat, barley, and rye, only the dosage-dependent and highly pleiotropic Q locus in hexaploid wheat has been molecularly characterized. Here we show that the characteristic variation in the density of grains along the inflorescence, or spike, of modern cultivated barley (Hordeum vulgare) is largely the consequence of a perturbed interaction between microRNA172 and its corresponding binding site in the mRNA of an APELATA2 (AP2)-like transcription factor, HvAP2. We used genome-wide association and biparental mapping to identify HvAP2. By comparing inflorescence development and HvAP2 transcript abundance in an extreme dense-spike mutant and its nearly isogenic WT line, we show that HvAP2 turnover driven by microRNA 172 regulates the length of a critical developmental window that is required for elongation of the inflorescence internodes. Our data indicate that this heterochronic change, an altered timing of developmental events caused by specific temporal variation in the efficiency of HvAP2 turnover, leads to the striking differences in the size and shape of the barley spike. PMID:24065816

  14. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved

    PubMed Central

    2013-01-01

    Background This study explores and characterizes cell cycle alterations induced by urban PM2.5 in the human epithelial cell line BEAS-2B, and elucidates possible mechanisms involved. Methods The cells were exposed to a low dose (7.5 μg/cm2) of Milan winter PM2.5 for different time points, and the cell cycle progression was analyzed by fluorescent microscopy and flow cytometry. Activation of proteins involved in cell cycle control was investigated by Western blotting and DNA damage by 32P-postlabelling, immunostaining and comet assay. The formation of reactive oxygen species (ROS) was quantified by flow cytometry. The role of PM organic fraction versus washed PM on the cell cycle alterations was also examined. Finally, the molecular pathways activated were further examined using specific inhibitors. Results Winter PM2.5 induced marked cell cycle alteration already after 3 h of exposure, represented by an increased number of cells (transient arrest) in G2. This effect was associated with an increased phosphorylation of Chk2, while no changes in p53 phosphorylation were observed at this time point. The increase in G2 was followed by a transient arrest in the metaphase/anaphase transition point (10 h), which was associated with the presence of severe mitotic spindle aberrations. The metaphase/anaphase delay was apparently followed by mitotic slippage at 24 h, resulting in an increased number of tetraploid G1 cells and cells with micronuclei (MN), and by apoptosis at 40 h. Winter PM2.5 increased the level of ROS at 2 h and DNA damage (8-oxodG, single- and double stand breaks) was detected after 3 h of exposure. The PM organic fraction caused a similar G2/M arrest and augmented ROS formation, while washed PM had no such effects. DNA adducts were detected after 24 h. Both PM-induced DNA damage and G2 arrest were inhibited by the addition of antioxidants and α-naphthoflavone, suggesting the involvement of ROS and reactive electrophilic metabolites formed via a P

  15. Characterization of genomic alterations in radiation-associated breast cancer among childhood cancer survivors, using comparative genomic hybridization (CGH) arrays.

    PubMed

    Yang, Xiaohong R; Killian, J Keith; Hammond, Sue; Burke, Laura S; Bennett, Hunter; Wang, Yonghong; Davis, Sean R; Strong, Louise C; Neglia, Joseph; Stovall, Marilyn; Weathers, Rita E; Robison, Leslie L; Bhatia, Smita; Mabuchi, Kiyohiko; Inskip, Peter D; Meltzer, Paul

    2015-01-01

    Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH) to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS). Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29), had invasive ductal tumors (81%, n = 26), estrogen receptor (ER)-positive staining (68%, n = 19 out of 28), and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22). Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2) was much higher among CCSS cases (38%, n = 12). Our findings suggest that second primary breast cancers in CCSS were enriched for an "amplifier" genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings. PMID:25764003

  16. Molecular Characterization of a Lysozyme Gene and Its Altered Expression Profile in Crowded Beet Webworm (Loxostege sticticalis).

    PubMed

    Kong, Hailong; Lv, Min; Mao, Nian; Wang, Cheng; Cheng, Yunxia; Zhang, Lei; Jiang, Xingfu; Luo, Lizhi

    2016-01-01

    There is growing evidence that insects living in high-density populations exhibit an increase in immune function to counter a higher risk of disease. This phenomenon, known as density-dependent prophylaxis, has been experimentally tested in a number of insect species. Although density-dependent prophylaxis is especially prevalent in insects exhibiting density-dependent phase polyphenism, the molecular mechanism remains unclear. Our previous study demonstrated that the antibacterial activity of lysozyme is important for this process in the beet webworm Loxostege sticticalis. In this study, a lysozyme cDNA from L. sticticalis was cloned and characterized. The full-length cDNA is 1078 bp long and contains an open reading frame of 426 bp that encodes 142 amino acids. The deduced protein possesses structural characteristics of a typical c-type lysozyme and clusters with c-type lysozymes from other Lepidoptera. LsLysozyme was found to be expressed throughout all developmental stages, showing the highest level in pupae. LsLysozyme was also highly expressed in the midgut and fat body. Elevated LsLysozyme expression was observed in L. sticticalis larvae infected by Beauveria bassiana and in larvae reared under crowding conditions. In addition, the expression level of LsLysozyme in infected larvae reared at a density of 10 larvae per jar was significantly higher compared to those reared at a density of l or 30 larvae per jar. These results suggest that larval crowding affects the gene expression profile of this lysozyme. This study provides additional insight into the expression of an immune-associated lysozyme gene and helps us to better understand the immune response of L. sticticalis under crowding conditions. PMID:27575006

  17. Alterations in Polyadenylation and Its Implications for Endocrine Disease

    PubMed Central

    Rehfeld, Anders; Plass, Mireya; Krogh, Anders; Friis-Hansen, Lennart

    2013-01-01

    Introduction: Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added – a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with different 3′ untranslated regions (3′ UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3′ UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for micro-RNAs and RNA-binding proteins. Implications of alterations in polyadenylation for endocrine disease: Alterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome, and many cancer diseases, including several types of endocrine tumor diseases. Perspectives: Recent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A) site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. Summary: This review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field. PMID:23658553

  18. Simultaneous Detection of Different MicroRNA Types Using the ZIP-Code Array System

    PubMed Central

    Weishaupt, Sonja U.; Rupp, Steffen

    2013-01-01

    MicroRNAs (miRNAs) are important negative regulators of gene expression. Their implication in tumorigenesis is based on their dysregulation in many human cancer diseases. Interestingly, in tumor cells, an altered ratio of precursor and mature miRNA levels has been described. Consequently, differences in miRNA type levels have a high potential as biomarkers and comparative high-throughput-based detection might permit a more accurate characterization of subtypes, especially in the case of very heterogeneous tumor entities. Several molecular methods exist for the detection of mature and precursor miRNAs. DNA microarrays are predestinated as a high-throughput method for comprehensive miRNA detection in tumors. However, the simultaneous array-based detection of both these miRNA types is limited because the mature miRNA sequence is identically present in both forms. Here we present a ZIP-code DNA microarray-based system in combination with a novel labeling approach, which enables the simultaneous detection of precursor and mature miRNAs in one single experiment. Using synthetic miRNA templates, we demonstrate the specificity of the method for the different miRNA types, as well as the detection range up to four orders of magnitude. Moreover, mature and precursor miRNAs were detected and validated in human tumor cells. PMID:24078866

  19. Influence of microRNA on the Maintenance of Human Iron Metabolism

    PubMed Central

    Davis, McKale; Clarke, Stephen

    2013-01-01

    Iron is an essential nutrient critical for many cellular functions including DNA synthesis, ATP generation, and cellular proliferation. Though essential, excessive iron may contribute to the generation of free radicals capable of damaging cellular lipids, proteins, and nucleic acids. As such, the maintenance and control of cellular iron homeostasis is critical to prevent either iron deficiency or iron toxicity conditions. The maintenance of cellular iron homeostasis is largely coordinated by a family of cytosolic RNA binding proteins known as Iron Regulatory Proteins (IRP) that function to post-transcriptionally control the translation and/or stability of mRNA encoding proteins required for iron uptake, storage, transport, and utilization. More recently, a class of small non-coding RNA known as microRNA (miRNA) has also been implicated in the control of iron metabolism. To date, miRNA have been demonstrated to post-transcriptionally regulate the expression of genes associated with iron acquisition (transferrin receptor and divalent metal transporter), iron export (ferroportin), iron storage (ferritin), iron utilization (ISCU), and coordination of systemic iron homeostasis (HFE and hemojevelin). Given the diversity of miRNA and number of potential mRNA targets, characterizing factors that contribute to alterations in miRNA expression, biogenesis, and processing will enhance our understanding of mechanisms by which cells respond to changes in iron demand and/or iron availability to control cellular iron homeostasis. PMID:23846788

  20. Review: MicroRNAs in assisted reproduction and their potential role in IVF failure.

    PubMed

    Siristatidis, Charalampos; Vogiatzi, Paraskevi; Brachnis, Nikos; Liassidou, Aspasia; Iliodromiti, Zoe; Bettocchi, Stefano; Chrelias, Charalampos

    2015-01-01

    MicroRNAs (miRNAs) have recently emerged as important regulators of gene expression stability. In the endometrium, miRNAs are involved in the dynamic changes associated with the menstrual cycle, implicated in implantation and in reproductive disorders. We performed a review in an attempt to assess the potential biological pathways linking altered miRNAs profiles with in vitro fertilisation (IVF) failure. Crucially, as miRNAs appear to have a significant role in the course of reproduction, they are excellent research candidates with the potential to enable a better understanding over the underlying molecular activities that prevent implantation and further progression of the embryo. Further steps include in-depth pathway mapping of the implantation process and the characterization of the respective miRNAs and associated links. The efficiency of any intervention should determine whether miRNA profiling could possibly be adopted in routine practice to substantially improve the diagnostic accuracy and, in parallel, the directed treatment of the next-generation IVF. PMID:25792643

  1. MicroRNA binding site polymorphisms as biomarkers in cancer management and research

    PubMed Central

    Cipollini, Monica; Landi, Stefano; Gemignani, Federica

    2014-01-01

    MicroRNAs (miRNAs) are important regulators of eukaryotic gene expression. They have been implicated in a broad range of biological processes, and miRNA-related genetic alterations probably underlie several human diseases. Single nucleotide polymorphisms of transcripts may modulate the posttranscriptional regulation of gene expression by miRNAs and explain interindividual variability in cancer risk and in chemotherapy response. On the basis of recent association studies published in the literature, the present review mainly summarizes the potential role of miRNAs as molecular biomarkers for disease susceptibility, diagnosis, prognosis, and drug-response prediction in tumors. Many clues suggest a role for polymorphisms within the 3′ untranslated regions of KRAS rs61764370, SET8 rs16917496, and MDM4 rs4245739 as SNPs in miRNA binding sites highly promising in the biology of human cancer. However, more studies are needed to better characterize the composite spectrum of genetic determinants for future use of markers in risk prediction and clinical management of diseases, heading toward personalized medicine. PMID:25114582

  2. Functional analysis of microRNAs in human hepatocellular cancer stem cells

    PubMed Central

    Meng, Fanyin; Glaser, Shannon S; Francis, Heather; DeMorrow, Sharon; Han, Yuyan; Passarini, Jenna D; Stokes, Allison; Cleary, John P; Liu, Xiuping; Venter, Julie; Kumar, Preetham; Priester, Sally; Hubble, Levi; Staloch, Dustin; Sharma, Jay; Liu, Chang-Gong; Alpini, Gianfranco

    2012-01-01

    Abstract MicroRNAs are endogenous small non-coding RNAs that regulate gene expression and cancer development. A rare population of hepatocellular cancer stem cells (HSCs) holds the extensive proliferative and self-renewal potential necessary to form a liver tumour. We postulated that specific transcriptional factors might regulate the expression of microRNAs and subsequently modulate the expression of gene products involved in phenotypic characteristics of HSCs. We evaluated the expression of microRNA in human HSCs by microarray profiling, and defined the target genes and functional effects of two groups of microRNA regulated by IL-6 and transcriptional factor Twist. A subset of highly chemoresistant and invasive HSCs was screened with aberrant expressions of cytokine IL-6 and Twist. We demonstrated that conserved let-7 and miR-181 family members were up-regulated in HSCs by global microarray-based microRNA profiling followed by validation with real-time polymerase chain reaction. Importantly, inhibition of let-7 increases the chemosensitivity of HSCs to sorafenib and doxorubicin whereas silencing of miR-181 led to a reduction in HSCs motility and invasion. Knocking down IL-6 and Twist in HSCs significantly reduced let-7 and miR-181 expression and subsequently inhibited chemoresistance and cell invasion. We showed that let-7 directly targets SOCS-1 and caspase-3, whereas miR-181 directly targets RASSF1A, TIMP3 as well as nemo-like kinase (NLK). In conclusion, alterations of IL-6- and Twist-regulated microRNA expression in HSCs play a part in tumour spreading and responsiveness to chemotherapy. Our results define a novel regulatory mechanism of let-7/miR-181s suggesting that let-7 and miR-181 may be molecular targets for eradication of hepatocellular malignancies. PMID:21352471

  3. Evolution of microRNA expression during human bronchial squamous carcinogenesis.

    PubMed

    Mascaux, C; Laes, J F; Anthoine, G; Haller, A; Ninane, V; Burny, A; Sculier, J P

    2009-02-01

    MicroRNAs, negative post-transcriptional regulators of gene expression, are involved in cancer. Their role in early bronchial carcinogenesis was analysed in 60 biopsies obtained by fluorescence bronchoscopy (six per stage: normal tissue of nonsmokers, normal normofluorescent and hypofluorescent bronchial tissue of smokers, hyperplasia, metaplasia, mild, moderate and severe dysplasia, in situ carcinoma and invasive squamous cell carcinoma (SQCC)). In total, 69 microRNAs were found to be differentially expressed in the course of bronchial carcinogenesis. Among them, some microRNAs showed a linear evolution of their expression level, such as miR-32 and miR-34c, whose expression progressively decreased from normal bronchial tissues of nonsmokers to SQCC. Others behaved differently at successive stages, such as miR-142-3p or miR-9, or are only altered from a specific stage, such as miR-199a or miR-139. MicroRNAs globally followed a two-step evolution, first decreasing (a reverse of their increase during embryogenesis) during the earliest morphological modifications of bronchial epithelium, and thereafter increasing at later stages of lung carcinogenesis. Moreover, microRNA expression was very efficient for the prediction of the histological classification between low- and high-grade lesions and between in situ and invasive carcinoma. The present data show, for the first time, that microRNAs are involved in bronchial carcinogenesis from the very early steps of this process and, thus, could provide tools for early detection of lung cancer. PMID:19010987

  4. Cortical Tubers: Windows into Dysregulation of Epilepsy Risk and Synaptic Signaling Genes by MicroRNAs.

    PubMed

    Dombkowski, Alan A; Batista, Carlos E; Cukovic, Daniela; Carruthers, Nicholas J; Ranganathan, Ramya; Shukla, Upasana; Stemmer, Paul M; Chugani, Harry T; Chugani, Diane C

    2016-03-01

    Tuberous sclerosis complex (TSC) is a multisystem genetic disorder caused by mutations in the TSC1 and TSC2 genes. Over 80% of TSC patients are affected by epilepsy, but the molecular events contributing to seizures in TSC are not well understood. Recent reports have demonstrated that the brain is enriched with microRNA activity, and they are critical in neural development and function. However, little is known about the role of microRNAs in TSC. Here, we report the characterization of aberrant microRNA activity in cortical tubers resected from 5 TSC patients surgically treated for medically intractable epilepsy. By comparing epileptogenic tubers with adjacent nontuber tissue, we identified a set of 4 coordinately overexpressed microRNAs (miRs 23a, 34a, 34b*, 532-5p). We used quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic profiling to investigate the combined effect of the 4 microRNAs on target proteins. The proportion of repressed proteins among the predicted targets was significantly greater than in the overall proteome and was highly enriched for proteins involved in synaptic signal transmission. Among the combinatorial targets were TSC1, coding for the protein hamartin, and several epilepsy risk genes. We found decreased levels of hamartin in epileptogenic tubers and confirmed targeting of the TSC1 3' UTR by miRs-23a and 34a. PMID:25452577

  5. Considerations for optimization of microRNA PCR assays for molecular diagnosis.

    PubMed

    Dellett, Margaret; Simpson, David Arthur

    2016-01-01

    The remarkable stability of microRNAs in biofluids underlies their potential as biomarkers, but their small size presents challenges for detection by RT-qPCR. The heterogeneity of microRNAs, with each one comprising a series of variants or 'isomiRs', adds additional complexity. Presented here are the key considerations for use of RT-qPCR to measure microRNAs and their isomiRs, with a focus on plasma. Modified nucleotides can be incorporated into primer sequences to enhance affinity and provide increased specificity and sensitivity for RT-qPCR assays. Approaches based upon polyA tailing and use of a common oligo(dT)-based reverse transcription oligonucleotide will detect most isomiRs. Conversely, stem-loop RT oligonucleotides and sequence specific probes can enable detection of specific isomiRs of interest. Next generation sequencing of all the products of a microRNA RT-PCR reaction is a promising new approach for both microRNA quantification and characterization. PMID:26854938

  6. A Subset of Patients with Acute Myeloid Leukemia Has Leukemia Cells Characterized by Chemokine Responsiveness and Altered Expression of Transcriptional as well as Angiogenic Regulators

    PubMed Central

    Brenner, Annette K.; Reikvam, Håkon; Bruserud, Øystein

    2016-01-01

    Acute myeloid leukemia (AML) is an aggressive and heterogeneous bone marrow malignancy, the only curative treatment being intensive chemotherapy eventually in combination with allogeneic stem cell transplantation. Both the AML and their neighboring stromal cells show constitutive chemokine release, but chemokines seem to function as regulators of AML cell proliferation only for a subset of patients. Chemokine targeting is therefore considered not only for immunosuppression in allotransplanted patients but also as a possible antileukemic strategy in combination with intensive chemotherapy or as part of disease-stabilizing treatment at least for the subset of patients with chemokine-responsive AML cells. In this study, we characterized more in detail the leukemia cell phenotype of the chemokine-responsive patients. We investigated primary AML cells derived from 79 unselected patients. Standardized in vitro suspension cultures were used to investigate AML cell proliferation, and global gene expression profiles were compared for chemokine responders and non-responders identified through the proliferation assays. CCL28-induced growth modulation was used as marker of chemokine responsiveness, and 38 patients were then classified as chemokine-responsive. The effects of exogenous CCL28 (growth inhibition/enhancement/no effect) thus differed among patients and was also dependent on the presence of exogenous hematopoietic growth factors as well as constitutive AML cell cytokine release. The effect of CCR1 inhibition in the presence of chemokine-secreting mesenchymal stem cells also differed among patients. Chemokine-responsive AML cells showed altered expression of genes important for (i) epigenetic transcriptional regulation, particularly lysine acetylation; (ii) helicase activity, especially DExD/H RNA helicases; and (iii) angioregulatory proteins important for integrin binding. Thus, chemokine responsiveness is part of a complex AML cell phenotype with regard to

  7. Differential MicroRNA Expression in Human Macrophages with Mycobacterium tuberculosis Infection of Beijing/W and Non-Beijing/W Strain Types

    PubMed Central

    Zheng, Lin; Leung, Eric; Lee, Nelson; Lui, Grace; To, Ka-Fai; Chan, Raphael C. Y.; Ip, Margaret

    2015-01-01

    Objectives The role of microRNAs in association with Mycobacterium tuberculosis (MTB) infection and the immunology regulated by microRNAs upon MTB infection have not been fully unravelled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of the host macrophages by microarray in a small cohort with active MTB disease, latent infection (LTBI), and from healthy controls. Results The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Beijing/W strains (P<0.05). A unique signature of 11 microRNAs in human macrophages was identified to differentiate active MTB disease from LTBI and healthy controls. Pathway analyses of these differentially expressed miRNAs suggest that the immune-regulatory interactions involving TGF-β signalling pathway take part in the dysregulation of critical TB processes in the macrophages, resulting in active expression of both cell communication and signalling transduction systems. Conclusion We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs expressions which may reflect their virulence characteristics in altering the host response. The unique signatures of 11 microRNAs may deserve further evaluation as candidates for biomarkers in the diagnosis of MTB and Beijing/W infections. PMID:26053546

  8. Methylated DNA and microRNA in Body Fluids as Biomarkers for Cancer Detection

    PubMed Central

    Ma, Yanning; Wang, Xian; Jin, Hongchuan

    2013-01-01

    Epigenetic alterations including DNA methylation and microRNAs (miRNAs) play important roles in the initiation and progression of human cancers. As the extensively studied epigenetic changes in tumors, DNA methylation and miRNAs are the most potential epigenetic biomarkers for cancer diagnosis. After the identification of circulating cell-free nuclear acids, increasing evidence demonstrated great potential of cell-free epigenetic biomarkers in the blood or other body fluids for cancer detection. PMID:23681012

  9. MicroRNA-99a and 100 mediated upregulation of FOXA1 in bladder cancer

    PubMed Central

    Drayton, Ross M.; Peter, Stefan; Myers, Katie; Miah, Saiful; Dudziec, Ewa; Bryant, Helen E.; Catto, James W. F.

    2014-01-01

    Urothelial cell carcinoma of the bladder (UCC) is a common disease often characterized by FGFR3 dysregulation. Whilst upregulation of this oncogene occurs most frequently in low-grade non-invasive tumors, recent data reveal increased FGFR3 expression characterizes a common sub-type of invasive UCC sharing molecular similarities with breast cancer. These similarities include upregulation of the FOXA1 transcription factor and reduced expression of microRNAs-99a/100. We have previously identified direct regulation of FGFR3 by these two microRNAs and now search for further targets. Using a microarray meta-database we find potential FOXA1 regulation by microRNAs-99a/100. We confirm direct targeting of the FOXA1 3′UTR by microRNAs-99a/100 and also potential indirect regulation through microRNA-485-5p/SOX5/JUN-D/FOXL1 and microRNA-486/FOXO1a. In 292 benign and malignant urothelial samples, we find an inverse correlation between the expression of FOXA1 and microRNAs-99a/100 (r=−0.33 to −0.43, p<0.05). As for FGFR3 in UCC, tumors with high FOXA1 expression have lower rates of progression than those with low expression (Log rank p=0.009). Using global gene expression and CpG methylation profiling we find genotypic consequences of FOXA1 upregulation in UCC. Genetic changes are associated with regional hypomethylation, occur near FOXA1 binding sites, and mirror gene expression changes previously reported in FGFR3 mutant-UCC. These include gene silencing through aberrant hypermethylation (e.g. IGFBP3) and affect genes characterizing breast cancer sub-types (e.g. ERBB2). In conclusion, we have identified microRNAs-99a/100 mediate a direct relationship between FGFR3 and FOXA1 and potentially facilitate cross talk between these pathways in UCC. PMID:25071007

  10. Skeletal Micro-RNA Responses to Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Thomas, Nicholas J.; Choi, Catherine Y.; Alwood, Joshua S.

    2016-01-01

    Astronauts lose bone structure during long-duration spaceflight. These changes are due, in part, to insufficient bone formation by the osteoblast cells. Little is known about the role that small (approximately 22 nucleotides), non-coding micro-RNAs (miRNAs) play in the osteoblast response to microgravity. We hypothesize that osteoblast-lineage cells alter their miRNA status during microgravity exposure, contributing to impaired bone formation during weightlessness. To simulate weightlessness, female mice (C57BL/6, Charles River, 10 weeks of age, n = 7) were hindlimb unloaded up to 12 days. Age-matched and normally ambulating mice served as controls (n=7). To assess the expression of miRNAs in skeletal tissue, the tibia was collected ex vivo and cleaned of soft-tissue and marrow. Total RNA was collected from tibial bone and relative abundance was measured for miRNAs of interest using quantitative real time PCR array looking at 372 unique and well-characterized mature miRNAs using the delta-delta Ct method. Transcripts of interest were normalized to an average of 6 reference RNAs. Preliminary results show that hindlimb unloading decreased the expression of 14 miRNAs to less than 0.5 times that of the control levels and increased the expression of 5 miRNAs relative to the control mice between 1.2-1.5-fold (p less than 0.05, respectively). Using the miRSystem we assessed overlapping target genes predicted to be regulated by multiple members of the 19 differentially expressed miRNAs as well as in silico predicted targets of our individual miRNAs. Our miRsystem results indicated that a number of our differentially expressed miRNAs were regulators of genes related to the Wnt-Beta Catenin pathway-a known regulator of bone health-and, interestingly, the estrogen-mediated cell-cycle regulation pathway, which may indicate that simulated weightlessness modulated systemic hormonal levels or hormonal transduction that additionally contributed to bone loss. We plan to follow up

  11. Identification of Serum MicroRNA Signatures for Diagnosis of Mild Traumatic Brain Injury in a Closed Head Injury Model

    PubMed Central

    Barry, Erin S.; Bhomia, Manish; Hutchison, Mary Anne; Balakathiresan, Nagaraja S.; Grunberg, Neil E.; Maheshwari, Radha K.

    2014-01-01

    Wars in Iraq and Afghanistan have highlighted the problems of diagnosis and treatment of mild traumatic brain injury (mTBI). MTBI is a heterogeneous injury that may lead to the development of neurological and behavioral disorders. In the absence of specific diagnostic markers, mTBI is often unnoticed or misdiagnosed. In this study, mice were induced with increasing levels of mTBI and microRNA (miRNA) changes in the serum were determined. MTBI was induced by varying weight and fall height of the impactor rod resulting in four different severity grades of the mTBI. Injuries were characterized as mild by assessing with the neurobehavioral severity scale-revised (NSS-R) at day 1 post injury. Open field locomotion and acoustic startle response showed behavioral and sensory motor deficits in 3 of the 4 injury groups at day 1 post injury. All of the animals recovered after day 1 with no significant neurobehavioral alteration by day 30 post injury. Serum microRNA (miRNA) profiles clearly differentiated injured from uninjured animals. Overall, the number of miRNAs that were significantly modulated in injured animals over the sham controls increased with the severity of the injury. Thirteen miRNAs were found to identify mTBI regardless of its severity within the mild spectrum of injury. Bioinformatics analyses revealed that the more severe brain injuries were associated with a greater number of miRNAs involved in brain related functions. The evaluation of serum miRNA may help to identify the severity of brain injury and the risk of developing adverse effects after TBI. PMID:25379886

  12. MicroRNA Expression Profiles Associated With Prognosis and Therapeutic Outcome in Colon Adenocarcinoma

    PubMed Central

    Schetter, Aaron J.; Leung, Suet Yi; Sohn, Jane J.; Zanetti, Krista A.; Bowman, Elise D.; Yanaihara, Nozomu; Yuen, Siu Tsan; Chan, Tsun Leung; Kwong, Dora L. W.; Au, Gordon K. H.; Liu, Chang-Gong; Calin, George A.; Croce, Carlo M.

    2008-01-01

    covariates, including TNM staging, and was associated with a poor therapeutic outcome. Conclusions Expression patterns of microRNAs are systematically altered in colon adenocarcinomas. High miR-21 expression is associated with poor survival and poor therapeutic outcome. PMID:18230780

  13. MicroRNAs and cardiac regeneration

    PubMed Central

    Hodgkinson, Conrad P.; Kang, Martin H.; Dal-Pra, Sophie; Mirotsou, Maria; Dzau, Victor J.

    2015-01-01

    The human heart has a very limited capacity to regenerate lost or damaged cardiomyocytes following cardiac insult. Instead, myocardial injury is characterized by extensive cardiac remodeling by fibroblasts, resulting in the eventual deterioration of cardiac structure and function. Cardiac function would be improved if these fibroblasts could be converted into cardiomyocytes. MicroRNAs (miRNAs), small non-coding RNAs that promote mRNA degradation and inhibit mRNA translation, have been shown to be important in cardiac development. Using this information various researchers have utilized miRNAs to promote the formation of cardiomyocytes through a number of approaches. Several miRNAs acting in combination promote the direct conversion of cardiac fibroblasts into cardiomyocytes. Moreover, a number of miRNAs have been identified that aid the formation of iPS cells and miRNAs also induce these cells to adopt a cardiac fate. MiRNAs have also been implicated in resident cardiac progenitor cell differentiation. In this review we will discuss the current literature as it pertains to these processes as well as discussing the therapeutic implications of these findings. PMID:25953925

  14. MicroRNA 33 Regulates Glucose Metabolism

    PubMed Central

    Ramírez, Cristina M.; Goedeke, Leigh; Rotllan, Noemi; Yoon, Je-Hyun; Cirera-Salinas, Daniel; Mattison, Julie A.; Suárez, Yajaira; de Cabo, Rafael; Gorospe, Myriam

    2013-01-01

    Metabolic diseases are characterized by the failure of regulatory genes or proteins to effectively orchestrate specific pathways involved in the control of many biological processes. In addition to the classical regulators, recent discoveries have shown the remarkable role of small noncoding RNAs (microRNAs [miRNAs]) in the posttranscriptional regulation of gene expression. In this regard, we have recently demonstrated that miR-33a and miR33b, intronic miRNAs located within the sterol regulatory element-binding protein (SREBP) genes, regulate lipid metabolism in concert with their host genes. Here, we show that miR-33b also cooperates with SREBP1 in regulating glucose metabolism by targeting phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), key regulatory enzymes of hepatic gluconeogenesis. Overexpression of miR-33b in human hepatic cells inhibits PCK1 and G6PC expression, leading to a significant reduction of glucose production. Importantly, hepatic SREBP1c/miR-33b levels correlate inversely with the expression of PCK1 and G6PC upon glucose infusion in rhesus monkeys. Taken together, these results suggest that miR-33b works in concert with its host gene to ensure a fine-tuned regulation of lipid and glucose homeostasis, highlighting the clinical potential of miR-33a/b as novel therapeutic targets for a range of metabolic diseases. PMID:23716591

  15. MicroRNAs in Myeloid Hematological Malignancies

    PubMed Central

    Ciccone, Maria; Calin, George Adrian

    2015-01-01

    MicroRNAs are 19-24 nucleotides noncoding RNAs which silence modulate the expression of target genes by binding to the messenger RNAs. Myeloid malignancies include a broad spectrum of acute and chronic disorders originating from from the clonal transformation of a hematopoietic stem cell. Specific genetic abnormalities may define myeloid malignancies, such as translocation t(9;22) that represent the hallmark of chronic myeloid leukemia. Although next-generation sequencing pro-vided new insights in the genetic characterization and pathogenesis of myeloid neoplasms, the molecular mechanisms underlying myeloid neoplasms are lacking in most cases. Recently, several studies have demonstrated that the expression levels of specific miRNAs may vary among patients with myeloid malignancies compared with healthy individuals and partially unveiled how miRNAs participate in the leukemic transformation process. Finally, in vitro experiments and pre-clinical model provided preliminary data of the safety and efficacy of miRNA inhibitory molecules, opening new avenue in the treatment of myeloid hematological malignancies. PMID:27047254

  16. MicroRNA in Teleost Fish

    PubMed Central

    Bizuayehu, Teshome Tilahun; Babiak, Igor

    2014-01-01

    MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts. PMID:25053657

  17. MicroRNAs in Ovarian Cancer.

    PubMed

    Katz, Betina; Tropé, Claes G; Reich, Reuven; Davidson, Ben

    2015-09-01

    Ovarian cancer, consisting predominantly of ovarian carcinoma, is the eighth most common cancer in women and the most lethal gynecologic malignancy. Efforts focus on identifying biomarkers which may aid in early diagnosis and reduce mortality, as well as on characterizing therapeutic targets with the aim of circumventing chemoresistance and prolonging survival at advanced-stage disease. MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression, and have been found to play an important role in ovarian carcinoma. Recent research has identified multiple miRNAs involved in the biology and progression of the disease, and supports a role for miRNAs as potential biomarkers, predictive markers and prognostic factors. Many of the studies published to date nevertheless suffer from critical weaknesses which affect data quality and reproducibility, including the comparison of normal ovaries to tumor tissue without compensation for the highly discrepant target cell fraction in these two specimen types and the inclusion of carcinomas of different histotypes, non-epithelial tumors or tumors of non-specified histology. These shortcomings highlight the critical role of pathologists as part of the team in the setting of such research. This review summarizes current knowledge in this area and discusses the potential clinical relevance of miRNAs in ovarian carcinoma, with focus on studies of clinical specimens in which tissue selection has been deemed adequate. PMID:26216350

  18. MicroRNAs and oncolytic viruses.

    PubMed

    Ruiz, Autumn J; Russell, Stephen J

    2015-08-01

    MicroRNAs regulate gene expression in mammalian cells and often exhibit tissue-specific expression patterns. Incorporation of microRNA target sequences can be used to control exogenous gene expression and viral tropism in specific tissues to enhance the therapeutic indices of oncolytic viruses expressing therapeutic transgenes. Continued development of this targeting strategy has resulted in the generation of unattenuated oncolytic viruses with enhanced potency, broad species-tropisms and reduced off-target toxicities in multiple-tissues simultaneously. Furthermore, oncolytic viruses have been used to enhance the delivery, duration and therapeutic efficacy of microRNA-based therapeutics designed to either restore or inhibit the function of dysregulated microRNAs in cancer cells. Recent efforts focused on combining oncolytic virotherapy and microRNA regulation have generated increasingly potent and safe cancer therapeutics. PMID:25863717

  19. MicroRNA in intervertebral disc degeneration.

    PubMed

    Li, Zheng; Yu, Xin; Shen, Jianxiong; Chan, Matthew T V; Wu, William Ka Kei

    2015-06-01

    Aetiology of intervertebral disc degeneration (IDD) is complex, with genetic, developmental, biochemical and biomechanical factors contributing to the disease process. It is becoming obvious that epigenetic processes influence evolution of IDD as strongly as the genetic background. Deregulated phenotypes of nucleus pulposus cells, including differentiation, migration, proliferation and apoptosis, are involved in all stages of progression of human IDD. Non-coding RNAs, including microRNAs, have recently been recognized as important regulators of gene expression. Research into roles of microRNAs in IDD has been very active over the past 5 years. Our review summarizes current research enlightenment towards understanding roles of microRNAs in regulating nucleus pulposus cell functions in IDD. These exciting findings support the notion that specific modulation of microRNAs may represent an attractive approach for management of IDD. PMID:25736871

  20. MicroRNAs modulated by local mIGF-1 expression in mdx dystrophic mice

    PubMed Central

    Pelosi, Laura; Coggi, Angela; Forcina, Laura; Musarò, Antonio

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a X-linked genetic disease in which the absence of dystrophin leads to progressive lethal skeletal muscle degeneration. It has been demonstrated that among genes which are important for proper muscle development and function, micro-RNAs (miRNAs) play a crucial role. Moreover, altered levels of miRNAs were found in several muscular disorders, including DMD. A specific group of miRNAs, whose expression depends on dystrophin levels and whose deregulation explains several DMD pathogenetic traits, has been identified. Here, we addressed whether the anabolic activity of mIGF-1 on dystrophic muscle is associated with modulation of microRNAs expression. We demonstrated that some microRNAs are strictly linked to the dystrophin expression and are not modulated by mIGF-1 expression. In contrast, local expression of mIGF-1 promotes the modulation of other microRNAs, such as miR-206 and miR-24, along with the modulation of muscle specific genes, which are associated with maturation of regenerating fibers and with the stabilization of the differentiated muscle phenotype. These data suggest that mIGF-1, modifying the expression of some of the active players of muscle homeostasis, is able, even in absence of dystrophin expression, to activate circuitries that confer robustness to dystrophic muscle. PMID:25999854

  1. Ectopic MicroRNA-150-5p Transcription Sensitizes Glucocorticoid Therapy Response in MM1S Multiple Myeloma Cells but Fails to Overcome Hormone Therapy Resistance in MM1R Cells

    PubMed Central

    Palagani, Ajay; Op de Beeck, Ken; Naulaerts, Stefan; Diddens, Jolien; Sekhar Chirumamilla, Chandra; Van Camp, Guy; Laukens, Kris; Heyninck, Karen; Gerlo, Sarah; Mestdagh, Pieter; Vandesompele, Joke; Berghe, Wim Vanden

    2014-01-01

    Glucocorticoids (GCs) selectively trigger cell death in the multiple myeloma cell line MM1S which express NR3C1/Glucocorticoid Receptor (GR) protein, but fail to kill MM1R cells which lack GR protein. Given recent demonstrations of altered microRNA profiles in a diverse range of haematological malignancies and drug resistance, we characterized GC inducible mRNA and microRNA transcription profiles in GC sensitive MM1S as compared to GC resistant MM1R cells. Transcriptome analysis revealed that GCs regulate expression of multiple genes involved in cell cycle control, cell organization, cell death and immunological disease in MM1S cells, which remain unaffected in MM1R cells. With respect to microRNAs, mir-150-5p was identified as the most time persistent GC regulated microRNA, out of 5 QPCR validated microRNAs (mir-26b, mir-125a-5p, mir-146-5p, mir-150-5p, and mir-184), which are GC inducible in MM1S but not in MM1R cells. Functional studies further revealed that ectopic transfection of a synthetic mir-150-5p mimics GR dependent gene expression changes involved in cell death and cell proliferation pathways. Remarkably, despite the gene expression changes observed, overexpression of mir-150-5p in absence of GCs did not trigger significant cytotoxicity in MM1S or MM1R cells. This suggests the requirement of additional steps in GC induced cell death, which can not be mimicked by mir-150-5p overexpression alone. Interestingly, a combination of mir-150-5p transfection with low doses GC in MM1S cells was found to sensitize therapy response, whereas opposite effects could be observed with a mir-150-5p specific antagomir. Although mir-150-5p overexpression did not substantially change GR expression levels, it was found that mir-150-5p evokes GR specific effects through indirect mRNA regulation of GR interacting transcription factors and hormone receptors, GR chaperones, as well as various effectors of unfolded protein stress and chemokine signalling. Altogether GC

  2. MicroRNAs in congenital heart disease

    PubMed Central

    Smith, Tanya; Rajakaruna, Cha; Caputo, Massimo

    2015-01-01

    Congenital heart disease (CHD) is a broad term which encompasses a spectrum of pathology, the most common phenotypes include atrial septal defects (ASDs), ventricular septal defects (VSDs), patent ductus arteriosus (PAD) and tetralogy of Fallot (TOF). The impact of CHD is profound and it is estimated to be responsible for over 40% of prenatal deaths. MicroRNAs (miRs) are small, highly conserved, non-coding RNAs which have complex roles in a variety of pathophysiological states. miRs are post-transcriptional negative regulators of gene expression. Individual miRs are known to exert effects in multiple target genes, therefore the altered expression of a single miR could influence an entire gene network resulting in complex pathological states. Recent evidences suggest a role in the dysregulation of miRs in CHD. Mouse knock out models have contributed to our knowledge base revealing specific patterns of miR expression in cardiovascular physiology and pathological states. Specific miRs necessary for embryonic cardiac development have been revealed. Dysregulation of these miRs has been shown to cause structural abnormalities in the heart and vasculature, thus furthering our understanding of the processes which result in CHD. These advances have provided new insight into the signalling pathways responsible for CHD. Furthermore, this new appreciation for miRs in the development of CHD has uncovered their potential for new therapeutic targets where modulated miR activity may reduce the burden of disease. Here, we summarize current knowledge of the cause-effect relationships of miRs in CHD and consider their potential as a therapeutic targets and biomarkers in this clinical setting. PMID:26734643

  3. NPK macronutrients and microRNA homeostasis

    PubMed Central

    Kulcheski, Franceli R.; Côrrea, Régis; Gomes, Igor A.; de Lima, Júlio C.; Margis, Rogerio

    2015-01-01

    Macronutrients are essential elements for plant growth and development. In natural, non-cultivated systems, the availability of macronutrients is not a limiting factor of growth, due to fast recycling mechanisms. However, their availability might be an issue in modern agricultural practices, since soil has been frequently over exploited. From a crop management perspective, the nitrogen (N), phosphorus (P), and potassium (K) are three important limiting factors and therefore frequently added as fertilizers. NPK are among the nutrients that have been reported to alter post-embryonic root developmental processes and consequently, impairs crop yield. To cope with nutrients scarcity, plants have evolved several mechanisms involved in metabolic, physiological, and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged as additional key regulators of nutrients uptake and assimilation. Some studies have demonstrated the intrinsic relation between miRNAs and their targets, and how they can modulate plants to deal with the NPK availability. In this review, we focus on miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK starvation is related with miRNAs that are involved in root-architectural changes and uptake activity modulation. We further show that several miRNAs were discovered to be involved in plant–microbe symbiosis during N and P uptake, and in this way we present a global view of some studies that were conducted in the last years. The integration of current knowledge about miRNA-NPK signaling may help future studies to focus in good candidates genes for the development of important tools for plant nutritional breeding. PMID:26136763

  4. MicroRNA fingerprints during human megakaryocytopoiesis

    PubMed Central

    Garzon, Ramiro; Pichiorri, Flavia; Palumbo, Tiziana; Iuliano, Rodolfo; Cimmino, Amelia; Aqeilan, Rami; Volinia, Stefano; Bhatt, Darshna; Alder, Hansjuerg; Marcucci, Guido; Calin, George A.; Liu, Chang-Gong; Bloomfield, Clara D.; Andreeff, Michael; Croce, Carlo M.

    2006-01-01

    microRNAs are a highly conserved class of noncoding RNAs with important regulatory functions in proliferation, apoptosis, development, and differentiation. To discover novel regulatory pathways during megakaryocytic differentiation, we performed microRNA expression profiling of in vitro-differentiated megakaryocytes derived from CD34+ hematopoietic progenitors. The main finding was down-regulation of miR-10a, miR-126, miR-106, miR-10b, miR-17 and miR-20. Hypothetically, the down-regulation of microRNAs unblocks target genes involved in differentiation. We confirmed in vitro and in vivo that miR-130a targets the transcription factor MAFB, which is involved in the activation of the GPIIB promoter, a key protein for platelet physiology. In addition, we found that miR-10a expression in differentiated megakaryocytes is inverse to that of HOXA1, and we showed that HOXA1 is a direct target of miR-10a. Finally, we compared the microRNA expression of megakaryoblastic leukemic cell lines with that of in vitro differentiated megakaryocytes and CD34+ progenitors. This analysis revealed up-regulation of miR-101, miR-126, miR-99a, miR-135, and miR-20. Our data delineate the expression of microRNAs during megakaryocytopoiesis and suggest a regulatory role of microRNAs in this process by targeting megakaryocytic transcription factors. PMID:16549775

  5. MicroRNAs downregulated in neuropathic pain regulate MeCP2 and BDNF related to pain sensitivity.

    PubMed

    Manners, Melissa T; Tian, Yuzhen; Zhou, Zhaolan; Ajit, Seena K

    2015-01-01

    Nerve injury induces chronic pain and dysregulation of microRNAs in dorsal root ganglia (DRG). Several downregulated microRNAs are predicted to target Mecp2. MECP2 mutations cause Rett syndrome and these patients report decreased pain perception. We confirmed MeCP2 upregulation in DRG following nerve injury and repression of MeCP2 by miRNAs in vitro. MeCP2 regulates brain-derived neurotrophic factor (BDNF) and downregulation of MeCP2 by microRNAs decreased Bdnf in vitro. MeCP2 T158A mice exhibited reduced mechanical sensitivity and Mecp2-null and MeCP2 T158A mice have decreased Bdnf in DRG. MeCP2-mediated regulation of Bdnf in the DRG could contribute to altered pain sensitivity. PMID:26448907

  6. Bio-functional surfaces for the immunocapture of AGO2-bound microRNAs.

    PubMed

    Vaghi, V; Potrich, C; Lunelli, L; Facci, P; Pasquardini, L; Vanzetti, L; Pederzolli, C

    2016-10-01

    MicroRNAs (miRNAs) are endogenous, small (18-24nt), non-coding RNAs that regulate gene expression. Among miRNAs, those bound to the AGO2 protein are the functionally active fraction which mediates the cell regulatory processes and regulate messages exchanged by cells. Several methods have been developed to purify this fraction of microRNAs, such as immunoprecipitation and immunoprecipitation-derived techniques. However, all these techniques are generally recognized as technically complicated and time consuming. Here, a new bio-functional surface for the specific capture of AGO2-bound microRNAs is proposed. Starting from a silicon oxide surface, a protein A layer was covalently bound via epoxy chemistry to orient specific anti-AGO2 antibodies on the surface. The anti-AGO2 antibodies captured the AGO2 protein present in cell lysate and in human plasma. The AGO2-bound microRNAs were then released by enzymatic digestion and detected via RT-qPCR. Control surfaces were also prepared and tested. Every step in the preparation of the bio-functional surfaces was fully characterized from the chemical, morphological and functional point of view. The resulting bio-functional surface is able to specifically capture the AGO2-bound miRNAs from biologically-relevant samples, such as cell lysate and human plasma. These samples contain different proportions of AGO2-bound microRNAs, as reliably detected with the immunocapture method here proposed. This work opens new perspectives for a simple and faster method to isolate not only AGO2-bound microRNAs, but also the multiprotein complex containing AGO2 and miRNAs. PMID:27449965

  7. Pharmacogenetics of microRNAs and microRNAs biogenesis machinery in pediatric acute lymphoblastic leukemia.

    PubMed

    López-López, Elixabet; Gutiérrez-Camino, Ángela; Piñán, Maria Ángeles; Sánchez-Toledo, José; Uriz, Jose Javier; Ballesteros, Javier; García-Miguel, Purificación; Navajas, Aurora; García-Orad, África

    2014-01-01

    Despite the clinical success of acute lymphoblastic leukemia (ALL) therapy, toxicity is frequent. Therefore, it would be useful to identify predictors of adverse effects. In the last years, several studies have investigated the relationship between genetic variation and treatment-related toxicity. However, most of these studies are focused in coding regions. Nowadays, it is known that regions that do not codify proteins, such as microRNAs (miRNAs), may have an important regulatory function. MiRNAs can regulate the expression of genes affecting drug response. In fact, the expression of some of those miRNAs has been associated with drug response. Genetic variations affecting miRNAs can modify their function, which may lead to drug sensitivity. The aim of this study was to detect new toxicity markers in pediatric B-ALL, studying miRNA-related polymorphisms, which can affect miRNA levels and function. We analyzed 118 SNPs in pre-miRNAs and miRNA processing genes in association with toxicity in 152 pediatric B-ALL patients all treated with the same protocol (LAL/SHOP). Among the results found, we detected for the first time an association between rs639174 in DROSHA and vomits that remained statistically significant after FDR correction. DROSHA had been associated with alterations in miRNAs expression, which could affect genes involved in drug transport. This suggests that miRNA-related SNPs could be a useful tool for toxicity prediction in pediatric B-ALL. PMID:24614921

  8. MicroRNAs and atherosclerosis

    PubMed Central

    Madrigal-Matute, Julio; Rotllan, Noemi; Aranda, Juan F.; Fernández-Hernando, Carlos

    2014-01-01

    MicroRNAs (miRNAs) are small (~22nucleotide) sequences of RNA that regulate gene expression at posttranscriptional level. MiRNA/mRNA base pairing complementarity provokes mRNA decay and consequent gene silencing. These endogenous gene expression inhibitors were primarily described in cancer but recent exciting findings have also demonstrated a key role in cardiovascular diseases (CVDs) including atherosclerosis. MiRNAs controls endothelial cell (EC), vascular smooth muscle cell (VSMC) and macrophage functions, and thereby regulate the progression of atherosclerosis. MiRNAs expression is modulated by different stimuli involved in every stage of atherosclerosis and conversely miRNAs modulates several pathways implicated in plaque development such as cholesterol metabolism. In the present review, we focus on the importance of miRNAs in atherosclerosis and we further discuss their potential use as biomarkers and therapeutic targets in CVDs. PMID:23512606

  9. microRNAs in cancer

    PubMed Central

    Di Leva, Gianpiero; Garofalo, Michela; Croce, Carlo M.

    2014-01-01

    MicroRNAs are small non coding RNAs that typically inhibit the translation and stability of messanger RNAs (mRNAs), controlling genes involved in cellular processes such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and migration. Thus, miRNAs have been implicated in the regulation of virtually all signaling circuits within a cell and their dysregulation has been shown to play an essential role in the development and progression of cancer. Here, after a brief description of the miRNA genomics, biogenesis and function, we discuss the effects of miRNA deregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies. PMID:24079833

  10. Sexually dimorphic effects of gestational endocrine-disrupting chemicals on microRNA expression in the developing rat hypothalamus.

    PubMed

    Topper, Viktoria Y; Walker, Deena M; Gore, Andrea C

    2015-10-15

    This study examined developmental changes and sexual dimorphisms in hypothalamic microRNAs, and whether gestational exposures to environmental endocrine-disrupting chemicals (EDCs) altered their expression patterns. Pregnant rat dams were treated on gestational days 16 and 18 with vehicle, estradiol benzoate, or a mixture of polychlorinated biphenyls. Male and female offspring were euthanized on postnatal days (P) 15, 30, 45, or 90, and microRNA and mRNA targets were quantified in the medial preoptic nucleus (MPN) and ventromedial nucleus (VMN) of the hypothalamus. MicroRNAs showed robust developmental changes in both regions, and were sexually dimorphic in the MPN, but not VMN. Importantly, microRNAs in females were up-regulated by EDCs at P30, and down-regulated in males at P90. Few changes in mRNAs were found. Thus, hypothalamic microRNAs are sensitive to prenatal EDC treatment in a sex-, developmental age-, and brain region-specific manner. PMID:26190835

  11. CHARACTERIZATION OF SECONDARY ALTERATION IN THE COLUMBIA RIVER BASALT BY BACKSCATTERED ELECTRON IMAGING AND ENERGY-DISPERSIVE X-RAY SPECTROSCOPY.

    USGS Publications Warehouse

    Hearn, P.P.; Steinkampf, W.C.; Brown, Z.A.

    1984-01-01

    The thick sequences of flood basalts which underlie the Columbia River basin are important aquifiers, providing water for both agricultural and domestic use. Secondary alteration in these rocks occurs primarily as coatings or fillings in fractures and vesicles; alteration is generally believed to have occurred at low temperatures ( less than 100 C) by reaction with meteroic waters. The distribution and compositional variation of secondary minerals are therefore of major interest. This paper focuses on the compositional variation of the major alteration products and on present formulas based on the mean composition of these phases, and suggests possible reactions for the observed sequence of alteration.

  12. The emerging role of microRNAs in Alzheimer's disease

    PubMed Central

    Femminella, Grazia D.; Ferrara, Nicola; Rengo, Giuseppe

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNA which have been shown to regulate gene expression. The alteration ofmiRNAs expression has been associated with several pathological processes, including neurodegeneration. In the search for easily accessible and non-invasive biomarkers for Alzheimer's disease (AD) diagnosis and prognosis, circulating miRNAs are among the most promising candidates. Some of them have been consistently identified as AD-specific miRNAs and their targets also seem implicated in pathophysiological processes underlying AD. Here, we review the emerging role for miRNA in AD, giving an overview on general miRNAs biology, their implications in AD pathophysiology and their potential role as future biomarkers. PMID:25729367

  13. MicroRNA Regulators of Anxiety and Metabolic Disorders.

    PubMed

    Meydan, Chanan; Shenhar-Tsarfaty, Shani; Soreq, Hermona

    2016-09-01

    Anxiety-related and metabolic disorders are under intense research focus. Anxiety-induced microRNAs (miRNAs) are emerging as regulators that are not only capable of suppressing inflammation but can also induce metabolic syndrome-related processes. We summarize here evidence linking miRNA pathways which share regulatory networks in metabolic and anxiety-related conditions. In particular, miRNAs involved in these disorders include regulators of acetylcholine signaling in the nervous system and their accompanying molecular machinery. These have been associated with anxiety-prone states in individuals, while also acting as inflammatory suppressors. In peripheral tissues, altered miRNA pathways can lead to dysregulated metabolism. Common pathways in metabolic and anxiety-related phenomena might offer an opportunity to reclassify 'healthy' and 'unhealthy', as well as metabolic and anxiety-prone biological states, and inform putative strategies to treat these disorders. PMID:27496210

  14. The role of microRNAs in bone remodeling

    PubMed Central

    Jing, Dian; Hao, Jin; Shen, Yu; Tang, Ge; Li, Mei-Le; Huang, Shi-Hu; Zhao, Zhi-He

    2015-01-01

    Bone remodeling is balanced by bone formation and bone resorption as well as by alterations in the quantities and functions of seed cells, leading to either the maintenance or deterioration of bone status. The existing evidence indicates that microRNAs (miRNAs), known as a family of short non-coding RNAs, are the key post-transcriptional repressors of gene expression, and growing numbers of novel miRNAs have been verified to play vital roles in the regulation of osteogenesis, osteoclastogenesis, and adipogenesis, revealing how they interact with signaling molecules to control these processes. This review summarizes the current knowledge of the roles of miRNAs in regulating bone remodeling as well as novel applications for miRNAs in biomaterials for therapeutic purposes. PMID:26208037

  15. MicroRNAs, fibrotic remodeling, and aortic aneurysms.

    PubMed

    Milewicz, Dianna M

    2012-02-01

    Aortic aneurysms are a common clinical condition that can cause death due to aortic dissection or rupture. The association between aortic aneurysm pathogenesis and altered TGF-β signaling has been the subject of numerous investigations. Recently, a TGF-β-responsive microRNA (miR), miR-29, has been identified to play a role in cellular phenotypic modulation during aortic development and aging. In this issue of JCI, Maegdefessel and colleagues demonstrate that decreasing the levels of miR-29b in the aortic wall can attenuate aortic aneurysm progression in two different mouse models of abdominal aortic aneurysms. This study highlights the relevance of miR-29b in aortic disease but also raises questions about its specific role. PMID:22269322

  16. Missing link between microRNA and prostate cancer.

    PubMed

    Gill, Balraj Singh; Alex, Jimi Marin; Navgeet; Kumar, Sanjeev

    2016-05-01

    MicroRNAs are the non-coding RNAs which regulate endogenous gene expression in animal and plant cells. Alterations in the level of micro-ribonucleic acids (miRNAs) involving the deletions, overexpression, mutations, epigenetic silencing, or dysregulation of transcription factors that target specific miRNAs may culminate in various diseases including cancer. Recent findings demonstrate the role of miRNAs in prostate cancer. Numerous discoveries of miRNAs have marked the research and development surrounding prostate cancer management, diagnosis, and therapy which has made prediction easy, but the effective treatment strategy remains a mystery. This review seeks to draw a link between miRNA and prostate cancer through an understanding of the numerous signaling pathways that these miRNAs control, which may prove to be helpful in identifying therapeutically interesting molecular targets. PMID:26822307

  17. MicroRNAs and Recent Insights into Pediatric Ovarian Cancers

    PubMed Central

    Francis, Jessica C.; Kolomeyevskaya, Nonna; Mach, Claire M.; Dietrich, Jennifer E.; Anderson, Matthew L.

    2013-01-01

    Ovarian cancer is the most common pediatric gynecologic malignancy. When diagnosed in children, ovarian cancers present unique challenges that differ dramatically from those faced by adults. Here, we review the spectrum of ovarian cancers found in young women and girls and discuss the biology of these diseases. A number of advances have recently shed significant new understanding on the potential causes of ovarian cancer in this unique population. Particular emphasis is placed on understanding how altered expression of non-coding RNA transcripts known as microRNAs play a key role in the etiology of ovarian germ cell and sex cord-stromal tumors. Emerging transgenic models for these diseases are also reviewed. Lastly, future challenges and opportunities for understanding pediatric ovarian cancers, delineating clinically useful biomarkers, and developing targeted therapies are discussed. PMID:23641362

  18. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos

    SciTech Connect

    Jenny, Matthew J.; Aluru, Neelakanteswar; Hahn, Mark E.

    2012-10-15

    Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ∼ 22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5 nM) for 1 h at 30 hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60 hpf. TCDD caused strong induction of CYP1A at 36 hpf (62-fold) and 60 hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60 hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular

  19. Identification of Metastasis-Suppressive microRNAs in Primary Melanoma

    PubMed Central

    Hanniford, Doug; Segura, Miguel F.; Zhong, Judy; Philips, Elliot; Jirau-Serrano, Xavier; Darvishian, Farbod; Berman, Russell S.; Shapiro, Richard L.; Pavlick, Anna C.; Brown, Brian; Osman, Iman

    2015-01-01

    Background: Surgical management of primary melanoma is curative for most patients with clinically localized disease at diagnosis; however, a substantial number of patients recur and progress to advanced disease. Understanding molecular alterations that influence differential tumor progression of histopathologically similar lesions may lead to improved prognosis and therapies to slow or prevent metastasis. Methods: We examined microRNA dysregulation by expression profiling of primary melanoma tumors from 92 patients. We screened candidate microRNAs selected by differential expression between recurrent and nonrecurrent tumors or associated with primary tumor thickness (Student’s t test, Benjamini-Hochberg False Discovery Rate [FDR] < 0.05), in in vitro invasion assays. We performed in vivo metastasis assays, matrix remodeling experiments, and molecular studies to identify metastasis-regulating microRNAs and their cellular and molecular mechanisms. All statistical tests were two-sided. Results: We identified two microRNAs (hsa-miR-382, hsa-miR-516b) whose expression was lower in aggressive vs nonaggressive primary tumors, which suppressed invasion in vitro and metastasis in vivo (mean metastatic foci: control: 37.9, 95% confidence interval [CI] = 25.6 to 50.2; miR-382: 19.5, 95% CI = 12.2 to 26.9, P = .009; miR-516b: 12.5, 95% CI = 7.7 to 17.4, P < .001, Student’s t test). Mechanistically, miR-382 overexpression inhibits extracellular matrix degradation by melanoma cells. Moreover, we identified actin regulators CTTN, RAC1, and ARPC2 as direct targets of miR-382. Depletion of CTTN partially recapitulates miR-382 effects on matrix remodeling, invasion, and metastasis. Inhibition of miR-382 in a weakly tumorigenic melanoma cell line increased tumor progression and metastasis in vivo. Conclusions: Aberrant expression of specific microRNAs that can functionally impact progression of primary melanoma occurs as an early event of melanomagenesis. PMID:25677173

  20. Evolution of Arabidopsis microRNA families through duplication events

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently there has been a great interest in the identification of microRNAs and their targets as well as understanding the spatial and temporal regulation of microRNA genes. To understand how microRNA genes evolve, we looked at several rapidly evolving families in Arabidopsis thaliana, and found th...

  1. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization

    PubMed Central

    Liu, Chi-Hsiu; Sun, Ye; Li, Jie; Gong, Yan; Tian, Katherine T.; Evans, Lucy P.; Morss, Peyton C.; Fredrick, Thomas W.; Saba, Nicholas J.; Chen, Jing

    2015-01-01

    Pathologic ocular neovascularization commonly causes blindness. It is critical to identify the factors altered in pathologically proliferating versus normally quiescent vessels to develop effective targeted therapeutics. MicroRNAs regulate both physiological and pathological angiogenesis through modulating expression of gene targets at the posttranscriptional level. However, it is not completely understood if specific microRNAs are altered in pathologic ocular blood vessels, influencing vascular eye diseases. Here we investigated the potential role of a specific microRNA, miR-150, in regulating ocular neovascularization. We found that miR-150 was highly expressed in normal quiescent retinal blood vessels and significantly suppressed in pathologic neovessels in a mouse model of oxygen-induced proliferative retinopathy. MiR-150 substantially decreased endothelial cell function including cell proliferation, migration, and tubular formation and specifically suppressed the expression of multiple angiogenic regulators, CXCR4, DLL4, and FZD4, in endothelial cells. Intravitreal injection of miR-150 mimic significantly decreased pathologic retinal neovascularization in vivo in both wild-type and miR-150 knockout mice. Loss of miR-150 significantly promoted angiogenesis in aortic rings and choroidal explants ex vivo and laser-induced choroidal neovascularization in vivo. In conclusion, miR-150 is specifically enriched in quiescent normal vessels and functions as an endothelium-specific endogenous inhibitor of pathologic ocular neovascularization. PMID:26374840

  2. Utility of MicroRNAs and siRNAs in Cervical Carcinogenesis

    PubMed Central

    Díaz-González, Sacnite del Mar; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3′-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer. PMID:25874209

  3. Utility of microRNAs and siRNAs in cervical carcinogenesis.

    PubMed

    Díaz-González, Sacnite del Mar; Deas, Jessica; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3'-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer. PMID:25874209

  4. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization.

    PubMed

    Liu, Chi-Hsiu; Sun, Ye; Li, Jie; Gong, Yan; Tian, Katherine T; Evans, Lucy P; Morss, Peyton C; Fredrick, Thomas W; Saba, Nicholas J; Chen, Jing

    2015-09-29

    Pathologic ocular neovascularization commonly causes blindness. It is critical to identify the factors altered in pathologically proliferating versus normally quiescent vessels to develop effective targeted therapeutics. MicroRNAs regulate both physiological and pathological angiogenesis through modulating expression of gene targets at the posttranscriptional level. However, it is not completely understood if specific microRNAs are altered in pathologic ocular blood vessels, influencing vascular eye diseases. Here we investigated the potential role of a specific microRNA, miR-150, in regulating ocular neovascularization. We found that miR-150 was highly expressed in normal quiescent retinal blood vessels and significantly suppressed in pathologic neovessels in a mouse model of oxygen-induced proliferative retinopathy. MiR-150 substantially decreased endothelial cell function including cell proliferation, migration, and tubular formation and specifically suppressed the expression of multiple angiogenic regulators, CXCR4, DLL4, and FZD4, in endothelial cells. Intravitreal injection of miR-150 mimic significantly decreased pathologic retinal neovascularization in vivo in both wild-type and miR-150 knockout mice. Loss of miR-150 significantly promoted angiogenesis in aortic rings and choroidal explants ex vivo and laser-induced choroidal neovascularization in vivo. In conclusion, miR-150 is specifically enriched in quiescent normal vessels and functions as an endothelium-specific endogenous inhibitor of pathologic ocular neovascularization. PMID:26374840

  5. DNA ALTERATIONS

    EPA Science Inventory

    The exposure of an organism to genotoxic chemicals may induce a cascade of genetic events. nitially, structural alterations to DNA are formed. ext, the DNA damage is processed and subsequently expressed in mutant gene products. inally, diseases result from the genetic damage. he ...

  6. The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression

    PubMed Central

    Mehta, Arnav; Zhao, Jimmy L.; Sinha, Nikita; Marinov, Georgi K.; Mann, Mati; Kowalczyk, Monika S.; Galimidi, Rachel P.; Du, Xiaomi; Erikci, Erdem; Regev, Aviv; Chowdhury, Kamal; Baltimore, David

    2015-01-01

    Summary MicroRNAs are critical post-transcriptional regulators of hematopoietic cell-fate decisions, though little remains known about their role in aging hematopoietic stem cells (HSCs). We found that the microRNA-212/132 cluster (Mirc19) is enriched in HSCs and is up-regulated during aging. Both over-expression and deletion of microRNAs in this cluster leads to inappropriate hematopoiesis with age. Enforced expression of miR-132 in the bone marrow of mice led to rapid HSC cycling and depletion. A genetic deletion of Mirc19 in mice resulted in HSCs that had altered cycling, function, and survival in response to growth factor starvation. We found that miR-132 exerted its effect on aging HSCs by targeting the transcription factor FOXO3, a known aging associated gene. Our data demonstrates that Mirc19 plays a role in maintaining balanced hematopoietic output by buffering FOXO3 expression. We have thus identified it as a potential target that may play a role in age-related hematopoietic defects. PMID:26084022

  7. Resveratrol, MicroRNAs, Inflammation, and Cancer

    PubMed Central

    Tili, Esmerina; Michaille, Jean-Jacques

    2011-01-01

    MicroRNAs are short noncoding RNAs that regulate the expression of many target genes posttranscriptionally and are thus implicated in a wide array of cellular and developmental processes. The expression of miR-155 or miR-21 is upregulated during the course of the inflammatory response, but these microRNAs are also considered oncogenes due to their upregulation of expression in several types of tumors. Furthermore, it is now well established that inflammation is associated with the induction or the aggravation of nearly 25% of cancers. Therefore, the above microRNAs are thought to link inflammation and cancer. Recently, resveratrol (trans-3,4′,5-trihydroxystilbene), a natural polyphenol with antioxidant, anti-inflammatory, and anticancer properties, currently at the stage of preclinical studies for human cancer prevention, has been shown to induce the expression of miR-663, a tumor-suppressor and anti-inflammatory microRNA, while downregulating miR-155 and miR-21. In this paper we will discuss how the use of resveratrol in therapeutics may benefit from the preanalyses on the status of expression of miR-155 or miR-21 as well as of TGFβ1. In addition, we will discuss how resveratrol activity might possibly be enhanced by simultaneously manipulating the levels of its key target microRNAs, such as miR-663. PMID:21845215

  8. DNA damage modulates interactions between microRNAs and the 26S proteasome

    PubMed Central

    Tsimokha, Anna S; Kulichkova, Valentina A.; Karpova, Elena V.; Zaykova, Julia J.; Aksenov, Nikolai D; Vasilishina, Anastasia A.; Kropotov, Andrei V.; Antonov, Alexey; Barlev, Nikolai A.

    2014-01-01

    26S proteasomes are known as major non-lysosomal cellular machines for coordinated and specific destruction of ubiquitinylated proteins. The proteolytic activities of proteasomes are controlled by various post-translational modifications in response to environmental cues, including DNA damage. Besides proteolysis, proteasomes also associate with RNA hydrolysis and splicing. Here, we extend the functional diversity of proteasomes by showing that they also dynamically associate with microRNAs (miRNAs) both in the nucleus and cytoplasm of cells. Moreover, DNA damage induced by an anti-cancer drug, doxorubicin, alters the repertoire of proteasome-associated miRNAs, enriching the population of miRNAs that target cell cycle checkpoint regulators and DNA repair proteins. Collectively, these data uncover yet another potential mode of action for proteasomes in the cell via their dynamic association with microRNAs. PMID:25004448

  9. MicroRNAs -the Next Generation Therapeutic Targets in Human Diseases

    PubMed Central

    Srinivasan, Sakthivel; Selvan, Subramanian Tamil; Archunan, Govindaraju; Gulyas, Balazs; Padmanabhan, Parasuraman

    2013-01-01

    MicroRNAs (miRNAs), an abundant class of ~22-nucleotide non-coding RNAs, regulate the expression of genes at post transcriptional level. MiRNAs are important regulators of eukaryotic gene expression and therefore implicated in a wide range of biological processes. The miRNA-related genetic alterations are possibly more implicated human diseases than currently appreciated. Genetic variants in miRNA target sites, called miRNA genes are identified to be associated with human diseases. This review discusses about the role of micro-RNA genes in various human diseases such as neurodegenerative disorders, cardio-vascular diseases, and metabolic disorders, and how they can be targeted as a new therapeutic tool in future with reference to drug discoveries/ development. PMID:24396504

  10. Vitamin D-Regulated MicroRNAs: Are They Protective Factors against Dengue Virus Infection?

    PubMed Central

    Arboleda, John F.; Urcuqui-Inchima, Silvio

    2016-01-01

    Over the last few years, an increasing body of evidence has highlighted the critical participation of vitamin D in the regulation of proinflammatory responses and protection against many infectious pathogens, including viruses. The activity of vitamin D is associated with microRNAs, which are fine tuners of immune activation pathways and provide novel mechanisms to avoid the damage that arises from excessive inflammatory responses. Severe symptoms of an ongoing dengue virus infection and disease are strongly related to highly altered production of proinflammatory mediators, suggesting impairment in homeostatic mechanisms that control the host's immune response. Here, we discuss the possible implications of emerging studies anticipating the biological effects of vitamin D and microRNAs during the inflammatory response, and we attempt to extrapolate these findings to dengue virus infection and to their potential use for disease management strategies. PMID:27293435

  11. MicroRNAs potential utility in colon cancer: Early detection, prognosis, and chemosensitivity

    PubMed Central

    Hollis, Michael; Nair, Kavitha; Vyas, Arpita; Chaturvedi, Lakshmi Shankar; Gambhir, Sahil; Vyas, Dinesh

    2015-01-01

    Over the past decade, research has shown that aberrant expression of microRNA (miRNA) is involved in colorectal cancer development and progression. MicroRNAs are small sequences of non-coding RNA that regulate expression of genes involved in important cellular functions, such as cell differentiation, multiplication, and apoptosis. A specific miRNA may display the effects of a tumor suppressor or oncogene. Altered miRNA expression is found in colorectal cancer (CRC) and patterns of miRNA expression correlate with CRC detection and outcome. Studies also have examined the use of circulating serum miRNA and fecal miRNA expression as non-invasive markers for early detection. Here, we review recent evidence demonstrating the potential role of miRNA in CRC and the implications of its use in the diagnosis, prognosis, and management of CRC. PMID:26217080

  12. Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages

    PubMed Central

    Zhang, Yingying; Zhang, Mengying; Li, Xueqin; Tang, Zongsheng; Wang, Xiangmin; Zhong, Min; Suo, Qifeng; Zhang, Yao; Lv, Kun

    2016-01-01

    Macrophage infiltration is a hallmark feature of viral myocarditis. As studies have shown that microRNA-155 regulates the differentiation of macrophages, we aimed to investigate the role of microRNA-155 in VM. We report that silencing microRNA-155 protects mice from coxsackievirus B3 induced myocarditis. We found that microRNA-155 expression was upregulated and localized primarily in heart-infiltrating macrophages and CD4+ T lymphocytes during acute myocarditis. In contrast with wildtype (WT) mice, microRNA-155−/− mice developed attenuated viral myocarditis, which was characterized by decreased cardiac inflammation and decreased intracardiac CD45+ leukocytes. Hearts of microRNA-155−/− mice expressed decreased levels of the IFN-γ and increased levels of the cytokines IL-4 and IL-13. Although total CD4+ and regulatory T cells were unchanged in miR-155−/− spleen proportionally, the activation of T cells and CD4+ T cell proliferation in miR-155−/− mice were significantly decreased. Beyond the acute phase, microRNA-155−/− mice had reduced mortality and improved cardiac function during 5 weeks of follow-up. Moreover, silencing microRNA-155 led to increased levels of alternatively-activated macrophages (M2) and decreased levels of classically-activated macrophages (M1) in the heart. Combined, our studies suggest that microRNA-155 confers susceptibility to viral myocarditis by affecting macrophage polarization, and thus may be a potential therapeutic target for viral myocarditis. PMID:26931072

  13. GE-01MOLECULAR AND PATHOLOGIC SUBSETS OF LOW GRADE GLIOMAS AND GLIONEURONAL TUMORS IDENTIFIED BY microRNA PROFILING

    PubMed Central

    Ames, Heather; Vizcaino, M. Adelita; Rodriguez, Fausto

    2014-01-01

    Low-grade (WHO I-II) gliomas represent the most frequent primary tumors of the central nervous system in children. They often have a good prognosis following total resection, however they can create many neurological complications due to mass effect, and may be difficult to resect depending on anatomic location. MicroRNAs have been identified as molecular regulators of protein expression that can repress multiple mRNAs concurrently through base pairing. Specific microRNAs are often suppressed during early cell differentiation to promote the expression of mitogenic proteins that are associated with the maintenance of specific stem cell types, a mechanism for growth and survival that is frequently exploited in cancer cells. Identification of these microRNA signatures present in low grade glioma and glioneuronal tumor sub-types could therefore lead to a wealth of candidate biomarkers. We used NanoString technology to analyze the expression levels of 800 microRNAs in nine low-grade glial and glioneuronal tumor subtypes (n = 45) using formalin-fixed paraffin-embedded tissue. We then generated hierarchical clusters following evaluation via significant analysis of microarrays (SAMs). Hierarchical clustering separated tumors from non-neoplastic brain. When looking at individual tumors, subependymal giant cell astrocytomas (SEGA) clustered sharply together, consistent with a unique microRNA expression signature in this tuberous sclerosis associated tumor subtype, compared to other low grade glial and glioneuronal tumors. Candidate microRNAs were validated using qRT-PCR. In SEGAs, microRNAs miR-219-5p, miR-129-2-3p, miR-338-3p, miR-487b, miR-885-5p, and miR-323-3p were significantly down-regulated by more than 15 fold as compared to normal brain and were also significantly down-regulated as compared to other low grade gliomas. In summary, altered microRNA expression is a feature of low grade glial and glioneuronal tumors. MicroRNA profiling may therefore be useful in

  14. Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes.

    PubMed

    Khalyfa, Abdelnaby; Khalyfa, Ahamed A; Akbarpour, Mahzad; Connes, Phillippe; Romana, Marc; Lapping-Carr, Gabrielle; Zhang, Chunling; Andrade, Jorge; Gozal, David

    2016-09-01

    Sickle cell anaemia (SCA) is the most frequent genetic haemoglobinopathy, which exhibits a highly variable clinical course characterized by hyper-coagulable and pro-inflammatory states, as well as endothelial dysfunction. Extracellular microvesicles are released into biological fluids and play a role in modifying the functional phenotype of target cells. We hypothesized that potential differences in plasma-derived extracellular microvesicles (EV) function and cargo from SCA patients may underlie divergent clinical trajectories. Plasma EV from SCA patients with mild, intermediate and severe clinical disease course were isolated, and primary endothelial cell cultures were exposed. Endothelial cell activation, monocyte adhesion, barrier disruption and exosome cargo (microRNA microarrays) were assessed. EV disrupted the endothelial barrier and induced expression of adhesion molecules and monocyte adhesion in a SCA severity-dependent manner compared to healthy children. Microarray approaches identified a restricted signature of exosomal microRNAs that readily distinguished severe from mild SCA, as well as from healthy children. The microRNA candidates were further validated using quantitative real time polymerase chain reaction assays, and revealed putative gene targets. Circulating exosomal microRNAs may play important roles in predicting the clinical course of SCA, and in delineation of individually tailored, mechanistically-based clinical treatment approaches of SCA patients in the near future. PMID:27161653

  15. MicroRNAs in the DNA Damage/Repair Network and Cancer

    PubMed Central

    Tessitore, Alessandra; Cicciarelli, Germana; Del Vecchio, Filippo; Gaggiano, Agata; Verzella, Daniela; Fischietti, Mariafausta; Vecchiotti, Davide; Capece, Daria; Zazzeroni, Francesca; Alesse, Edoardo

    2014-01-01

    Cancer is a multistep process characterized by various and different genetic lesions which cause the transformation of normal cells into tumor cells. To preserve the genomic integrity, eukaryotic cells need a complex DNA damage/repair response network of signaling pathways, involving many proteins, able to induce cell cycle arrest, apoptosis, or DNA repair. Chemotherapy and/or radiation therapy are the most commonly used therapeutic approaches to manage cancer and act mainly through the induction of DNA damage. Impairment in the DNA repair proteins, which physiologically protect cells from persistent DNA injury, can affect the efficacy of cancer therapies. Recently, increasing evidence has suggested that microRNAs take actively part in the regulation of the DNA damage/repair network. MicroRNAs are endogenous short noncoding molecules able to regulate gene expression at the post-transcriptional level. Due to their activity, microRNAs play a role in many fundamental physiological and pathological processes. In this review we report and discuss the role of microRNAs in the DNA damage/repair and cancer. PMID:24616890

  16. MicroRNAs in glioblastoma: role in pathogenesis and opportunities for targeted therapies.

    PubMed

    Costa, Pedro M; Cardoso, Ana L; Mano, Miguel; de Lima, Maria C Pedroso

    2015-01-01

    Glioblastoma (GBM) is among the most lethal human cancers, being generally characterized by rapid diffuse and infiltrative growth and high level of cellular heterogeneity associated with therapeutic resistance. Despite remarkable advances in cancer theranostics, which resulted in significant improvement of clinical outcomes, patient survival remains under one year. In recent years, considerable progress has been made in understanding the role of small non-coding RNAs, designated microRNAs, in the pathogenesis of GBM. Indeed, microRNAs were found to play a critical role in multiple steps of the tumorigenic process, including cellular proliferation, apoptosis evasion, invasion, angiogenesis, and stemness. Moreover, the modulation of microRNA expression, using either antisense oligonucleotides or precursor/mimic sequences, revealed a tremendous potential for application in GBM-targeted therapeutic approaches, either per se or in combination with chemo- and/or radiotherapy. In this manuscript, we review the regulatory role of microRNAs in key cellular processes underlying GBM tumorigenesis, including migration and invasion, apoptosis evasion, angiogenesis and GBM stem-like cell proliferation/differentiation, and discuss the current knowledge on their potential as diagnostic, prognostic and predictive biomarkers in this disease. We also address the latest advances in microRNA-based therapeutic approaches for GBM, by summarizing the major achievements in in vitro and pre-clinical studies. The trends identified by these studies are highlighted in order to provide new prospects for future developments towards the successful treatment of GBM. PMID:25613511

  17. MicroRNA variants as genetic determinants of bone mass.

    PubMed

    Dole, Neha S; Delany, Anne M

    2016-03-01

    Single nucleotide polymorphisms (SNPs) are the most abundant genetic variants that contribute to the heritability of bone mass. MicroRNAs (miRNAs, miRs) are key post-transcriptional regulators that modulate the differentiation and function of skeletal cells by targeting multiple genes in the same or distinct signaling pathways. SNPs in miRNA genes and miRNA binding sites can alter miRNA abundance and mRNA targeting. This review describes the potential impact of miRNA-related SNPs on skeletal phenotype. Although many associations between SNPs and bone mass have been described, this review is limited to gene variants for which a function has been experimentally validated. SNPs in miRNA genes (miR-SNPs) that impair miRNA processing and alter the abundance of mature miRNA are discussed for miR-146a, miR-125a, miR-196a, miR-149 and miR-27a. SNPs in miRNA targeting sites (miR-TS-SNPs) that alter miRNA binding are described for the bone remodeling genes bone morphogenetic protein receptor 1 (Bmpr1), fibroblast growth factor 2 (Fgf2), osteonectin (Sparc) and histone deacetylase 5 (Hdac5). The review highlights two aspects of miRNA-associated SNPs: the mechanism for altering miRNA mediated gene regulation and the potential of miR-associated SNPs to alter osteoblast, osteoclast or chondrocyte differentiation and function. Given the polygenic nature of skeletal diseases like osteoporosis and osteoarthritis, validating the function of additional miRNA-associated SNPs has the potential to enhance our understanding of the genetic determinants of bone mass and predisposition to selected skeletal diseases. PMID:26723575

  18. Traumatic Brain Injury Dysregulates MicroRNAs to Modulate Cell Signaling in Rat Hippocampus

    PubMed Central

    Liu, Zilong; Chen, Xiaorui; Zhao, Lili; Qu, Guoqiang; Li, Qingjie

    2014-01-01

    Traumatic brain injury (TBI) is a common cause for cognitive and communication problems, but the molecular and cellular mechanisms are not well understood. Epigenetic modifications, such as microRNA (miRNA) dysregulation, may underlie altered gene expression in the brain, especially hippocampus that plays a major role in spatial learning and memory and is vulnerable to TBI. To advance our understanding of miRNA in pathophysiological processes of TBI, we carried out a time-course microarray analysis of microRNA expression profile in rat ipsilateral hippocampus and examined histological changes, apoptosis and synapse ultrastructure of hippocampus post moderate TBI. We found that 10 out of 156 reliably detected miRNAs were significantly and consistently altered from one hour to seven days after injury. Bioinformatic and gene ontology analyses revealed 107 putative target genes, as well as several biological processes that might be initiated by those dysregulated miRNAs. Among those differentially expressed microRNAs, miR-144, miR-153 and miR-340-5p were confirmed to be elevated at all five time points after TBI by quantitative RT-PCR. Western blots showed three of the predicated target proteins, calcium/calmodulin-dependent serine protein kinase (CASK), nuclear factor erythroid 2-related factor 2 (NRF2) and alpha-synuclein (SNCA), were concurrently down- regulated, suggesting that miR-144, miR-153 and miR-340-5p may play important roles collaboratively in the pathogenesis of TBI-induced cognitive and memory impairments. These microRNAs might serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. PMID:25089700

  19. Identification of Dormancy-Associated MicroRNAs for the Design of Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes.

    PubMed

    Tiram, Galia; Segal, Ehud; Krivitsky, Adva; Shreberk-Hassidim, Rony; Ferber, Shiran; Ofek, Paula; Udagawa, Taturo; Edry, Liat; Shomron, Noam; Roniger, Maayan; Kerem, Batsheva; Shaked, Yuval; Aviel-Ronen, Sarit; Barshack, Iris; Calderón, Marcelo; Haag, Rainer; Satchi-Fainaro, Ronit

    2016-02-23

    The presence of dormant, microscopic cancerous lesions poses a major obstacle for the treatment of metastatic and recurrent cancers. While it is well-established that microRNAs play a major role in tumorigenesis, their involvement in tumor dormancy has yet to be fully elucidated. We established and comprehensively characterized pairs of dormant and fast-growing human osteosarcoma models. Using these pairs of mouse tumor models, we identified three novel regulators of osteosarcoma dormancy: miR-34a, miR-93, and miR-200c. This report shows that loss of these microRNAs occurs during the switch from dormant avascular into fast-growing angiogenic phenotype. We validated their downregulation in patients' tumor samples compared to normal bone, making them attractive candidates for osteosarcoma therapy. Successful delivery of miRNAs is a challenge; hence, we synthesized an aminated polyglycerol dendritic nanocarrier, dPG-NH2, and designed dPG-NH2-microRNA polyplexes to target cancer. Reconstitution of these microRNAs using dPG-NH2 polyplexes into Saos-2 and MG-63 cells, which generate fast-growing osteosarcomas, reduced the levels of their target genes, MET proto-oncogene, hypoxia-inducible factor 1α, and moesin, critical to cancer angiogenesis and cancer cells' migration. We further demonstrate that these microRNAs attenuate the angiogenic capabilities of fast-growing osteosarcomas in vitro and in vivo. Treatment with each of these microRNAs using dPG-NH2 significantly prolonged the dormancy period of fast-growing osteosarcomas in vivo. Taken together, these findings suggest that nanocarrier-mediated delivery of microRNAs involved in osteosarcoma tumor-host interactions can induce a dormant-like state. PMID:26815014

  20. Association of single nucleotide polymorphisms in the microRNA miR-1596 locus with residual feed intake in chickens.

    PubMed

    Luo, C; Sun, L; Ma, J; Wang, J; Qu, H; Shu, D

    2015-06-01

    MicroRNAs are an abundant class of small non-coding RNAs that regulate gene expression. Genetic variations in microRNA sequences may be associated with phenotype differences by influencing the expression of microRNAs and/or their targets. This study identified two single nucleotide polymorphisms (SNPs) in the genomic region of the microRNA miR-1596 locus of chicken. Of the two SNPs, one was 95 bp upstream of miR-1596 (g.5678784A>T) and the other was in the middle of the sequence producing the mature microRNA gga-miR-1596-3p (g.5678944A>G). Genotypic distribution of the two SNPs had large differences among 12 chicken breeds (lines), especially between the fast-growing commercial lines and the slow-growing Chinese indigenous breeds for the g.5678784A>T SNP. Only the g.5678784A>T SNP was significantly associated with residual feed intake (RFI) in the F2 population derived from a fast-growing and a slow-growing broiler as well as in the pure Huiyang bearded chicken. The birds with the AA genotype of the g.5678784A>T SNP had lower RFI and higher expression of the mature gga-miR-1596-3p microRNA of miR-1596 than did those with the other genotypes of the same SNP. We also found that the expression of the mature gga-miR-1596-3p microRNA of miR-1596 was significantly associated with RFI. These findings suggest that miR-1596 can become a candidate gene related to RFI, and its genetic variation may contribute to changes in RFI by altering expression levels of the mature gga-miR-1596-3p microRNA in chicken. PMID:25818998

  1. microRNA: Diagnostic Perspective

    PubMed Central

    Faruq, Omar; Vecchione, Andrea

    2015-01-01

    Biomarkers are biological measures of a biological state. An ideal marker should be safe and easy to measure, cost efficient, modifiable with treatment, and consistent across gender and ethnic groups. To date, none of the available biomarkers satisfy all of these criteria. In addition, the major limitations of these markers are low specificity, sensitivity, and false positive results. Recently identified, microRNAs (miRNAs) are endogenous, evolutionarily conserved small non-coding RNA (about 22–25 nt long), also known as micro-coordinators of gene expression, which have been shown to be an effective tools to study the biology of diseases and to have great potential as novel diagnostic and prognostic biomarkers with high specificity and sensitivity. In fact, it has been demonstrated that miRNAs play a pivotal role in the regulation of a wide range of developmental and physiological processes and their deficiencies have been related to a number of disease. In addition, miRNAs are stable and can be easily isolated and measured from tissues and body fluids. In this review, we provide a perspective on emerging concepts and potential usefulness of miRNAs as diagnostic markers, emphasizing the involvement of specific miRNAs in particular tumor types, subtypes, cardiovascular diseases, diabetes, infectious diseases, and forensic test. PMID:26284247

  2. MicroRNAs and pharmacogenomics.

    PubMed

    Shomron, Noam

    2010-05-01

    Pharmacogenomics studies the influence of genomics on drug response safety and efficacy. Although research in this field was initiated many years ago, few functional applications are currently in use at the clinic. MicroRNAs (miRNAs) are short noncoding RNAs that bind genes and silence their expression. MiRNAs are encoded by the genome and expressed in all animal cells. MiRNAs are predicted to target approximately half of all human genes, and as a result regulate many cellular processes. The current focus of pharmacogenomics is the identification of polymorphisms in candidate genes coding for drug-metabolizing enzymes, drug transporters and drug targets. Here we call for the evaluation of miRNAs as an additional regulatory layer affecting pharmacogenomics. To illustrate the potential of miRNAs for affecting drug response we performed in silico evaluation of miRNA binding regions in genes known to affect drug response. We suggest that miR-133 and miR-137 may affect VKORC1 expression while miR-22 may affect MTHFR expression. We propose that miRNAs play a central role as a novel regulatory layer affecting drug metabolism and drug targets, and thus should be taken into consideration when conducting pharmacogenomic studies. PMID:20415550

  3. MicroRNA and Metastasis.

    PubMed

    Ma, L

    2016-01-01

    Noncoding RNAs are important regulatory molecules of cellular processes. MicroRNAs (miRNAs) are small noncoding RNAs that bind to complementary sequences in the 3' untranslated region of target mRNAs, leading to degradation of the target mRNAs and/or inhibition of their translation. Some miRNAs are essential for normal animal development; however, many other miRNAs are dispensable for development but play a critical role in pathological conditions, including tumorigenesis and metastasis. miRNA genes often reside at fragile chromosome sites and are deregulated in cancer. Some miRNAs function as oncogenes or tumor suppressors, collectively termed "oncomirs." Specific metastasis-regulating miRNAs, collectively termed "metastamirs," govern molecular processes and pathways in malignant progression in either a tumor cell-autonomous or a cell-nonautonomous manner. Recently, exosome-transferred miRNAs have emerged as mediators of the tumor-stroma cross talk. In this chapter, we focus on the functions, mechanisms of action, and therapeutic potential of miRNAs, particularly oncomirs and metastamirs. PMID:27613133

  4. MicroRNAs and photocarcinogenesis.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Mukhtar, Hasan

    2015-01-01

    As a new class of sequence-specific regulators of gene expression, the microRNAs (miRNA) form a regulatory network with growth factors and transcription factors participating in various biological processes. It is now being recognized that the various key processes involved in cancer induction are under the control of these small noncoding RNAs, which regulate ~30% of all human genes by targeting sequences in their 3'-untranslated regions. Photocarcinogenesis is a complex interplay of signaling events in the UV exposed human skin including DNA damage and repair, apoptosis, cell survival, mutations and the immune system. In this review, we have scrutinized the role of miRNAs in skin cancer biology focusing on the three most common types of skin cancer namely the basal cell carcinoma, squamous cell carcinoma and cutaneous malignant melanoma. An overview of these studies will be useful in gaining insights into the mechanisms of cancer development in the human skin. A better understanding of the functionality of miRNAs will have enormous implications to risk assessment, and to target interventions against signaling events involved in photocarcinogenesis. PMID:25227270

  5. INTEGRATIVE MICRO-RNA AND PROTEOMIC APPROACHES IDENTIFY MOLECULAR MARKERS PREDICTIVE OF MUSCLE ATROPHY IN RAINBOW TROUT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: MicroRNAs (miRNA) are small, highly conserved, non-coding RNAs. MiRNAs are the most significant regulators in gene expression which negatively regulate target mRNAs at the posttranscriptional levels. Recently, we have cloned and characterized a “miRNAome” in rainbow trout. In addition, w...

  6. Insight into temperature-dependent microRNA function in mammalian hibernators

    PubMed Central

    Biggar, Kyle K; Storey, Kenneth B

    2014-01-01

    Mammalian hibernation involves re-programming of metabolic functions, in part, facilitated by microRNA. Although much is known about microRNA function, we lack knowledge on low temperature microRNA target selection. It is possible that the thermodynamics of microRNA target selection could dictate unique temperature-dependent sets of microRNA targets for hibernators.

  7. microRNAs in mycobacterial disease: friend or foe?

    PubMed Central

    Mehta, Manali D.; Liu, Philip T.

    2014-01-01

    As the role of microRNA in all aspects of biology continues to be unraveled, the interplay between microRNAs and human disease is becoming clearer. It should come of no surprise that microRNAs play a major part in the outcome of infectious diseases, since early work has implicated microRNAs as regulators of the immune response. Here, we provide a review on how microRNAs influence the course of mycobacterial infections, which cause two of humanity’s most ancient infectious diseases: tuberculosis and leprosy. Evidence derived from profiling and functional experiments suggests that regulation of specific microRNAs during infection can either enhance the immune response or facilitate pathogen immune evasion. Now, it remains to be seen if the manipulation of host cell microRNA profiles can be an opportunity for therapeutic intervention for these difficult-to-treat diseases. PMID:25076967

  8. Targeting microRNAs in heart failure.

    PubMed

    Duygu, Burcu; de Windt, Leon J; da Costa Martins, Paula A

    2016-02-01

    MicroRNAs play pivotal roles in cardiac disease, and their therapeutic modulation raises exciting and unique opportunities, as well as challenges in the path toward clinical development and implementation. In this review, we provide a detailed overview of recent studies highlighting the important role of microRNAs in heart failure (HF) and the potential use of microRNA-based technology for diagnosis, prevention, and treatment of HF. We will focus on the strategies presently used for microRNA-based therapy by discussing their use and drawbacks, as well as the challenges and future directions for their development in the context of human HF. PMID:26119078

  9. Sleep loss changes microRNA levels in the brain: A possible mechanism for state-dependent translational regulation

    PubMed Central

    Davis, Christopher J.; Bohnet, Stewart G.; Meyerson, Joseph M.; Krueger, James M.

    2007-01-01

    MicroRNAs (miRNAs) are small (∼22 nucleotide) non-coding RNA strands that base pair with mRNA to degrade it or inhibit its translation. Because sleep and sleep loss induce changes in many mRNA species, we hypothesized that sleep loss would also affect miRNA levels in the brain. Rats were sleep-deprived for 8 h then decapitated; hippocampus, prefrontal and somatosensory cortices and hypothalamus tissues were harvested and frozen in liquid nitrogen. MiRNA was extracted and then characterized using microarrays. Several let-7 miRNA microarray results using hippocampus and prefrontal cortex samples were verified by PCR. From the array data it was determined that about fifty miRNA species were affected by sleep loss. For example, in the hippocampus of sleep-deprived rats, miRNA expression increased compared to cage control samples. In contrast, the majority of miRNA species in the somatosensory and prefrontal cortices decreased, while in the hypothalamus miRNA species were both up- and down-regulated after sleep deprivation. The number of miRNA species affected by sleep loss, their differential expression in separate brain structures and their predicted targets suggest that they have a role in site-specific sleep mechanisms. Current results are, to our knowledge, the first demonstration of the homeostatic process, sleep, altering brain miRNA levels. PMID:17597302

  10. Coordinate loss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q- syndrome.

    PubMed

    Kumar, Madhu S; Narla, Anupama; Nonami, Atsushi; Mullally, Ann; Dimitrova, Nadya; Ball, Brian; McAuley, J Randall; Poveromo, Luke; Kutok, Jeffrey L; Galili, Naomi; Raza, Azra; Attar, Eyal; Gilliland, D Gary; Jacks, Tyler; Ebert, Benjamin L

    2011-10-27

    Large chromosomal deletions are among the most common molecular abnormalities in cancer, yet the identification of relevant genes has proven difficult. The 5q- syndrome, a subtype of myelodysplastic syndrome (MDS), is a chromosomal deletion syndrome characterized by anemia and thrombocytosis. Although we have previously shown that hemizygous loss of RPS14 recapitulates the failed erythroid differentiation seen in 5q- syndrome, it does not affect thrombocytosis. Here we show that a microRNA located in the common deletion region of 5q- syndrome, miR-145, affects megakaryocyte and erythroid differentiation. We find that miR-145 functions through repression of Fli-1, a megakaryocyte and erythroid regulatory transcription factor. Patients with del(5q) MDS have decreased expression of miR-145 and increased expression of Fli-1. Overexpression of miR-145 or inhibition of Fli-1 decreases the production of megakaryocytic cells relative to erythroid cells, whereas inhibition of miR-145 or overexpression of Fli-1 has a reciprocal effect. Moreover, combined loss of miR-145 and RPS14 cooperates to alter erythroid-megakaryocytic differentiation in a manner similar to the 5q- syndrome. Taken together, these findings demonstrate that coordinate deletion of a miRNA and a protein-coding gene contributes to the phenotype of a human malignancy, the 5q- syndrome. PMID:21873545

  11. Discordant Expression of Circulating microRNA from Cellular and Extracellular Sources

    PubMed Central

    Levy, Daniel; Larson, Martin; Gerstein, Mark; Mick, Eric; Rozowsky, Joel; Kitchen, Robert; Murthy, Venkatesh; Mikalev, Ekaterina; Freedman, Jane E.

    2016-01-01

    MicroRNA (miRNA) expression has rapidly grown into one of the largest fields for disease characterization and development of clinical biomarkers. Consensus is lacking in regards to the optimal sample source or if different circulating sources are concordant. Here, using miRNA measurements from contemporaneously obtained whole blood- and plasma-derived RNA from 2391 individuals, we demonstrate that plasma and blood miRNA levels are divergent and may reflect different biological processes and disease associations. PMID:27123852

  12. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    PubMed Central

    Tsai, Ming-Ming; Wang, Chia-Siu; Tsai, Chung-Ying; Huang, Hsiang-Wei; Chi, Hsiang-Cheng; Lin, Yang-Hsiang; Lu, Pei-Hsuan; Lin, Kwang-Huei

    2016-01-01

    Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets. PMID:27322246

  13. MicroRNAs in C. elegans Aging: Molecular Insurance for Robustness?

    PubMed

    Ibáñez-Ventoso, Carolina; Driscoll, Monica

    2009-05-01

    The last decade has witnessed a revolution in our appreciation of the extensive regulatory gene expression networks modulated by small untranslated RNAs. microRNAs (miRNAs), ~22 nt RNAs that bind imperfectly to partially homologous sites on target mRNAs to regulate transcript expression, are now known to influence a broad range of biological processes germane to development, homeostatic regulation and disease. It has been proposed that miRNAs ensure biological robustness, and aging has been described as a progressive loss of system and cellular robustness, but relatively little work to date has addressed roles of miRNAs in longevity and healthspan (the period of youthful vigor and disease resistance that precedes debilitating decline in basic functions). The C. elegans model is highly suitable for testing hypotheses regarding miRNA impact on aging biology: the lifespan of the animal is approximately three weeks, there exist a wealth of genetic mutations that alter lifespan through characterized pathways, biomarkers that report strong healthspan have been defined, and many miRNA genes have been identified, expression-profiled, and knocked out. 50/114 C. elegans miRNAs change in abundance during adult life, suggesting significant potential to modulate healthspan and lifespan. Indeed, miRNA lin-4 has been elegantly shown to influence lifespan and healthspan via its lin-14 mRNA target and the insulin signaling pathway. 27 of the C. elegans age-regulated miRNAs have sequence similarity with both fly and human miRNAs. We review current understanding of a field poised to reveal major insights into potentially conserved miRNA-regulated networks that modulate aging. PMID:19881908

  14. Profiling of Serum and Urinary MicroRNAs in Children with Atopic Dermatitis

    PubMed Central

    Lv, Yani; Qi, Ruiqun; Xu, Jing; Di, Zhenghong; Zheng, Heng; Huo, Wei; Zhang, Li; Chen, Hongduo; Gao, Xinghua

    2014-01-01

    Background Atopic dermatitis (AD) is the most prevalent chronic inflammatory skin disease in children characterized by dermatitis and pruritus. MicroRNAs (miRNAs) have been shown as great potential biomarkers for disease fingerprints to predict prognostics. We aimed to identify miRNA signature from serum and urine for the prognosis of AD patient by genome-wide miRNA profiling analysis. Methods Serum and urine from 30 children with AD and 28 healthy children were collected and their genome-wide miRNA expression profiles were measured by TaqMan-based array and confirmed by quantitative real-time PCR. Inflammatory factors in serum were detected by Antibody Array System. Results miR-203 and miR-483-5p were significantly up-regulated in serum of children with AD compared with healthy children. The level of miR-483-5p in serum was significantly associated with other atopic conditions, such as rhinitis and/or asthma. However, miR-203 was markedly decreased in urine of children with AD compared with healthy children. Down-regulated miR-203 in urine was significant associated with abnormal level of serum IgE in AD patients. 7 inflammatory factors in serum were altered in children with AD compared with healthy children. Up-regulated miR-203 in serum was significantly associated with increased sTNFRI and sTNFRII. Conclusions Up-regulated miR-483-5p in serum may be indicative of other atopic conditions in children with AD. Down-regulated miR-203 in urine may serve as a biomarker for the severity of inflammation in children with AD. PMID:25531302

  15. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer.

    PubMed

    Tsai, Ming-Ming; Wang, Chia-Siu; Tsai, Chung-Ying; Huang, Hsiang-Wei; Chi, Hsiang-Cheng; Lin, Yang-Hsiang; Lu, Pei-Hsuan; Lin, Kwang-Huei

    2016-01-01

    Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients' survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets. PMID:27322246

  16. MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites.

    PubMed

    Bicker, Silvia; Lackinger, Martin; Weiß, Kerstin; Schratt, Gerhard

    2014-10-01

    Dendritic mRNA transport and local translation in the postsynaptic compartment play an important role in synaptic plasticity, learning and memory. Local protein synthesis at the synapse has to be precisely orchestrated by a plethora of factors including RNA binding proteins as well as microRNAs, an extensive class of small non-coding RNAs. By binding to complementary sequences in target mRNAs, microRNAs fine-tune protein synthesis and thereby represent critical regulators of gene expression at the post-transcriptional level. Research over the last years identified an entire network of dendritic microRNAs that fulfills an essential role in synapse development and physiology. Recent studies provide evidence that these small regulatory molecules are highly regulated themselves, at the level of expression as well as function. The importance of microRNAs for correct function of the nervous system is reflected by an increasing number of studies linking dysregulation of microRNA pathways to neurological disorders. By focusing on three extensively studied examples (miR-132, miR-134, miR-138), this review will attempt to illustrate the complex regulatory roles of dendritic microRNAs at the synapse and their implications for pathological conditions. PMID:25008044

  17. Cohort of estrogen-induced microRNAs regulate adrenomedullin expression.

    PubMed

    Wetzel-Strong, Sarah E; Li, Manyu; Espenschied, Scott T; Caron, Kathleen M

    2016-01-15

    Estrogen regulates the expression of many genes and has been correlated with differences in cardiac contraction; however, the underlying mechanisms remain poorly defined. Adrenomedullin (Adm = gene; AM = protein) is a multifunctional peptide with inotropic actions. Previous studies have demonstrated that estrogen enhances the expression of Adm, suggesting a relationship between AM and estrogen in cardiac contraction during physiological and pathological states. In this study, female mice in a mouse model of genetic Adm overexpression, abbreviated as Adm(hi/hi), were found to express 60 times more Adm in the heart than wild-type littermates, compared with the three-fold elevation of Adm previously reported in Adm(hi/hi) male hearts. Thus, this study sought to further investigate any functional consequences of increased cardiac Adm expression and begin exploring the mechanisms that regulate Adm expression in an estrogen-dependent fashion. This study revealed that heart function is enhanced in Adm(hi/hi) females, which along with Adm expression levels, was reversed following ovariectomization. Since the Adm(hi/hi) line was generated by the displacement of the 3' untranslated region (UTR), the native 3'UTR was examined for estrogen-induced microRNAs target sites to potentially explain the aberrant overexpression observed in Adm(hi/hi) female hearts. Using a bioinformatic approach, it was determined that the mouse Adm 3'UTR contains many target sites for previously characterized estrogen-induced microRNAs. This study also determined that the novel microRNA, miR-879, is another estrogen-induced microRNA that interacts with the 3'UTR of Adm to destabilize the mRNA. Together, these studies revealed that estrogen-induced microRNAs are important for balancing cardiac Adm expression in females. PMID:26582637

  18. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing

    PubMed Central

    Butardo, Vito M.; Fitzgerald, Melissa A.; Bird, Anthony R.; Gidley, Michael J.; Flanagan, Bernadine M.; Larroque, Oscar; Resurreccion, Adoracion P.; Laidlaw, Hunter K. C.; Jobling, Stephen A.; Morell, Matthew K.; Rahman, Sadequr

    2011-01-01

    The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed. PMID:21791436

  19. Bioinformatic analysis of microRNA networks following the activation of the constitutive androstane receptor (CAR) in mouse liver.

    PubMed

    Hao, Ruixin; Su, Shengzhong; Wan, Yinan; Shen, Frank; Niu, Ben; Coslo, Denise M; Albert, Istvan; Han, Xing; Omiecinski, Curtis J

    2016-09-01

    The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily that functions as a xenosensor, serving to regulate xenobiotic detoxification, lipid homeostasis and energy metabolism. CAR activation is also a key contributor to the development of chemical hepatocarcinogenesis in mice. The underlying pathways affected by CAR in these processes are complex and not fully elucidated. MicroRNAs (miRNAs) have emerged as critical modulators of gene expression and appear to impact many cellular pathways, including those involved in chemical detoxification and liver tumor development. In this study, we used deep sequencing approaches with an Illumina HiSeq platform to differentially profile microRNA expression patterns in livers from wild type C57BL/6J mice following CAR activation with the mouse CAR-specific ligand activator, 1,4-bis-[2-(3,5,-dichloropyridyloxy)] benzene (TCPOBOP). Bioinformatic analyses and pathway evaluations were performed leading to the identification of 51 miRNAs whose expression levels were significantly altered by TCPOBOP treatment, including mmu-miR-802-5p and miR-485-3p. Ingenuity Pathway Analysis of the differentially expressed microRNAs revealed altered effector pathways, including those involved in liver cell growth and proliferation. A functional network among CAR targeted genes and the affected microRNAs was constructed to illustrate how CAR modulation of microRNA expression may potentially mediate its biological role in mouse hepatocyte proliferation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:27080131

  20. MicroRNAs: regulators of neuronal fate