Science.gov

Sample records for microrna regulated modules

  1. MicroRNA-146a modulates B-cell oncogenesis by regulating Egr1

    PubMed Central

    Contreras, Jorge R.; Palanichamy, Jayanth Kumar; Tran, Tiffany M.; Fernando, Thilini R.; Rodriguez-Malave, Norma I.; Goswami, Neha; Arboleda, Valerie A.; Casero, David; Rao, Dinesh S.

    2015-01-01

    miR-146a is a NF-κB induced microRNA that serves as a feedback regulator of this critical pathway. In mice, deficiency of miR-146a results in hematolymphoid cancer at advanced ages as a consequence of constitutive NF-κB activity. In this study, we queried whether the deficiency of miR-146a contributes to B-cell oncogenesis. Combining miR-146a deficiency with transgenic expression of c-Myc led to the development of highly aggressive B-cell malignancies. Mice transgenic for c-Myc and deficient for miR-146a were characterized by significantly shortened survival, increased lymph node involvement, differential involvement of the spleen and a mature B-cell phenotype. High-throughput sequencing of the tumors revealed significant dysregulation of approximately 250 genes. Amongst these, the transcription factor Egr1 was consistently upregulated in mice deficient for miR-146a. Interestingly, transcriptional targets of Egr1 were enriched in both the high-throughput dataset and in a larger set of miR-146a-deficient tumors. miR-146a overexpression led to downregulation of Egr1 and downstream targets with concomitant decrease in cell growth. Direct targeting of the human EGR1 by miR-146a was seen by luciferase assay. Together our findings illuminate a bona fide role for miR-146a in the modulation of B-cell oncogenesis and reveal the importance of understanding microRNA function in a cell- and disease-specific context. PMID:25906746

  2. MicroRNA modulators of epigenetic regulation, the tumor microenvironment and the immune system in lung cancer.

    PubMed

    Rusek, Anna Maria; Abba, Mohammed; Eljaszewicz, Andrzej; Moniuszko, Marcin; Niklinski, Jacek; Allgayer, Heike

    2015-01-01

    Cancer is an exceedingly complex disease that is orchestrated and driven by a combination of multiple aberrantly regulated processes. The nature and depth of involvement of individual events vary between cancer types, and in lung cancer, the deregulation of the epigenetic machinery, the tumor microenvironment and the immune system appear to be especially relevant. The contribution of microRNAs to carcinogenesis and cancer progression is well established with many reports and investigations describing the involvement of microRNAs in lung cancer, however most of these studies have concentrated on single microRNA-target relations and have not adequately addressed the complexity of their interactions. In this review, we focus, in part, on the role of microRNAs in the epigenetic regulation of lung cancer where they act as active molecules modulating enzymes that take part in methylation-mediated silencing and chromatin remodeling. Additionally, we highlight their contribution in controlling and modulating the tumor microenvironment and finally, we describe their role in the critical alteration of essential molecules that influence the immune system in lung cancer development and progression. PMID:25743773

  3. Fibroblast Growth Factor (FGF) Signaling during Gastrulation Negatively Modulates the Abundance of MicroRNAs That Regulate Proteins Required for Cell Migration and Embryo Patterning*

    PubMed Central

    Bobbs, Alexander S.; Saarela, Aleksi V.; Yatskievych, Tatiana A.; Antin, Parker B.

    2012-01-01

    FGF signaling plays a pivotal role in regulating cell movements and lineage induction during gastrulation. Here we identify 44 microRNAs that are expressed in the primitive streak region of gastrula stage chicken embryos. We show that the primary effect of FGF signaling on microRNA abundance is to negatively regulate the levels of miR-let-7b, -9, -19b, -107, -130b, and -218. LIN28B inhibits microRNA processing and is positively regulated by FGF signaling. Gain- and loss-of-function experiments show that LIN28B negatively regulates the expression of miR-19b, -130b, and let-7b, whereas negative modulation of miR-9, -107, and -218 appears to be independent of LIN28B function. Predicted mRNA targets of the FGF-regulated microRNAs are over-represented in serine/threonine and tyrosine kinase receptors, including ACVR1, ACVR2B, PDGFRA, TGFBR1, and TGFBR3. Luciferase assays show that these and other candidates are targeted by FGF-regulated microRNAs. PDGFRA, a receptor whose activity is required for cell migration through the primitive streak, is a target of miR-130b and -218 in vivo. These results identify a novel mechanism by which FGF signaling regulates gene expression by negatively modulating microRNA abundance through both LIN28B-dependent and LIN28B-independent pathways. PMID:22995917

  4. MicroRNA as Type I Interferon-Regulated Transcripts and Modulators of the Innate Immune Response

    PubMed Central

    Forster, Samuel C.; Tate, Michelle D.; Hertzog, Paul J.

    2015-01-01

    Type I interferons (IFNs) are an important family of cytokines that regulate innate and adaptive immune responses to pathogens, in cancer and inflammatory diseases. While the regulation and role of protein-coding genes involved in these responses are well characterized, the role of non-coding microRNAs in the IFN responses is less developed. We review the emerging picture of microRNA regulation of the IFN response at the transcriptional and post-transcriptional level. This response forms an important regulatory loop; several microRNAs target transcripts encoding components at many steps of the type I IFN response, both production and action, at the receptor, signaling, transcription factor, and regulated gene level. Not only do IFNs regulate positive signaling molecules but also negative regulators such as SOCS1. In total, 36 microRNA are reported as IFN regulated. Given this apparent multipronged targeting of the IFN response by microRNAs and their well-characterized capacity to “buffer” responses in other situations, the prospects of improved sequencing and microRNA targeting technologies will facilitate the elucidation of the broader regulatory networks of microRNA in this important biological context, and their therapeutic and diagnostic potential. PMID:26217335

  5. H-ferritin-regulated microRNAs modulate gene expression in K562 cells.

    PubMed

    Biamonte, Flavia; Zolea, Fabiana; Bisognin, Andrea; Di Sanzo, Maddalena; Saccoman, Claudia; Scumaci, Domenica; Aversa, Ilenia; Panebianco, Mariafranca; Faniello, Maria Concetta; Bortoluzzi, Stefania; Cuda, Giovanni; Costanzo, Francesco

    2015-01-01

    In a previous study, we showed that the silencing of the heavy subunit (FHC) offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs. PMID:25815883

  6. H-Ferritin-Regulated MicroRNAs Modulate Gene Expression in K562 Cells

    PubMed Central

    Biamonte, Flavia; Zolea, Fabiana; Bisognin, Andrea; Di Sanzo, Maddalena; Saccoman, Claudia; Scumaci, Domenica; Aversa, Ilenia; Panebianco, Mariafranca; Faniello, Maria Concetta; Bortoluzzi, Stefania; Cuda, Giovanni; Costanzo, Francesco

    2015-01-01

    In a previous study, we showed that the silencing of the heavy subunit (FHC) offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC) comparing it with K562 transduced with scrambled RNA (K562shRNA). Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, “Cell Death and Survival, Hematological System Development and Function, Hematopoiesis”, is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs. PMID:25815883

  7. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  8. MicroRNA (miRNA) expression is regulated by butyrate-induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are a class of highly conserved, small non-coding RNAs (~22 nucleotides) that regulate gene expression post-transcriptionally. MicroRNAs are encoded by specific genes in the genome, which are transcribed as primary transcripts called primary miRNA. MicroRNAs (miRNAs) bind to compl...

  9. MicroRNA-765 regulates neural stem cell proliferation and differentiation by modulating Hes1 expression

    PubMed Central

    Li, Siou; Zhao, Weina; Xu, Qing; Yu, Yang; Yin, Changhao

    2016-01-01

    Neural stem cells (NSCs) are multipotent, self-renewing and undifferentiated cells that have the ability to differentiate to both glial and neuronal lineages. miRNAs act a key role in regulating neuronal fate and self-renewal of NSCs. In this study, we found that ectopic expression of miR-765 promoted NSCs proliferation. Moreover, miR-765 overexpression increased the ki-67 and β-tubulin-III expression inNSCs. Overexpression of miR-765 inhibited the expression of GFAP in NSCs. Furthermore, Hes1 was identified as a direct target gene of miR-765 in NSCs. Overexpression of Hes1 decreased miR-765-induced proliferation of NSCs and inhibited NSCs differentiation to neurons in miR-765-treated NSCs. These results demonstrated that miR-765 acted a crucial role in NSCs differentiation and proliferation by inhibiting Hes1 expression. PMID:27508032

  10. MicroRNAs: regulators of neuronal fate

    PubMed Central

    Sun, Alfred X; Crabtree, Gerald R; Yoo, Andrew S

    2013-01-01

    Mammalian neural development has been traditionally studied in the context of evolutionarily conserved signaling pathways and neurogenic transcription factors. Recent studies suggest that microRNAs, a group of highly conserved non-coding regulatory small RNAs also play essential roles in neural development and neuronal function. A part of their action in the developing nervous system is to regulate subunit compositions of BAF complexes (ATP-dependent chromatin remodeling complexes), which appear to have dedicated functions during neural development. Intriguingly, ectopic expression of a set of brain-enriched microRNAs, miR-9/9* and miR-124 that promote the assembly of neuron-specific BAF complexes, convert the nonneuronal fate of human dermal fibroblasts towards post-mitotic neurons, thereby revealing a previously unappreciated instructive role of these microRNAs. In addition to these global effects, accumulating evidence indicate that many microRNAs could also function locally, such as at the growth cone or at synapses modulating synaptic activity and neuronal connectivity. Here we discuss some of the recent findings about microRNAs’ activity in regulating various developmental stages of neurons. PMID:23374323

  11. MicroRNA modulation in obesity and periodontitis.

    PubMed

    Perri, R; Nares, S; Zhang, S; Barros, S P; Offenbacher, S

    2012-01-01

    The aim of this pilot investigation was to determine if microRNA expression differed in the presence or absence of obesity, comparing gingival biopsies obtained from patients with or without periodontal disease. Total RNA was extracted from gingival biopsy samples collected from 20 patients: 10 non-obese patients (BMI < 30 kg/m(2)) and 10 obese patients (BMI > 30 kg/m(2)), each group with 5 periodontally healthy sites and 5 chronic periodontitis sites. MicroRNA expression patterns were assessed with a quantitative microRNA PCR array to survey 88 candidate microRNA species. Four microRNA databases were used to identify potential relevant mRNA target genes of differentially expressed microRNAs. Two microRNA species (miR-18a, miR-30e) were up-regulated among obese individuals with a healthy periodontium. Two microRNA species (miR-30e, miR-106b) were up-regulated in non-obese individuals with periodontal disease. In the presence of periodontal disease and obesity, 9 of 11 listed microRNAs were significantly up-regulated (miR-15a, miR-18a, miR-22, miR-30d, miR-30e, miR-103, miR-106b, miR-130a, miR-142-3p, miR-185, and miR-210). Predicted targets include 69 different mRNAs from genes that comprise cytokines, chemokines, specific collagens, and regulators of glucose and lipid metabolism. The expression of specific microRNA species in obesity, which could also target and post-transcriptionally modulate cytokine mRNA, provides new insight into possible mechanisms of how risk factors might modify periodontal inflammation and may represent novel therapeutic targets. PMID:22043006

  12. MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/Notch1/E-cadherin in cisplatin-resistant nasopharyngeal carcinoma cells

    PubMed Central

    Zhang, Pei; Hong, Haiyu; Sun, Xiaojin; Jiang, Hao; Ma, Shiyin; Zhao, Surong; Zhang, Mengxiao; Wang, Zhiwei; Jiang, Chenchen; Liu, Hao

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is an initiating event in tumor cell invasion and metastasis that contributes to therapeutic resistance to compounds including cisplatin. MicroRNAs (miRNAs) have been associated with EMT as well as resistance to standard therapies. However, the underlying mechanisms by which miRNAs control the development of resistance to cisplatin (DDP), and the accompanying EMT-like properties are required to elucidate. Here we show that microRNA-10b (miR-10b) is up-regulated in HNE1/DDP cells, and inhibition of miR-10b expression reversed the EMT phenotype. However, over-expression of miR-10b was able to promote the acquisition of an EMT phenotype in HNE1 cells. Additionally, we identified that miR-10b expression inversely correlates with KLF4, which then controls expression of Notch1. Knock-down of Notch1 inhibited cell migration, invasion, and reversed EMT in HNE1/DDP cells, which was dependent on miR-10b. In summary, our results reveal that miR-10b regulates EMT by modulating KLF4/Notch1/E-cadherin expression, which promotes invasion and migration of nasal pharyngeal carcinoma cells. PMID:27186392

  13. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression

    PubMed Central

    Chou, Jonathan; Lin, Jeffrey H.; Brenot, Audrey; Kim, Jung-whan; Provot, Sylvain; Werb, Zena

    2013-01-01

    Despite advances in our understanding of breast cancer, patients with metastatic disease have poor prognoses. GATA3 is a transcription factor that specifies and maintains mammary luminal epithelial cell fate, and its expression is lost in breast cancer, correlating with a worse prognosis in human patients. Here, we show that GATA3 promotes differentiation, suppresses metastasis and alters the tumour microenvironment in breast cancer by inducing microRNA-29b (miR-29b) expression. Accordingly, miR-29b is enriched in luminal breast cancers and loss of miR-29b, even in GATA3-expressing cells, increases metastasis and promotes a mesenchymal phenotype. Mechanistically, miR-29b inhibits metastasis by targeting a network of pro-metastatic regulators involved in angiogenesis, collagen remodelling and proteolysis, including VEGFA, ANGPTL4, PDGF, LOX and MMP9, and targeting ITGA6, ITGB1 and TGFB, thereby indirectly affecting differentiation and epithelial plasticity. The discovery that a GATA3-miR-29b axis regulates the tumour microenvironment and inhibits metastasis opens up possibilities for therapeutic intervention in breast cancer. PMID:23354167

  14. The PU.1-Modulated MicroRNA-22 Is a Regulator of Monocyte/Macrophage Differentiation and Acute Myeloid Leukemia.

    PubMed

    Shen, Chao; Chen, Ming-Tai; Zhang, Xin-Hua; Yin, Xiao-Lin; Ning, Hong-Mei; Su, Rui; Lin, Hai-Shuang; Song, Li; Wang, Fang; Ma, Yan-Ni; Zhao, Hua-Lu; Yu, Jia; Zhang, Jun-Wu

    2016-09-01

    MicroRNA-22 (miR-22) is emerging as a critical regulator in organ development and various cancers. However, its role in normal hematopoiesis and leukaemogenesis remains unclear. Here, we detected its increased expression during monocyte/macrophage differentiation of HL-60, THP1 cells and CD34+ hematopoietic stem/progenitor cells, and confirmed that PU.1, a key transcriptional factor for monocyte/macrophage differentiation, is responsible for transcriptional activation of miR-22 during the differentiation. By gain- and loss-of-function experiments, we demonstrated that miR-22 promoted monocyte/macrophage differentiation, and MECOM (EVI1) mRNA is a direct target of miR-22 and MECOM (EVI1) functions as a negative regulator in the differentiation. The miR-22-mediated MECOM degradation increased c-Jun but decreased GATA2 expression, which results in increased interaction between c-Jun and PU.1 via increasing c-Jun levels and relief of MECOM- and GATA2-mediated interference in the interaction, and thus promoting monocyte/macrophage differentiation. We also observed significantly down-regulation of PU.1 and miR-22 as well as significantly up-regulation of MECOM in acute myeloid leukemia (AML) patients. Reintroduction of miR-22 relieved the differentiation blockage and inhibited the growth of bone marrow blasts of AML patients. Our results revealed new function and mechanism of miR-22 in normal hematopoiesis and AML development and demonstrated its potential value in AML diagnosis and therapy. PMID:27617961

  15. MicroRNA-17 Modulates Regulatory T Cell Function by Targeting Co-regulators of the Foxp3 Transcription Factor.

    PubMed

    Yang, Huang-Yu; Barbi, Joseph; Wu, Chao-Yi; Zheng, Ying; Vignali, Paolo D A; Wu, Xingmei; Tao, Jin-Hui; Park, Benjamin V; Bandara, Shashika; Novack, Lewis; Ni, Xuhao; Yang, Xiaoping; Chang, Kwang-Yu; Wu, Ren-Chin; Zhang, Junran; Yang, Chih-Wei; Pardoll, Drew M; Li, Huabin; Pan, Fan

    2016-07-19

    Regulatory T (Treg) cells are important in maintaining self-tolerance and immune homeostasis. The Treg cell transcription factor Foxp3 works in concert with other co-regulatory molecules, including Eos, to determine the transcriptional signature and characteristic suppressive phenotype of Treg cells. Here, we report that the inflammatory cytokine interleukin-6 (IL-6) actively repressed Eos expression through microRNA-17 (miR-17). miR-17 expression increased in Treg cells in the presence of IL-6, and its expression negatively correlated with that of Eos. Treg cell suppressive activity was diminished upon overexpression of miR-17 in vitro and in vivo, which was mitigated upon co-expression of an Eos mutant lacking miR-17 target sites. Also, RNAi of miR-17 resulted in enhanced suppressive activity. Ectopic expression of miR-17 imparted effector-T-cell-like characteristics to Treg cells via the de-repression of genes encoding effector cytokines. Thus, miR-17 provides a potent layer of Treg cell control through targeting Eos and additional Foxp3 co-regulators. PMID:27438767

  16. MicroRNA-16 Modulates HuR Regulation of Cyclin E1 in Breast Cancer Cells

    PubMed Central

    Guo, Xun; Connick, Melanie C.; Vanderhoof, Jennifer; Ishak, Mohammad-Ali; Hartley, Rebecca S.

    2015-01-01

    RNA binding protein (RBPs) and microRNAs (miRNAs or miRs) are post-transcriptional regulators of gene expression that are implicated in development of cancers. Although their individual roles have been studied, the crosstalk between RBPs and miRNAs is under intense investigation. Here, we show that in breast cancer cells, cyclin E1 upregulation by the RBP HuR is through specific binding to regions in the cyclin E1 mRNA 3' untranslated region (3'UTR) containing U-rich elements. Similarly, miR-16 represses cyclin E1, dependent on its cognate binding sites in the cyclin E1 3'UTR. Evidence in the literature indicates that HuR can regulate miRNA expression and recruit or dissociate RNA-induced silencing complexes (RISC). Despite this, miR-16 and HuR do not affect the other’s expression level or binding to the cyclin E1 3'UTR. While HuR overexpression partially blocks miR-16 repression of a reporter mRNA containing the cyclin E1 3'UTR, it does not block miR-16 repression of endogenous cyclin E1 mRNA. In contrast, miR-16 blocks HuR-mediated upregulation of cyclin E1. Overall our results suggest that miR-16 can override HuR upregulation of cyclin E1 without affecting HuR expression or association with the cyclin E1 mRNA. PMID:25830480

  17. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes

    SciTech Connect

    Wang, Jie; Yan, Cheng-Hui; Li, Yang; Xu, Kai; Tian, Xiao-Xiang; Peng, Cheng-Fei; Tao, Jie; Sun, Ming-Yu; Han, Ya-Ling

    2013-05-01

    Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. The cellular repressor of E1A-stimulated genes (CREG) has been shown to play an important role in phenotypic modulation of VSMCs. However, the mechanism regulating CREG upstream signaling remains unclear. MicroRNAs (miRNAs) have recently been found to play a critical role in cell differentiation via target-gene regulation. This study aimed to identify a miRNA that binds directly to CREG, and may thus be involved in CREG-mediated VSMC phenotypic modulation. Computational analysis indicated that miR-31 bound to the CREG mRNA 3′ untranslated region (3′-UTR). miR-31 was upregulated in quiescent differentiated VSMCs and downregulated in proliferative cells stimulated by platelet-derived growth factor and serum starvation, demonstrating a negative relationship with the VSMC differentiation marker genes, smooth muscle α-actin, calponin and CREG. Using gain-of-function and loss-of-function approaches, CREG and VSMC differentiation marker gene expression levels were shown to be suppressed by a miR-31 mimic, but increased by a miR-31 inhibitor at both protein and mRNA levels. Notably, miR-31 overexpression or inhibition affected luciferase expression driven by the CREG 3′-UTR containing the miR-31 binding site. Furthermore, miR-31-mediated VSMC phenotypic modulation was inhibited in CREG-knockdown human VSMCs. We also determined miR-31 levels in the serum of patients with coronary artery disease (CAD), with or without in stent restenosis and in healthy controls. miR-31 levels were higher in the serum of CAD patients with restenosis compared to CAD patients without restenosis and in healthy controls. In summary, these data demonstrate that miR-31 not only directly binds to its target gene CREG and modulates the VSMC phenotype through this interaction, but also can be an important biomarker in diseases involving VSMC

  18. Staufen Negatively Modulates MicroRNA Activity in Caenorhabditis elegans

    PubMed Central

    Ren, Zhiji; Veksler-Lublinsky, Isana; Morrissey, David; Ambros, Victor

    2016-01-01

    The double-stranded RNA-binding protein Staufen has been implicated in various posttranscriptional gene regulatory processes. Here, we demonstrate that the Caenorhabditis elegans homolog of Staufen, STAU-1, functionally interacts with microRNAs. Loss-of-function mutations of stau-1 significantly suppress phenotypes of let-7 family microRNA mutants, a hypomorphic allele of dicer, and a lsy-6 microRNA partial loss-of-function mutant. Furthermore, STAU-1 modulates the activity of lin-14, a target of lin-4 and let-7 family microRNAs, and this modulation is abolished when the 3′ untranslated region of lin-14 is removed. Deep sequencing of small RNA cDNA libraries reveals no dramatic change in the levels of microRNAs or other small RNA populations between wild-type and stau-1 mutants, with the exception of certain endogenous siRNAs in the WAGO pathway. The modulation of microRNA activity by STAU-1 does not seem to be associated with the previously reported enhanced exogenous RNAi (Eri) phenotype of stau-1 mutants, since eri-1 exhibits the opposite effect on microRNA activity. Altogether, our results suggest that STAU-1 negatively modulates microRNA activity downstream of microRNA biogenesis, possibly by competing with microRNAs for binding on the 3′ untranslated region of target mRNAs. PMID:26921297

  19. Staufen Negatively Modulates MicroRNA Activity in Caenorhabditis elegans.

    PubMed

    Ren, Zhiji; Veksler-Lublinsky, Isana; Morrissey, David; Ambros, Victor

    2016-01-01

    The double-stranded RNA-binding protein Staufen has been implicated in various posttranscriptional gene regulatory processes. Here, we demonstrate that the Caenorhabditis elegans homolog of Staufen, STAU-1, functionally interacts with microRNAs. Loss-of-function mutations of stau-1 significantly suppress phenotypes of let-7 family microRNA mutants, a hypomorphic allele of dicer, and a lsy-6 microRNA partial loss-of-function mutant. Furthermore, STAU-1 modulates the activity of lin-14, a target of lin-4 and let-7 family microRNAs, and this modulation is abolished when the 3' untranslated region of lin-14 is removed. Deep sequencing of small RNA cDNA libraries reveals no dramatic change in the levels of microRNAs or other small RNA populations between wild-type and stau-1 mutants, with the exception of certain endogenous siRNAs in the WAGO pathway. The modulation of microRNA activity by STAU-1 does not seem to be associated with the previously reported enhanced exogenous RNAi (Eri) phenotype of stau-1 mutants, since eri-1 exhibits the opposite effect on microRNA activity. Altogether, our results suggest that STAU-1 negatively modulates microRNA activity downstream of microRNA biogenesis, possibly by competing with microRNAs for binding on the 3' untranslated region of target mRNAs. PMID:26921297

  20. Valproic acid regulates erythro-megakaryocytic differentiation through the modulation of transcription factors and microRNA regulatory micro-networks.

    PubMed

    Trécul, Anne; Morceau, Franck; Gaigneaux, Anthoula; Schnekenburger, Michael; Dicato, Mario; Diederich, Marc

    2014-11-15

    Valproic acid (VPA) exhibits important pharmacological properties but has been reported to trigger side effects, notably on the hematological system. We previously reported that VPA affects hematopoietic homeostasis by inhibiting erythroid differentiation and promoting myeloid and megakaryocyte differentiation. Here, we analyzed the effect of VPA on regulatory factors involved in erythro-megakaryocytic differentiation pathways, including transcription factors and microRNAs (miRs). We demonstrate that VPA inhibited erythroid differentiation in erythropoietin (Epo)-stimulated TF1 leukemia cells and CD34(+)/hematopoietic stem cells (HSCs) and in aclacinomycin-(Acla)-treated K562 cells. Mir-144/451 gene expression was decreased in all erythroid and megakaryocyte models in correlation with GATA-1 inhibition. In Epo-stimulated CD34(+)/HSCs, VPA induced the expression of the ETS family transcription factors PU.1, ETS-1, GABP-α, Fli-1 and GATA-2, which are all known to be negative regulators of erythropoiesis, while it promoted the megakaryocytic pathway. PU.1 and ETS-1 expression were induced in correlation with miR-155 inhibition; however, the GATA-1/PU.1 interaction was promoted. Using megakaryoblastic Meg-01 cells, we demonstrated that VPA induced megakaryocyte morphological features and CD61 expression. GATA-2 and miR-27a expression were increased in correlation with a decrease in RUNX1 mRNA expression, suggesting megakaryocyte differentiation. Finally, by using valpromide and the Class I HDACi MS-275, we validated that the well-described HDACi activity of VPA is not required in the inhibitory effect on erythropoiesis. Overall, this report shows that VPA modulates the erythro-megakaryocytic differentiation program through regulatory micro-networks involving GATA and ETS transcription factors and miRNAs, notably the GATA-1/miR-144/451 axis. PMID:25241289

  1. MicroRNA: Mechanism of Gene Regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts through activation of a specific cellular pathway. The small RNA classified as miR are short sequences of 18-26 nucleotide long, encoded by nuclear genes with distinctive...

  2. MicroRNAs Regulate Pituitary Development, and MicroRNA 26b Specifically Targets Lymphoid Enhancer Factor 1 (Lef-1), Which Modulates Pituitary Transcription Factor 1 (Pit-1) Expression*

    PubMed Central

    Zhang, Zichao; Florez, Sergio; Gutierrez-Hartmann, Arthur; Martin, James F.; Amendt, Brad A.

    2010-01-01

    To understand the role of microRNAs (miRNAs) in pituitary development, a group of pituitary-specific miRNAs were identified, and Dicer1 was then conditionally knocked out using the Pitx2-Cre mouse, resulting in the loss of mature miRNAs in the anterior pituitary. The Pitx2-Cre/Dicer1 mutant mice demonstrate growth retardation, and the pituitaries are hypoplastic with an abnormal branching of the anterior lobe, revealing a role for microRNAs in pituitary development. Growth hormone, prolactin, and thyroid-stimulating hormone β-subunit expression were decreased in the Dicer1 mutant mouse, whereas proopiomelanocortin and luteinizing hormone β-subunit expression were normal in the mutant pituitary. Further analyses revealed decreased Pit-1 and increased Lef-1 expression in the mutant mouse pituitary, consistent with the repression of the Pit-1 promoter by Lef-1. Lef-1 directly targets and represses the Pit-1 promoter. miRNA-26b (miR-26b) was identified as targeting Lef-1 expression, and miR-26b represses Lef-1 in pituitary and non-pituitary cell lines. Furthermore, miR-26b up-regulates Pit-1 and growth hormone expression by attenuating Lef-1 expression in GH3 cells. This study demonstrates that microRNAs are critical for anterior pituitary development and that miR-26b regulates Pit-1 expression by inhibiting Lef-1 expression and may promote Pit-1 lineage differentiation during pituitary development. PMID:20807761

  3. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay.

    PubMed

    Benes, Vladimir; Collier, Paul; Kordes, Claus; Stolte, Jens; Rausch, Tobias; Muckentaler, Martina U; Häussinger, Dieter; Castoldi, Mirco

    2015-01-01

    microRNAs are an abundant class of small non-coding RNAs that control gene expression post-transcriptionally. Importantly, microRNA activity participates in the regulation of cellular processes and is a potentially valuable source of biomarkers in the diagnosis and prognosis of human diseases. Here we introduce miQPCR, an innovative method to quantify microRNAs expression by using Real-Time PCR. miQPCR exploits T4 RNA ligase activities to extend uniformly microRNAs' 3'-ends by addition of a linker-adapter. The adapter is then used as 'anchor' to prime cDNA synthesis and throughout qPCR to amplify specifically target amplicons. miQPCR is an open, adaptable and cost-effective procedure, which offers the following advantages; i) universal elongation and reverse transcription of all microRNAs; ii) Tm-adjustment of microRNA-specific primers; iii) high sensitivity and specificity in discriminating among closely related sequences and; iv) suitable for the analysis of cellular and cell-free circulating microRNAs. Analysis of cellular and cell-free circulating microRNAs secreted by rat primary hepatocytes stimulated with cytokines and growth factors identifies for the first time a widespread modulation of both microRNAs expression and secretion. Altogether, our findings suggest that the pleiotropic activity of humoral factors on microRNAs may extensively affect liver function in response to injury and regeneration. PMID:26108880

  4. Novel Etoposide Analogue Modulates Expression of Angiogenesis Associated microRNAs and Regulates Cell Proliferation by Targeting STAT3 in Breast Cancer

    PubMed Central

    Srinivas, Chatla; Ramaiah, M. Janaki; Lavanya, A.; Yerramsetty, Suresh; Kavi Kishor, P. B; Basha, Shaik Anver; Kamal, Ahmed; Bhadra, Utpal; Bhadra, Manika-Pal

    2015-01-01

    Tumor microenvironment play role in angiogenesis and carcinogenesis. Etoposide, a known topoisomerase II inhibitor induces DNA damage resulting in cell cycle arrest. We developed a novel Etoposide analogue, Quinazolino-4β-amidopodophyllotoxin (C-10) that show better efficacy in regulating cell proliferation and angiogenesis. We evaluated its role on expression of microRNAs-15, 16, 17 and 221 and its targets Bcl-2, STAT3 and VEGF that dictate cell proliferation and angiogenesis. Docking studies clearly demonstrated the binding of Etoposide and C-10 to STAT3. We conclude that combination of Etoposide or C-10 with miR-15, 16, 17 and 221 as a new approach to induce apoptosis and control angiogenesis in breast cancer. PMID:26551008

  5. MicroRNA-146a and -21 cooperate to regulate vascular smooth muscle cell proliferation via modulation of the Notch signaling pathway.

    PubMed

    Cao, Jian; Zhang, Kui; Zheng, Jubing; Dong, Ran

    2015-04-01

    A number of microRNAs (miRs) have been shown to participate in the regulation of vascular smooth muscle cell (VSMC) proliferation, a key step in the formation of atherosclerotic plaque, by targeting certain genes. The aim of the present study was to investigate the roles of miR‑146a and miR‑21 in VSMC growth and to study the underlying mechanisms. The expression levels of four previously reported, differentially expressed microRNAs in atherosclerotic plaque (miR‑146a/b, miR‑21, miR‑34a and miR‑210) were measured in two groups: An atherosclerotic plaque group (n=10) and a normal control group (n=10). Polymerase chain reaction (PCR) analysis revealed that the relative expression levels of miR‑146a and miR‑21 in atherosclerotic plaque samples were significantly upregulated to ~260 and 250%, respectively, compared with those in normal controls. Notch2 and Jag1 were confirmed to be target genes of miR‑146a and miR‑21 through the use of a luciferase assay, PCR and western blot analysis. Additionally, VSMCs transfected with miR‑146a expressed significantly lower levels of Notch2 protein and presented an accelerated cell proliferation, which could be attributed to a reduction in the levels of cell cycle arrest. Cotransfection of miR‑146a and miR‑21 further promoted cell cycle progression in addition to VSMC proliferation. In conclusion, the present study revealed that miR‑146a and miR‑21 were significantly upregulated in atherosclerotic plaque, and cooperated to accelerate VSMC growth and cell cycle progression by targeting Notch2 and Jag1. PMID:25523239

  6. DNA damage responsive microRNAs misexpressed in human cancer modulate therapy sensitivity

    PubMed Central

    van Jaarsveld, Marijn T.M.; Wouters, Maikel D.; Boersma, Antonius W.M.; Smid, Marcel; van IJcken, Wilfred F.J.; Mathijssen, Ron H.J.; Hoeijmakers, Jan H.J.; Martens, John W. M.; van Laere, Steven; Wiemer, Erik A.C.; Pothof, Joris

    2015-01-01

    The DNA damage response (DDR) is activated upon DNA damage and prevents accumulation of mutations and chromosomal rearrangements, both driving carcinogenesis. Tumor cells often have defects in the DDR, which in combination with continuous cell proliferation are exploited by genotoxic cancer therapies. Most cancers, overcome initial sensitivity and develop drug resistance, e.g. by modulation of the DDR. Not much is known, however, about DNA damage responsive microRNAs in cancer therapy resistance. Therefore, we mapped temporal microRNA expression changes in primary breast epithelial cells upon low and high dose exposure to the DNA damaging agents ionizing radiation and cisplatin. A third of all DDR microRNAs commonly regulated across all treatments was also misexpressed in breast cancer, indicating a DDR defect. We repeated this approach in primary lung epithelial cells and non-small cell lung cancer samples and found that more than 40% of all DDR microRNAs was deregulated in non-small cell lung cancer. Strikingly, the microRNA response upon genotoxic stress in primary breast and lung epithelial cells was markedly different, although the biological outcome of DNA damage signaling (cell death/senescence or survival) was similar. Several DDR microRNAs deregulated in cancer modulated sensitivity to anti-cancer agents. In addition we were able to distinguish between microRNAs that induced resistance by potentially inducing quiescence (miR-296-5p and miR-382) or enhancing DNA repair or increased DNA damage tolerance (miR-21). In conclusion, we provide evidence that DNA damage responsive microRNAs are frequently misexpressed in human cancer and can modulate chemotherapy sensitivity. PMID:24462518

  7. Small molecule-mediated up-regulation of microRNA targeting a key cell death modulator BNIP3 improves cardiac function following ischemic injury

    PubMed Central

    Lee, Se-Yeon; Lee, Seahyoung; Choi, Eunhyun; Ham, Onju; Lee, Chang Youn; Lee, Jiyun; Seo, Hyang-Hee; Cha, Min-Ji; Mun, Bohyun; Lee, Yunmi; Yoon, Cheesoon; Hwang, Ki-Chul

    2016-01-01

    Genetic ablation of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), an essential regulator of cardiac cell death, is an effective way to prevent cardiac cell death triggered by pathologic conditions. However, currently there exists no known means, such as inhibitors, to down-regulate BNIP3 in mature heart. Here, we report that a small molecule inducer of microRNA-182 (miR-182) suppressed ischemia/reperfusion (I/R)-induced cardiac cell death by down-regulating BNIP3. We first selected miR-182 as a potent BNIP3-targeting miRNA based on miRNA-target prediction databases and empirical data. The subsequent screening of small molecules for inducing miR-182 expression identified Kenpaullone as a hit compound. Both exogenous miR-182 and Kenpaullone significantly suppressed hypoxia-induced cardiomyocyte death in vitro. To investigate the effect of changing substituents of Kenpaullone on miR-182 expression, we synthesized 9 derivatives of Kenpaullone. Among these derivatives, compound 5 showed significantly improved ability to induce miR-182 expression. The results of the in vivo study showed that compound 5 significantly improved heart function following I/R-injury in rats. Our study provides strong evidence that the small molecule-mediated up-regulation of miRNAs is a viable strategy to down-regulate target proteins with no known chemical inhibitor and that compound 5 may have potential to prevent I/R-inflicted cardiac cell death. PMID:27008992

  8. Small molecule-mediated up-regulation of microRNA targeting a key cell death modulator BNIP3 improves cardiac function following ischemic injury.

    PubMed

    Lee, Se-Yeon; Lee, Seahyoung; Choi, Eunhyun; Ham, Onju; Lee, Chang Youn; Lee, Jiyun; Seo, Hyang-Hee; Cha, Min-Ji; Mun, Bohyun; Lee, Yunmi; Yoon, Cheesoon; Hwang, Ki-Chul

    2016-01-01

    Genetic ablation of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), an essential regulator of cardiac cell death, is an effective way to prevent cardiac cell death triggered by pathologic conditions. However, currently there exists no known means, such as inhibitors, to down-regulate BNIP3 in mature heart. Here, we report that a small molecule inducer of microRNA-182 (miR-182) suppressed ischemia/reperfusion (I/R)-induced cardiac cell death by down-regulating BNIP3. We first selected miR-182 as a potent BNIP3-targeting miRNA based on miRNA-target prediction databases and empirical data. The subsequent screening of small molecules for inducing miR-182 expression identified Kenpaullone as a hit compound. Both exogenous miR-182 and Kenpaullone significantly suppressed hypoxia-induced cardiomyocyte death in vitro. To investigate the effect of changing substituents of Kenpaullone on miR-182 expression, we synthesized 9 derivatives of Kenpaullone. Among these derivatives, compound 5 showed significantly improved ability to induce miR-182 expression. The results of the in vivo study showed that compound 5 significantly improved heart function following I/R-injury in rats. Our study provides strong evidence that the small molecule-mediated up-regulation of miRNAs is a viable strategy to down-regulate target proteins with no known chemical inhibitor and that compound 5 may have potential to prevent I/R-inflicted cardiac cell death. PMID:27008992

  9. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay

    PubMed Central

    Benes, Vladimir; Collier, Paul; Kordes, Claus; Stolte, Jens; Rausch, Tobias; Muckentaler, Martina U.; Häussinger, Dieter; Castoldi, Mirco

    2015-01-01

    microRNAs are an abundant class of small non-coding RNAs that control gene expression post-transcriptionally. Importantly, microRNA activity participates in the regulation of cellular processes and is a potentially valuable source of biomarkers in the diagnosis and prognosis of human diseases. Here we introduce miQPCR, an innovative method to quantify microRNAs expression by using Real-Time PCR. miQPCR exploits T4 RNA ligase activities to extend uniformly microRNAs’ 3′-ends by addition of a linker-adapter. The adapter is then used as ‘anchor’ to prime cDNA synthesis and throughout qPCR to amplify specifically target amplicons. miQPCR is an open, adaptable and cost-effective procedure, which offers the following advantages; i) universal elongation and reverse transcription of all microRNAs; ii) Tm-adjustment of microRNA-specific primers; iii) high sensitivity and specificity in discriminating among closely related sequences and; iv) suitable for the analysis of cellular and cell-free circulating microRNAs. Analysis of cellular and cell-free circulating microRNAs secreted by rat primary hepatocytes stimulated with cytokines and growth factors identifies for the first time a widespread modulation of both microRNAs expression and secretion. Altogether, our findings suggest that the pleiotropic activity of humoral factors on microRNAs may extensively affect liver function in response to injury and regeneration. PMID:26108880

  10. microRNA modulation of circadian clock period and entrainment

    PubMed Central

    Cheng, Hai-Ying M.; Papp, Joseph W.; Varlamova, Olga; Dziema, Heather; Russell, Brandon; Curfman, John P.; Nakazawa, Takanobu; Shimizu, Kimiko; Okamura, Hitoshi; Impey, Soren; Obrietan, Karl

    2007-01-01

    microRNAs (miRNAs) are a class of small, non-coding, RNAs that regulate the stability or translation of mRNA transcripts. Although recent work has implicated miRNAs in development and in disease, the expression and function of miRNAs in the adult mammalian nervous system has not been extensively characterized. Here, we examine the role of two brain-specific miRNAs, miR-219 and miR-132, in modulating the circadian clock located in the suprachiasmatic nucleus. miR-219 is a target of the CLOCK/BMAL1 complex, exhibits robust circadian rhythms of expression and the in vivo knockdown of miR-219 lengthens the circadian period. miR-132 is induced by photic entrainment cues via a MAPK/CREB-dependent mechanism, modulates clock gene expression, and attenuates the entraining effects of light. Collectively, these data reveal miRNAs as clock- and light-regulated genes and provide a mechanistic examination of their roles as effectors of pacemaker activity and entrainment. PMID:17553428

  11. MicroRNA 33 Regulates Glucose Metabolism

    PubMed Central

    Ramírez, Cristina M.; Goedeke, Leigh; Rotllan, Noemi; Yoon, Je-Hyun; Cirera-Salinas, Daniel; Mattison, Julie A.; Suárez, Yajaira; de Cabo, Rafael; Gorospe, Myriam

    2013-01-01

    Metabolic diseases are characterized by the failure of regulatory genes or proteins to effectively orchestrate specific pathways involved in the control of many biological processes. In addition to the classical regulators, recent discoveries have shown the remarkable role of small noncoding RNAs (microRNAs [miRNAs]) in the posttranscriptional regulation of gene expression. In this regard, we have recently demonstrated that miR-33a and miR33b, intronic miRNAs located within the sterol regulatory element-binding protein (SREBP) genes, regulate lipid metabolism in concert with their host genes. Here, we show that miR-33b also cooperates with SREBP1 in regulating glucose metabolism by targeting phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), key regulatory enzymes of hepatic gluconeogenesis. Overexpression of miR-33b in human hepatic cells inhibits PCK1 and G6PC expression, leading to a significant reduction of glucose production. Importantly, hepatic SREBP1c/miR-33b levels correlate inversely with the expression of PCK1 and G6PC upon glucose infusion in rhesus monkeys. Taken together, these results suggest that miR-33b works in concert with its host gene to ensure a fine-tuned regulation of lipid and glucose homeostasis, highlighting the clinical potential of miR-33a/b as novel therapeutic targets for a range of metabolic diseases. PMID:23716591

  12. MicroRNA regulation of airway smooth muscle function.

    PubMed

    Sun, Maoyun; Lu, Quan

    2016-06-01

    Airway smooth muscle (ASM) controls airway narrowing and plays a pivotal role in the pathogenesis of asthma. MicroRNAs are small yet powerful gene tuners that regulate diverse cellular processes. Recent studies have demonstrated the versatile role of microRNAs in regulating multiple ASM phenotypes that are critically involved in asthma pathogenesis. These ASM phenotypes include proliferation, cell size, chemokine secretion, and contractility. Here we review microRNA-mediated regulation of ASM functions and discuss the potential of microRNAs as a novel class of therapeutic targets to improve ASM function for asthma therapy. PMID:26812790

  13. MicroRNAs regulate osteogenesis and chondrogenesis

    SciTech Connect

    Dong, Shiwu; Yang, Bo; Guo, Hongfeng; Kang, Fei

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer To focus on the role of miRNAs in chondrogenesis and osteogenesis. Black-Right-Pointing-Pointer Involved in the regulation of miRNAs in osteoarthritis. Black-Right-Pointing-Pointer To speculate some therapeutic targets for bone diseases. -- Abstract: MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.

  14. The microRNA feedback regulation of p63 in cancer progression

    PubMed Central

    Lin, Changwei; Li, Xiaorong; Zhang, Yi; Guo, Yihang; Zhou, Jianyu; Gao, Kai; Dai, Jing; Hu, Gui; Lv, Lv; Du, Juan; Zhang, Yi

    2015-01-01

    The transcription factor p63 is a member of the p53 gene family that plays a complex role in cancer due to its involvement in epithelial differentiation, cell cycle arrest and apoptosis. MicroRNAs are a class of small, non-coding RNAs with an important regulatory role in various cellular processes, as well as in the development and progression of cancer. A number of microRNAs have been shown to function as transcriptional targets of p63. Conversely, microRNAs also can modulate the expression and activity of p63. However, the p63–microRNA regulatory circuit has not been addressed in depth so far. Here, computational genomic analysis was performed using miRtarBase, Targetscan, microRNA.ORG, DIANA-MICROT, RNA22-HSA and miRDB to analyze miRNA binding to the 3′UTR of p63. JASPAR (profile score threshold 80%) and TFSEARCH datasets were used to search transcriptional start sites for p53/p63 response elements. Remarkably, these data revealed 63 microRNAs that targeted p63. Furthermore, there were 39 microRNAs targeting p63 that were predicted to be regulated by p63. These analyses suggest a crosstalk between p63 and microRNAs. Here, we discuss the crosstalk between p63 and the microRNA network, and the role of their interactions in cancer. PMID:25726529

  15. Estrogen Regulation of MicroRNA Expression

    PubMed Central

    Klinge, Carolyn M

    2009-01-01

    Women outlive men, but life expectancy is not influenced by hormone replacement (estrogen + progestin) therapy. Estrogens appear to protect brain, cardiovascular tissues, and bone from aging. Estrogens regulate genes directly through binding to estrogen receptors alpha and beta (ERα and ERβ) that are ligand-activated transcription factors and indirectly by activating plasma membrane-associated ER which, in turns, activates intracellular signaling cascades leading to altered gene expression. MicroRNAs (miRNAs) are short (19-25 nucleotides), naturally-occurring, non-coding RNA molecules that base-pair with the 3’ untranslated region of target mRNAs. This interaction either blocks translation of the mRNA or targets the mRNA transcript to be degraded. The human genome contains ~ 700-1,200 miRNAs. Aberrant patterns of miRNA expression are implicated in human diseases including breast cancer. Recent studies have identified miRNAs regulated by estrogens in human breast cancer cells, human endometrial stromal and myometrial smooth muscle cells, rat mammary gland, and mouse uterus. The decline of estradiol levels in postmenopausal women has been implicated in various age-associated disorders. The role of estrogen-regulated miRNA expression, the target genes of these miRNAs, and the role of miRNAs in aging has yet to be explored. PMID:19881910

  16. MicroRNA Targeting to Modulate Tumor Microenvironment

    PubMed Central

    Kuninty, Praneeth R.; Schnittert, Jonas; Storm, Gert; Prakash, Jai

    2016-01-01

    Communication between stromal cells and tumor cells initiates tumor growth, angiogenesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune cells. MicroRNAs (miRNAs) in the tumor microenvironment have emerged as key players involved in the development of cancer and its progression. miRNAs are small endogenous non-protein-coding RNAs that negatively regulate the expression of multiple target genes at post-transcriptional level and thereby control many cellular processes. In this review, we provide a comprehensive overview of miRNAs dysregulated in different stromal cells and their impact on the regulation of intercellular crosstalk in the tumor microenvironment. We also discuss the therapeutic significance potential of miRNAs to modulate the tumor microenvironment. Since miRNA delivery is quite challenging and the biggest hurdle for clinical translation of miRNA therapeutics, we review various non-viral miRNA delivery systems that can potentially be used for targeting miRNA to stromal cells within the tumor microenvironment. PMID:26835418

  17. Epigenetic and microRNA regulation during osteoarthritis development

    PubMed Central

    Chen, Di; Shen, Jie; Hui, Tianqian

    2015-01-01

    Osteoarthritis (OA) is a common degenerative joint disease, the pathological mechanism of which is currently unknown. Genetic alteration is one of the key contributing factors for OA pathology. Recent evidence suggests that epigenetic and microRNA regulation of critical genes may contribute to OA development. In this article, we review the epigenetic and microRNA regulations of genes related to OA development. Potential therapeutic strategies may be developed on the basis of novel findings.

  18. Regulation of viral oncogenesis by microRNAs

    PubMed Central

    Xu, Xiaojie; Ye, Qinong

    2014-01-01

    Viral infection may play a causative role in human cancers, for example hepatitis B virus (HBV) or hepatitis C virus (HCV) in liver cancer, human papilloma virus (HPV) in cervical cancer, and Epstein–Barr virus (EBV) in nasopharyngeal carcinoma. Virally infected cells express viral-encoded genes that are critical for oncogenesis. Some viruses also encode microRNA (miRNA) species. miRNAs are small noncoding RNA molecules that play an important role in cancer development and progression. Recent studies indicate an important interplay among viral oncoproteins, virus-encoded miRNAs, cellular miRNAs, and cellular genes. This review focuses on modulation of HBV-, HCV-, HPV-, and EBV-associated cancers by cellular and/or viral miRNA. An understanding of the mechanisms underlying the regulation of viral carcinogenesis by miRNAs may provide new targets for the development of specific viral therapies. PMID:27308317

  19. MicroRNAs Regulate Bone Development and Regeneration

    PubMed Central

    Fang, Sijie; Deng, Yuan; Gu, Ping; Fan, Xianqun

    2015-01-01

    MicroRNAs (miRNAs) are endogenous small noncoding ~22-nt RNAs, which have been reported to play a crucial role in maintaining bone development and metabolism. Osteogenesis originates from mesenchymal stem cells (MSCs) differentiating into mature osteoblasts and each period of bone formation is inseparable from the delicate regulation of various miRNAs. Of note, apprehending the sophisticated circuit between miRNAs and osteogenic homeostasis is of great value for artificial skeletal regeneration for severe bone defects. In this review, we highlight how different miRNAs interact with diverse osteo-related genes and endeavor to sketch the contours of potential manipulations of miRNA-modulated bone repair. PMID:25872144

  20. Gene regulation by dietary microRNAs.

    PubMed

    Zempleni, Janos; Baier, Scott R; Howard, Katherine M; Cui, Juan

    2015-12-01

    MicroRNAs (miRNAs) silence genes through destabilizing mRNA or preventing translation of mRNA, thereby playing an essential role in gene silencing. Traditionally, miRNAs have been considered endogenous regulators of genes, i.e., miRNAs synthesized by an organism regulate the genes in that organism. Recently, that dogma has been challenged in studies suggesting that food-borne miRNAs are bioavailable and affect gene expression in mice and humans. While the evidence in support of this theory may be considered weak for miRNAs that originate in plants, there is compelling evidence to suggest that humans use bovine miRNAs in cow's milk and avian miRNAs in chicken eggs for gene regulation. Importantly, evidence also suggests that mice fed a miRNA-depleted diet cannot compensate for dietary depletion by increased endogenous synthesis. Bioinformatics predictions implicate bovine miRNAs in the regulation of genes that play roles in human health and development. Current challenges in this area of research include that some miRNAs are unable to establish a cause-and-effect between miRNA depletion and disease in miRNA knockout mice, and sequence similarities and identities for bovine and human miRNAs render it difficult to distinguish between exogenous and endogenous miRNAs. Based on what is currently known about dietary miRNAs, the body of evidence appears to be sufficient to consider milk miRNA bioactive compounds in foods, and to increase research activities in this field. PMID:26222444

  1. Regulation of microRNAs in Cancer Metastasis

    PubMed Central

    Bouyssou, Juliette M.C.; Manier, Salomon; Huynh, Daisy; Issa, Samar; Roccaro, Aldo M.; Ghobrial, Irene M.

    2014-01-01

    Metastasis is a phenomenon of crucial importance in defining prognosis in patients with cancer and is often responsible for cancer-related mortality. It is known that several steps are necessary for clonal cells to disseminate from their primary tumor site and colonize distant tissues, thus originating metastatic lesions. Therefore, investigating the molecular actors regulating this process may provide helpful insights in the development of efficient therapeutic responses. Recent evidences have indicated the role of microRNAs (miRNAs) in modulating the metastatic process in solid tumors. miRNAs are small regulatory non-coding RNAs that bind specific target mRNAs, leading to translational repression. miRNAs are known to act as negative regulators of gene expression and are involved in the regulation of biological processes, including cell growth, differentiation and apoptosis, both in physiological conditions and during diseases, such as tumors. In the specific field of tumorigenesis, miRNAs play an important role in mediating oncogenesis and favoring tumor progression, as a result of their ability to modulate epithelial-to-mesenchymal transition (EMT) and other series of events facilitating the formation of metastasis. The role of miRNAs in cancer development has been widely studied and has helped elucidate events such as the change in expression of oncogenes, tumor-suppressors and cancer-related proteins. This review focuses on the mechanisms underlying the role of miRNAs as part of the metastatic process. PMID:24569228

  2. Phospho-ΔNp63α regulates AQP3, ALOX12B, CASP14 and CLDN1 expression through transcription and microRNA modulation.

    PubMed

    Ratovitski, Edward A

    2013-11-01

    Cisplatin-induced and ATM-phosphorylated (p)-ΔNp63α regulates the expression of epidermal differentiation and skin barrier regulators (AQP3, CASP14, ALOX12B, and CLDN1) in squamous cell carcinoma (SCC) cells by dual transcriptional and post-transcriptional mechanisms. We found that p-ΔNp63α bound to target gene promoters, and regulated the activity of the tested promoters in vitro. P-ΔNp63α was shown to upregulate miR-185-5p and downregulate let7-5p, which subsequently modulated AQP3, CASP14, ALOX12B and CLDN1 through their respective 3'-untranslated regions. The introduction of miR-185-5p into resistant SCC-11M cells, which are unable to phosphorylate ΔNp63α, render these cells more sensitive to cisplatin treatment. Further studies of the AQP3, CASP14, ALOX12B, and CLDN1 contributions to chemoresistance may assist in developing novel microRNA-based therapies for human SCC. PMID:24070899

  3. Regulating the Regulators: microRNA and Asthma

    PubMed Central

    2011-01-01

    One obstacle to developing an effective therapeutic strategy to treat or prevent asthma is that the fundamental causes of asthma are not totally understood. Asthma is thought to be a chronic TH2 immune-mediated inflammatory disease. Epigenetic changes are recognized to play a role in the initiation and maintenance of a TH2 response. MicroRNAs (miRNAs) are key epigenetic regulators of gene expression, and their expression is highly regulated, therefore, deregulation of miRNAs may play an important role in the pathogenesis of asthma. Profiling circulating miRNA might provide the highest specificity and sensitivity to diagnose asthma; similarly, correcting potential defects in the miRNA regulation network may lead to new therapeutic modalities to treat this disease. PMID:23282474

  4. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN).

    PubMed

    Martinez-Nunez, Rocio T; Louafi, Fethi; Friedmann, Peter S; Sanchez-Elsner, Tilman

    2009-06-12

    MicroRNA-155 (miR-155) has been involved in the response to inflammation in macrophages and lymphocytes. Here we show how miR-155 participates in the maturation of human dendritic cells (DC) and modulates pathogen binding by down-regulating DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN), after directly targeting the transcription factor PU.1. During the maturation of DCs, miR-155 increases up to 130-fold, whereas PU.1 protein levels decrease accordingly. We establish that human PU.1 is a direct target for miR-155 and localize the target sequence for miR-155 in the 3'-untranslated region of PU.1. Also, overexpression of miR-155 in the THP1 monocytic cell line decreases PU.1 protein levels and DC-SIGN at both the mRNA and protein levels. We prove a link between the down-regulation of PU.1 and reduced transcriptional activity of the DC-SIGN promoter, which is likely to be the basis for its reduced mRNA expression, after miR-155 overexpression. Finally, we show that, by reducing DC-SIGN in the cellular membrane, miR-155 is involved in regulating pathogen binding as dendritic cells exhibited the lower binding capacity for fungi and HIV protein gp-120 when the levels of miR-155 were higher. Thus, our results suggest a mechanism by which miR-155 regulates proteins involved in the cellular immune response against pathogens that could have clinical implications in the way pathogens enter the human organism. PMID:19386588

  5. Direct transcriptional regulation by nuclear microRNAs.

    PubMed

    Salmanidis, Marika; Pillman, Katherine; Goodall, Gregory; Bracken, Cameron

    2014-09-01

    The function of microRNAs is well characterized in the cytoplasm, where they direct an Argonaute-containing complex to target and repress mRNAs. More recently, regulatory roles for microRNAs and Argonaute have also been reported in the nucleus where microRNAs guide Argonaute to target gene promoters and directly regulate transcription in either a positive or a negative manner. Deep sequencing has revealed a high abundance of endogenous microRNAs within the nucleus, and in silico target prediction suggests thousands of potential microRNA:promoter interaction sites. The predicted high frequency of miRNA:promoter interactions is supported by chromatin immunoprecipitation, indicating the microRNA-dependent recruitment of Argonaute to thousands of transcriptional start sites and the subsequent regulation of RNA polymerase-II occupancy and chromatin modifiers. In this review we discuss the evidence for, and mechanisms associated with, direct transcriptional regulation by microRNAs which may represent a significant and largely unexplored aspect of microRNA function. This article is part of a Directed Issue entitled: The non-coding RNA revolution. PMID:24680896

  6. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci

    PubMed Central

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-01-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results. PMID:27260304

  7. Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p

    PubMed Central

    Bettencourt, Paulo; Marion, Sabrina; Pires, David; Santos, Leonor F.; Lastrucci, Claire; Carmo, Nuno; Blake, Jonathon; Benes, Vladimir; Griffiths, Gareth; Neyrolles, Olivier; Lugo-Villarino, Geanncarlo; Anes, Elsa

    2013-01-01

    Mycobacterium tuberculosis (Mtb) is a successful intracellular pathogen that thrives in macrophages (Mφs). There is a need to better understand how Mtb alters cellular processes like phagolysosome biogenesis, a classical determinant of its pathogenesis. A central feature of this bacteria's strategy is the manipulation of Mφ actin. Here, we examined the role of microRNAs (miRNAs) as a potential mechanism in the regulation of actin-mediated events leading to phagocytosis in the context of mycobacteria infection. Given that non-virulent Mycobacterium smegmatis also controls actin filament assembly to prolong its intracellular survival inside host cells, we performed a global transcriptomic analysis to assess the modulation of miRNAs upon M. smegmatis infection of the murine Mφ cell line, J774A.1. This approach identified miR-142-3p as a key candidate to be involved in the regulation of actin dynamics required in phagocytosis. We unequivocally demonstrate that miR-142-3p targets N-Wasp, an actin-binding protein required during microbial challenge. A gain-of-function approach for miR-142-3p revealed a down-regulation of N-Wasp expression accompanied by a decrease of mycobacteria intake, while a loss-of-function approach yielded the reciprocal increase of the phagocytosis process. Equally important, we show Mtb induces the early expression of miR-142-3p and partially down-regulates N-Wasp protein levels in both the murine J774A.1 cell line and primary human Mφs. As proof of principle, the partial siRNA-mediated knock down of N-Wasp resulted in a decrease of Mtb intake by human Mφs, reflected in lower levels of colony-forming units (CFU) counts over time. We therefore propose the modulation of miRNAs as a novel strategy in mycobacterial infection to control factors involved in actin filament assembly and other early events of phagolysosome biogenesis. PMID:23760605

  8. Detecting pan-cancer conserved microRNA modules from microRNA expression profiles across multiple cancers.

    PubMed

    Liu, Zhaowen; Zhang, Junying; Yuan, Xiguo; Liu, Baobao; Liu, Yajun; Li, Aimin; Zhang, Yuanyuan; Sun, Xiaohan; Tuo, Shouheng

    2015-08-01

    MicroRNAs (miRNAs) play an indispensable role in cancer initiation and progression. Different cancers have some common hallmarks in general. Analyzing miRNAs that consistently contribute to different cancers can help us to discover the relationship between miRNAs and traits shared by cancers. Most previous works focus on analyzing single miRNA. However, dysregulation of a single miRNA is generally not sufficient to contribute to complex cancer processes. In this study, we put emphasis on analyzing cooperation of miRNAs across cancers. We assume that miRNAs can cooperatively regulate oncogenic pathways and contribute to cancer hallmarks. Such a cooperation is modeled by a miRNA module referred to as a pan-cancer conserved miRNA module. The module consists of miRNAs which simultaneously regulate cancers and are significantly intra-correlated. A novel computational workflow for the module discovery is presented. Multiple modules are discovered from miRNA expression profiles using the method. The function of top two ranked modules are analyzed using the mRNAs which correlate to all the miRNAs in a module across cancers, inferring that the two modules function in regulating the cell cycle which relates to cancer hallmarks as self sufficiency in growth signals and insensitivity to antigrowth signals. Additionally, two novel miRNAs mir-590 and mir-629 are found to cooperate with well-known onco-miRNAs in the modules to contribute to cancers. We also found that PTEN, which is a well known tumor suppressor that regulates the cell cycle, is a common target of miRNAs in the top-one module and cooperative control of PTEN can be a reason for the miRNAs' cooperation. We believe that analyzing the cooperative mechanism of the miRNAs in modules rather than focusing on only single miRNAs may help us know more about the complicated relationship between miRNAs and cancers and develop more effective treatment strategies for cancers. PMID:26052692

  9. MicroRNA Regulation of Brain Tumour Initiating Cells in Central Nervous System Tumours

    PubMed Central

    Vijayakumar, Thusyanth; Bakhshinyan, David; Venugopal, Chitra; Singh, Sheila K.

    2015-01-01

    CNS tumours occur in both pediatric and adult patients and many of these tumours are associated with poor clinical outcome. Due to a paradigm shift in thinking for the last several years, these tumours are now considered to originate from a small population of stem-like cells within the bulk tumour tissue. These cells, termed as brain tumour initiating cells (BTICs), are perceived to be regulated by microRNAs at the posttranscriptional/translational levels. Proliferation, stemness, differentiation, invasion, angiogenesis, metastasis, apoptosis, and cell cycle constitute some of the significant processes modulated by microRNAs in cancer initiation and progression. Characterization and functional studies on oncogenic or tumour suppressive microRNAs are made possible because of developments in sequencing and microarray techniques. In the current review, we bring recent knowledge of the role of microRNAs in BTIC formation and therapy. Special attention is paid to two highly aggressive and well-characterized brain tumours: gliomas and medulloblastoma. As microRNA seems to be altered in the pathogenesis of many human diseases, “microRNA therapy” may now have potential to improve outcomes for brain tumour patients. In this rapidly evolving field, further understanding of miRNA biology and its contribution towards cancer can be mined for new therapeutic tools. PMID:26064134

  10. MicroRNAs as Molecular Targets for Cancer Therapy: On the Modulation of MicroRNA Expression

    PubMed Central

    Costa, Pedro M.; Pedroso de Lima, Maria C.

    2013-01-01

    The discovery of small RNA molecules with the capacity to regulate messenger RNA (mRNA) stability and translation (and consequently protein synthesis) has revealed an additional level of post-transcriptional gene control. MicroRNAs (miRNAs), an evolutionarily conserved class of small noncoding RNAs that regulate gene expression post-transcriptionally by base pairing to complementary sequences in the 3' untranslated regions of target mRNAs, are part of this modulatory RNA network playing a pivotal role in cell fate. Functional studies indicate that miRNAs are involved in the regulation of almost every biological pathway, while changes in miRNA expression are associated with several human pathologies, including cancer. By targeting oncogenes and tumor suppressors, miRNAs have the ability to modulate key cellular processes that define the cell phenotype, making them highly promising therapeutic targets. Over the last few years, miRNA-based anti-cancer therapeutic approaches have been exploited, either alone or in combination with standard targeted therapies, aiming at enhancing tumor cell killing and, ideally, promoting tumor regression and disease remission. Here we provide an overview on the involvement of miRNAs in cancer pathology, emphasizing the mechanisms of miRNA regulation. Strategies for modulating miRNA expression are presented and illustrated with representative examples of their application in a therapeutic context. PMID:24275848

  11. MicroRNAs as regulators of root development and architecture.

    PubMed

    Khan, Ghazanfar A; Declerck, Marie; Sorin, Céline; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine

    2011-09-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of growth and development in both plants and animals. In plants, roots play essential roles in their anchorage to the soil as well as in nutrient and water uptake. In this review, we present recent advances made in the identification of miRNAs involved in embryonic root development, radial patterning, vascular tissue differentiation and formation of lateral organs (i.e., lateral and adventitious roots and symbiotic nitrogen-fixing nodules in legumes). Certain mi/siRNAs target members of the Auxin Response Factors family involved in auxin homeostasis and signalling and participate in complex regulatory loops at several crucial stages of root development. Other miRNAs target and restrict the action of various transcription factors that control root-related processes in several species. Finally, because abiotic stresses, which include nutrient or water deficiencies, generally modulate root growth and branching, we summarise the action of certain miRNAs in response to these stresses that may be involved in the adaptation of the root system architecture to the soil environment. PMID:21607657

  12. MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression

    PubMed Central

    Wang, Yemin; Huang, Jen-Wei; Li, Ming; Cavenee, Webster K.; Mitchell, Patrick S.; Zhou, Xiaofeng; Tewari, Muneesh; Furnari, Frank B.; Taniguchi, Toshiyasu

    2011-01-01

    Precise regulation of DNA damage response is crucial for cellular survival after DNA damage, and its abrogation often results in genomic instability in cancer. Phosphorylated histone H2AX (γH2AX) forms nuclear foci at sites of DNA damage and facilitates DNA damage response and repair. MicroRNAs are short, non-protein-encoding RNA molecules, which post-transcriptionally regulate gene expression by repressing translation of and/or degrading mRNA. How microRNAs modulate DNA damage response is largely unknown. In this study, we developed a cell-based screening assay utilizing ionizing radiation-induced γH2AX foci formation in a human osteosarcoma cell line, U2OS, as the readout. By screening a library of human microRNA mimics, we identified several microRNAs that inhibited γH2AX foci formation. Among them, miR-138 directly targeted the histone H2AX 3′-UTR, reduced histone H2AX expression and induced chromosomal instability after DNA damage. Overexpression of miR-138 inhibited homologous recombination and enhanced cellular sensitivity to multiple DNA damaging agents (cisplatin, camptothecin, and ionizing radiation). Reintroduction of histone H2AX in miR-138 overexpressing cells attenuated miR-138-mediated sensitization to cisplatin and camptothecin. Our study suggests that miR-138 is an important regulator of genomic stability and a potential therapeutic agent to improve the efficacy of radiotherapy and chemotherapy with DNA damaging agents. PMID:21693595

  13. miRepress: modelling gene expression regulation by microRNA with non-conventional binding sites

    PubMed Central

    Ghosal, Suman; Saha, Shekhar; Das, Shaoli; Sen, Rituparno; Goswami, Swagata; Jana, Siddhartha S.; Chakrabarti, Jayprokas

    2016-01-01

    Some earlier studies have reported an alternative mode of microRNA-target interaction. We detected target regions within mRNA transcripts from AGO PAR-CLIP that did not contain any conventional microRNA seed pairing but only had non-conventional binding sites with microRNA 3′ end. Our study from 7 set of data that measured global protein fold change after microRNA transfection pointed towards the association of target protein fold change with 6-mer and 7-mer target sites involving microRNA 3′ end. We developed a model to predict the degree of microRNA target regulation in terms of protein fold changes from the number of different conventional and non-conventional target sites present in the target, and found significant correlation of its output with protein expression changes. We validated the effect of non-conventional interactions with target by modulating the abundance of microRNA in a human breast cancer cell line MCF-7. The validation was done using luciferase assay and immunoblot analysis for our predicted non-conventional microRNA-target pair WNT1 (3′ UTR) and miR-367-5p and immunoblot analysis for another predicted non-conventional microRNA-target pair MYH10 (coding region) and miR-181a-5p. Both experiments showed inhibition of targets by transfection of microRNA mimics that were predicted to have only non-conventional sites. PMID:26923536

  14. Angiogenesis-regulating microRNAs and ischemic stroke

    PubMed Central

    Yin, Ke-Jie; Hamblin, Milton; Chen, Y. Eugene

    2014-01-01

    Stroke is a leading cause of death and disability worldwide. Ischemic stroke is the dominant subtype of stroke and results from focal cerebral ischemia due to occlusion of major cerebral arteries. Thus, the restoration or improvement of reduced regional cerebral blood supply in a timely manner is very critical for improving stroke outcomes and post-stroke functional recovery. The recovery from ischemic stroke largely relies on appropriate restoration of blood flow via angiogenesis. Newly formed vessels would allow increased cerebral blood flow, thus increasing the amount of oxygen and nutrients delivered to affected brain tissue. Angiogenesis is strictly controlled by many key angiogenic factors in the central nervous system, and these molecules have been well-documented to play an important role in the development of angiogenesis in response to various pathological conditions. Promoting angiogenesis via various approaches that target angiogenic factors appears to be a useful treatment for experimental ischemic stroke. Most recently, microRNAs (miRs) have been identified as negative regulators of gene expression in a post-transcriptional manner. Accumulating studies have demonstrated that miRs are essential determinants of vascular endothelial cell biology/angiogenesis as well as contributors to stroke pathogenesis. In this review, we summarize the knowledge of stroke-associated angiogenic modulators, as well as the role and molecular mechanisms of stroke-associated miRs with a focus on angiogenesis-regulating miRs. Moreover, we further discuss their potential impact on miR-based therapeutics in stroke through targeting and enhancing post-ischemic angiogenesis. PMID:26156265

  15. microRNAs as novel regulators of angiogenesis

    PubMed Central

    Suárez, Yajaira; Sessa, William C.

    2009-01-01

    MicroRNAs are short non-coding RNAs that function as negative regulators of gene expression. Posttranscriptional regulation by miRNAs is important for many aspects of development, homeostasis and disease. Endothelial cells are key regulators of different aspects of vascular biology including the formation of new blood vessels (angiogenesis). Here we review the approaches and current experimental evidence for the involvement of miRNAs in the regulation of the angiogenic process and their potential therapeutic applications for vascular diseases associated with abnormal angiogenesis. PMID:19246688

  16. Natriuretic peptide receptor 3 (NPR3) is regulated by microRNA-100.

    PubMed

    Wong, Lee Lee; Wee, Abby S Y; Lim, Jia Yuen; Ng, Jessica Y X; Chong, Jenny P C; Liew, Oi Wah; Lilyanna, Shera; Martinez, Eliana C; Ackers-Johnson, Matthew Andrew; Vardy, Leah A; Armugam, Arunmozhiarasi; Jeyaseelan, Kandiah; Ng, Tze P; Lam, Carolyn S P; Foo, Roger S Y; Richards, Arthur Mark; Chen, Yei-Tsung

    2015-05-01

    Natriuretic peptide receptor 3 (NPR3) is the clearance receptor for the cardiac natriuretic peptides (NPs). By modulating the level of NPs, NPR3 plays an important role in cardiovascular homeostasis. Although the physiological functions of NPR3 have been explored, little is known about its regulation in health or disease. MicroRNAs play an essential role in the post-transcriptional expression of many genes. Our aim was to investigate potential microRNA-based regulation of NPR3 in multiple models. Hypoxic challenge elevated levels of NPPB and ADM mRNA, as well as NT-proBNP and MR-proADM in human left ventricle derived cardiac cells (HCMa), and in the corresponding conditioned medium, as revealed by qRT-PCR and ELISA. NPR3 was decreased while NPR1 was increased by hypoxia at mRNA and protein levels in HCMa. Down-regulation of NPR3 mRNA was also observed in infarct and peri-infarct cardiac tissue from rats undergoing myocardial infarction. From microRNA microarray analyses and microRNA target predictive databases, miR-100 was selected as a candidate regulator of NPR3 expression. Further analyses confirmed up-regulation of miR-100 in hypoxic cells and associated conditioned media. Antagomir-based silencing of miR-100 enhanced NPR3 expression in HCMa. Furthermore, miR-100 levels were markedly up-regulated in rat hearts and in peripheral blood after myocardial infarction and in the blood from heart failure patients. Results from this study point to a role for miR-100 in the regulation of NPR3 expression, and suggest a possible therapeutic target for modulation of NP bioactivity in heart disease. PMID:25736855

  17. Regulation of Herpesvirus Reactivation by Host MicroRNAs

    PubMed Central

    2014-01-01

    The interplay between latent and lytic modes of infection is central to successful infection of all herpesviruses, yet knowledge of the determinants that govern reactivation of these viruses from latent to lytic infection is limited. Recently, several studies have identified roles for specific cellular microRNAs in inhibiting reactivation of various herpesviruses, thereby promoting latent infections. These studies are discussed in the context of current knowledge on mechanisms of regulation of reactivation of specific herpesviruses. PMID:25540363

  18. Rhizoma Dioscoreae extract protects against alveolar bone loss in ovariectomized rats via microRNAs regulation.

    PubMed

    Zhang, Zhiguo; Song, Changheng; Zhang, Fangzhen; Xiang, Lihua; Chen, Yanjing; Li, Yan; Pan, Jinghua; Liu, Hong; Xiao, Gary Guishan; Ju, Dahong

    2015-01-01

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats underwent either ovariectomy or sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX), estradiol valerate (EV), or RDE. After treatments, the bone mineral density (BMD) and the three-dimensional microarchitecture of the alveolar bone were analyzed to assess bone mass. Microarrays were used to evaluate microRNA expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of microRNAs was validated using real-time quantitative RT-PCR (qRT-PCR), and the target genes of validated microRNAs were predicted and further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using qRT-PCR. Our results show that RDE inhibits alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 8 microRNAs and downregulated expression levels of 8 microRNAs in the alveolar bone in the microarray analysis. qRT-PCR helped validate 13 of 16 differentially expressed microRNAs, and 114 putative target genes of the validated microRNAs were retrieved. The IPA showed that these putative target genes had the potential to code for proteins that were involved in the transforming growth factor (TGF)-β/bone morphogenetic proteins (BMPs)/Smad signaling pathway (Tgfbr2/Bmpr2, Smad3/4/5, and Bcl-2) and interleukin (IL)-6/oncostatin M (OSM)/Jak1/STAT3 signaling pathway (Jak1, STAT3, and Il6r). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may involve the simultaneous inhibition of bone formation and bone resorption, which is associated with modulation of the TGF-β/BMPs/Smad and the IL-6/OSM/Jak1/STAT3 signaling pathways via microRNA regulation. PMID

  19. MicroRNA regulation in mammalian adipogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipogenesis, the complex fat cell development from preadipocyte or mesenchymal stem cell to mature adipocytes, is essential for fat formation and metabolism of adipose tissues in mammals. It has been reported to be regulated by hormones and various adipogenic transcription factors which are express...

  20. Rhizoma Dioscoreae Extract Protects against Alveolar Bone Loss in Ovariectomized Rats via microRNAs Regulation

    PubMed Central

    Zhang, Zhiguo; Song, Changheng; Zhang, Fangzhen; Xiang, Lihua; Chen, Yanjing; Li, Yan; Pan, Jinghua; Liu, Hong; Xiao, Gary Guishan; Ju, Dahong

    2015-01-01

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats underwent either ovariectomy or sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX), estradiol valerate (EV), or RDE. After treatments, the bone mineral density (BMD) and the three-dimensional microarchitecture of the alveolar bone were analyzed to assess bone mass. Microarrays were used to evaluate microRNA expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of microRNAs was validated using real-time quantitative RT-PCR (qRT-PCR), and the target genes of validated microRNAs were predicted and further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using qRT-PCR. Our results show that RDE inhibits alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 8 microRNAs and downregulated expression levels of 8 microRNAs in the alveolar bone in the microarray analysis. qRT-PCR helped validate 13 of 16 differentially expressed microRNAs, and 114 putative target genes of the validated microRNAs were retrieved. The IPA showed that these putative target genes had the potential to code for proteins that were involved in the transforming growth factor (TGF)-β/bone morphogenetic proteins (BMPs)/Smad signaling pathway (Tgfbr2/Bmpr2, Smad3/4/5, and Bcl-2) and interleukin (IL)-6/oncostatin M (OSM)/Jak1/STAT3 signaling pathway (Jak1, STAT3, and Il6r). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may involve the simultaneous inhibition of bone formation and bone resorption, which is associated with modulation of the TGF-β/BMPs/Smad and the IL-6/OSM/Jak1/STAT3 signaling pathways via microRNA regulation. PMID

  1. MicroRNA-145 Regulates Human Corneal Epithelial Differentiation

    PubMed Central

    Ng, Tsz-Kin; Huang, Li; Lei, Peng; Choy, Kwong-Wai; Liu, Yingpeng; Zhang, Mingzhi; Lam, Dennis Shun-Chiu; Yam, Gary Hin-Fai; Pang, Chi-Pui

    2011-01-01

    Background Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC) epithelia containing corneal epithelial progenitor cells (CEPCs) and early transit amplifying cells, and their role in corneal epithelium. Methodology/Principal Findings Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18 microRNAs against central corneal (CC) epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia (P = 0.0004, Mann-Whitney U-test). This was validated by quantitative polymerase chain reaction (qPCR). Locked nucleic acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324 genes (containing genes for immune response) and down-regulated 277 genes (containing genes for epithelial development and stem cell maintenance). As validated by qPCR and luciferase reporter assay, our results showed miR-145 suppressed integrin β8 (ITGB8) expression in both human corneal epithelial cells and primary

  2. MicroRNAs in the Regulation of MMPs and Metastasis

    PubMed Central

    Abba, Mohammed; Patil, Nitin; Allgayer, Heike

    2014-01-01

    MicroRNAs are integral molecules in the regulation of numerous physiological cellular processes including cellular differentiation, proliferation, metabolism and apoptosis. Their function transcends normal physiology and extends into several pathological entities including cancer. The matrix metalloproteinases play pivotal roles, not only in tissue remodeling, but also in several physiological and pathological processes, including those supporting cancer progression. Additionally, the contribution of active MMPs in metastatic spread and the establishment of secondary metastasis, via the targeting of several substrates, are also well established. This review focuses on the important miRNAs that have been found to impact cancer progression and metastasis through direct and indirect interactions with the matrix metalloproteinases. PMID:24670365

  3. MicroRNA regulation of lymphocyte tolerance and autoimmunity

    PubMed Central

    Simpson, Laura J.; Ansel, K. Mark

    2015-01-01

    Understanding the cell-intrinsic cues that permit self-reactivity in lymphocytes, and therefore autoimmunity, requires an understanding of the transcriptional and posttranscriptional regulation of gene expression in these cells. In this Review, we address seminal and recent research on microRNA (miRNA) regulation of central and peripheral tolerance. Human and mouse studies demonstrate that the PI3K pathway is a critical point of miRNA regulation of immune cell development and function that affects the development of autoimmunity. We also discuss how miRNA expression profiling in human autoimmune diseases has inspired mechanistic studies of miRNA function in the pathogenesis of multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes, and asthma. PMID:26030228

  4. MicroRNA 224 Regulates Ion Transporter Expression in Ameloblasts To Coordinate Enamel Mineralization

    PubMed Central

    Fan, Yi; Zhou, Yachuan; Zhou, Xuedong; Sun, Feifei; Gao, Bo; Wan, Mian; Zhou, Xin; Sun, Jianxun; Xu, Xin; Cheng, Lei; Crane, Janet

    2015-01-01

    Enamel mineralization is accompanied by the release of protons into the extracellular matrix, which is buffered to regulate the pH value in the local microenvironment. The present study aimed to investigate the role of microRNA 224 (miR-224) as a regulator of SLC4A4 and CFTR, encoding the key buffering ion transporters, in modulating enamel mineralization. miR-224 was significantly downregulated as ameloblasts differentiated, in parallel with upregulation of SLC4A4 and CFTR. Overexpression of miR-224 downregulated SLC4A4 and CFTR expression in cultured human epithelial cells. A microRNA luciferase assay confirmed the specific binding of miR-224 to the 3′ untranslated regions (UTRs) of SLC4A4 and CFTR mRNAs, thereby inhibiting protein translation. miR-224 agomir injection in mouse neonatal incisors resulted in normal enamel length and thickness, but with disturbed organization of the prism structure and deficient crystal growth. Moreover, the enamel Ca/P ratio and microhardness were markedly reduced after miR-224 agomir administration. These results demonstrate that miR-224 plays a pivotal role in fine tuning enamel mineralization by modulating SLC4A4 and CFTR to maintain pH homeostasis and support enamel mineralization. PMID:26055330

  5. MicroRNA 224 Regulates Ion Transporter Expression in Ameloblasts To Coordinate Enamel Mineralization.

    PubMed

    Fan, Yi; Zhou, Yachuan; Zhou, Xuedong; Sun, Feifei; Gao, Bo; Wan, Mian; Zhou, Xin; Sun, Jianxun; Xu, Xin; Cheng, Lei; Crane, Janet; Zheng, Liwei

    2015-08-01

    Enamel mineralization is accompanied by the release of protons into the extracellular matrix, which is buffered to regulate the pH value in the local microenvironment. The present study aimed to investigate the role of microRNA 224 (miR-224) as a regulator of SLC4A4 and CFTR, encoding the key buffering ion transporters, in modulating enamel mineralization. miR-224 was significantly downregulated as ameloblasts differentiated, in parallel with upregulation of SLC4A4 and CFTR. Overexpression of miR-224 downregulated SLC4A4 and CFTR expression in cultured human epithelial cells. A microRNA luciferase assay confirmed the specific binding of miR-224 to the 3' untranslated regions (UTRs) of SLC4A4 and CFTR mRNAs, thereby inhibiting protein translation. miR-224 agomir injection in mouse neonatal incisors resulted in normal enamel length and thickness, but with disturbed organization of the prism structure and deficient crystal growth. Moreover, the enamel Ca/P ratio and microhardness were markedly reduced after miR-224 agomir administration. These results demonstrate that miR-224 plays a pivotal role in fine tuning enamel mineralization by modulating SLC4A4 and CFTR to maintain pH homeostasis and support enamel mineralization. PMID:26055330

  6. Interspecies Regulation of MicroRNAs and Their Targets

    PubMed Central

    Ha, Misook; Pang, Mingxiong; Agarwal, Vikram; Chen, Z. Jeffrey

    2008-01-01

    MicroRNAs (miRNAs) are 20−24 nucleotide RNA molecules that play essential roles in posttranscriptional regulation of target genes. In animals, miRNAs bind to target mRNA through imperfect complementary sequences that are usually located at the 3’ untranslated regions (UTRs), leading to translational repression or transcript degradation. In plants, miRNAs predominately mediate degradation of target mRNAs via perfect or near-perfect complementary sequences. MicroRNA targets include a large number of transcription factors, suggesting a role of miRNAs in the control of regulatory networks and cellular growth and development. Many miRNAs and their targets are conserved among plants or animals, whereas some are specific to a few plant or animal lineages. Conserved miRNAs do not necessarily exhibit the same expression levels or patterns in different species or at different stages within a species. Therefore, sequence and expression divergence in miRNAs between species may affect miRNA accumulation and target regulation in interspecific hybrids and allopolyploids that contain two or more divergent genomes, leading to developmental changes and phenotypic variation in the new species. PMID:18407843

  7. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice.

    PubMed

    Huszar, Jessica M; Payne, Christopher J

    2013-01-01

    Impaired biogenesis of microRNAs disrupts spermatogenesis and leads to infertility in male mice. Spermatogonial differentiation is a key step in spermatogenesis, yet the mechanisms that control this event remain poorly defined. In this study, we discovered microRNA 146 (Mir146) to be highly regulated during spermatogonial differentiation, a process dependent on retinoic acid (RA) signaling. Mir146 transcript levels were diminished nearly 180-fold in differentiating spermatogonia when compared with undifferentiated spermatogonia. Luciferase assays revealed the direct binding of Mir146 to the 3' untranslated region of the mediator complex subunit 1 (Med1), a coregulator of retinoid receptors (RARs and RXRs). Overexpression of Mir146 in cultured undifferentiated spermatogonia reduced Med1 transcript levels, as well as those of differentiation marker kit oncogene (Kit). MED1 protein was also diminished. Conversely, inhibition of Mir146 increased the levels of Kit. When undifferentiated spermatogonia were exposed to RA, Mir146 was downregulated along with a marker for undifferentiated germ cells, zinc finger and BTB domain containing 16 (Zbtb16; Plzf); Kit was upregulated. Overexpression of Mir146 in RA-treated spermatogonia inhibited the upregulation of Kit, stimulated by retinoic acid gene 8 (Stra8), and spermatogenesis- and oogenesis-specific basic helix-loop-helix 2 (Sohlh2). Inhibition of Mir146 in RA-treated spermatogonia greatly enhanced the upregulation of these genes. We conclude that Mir146 modulates the effects of RA on spermatogonial differentiation. PMID:23221399

  8. MicroRNA 146 (Mir146) Modulates Spermatogonial Differentiation by Retinoic Acid in Mice1

    PubMed Central

    Huszar, Jessica M.; Payne, Christopher J.

    2012-01-01

    ABSTRACT Impaired biogenesis of microRNAs disrupts spermatogenesis and leads to infertility in male mice. Spermatogonial differentiation is a key step in spermatogenesis, yet the mechanisms that control this event remain poorly defined. In this study, we discovered microRNA 146 (Mir146) to be highly regulated during spermatogonial differentiation, a process dependent on retinoic acid (RA) signaling. Mir146 transcript levels were diminished nearly 180-fold in differentiating spermatogonia when compared with undifferentiated spermatogonia. Luciferase assays revealed the direct binding of Mir146 to the 3′ untranslated region of the mediator complex subunit 1 (Med1), a coregulator of retinoid receptors (RARs and RXRs). Overexpression of Mir146 in cultured undifferentiated spermatogonia reduced Med1 transcript levels, as well as those of differentiation marker kit oncogene (Kit). MED1 protein was also diminished. Conversely, inhibition of Mir146 increased the levels of Kit. When undifferentiated spermatogonia were exposed to RA, Mir146 was downregulated along with a marker for undifferentiated germ cells, zinc finger and BTB domain containing 16 (Zbtb16; Plzf); Kit was upregulated. Overexpression of Mir146 in RA-treated spermatogonia inhibited the upregulation of Kit, stimulated by retinoic acid gene 8 (Stra8), and spermatogenesis- and oogenesis-specific basic helix-loop-helix 2 (Sohlh2). Inhibition of Mir146 in RA-treated spermatogonia greatly enhanced the upregulation of these genes. We conclude that Mir146 modulates the effects of RA on spermatogonial differentiation. PMID:23221399

  9. MicroRNAs as regulators of apoptosis mechanisms in cancer

    PubMed Central

    PILECZKI, VALENTINA; COJOCNEANU-PETRIC, ROXANA; MARALANI, MAHAFARIN; NEAGOE, IOANA BERINDAN; SANDULESCU, ROBERT

    2016-01-01

    MicroRNAs or miRNAs are small non-coding RNAs that regulate gene expression. Their discovery has brought new knowledge in biological processes of cancer. Involvement of miRNAs in cancer development includes several major pathways from cell transformation to tumor cell development, metastasis and resistance to treatment. The first part of this review discusses miRNAs function in the intrinsic and extrinsic pathways of apoptosis. Due to the fact that many miRNAs that regulate apoptosis have been shown to play a major role in tumor cell resistance to treatment, in the second part of the review we aim at discussing miRNAs potential in becoming curative molecules. PMID:27004025

  10. MicroRNA Regulators of Anxiety and Metabolic Disorders.

    PubMed

    Meydan, Chanan; Shenhar-Tsarfaty, Shani; Soreq, Hermona

    2016-09-01

    Anxiety-related and metabolic disorders are under intense research focus. Anxiety-induced microRNAs (miRNAs) are emerging as regulators that are not only capable of suppressing inflammation but can also induce metabolic syndrome-related processes. We summarize here evidence linking miRNA pathways which share regulatory networks in metabolic and anxiety-related conditions. In particular, miRNAs involved in these disorders include regulators of acetylcholine signaling in the nervous system and their accompanying molecular machinery. These have been associated with anxiety-prone states in individuals, while also acting as inflammatory suppressors. In peripheral tissues, altered miRNA pathways can lead to dysregulated metabolism. Common pathways in metabolic and anxiety-related phenomena might offer an opportunity to reclassify 'healthy' and 'unhealthy', as well as metabolic and anxiety-prone biological states, and inform putative strategies to treat these disorders. PMID:27496210

  11. MicroRNA regulation of macrophages in human pathologies.

    PubMed

    Wei, Yuanyuan; Schober, Andreas

    2016-09-01

    Macrophages play a crucial role in the innate immune system and contribute to a broad spectrum of pathologies, like in the defence against infectious agents, in inflammation resolution, and wound repair. In the past several years, microRNAs (miRNAs) have been demonstrated to play important roles in immune diseases by regulating macrophage functions. In this review, we will summarize the role of miRNAs in the differentiation of monocytes into macrophages, in the classical and alternative activation of macrophages, and in the regulation of phagocytosis and apoptosis. Notably, miRNAs preferentially target genes related to the cellular cholesterol metabolism, which is of key importance for the inflammatory activation and phagocytic activity of macrophages. miRNAs functionally link various mechanisms involved in macrophage activation and contribute to initiation and resolution of inflammation. miRNAs represent promising diagnostic and therapeutic targets in different conditions, such as infectious diseases, atherosclerosis, and cancer. PMID:27137182

  12. The Role of MicroRNAs in the Regulation of K+ Channels in Epithelial Tissue

    PubMed Central

    Pilmore, Elliot; Hamilton, Kirk L.

    2015-01-01

    Our understanding of the modulation of proteins has shifted in direction with the discovery of microRNAs (miRs) over twenty years ago. MiRs are now in the “limelight” as these non-coding pieces of RNA (generally ~22 nucleotides long) result in altered translation and function of proteins. Indeed, miRs are now reported to be potential biomarkers of disease. Epithelial K+ channels play many roles in electrolyte and fluid homeostasis of the human body and have been suggested to be therapeutic targets of disease. Interestingly, the role of miRs in modulating K+ channels of epithelial tissues is only emerging now. This minireview focuses on recent novel findings into the role of miRs in the regulation of K+ channels of epithelia. PMID:26648872

  13. Regulation of Senescence by microRNA Biogenesis Factors

    PubMed Central

    Abdelmohsen, Kotb; Srikantan, Subramanya; Kang, Min-Ju; Gorospe, Myriam

    2012-01-01

    Senescence represents a state of indefinite growth arrest in cells that have reached their replicative life span, have become damaged, or express aberrant levels of cancer-related proteins. While senescence is widely considered to represent tumor-suppressive mechanism, the accumulation of senescent cells in tissues of older organisms is believed to underlie age-associated losses in physiologic function and age-related diseases. With the emergence of microRNAs (miRNAs) as a major class of molecular regulators of senescence, we review the transcriptional and post-transcriptional factors that control senescence-associated microRNA biosynthesis. Focusing on their enhancement or repression of senescence, we describe the transcription factors that govern the synthesis of primary (pri-)miRNAs, the proteins that control the nuclear processing of pri-miRNAs into precursor (pre-)miRNAs, including RNA editing enzymes, RNases, and RNA helicases, and the cytoplasmic proteins that affect the final processing of pre-miRNAs into mature miRNAs. We discuss how miRNA biogenesis proteins enhance or repress senescence, and thus influence the senescent phenotype that affects normal tissue function and pathology. PMID:22306790

  14. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses

    PubMed Central

    Barciszewska-Pacak, Maria; Milanowska, Kaja; Knop, Katarzyna; Bielewicz, Dawid; Nuc, Przemyslaw; Plewka, Patrycja; Pacak, Andrzej M.; Vazquez, Franck; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2015-01-01

    Arabidopsis microRNA expression regulation was studied in a wide array of abiotic stresses such as drought, heat, salinity, copper excess/deficiency, cadmium excess, and sulfur deficiency. A home-built RT-qPCR mirEX platform for the amplification of 289 Arabidopsis microRNA transcripts was used to study their response to abiotic stresses. Small RNA sequencing, Northern hybridization, and TaqMan® microRNA assays were performed to study the abundance of mature microRNAs. A broad response on the level of primary miRNAs (pri-miRNAs) was observed. However, stress response at the level of mature microRNAs was rather confined. The data presented show that in most instances, the level of a particular mature miRNA could not be predicted based on the level of its pri-miRNA. This points to an essential role of posttranscriptional regulation of microRNA expression. New Arabidopsis microRNAs responsive to abiotic stresses were discovered. Four microRNAs: miR319a/b, miR319b.2, and miR400 have been found to be responsive to several abiotic stresses and thus can be regarded as general stress-responsive microRNA species. PMID:26089831

  15. Modulation of Circulating MicroRNAs Levels during the Switch from Clopidogrel to Ticagrelor

    PubMed Central

    Carino, Annarita; De Rosa, Salvatore; Sorrentino, Sabato; Polimeni, Alberto; Sabatino, Jolanda; Caiazzo, Gianluca; Torella, Daniele; Spaccarotella, Carmen; Mongiardo, Annalisa; Strangio, Antonio; Filippis, Carol; Indolfi, Ciro

    2016-01-01

    Background. Circulating microRNAs are appealing biomarkers to monitor several processes underlying cardiovascular diseases. Platelets are a major source for circulating microRNAs. Interestingly, the levels of specific microRNAs were reported to correlate with the level of platelet activation. The aim of the present study was to test whether the treatment with the novel antiplatelet agent, ticagrelor, is associated with modulation in the levels of key platelet-derived microRNAs. Methods and Results. Patients were randomly selected from those participating in the SHIFT-OVER study, in which we had previously evaluated the effect of the therapeutic switch from clopidogrel to ticagrelor on platelet aggregation. Circulating levels of selected microRNAs were measured before and after the therapeutic switch from a dual antiplatelet therapy including acetylsalicylic acid (ASA) and clopidogrel to the more potent ticagrelor. Interestingly, the circulating levels of miR-126 (p = 0.030), miR-223 (p = 0.044), and miR-150 (p = 0.048) were significantly reduced, while the levels of miR-96 were increased (p = 0.038). No substantial differences were observed for the remaining microRNAs. Conclusions. Switching from a dual antiplatelet treatment with clopidogrel to ticagrelor is associated with significant modulation in the circulating levels of specific microRNAs. If confirmed in larger, independent cohorts, our results pave the way for the use of circulating microRNAs as biomarkers of platelets activity in response to specific pharmacological treatments. PMID:27366745

  16. Regulation of microRNA function in somatic stem cell proliferation and differentiation

    PubMed Central

    Shenoy, Archana; Blelloch, Robert H.

    2015-01-01

    microRNAs (miRNAs) are important modulators of development. Owing to their ability to simultaneously silence hundreds of target genes, they have key roles in large-scale transcriptomic changes that occur during cell fate transitions. In somatic stem and progenitor cells — such as those involved in myogenesis, haematopoiesis, skin and neural development — miRNA function is carefully regulated to promote and stabilize cell fate choice. miRNAs are integrated within networks that form both positive and negative feedback loops. Their function is regulated at multiple levels, including transcription, biogenesis, stability, availability and/or number of target sites, as well as their cooperation with other miRNAs and RNA-binding proteins. Together, these regulatory mechanisms result in a refined molecular response that enables proper cellular differentiation and function. PMID:25118717

  17. MicroRNA-7a regulates pancreatic β cell function

    PubMed Central

    Latreille, Mathieu; Hausser, Jean; Stützer, Ina; Zhang, Quan; Hastoy, Benoit; Gargani, Sofia; Kerr-Conte, Julie; Pattou, Francois; Zavolan, Mihaela; Esguerra, Jonathan L.S.; Eliasson, Lena; Rülicke, Thomas; Rorsman, Patrik; Stoffel, Markus

    2014-01-01

    Dysfunctional microRNA (miRNA) networks contribute to inappropriate responses following pathological stress and are the underlying cause of several disease conditions. In pancreatic β cells, miRNAs have been largely unstudied and little is known about how specific miRNAs regulate glucose-stimulated insulin secretion (GSIS) or impact the adaptation of β cell function to metabolic stress. In this study, we determined that miR-7 is a negative regulator of GSIS in β cells. Using Mir7a2 deficient mice, we revealed that miR-7a2 regulates β cell function by directly regulating genes that control late stages of insulin granule fusion with the plasma membrane and ternary SNARE complex activity. Transgenic mice overexpressing miR-7a in β cells developed diabetes due to impaired insulin secretion and β cell dedifferentiation. Interestingly, perturbation of miR-7a expression in β cells did not affect proliferation and apoptosis, indicating that miR-7 is dispensable for the maintenance of endocrine β cell mass. Furthermore, we found that miR-7a levels are decreased in obese/diabetic mouse models and human islets from obese and moderately diabetic individuals with compensated β cell function. Our results reveal an interconnecting miR-7 genomic circuit that regulates insulin granule exocytosis in pancreatic β cells and support a role for miR-7 in the adaptation of pancreatic β cell function in obesity and type 2 diabetes. PMID:24789908

  18. Differential hypoxic regulation of the microRNA-146a/CXCR4 pathway in normal and leukemic monocytic cells: impact on response to chemotherapy

    PubMed Central

    Spinello, Isabella; Quaranta, Maria Teresa; Paolillo, Rosa; Pelosi, Elvira; Cerio, Anna Maria; Saulle, Ernestina; Coco, Francesco Lo; Testa, Ugo; Labbaye, Catherine

    2015-01-01

    High expression of the chemokine receptor 4, CXCR4, associated with a negative prognosis in acute myeloid leukemia, is related to hypoxia. Because CXCR4 expression is under the post-transcriptional control of microRNA-146a in normal and leukemic monocytic cells, we first investigated the impact of hypoxia on microRNA-146a and CXCR4 expression during monocytopoiesis and in acute monocytic leukemia. We then analyzed the effects of hypoxia on drug sensitivity of CXCR4-expressing leukemic cells. We found that microRNA-146a is a target of hypoxia-inducible factor-1α or -2α in relation to the stage of monocytopoiesis and the level of hypoxia, and demonstrated the regulation of the microRNA-146a/CXCR4 pathway by hypoxia in monocytes derived from CD34+ cells. Thus, in myeloid leukemic cell lines, hypoxia-mediated control of the microRNA-146a/CXCR4 pathway depends only on the capacity of hypoxia-inducible factor-1α to up-regulate microRNA-146a, which in turn decreases CXCR4 expression. However, at variance with normal monocytic cells and leukemic cell lines, in acute monocytic leukemia overexpressing CXCR4, hypoxia up-modulates microRNA-146a but fails to down-modulate CXCR4 expression. We then investigated the effect of hypoxia on the response of leukemic cells to chemotherapy alone or in combination with stromal-derived factor-1α. We found that hypoxia increases stromal-derived factor-1α-induced survival of leukemic cells by decreasing their sensitivity to anti-leukemic drugs. Altogether, our results demonstrate that hypoxia-mediated regulation of microRNA-146a, which controls CXCR4 expression in monocytic cells, is lost in acute monocytic leukemia, thus contributing to maintaining CXCR4 overexpression and protecting the cells from anti-leukemic drugs in the hypoxic bone marrow microenvironment. PMID:26045293

  19. Japanese Encephalitis Virus exploits the microRNA-432 to regulate the expression of Suppressor of Cytokine Signaling (SOCS) 5.

    PubMed

    Sharma, Nikhil; Kumawat, Kanhaiya L; Rastogi, Meghana; Basu, Anirban; Singh, Sunit K

    2016-01-01

    Japanese encephalitis virus (JEV) is a plus strand RNA virus, which infects brain. MicroRNAs are regulatory non-coding RNAs which regulate the expression of various genes in cells. Viruses modulate the expression of various microRNAs to suppress anti-viral signaling and evade the immune response. SOCS (Suppressor of cytokine signalling) family of proteins are negative regulators of anti-viral Jak-STAT pathway. In this study, we demonstrated the regulatory role of SOCS5 in Jak-STAT signaling and its exploitation by JEV through a microRNA mediated mechanism. JEV infection in human brain microglial cells (CHME3) downregulated the expression of miR-432, and upregulated SOCS5 levels. SOCS5 was validated as a target of miR-432 by using 3'UTR clone of SOCS5 in luciferase vector along with miR-432 mimic. The overexpression of miR-432 prior to JEV infection enhanced the phosphorylation of STAT1 resulting into increased ISRE activity and cellular inflammatory response resulting into diminished viral replication. The knockdown of SOCS5 resulted into increased STAT1 phosphorylation and suppressed viral replication. JEV infection mediated downregulation of miR-432 leads to SOCS5 upregulation, which helps the virus to evade cellular anti-viral response. This study demonstrated that JEV utilizes this microRNA mediated strategy to manipulate cellular immune response promoting JEV pathogenesis. PMID:27282499

  20. Japanese Encephalitis Virus exploits the microRNA-432 to regulate the expression of Suppressor of Cytokine Signaling (SOCS) 5

    PubMed Central

    Sharma, Nikhil; Kumawat, Kanhaiya L.; Rastogi, Meghana; Basu, Anirban; Singh, Sunit K.

    2016-01-01

    Japanese encephalitis virus (JEV) is a plus strand RNA virus, which infects brain. MicroRNAs are regulatory non-coding RNAs which regulate the expression of various genes in cells. Viruses modulate the expression of various microRNAs to suppress anti-viral signaling and evade the immune response. SOCS (Suppressor of cytokine signalling) family of proteins are negative regulators of anti-viral Jak-STAT pathway. In this study, we demonstrated the regulatory role of SOCS5 in Jak-STAT signaling and its exploitation by JEV through a microRNA mediated mechanism. JEV infection in human brain microglial cells (CHME3) downregulated the expression of miR-432, and upregulated SOCS5 levels. SOCS5 was validated as a target of miR-432 by using 3′UTR clone of SOCS5 in luciferase vector along with miR-432 mimic. The overexpression of miR-432 prior to JEV infection enhanced the phosphorylation of STAT1 resulting into increased ISRE activity and cellular inflammatory response resulting into diminished viral replication. The knockdown of SOCS5 resulted into increased STAT1 phosphorylation and suppressed viral replication. JEV infection mediated downregulation of miR-432 leads to SOCS5 upregulation, which helps the virus to evade cellular anti-viral response. This study demonstrated that JEV utilizes this microRNA mediated strategy to manipulate cellular immune response promoting JEV pathogenesis. PMID:27282499

  1. MicroRNA-34a regulation of endothelial senescence

    SciTech Connect

    Ito, Takashi; Yagi, Shusuke; Yamakuchi, Munekazu

    2010-08-06

    Research highlights: {yields} MicroRNA-34a (miR-34a) regulates senescence and cell cycle progression in endothelial cells. {yields} MiR-34a expression increases during endothelial cell senescence and in older mice. {yields} SIRT1 is a miR-34a target gene in endothelial cells. {yields} SIRT1 mediates the effects of miR-34a upon cell senescence in endothelial cells. -- Abstract: Endothelial senescence is thought to play a role in cardiovascular diseases such as atherosclerosis. We hypothesized that endothelial microRNAs (miRNAs) regulate endothelial survival and senescence. We found that miR-34a is highly expressed in primary endothelial cells. We observed that miR-34a expression increases in senescent human umbilical cord vein endothelial cells (HUVEC) and in heart and spleen of older mice. MiR-34a over-expression induces endothelial cell senescence and also suppresses cell proliferation by inhibiting cell cycle progression. Searching for how miR-34a affects senescence, we discovered that SIRT1 is a target of miR-34a. Over-expressing miR-34a inhibits SIRT1 protein expression, and knocking down miR-34a enhances SIRT1 expression. MiR-34a triggers endothelial senescence in part through SIRT1, since forced expression of SIRT1 blocks the ability of miR-34a to induce senescence. Our data suggest that miR-34a contributes to endothelial senescence through suppression of SIRT1.

  2. MicroRNAs as novel regulators of stem cell fate

    PubMed Central

    Choi, Eunhyun; Choi, Eunmi; Hwang, Ki-Chul

    2013-01-01

    Mounting evidence in stem cell biology has shown that microRNAs (miRNAs) play a crucial role in cell fate specification, including stem cell self-renewal, lineage-specific differentiation, and somatic cell reprogramming. These functions are tightly regulated by specific gene expression patterns that involve miRNAs and transcription factors. To maintain stem cell pluripotency, specific miRNAs suppress transcription factors that promote differentiation, whereas to initiate differentiation, lineage-specific miRNAs are upregulated via the inhibition of transcription factors that promote self-renewal. Small molecules can be used in a similar manner as natural miRNAs, and a number of natural and synthetic small molecules have been isolated and developed to regulate stem cell fate. Using miRNAs as novel regulators of stem cell fate will provide insight into stem cell biology and aid in understanding the molecular mechanisms and crosstalk between miRNAs and stem cells. Ultimately, advances in the regulation of stem cell fate will contribute to the development of effective medical therapies for tissue repair and regeneration. This review summarizes the current insights into stem cell fate determination by miRNAs with a focus on stem cell self-renewal, differentiation, and reprogramming. Small molecules that control stem cell fate are also highlighted. PMID:24179605

  3. Quantifying negative feedback regulation by micro-RNAs

    NASA Astrophysics Data System (ADS)

    Wang, Shangying; Raghavachari, Sridhar

    2011-10-01

    Micro-RNAs (miRNAs) play a crucial role in post-transcriptional gene regulation by pairing with target mRNAs to repress protein production. It has been shown that over one-third of human genes are targeted by miRNA. Although hundreds of miRNAs have been identified in mammalian genomes, the function of miRNA-based repression in the context of gene regulation networks still remains unclear. In this study, we explore the functional roles of feedback regulation by miRNAs. In a model where repression of translation occurs by sequestration of mRNA by miRNA, we find that miRNA and mRNA levels are anti-correlated, resulting in larger fluctuation in protein levels than theoretically expected assuming no correlation between miRNA and mRNA levels. If miRNA repression is due to a catalytic suppression of translation rates, we analytically show that the protein fluctuations can be strongly repressed with miRNA regulation. We also discuss how either of these modes may be relevant for cell function.

  4. Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes

    PubMed Central

    Braconi, Chiara; Valeri, Nicola; Gasparini, Pierluigi; Huang, Nianyuan; Taccioli, Cristian; Nuovo, Gerard; Suzuki, Tetsuro; Croce, Carlo Maria; Patel, Tushar

    2009-01-01

    Purpose Hepatocellular cancer (HCC) is highly resistant to chemotherapy and is associated with a poor prognosis. Chronic hepatitis C (HCV) infection is a major cause of HCC. However, the effect of viral proteins in mediating chemosensitivity in tumor cells is unknown. We postulated that HCV viral proteins could modulate therapeutic responses by altering host cell microRNA (miRNA) expression. Experimental design HepG2 malignant hepatocytes were stably transfected with full length HCV genome (Hep-394) or an empty vector (Hep-SWX). miRNA profiling was performed by using a custom microarray, and the expression of selected miRNAs was validated by real time PCR. Protein expression was assessed by western blotting, while caspase activation by a luminometric assay. Results The IC50 to sorafenib was lower in Hep-394 compared to Hep-SWX control cells. Alterations in miRNA expression occurred with 10 miRNAs > 2-fold down-regulated and 23 miRNAs > 2-fold up-regulated in Hep-394 cells compared to controls. Of these, miR-193b was over-expressed by 5-fold in Hep-394 cells. miR-193b was predicted to target Mcl-1, an anti-apoptotic protein that can modulate the response to sorafenib. The expression of Mcl-1 expression was decreased and basal caspase-3/7 activity and PARP cleavage were increased in Hep-394 cells compared to controls. Moreover, transfection with precursors to miR-193b decreased both Mcl-1 expression and the IC50 to sorafenib. Conclusions Cellular expression of full length HCV increases sensitivity to sorafenib by miRNA-dependent modulation of Mcl-1 and apoptosis. Modulation of miRNA responses may be a useful strategy to enhance response to chemotherapy in HCC. PMID:20103677

  5. The estrogen receptor-α-induced microRNA signature regulates itself and its transcriptional response

    PubMed Central

    Castellano, Leandro; Giamas, Georgios; Jacob, Jimmy; Coombes, R. Charles; Lucchesi, Walter; Thiruchelvam, Paul; Barton, Geraint; Jiao, Long R.; Wait, Robin; Waxman, Jonathan; Hannon, Gregory J.; Stebbing, Justin

    2009-01-01

    Following estrogenic activation, the estrogen receptor-α (ERα) directly regulates the transcription of target genes via DNA binding. MicroRNAs (miRNAs) modulated by ERα have the potential to fine tune these regulatory systems and also provide an alternate mechanism that could impact on estrogen-dependent developmental and pathological systems. Through a microarray approach, we identify the subset of microRNAs (miRNAs) modulated by ERα, which include upregulation of miRNAs derived from the processing of the paralogous primary transcripts (pri-) mir-17–92 and mir-106a-363. Characterization of the mir-17–92 locus confirms that the ERα target protein c-MYC binds its promoter in an estrogen-dependent manner. We observe that levels of pri-mir-17–92 increase earlier than the mature miRNAs derived from it, implicating precursor cleavage modulation after transcription. Pri-mir-17–92 is immediately cleaved by DROSHA to pre-miR-18a, indicating that its regulation occurs during the formation of the mature molecule from the precursor. The clinical implications of this novel regulatory system were confirmed by demonstrating that pre-miR-18a was significantly upregulated in ERα-positive compared to ERα-negative breast cancers. Mechanistically, miRNAs derived from these paralogous pri-miRNAs (miR-18a, miR-19b, and miR-20b) target and downregulate ERα, while a subset of pri-miRNA-derived miRNAs inhibit protein translation of the ERα transcriptional p160 coactivator, AIB1. Therefore, different subsets of miRNAs identified act as part of a negative autoregulatory feedback loop. We propose that ERα, c-MYC, and miRNA transcriptional programs invoke a sophisticated network of interactions able to provide the wide range of coordinated cellular responses to estrogen. PMID:19706389

  6. Increase of microRNA-210, Decrease of Raptor Gene Expression and Alteration of Mammalian Target of Rapamycin Regulated Proteins following Mithramycin Treatment of Human Erythroid Cells

    PubMed Central

    Bianchi, Nicoletta; Finotti, Alessia; Ferracin, Manuela; Lampronti, Ilaria; Zuccato, Cristina; Breveglieri, Giulia; Brognara, Eleonora; Fabbri, Enrica; Borgatti, Monica; Negrini, Massimo; Gambari, Roberto

    2015-01-01

    Expression and regulation of microRNAs is an emerging issue in erythroid differentiation and globin gene expression in hemoglobin disorders. In the first part of this study microarray analysis was performed both in mithramycin-induced K562 cells and erythroid precursors from healthy subjects or β-thalassemia patients producing low or high levels of fetal hemoglobin. We demonstrated that: (a) microRNA-210 expression is higher in erythroid precursors from β-thalassemia patients with high production of fetal hemoglobin; (b) microRNA-210 increases as a consequence of mithramycin treatment of K562 cells and human erythroid progenitors both from healthy and β-thalassemia subjects; (c) this increase is associated with erythroid induction and elevated expression of γ-globin genes; (d) an anti-microRNA against microRNA-210 interferes with the mithramycin-induced changes of gene expression. In the second part of the study we have obtained convergent evidences suggesting raptor mRNA as a putative target of microRNA-210. Indeed, microRNA-210 binding sites of its 3’-UTR region were involved in expression and are targets of microRNA-210-mediated modulation in a luciferase reporter assays. Furthermore, (i) raptor mRNA and protein are down-regulated upon mithramycin-induction both in K562 cells and erythroid progenitors from healthy and β-thalassemia subjects. In addition, (ii) administration of anti-microRNA-210 to K562 cells decreased endogenous microRNA-210 and increased raptor mRNA and protein expression. Finally, (iii) treatment of K562 cells with premicroRNA-210 led to a decrease of raptor mRNA and protein. In conclusion, microRNA-210 and raptor are involved in mithramycin-mediated erythroid differentiation of K562 cells and participate to the fine-tuning and control of γ-globin gene expression in erythroid precursor cells. PMID:25849663

  7. Whole genome analysis and microRNAs regulation in HepG2 cells exposed to cadmium.

    PubMed

    Fabbri, Marco; Urani, Chiara; Sacco, Maria Grazia; Procaccianti, Claudio; Gribaldo, Laura

    2012-01-01

    Cadmium (Cd) is a metal known to be toxic and carcinogenic, but its mechanism of action remains to be fully elucidated. We investigated the gene expression modulation in the human hepatoma cell line HepG2 after exposure to 2 μM and 10 μM Cd using an Agilent microarray. Furthermore, we evaluated the microRNA modulation after exposure to 10 μM Cd with a Low Density Array. At the low concentration only eleven genes belonging to the metallothionein familiy were regulated. At the higher concentration the pathway enrichment analysis for the 536 up-regulated genes showed a large number of pathways related to cancer, whereas the 424 down-regulated genes were enriched on pathways correlated to liver function. A large percentage of modified microRNAs belonged to the let-7 family, which is considered to have oncosuppressor functions. Several pathways connected to cancer were regulated at the transcription level, and miRNAs had a potential impact on the modulation of this regulation. PMID:22562489

  8. MicroRNAs: New regulators of IL-22.

    PubMed

    Lu, Zhou; Liu, Ronghua; Huang, Enyu; Chu, Yiwei

    2016-01-01

    Interleukin-22 (IL-22) is a cytokine that belongs to the IL-10 family of interleukins. It can be produced by T helper 22 (Th22) cells, T helper 1 (Th1) cells, T helper 17 (Th17) cells, natural killer 22 (NK22) cells, natural killer T (NKT) cells, innate lymphoid cells (ILCs), and γδ T cells. IL-22 acts via binding to a heterodimeric transmembrane receptor complex that consists of IL-22R1 and IL-10R2 and mainly contributes to the tissue repair and host defense. Transcription factors such as retinoid orphan receptor γt (RORγt) and signal transducer and activator of transcription 3 (STAT3), have been reported to play important roles in regulation of IL-22 expression. Recently, it has been demonstrated in several studies that microRNAs (miRNAs) potently regulate expression of interleukins, including production of IL-22. Here, we review current knowledge about regulators of IL-22 expression with a particular emphasis on the role of miRNAs. PMID:27221197

  9. Regulation of Skeletal Muscle by microRNAs.

    PubMed

    Diniz, Gabriela Placoná; Wang, Da-Zhi

    2016-01-01

    MicroRNAs (miRNAs) are a class of small noncoding RNAs highly conserved across species. miRNAs regulate gene expression posttranscriptionally by base pairing to complementary sequences mainly in the 3'-untranslated region of their target mRNAs to induce mRNA cleavage and translational repression. Thousands of miRNAs have been identified in human and their function has been linked to the regulation of both physiological and pathological processes. The skeletal muscle is the largest human organ responsible for locomotion, posture, and body metabolism. Several conditions such as aging, immobilization, exercise, and diet are associated with alterations in skeletal muscle structure and function. The genetic and molecular pathways that regulate muscle development, function, and regeneration as well as muscular disease have been well established in past decades. In recent years, numerous studies have underlined the importance of miRNAs in the control of skeletal muscle development and function, through its effects on several biological pathways critical for skeletal muscle homeostasis. Furthermore, it has become clear that alteration of the expression of many miRNAs or genetic mutations of miRNA genes is associated with changes on myogenesis and on progression of several skeletal muscle diseases. The present review provides an overview of the current studies and recent progress in elucidating the complex role exerted by miRNAs on skeletal muscle physiology and pathology. © 2016 American Physiological Society. Compr Physiol 6:1279-1294, 2016. PMID:27347893

  10. MicroRNA-27b Regulates Mitochondria Biogenesis in Myocytes

    PubMed Central

    Zhang, Shunhua; Du, Jingjing; Bai, Lin; Zhang, Yi; Jiang, Yanzhi; Li, Xuewei; Wang, Jinyong; Zhu, Li

    2016-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that affect the post-transcriptional regulation of various biological pathways. To date, it is not fully understood how miRNAs regulate mitochondrial biogenesis. This study aimed at the identification of the role of miRNA-27b in mitochondria biogenesis. The mitochondria content in C2C12 cells was significantly increased during myogenic differentiation and accompanied by a marked decrease of miRNA-27b expression. Furthermore, the expression of the predicted target gene of miRNA-27b, forkhead box j3 (Foxj3), was also increased during myogenic differentiation. Luciferase activity assays confirmed that miRNA-27b directly targets the 3’-untranslated region (3’-UTR) of Foxj3. Overexpression of miRNA-27b provoked a decrease of mitochondria content and diminished expression of related mitochondrial genes and Foxj3 both at mRNA and protein levels. The expression levels of downstream genes of Foxj3, such as Mef2c, PGC1α, NRF1 and mtTFA, were also decreased in C2C12 cells upon overexpression of miRNA-27b. These results suggested that miRNA-27b may affect mitochondria biogenesis by down-regulation of Foxj3 during myocyte differentiation. PMID:26849429

  11. MicroRNA858 Is a Potential Regulator of Phenylpropanoid Pathway and Plant Development.

    PubMed

    Sharma, Deepika; Tiwari, Manish; Pandey, Ashutosh; Bhatia, Chitra; Sharma, Ashish; Trivedi, Prabodh Kumar

    2016-06-01

    MicroRNAs (miRNAs) are endogenous, noncoding small RNAs that function as critical regulators of gene expression. In plants, miRNAs have shown their potential as regulators of growth, development, signal transduction, and stress tolerance. Although the miRNA-mediated regulation of several processes is known, the involvement of miRNAs in regulating secondary plant product biosynthesis is poorly understood. In this study, we functionally characterized Arabidopsis (Arabidopsis thaliana) miR858a, which putatively targets R2R3-MYB transcription factors involved in flavonoid biosynthesis. Overexpression of miR858a in Arabidopsis led to the down-regulation of several MYB transcription factors regulating flavonoid biosynthesis. In contrast to the robust growth and early flowering of miR858OX plants, reduction of plant growth and delayed flowering were observed in Arabidopsis transgenic lines expressing an artificial miRNA target mimic (MIM858). Genome-wide expression analysis using transgenic lines suggested that miR858a targets a number of regulatory factors that modulate the expression of downstream genes involved in plant development and hormonal and stress responses. Furthermore, higher expression of MYBs in MIM858 lines leads to redirection of the metabolic flux towards the synthesis of flavonoids at the cost of lignin synthesis. Altogether, our study has established the potential role of light-regulated miR858a in flavonoid biosynthesis and plant growth and development. PMID:27208307

  12. miReg: a resource for microRNA regulation.

    PubMed

    Barh, Debmalya; Bhat, Dattatraya; Viero, Cedric

    2010-01-01

    MicroRNAs (miRNAs/miRs) are important cellular components that regulate gene expression at posttranscriptional level. Various upstream components regulate miR expression and any deregulation causes disease conditions. Therefore, understanding of miR regulatory network both at upstream and downstream level is crucial and a resource on this aspect will be helpful. Currently available miR databases are mostly related to downstream targets, sequences, or diseases. But as of now, no database is available that provides a complete picture of miR regulation in a specific condition. Our miR regulation web resource (miReg) is a manually curated one that represents validated upstream regulators (transcription factor, drug, physical, and chemical) along with downstream targets, associated biological process, experimental condition or disease state, up or down regulation of the miR in that condition, and corresponding PubMed references in a graphical and user friendly manner, browseable through 5 browsing options. We have presented exact facts that have been described in the corresponding literature in relation to a given miR, whether it's a feed-back/feed-forward loop or inhibition/activation. Moreover we have given various links to integrate data and to get a complete picture on any miR listed. Current version (Version 1.0) of miReg contains 47 important human miRs with 295 relations using 190 absolute references. We have also provided an example on usefulness of miReg to establish signalling pathways involved in cardiomyopathy. We believe that miReg will be an essential miRNA knowledge base to research community, with its continuous upgrade and data enrichment. This HTML based miReg can be accessed from: www.iioab-mireg.webs.com or www.iioab.webs.com/mireg.htm. PMID:20693604

  13. MicroRNAs modulated by local mIGF-1 expression in mdx dystrophic mice

    PubMed Central

    Pelosi, Laura; Coggi, Angela; Forcina, Laura; Musarò, Antonio

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a X-linked genetic disease in which the absence of dystrophin leads to progressive lethal skeletal muscle degeneration. It has been demonstrated that among genes which are important for proper muscle development and function, micro-RNAs (miRNAs) play a crucial role. Moreover, altered levels of miRNAs were found in several muscular disorders, including DMD. A specific group of miRNAs, whose expression depends on dystrophin levels and whose deregulation explains several DMD pathogenetic traits, has been identified. Here, we addressed whether the anabolic activity of mIGF-1 on dystrophic muscle is associated with modulation of microRNAs expression. We demonstrated that some microRNAs are strictly linked to the dystrophin expression and are not modulated by mIGF-1 expression. In contrast, local expression of mIGF-1 promotes the modulation of other microRNAs, such as miR-206 and miR-24, along with the modulation of muscle specific genes, which are associated with maturation of regenerating fibers and with the stabilization of the differentiated muscle phenotype. These data suggest that mIGF-1, modifying the expression of some of the active players of muscle homeostasis, is able, even in absence of dystrophin expression, to activate circuitries that confer robustness to dystrophic muscle. PMID:25999854

  14. Modulation of microRNAs by ionizing radiation in human gastric cancer.

    PubMed

    He, Jinpeng; Hua, Junrui; Ding, Nan; Xu, Shuai; Sun, Rui; Zhou, Guangming; Xie, Xiaodong; Wang, Jufang

    2014-08-01

    Gastric cancer is one of the most common cancers in China. Although surgery is the primary therapeutic method, radiotherapy has become an integral part, particularly in the early and intermediate stages of gastric cancer. microRNAs (miRNAs) are involved in the regulation of diverse cellular processes in response to intrinsic and extrinsic stress. A change in miRNA expression profile has been identified in various types of tumor cells in response to radiation; however, there is no relevant information concerning gastric cancer. In the present study, we investigated the miRNA profiles of two clinical gastric cancer samples exposed to X‑rays using miRNA microarray. We found that 16 miRNAs were downregulated and 2 miRNAs were upregulated significantly in both irradiated samples when compared with the unirradiated samples. Decreases in the levels of miR‑300 and miR‑642 expression were confirmed by qRT‑PCR in more clinical samples and in cultured cell lines. We predicted the targets of the two miRNAs with TargetScan and classified all the candidate targets with Gene Ontology, which indicated that both miR‑300 and miR‑642 potentially regulate cellular radiation response by modulating apoptosis, cell cycle regulation and DNA damage and repair pathway-related genes. Cell cycle assay and immunofluorescence assay demonstrated that miR‑300 regulates radiation‑induced G2 cell cycle arrest and DNA damage repair. In conclusion, our findings indicate that ionizing radiation modulates the miRNA expression profile, and the changes in several specific miRNAs such as miR‑300 have the potential to be used in the treatment, diagnosis and prognosis of gastric cancer. PMID:24919435

  15. Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease

    PubMed Central

    2014-01-01

    Diabetic heart disease (DHD) is the leading cause of morbidity and mortality among the people with diabetes, with approximately 80% of the deaths in diabetics are due to cardiovascular complications. Importantly, heart disease in the diabetics develop at a much earlier stage, although remaining asymptomatic till the later stage of the disease, thereby restricting its early detection and active therapeutic management. Thus, a better understanding of the modulators involved in the pathophysiology of DHD is necessary for the early diagnosis and development of novel therapeutic implications for diabetes-associated cardiovascular complications. microRNAs (miRs) have recently been evolved as key players in the various cardiovascular events through the regulation of cardiac gene expression. Besides their credible involvement in controlling the cellular processes, they are also released in to the circulation in disease states where they serve as potential diagnostic biomarkers for cardiovascular disease. However, their potential role in DHD as modulators as well as diagnostic biomarkers is largely unexplored. In this review, we describe the putative mechanisms of the selected cardiovascular miRs in relation to cardiovascular diseases and discuss their possible involvement in the pathophysiology and early diagnosis of DHD. PMID:24528626

  16. MicroRNA processing pathway regulates olfactory neuron morphogenesis.

    PubMed

    Berdnik, Daniela; Fan, Audrey P; Potter, Christopher J; Luo, Liqun

    2008-11-25

    The microRNA (miRNA) processing pathway produces miRNAs as posttranscriptional regulators of gene expression. The nuclear RNase III Drosha catalyzes the first processing step together with the dsRNA binding protein DGCR8/Pasha generating pre-miRNAs [1, 2]. The next cleavage employs the cytoplasmic RNase III Dicer producing miRNA duplexes [3, 4]. Finally, Argonautes are recruited with miRNAs into an RNA-induced silencing complex for mRNA recognition (Figure 1A). Here, we identify two members of the miRNA pathway, Pasha and Dicer-1, in a forward genetic screen for mutations that disrupt wiring specificity of Drosophila olfactory projection neurons (PNs). The olfactory system is built as discrete map of highly stereotyped neuronal connections [5, 6]. Each PN targets dendrites to a specific glomerulus in the antennal lobe and projects axons stereotypically into higher brain centers [7-9]. In selected PN classes, pasha and Dicer-1 mutants cause specific PN dendrite mistargeting in the antennal lobe and altered axonal terminations in higher brain centers. Furthermore, Pasha and Dicer-1 act cell autonomously in postmitotic neurons to regulate dendrite and axon targeting during development. However, Argonaute-1 and Argonaute-2 are dispensable for PN morphogenesis. Our findings suggest a role for the miRNA processing pathway in establishing wiring specificity in the nervous system. PMID:19013069

  17. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin.

    PubMed

    Alexander, Margaret; Hu, Ruozhen; Runtsch, Marah C; Kagele, Dominique A; Mosbruger, Timothy L; Tolmachova, Tanya; Seabra, Miguel C; Round, June L; Ward, Diane M; O'Connell, Ryan M

    2015-01-01

    MicroRNAs regulate gene expression posttranscriptionally and function within the cells in which they are transcribed. However, recent evidence suggests that microRNAs can be transferred between cells and mediate target gene repression. We find that endogenous miR-155 and miR-146a, two critical microRNAs that regulate inflammation, are released from dendritic cells within exosomes and are subsequently taken up by recipient dendritic cells. Following uptake, exogenous microRNAs mediate target gene repression and can reprogramme the cellular response to endotoxin, where exosome-delivered miR-155 enhances while miR-146a reduces inflammatory gene expression. We also find that miR-155 and miR-146a are present in exosomes and pass between immune cells in vivo, as well as demonstrate that exosomal miR-146a inhibits while miR-155 promotes endotoxin-induced inflammation in mice. Together, our findings provide strong evidence that endogenous microRNAs undergo a functional transfer between immune cells and constitute a mechanism of regulating the inflammatory response. PMID:26084661

  18. MicroRNA-30b-Mediated Regulation of Catalase Expression in Human ARPE-19 Cells

    PubMed Central

    Haque, Rashidul; Chun, Eugene; Howell, Jennifer C.; Sengupta, Trisha; Chen, Dan; Kim, Hana

    2012-01-01

    Background Oxidative injury to retinal pigment epithelium (RPE) and retinal photoreceptors has been linked to a number of retinal diseases, including age-related macular degeneration (AMD). Reactive oxygen species (ROS)-mediated gene expression has been extensively studied at transcriptional levels. Also, the post-transcriptional control of gene expression at the level of translational regulation has been recently reported. However, the microRNA (miRNA/miR)-mediated post-transcriptional regulation in human RPE cells has not been thoroughly looked at. Increasing evidence points to a potential role of miRNAs in diverse physiological processes. Methodology/Principal Findings We demonstrated for the first time in a human retinal pigment epithelial cell line (ARPE-19) that the post-transcriptional control of gene expression via miRNA modulation regulates human catalase, an important and potent component of cell's antioxidant defensive network, which detoxifies hydrogen peroxide (H2O2) radicals. Exposure to several stress-inducing agents including H2O2 has been reported to alter miRNA expression profile. Here, we demonstrated that a sublethal dose of H2O2 (200 µM) up-regulated the expression of miR-30b, a member of the miR-30 family, which inhibited the expression of endogenous catalase both at the transcript and protein levels. However, antisense (antagomirs) of miR-30b was not only found to suppress the miR-30b mimics-mediated inhibitions, but also to dramatically increase the expression of catalase even under an oxidant environment. Conclusions/Significance We propose that a microRNA antisense approach could enhance cytoprotective mechanisms against oxidative stress by increasing the antioxidant defense system. PMID:22880027

  19. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells.

    PubMed

    Bretschneider, Maria; Busch, Bianca; Mueller, Daniel; Nolze, Alexander; Schreier, Barbara; Gekle, Michael; Grossmann, Claudia

    2016-04-01

    Inappropriately activated mineralocorticoid receptor (MR) is a risk factor for vascular remodeling with unclear molecular mechanism. Recent findings suggest that post-transcriptional regulation by micro-RNAs (miRs) may be involved. Our aim was to search for MR-dependent miRs in vascular smooth muscle cells (VSMCs) and to explore the underlying molecular mechanism and the pathologic relevance. We detected that aldosteroneviathe MR reduces miR-29bin vivoin murine aorta and in human primary and cultured VSMCs (ED50= 0.07 nM) but not in endothelial cells [quantitative PCR (qPCR), luciferase assays]. This effect was mediated by an increased decay of miR-29b in the cytoplasm with unchanged miR-29 family member or primary-miR levels. Decreased miR-29b led to an increase in extracellular matrix measured by ELISA and qPCR and enhanced VSMC migration in single cell-tracking experiments. Additionally, cell proliferation and the apoptosis/necrosis ratio (caspase/lactate dehydrogenase assay) was modulated by miR-29b. Enhanced VSMC migration by aldosterone required miR-29b regulation. Control experiments were performed with scrambled RNA and empty plasmids, by comparing aldosterone-stimulated with vehicle-incubated cells. Overall, our findings provide novel insights into the molecular mechanism of aldosterone-mediated vascular pathogenesis by identifying miR-29b as a pathophysiologic relevant target of activated MR in VSMCs and by highlighting the importance of miR processing for miR regulation.-Bretschneider, M., Busch, B., Mueller, D., Nolze, A., Schreier, B., Gekle, M., Grossmann, C. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells. PMID:26728178

  20. MicroRNA-429 Modulates Hepatocellular Carcinoma Prognosis and Tumorigenesis

    PubMed Central

    Huang, Xiao-Ying; Yao, Jin-Guang; Wang, Chao; Ma, Yun; Xia, Qiang

    2013-01-01

    MicroRNA-429 (miR-429) may modify the development and progression of cancers; however, the role of this microRNA in the hepatocellular carcinoma (HCC) has not been well elaborated. Here, we tested miR-429 expression in 138 pathology-diagnosed HCC cases and SMMC-7721 cells. We found that miR-429 was upregulated in HCC tumor tissues and that the high expression of miR-429 was significantly correlated with larger tumor size (odd ratio (OR), 2.70; 95% confidence interval (CI), 1.28–5.56) and higher aflatoxin B1-DNA adducts (OR = 3.13, 95% CI = 1.47–6.67). Furthermore, this microRNA overexpression modified the recurrence-free survival and overall survival of HCC patients. Functionally, miR-429 overexpression progressed tumor cells proliferation and inhibited cell apoptosis. These results indicate for the first time that miR-429 may modify HCC prognosis and tumorigenesis and may be a potential tumor therapeutic target. PMID:24204382

  1. MicroRNA regulation and dysregulation in epilepsy

    PubMed Central

    Dogini, Danyella B.; Avansini, Simoni H.; Vieira, Andre S.; Lopes-Cendes, Iscia

    2013-01-01

    Epilepsy, one of the most frequent neurological disorders, represents a group of diseases that have in common the clinical occurrence of seizures. The pathogenesis of different types of epilepsy involves many important biological pathways; some of which have been shown to be regulated by microRNAs (miRNAs). In this paper, we will critically review relevant studies regarding the role of miRNAs in epilepsy. Overall, the most common type of epilepsy in the adult population is temporal lobe epilepsy (TLE), and the form associated with mesial temporal sclerosis (MTS), called mesial TLE, is particularly relevant due to the high frequency of resistance to clinical treatment. There are several target studies, as well few genome-wide miRNA expression profiling studies reporting abnormal miRNA expression in tissue with MTS, both in patients and in animal models. Overall, these studies show a fine correlation between miRNA regulation/dysregulation and inflammation, seizure-induced neuronal death and other relevant biological pathways. Furthermore, expression of many miRNAs is dynamically regulated during neurogenesis and its dysregulation may play a role in the process of cerebral corticogenesis leading to malformations of cortical development (MCD), which represent one of the major causes of drug-resistant epilepsy. In addition, there are reports of miRNAs involved in cell proliferation, fate specification, and neuronal maturation and these processes are tightly linked to the pathogenesis of MCD. Large-scale analyzes of miRNA expression in animal models with induced status epilepticus have demonstrated changes in a selected group of miRNAs thought to be involved in the regulation of cell death, synaptic reorganization, neuroinflammation, and neural excitability. In addition, knocking-down specific miRNAs in these animals have demonstrated that this may consist in a promising therapeutic intervention. PMID:24109432

  2. Targeting microRNAs as key modulators of tumor immune response.

    PubMed

    Paladini, Laura; Fabris, Linda; Bottai, Giulia; Raschioni, Carlotta; Calin, George A; Santarpia, Libero

    2016-01-01

    The role of immune response is emerging as a key factor in the complex multistep process of cancer. Tumor microenvironment contains different types of immune cells, which contribute to regulate the fine balance between anti and protumor signals. In this context, mechanisms of crosstalk between cancer and immune cells remain to be extensively elucidated. Interestingly, microRNAs (miRNAs) have been demonstrated to function as crucial regulators of immune response in both physiological and pathological conditions. Specifically, different miRNAs have been reported to have a role in controlling the development and the functions of tumor-associated immune cells. This review aims to describe the most important miRNAs acting as critical modulators of immune response in the context of different solid tumors. In particular, we discuss recent studies that have demonstrated the existence of miRNA-mediated mechanisms regulating the recruitment and the activation status of specific tumor-associated immune cells in the tumor microenvironment. Moreover, various miRNAs have been found to target key cancer-related immune pathways, which concur to mediate the secretion of immunosuppressive or immunostimulating factors by cancer or immune cells. Modalities of miRNA exchange and miRNA-based delivery strategies are also discussed. Based on these findings, the modulation of individual or multiple miRNAs has the potential to enhance or inhibit specific immune subpopulations supporting antitumor immune responses, thus contributing to negatively affect tumorigenesis. New miRNA-based strategies can be developed for more effective immunotherapeutic interventions in cancer. PMID:27349385

  3. MicroRNA-142-3p Negatively Regulates Canonical Wnt Signaling Pathway

    PubMed Central

    Hu, Tanyu; Phiwpan, Krung; Guo, Jitao; Zhang, Wei; Guo, Jie; Zhang, Zhongmei; Zou, Mangge; Zhang, Xuejie; Zhang, Jianhua

    2016-01-01

    Wnt/β-catenin signaling pathway plays essential roles in mammalian development and tissue homeostasis. MicroRNAs (miRNAs) are a class of regulators involved in modulating this pathway. In this study, we screened miRNAs regulating Wnt/β-catenin signaling by using a TopFlash based luciferase reporter. Surprisingly, we found that miR-142 inhibited Wnt/β-catenin signaling, which was inconsistent with a recent study showing that miR-142-3p targeted Adenomatous Polyposis Coli (APC) to upregulate Wnt/β-catenin signaling. Due to the discordance, we elaborated experiments by using extensive mutagenesis, which demonstrated that the stem-loop structure was important for miR-142 to efficiently suppress Wnt/β-catenin signaling. Moreover, the inhibitory effect of miR-142 relies on miR-142-3p rather than miR-142-5p. Further, we found that miR-142-3p directly modulated translation of Ctnnb1 mRNA (encoding β-catenin) through binding to its 3’ untranslated region (3’ UTR). Finally, miR-142 was able to repress cell cycle progression by inhibiting active Wnt/β-catenin signaling. Thus, our findings highlight the inhibitory role of miR-142-3p in Wnt/β-catenin signaling, which help to understand the complex regulation of Wnt/β-catenin signaling. PMID:27348426

  4. Regulation of B Cell Differentiation by Intracellular Membrane-Associated Proteins and microRNAs: Role in the Antibody Response.

    PubMed

    Lou, Zheng; Casali, Paolo; Xu, Zhenming

    2015-01-01

    B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes, and autophagosomes) and protein factors specifically associated with these membranes, including Rab7, Atg5, and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, class switch DNA recombination (CSR)/somatic hypermutation (SHM), and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation, and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulating AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses. PMID:26579118

  5. Describing a Transcription Factor Dependent Regulation of the MicroRNA Transcriptome.

    PubMed

    Rozovski, Uri; Hazan-Halevy, Inbal; Calin, George; Harris, David; Li, Ping; Liu, Zhiming; Keating, Michael J; Estrov, Zeev

    2016-01-01

    While the transcription regulation of protein coding genes was extensively studied, little is known on how transcription factors are involved in transcription of non-coding RNAs, specifically of microRNAs. Here, we propose a strategy to study the potential role of transcription factor in regulating transcription of microRNAs using publically available data, computational resources and high throughput data. We use the H3K4me3 epigenetic signature to identify microRNA promoters and chromatin immunoprecipitation (ChIP)-sequencing data from the ENCODE project to identify microRNA promoters that are enriched with transcription factor binding sites. By transfecting cells of interest with shRNA targeting a transcription factor of interest and subjecting the cells to microRNA array, we study the effect of this transcription factor on the microRNA transcriptome. As an illustrative example we use our study on the effect of STAT3 on the microRNA transcriptome of chronic lymphocytic leukemia (CLL) cells. PMID:27341356

  6. MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma

    PubMed Central

    Roccaro, Aldo M.; Sacco, Antonio; Thompson, Brian; Leleu, Xavier; Azab, Abdel Kareem; Azab, Feda; Runnels, Judith; Jia, Xiaoying; Ngo, Hai T.; Melhem, Molly R.; Lin, Charles P.; Ribatti, Domenico; Rollins, Barrett J.; Witzig, Thomas E.; Anderson, Kenneth C.

    2009-01-01

    Detailed genomic studies have shown that cytogenetic abnormalities contribute to multiple myeloma (MM) pathogenesis and disease progression. Nevertheless, little is known about the characteristics of MM at the epigenetic level and specifically how microRNAs regulate MM progression in the context of the bone marrow milieu. Therefore, we performed microRNA expression profiling of bone marrow derived CD138+ MM cells versus their normal cellular counterparts and validated data by qRT-PCR. We identified a MM-specific microRNA signature characterized by down-expression of microRNA-15a/-16 and overexpression of microRNA-222/-221/-382/-181a/-181b (P < .01). We investigated the functional role of microRNA-15a and -16 and showed that they regulate proliferation and growth of MM cells in vitro and in vivo by inhibiting AKT serine/threonine-protein-kinase (AKT3), ribosomal-protein-S6, MAP-kinases, and NF-κB-activator MAP3KIP3. Moreover, miRNA-15a and -16 exerted their anti-MM activity even in the context of the bone marrow milieu in vitro and in vivo. These data indicate that microRNAs play a pivotal role in the biology of MM and represent important targets for novel therapies in MM. PMID:19401561

  7. Gap junctions modulate glioma invasion by direct transfer of microRNA.

    PubMed

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L; Naus, Christian C

    2015-06-20

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity. PMID:25978028

  8. MicroRNA Regulation in Systemic Lupus Erythematosus Pathogenesis

    PubMed Central

    Yan, Sheng; Yim, Lok Yan; Lu, Liwei; Lau, Chak Sing

    2014-01-01

    MicroRNAs (miRNAs) are endogenous small RNA molecules best known for their function in post-transcriptional gene regulation. Immunologically, miRNA regulates the differentiation and function of immune cells and its malfunction contributes to the development of various autoimmune diseases including systemic lupus erythematosus (SLE). Over the last decade, accumulating researches provide evidence for the connection between dysregulated miRNA network and autoimmunity. Interruption of miRNA biogenesis machinery contributes to the abnormal T and B cell development and particularly a reduced suppressive function of regulatory T cells, leading to systemic autoimmune diseases. Additionally, multiple factors under autoimmune conditions interfere with miRNA generation via key miRNA processing enzymes, thus further skewing the miRNA expression profile. Indeed, several independent miRNA profiling studies reported significant differences between SLE patients and healthy controls. Despite the lack of a consistent expression pattern on individual dysregulated miRNAs in SLE among these studies, the aberrant expression of distinct groups of miRNAs causes overlapping functional outcomes including perturbed type I interferon signalling cascade, DNA hypomethylation and hyperactivation of T and B cells. The impact of specific miRNA-mediated regulation on function of major immune cells in lupus is also discussed. Although research on the clinical application of miRNAs is still immature, through an integrated approach with advances in next generation sequencing, novel tools in bioinformatics database analysis and new in vitro and in vivo models for functional evaluation, the diagnostic and therapeutic potentials of miRNAs may bring to fruition in the future. PMID:24999310

  9. MicroRNA Regulation of Human Breast Cancer Stem Cells

    PubMed Central

    Shimono, Yohei; Mukohyama, Junko; Nakamura, Shun-ichi; Minami, Hironobu

    2015-01-01

    MicroRNAs (miRNAs) are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs) and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression. PMID:26712794

  10. Aberrant Regulation and Function of MicroRNAs in Cancer

    PubMed Central

    Adams, Brian D.; Kasinski, Andrea L.; Slack, Frank J.

    2014-01-01

    Synopsis Malignant neoplasms are consistently among the top four leading causes of death in all age groups in the United States, despite a concerted effort toward developing novel therapeutic approaches[1]. Our understanding of and therapeutic strategy for treating each of these neoplastic diseases has been elevated through decades of research on the genetics, signaling pathways, and cellular biology that govern tumor cell initiation, progression and maintenance. Much of this work has concentrated on post-translational modifications and abnormalities at the DNA level, including point mutations, amplifications/deletions, and chromosomal translocations, and how these aberrant events affect the expression and function of protein-coding genes. Only recently has a novel class of conserved gene regulatory molecules been identified as major contributors to malignant neoplastic disease. This review focuses on how these small non-coding RNA molecules, termed microRNAs (miRNAs), can function as oncogenes or tumor suppressors, and how the misexpression of miRNAs and dysregulation of factors that regulate miRNAs contributes to the tumorigenic process. Specific focus is given to more recently discovered regulatory mechanisms that go awry in cancer, and how these changes alter miRNA expression, processing, and function. PMID:25137592

  11. MicroRNAs Modulate Interactions between Stress and Risk for Cocaine Addiction.

    PubMed

    Doura, Menahem B; Unterwald, Ellen M

    2016-01-01

    Exposure to stress increases vulnerability to drug abuse, as well as relapse liability in addicted individuals. Chronic drug use alters stress response in a manner that increases drug seeking behaviors and relapse. Drug exposure and withdrawal have been shown to alter stress responses, and corticosteroid mediators of stress have been shown to impact addiction-related brain function and drug-seeking behavior. Despite the documented interplay between stress and substance abuse, the mechanisms by which stress exposure and drug seeking interact remain largely unknown. Recent studies indicate that microRNAs (miRNA) play a significant role in stress modulation as well as addiction-related processes including neurogenesis, synapse development, plasticity, drug acquisition, withdrawal and relapse. MiRNAs are short non-coding RNAs that function as bidirectional epigenetic modulators of gene expression through imperfect sequence targeted degradation and/or translational repression of mRNAs. They serve as dynamic regulators of CNS physiology and pathophysiology, and facilitate rapid and long-lasting changes to complex systems and behaviors. MiRNAs function in glucocorticoid signaling and the mesolimbic dopamine reward system, as well as mood disorders related to drug withdrawal. The literature suggests miRNAs play a pivotal role in the interaction between exposures to stress, addiction-related processes, and negative affective states resulting from extended drug withdrawal. This manuscript reviews recent evidence for the role of miRNAs in the modulation of stress and cocaine responses, and discusses potential mediation of the interaction of these systems by miRNAs. Uncovering the mechanism behind the association of stress and drug taking has the potential to impact the treatment of drug abuse and prevention of relapse. Further comprehension of these complex interactions may provide promising new targets for the treatment of drug addiction. PMID:27303265

  12. MicroRNAs Modulate Interactions between Stress and Risk for Cocaine Addiction

    PubMed Central

    Doura, Menahem B.; Unterwald, Ellen M.

    2016-01-01

    Exposure to stress increases vulnerability to drug abuse, as well as relapse liability in addicted individuals. Chronic drug use alters stress response in a manner that increases drug seeking behaviors and relapse. Drug exposure and withdrawal have been shown to alter stress responses, and corticosteroid mediators of stress have been shown to impact addiction-related brain function and drug-seeking behavior. Despite the documented interplay between stress and substance abuse, the mechanisms by which stress exposure and drug seeking interact remain largely unknown. Recent studies indicate that microRNAs (miRNA) play a significant role in stress modulation as well as addiction-related processes including neurogenesis, synapse development, plasticity, drug acquisition, withdrawal and relapse. MiRNAs are short non-coding RNAs that function as bidirectional epigenetic modulators of gene expression through imperfect sequence targeted degradation and/or translational repression of mRNAs. They serve as dynamic regulators of CNS physiology and pathophysiology, and facilitate rapid and long-lasting changes to complex systems and behaviors. MiRNAs function in glucocorticoid signaling and the mesolimbic dopamine reward system, as well as mood disorders related to drug withdrawal. The literature suggests miRNAs play a pivotal role in the interaction between exposures to stress, addiction-related processes, and negative affective states resulting from extended drug withdrawal. This manuscript reviews recent evidence for the role of miRNAs in the modulation of stress and cocaine responses, and discusses potential mediation of the interaction of these systems by miRNAs. Uncovering the mechanism behind the association of stress and drug taking has the potential to impact the treatment of drug abuse and prevention of relapse. Further comprehension of these complex interactions may provide promising new targets for the treatment of drug addiction. PMID:27303265

  13. The microRNA miR-34 modulates aging and neurodegeneration in Drosophila

    PubMed Central

    Liu, Nan; Landreh, Michael; Cao, Kajia; Abe, Masashi; Hendriks, Gert-Jan; Kennerdell, Jason; Zhu, Yongqing; Wang, Li-San; Bonini, Nancy M

    2012-01-01

    Human neurodegenerative diseases possess the temporal hallmark of afflicting the elderly population. Hence, aging is among the most significant factors to impinge on disease onset and progression1, yet little is known of molecular pathways that connect these processes. Central to understanding this connection is to unmask the nature of pathways that functionally integrate aging, chronic maintenance of the brain and modulation of neurodegenerative disease. microRNAs (miRNA) are emerging as critical players in gene regulation during development, yet their role in adult-onset, age-associated processes are only beginning to be revealed. Here we report that the conserved miRNA miR-34 regulates age-associated events and long-term brain integrity in Drosophila, presenting such a molecular link between aging and neurodegeneration. Fly miR-34 expression is adult-onset, brain-enriched and age-modulated. Whereas miR-34 loss triggers a gene profile of accelerated brain aging, late-onset brain degeneration and a catastrophic decline in survival, miR-34 upregulation extends median lifespan and mitigates neurodegeneration induced by human pathogenic polyglutamine (polyQ) disease protein. Some of the age-associated effects of miR-34 require adult-onset translational repression of Eip74EF, an essential ETS domain transcription factor involved in steroid hormone pathways. These studies indicate that miRNA-dependent pathways may impact adult-onset, age-associated events by silencing developmental genes that later have a deleterious influence on adult life cycle and disease, and highlight fly miR-34 as a key miRNA with a role in this process PMID:22343898

  14. RNA Secondary Structure Modulates FMRP's Bi-Functional Role in the MicroRNA Pathway.

    PubMed

    Kenny, Phillip; Ceman, Stephanie

    2016-01-01

    MicroRNAs act by post-transcriptionally regulating the gene expression of 30%-60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP) and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP's interaction with the RNA helicase Moloney leukemia virus 10 (MOV10), which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex. PMID:27338369

  15. Microarray based analysis of gene regulation by microRNA in intervertebral disc degeneration

    PubMed Central

    HU, PENG; FENG, BO; WANG, GUANGLIN; NING, BIN; JIA, TANGHONG

    2015-01-01

    The present study aimed to explore the underlying mechanism of the development of intervertebral disc degeneration (IDD) by bioinformatics based on microarray datasets. GSE 19943 and GSE 34095 datasets downloaded from Gene Expression Omnibus data were used to screen the differentially expressed genes (DEGs) in IDD. The correlation between microRNAs and target genes was investigated using different algorithms. The underlying molecular mechanisms of the target genes were then explored using Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology function enrichment analysis. A total of 9 differentially expressed microRNAs, including 3 down- and 6 upregulated microRNAs and 850 DEGs were identified in tissue from patients with IDD. Two regulation networks of the target genes by microRNAs were constructed, including 33 upregulated microRNA-target gene pairs and 4 downregulated microRNA-target gene pairs. Certain target genes had been demonstrated to be involved in IDD progression via various pathways, including in the cell cycle and pathways in cancer. In addition, two important microRNAs (microRNA-222 and microRNA-589) were identified that were pivotal for the development of IDD, and their target genes, CDKNAB and SMAD4. In conclusion, a comprehensive miRNA-target gene regulatory network was constructed, which was found to be important in IDD progression. PMID:26134418

  16. MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis

    PubMed Central

    Perdomo, Catalina; Campbell, Joshua D.; Gerrein, Joseph; Tellez, Carmen S.; Garrison, Carly B.; Walser, Tonya C.; Drizik, Eduard; Si, Huiqing; Gower, Adam C.; Vick, Jessica; Anderlind, Christina; Jackson, George R.; Mankus, Courtney; Schembri, Frank; O’Hara, Carl; Gomperts, Brigitte N.; Dubinett, Steven M.; Hayden, Patrick; Belinsky, Steven A.; Lenburg, Marc E.; Spira, Avrum

    2013-01-01

    Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro, and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis. PMID:24158479

  17. MicroRNA 4423 is a primate-specific regulator of airway epithelial cell differentiation and lung carcinogenesis.

    PubMed

    Perdomo, Catalina; Campbell, Joshua D; Gerrein, Joseph; Tellez, Carmen S; Garrison, Carly B; Walser, Tonya C; Drizik, Eduard; Si, Huiqing; Gower, Adam C; Vick, Jessica; Anderlind, Christina; Jackson, George R; Mankus, Courtney; Schembri, Frank; O'Hara, Carl; Gomperts, Brigitte N; Dubinett, Steven M; Hayden, Patrick; Belinsky, Steven A; Lenburg, Marc E; Spira, Avrum

    2013-11-19

    Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro, and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis. PMID:24158479

  18. MicroRNA-184 Modulates Doxorubicin Resistance in Osteosarcoma Cells by Targeting BCL2L1

    PubMed Central

    Lin, Bo-chuan; Huang, Dong; Yu, Chao-qun; Mou, Yong; Liu, Yuan-hang; Zhang, Da-wei; Shi, Feng-jun

    2016-01-01

    Background Early metastasis of osteosarcoma (OS) is highly lethal and responds poorly to drug and radiation therapies. MicroRNAs (miRNAs) are a class of small noncoding RNAs that modulate gene expression at the post-transcriptional level. However, the detailed functions of specific miRNAs are not entirely understood. The aim of the present study was to investigate the role of miR-184 as a mediator of drug resistance in human osteosarcoma. Material/Methods qRT-PCR was used to analyze the expression level of miR-184 in OS cell line U-2 OS and MG-63 treated with doxorubicin. MiR-184 agomir or miR-184 antagomir was transferred into cells to regulated miR-184. The target of miR-184 was predicted by TargetScan and confirmed by luciferase reporter assay. Bcl-2-like protein 1 (BCL2L1) expression was detected by Western blot. Cell apoptosis was determined by Annexin V staining and analysis by flow cytometry. Results Doxorubicin induced time-dependent expression of miR-184 in OS cell line U-2 OS and MG-63. Luciferase reporter assay identified BCL2L1 as the direct target gene of miR-184. Furthermore, doxorubicin reduced BCL2L1 expression, which was reversed by miR-184 overexpression and further decreased by miR-184 inhibition in OS cells. In addition, miR-184 agomir reduced doxorubicin-induced cell apoptosis, whereas miR-184 antagomir enhanced apoptosis in OS cells, suggesting that up-regulation of miR-184 contributes to chemoresistance of the OS cell line. Conclusions Our data show that miR-184 was up-regulated in OS patients treated with doxorubicin therapy and leads to poor response to drug therapy by targeting BCL2L1. PMID:27222034

  19. Uncovering MicroRNA Regulatory Hubs that Modulate Plasma Cell Differentiation

    PubMed Central

    Tsai, Dong-Yan; Hung, Kuo-Hsuan; Lin, I-Ying; Su, Shin-Tang; Wu, Shih-Ying; Chung, Cheng-Han; Wang, Tong-Cheng; Li, Wen-Hsiung; Shih, Arthur Chun-Chieh; Lin, Kuo-I

    2015-01-01

    Using genome-wide approaches, we studied the microRNA (miRNA) expression profile during human plasma cell (PC) differentiation induced by stimulation of human blood B cells with T follicular helper cell–dependent signals. Combining the profiles of differentially expressed genes in PC differentiation with gene ontology (GO) analysis revealed that a significant group of genes involved in the transcription factor (TF) activity was preferentially changed. We thus focused on studying the effects of differentially expressed miRNAs on several key TFs in PC differentiation. Cohorts of differentially expressed miRNAs cooperating as miRNA hubs were predicted and validated to modulate key TFs, including a down-regulated miRNA hub containing miR-101-3p, -125b-5p, and -223-3p contributing to induction of PRDM1 as well as an up-regulated miRNA hub containing miR-34a-5p, -148a-3p, and -183-5p suppressing BCL6, BACH2, and FOXP1. Induced expression of NF-κB and PRDM1 during PC differentiation controlled the expression of up- and down-regulated miRNA hubs, respectively. Co-expression of miR-101-3p, -125b-5p, and -223-3p in stimulated B cells showed synergistic effects on inhibition of PC formation, which can be rescued by re-introduction of PRDM1. Together, we catalogue the complex roadmap of miRNAs and their functional interplay in collaboratively directing PC differentiation. PMID:26655851

  20. Autocrine and paracrine modulation of microRNA-155 expression by globular adiponectin in RAW 264.7 macrophages: involvement of MAPK/NF-κB pathway.

    PubMed

    Subedi, Amit; Park, Pil-Hoon

    2013-12-01

    Adiponectin, a hormone produced from adipose tissue, regulates various biological responses, including inflammation and many metabolic processes. MicroRNAs control expression of diverse target genes and various physiological responses. Many of these responses are commonly regulated by adiponectin. However, effects of adiponectin on microRNAs regulation are largely unknown. Herein we demonstrated that globular adiponectin induces increase in miR-155 expression, which plays an important role in inflammatory response, in RAW 264.7 macrophages. We further showed that this effect was modulated by and MAPK/NF-κB dependent mechanisms. These results suggest that miR-155 would be a novel promising target mediating adiponectin-induced various biological responses. PMID:24084329

  1. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells

    PubMed Central

    Ceppi, Maurizio; Pereira, Patricia M.; Dunand-Sauthier, Isabelle; Barras, Emmanuèle; Reith, Walter; Santos, Manuel A.; Pierre, Philippe

    2009-01-01

    In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control immunity. Here, we show that in response to Lipopolysaccharides (LPS), several microRNAs (miRNAs) are regulated in human monocyte-derived dendritic cells. Among these miRNAs, miR-155 is highly up-regulated during maturation. Using LNA silencing combined to microarray technology, we have identified the Toll-like receptor/interleukin-1 (TLR/IL-1) inflammatory pathway as a general target of miR-155. We further demonstrate that miR-155 directly controls the level of TAB2, an important signal transduction molecule. Our observations suggest, therefore, that in mature human DCs, miR-155 is part of a negative feedback loop, which down-modulates inflammatory cytokine production in response to microbial stimuli. PMID:19193853

  2. MicroRNA-22 and microRNA-140 suppress NF-{kappa}B activity by regulating the expression of NF-{kappa}B coactivators

    SciTech Connect

    Takata, Akemi; Otsuka, Motoyuki; Kojima, Kentaro; Yoshikawa, Takeshi; Kishikawa, Takahiro; Yoshida, Haruhiko; Koike, Kazuhiko

    2011-08-12

    Highlights: {yields} miRNAs were screened for their ability to regulate NF-{kappa}B activity. {yields} miRNA-22 and miRNA-140-3p suppress NF-{kappa}B activity by regulating coactivators. {yields} miRNA-22 targets nuclear receptor coactivator 1 (NCOA1). {yields} miRNA-140-3p targets nuclear receptor-interacting protein 1 (NRIP1). -- Abstract: Nuclear factor {kappa}B (NF-{kappa}B) is a transcription factor that regulates a set of genes that are critical to many biological phenomena, including liver tumorigenesis. To identify microRNAs (miRNAs) that regulate NF-{kappa}B activity in the liver, we screened 60 miRNAs expressed in hepatocytes for their ability to modulate NF-{kappa}B activity. We found that miRNA-22 and miRNA-140-3p significantly suppressed NF-{kappa}B activity by regulating the expression of nuclear receptor coactivator 1 (NCOA1) and nuclear receptor-interacting protein 1 (NRIP1), both of which are NF-{kappa}B coactivators. Our results provide new information about the roles of miRNAs in the regulation of NF-{kappa}B activity.

  3. Plant microRNAs: key regulators of root architecture and biotic interactions.

    PubMed

    Couzigou, Jean-Malo; Combier, Jean-Philippe

    2016-10-01

    Contents 22 I. 22 II. 24 III. 25 IV. 27 V. 29 VI. 10 31 References 32 SUMMARY: Plants have evolved a remarkable faculty of adaptation to deal with various and changing environmental conditions. In this context, the roots have taken over nutritional aspects and the root system architecture can be modulated in response to nutrient availability or biotic interactions with soil microorganisms. This adaptability requires a fine tuning of gene expression. Indeed, root specification and development are highly complex processes requiring gene regulatory networks involved in hormonal regulations and cell identity. Among the different molecular partners governing root development, microRNAs (miRNAs) are key players for the fast regulation of gene expression. miRNAs are small RNAs involved in most developmental processes and are required for the normal growth of organisms, by the negative regulation of key genes, such as transcription factors and hormone receptors. Here, we review the known roles of miRNAs in root specification and development, from the embryonic roots to the establishment of root symbioses, highlighting the major roles of miRNAs in these processes. PMID:27292927

  4. MicroRNAs as key regulators of GTPase-mediated apical actin reorganization in multiciliated epithelia

    PubMed Central

    Mercey, Olivier; Kodjabachian, Laurent; Barbry, Pascal; Marcet, Brice

    2016-01-01

    ABSTRACT Multiciliated cells (MCCs), which are present in specialized vertebrate tissues such as mucociliary epithelia, project hundreds of motile cilia from their apical membrane. Coordinated ciliary beating in MCCs contributes to fluid propulsion in several biological processes. In a previous work, we demonstrated that microRNAs of the miR-34/449 family act as new conserved regulators of MCC differentiation by specifically repressing cell cycle genes and the Notch pathway. Recently, we have shown that miR-34/449 also modulate small GTPase pathways to promote, in a later stage of differentiation, the assembly of the apical actin network, a prerequisite for proper anchoring of centrioles-derived neo-synthesized basal bodies. We characterized several miR-34/449 targets related to small GTPase pathways including R-Ras, which represents a key and conserved regulator during MCC differentiation. Direct RRAS repression by miR-34/449 is necessary for apical actin meshwork assembly, notably by allowing the apical relocalization of the actin binding protein Filamin-A near basal bodies. Our studies establish miR-34/449 as central players that orchestrate several steps of MCC differentiation program by regulating distinct signaling pathways. PMID:27144998

  5. Comparative Characterization of Cardiac Development Specific microRNAs: Fetal Regulators for Future

    PubMed Central

    Rustagi, Yashika; Jaiswal, Hitesh K.; Rawal, Kamal; Kundu, Gopal C.; Rani, Vibha

    2015-01-01

    MicroRNAs (miRNAs) are small, conserved RNAs known to regulate several biological processes by influencing gene expression in eukaryotes. The implication of miRNAs as another player of regulatory layers during heart development and diseases has recently been explored. However, there is no study which elucidates the profiling of miRNAs during development of heart till date. Very limited miRNAs have been reported to date in cardiac context. In addition, integration of large scale experimental data with computational and comparative approaches remains an unsolved challenge.The present study was designed to identify the microRNAs implicated in heart development using next generation sequencing, bioinformatics and experimental approaches. We sequenced six small RNA libraries prepared from different developmental stages of the heart using chicken as a model system to produce millions of short sequence reads. We detected 353 known and 703 novel miRNAs involved in heart development. Out of total 1056 microRNAs identified, 32.7% of total dataset of known microRNAs displayed differential expression whereas seven well studied microRNAs namely let–7, miR–140, miR–181, miR–30, miR–205, miR–103 and miR–22 were found to be conserved throughout the heart development. The 3’UTR sequences of genes were screened from Gallus gallus genome for potential microRNA targets. The target mRNAs were appeared to be enriched with genes related to cell cycle, apoptosis, signaling pathways, extracellular remodeling, metabolism, chromatin remodeling and transcriptional regulators. Our study presents the first comprehensive overview of microRNA profiling during heart development and prediction of possible cardiac specific targets and has a big potential in future to develop microRNA based therapeutics against cardiac pathologies where fetal gene re-expression is witnessed in adult heart. PMID:26465880

  6. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}.

    PubMed

    Louafi, Fethi; Martinez-Nunez, Rocio T; Sanchez-Elsner, Tilman

    2010-12-31

    Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine with important effects on processes such as fibrosis, angiogenesis, and immunosupression. Using bioinformatics, we identified SMAD2, one of the mediators of TGF-β signaling, as a predicted target for a microRNA, microRNA-155 (miR-155). MicroRNAs are a class of small non-coding RNAs that have emerged as an important class of gene expression regulators. miR-155 has been found to be involved in the regulation of the immune response in myeloid cells. Here, we provide direct evidence of binding of miR-155 to a predicted binding site and the ability of miR-155 to repress SMAD2 protein expression. We employed a lentivirally transduced monocyte cell line (THP1-155) containing an inducible miR-155 transgene to show that endogenous levels of SMAD2 protein were decreased after sustained overexpression of miR-155. This decrease in SMAD2 led to a reduction in both TGF-β-induced SMAD-2 phosphorylation and SMAD-2-dependent activation of the expression of the CAGA(12)LUC reporter plasmid. Overexpression of miR-155 altered the cellular responses to TGF-β by changing the expression of a set of genes that is involved in inflammation, fibrosis, and angiogenesis. Our study provides firm evidence of a role for miR-155 in directly repressing SMAD2 expression, and our results demonstrate the relevance of one of the two predicted target sites in SMAD2 3'-UTR. Altogether, our data uncover an important role for miR-155 in modulating the cellular response to TGF-β with possible implications in several human diseases where homeostasis of TGF-β might be altered. PMID:21036908

  7. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis

    SciTech Connect

    Liu Xiangde Nelson, Amy; Wang Xingqi; Kanaji, Nobuhiro; Kim, Miok; Sato, Tadashi; Nakanishi, Masanori; Li Yingji; Sun Jianhong; Michalski, Joel; Patil, Amol; Basma, Hesham; Rennard, Stephen I.

    2009-02-27

    MicroRNA plays an important role in cell differentiation, proliferation and cell death. The current study found that miRNA-146a was up-regulated in human bronchial epithelial cells (HBECs) in response to stimulation by TGF-ss1 plus cytomix (a mixture of IL-1ss, IFN-{gamma} and TNF-{alpha}). TGF-ss1 plus cytomix (TCM) induced apoptosis in HBECs (3.4 {+-} 0.6% of control vs 83.1 {+-} 4.0% of TCM treated cells, p < 0.01), and this was significantly blocked by the miRNA-146a mimic (8.8 {+-} 1.5%, p < 0.01). In contrast, a miRNA-146a inhibitor had only a modest effect on cell survival but appeared to augment the induction of epithelial-mesenchymal transition (EMT) in response to the cytokines. The MicroRNA-146a mimic appears to modulate HBEC survival through a mechanism of up-regulating Bcl-XL and STAT3 phosphorylation, and by this mechanism it could contribute to tissue repair and remodeling.

  8. MicroRNA modulation induced by AICA ribonucleotide in J1 mouse ES cells.

    PubMed

    Shi, Xiaoyan; YongyanWu; Ai, Zhiying; Du, Juan; Cao, Lixia; Guo, Zekun; Zhang, Yong

    2014-01-01

    ES cells can propagate indefinitely, maintain self-renewal, and differentiate into almost any cell type of the body. These properties make them valuable in the research of embryonic development, regenerative medicine, and organ transplantation. MicroRNAs (miRNAs) are considered to have essential functions in the maintenance and differentiation of embryonic stem cells (ES cells). It was reported that, strong external stimuli, such as a transient low-pH and hypoxia stress, were conducive to the formation of induced pluripotent stem cells (iPS cells). AICA ribonucleotide (AICAR) is an AMP-activated protein kinase activator, which can let cells in the state of energy stress. We have demonstrated that AICAR can maintain the pluripotency of J1 mouse ES cells through modulating protein expression in our previous research, but its effects on ES cell miRNA expression remain unknown. In this study, we conducted small RNA high-throughput sequencing to investigate AICAR influence on J1 mouse ES cells by comparing the miRNA expression patterns of the AICAR-treated cells and those without treatment. The result showed that AICAR can significantly modulate the expression of multiple miRNAs, including those have crucial functions in ES cell development. Some differentially expressed miRNAs were selected and confirmed by real-time PCR. For the differently expressed miRNAs identified, further study was conducted regarding the pluripotency and differentiation associated miRNAs with their targets. Moreover, miR-134 was significantly down-regulated after AICAR treatment, and this was suggested to be directly associated with the up-regulated pluripotency markers, Nanog and Sox2. Lastly, Myc was significantly down-regulated after AICAR treatment; therefore, we predicted miRNAs that may target Myc and identified that AICAR induced up-regulation of miR-34a, 34b, and 34c can repress Myc expression in J1 mouse ES cells. Taken together, our study provide a new mechanism for AICAR in ES cells

  9. MicroRNA-383 Regulates the Apoptosis of Tumor Cells through Targeting Gadd45g

    PubMed Central

    Wu, Junyu; Wang, Daliang; Chen, Su; Yang, Xiaomei; Qian, Baohua

    2014-01-01

    Background MicroRNAs (miRNAs) are a class of small non-coding single-stranded RNA molecules that inhibit gene expression at post-transcriptional level. Gadd45g (growth arrest and DNA-damage-inducible 45 gamma) is a stress-response protein, which has been implicated in several biological processes, including DNA repair, the cell cycle and cell differentiation. Results In this work, we found that miR-383 is a negative regulator of Gadd45g. Forced expression of miR-383 decreased the expression of Gadd45g through binding to the 3′ untranslated region (3′-UTR), whereas inhibition of miR-383 increased Gadd45g expression. The presence of miR-383 increased the cellular sensitivity to DNA damage in breast cancer cells, which was rescued by ectopic expression of Gadd45g without the 3′-UTR. miR-383 also regulates the expression of Gadd45g in embryonic stem (ES) cells, but not their apoptosis under genotoxic stress. miR-383 was further showed to negatively regulate ES cell differentiation via targeting Gadd45g, which subsequently modulates the pluripotency-associated genes. Taken together, our study demonstrates that miR-383 is a negative regulator of Gadd45g in both tumor cells and ES cells, however, has distinct function in regulating cell apoptosis. miR-383 may be used as antineoplastic agents in cancer chemotherapy. Conclusion We demonstrate for the first time that miR-383 can specifically regulates the expression of Gadd45g by directly targeting to the 3-UTR region of Gadd45g mRNA, a regulatory process conserved in human tumor cells and mouse embryonic stem cells. These two compotents can be potentially used as antineoplastic agents in cancer chemotherapy. PMID:25415264

  10. Reprogramming immune responses via microRNA modulation

    PubMed Central

    Cubillos-Ruiz, Juan R.; Rutkowski, Melanie R; Tchou, Julia; Conejo-Garcia, Jose R.

    2013-01-01

    It is becoming increasingly clear that there are unique sets of miRNAs that have distinct governing roles in several aspects of both innate and adaptive immune responses. In addition, new tools allow selective modulation of the expression of individual miRNAs, both in vitro and in vivo. Here, we summarize recent advances in our understanding of how miRNAs drive the activity of immune cells, and how their modulation in vivo opens new avenues for diagnostic and therapeutic interventions in multiple diseases, from immunodeficiency to cancer. PMID:25285232

  11. MicroRNA-146a: A Key Regulator of Astrocyte-Mediated Inflammatory Response

    PubMed Central

    Prabowo, Avanita; Fluiter, Kees; Spliet, Wim G. M.; van Rijen, Peter C.; Gorter, Jan A.; Aronica, Eleonora

    2012-01-01

    Increasing evidence supports the involvement of microRNAs (miRNA) in the regulation of inflammation in human neurological disorders. In the present study we investigated the role of miR-146a, a key regulator of the innate immune response, in the modulation of astrocyte-mediated inflammation. Using Taqman PCR and in situ hybridization, we studied the expression of miR-146a in epilepsy-associated glioneuronal lesions which are characterized by prominent activation of the innate immune response. In addition, cultured human astrocytes were used to study the regulation of miR-146a expression in response to proinflammatory cytokines. qPCR and western blot were used to evaluate the effects of overexpression or knockdown of miR-146a on IL-1β signaling. Downstream signaling in the IL-1β pathway, as well as the expression of IL-6 and COX-2 were evaluated by western blot and ELISA. Release several cytokines was evaluated using a human magnetic multiplex cytokine assay on a Luminex® 100™/200™ platform. Increased expression of miR-146a was observed in glioneuronal lesions by Taqman PCR. MiR-146a expression in human glial cell cultures was strongly induced by IL-1β and blocked by IL-1β receptor antagonist. Modulation of miR-146a expression by transfection of astrocytes with anti-miR146a or mimic, regulated the mRNA expression levels of downstream targets of miR-146a (IRAK-1, IRAK-2 and TRAF-6) and the expression of IRAK-1 protein. In addition, the expression of IL-6 and COX-2 upon IL-1β stimulation was suppressed by increased levels of miR-146a and increased by the reduction of miR-146a. Modulation of miR-146a expression affected also the release of several cytokines such as IL-6 and TNF-α. Our observations indicate that in response to inflammatory cues, miR-146a was induced as a negative-feedback regulator of the astrocyte-mediated inflammatory response. This supports an important role of miR-146a in human neurological disorders associated with chronic inflammation

  12. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response.

    PubMed

    Iyer, Anand; Zurolo, Emanuele; Prabowo, Avanita; Fluiter, Kees; Spliet, Wim G M; van Rijen, Peter C; Gorter, Jan A; Aronica, Eleonora

    2012-01-01

    Increasing evidence supports the involvement of microRNAs (miRNA) in the regulation of inflammation in human neurological disorders. In the present study we investigated the role of miR-146a, a key regulator of the innate immune response, in the modulation of astrocyte-mediated inflammation. Using Taqman PCR and in situ hybridization, we studied the expression of miR-146a in epilepsy-associated glioneuronal lesions which are characterized by prominent activation of the innate immune response. In addition, cultured human astrocytes were used to study the regulation of miR-146a expression in response to proinflammatory cytokines. qPCR and western blot were used to evaluate the effects of overexpression or knockdown of miR-146a on IL-1β signaling. Downstream signaling in the IL-1β pathway, as well as the expression of IL-6 and COX-2 were evaluated by western blot and ELISA. Release several cytokines was evaluated using a human magnetic multiplex cytokine assay on a Luminex® 100™/200™ platform. Increased expression of miR-146a was observed in glioneuronal lesions by Taqman PCR. MiR-146a expression in human glial cell cultures was strongly induced by IL-1β and blocked by IL-1β receptor antagonist. Modulation of miR-146a expression by transfection of astrocytes with anti-miR146a or mimic, regulated the mRNA expression levels of downstream targets of miR-146a (IRAK-1, IRAK-2 and TRAF-6) and the expression of IRAK-1 protein. In addition, the expression of IL-6 and COX-2 upon IL-1β stimulation was suppressed by increased levels of miR-146a and increased by the reduction of miR-146a. Modulation of miR-146a expression affected also the release of several cytokines such as IL-6 and TNF-α. Our observations indicate that in response to inflammatory cues, miR-146a was induced as a negative-feedback regulator of the astrocyte-mediated inflammatory response. This supports an important role of miR-146a in human neurological disorders associated with chronic inflammation

  13. MicroRNA Regulation of Epithelial to Mesenchymal Transition.

    PubMed

    Abba, Mohammed L; Patil, Nitin; Leupold, Jörg Hendrik; Allgayer, Heike

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is a central regulatory program that is similar in many aspects to several steps of embryonic morphogenesis. In addition to its physiological role in tissue repair and wound healing, EMT contributes to chemo resistance, metastatic dissemination and fibrosis, amongst others. Classically, the morphological change from epithelial to mesenchymal phenotype is characterized by the appearance or loss of a group of proteins which have come to be recognized as markers of the EMT process. As with all proteins, these molecules are controlled at the transcriptional and translational level by transcription factors and microRNAs, respectively. A group of developmental transcription factors form the backbone of the EMT cascade and a large body of evidence shows that microRNAs are heavily involved in the successful coordination of mesenchymal transformation and vice versa, either by suppressing the expression of different groups of transcription factors, or otherwise acting as their functional mediators in orchestrating EMT. This article dissects the contribution of microRNAs to EMT and analyzes the molecular basis for their roles in this cellular process. Here, we emphasize their interaction with core transcription factors like the zinc finger enhancer (E)-box binding homeobox (ZEB), Snail and Twist families as well as some pluripotency transcription factors. PMID:26784241

  14. MicroRNA Regulation of Epithelial to Mesenchymal Transition

    PubMed Central

    Abba, Mohammed L.; Patil, Nitin; Leupold, Jörg Hendrik; Allgayer, Heike

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is a central regulatory program that is similar in many aspects to several steps of embryonic morphogenesis. In addition to its physiological role in tissue repair and wound healing, EMT contributes to chemo resistance, metastatic dissemination and fibrosis, amongst others. Classically, the morphological change from epithelial to mesenchymal phenotype is characterized by the appearance or loss of a group of proteins which have come to be recognized as markers of the EMT process. As with all proteins, these molecules are controlled at the transcriptional and translational level by transcription factors and microRNAs, respectively. A group of developmental transcription factors form the backbone of the EMT cascade and a large body of evidence shows that microRNAs are heavily involved in the successful coordination of mesenchymal transformation and vice versa, either by suppressing the expression of different groups of transcription factors, or otherwise acting as their functional mediators in orchestrating EMT. This article dissects the contribution of microRNAs to EMT and analyzes the molecular basis for their roles in this cellular process. Here, we emphasize their interaction with core transcription factors like the zinc finger enhancer (E)-box binding homeobox (ZEB), Snail and Twist families as well as some pluripotency transcription factors. PMID:26784241

  15. APOBEC3 inhibits DEAD-END function to regulate microRNA activity

    PubMed Central

    2013-01-01

    The RNA binding protein DEAD-END (DND1) is one of the few proteins known to regulate microRNA (miRNA) activity at the level of miRNA-mRNA interaction. DND1 blocks miRNA interaction with the 3′-untranslated region (3′-UTR) of specific mRNAs and restores protein expression. Previously, we showed that the DNA cytosine deaminase, APOBEC3 (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide like 3), interacts with DND1. APOBEC3 has been primarily studied for its role in restricting and inactivating retroviruses and retroelements. In this report, we examine the significance of DND1-APOBEC3 interaction. We found that while human DND1 inhibits miRNA-mediated inhibition of P27, human APOBEC3G is able to counteract this repression and restore miRNA activity. APOBEC3G, by itself, does not affect the 3′-UTR of P27. We found that APOBEC3G also blocks DND1 function to restore miR-372 and miR-206 inhibition through the 3′-UTRs of LATS2 and CX43, respectively. In corollary experiments, we tested whether DND1 affects the viral restriction function or mutator activity of APOBEC3. We found that DND1 does not affect APOBEC3 inhibition of infectivity of exogenous retrovirus HIV (ΔVif) or retrotransposition of MusD. In addition, examination of Ter/Ter;Apobec3−/− mice, lead us to conclude that DND1 does not regulate the mutator activity of APOBEC3 in germ cells. In summary, our results show that APOBEC3 is able to modulate DND1 function to regulate miRNA mediated translational regulation in cells but DND1 does not affect known APOBEC3 function. PMID:23890083

  16. APOBEC3 inhibits DEAD-END function to regulate microRNA activity.

    PubMed

    Ali, Sara; Karki, Namrata; Bhattacharya, Chitralekha; Zhu, Rui; MacDuff, Donna A; Stenglein, Mark D; Schumacher, April J; Demorest, Zachary L; Harris, Reuben S; Matin, Angabin; Aggarwal, Sita

    2013-01-01

    The RNA binding protein DEAD-END (DND1) is one of the few proteins known to regulate microRNA (miRNA) activity at the level of miRNA-mRNA interaction. DND1 blocks miRNA interaction with the 3'-untranslated region (3'-UTR) of specific mRNAs and restores protein expression. Previously, we showed that the DNA cytosine deaminase, APOBEC3 (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide like 3), interacts with DND1. APOBEC3 has been primarily studied for its role in restricting and inactivating retroviruses and retroelements. In this report, we examine the significance of DND1-APOBEC3 interaction. We found that while human DND1 inhibits miRNA-mediated inhibition of P27, human APOBEC3G is able to counteract this repression and restore miRNA activity. APOBEC3G, by itself, does not affect the 3'-UTR of P27. We found that APOBEC3G also blocks DND1 function to restore miR-372 and miR-206 inhibition through the 3'-UTRs of LATS2 and CX43, respectively. In corollary experiments, we tested whether DND1 affects the viral restriction function or mutator activity of APOBEC3. We found that DND1 does not affect APOBEC3 inhibition of infectivity of exogenous retrovirus HIV (ΔVif) or retrotransposition of MusD. In addition, examination of Ter/Ter;Apobec3-/- mice, lead us to conclude that DND1 does not regulate the mutator activity of APOBEC3 in germ cells. In summary, our results show that APOBEC3 is able to modulate DND1 function to regulate miRNA mediated translational regulation in cells but DND1 does not affect known APOBEC3 function. PMID:23890083

  17. MicroRNA-378 Regulates Adiponectin Expression in Adipose Tissue: A New Plausible Mechanism

    PubMed Central

    Ishida, Masayoshi; Shimabukuro, Michio; Yagi, Shusuke; Nishimoto, Sachiko; Kozuka, Chisayo; Fukuda, Daiju; Soeki, Takeshi; Masuzaki, Hiroaki; Tsutsui, Masato; Sata, Masataka

    2014-01-01

    Aims Mechanisms regulating adiponectin expression have not been fully clarified. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, are involved in biological processes, including obesity and insulin resistance. We evaluated whether the miRNA-378 pathway is involved in regulating adiponectin expression. Methods and Results First, we determined a putative target site for miRNA-378 in the 3 prime untranslated region (3'UTR) of the adiponectin gene by in silico analysis. The levels of adiponectin mRNA and protein were decreased in 3T3-L1 cells overexpressing the mimic of miRNA-378. Luminescence activity in HEK293T cells expressing a renilla-luciferase-adiponectin-3'UTR sequence was inhibited by overexpressing the mimic of miRNA-378, and the decrease was reversed by adding the inhibitor of miRNA-378. Moreover, we confirmed the inhibitory effects of the mimic were cancelled in a deleted mutant of the miR-378 3′-UTR binding site. Addition of tumor necrosis factor-α (TNFα) led a upregulation of miR-378 and downregulation of adiponectin at mRNA and protein levels in 3T3-L1 cells. Level of miR-378 was higher and mRNA level of adiponectin was lower in diabetic ob/ob mice than those of normal C57BL/6 mice and levels of miR378 and adiponectin were negatively well correlated (r = −0.624, p = 0.004). Conclusions We found that levels of miRNA-378 could modulate adiponectin expression via the 3'UTR sequence-binding site. Our findings warrant further investigations into the role of miRNAs in regulating the adiponectin expression. PMID:25379946

  18. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother

    PubMed Central

    Alsaweed, Mohammed; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2015-01-01

    Human milk (HM) is the optimal source of nutrition, protection and developmental programming for infants. It is species-specific and consists of various bioactive components, including microRNAs, small non-coding RNAs regulating gene expression at the post-transcriptional level. microRNAs are both intra- and extra-cellular and are present in body fluids of humans and animals. Of these body fluids, HM appears to be one of the richest sources of microRNA, which are highly conserved in its different fractions, with milk cells containing more microRNAs than milk lipids, followed by skim milk. Potential effects of exogenous food-derived microRNAs on gene expression have been demonstrated, together with the stability of milk-derived microRNAs in the gastrointestinal tract. Taken together, these strongly support the notion that milk microRNAs enter the systemic circulation of the HM fed infant and exert tissue-specific immunoprotective and developmental functions. This has initiated intensive research on the origin, fate and functional significance of milk microRNAs. Importantly, recent studies have provided evidence of endogenous synthesis of HM microRNA within the human lactating mammary epithelium. These findings will now form the basis for investigations of the role of microRNA in the epigenetic control of normal and aberrant mammary development, and particularly lactation performance. PMID:26529003

  19. MicroRNA: mechanism of gene regulation and application to livestock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts through activation of a specific cellular pathway. The small RNA classified as miR are short sequences of 18-26 nucleotide long, encoded by nuclear genes with distinctive...

  20. MicroRNA Regulation of Ionizing Radiation-Induced Premature Senescence

    SciTech Connect

    Wang Yong; Scheiber, Melissa N.; Neumann, Carola; Calin, George A.; Zhou Daohong

    2011-11-01

    Purpose: MicroRNAs (miRNAs) have emerged as critical regulators of many cellular pathways. Ionizing radiation (IR) exposure causes DNA damage and induces premature senescence. However, the role of miRNAs in IR-induced senescence has not been well defined. Thus, the purpose of this study was to identify and characterize senescence-associated miRNAs (SA-miRNAs) and to investigate the role of SA-miRNAs in IR-induced senescence. Methods and Materials: In human lung (WI-38) fibroblasts, premature senescence was induced either by IR or busulfan (BU) treatment, and replicative senescence was accomplished by serial passaging. MiRNA microarray were used to identify SA-miRNAs, and real-time reverse transcription (RT)-PCR validated the expression profiles of SA-miRNAs in various senescent cells. The role of SA-miRNAs in IR-induced senescence was characterized by knockdown of miRNA expression, using anti-miRNA oligonucleotides or by miRNA overexpression through the transfection of pre-miRNA mimics. Results: We identified eight SA-miRNAs, four of which were up-regulated (miR-152, -410, -431, and -493) and four which were down-regulated (miR-155, -20a, -25, and -15a), that are differentially expressed in both prematurely senescent (induced by IR or BU) and replicatively senescent WI-38 cells. Validation of the expression of these SA-miRNAs indicated that down-regulation of miR-155, -20a, -25, and -15a is a characteristic miRNA expression signature of cellular senescence. Functional analyses revealed that knockdown of miR-155 or miR-20a, but not miR-25 or miR-15a, markedly enhanced IR-induced senescence, whereas ectopic overexpression of miR-155 or miR-20a significantly inhibited senescence induction. Furthermore, our studies indicate that miR-155 modulates IR-induced senescence by acting downstream of the p53 and p38 mitogen-activated protein kinase (MAPK) pathways and in part via regulating tumor protein 53-induced nuclear protein 1 (TP53INP1) expression. Conclusion: Our

  1. DNA damage modulates interactions between microRNAs and the 26S proteasome

    PubMed Central

    Tsimokha, Anna S; Kulichkova, Valentina A.; Karpova, Elena V.; Zaykova, Julia J.; Aksenov, Nikolai D; Vasilishina, Anastasia A.; Kropotov, Andrei V.; Antonov, Alexey; Barlev, Nikolai A.

    2014-01-01

    26S proteasomes are known as major non-lysosomal cellular machines for coordinated and specific destruction of ubiquitinylated proteins. The proteolytic activities of proteasomes are controlled by various post-translational modifications in response to environmental cues, including DNA damage. Besides proteolysis, proteasomes also associate with RNA hydrolysis and splicing. Here, we extend the functional diversity of proteasomes by showing that they also dynamically associate with microRNAs (miRNAs) both in the nucleus and cytoplasm of cells. Moreover, DNA damage induced by an anti-cancer drug, doxorubicin, alters the repertoire of proteasome-associated miRNAs, enriching the population of miRNAs that target cell cycle checkpoint regulators and DNA repair proteins. Collectively, these data uncover yet another potential mode of action for proteasomes in the cell via their dynamic association with microRNAs. PMID:25004448

  2. Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau.

    PubMed

    Santa-Maria, Ismael; Alaniz, Maria E; Renwick, Neil; Cela, Carolina; Fulga, Tudor A; Van Vactor, David; Tuschl, Thomas; Clark, Lorraine N; Shelanski, Michael L; McCabe, Brian D; Crary, John F

    2015-02-01

    Tau is a highly abundant and multifunctional brain protein that accumulates in neurofibrillary tangles (NFTs), most commonly in Alzheimer's disease (AD) and primary age-related tauopathy. Recently, microRNAs (miRNAs) have been linked to neurodegeneration; however, it is not clear whether miRNA dysregulation contributes to tau neurotoxicity. Here, we determined that the highly conserved brain miRNA miR-219 is downregulated in brain tissue taken at autopsy from patients with AD and from those with severe primary age-related tauopathy. In a Drosophila model that produces human tau, reduction of miR-219 exacerbated tau toxicity, while overexpression of miR-219 partially abrogated toxic effects. Moreover, we observed a bidirectional modulation of tau levels in the Drosophila model that was dependent on miR-219 expression or neutralization, demonstrating that miR-219 regulates tau in vivo. In mammalian cellular models, we found that miR-219 binds directly to the 3'-UTR of the tau mRNA and represses tau synthesis at the post-transcriptional level. Together, our data indicate that silencing of tau by miR-219 is an ancient regulatory mechanism that may become perturbed during neurofibrillary degeneration and suggest that this regulatory pathway may be useful for developing therapeutics for tauopathies. PMID:25574843

  3. Regulation of Neuronal Cell Cycle and Apoptosis by MicroRNA 34a.

    PubMed

    Modi, Prashant Kumar; Jaiswal, Surbhi; Sharma, Pushkar

    2016-01-01

    The cell cycle of neurons remains suppressed to maintain the state of differentiation and aberrant cell cycle reentry results in loss of neurons, which is a feature in neurodegenerative disorders like Alzheimer's disease (AD). Present studies revealed that the expression of microRNA 34a (miR-34a) needs to be optimal in neurons, as an aberrant increase or decrease in its expression causes apoptosis. miR-34a keeps the neuronal cell cycle under check by preventing the expression of cyclin D1 and promotes cell cycle arrest. Neurotoxic amyloid β1-42 peptide (Aβ42) treatment of cortical neurons suppressed miR-34a, resulting in unscheduled cell cycle reentry, which resulted in apoptosis. The repression of miR-34a was a result of degradation of TAp73, which was mediated by aberrant activation of the MEK extracellular signal-regulated kinase (ERK) pathway by Aβ42. A significant decrease in miR-34a and TAp73 was observed in the cortex of a transgenic (Tg) mouse model of AD, which correlated well with cell cycle reentry observed in the neurons of these animals. Importantly, the overexpression of TAp73α and miR-34a reversed cell cycle-related neuronal apoptosis (CRNA). These studies provide novel insights into how modulation of neuronal cell cycle machinery may lead to neurodegeneration and may contribute to the understanding of disorders like AD. PMID:26459758

  4. Microarray based analysis of gene regulation by microRNA in intervertebral disc degeneration.

    PubMed

    Hu, Peng; Feng, Bo; Wang, Guanglin; Ning, Bin; Jia, Tanghong

    2015-10-01

    The present study aimed to explore the underlying mechanism of the development of intervertebral disc degeneration (IDD) by bioinformatics based on microarray datasets. GSE 19943 and GSE 34095 datasets downloaded from Gene Expression Omnibus data were used to screen the differentially expressed genes (DEGs) in IDD. The correlation between microRNAs and target genes was investigated using different algorithms. The underlying molecular mechanisms of the target genes were then explored using Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology function enrichment analysis. A total of 9 differentially expressed microRNAs, including 3 down‑ and 6 upregulated microRNAs and 850 DEGs were identified in tissue from patients with IDD. Two regulation networks of the target genes by microRNAs were constructed, including 33 upregulated microRNA‑target gene pairs and 4 downregulated microRNA‑target gene pairs. Certain target genes had been demonstrated to be involved in IDD progression via various pathways, including in the cell cycle and pathways in cancer. In addition, two important microRNAs (microRNA‑222 and microRNA‑589) were identified that were pivotal for the development of IDD, and their target genes, CDKNAB and SMAD4. In conclusion, a comprehensive miRNA‑target gene regulatory network was constructed, which was found to be important in IDD progression. PMID:26134418

  5. microRNA-451 inhibited cell proliferation, migration and invasion through regulation of MIF in renal cell carcinoma

    PubMed Central

    Tang, Yan; Wan, Wei; Wang, Lijuan; Ji, Shishun; Zhang, Juanjuan

    2015-01-01

    The expression and functions of microRNA-451 have been studied in many human cancers. However, up to date, there is no study of microRNA-451 in renal cell carcinoma. In the present study, we aimed to investigate the expression, biological functions and molecular mechanisms of microRNA-451 in renal cell carcinoma. microRNA-451 expression level in renal cell carcinoma tissues and cell lines was measured using quantitative Real-time PCR. By using CCK8 assay, cell migration and invasion assay, we explored the functions of microRNA-451 in renal cell carcinoma. Dual-Luciferase report assay, quantitative Real-time PCR and western blot were performed to explore the molecular mechanisms of microRNA-451 functions in renal cell carcinoma. Functional assays were also performed to explore the effects of endogenous MIF in renal cell carcinoma. In this study, we showed for the first time that microRNA-451 was significantly down-regulated in renal cell carcinomas tissues and cell lines. microRNA-451 expression level was correlated with histological grade and lymph node metastasis. In addition, microRNA-451 inhibited proliferation, migration and invasion of renal cell carcinomas cells. Moreover, MIF was identified as a target of microRNA-451, and down-regulation of MIF could mimic the suppressive functions of microRNA-451 in renal cell carcinomas, suggesting that microRNA-451 might be a novel therapeutic strategy for the treatment of renal cell carcinomas. PMID:26884830

  6. Modules of human micro-RNA co-target network

    NASA Astrophysics Data System (ADS)

    Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, P. K.

    2011-05-01

    Human micro RNAs (miRNAs) target about 90% of the coding genes and form a complex regulatory network. We study the community structure of the miRNA co-target network considering miRNAs as the nodes which are connected by weighted links. The weight of link that connects a pair of miRNAs denote the total number of common transcripts targeted by that pair. We argue that the network consists of about 74 modules, quite similar to the components (or clusters) obtained earlier [Online J Bioinformatics, 10,280], indicating that the components of the miRNA co-target network are self organized in a way to maximize the modularity.

  7. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation.

    PubMed

    Lopez-Ramirez, Miguel Alejandro; Reijerkerk, Arie; de Vries, Helga E; Romero, Ignacio Andres

    2016-08-01

    Brain endothelial cells constitute the major cellular element of the highly specialized blood-brain barrier (BBB) and thereby contribute to CNS homeostasis by restricting entry of circulating leukocytes and blood-borne molecules into the CNS. Therefore, compromised function of brain endothelial cells has serious consequences for BBB integrity. This has been associated with early events in the pathogenesis of several disorders that affect the CNS, such as multiple sclerosis, HIV-associated neurologic disorder, and stroke. Recent studies demonstrate that brain endothelial microRNAs play critical roles in the regulation of BBB function under normal and neuroinflammatory conditions. This review will focus on emerging evidence that indicates that brain endothelial microRNAs regulate barrier function and orchestrate various phases of the neuroinflammatory response, including endothelial activation in response to cytokines as well as restoration of inflamed endothelium into a quiescent state. In particular, we discuss novel microRNA regulatory mechanisms and their contribution to cellular interactions at the neurovascular unit that influence the overall function of the BBB in health and during neuroinflammation.-Lopez-Ramirez, M. A., Reijerkerk, A., de Vries, H. E., Romero, I. A. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. PMID:27118674

  8. Apolipoprotein E isotype-dependent modulation of microRNA-146a in plasma and brain.

    PubMed

    Teter, Bruce; LaDu, Mary Jo; Sullivan, Patrick M; Frautschy, Sally A; Cole, Greg M

    2016-08-01

    The Apolipoprotein E (ApoE) isotype ApoE4 is a prevalent genetic risk factor for Alzheimer's disease (AD) that can modulate systemic and central inflammation, independent of amyloid accumulation. Although disruption of innate immune toll receptor signaling is modulated by ApoE and observed in AD, ApoE isotype-specific effects remain poorly understood. Therefore, we examined the effect of the ApoE isotype on the brain levels of major regulators of TLR signaling including miR146a, a microRNA enriched in the brain. We used 6-month-old ApoE3 or ApoE4 targeted replacement mice with and without mutant familial AD transgenes. ApoE4 reduced the levels of miR146a compared with ApoE3, both in the brain (29%; P<0.0001) and in plasma (47%; P<0.05), which correlated with each other (r=0.74; P<0.05). The presence of 5xFAD transgenes increased brain miR146a in both ApoE3 (E3FAD) and ApoE4 (E4FAD) mice; however, miR146a levels in E4FAD mice remained lower than those in E3FAD mice (62%; P<0.05), despite increased amyloid and inflammation. Supporting these observations, ApoE4 brains showed increased expression of interleukin receptor-associated kinase-1 (160%; P<0.05) (normally downregulated by miR146) that correlated inversely with miR146a levels (r=0.637; P<0.0001). Reduced negative feedback of toll-like receptor signaling (by miRNA146a) can explain early-life hypersensitivity to innate immune stimuli (including Aβ) in ApoE4 carriers. Thus, ApoE4 causes early dysregulation of a central controller of the innate immune system both centrally and systemically. This defect persists with familial AD pathology and may be relevant to ApoE4 AD risk. PMID:27281274

  9. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise.

    PubMed

    Xu, Yanli; Zhao, Chaoxian; Sun, Xuewen; Liu, Zhijun; Zhang, Jianzhong

    2015-11-01

    MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C2C12 myocytes by targeting the 3'-UTR of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise. PMID:26408907

  10. Specification of neural cell fate and regulation of neural stem cell proliferation by microRNAs

    PubMed Central

    Pham, Jacqueline T; Gallicano, G Ian

    2012-01-01

    In the approximately 20 years since microRNAs (miRNAs) were first characterized, they have been shown to play important roles in diverse physiologic functions, particularly those requiring coordinated changes in networks of signaling pathways. The ability of miRNAs to silence expression of multiple gene targets hints at complex connections that research has only begun to elucidate. The nervous system, particularly the brain, and its progenitor cells offer opportunities to examine miRNA function due to the myriad different cell types, numerous functionally distinct regions, and fluidly dynamic connections between them. This review aims to summarize current understanding of miRNA regulation in neurodevelopment, beginning with miRNAs that establish a general neural fate in cells. Particular attention is given to miR-124, the most abundant brain-specific miRNA, along with its key regulators and targets as an example of the potentially far-reaching effects of miRNAs. These modulators and mediators enable miRNAs to subtly calibrate cellular proliferation and differentiation. To better understand their mechanisms of action, miRNA profiles in distinct populations and regions of cells have been examined as well as miRNAs that regulate proliferation of stem cells, a process marked by dramatic morphological shifts in response to temporally subtle and refined shifts in gene expression. To tease out the complex interactions of miRNAs and stem cells more accurately, future studies will require more sensitive methods of assessing miRNA expression and more rigorous models of miRNA pathways. Thorough characterization of similarities and differences in specific miRNAs’ effects in different species is vital to developing better disease models and therapeutics using miRNAs. PMID:23671807

  11. Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs

    PubMed Central

    Wong, Siew Fen Lisa; Agarwal, Vikram; Mansfield, Jennifer H.; Denans, Nicolas; Schwartz, Matthew G.; Prosser, Haydn M.; Pourquié, Olivier; Bartel, David P.; Tabin, Clifford J.; McGlinn, Edwina

    2015-01-01

    The Hox genes play a central role in patterning the embryonic anterior-to-posterior axis. An important function of Hox activity in vertebrates is the specification of different vertebral morphologies, with an additional role in axis elongation emerging. The miR-196 family of microRNAs (miRNAs) are predicted to extensively target Hox 3′ UTRs, although the full extent to which miR-196 regulates Hox expression dynamics and influences mammalian development remains to be elucidated. Here we used an extensive allelic series of mouse knockouts to show that the miR-196 family of miRNAs is essential both for properly patterning vertebral identity at different axial levels and for modulating the total number of vertebrae. All three miR-196 paralogs, 196a1, 196a2, and 196b, act redundantly to pattern the midthoracic region, whereas 196a2 and 196b have an additive role in controlling the number of rib-bearing vertebra and positioning of the sacrum. Independent of this, 196a1, 196a2, and 196b act redundantly to constrain total vertebral number. Loss of miR-196 leads to a collective up-regulation of numerous trunk Hox target genes with a concomitant delay in activation of caudal Hox genes, which are proposed to signal the end of axis extension. Additionally, we identified altered molecular signatures associated with the Wnt, Fgf, and Notch/segmentation pathways and demonstrate that miR-196 has the potential to regulate Wnt activity by multiple mechanisms. By feeding into, and thereby integrating, multiple genetic networks controlling vertebral number and identity, miR-196 is a critical player defining axial formulae. PMID:26283362

  12. Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis

    PubMed Central

    Srivastava, Monika; Duan, Guowen; Kershaw, Nadia J.; Athanasopoulos, Vicki; Yeo, Janet H. C.; Ose, Toyoyuki; Hu, Desheng; Brown, Simon H. J.; Jergic, Slobodan; Patel, Hardip R.; Pratama, Alvin; Richards, Sashika; Verma, Anil; Jones, E. Yvonne; Heissmeyer, Vigo; Preiss, Thomas; Dixon, Nicholas E.; Chong, Mark M. W.; Babon, Jeffrey J.; Vinuesa, Carola G.

    2015-01-01

    Roquin is an RNA-binding protein that prevents autoimmunity and inflammation via repression of bound target mRNAs such as inducible costimulator (Icos). When Roquin is absent or mutated (Roquinsan), Icos is overexpressed in T cells. Here we show that Roquin enhances Dicer-mediated processing of pre-miR-146a. Roquin also directly binds Argonaute2, a central component of the RNA-induced silencing complex, and miR-146a, a microRNA that targets Icos mRNA. In the absence of functional Roquin, miR-146a accumulates in T cells. Its accumulation is not due to increased transcription or processing, rather due to enhanced stability of mature miR-146a. This is associated with decreased 3′ end uridylation of the miRNA. Crystallographic studies reveal that Roquin contains a unique HEPN domain and identify the structural basis of the ‘san’ mutation and Roquin’s ability to bind multiple RNAs. Roquin emerges as a protein that can bind Ago2, miRNAs and target mRNAs, to control homeostasis of both RNA species. PMID:25697406

  13. Negative Regulation of Tumor Suppressor p53 by microRNA miR-504

    PubMed Central

    Hu, Wenwei; Chan, Chang S.; Wu, Rui; Zhang, Cen; Sun, Yvonne; Song, Jun S.; Tang, Laura H.; Levine, Arnold J.; Feng, Zhaohui

    2010-01-01

    Summary Tumor suppressor p53 plays a central role in tumor prevention. p53 protein levels and activity are under a tight and complex regulation in cells to maintain the proper function of p53. microRNAs play a key role in the regulation of gene expression. Here we report the regulation of p53 through microRNA miR-504. miR-504 acts as a negative regulator of human p53 through its direct binding to two sites in p53 3′-UTR. Overexpression of miR-504 decreases p53 protein levels and functions in cells, including p53 transcriptional activity, p53-mediated apoptosis and cell cycle arrest in response to stress, and furthermore, promotes tumorigenecity of cells in vivo. These results demonstrate the direct negative regulation of p53 by miR-504 as a mechanism for p53 regulation in cells, which highlights the importance of microRNAs in tumorigenesis. PMID:20542001

  14. Regulation of microRNAs in microgravity travel and replicative senescence.

    NASA Astrophysics Data System (ADS)

    Wang, E.; Xu, S.; Bo, Y.; Creason, M.

    Contact-inhibited quiescent young cultures of normal human fibroblasts were flown in space on the July 1999 ST-93 mission Eighty-two clones were identified by the subtractive library approach by comparison with ground controls as space flight-regulated known genes 49 were up-regulated and 33 down-regulated These 82 genes are classified into 1 down-regulated genes involved in energy metabolism 2 up-regulated stress response signaling 3 up-regulated cell-cycle re-entry indicated by up-regulation of pro-cell cycle traverse genes and down-regulation of anti-cell cycle traverse genes as well as up-regulated MAP kinase and PI3 kinase pathways and activation of protein synthesis machinery and 4 up-regulated pro-apoptotic signaling gene expression as well as of several key pro-survival factors We have recently proceeded from gene expression studies to investigate possible microRNAs serving as the underlying control for the up- or down-regulation of the above 82 identified target gene expressions MicroRNAs miRNAs are naturally present small noncoding RNAs sim 21 nucleotide bases nt in length which regulate gene expression either by transcriptional gene silencing or post-transcriptionally via degrading target gene messages or inhibiting their translation Our current hypothesis is that microgravity travel and replicative senescence may share part of their microRNA profiles lead miRNAs shared between the two cellular programs may be key controlling factors for the up- or down-regulated

  15. Traumatic Brain Injury Dysregulates MicroRNAs to Modulate Cell Signaling in Rat Hippocampus

    PubMed Central

    Liu, Zilong; Chen, Xiaorui; Zhao, Lili; Qu, Guoqiang; Li, Qingjie

    2014-01-01

    Traumatic brain injury (TBI) is a common cause for cognitive and communication problems, but the molecular and cellular mechanisms are not well understood. Epigenetic modifications, such as microRNA (miRNA) dysregulation, may underlie altered gene expression in the brain, especially hippocampus that plays a major role in spatial learning and memory and is vulnerable to TBI. To advance our understanding of miRNA in pathophysiological processes of TBI, we carried out a time-course microarray analysis of microRNA expression profile in rat ipsilateral hippocampus and examined histological changes, apoptosis and synapse ultrastructure of hippocampus post moderate TBI. We found that 10 out of 156 reliably detected miRNAs were significantly and consistently altered from one hour to seven days after injury. Bioinformatic and gene ontology analyses revealed 107 putative target genes, as well as several biological processes that might be initiated by those dysregulated miRNAs. Among those differentially expressed microRNAs, miR-144, miR-153 and miR-340-5p were confirmed to be elevated at all five time points after TBI by quantitative RT-PCR. Western blots showed three of the predicated target proteins, calcium/calmodulin-dependent serine protein kinase (CASK), nuclear factor erythroid 2-related factor 2 (NRF2) and alpha-synuclein (SNCA), were concurrently down- regulated, suggesting that miR-144, miR-153 and miR-340-5p may play important roles collaboratively in the pathogenesis of TBI-induced cognitive and memory impairments. These microRNAs might serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. PMID:25089700

  16. Interplay of microRNA and epigenetic regulation in the human regulatory network.

    PubMed

    Osella, Matteo; Riba, Andrea; Testori, Alessandro; Corà, Davide; Caselle, Michele

    2014-01-01

    The expression of protein-coding genes is controlled by a complex network of regulatory interactions. It is becoming increasingly appreciated that post-transcriptional repression by microRNAs, a class of small non-coding RNAs, is a key layer of regulation in several biological processes. In this contribution, we discuss the interplay between microRNAs and epigenetic regulators. Among the mixed genetic circuits composed by these two different kinds of regulation, it seems that a central role is played by double-negative feedback loops in which a microRNA inhibits an epigenetic regulator and in turn is controlled at the epigenetic level by the same regulator. We discuss a few relevant properties of this class of network motifs and their potential role in cell differentiation. In particular, using mathematical modeling we show how this particular circuit can exhibit a switch-like behavior between two alternative steady states, while being robust to stochastic transitions between these two states, a feature presumably required for circuits involved in cell fate decision. Finally, we present a list of putative double-negative feedback loops from a literature survey combined with bioinformatic analysis, and discuss in detail a few examples. PMID:25339974

  17. Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation

    PubMed Central

    2013-01-01

    Background Network inference from gene expression data is a typical approach to reconstruct gene regulatory networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation, microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We applied the NetGenerator tool in order to infer an integrated gene regulatory network. Results Time series experiments were performed to measure mRNA and miRNA abundances of TGF-beta1+BMP2 stimulated hMSCs. Network nodes were identified by analysing temporal expression changes, miRNA target gene predictions, time series correlation and literature knowledge. Network inference was performed using NetGenerator to reconstruct a dynamical regulatory model based on the measured data and prior knowledge. The resulting model is robust against noise and shows an optimal trade-off between fitting precision and inclusion of prior knowledge. It predicts the influence of miRNAs on the expression of chondrogenic marker genes and therefore proposes novel regulatory relations in differentiation control. By analysing the inferred network, we identified a previously unknown regulatory effect of miR-524-5p on the expression of the transcription factor SOX9 and the chondrogenic marker genes COL2A1, ACAN and COL10A1. Conclusions Genome-wide exploration of miRNA-mRNA regulatory relationships is a reasonable approach to identify miRNAs which have so far not been associated with the investigated differentiation process. The NetGenerator tool is able to identify valid gene regulatory networks on the basis of miRNA and mRNA time series data. PMID:24219887

  18. Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a.

    PubMed

    Icli, Basak; Nabzdyk, Christoph S; Lujan-Hernandez, Jorge; Cahill, Meghan; Auster, Michael E; Wara, A K M; Sun, Xinghui; Ozdemir, Denizhan; Giatsidis, Giorgio; Orgill, Dennis P; Feinberg, Mark W

    2016-02-01

    Wound healing is a physiological reparative response to injury and a well-orchestrated process that involves hemostasis, cellular migration, proliferation, angiogenesis, extracellular matrix deposition, and wound contraction and re-epithelialization. However, patients with type 2 diabetes mellitus (T2D) are frequently afflicted with impaired wound healing that progresses into chronic wounds or diabetic ulcers, and may lead to complications including limb amputation. Herein, we investigate the potential role of microRNA-26a (miR-26a) in a diabetic model of wound healing. Expression of miR-26a is rapidly induced in response to high glucose in endothelial cells (ECs). Punch skin biopsy wounding of db/db mice revealed increased expression of miR-26a (~3.5-fold) four days post-wounding compared to that of WT mice. Local administration of a miR-26a inhibitor, LNA-anti-miR-26a, induced angiogenesis (up to ~80%), increased granulation tissue thickness (by 2.5-fold) and accelerated wound closure (53% after nine days) compared to scrambled anti-miR controls in db/db mice. These effects were independent of altered M1/M2 macrophage ratios. Mechanistically, inhibition of miR-26a increased its target gene SMAD1 in ECs nine days post-wounding of diabetic mice. In addition, high glucose reduced activity of the SMAD1-3'-UTR. Diabetic dermal wounds treated with LNA-anti-miR-26a had increased expression of ID1, a downstream modulator or SMAD1, and decreased expression of the cell cycle inhibitor p27. These findings establish miR-26a as an important regulator on the progression of skin wounds of diabetic mice by specifically regulating the angiogenic response after injury, and demonstrate that neutralization of miR-26a may serve as a novel approach for therapy. PMID:26776318

  19. Hepatitis C Virus Core Protein Down-Regulates p21Waf1/Cip1 and Inhibits Curcumin-Induced Apoptosis through MicroRNA-345 Targeting in Human Hepatoma Cells

    PubMed Central

    Shiu, Tzu-Yue; Huang, Shih-Ming; Shih, Yu-Lueng; Chu, Heng-Cheng; Chang, Wei-Kuo; Hsieh, Tsai-Yuan

    2013-01-01

    Background Hepatitis C virus (HCV) has been reported to regulate cellular microRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma, but HCV core-modulated cellular microRNAs are unknown. The HCV core protein regulates p21Waf1/Cip1 expression. However, the mechanism of HCV core-associated p21Waf1/Cip1 regulation remains to be further clarified. Therefore, we attempted to determine whether HCV core-modulated cellular microRNAs play an important role in regulating p21Waf1/Cip1 expression in human hepatoma cells. Methods Cellular microRNA profiling was investigated in core-overexpressing hepatoma cells using TaqMan low density array. Array data were further confirmed by TaqMan real-time qPCR for single microRNA in core-overexpressing and full-length HCV replicon-expressing cells. The target gene of microRNA was examined by reporter assay. The gene expression was determined by real-time qPCR and Western blotting. Apoptosis was examined by annexin V-FITC apoptosis assay. Cell cycle analysis was performed by propidium iodide staining. Cell proliferation was analyzed by MTT assay. Results HCV core protein up- or down-regulated some cellular microRNAs in Huh7 cells. HCV core-induced microRNA-345 suppressed p21Waf1/Cip1 gene expression through targeting its 3′ untranslated region in human hepatoma cells. Moreover, the core protein inhibited curcumin-induced apoptosis through p21Waf1/Cip1-targeting microRNA-345 in Huh7 cells. Conclusion and Significance HCV core protein enhances the expression of microRNA-345 which then down-regulates p21Waf1/Cip1 expression. It is the first time that HCV core protein has ever been shown to suppress p21Waf1/Cip1 gene expression through miR-345 targeting. PMID:23577194

  20. Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells

    PubMed Central

    Zhao, Yong; Li, Lan; Min, Ling-Jiang; Zhu, Lian-Qin; Sun, Qing-Yuan; Zhang, Hong-Fu; Liu, Xin-Qi; Zhang, Wei-Dong; Ge, Wei; Wang, Jun-Jie; Liu, Jing-Cai

    2016-01-01

    Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways. PMID:27196542

  1. Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells.

    PubMed

    Zhao, Yong; Li, Lan; Min, Ling-Jiang; Zhu, Lian-Qin; Sun, Qing-Yuan; Zhang, Hong-Fu; Liu, Xin-Qi; Zhang, Wei-Dong; Ge, Wei; Wang, Jun-Jie; Liu, Jing-Cai; Hao, Zhi-Hui

    2016-01-01

    Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways. PMID:27196542

  2. Chronic Morphine-Induced MicroRNA-124 Promotes Microglial Immunosuppression by Modulating P65 and TRAF6

    PubMed Central

    Qiu, Shuwei; Feng, Yimin; LeSage, Gene; Zhang, Ying; Stuart, Charles; He, Lei; Li, Yi; Caudle, Yi; Peng, Ying; Yin, Deling

    2014-01-01

    Opioids have been widely applied in clinics as one of the most potent pain relievers for centuries, but their abuse has deleterious physiological effects including immunosuppression. However, the mechanisms are unclear. Toll-like receptors (TLRs) and acetylcholine (ACh) are widely expressed in the immune and nervous systems and play critical roles in immune responses. Here we show that morphine suppresses the innate immunity in microglia and bone marrow-derived macrophages (BMM) through differential regulation of TLRs and acetylcholinesterase (AChE). Either morphine or inhibition of ACh significantly promoted up-regulation of microRNA-124 (miR-124) in microglia, BMM, and in the mouse brain, where miR-124 mediates morphine inhibition of the innate immunity by directly targeting a subunit of NF-κB p65 and TNF receptor-associated factor 6 (TRAF6). Furthermore, transcription factors AP-1 and CREB inhibited miR-124, while p65 bound directly to promoters of miR-124, thereby enhancing miR-124 transcription. Moreover, acute morphine treatment transiently up-regulated the expression of p65 and phospho-p65 in both nucleus and cytoplasm priming the expression of miR-124, whereas long exposure of morphine maintained miR-124 expression which inhibited p65- and TRAF6-dependent TLR signaling. These data suggest that modulation of miRs is capable of preventing opioid-induced damage to microglia. PMID:25539811

  3. Cohort of estrogen-induced microRNAs regulate adrenomedullin expression.

    PubMed

    Wetzel-Strong, Sarah E; Li, Manyu; Espenschied, Scott T; Caron, Kathleen M

    2016-01-15

    Estrogen regulates the expression of many genes and has been correlated with differences in cardiac contraction; however, the underlying mechanisms remain poorly defined. Adrenomedullin (Adm = gene; AM = protein) is a multifunctional peptide with inotropic actions. Previous studies have demonstrated that estrogen enhances the expression of Adm, suggesting a relationship between AM and estrogen in cardiac contraction during physiological and pathological states. In this study, female mice in a mouse model of genetic Adm overexpression, abbreviated as Adm(hi/hi), were found to express 60 times more Adm in the heart than wild-type littermates, compared with the three-fold elevation of Adm previously reported in Adm(hi/hi) male hearts. Thus, this study sought to further investigate any functional consequences of increased cardiac Adm expression and begin exploring the mechanisms that regulate Adm expression in an estrogen-dependent fashion. This study revealed that heart function is enhanced in Adm(hi/hi) females, which along with Adm expression levels, was reversed following ovariectomization. Since the Adm(hi/hi) line was generated by the displacement of the 3' untranslated region (UTR), the native 3'UTR was examined for estrogen-induced microRNAs target sites to potentially explain the aberrant overexpression observed in Adm(hi/hi) female hearts. Using a bioinformatic approach, it was determined that the mouse Adm 3'UTR contains many target sites for previously characterized estrogen-induced microRNAs. This study also determined that the novel microRNA, miR-879, is another estrogen-induced microRNA that interacts with the 3'UTR of Adm to destabilize the mRNA. Together, these studies revealed that estrogen-induced microRNAs are important for balancing cardiac Adm expression in females. PMID:26582637

  4. MicroRNA-200 Family Modulation in Distinct Breast Cancer Phenotypes

    PubMed Central

    Sarrió, David; Romero-Pérez, Laura; López-García, María Ángeles; Vieites, Begoña; Biscuola, Michele; Ramiro-Fuentes, Susana; Isacke, Clare M.; Palacios, José

    2012-01-01

    The epithelial to mesenchymal transition (EMT) contributes to tumor invasion and metastasis in a variety of cancer types. In human breast cancer, gene expression studies have determined that basal-B/claudin-low and metaplastic cancers exhibit EMT-related characteristics, but the molecular mechanisms underlying this observation are unknown. As the family of miR-200 microRNAs has been shown to regulate EMT in normal tissues and cancer, here we evaluated whether the expression of the miR-200 family (miR-200f) and their epigenetic state correlate with EMT features in human breast carcinomas. We analyzed by qRT-PCR the expression of miR-200f members and various EMT-transcriptional inducers in a series of 70 breast cancers comprising an array of phenotypic subtypes: estrogen receptor positive (ER+), HER2 positive (HER2+), and triple negative (TN), including a subset of metaplastic breast carcinomas (MBCs) with sarcomatous (homologous or heterologous) differentiation. No MBCs with squamous differentiation were included. The DNA methylation status of miR-200f loci in tumor samples were inspected using Sequenom MassArray® MALDI-TOF platform. We also used two non-tumorigenic breast basal cell lines that spontaneously undergo EMT to study the modulation of miR-200f expression during EMT in vitro. We demonstrate that miR-200f is strongly decreased in MBCs compared with other cancer types. TN and HER2+ breast cancers also exhibited lower miR-200f expression than ER+ tumors. Significantly, the decreased miR-200f expression found in MBCs is accompanied by an increase in the expression levels of EMT-transcriptional inducers, and hypermethylation of the miR-200c-141 locus. Similar to tumor samples, we demonstrated that downregulation of miR-200f and hypermethylation of the miR-200c-141 locus, together with upregulation of EMT-transcriptional inducers also occur in an in vitro cellular model of spontaneous EMT. Thus, the expression and methylation status of miR-200f could be used

  5. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels.

    PubMed

    Goedeke, Leigh; Rotllan, Noemi; Canfrán-Duque, Alberto; Aranda, Juan F; Ramírez, Cristina M; Araldi, Elisa; Lin, Chin-Sheng; Anderson, Norma N; Wagschal, Alexandre; de Cabo, Rafael; Horton, Jay D; Lasunción, Miguel A; Näär, Anders M; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-11-01

    The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL cholesterol (LDL-C). Whereas the transcriptional regulation of LDLR is well characterized, the post-transcriptional mechanisms that govern LDLR expression are just beginning to emerge. Here we develop a high-throughput genome-wide screening assay to systematically identify microRNAs (miRNAs) that regulate LDLR activity in human hepatic cells. From this screen we identified and characterized miR-148a as a negative regulator of LDLR expression and activity and defined a sterol regulatory element-binding protein 1 (SREBP1)-mediated pathway through which miR-148a regulates LDL-C uptake. In mice, inhibition of miR-148a increased hepatic LDLR expression and decreased plasma LDL-C. Moreover, we found that miR-148a regulates hepatic expression of ATP-binding cassette, subfamily A, member 1 (ABCA1) and circulating high-density lipoprotein cholesterol (HDL-C) levels in vivo. These studies uncover a role for miR-148a as a key regulator of hepatic LDL-C clearance through direct modulation of LDLR expression and demonstrate the therapeutic potential of inhibiting miR-148a to ameliorate an elevated LDL-C/HDL-C ratio, a prominent risk factor for cardiovascular disease. PMID:26437365

  6. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury

    PubMed Central

    Hu, Yue; Deng, Hao; Xu, Shixin; Zhang, Junping

    2015-01-01

    Cerebral ischemia-reperfusion injury involves multiple independently fatal terminal pathways in the mitochondria. These pathways include the reactive oxygen species (ROS) generation caused by changes in mitochondrial membrane potential and calcium overload, resulting in apoptosis via cytochrome c (Cyt c) release. In addition, numerous microRNAs are associated with the overall process. In this review, we first briefly summarize the mitochondrial changes in cerebral ischemia-reperfusion and then describe the possible molecular mechanism of miRNA-regulated mitochondrial function, which likely includes oxidative stress and energy metabolism, as well as apoptosis. On the basis of the preceding analysis, we conclude that studies of microRNAs that regulate mitochondrial function will expedite the development of treatments for cerebral ischemia-reperfusion injury. PMID:26492239

  7. H19 derived microRNA-675 regulates cell proliferation and migration through CDK6 in glioma

    PubMed Central

    Li, Chao; Lei, Bingxi; Huang, Shuaibin; Zheng, Meiguang; Liu, Zhenghao; Li, Zhongjun; Deng, Yuefei

    2015-01-01

    The long non-coding RNA (LncRNA) H19 is one of the most highly abundant and conserved transcripts involved in the mammalian development and tumorigenesis. H19 is expressed in both embryonic cells and tumor cells, but its physical and pathological functions still need to be further studied. Our results showed that microRNA-675, a microRNA in the first exon of H19, expressed in glioma. Over-expression of microRNA-675 in a range of glioma cell lines resulted in their immoderate proliferation and migration. In addition, H19 derived microRNA-675 was down-regulated in the glioma, and CDK6, a pivotal regulator in cell cycle, was a target of microRNA-675. The survival of glioma patients with low CDK6 expression significantly increased as compared to patients with high CDK6 expression. Moreover, the CDK6 expression was inversely correlated with microRNA-675 expression in the glioma. Our results suggest that H19 derived microRNA-675 may regulate giloma cell proliferation and migration through CDK6, and predict a poor prognosis of glioma patients. PMID:26692922

  8. MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells.

    PubMed

    Cardinali, B; Cappella, M; Provenzano, C; Garcia-Manteiga, J M; Lazarevic, D; Cittaro, D; Martelli, F; Falcone, G

    2016-01-01

    A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protein. PMID:26844700

  9. MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells

    PubMed Central

    Cardinali, B; Cappella, M; Provenzano, C; Garcia-Manteiga, J M; Lazarevic, D; Cittaro, D; Martelli, F; Falcone, G

    2016-01-01

    A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protein. PMID:26844700

  10. MicroRNA-31 Is a Transcriptional Target of Histone Deacetylase Inhibitors and a Regulator of Cellular Senescence*

    PubMed Central

    Cho, Joon-Ho; Dimri, Manjari; Dimri, Goberdhan P.

    2015-01-01

    MicroRNAs (miRNAs) have emerged as important regulators of tumorigenesis. Several miRNAs, which can function either as oncomiRs or tumor suppressive miRs are deregulated in cancer cells. The microRNA-31 (miR-31) has been shown to be overexpressed in metastatic breast cancer. It promotes multiple oncogenic phenotypes, including proliferation, motility, and invasion of cancer cells. Using a breast cancer-related miRNA array analysis, we identified miR-31 as a novel target of histone deacetylase inhibitors (HDACi) in breast cancer cells. Specifically, we show that sodium butyrate (NaB) and panobinostat (LBH589), two broad-spectrum HDAC inhibitors up-regulate hsa-miR-31 (miR-31). The up-regulation of miR-31 was accompanied by repression of the polycomb group (PcG) protein BMI1 and induction of cellular senescence. We further show that inhibition of miR-31 overcomes the senescence-inducing effect of HDACi, and restores expression of the PcG protein BMI1. Interestingly, BMI1 also acts as a repressor of miR-31 transcription, suggesting a cross-negative feedback loop between the expression of miR-31 and BMI1. Our data suggest that miR-31 is an important physiological target of HDACi, and that it is an important regulator of senescence relevant to cancer. These studies further suggest that manipulation of miR-31 expression can be used to modulate senescence-related pathological conditions such as cancer, and the aging process. PMID:25737447

  11. MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence.

    PubMed

    Cho, Joon-Ho; Dimri, Manjari; Dimri, Goberdhan P

    2015-04-17

    MicroRNAs (miRNAs) have emerged as important regulators of tumorigenesis. Several miRNAs, which can function either as oncomiRs or tumor suppressive miRs are deregulated in cancer cells. The microRNA-31 (miR-31) has been shown to be overexpressed in metastatic breast cancer. It promotes multiple oncogenic phenotypes, including proliferation, motility, and invasion of cancer cells. Using a breast cancer-related miRNA array analysis, we identified miR-31 as a novel target of histone deacetylase inhibitors (HDACi) in breast cancer cells. Specifically, we show that sodium butyrate (NaB) and panobinostat (LBH589), two broad-spectrum HDAC inhibitors up-regulate hsa-miR-31 (miR-31). The up-regulation of miR-31 was accompanied by repression of the polycomb group (PcG) protein BMI1 and induction of cellular senescence. We further show that inhibition of miR-31 overcomes the senescence-inducing effect of HDACi, and restores expression of the PcG protein BMI1. Interestingly, BMI1 also acts as a repressor of miR-31 transcription, suggesting a cross-negative feedback loop between the expression of miR-31 and BMI1. Our data suggest that miR-31 is an important physiological target of HDACi, and that it is an important regulator of senescence relevant to cancer. These studies further suggest that manipulation of miR-31 expression can be used to modulate senescence-related pathological conditions such as cancer, and the aging process. PMID:25737447

  12. MicroRNA-16 modulates macrophage polarization leading to improved insulin sensitivity in myoblasts.

    PubMed

    Talari, Malathi; Kapadia, Bandish; Kain, Vasundhara; Seshadri, Sriram; Prajapati, Bhumika; Rajput, Parth; Misra, Parimal; Parsa, Kishore V L

    2015-12-01

    Uncontrolled inflammation leads to several diseases such as insulin resistance, T2D and several types of cancers. The functional role of microRNAs in inflammation induced insulin resistance is poorly studied. MicroRNAs are post-transcriptional regulatory molecules which mediate diverse biological processes. We here show that miR-16 expression levels are down-regulated in different inflammatory conditions such as LPS/IFNγ or palmitate treated macrophages, palmitate exposed myoblasts and insulin responsive tissues of high sucrose diet induced insulin resistant rats. Importantly, forced expression of miR-16 in macrophages impaired the production of TNF-α, IL-6 and IFN-β leading to enhanced insulin stimulated glucose uptake in co-cultured skeletal myoblasts. Further, ectopic expression of miR-16 enhanced insulin stimulated glucose uptake in skeletal myoblasts via the up-regulation of GLUT4 and MEF2A, two key players involved in insulin stimulated glucose uptake. Collectively, our data highlight the important role of miR-16 in ameliorating inflammation induced insulin resistance. PMID:26453808

  13. Tumor suppressive microRNA-137 negatively regulates Musashi-1 and colorectal cancer progression

    PubMed Central

    Smith, Amber R.; Marquez, Rebecca T.; Tsao, Wei-Chung; Pathak, Surajit; Roy, Alexandria; Ping, Jie; Wilkerson, Bailey; Lan, Lan; Meng, Wenjian; Neufeld, Kristi L.; Sun, Xiao-Feng; Xu, Liang

    2015-01-01

    Stem cell marker, Musashi-1 (MSI1) is over-expressed in many cancer types; however the molecular mechanisms involved in MSI1 over-expression are not well understood. We investigated the microRNA (miRNA) regulation of MSI1 and the implications this regulation plays in colorectal cancer. MicroRNA miR-137 was identified as a MSI1-targeting microRNA by immunoblotting and luciferase reporter assays. MSI1 protein was found to be highly expressed in 79% of primary rectal tumors (n=146), while miR-137 expression was decreased in 84% of the rectal tumor tissues (n=68) compared to paired normal mucosal samples. In addition to reduced MSI1 protein, exogenous expression of miR-137 inhibited cell growth, colony formation, and tumorsphere growth of colon cancer cells. Finally, in vivo studies demonstrated that induction of miR-137 can decrease growth of human colon cancer xenografts. Our results demonstrate that miR-137 acts as a tumor-suppressive miRNA in colorectal cancers and negatively regulates oncogenic MSI1. PMID:25940441

  14. MicroRNA Expression and Regulation in Human Ovarian Carcinoma Cells by Luteinizing Hormone

    PubMed Central

    Cui, Juan; Eldredge, Joanna B.; Xu, Ying; Puett, David

    2011-01-01

    Background MicroRNAs have been widely-studied with regard to their aberrant expression and high correlation with tumorigenesis and progression in various solid tumors. With the major goal of assessing gonadotropin (luteinizing hormone, LH) contributions to LH receptor (LHR)-positive ovarian cancer cells, we have conducted a genome-wide transcriptomic analysis on human epithelial ovarian cancer cells to identify the microRNA-associated cellular response to LH-mediated activation of LHR. Methods Human ovarian cancer cells (SKOV3) were chosen as negative control (LHR−) and stably transfected to express functional LHR (LHR+), followed by incubation with LH (0–20 h). At different times of LH-mediated activation of LHR the cancer cells were analyzed by a high-density Ovarian Cancer Disease-Specific-Array (DSA, ALMAC™), which profiled ∼100,000 transcripts with ∼400 non-coding microRNAs. Findings In total, 65 microRNAs were identified to exhibit differential expression in either LHR expressing SKOV3 cells or LH-treated cells, a few of which have been found in the genomic fragile regions that are associated with abnormal deletion or amplification in cancer, such as miR-21, miR-101-1, miR-210 and miR-301a. By incorporating the dramatic expression changes observed in mRNAs, strong microRNA/mRNA regulatory pairs were predicted through statistical analyses coupled with collective computational prediction. The role of each microRNA was then determined through a functional analysis based on the highly-confident microRNA/mRNA pairs. Conclusion The overall impact on the transcriptome-level expression indicates that LH may regulate apoptosis and cell growth of LHR+ SKOV3 cells, particularly by reducing cancer cell proliferation, with some microRNAs involved in regulatory roles. PMID:21765906

  15. The Cardiac Transcription Network Modulated by Gata4, Mef2a, Nkx2.5, Srf, Histone Modifications, and MicroRNAs

    PubMed Central

    Zhang, Qin; Krueger, Tammo; Lange, Martin; Tönjes, Martje; Dunkel, Ilona; Sperling, Silke R.

    2011-01-01

    The transcriptome, as the pool of all transcribed elements in a given cell, is regulated by the interaction between different molecular levels, involving epigenetic, transcriptional, and post-transcriptional mechanisms. However, many previous studies investigated each of these levels individually, and little is known about their interdependency. We present a systems biology study integrating mRNA profiles with DNA–binding events of key cardiac transcription factors (Gata4, Mef2a, Nkx2.5, and Srf), activating histone modifications (H3ac, H4ac, H3K4me2, and H3K4me3), and microRNA profiles obtained in wild-type and RNAi–mediated knockdown. Finally, we confirmed conclusions primarily obtained in cardiomyocyte cell culture in a time-course of cardiac maturation in mouse around birth. We provide insights into the combinatorial regulation by cardiac transcription factors and show that they can partially compensate each other's function. Genes regulated by multiple transcription factors are less likely differentially expressed in RNAi knockdown of one respective factor. In addition to the analysis of the individual transcription factors, we found that histone 3 acetylation correlates with Srf- and Gata4-dependent gene expression and is complementarily reduced in cardiac Srf knockdown. Further, we found that altered microRNA expression in Srf knockdown potentially explains up to 45% of indirect mRNA targets. Considering all three levels of regulation, we present an Srf-centered transcription network providing on a single-gene level insights into the regulatory circuits establishing respective mRNA profiles. In summary, we show the combinatorial contribution of four DNA–binding transcription factors in regulating the cardiac transcriptome and provide evidence that histone modifications and microRNAs modulate their functional consequence. This opens a new perspective to understand heart development and the complexity cardiovascular disorders. PMID:21379568

  16. MicroRNA-145 Modulates Tumor Sensitivity to Radiation in Prostate Cancer.

    PubMed

    Gong, Pijun; Zhang, Tingting; He, Dalin; Hsieh, Jer-Tsong

    2015-12-01

    Radiation therapy prior to surgery has increasingly become the standard of care for locally advanced prostate cancer, however tumor radioresistance remains a major clinical problem. While restoration of microRNA-145 (miR-145) expression reduces chemoradioresistance in glioblastoma and suppress prostate cancer proliferation, migration and invasion, the role of miR-145 in response to radiation therapy for prostate cancer is still unknown. The aim of this study was to investigate the role of miR-145 in determining the tumor response to radiation treatment in prostate cancer. Human prostate cancer cells LNCAP and PC3 were transfected with miR-145 mimic. Clonogenic assay was used to determine whether overexpression of miR-145 could alter radiation response in vitro. Immunofluorescence of γ-H2AX and flow cytometric analysis of phosphorylated histone H3 were performed to investigate the potential mechanisms contributing to the enhanced radiation-induced cell killing induced by miR-145. In addition, a qPCR-based array was used to detect the possible miR-145-mediated regulated genes involved. Tumor growth delay assays and survival curves were then analyzed in an animal model to investigate whether miR-145 induced radiosensitivity in vivo. Furthermore, miR-145 expression was assessed in 30 prostate tumor tissue biopsies taken prior to neoadjuvant radiotherapy using miRNA arrays. Our current study suggested that ectopic expression of miR-145 significantly sensitized prostate cancer cells to radiation and we used γ-H2AX phosphorylation as a surrogate marker of radiotherapy response versus miR-145 expression levels. We observed significantly more foci per cell in the group treated with miR-145 and radiation. In addition, mitotic catastrophe was significantly increased in cells receiving miR-145 and radiation. The above results suggest that miR-145 appears to reduced the efficiency of the repair of radiation-induced DNA double-strand breaks in cells. A detailed examination of

  17. The microRNA-212/132 cluster regulates B cell development by targeting Sox4

    PubMed Central

    Mehta, Arnav; Mann, Mati; Zhao, Jimmy L.; Marinov, Georgi K.; Majumdar, Devdoot; Garcia-Flores, Yvette; Du, Xiaomi; Erikci, Erdem; Chowdhury, Kamal

    2015-01-01

    MicroRNAs have emerged as key regulators of B cell fate decisions and immune function. Deregulation of several microRNAs in B cells leads to the development of autoimmune disease and cancer in mice. We demonstrate that the microRNA-212/132 cluster (miR-212/132) is induced in B cells in response to B cell receptor signaling. Enforced expression of miR-132 results in a block in early B cell development at the prepro–B cell to pro–B cell transition and induces apoptosis in primary bone marrow B cells. Importantly, loss of miR-212/132 results in accelerated B cell recovery after antibody-mediated B cell depletion. We find that Sox4 is a target of miR-132 in B cells. Co-expression of SOX4 with miR-132 rescues the defect in B cell development from overexpression of miR-132 alone, thus suggesting that miR-132 may regulate B lymphopoiesis through Sox4. In addition, we show that the expression of miR-132 can inhibit cancer development in cells that are prone to B cell cancers, such as B cells expressing the c-Myc oncogene. We have thus uncovered miR-132 as a novel contributor to B cell development. PMID:26371188

  18. β-catenin mediates behavioral resilience through Dicer1/microRNA regulation

    PubMed Central

    Dias, Caroline; Feng, Jian; Sun, Haosheng; Shao, Ning-yi; Mazei-Robison, Michelle S.; Damez-Werno, Diane; Scobie, Kimberly; Bagot, Rosemary; LaBonte, Benoit; Ribeiro, Efrain; Liu, XiaoChuan; Kennedy, Pamela; Vialou, Vincent; Ferguson, Deveroux; Pena, Catherine; Calipari, Erin; Koo, Jawook; Mouzon, Ezekiell; Ghose, Subruto; Tamminga, Carol; Neve, Rachael; Shen, Li

    2014-01-01

    β-catenin is a multi-functional protein that plays an important role in the mature central nervous system; its dysfunction has been implicated in several neuropsychiatric disorders, including depression. Here we show that β-catenin mediates pro-resilient and anxiolytic effects in mice in the nucleus accumbens, a key brain reward region, an effect mediated by D2-type medium spiny neurons. Using genome-wide β-catenin enrichment mapping, we identify Dicer1—important in small RNA (e.g., microRNA) biogenesis—as a β-catenin target gene that mediates resilience. Small RNA profiling after excising β-catenin from nucleus accumbens in the context of chronic stress reveals β-catenin-dependent microRNA regulation associated with resilience. Together, these findings establish β-catenin as a critical regulator in the development of behavioral resilience, activating a network that includes Dicer1 and downstream microRNAs. We thus present a foundation for the development of novel therapeutic targets to promote stress resilience. PMID:25383518

  19. Vitamin D-Regulated MicroRNAs: Are They Protective Factors against Dengue Virus Infection?

    PubMed Central

    Arboleda, John F.; Urcuqui-Inchima, Silvio

    2016-01-01

    Over the last few years, an increasing body of evidence has highlighted the critical participation of vitamin D in the regulation of proinflammatory responses and protection against many infectious pathogens, including viruses. The activity of vitamin D is associated with microRNAs, which are fine tuners of immune activation pathways and provide novel mechanisms to avoid the damage that arises from excessive inflammatory responses. Severe symptoms of an ongoing dengue virus infection and disease are strongly related to highly altered production of proinflammatory mediators, suggesting impairment in homeostatic mechanisms that control the host's immune response. Here, we discuss the possible implications of emerging studies anticipating the biological effects of vitamin D and microRNAs during the inflammatory response, and we attempt to extrapolate these findings to dengue virus infection and to their potential use for disease management strategies. PMID:27293435

  20. An epidermal microRNA regulates neuronal migration through control of the cellular glycosylation state.

    PubMed

    Pedersen, Mikael Egebjerg; Snieckute, Goda; Kagias, Konstantinos; Nehammer, Camilla; Multhaupt, Hinke A B; Couchman, John R; Pocock, Roger

    2013-09-20

    An appropriate balance in glycosylation of proteoglycans is crucial for their ability to regulate animal development. Here, we report that the Caenorhabditis elegans microRNA mir-79, an ortholog of mammalian miR-9, controls sugar-chain homeostasis by targeting two proteins in the proteoglycan biosynthetic pathway: a chondroitin synthase (SQV-5; squashed vulva-5) and a uridine 5'-diphosphate-sugar transporter (SQV-7). Loss of mir-79 causes neurodevelopmental defects through SQV-5 and SQV-7 dysregulation in the epidermis. This results in a partial shutdown of heparan sulfate biosynthesis that impinges on a LON-2/glypican pathway and disrupts neuronal migration. Our results identify a regulatory axis controlled by a conserved microRNA that maintains proteoglycan homeostasis in cells. PMID:24052309

  1. MicroRNAs: New Regulators of Toll-Like Receptor Signalling Pathways

    PubMed Central

    He, Xiaobing; Jing, Zhizhong; Cheng, Guofeng

    2014-01-01

    Toll-like receptors (TLRs), a critical family of pattern recognition receptors (PRRs), are responsible for the innate immune responses via signalling pathways to provide effective host defence against pathogen infections. However, TLR-signalling pathways are also likely to stringently regulate tissue maintenance and homeostasis by elaborate modulatory mechanisms. MicroRNAs (miRNAs) have emerged as key regulators and as an essential part of the networks involved in regulating TLR-signalling pathways. In this review, we highlight our understanding of the regulation of miRNA expression profiles by TLR-signalling pathways and the regulation of TLR-signalling pathways by miRNAs. We focus on the roles of miRNAs in regulating TLR-signalling pathways by targeting multiple molecules, including TLRs themselves, their associated signalling proteins and regulatory molecules, and transcription factors and functional cytokines induced by them, at multiple levels. PMID:24772440

  2. MicroRNAs: Modulators of the Ras Oncogenes in Oral Cancer.

    PubMed

    Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Alzahrani, Ali S

    2016-07-01

    Oral squamous cell carcinoma (OSCC) of the head and neck is one of the six most common cancers in the world. OSCC remains the most common cause of cancer deaths in Asian countries. Conventional treatments for OSCC have not improved the overall 5 years survival and therefore alternative therapeutic targets are often sought. Ras is one of the most frequently deregulated oncogenes in oral cancer. Direct targeting the ras has proven unrealistic and hence, exploring and understanding alternative pathways and/or molecules which regulate ras and its signaling that could pave the way for novel molecular targets and therapy for oral cancer. Recently, microRNAs (miRNAs) have been reported to regulate ras oncogenes in human cancers. In this article, we address the microRNA-mediated regulation of the ras oncogenes in oral cancer. We describe extensively the tumor suppressive and oncogenic roles of miRNAs in regulation of ras oncogenes in OSCC. We also discuss the role of miRNA-mediated ras regulation in therapeutic determination of oral cancer. Complete understanding of the miRNA regulation of ras oncogenes in oral cancer may facilitate to plan better strategies for diagnosis, molecular therapeutic targeting and the overall prognosis of this common and deadly cancer. J. Cell. Physiol. 231: 1424-1431, 2016. © 2015 Wiley Periodicals, Inc. PMID:26620726

  3. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins.

    PubMed

    Park, Haein; Huang, Xin; Lu, Changming; Cairo, Mitchell S; Zhou, Xianzheng

    2015-01-30

    We have previously reported 27 differentially expressed microRNAs (miRNAs) during human monocyte differentiation into immature dendritic cells (imDCs) and mature DCs (mDCs). However, their roles in DC differentiation and function remain largely elusive. Here, we report that microRNA (miR)-146a and miR-146b modulate DC apoptosis and cytokine production. Expression of miR-146a and miR-146b was significantly increased upon monocyte differentiation into imDCs and mDCs. Silencing of miR-146a and/or miR-146b in imDCs and mDCs significantly prevented DC apoptosis, whereas overexpressing miR-146a and/or miR-146b increased DC apoptosis. miR-146a and miR-146b expression in imDCs and mDCs was inversely correlated with TRAF6 and IRAK1 expression. Furthermore, siRNA silencing of TRAF6 and/or IRAK1 in imDCs and mDCs enhanced DC apoptosis. By contrast, lentivirus overexpression of TRAF6 and/or IRAK1 promoted DC survival. Moreover, silencing of miR-146a and miR-146b expression had little effect on DC maturation but enhanced IL-12p70, IL-6, and TNF-α production as well as IFN-γ production by IL-12p70-mediated activation of natural killer cells, whereas miR-146a and miR-146b overexpression in mDCs reduced cytokine production. Silencing of miR-146a and miR-146b in DCs also down-regulated NF-κB inhibitor IκBα and increased Bcl-2 expression. Our results identify a new negative feedback mechanism involving the miR-146a/b-TRAF6/IRAK1-NF-κB axis in promoting DC apoptosis. PMID:25505246

  4. Modulation of microRNAs in two genetically disparate chicken lines showing different necrotic enteritis disease susceptibility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNA) play a critical role in post-transcriptional regulation by influencing the 3'-UTR of target genes. Using two inbred White Leghorn chicken lines, line 6.3 and line 7.2 showing Marek’s disease-resistant and -susceptible phenotypes, respectively, we used small RNA high-throughput sequ...

  5. RNA Secondary Structure Modulates FMRP’s Bi-Functional Role in the MicroRNA Pathway

    PubMed Central

    Kenny, Phillip; Ceman, Stephanie

    2016-01-01

    MicroRNAs act by post-transcriptionally regulating the gene expression of 30%–60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP) and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP’s interaction with the RNA helicase Moloney leukemia virus 10 (MOV10), which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex. PMID:27338369

  6. Computational Systems Biology Approach Predicts Regulators and Targets of microRNAs and Their Genomic Hotspots in Apoptosis Process.

    PubMed

    Alanazi, Ibrahim O; Ebrahimie, Esmaeil

    2016-07-01

    Novel computational systems biology tools such as common targets analysis, common regulators analysis, pathway discovery, and transcriptomic-based hotspot discovery provide new opportunities in understanding of apoptosis molecular mechanisms. In this study, after measuring the global contribution of microRNAs in the course of apoptosis by Affymetrix platform, systems biology tools were utilized to obtain a comprehensive view on the role of microRNAs in apoptosis process. Network analysis and pathway discovery highlighted the crosstalk between transcription factors and microRNAs in apoptosis. Within the transcription factors, PRDM1 showed the highest upregulation during the course of apoptosis, with more than 9-fold expression increase compared to non-apoptotic condition. Within the microRNAs, MIR1208 showed the highest expression in non-apoptotic condition and downregulated by more than 6 fold during apoptosis. Common regulators algorithm showed that TNF receptor is the key upstream regulator with a high number of regulatory interactions with the differentially expressed microRNAs. BCL2 and AKT1 were the key downstream targets of differentially expressed microRNAs. Enrichment analysis of the genomic locations of differentially expressed microRNAs led us to the discovery of chromosome bands which were highly enriched (p < 0.01) with the apoptosis-related microRNAs, such as 13q31.3, 19p13.13, and Xq27.3 This study opens a new avenue in understanding regulatory mechanisms and downstream functions in the course of apoptosis as well as distinguishing genomic-enriched hotspots for apoptosis process. PMID:27178576

  7. microRNA-31 modulates skeletal patterning in the sea urchin embryo.

    PubMed

    Stepicheva, Nadezda A; Song, Jia L

    2015-11-01

    MicroRNAs (miRNAs) are small non-coding RNAs that repress the translation and reduce the stability of target mRNAs in animal cells. microRNA-31 (miR-31) is known to play a role in cancer, bone formation and lymphatic development. However, studies to understand the function of miR-31 in embryogenesis have been limited. We examined the regulatory role of miR-31 in early development using the sea urchin as a model. miR-31 is expressed at all stages of development and its knockdown (KD) disrupts the patterning and function of primary mesenchyme cells (PMCs), which form the embryonic skeleton spicules. We identified that miR-31 directly represses Pmar1, Alx1, Snail and VegfR7 within the PMC gene regulatory network using reporter constructs. Further, blocking the miR-31-mediated repression of Alx1 and/or VegfR7 in the developing embryo resulted in defects in PMC patterning and skeletogenesis. The majority of the mislocalized PMCs in miR-31 KD embryos did not express VegfR10, indicating that miR-31 regulates VegfR gene expression within PMCs. In addition, miR-31 indirectly suppresses Vegf3 expression in the ectoderm. These results indicate that miR-31 coordinately suppresses genes within the PMCs and in the ectoderm to impact PMC patterning and skeletogenesis. This study identifies the novel function and molecular mechanism of miR-31-mediated regulation in the developing embryo. PMID:26400092

  8. Role of microRNAs in the modulation of diabetic retinopathy.

    PubMed

    Mastropasqua, Rodolfo; Toto, Lisa; Cipollone, Francesco; Santovito, Donato; Carpineto, Paolo; Mastropasqua, Leonardo

    2014-11-01

    Diabetic retinopathy (DR) is the leading cause of vision loss in the working-age adults. It affects a third of diabetics. Diabetic macular edema, an advanced complication of DR, develops in nearly 7% of diabetic patients. MicroRNAs (miRNAs) are a novel group of non-coding small RNAs that post-transcriptionally control gene expression by promoting either degradation or translational repression of target messenger RNA. They are implicated in a large variety of physiological and pathophysiological processes, including glucose homeostasis, angiogenesis and modulation of inflammatory response. MiRNAs also play a critical role in the pathogenesis of diabetes and the related micro- and macrovascular complications. The purpose of this review is to describe the potential role of miRNAs in diabetes and evaluate their implication in DR. MiRNAs involved in the modulation of glucose metabolism (insulin secretion and sensitivity) and MiRNAs playing a role in the pathogenesis of DR with their potential target genes are reviewed. Understanding MiRNAs implication in DR could be helpful for developing new gain- or loss- of -function strategies in order to establish effective treatments and reduce the rate of visual disability due to progression of retinopathy. PMID:25128741

  9. Inhibition of microRNA-155 sensitizes lung cancer cells to irradiation via suppression of HK2-modulated glucose metabolism.

    PubMed

    Lv, Xin; Yao, Li; Zhang, Jianli; Han, Ping; Li, Cuiyun

    2016-08-01

    MicroRNAs (miRNAs) are small non-coding regulatory RNAs, which are involved in the post-transcriptional regulation of gene expression. miRNA (miR)-155, which has previously been reported to be overexpressed in lung cancer, is correlated with poor patient prognosis. The present study aimed to investigate the effects of miR‑155 on the radiosensitivity of human non‑small cell lung cancer (NSCLC) cells. To explore the roles of miRNAs in the regulation of irradiation sensitivity of human lung cancer cells, the expressions of miR‑155 in response to irradiation, have been studied by RT‑qPCR, and the putative direct target of miR‑155 was identified by western blot and luciferase assays. The results of the present study revealed that the expression of miR‑155 was induced by irradiation, thus suggesting a positive correlation between miR‑155 and radiosensitivity. Furthermore, overexpression of miR‑155 rendered lung cancer cells resistant to irradiation. In addition, hexokinase 2 (HK2) was identified as an indirect target of miR‑155; exogenous overexpression of miR‑155 upregulated the expression of HK2, whereas inhibition of miR‑155 by antisense miRNA suppressed HK2 expression. In addition, HK2‑modulated glucose metabolism was significantly upregulated by overexpression of miR‑155. Notably, inhibition of miR‑155 sensitized lung cancer cells to irradiation via suppression of glucose metabolism. In conclusion, the present study reported a novel function for miR‑155 in the regulation of NSCLC cell radiosensitivity, thus suggesting that miR‑155 may be considered a therapeutic target for the development of anticancer drugs. PMID:27315591

  10. MicroRNA-486–dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy–associated symptoms

    PubMed Central

    Alexander, Matthew S.; Casar, Juan Carlos; Motohashi, Norio; Vieira, Natássia M.; Eisenberg, Iris; Marshall, Jamie L.; Gasperini, Molly J.; Lek, Angela; Myers, Jennifer A.; Estrella, Elicia A.; Kang, Peter B.; Shapiro, Frederic; Rahimov, Fedik; Kawahara, Genri; Widrick, Jeffrey J.; Kunkel, Louis M.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, which results in dysfunctional signaling pathways within muscle. Previously, we identified microRNA-486 (miR-486) as a muscle-enriched microRNA that is markedly reduced in the muscles of dystrophin-deficient mice (Dmdmdx-5Cv mice) and in DMD patient muscles. Here, we determined that muscle-specific transgenic overexpression of miR-486 in muscle of Dmdmdx-5Cv mice results in reduced serum creatine kinase levels, improved sarcolemmal integrity, fewer centralized myonuclei, increased myofiber size, and improved muscle physiology and performance. Additionally, we identified dedicator of cytokinesis 3 (DOCK3) as a miR-486 target in skeletal muscle and determined that DOCK3 expression is induced in dystrophic muscles. DOCK3 overexpression in human myotubes modulated PTEN/AKT signaling, which regulates muscle hypertrophy and growth, and induced apoptosis. Furthermore, several components of the PTEN/AKT pathway were markedly modulated by miR-486 in dystrophin-deficient muscle. Skeletal muscle–specific miR-486 overexpression in Dmdmdx-5Cv animals decreased levels of DOCK3, reduced PTEN expression, and subsequently increased levels of phosphorylated AKT, which resulted in an overall beneficial effect. Together, these studies demonstrate that stable overexpression of miR-486 ameliorates the disease progression of dystrophin-deficient skeletal muscle. PMID:24789910

  11. MicroRNA 152 regulates hepatic glycogenesis by targeting PTEN.

    PubMed

    Wang, Shuyue; Wang, Lilin; Dou, Lin; Guo, Jun; Fang, Weiwei; Li, Meng; Meng, Xiangyu; Man, Yong; Shen, Tao; Huang, Xiuqing; Li, Jian

    2016-05-01

    Hepatic insulin resistance, defined as a diminished ability of hepatocytes to respond to the action of insulin, plays an important role in the development of type 2 diabetes and metabolic syndrome. Aberrant expression of mmu-miR-152-3p (miR-152) is related to the pathogenesis of tumors such as hepatitis B virus related hepatocellular carcinoma. However, the role of miR-152 in hepatic insulin resistance remains unknown. In the present study, we identified the potential role of miR-152 in regulating hepatic glycogenesis. The expression of miR-152 and the level of glycogen were significantly downregulated in the liver of db/db mice and mice fed a high fat diet. In vivo and in vitro results suggest that inhibition of miR-152 expression induced impaired glycogenesis in hepatocytes. Interestingly, miR-152 expression, glycogen synthesis and protein kinase B/glycogen synthase kinase (AKT/GSK) pathway activation were significantly decreased in the liver of mice injected with 16 μg·mL(-1) interleukin 6 (IL-6) by pumps for 7 days and in NCTC 1469 cells treated with 10 ng·mL(-1) IL-6 for 24 h. Moreover, hepatic overexpression of miR-152 rescued IL-6-induced impaired glycogenesis. Finally, phosphatase and tensin homolog (PTEN) was identified as a direct target of miR-152 to mediate hepatic glycogen synthesis. Our findings provide mechanistic insight into the effects of miR-152 on the regulation of the AKT/GSK pathway and the synthesis of glycogen in hepatocytes. Downregulated miR-152 induced impaired hepatic glycogenesis by targeting PTEN. PTEN participated in miR-152-mediated glycogenesis in hepatocytes via regulation of the AKT/GSK pathway. PMID:26996529

  12. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function.

    PubMed

    Leeper, Nicholas J; Raiesdana, Azad; Kojima, Yoko; Chun, Hyung J; Azuma, Junya; Maegdefessel, Lars; Kundu, Ramendra K; Quertermous, Thomas; Tsao, Philip S; Spin, Joshua M

    2011-04-01

    Aberrant smooth muscle cell (SMC) plasticity has been implicated in a variety of vascular disorders including atherosclerosis, restenosis, and abdominal aortic aneurysm (AAA) formation. While the pathways governing this process remain unclear, epigenetic regulation by specific microRNAs (miRNAs) has been demonstrated in SMCs. We hypothesized that additional miRNAs might play an important role in determining vascular SMC phenotype. Microarray analysis of miRNAs was performed on human aortic SMCs undergoing phenotypic switching in response to serum withdrawal, and identified 31 significantly regulated entities. We chose the highly conserved candidate miRNA-26a for additional studies. Inhibition of miRNA-26a accelerated SMC differentiation, and also promoted apoptosis, while inhibiting proliferation and migration. Overexpression of miRNA-26a blunted differentiation. As a potential mechanism, we investigated whether miRNA-26a influences TGF-β-pathway signaling. Dual-luciferase reporter assays demonstrated enhanced SMAD signaling with miRNA-26a inhibition, and the opposite effect with miRNA-26a overexpression in transfected human cells. Furthermore, inhibition of miRNA-26a increased gene expression of SMAD-1 and SMAD-4, while overexpression inhibited SMAD-1. MicroRNA-26a was also found to be downregulated in two mouse models of AAA formation (2.5- to 3.8-fold decrease, P < 0.02) in which enhanced switching from contractile to synthetic phenotype occurs. In summary, miRNA-26a promotes vascular SMC proliferation while inhibiting cellular differentiation and apoptosis, and alters TGF-β pathway signaling. MicroRNA-26a represents an important new regulator of SMC biology and a potential therapeutic target in AAA disease. PMID:20857419

  13. MicroRNA-181c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells

    PubMed Central

    Wang, Hongjiang; Li, Jing; Chi, Hongjie; Zhang, Fan; Zhu, Xiaoming; Cai, Jun; Yang, Xinchun

    2015-01-01

    Apoptosis is an important mechanism for the development of heart failure. Mitochondria are central to the execution of apoptosis in the intrinsic pathway. The main regulator of mitochondrial pathway of apoptosis is Bcl-2 family which includes pro- and anti-apoptotic proteins. MicroRNAs are small noncoding RNA molecules that regulate gene expression by inhibiting mRNA translation and/or inducing mRNA degradation. It has been proposed that microRNAs play critical roles in the cardiovascular physiology and pathogenesis of cardiovascular diseases. Our previous study has found that microRNA-181c, a miRNA expressed in the myocardial cells, plays an important role in the development of heart failure. With bioinformatics analysis, we predicted that miR-181c could target the 3′ untranslated region of Bcl-2, one of the anti-apoptotic members of the Bcl-2 family. Thus, we have suggested that miR-181c was involved in regulation of Bcl-2. In this study, we investigated this hypothesis using the Dual-Luciferase Reporter Assay System. Cultured myocardial cells were transfected with the mimic or inhibitor of miR-181c. We found that the level of miR-181c was inversely correlated with the Bcl-2 protein level and that transfection of myocardial cells with the mimic or inhibitor of miR-181c resulted in significant changes in the levels of caspases, Bcl-2 and cytochrome C in these cells. The increased level of Bcl-2 caused by the decrease in miR-181c protected mitochondrial morphology from the tumour necrosis factor alpha-induced apoptosis. PMID:25898913

  14. microRNA Processing Pathway Regulates Olfactory Neuron Morphogenesis

    PubMed Central

    Berdnik, Daniela; Fan, Audrey P.; Potter, Christopher J.; Luo, Liqun

    2008-01-01

    Summary The micro(mi)RNA processing pathway produces miRNAs as posttranscriptional regulators of gene expression. The nuclear RNase III Drosha catalyzes the first processing step together with the dsRNA binding protein DGCR8/Pasha generating pre-miRNAs [1, 2]. The next cleavage employs the cytoplasmic RNase III Dicer producing miRNA duplexes [3, 4]. Finally, Argonautes are recruited with miRNAs into an RNA-induced silencing complex for mRNA recognition (Figure 1A). Here, we identify two members of the miRNA pathway, Pasha and Dicer-1, in a forward genetic screen for mutations that disrupt wiring specificity of Drosophila olfactory projection neurons (PNs). The olfactory system is built as discrete map of highly stereotyped neuronal connections [5, 6]. Each PN targets dendrites to a specific glomerulus in the antennal lobe and projects axons stereotypically into higher brain centers [7–9]. In selected PN classes, pasha and Dicer-1 mutants cause specific PN dendrite mistargeting in the antennal lobe and altered axonal terminations in higher brain centers. Furthermore, Pasha and Dicer-1 act cell-autonomously in postmitotic neurons to regulate dendrite and axon targeting during development. However, Argonaute-1 and Argonaute-2 are dispensable for PN morphogenesis. Our findings suggest a role for the miRNA processing pathway in establishing wiring specificity in the nervous system. PMID:19013069

  15. Problem-Solving Test: The Role of a Micro-RNA in the Regulation of "fos" Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    The "fos" proto-oncogene codes for a component of the AP1 transcription factor, an important regulator of gene expression and cell proliferation. Dysregulation of AP1 function may lead to the malignant transformation of the cell. The present test describes an experiment in which the role of a micro-RNA (miR-7b) in the regulation of "fos" gene…

  16. Expression of microRNAs in HPV negative tonsil cancers and their regulation of PDCD4.

    PubMed

    Khoury, Samantha; Ahadi, Alireza; Zhang, Xiaoying; Tran, Nham

    2016-06-01

    Global rates of tonsil cancer have been increasing since the turn of the millennia, however we still have a limited understanding of the genes and pathways which control this disease. This array dataset which is linked to our publication (Zhang et al., 2015) describes the profiling of human miRNAs in tonsil and normal adjacent tissues. With this dataset, we identified a list of microRNA (miRNA) which were highly over represented in tonsil cancers and showed that several miRNAs were able to regulate the tumour suppressor PDCD4 in a temporal manner. The dataset has been deposited into Gene Expression Omnibus (GSE75630). PMID:27222808

  17. An emerging role for microRNA in the regulation of endothelin-1

    PubMed Central

    Jacobs, Mollie E.; Wingo, Charles S.; Cain, Brian D.

    2013-01-01

    Endothelin-1 (ET-1) is a peptide signaling molecule serving diverse functions in many different tissues such as the vasculature and the kidney. The primary mechanism thought to control ET-1 bioavailability is the rate of transcription from the ET-1 gene (EDN1), but recent research suggests that EDN1 expression is attenuated by microRNA (miRNA)—mediated regulation. The action of specific miRNAs on EDN1 mRNA appears to vary greatly in a tissue specific manner. This review provides a summary of our current understanding of miRNA-EDN1 interaction. PMID:23424003

  18. Role of microRNA in prostate cancer stem/progenitor cells regulation.

    PubMed

    Tao, Z-Q; Shi, A-M; Li, R; Wang, Y-Q; Wang, X; Zhao, J

    2016-07-01

    Most of the human tumors contain a population of cells with stem cell properties, called cancer stem cells (CSCs), which are believed to be responsible for tumor establishment, metastasis, and resistance to clinical therapy. It's crucial to understand the regulatory mechanisms unique to CSCs, in order to design CSC-specific therapeutics. Recent discoveries of microRNA (miRNA) have provided a new avenue for understanding the regulatory mechanisms of cancer. The present review article will discuss important milestones associated with mircroRNA regulation during prostate carcinogenesis. PMID:27460733

  19. The regulation and function of microRNAs in kidney diseases

    PubMed Central

    Wei, Qingqing; Mi, Qing-Sheng; Dong, Zheng

    2013-01-01

    MicroRNAs (miRNA) are endogenous short non-coding RNAs which regulate virtually all major cellular processes by inhibiting target gene expression. In kidneys, miRNAs have been implicated in renal development, homeostasis and physiological functions. In addition, miRNAs play important roles in the pathogenesis of various renal diseases, including renal carcinoma, diabetic nephropathy, acute kidney injury, hypertensive nephropathy, polycystic kidney disease and others. Furthermore, miRNAs may have great values as biomarkers in different kidney diseases. PMID:23794512

  20. MicroRNA networks regulated by all-trans retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells

    PubMed Central

    Kurosaki, Mami; Paroni, Gabriela; Zanetti, Adriana; Gianni, Maurizio; Bolis, Marco; Lupi, Monica; Tsykin, Anna; Goodall, Gregory J.; Garattini, Enrico

    2015-01-01

    SKBR3-cells, characterized by ERBB2/RARA co-amplification, represent a subgroup of HER2+ breast-cancers sensitive to all-trans retinoic acid (ATRA) and Lapatinib. In this model, the two agents alone or in combination modulate the expression of 174 microRNAs (miRs). These miRs and predicted target-transcripts are organized in four interconnected modules (Module-1 to -4). Module-1 and Module-3 consist of ATRA/Lapatinib up-regulated and potentially anti-oncogenic miRs, while Module-2 contains ATRA/Lapatinib down-regulated and potentially pro-oncogenic miRs. Consistent with this, the expression levels of Module-1/-3 and Module-2 miRs are higher and lower, respectively, in normal mammary tissues relative to ductal-carcinoma-in-situ, invasive-ductal-carcinoma and metastases. This indicates associations between tumor-progression and the expression profiles of Module-1 to -3 miRs. Similar associations are observed with tumor proliferation-scores, staging, size and overall-survival using TCGA (The Cancer Genome Atlas) data. Forced expression of Module-1 miRs, (miR-29a-3p; miR-874-3p) inhibit SKBR3-cell growth and Module-3 miRs (miR-575; miR-1225-5p) reduce growth and motility. Module-2 miRs (miR-125a; miR-193; miR-210) increase SKBR3 cell growth, survival and motility. Some of these effects are of general significance, being replicated in other breast cancer cell lines representing the heterogeneity of this disease. Finally, our study demonstrates that HIPK2-kinase and the PLCXD1-phospholipase-C are novel targets of miR-193a-5p/miR-210-3p and miR-575/miR-1225-5p, respectively. PMID:25961594

  1. Annexin-A1 Regulates MicroRNA-26b* and MicroRNA-562 to Directly Target NF-κB and Angiogenesis in Breast Cancer Cells

    PubMed Central

    Anbalagan, Durkeshwari; Yap, Gracemary; Yuan, Yi; Pandey, Vijay K.; Lau, Wai Hoe; Arora, Suruchi; Bist, Pradeep; Wong, Justin S. B.; Sethi, Gautam; Nissom, Peter M.; Lobie, Peter E.; Lim, Lina H. K.

    2014-01-01

    Annexin 1 (ANXA1) is an endogenous anti-inflammatory protein implicated in cancer. ANXA1 was previously shown to be regulated by hsa-miR-196a. However, whether ANXA1 itself regulates microRNA (miR) expression is unknown. Therefore, we investigated the regulation of miR by ANXA1 in MCF7 breast cancer cells. MCF7-EV (Empty vector) and MCF7-V5 (ANXA1-V5 expressing cells) were subjected to a miR microarray. Microarray analysis revealed a number of miRNAs which were dysregulated in MCF7-V5 cells. 2 novel miRNAs (miR562 and miR26b*) were validated, cloned and functionally characterized. As ANXA1 constitutively activates NF-κB activity to modulate breast cancer metastasis, we found that miR26b* and miR562 directly targeted the canonical NF-κB pathway by targeting the 3′ UTR and inhibiting expression of Rel A (p65) and NF-κB1 (p105) respectively. MiR562 inhibited wound healing, which was reversed when ANXA1 was overexpressed. Overexpression of either miR562 or miR26b* in MCF-7 cells enhanced endothelial tube formation when cocultured with human umbilical cord endothelial cells while conversely, treatment of MCF7 cells with either anti-miR562 or anti-miR26b* inhibited endothelial tube formation after co-culture. Further analysis of miR562 revealed that miR562-transfected cell conditioned media enhances endothelial cell tube formation, indicating that miR562 increased angiogenic secreted factors from MCF-7 breast tumor cells. TNFα was increased upon overexpression of miR562, which was reversed when ANXA1 was co-transfected In conclusion, this data suggests that ANXA1-regulated miR26b* and miR562 may play a role in wound healing and tumor-induced endothelial cell tube formation by targeting NF-κB expression and point towards a potential therapeutic target for breast cancer. PMID:25536365

  2. MicroRNAs regulate the immunometabolic response to viral infection in the liver.

    PubMed

    Singaravelu, Ragunath; O'Hara, Shifawn; Jones, Daniel M; Chen, Ran; Taylor, Nathan G; Srinivasan, Prashanth; Quan, Curtis; Roy, Dominic G; Steenbergen, Rineke H; Kumar, Anil; Lyn, Rodney K; Özcelik, Dennis; Rouleau, Yanouchka; Nguyen, My-Anh; Rayner, Katey J; Hobman, Tom C; Tyrrell, David Lorne; Russell, Rodney S; Pezacki, John Paul

    2015-12-01

    Immune regulation of cellular metabolism can be responsible for successful responses to invading pathogens. Viruses alter their hosts' cellular metabolism to facilitate infection. Conversely, the innate antiviral responses of mammalian cells target these metabolic pathways to restrict viral propagation. We identified miR-130b and miR-185 as hepatic microRNAs (miRNAs) whose expression is stimulated by 25-hydroxycholesterol (25-HC), an antiviral oxysterol secreted by interferon-stimulated macrophages and dendritic cells, during hepatitis C virus (HCV) infection. However, 25-HC only directly stimulated miR-185 expression, whereas HCV regulated miR-130b expression. Independently, miR-130b and miR-185 inhibited HCV infection. In particular, miR-185 significantly restricted host metabolic pathways crucial to the HCV life cycle. Interestingly, HCV infection decreased miR-185 and miR-130b levels to promote lipid accumulation and counteract 25-HC's antiviral effect. Furthermore, miR-185 can inhibit other viruses through the regulation of immunometabolic pathways. These data establish these microRNAs as a key link between innate defenses and metabolism in the liver. PMID:26479438

  3. Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression

    PubMed Central

    Edmonds, Mick D.; Hurst, Douglas R.; Vaidya, Kedar S.; Stafford, Lewis J.; Chen, Dongquan; Welch, Danny R.

    2009-01-01

    Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis of multiple tumor types without blocking tumorigenesis. BRMS1 forms complexes with SIN3, histone deacetylases and selected transcription factors that modify metastasis-associated gene expression (e.g., EGFR, OPN, PI4P5K1A, PLAU). microRNA (miRNA) are a recently discovered class of regulatory, noncoding RNA, some of which are involved in neoplastic progression. Based on these data, we hypothesized that BRMS1 may also exert some of its antimetastatic effects by regulating miRNA expression. Micro-RNA arrays were done comparing small RNAs that were purified from metastatic MDA-MB-231 and MDA-MB-435 and their non-metastatic BRMS1-transfected counterparts. miRNA expression changed by BRMS1 were validated using SYBR Green RT-PCR. BRMS1 decreased metastasis-promoting (miR-10b, -373 and -520c) miRNA, with corresponding reduction of their downstream targets (e.g., RhoC which is downstream of miR-10b). Concurrently, BRMS1 increased expression of metastasis suppressing miRNA (miR-146a, -146b and -335). Collectively, these data show that BRMS1 coordinately regulates expression of multiple metastasis-associated miRNA and suggests that recruitment of BRMS1-containing SIN3:HDAC complexes to, as yet undefined, miRNA promoters might be involved in the regulation of cancer metastasis. PMID:19585508

  4. MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases

    PubMed Central

    Aranda, Juan F.; Madrigal-Matute, Julio; Rotllan, Noemi; Fernández-Hernando, Carlos

    2014-01-01

    The regulation of cholesterol metabolism is one of the most studied biological processes since its first isolation from gallstones in 1784. High levels of plasma low-density lipoprotein (LDL) cholesterol and reduced levels of plasma high-density lipoprotein (HDL) cholesterol are widely recognized as major risk factors of cardiovascular disease. An imbalance in the production of reactive oxygen species (ROS) can oxidize LDL particles increasing the levels of the highly pro-atherogenic oxidized LDLs (ox-LDLs). Furthermore, under pathological scenarios, numerous molecules can function as pro-oxidants, such as iron or high-glucose levels. In addition to the classical mechanisms regulating lipid homeostasis, recent studies have demonstrated the important role of microRNAs (miRNAs) as regulators of lipoprotein metabolism, its oxidative derivatives and redox balance. Here, we summarize the recent findings in the field, highlighting the contribution of some miRNAs in lipid and oxidative-associated pathologies. We also discuss how therapeutic intervention of miRNAs may be a promising strategy to decrease LDL, increase HDL and ameliorate lipid and oxidative related disorders, including atherosclerosis, non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome. PMID:23871755

  5. Gamma-Tocotrienol Modulates Radiation-Induced MicroRNA Expression in Mouse Spleen.

    PubMed

    Ghosh, Sanchita P; Pathak, Rupak; Kumar, Parameet; Biswas, Shukla; Bhattacharyya, Sharmistha; Kumar, Vidya P; Hauer-Jensen, Martin; Biswas, Roopa

    2016-05-01

    Ionizing radiation causes depletion of hematopoietic cells and enhances the risk of developing secondary hematopoietic malignancies. Vitamin E analog gamma-tocotrienol (GT3), which has anticancer properties, promotes postirradiation hematopoietic cell recovery by enhancing spleen colony-forming capacity, and provides protection against radiation-induced lethality in mice. However, the underlying molecular mechanism involved in GT3-mediated postirradiation survival is not clearly understood. Recent studies have shown that natural dietary products including vitamin E provide a benefit to biological systems by modulating microRNA (miR) expression. In this study, we show that GT3 differentially modulates the miR footprint in the spleen of irradiated mice compared to controls at early times (day 1), as well as later times (day 4 and 15) after total-body irradiation. We observed that miR expression was altered in a dose- and time-dependent manner in GT3-pretreated spleen tissues from total-body irradiated mice. GT3 appeared to affect the expression of a number of radiation-modulated miRs known to be involved in hematopoiesis and lymphogenesis. Moreover, GT3 pretreatment also suppressed the upregulation of radiation-induced p53, suggesting the function of GT3 in the prevention of radiation-induced damage to the spleen. In addition, we have shown that GT3 significantly reduced serum levels of Flt3L, a biomarker of radiation-induced bone marrow aplasia. Further in silico analyses of the effect of GT3 implied the association of p38 MAPK, ERK and insulin signaling pathways. Our study provides initial insight into the mechanism by which GT3 mediates protection of spleen after total-body irradiation. PMID:27128741

  6. Chronic Ethanol consumption modulates growth factor release, mucosal cytokine production and microRNA expression in nonhuman primates

    PubMed Central

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A.; Messaoudi, Ilhem

    2013-01-01

    BACKGROUND Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. METHODS Using a nonhuman primate model of ethanol self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine and growth factor production in peripheral blood, lung and intestinal mucosa following twelve months of chronic ethanol exposure. RESULTS Ethanol exposure inhibited activation-induced production of growth factors HGF, G-CSF and VEGF by peripheral blood mononuclear cells (PBMC). Moreover, ethanol significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of ethanol-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed ethanol-dependent upregulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR181 and 221and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT-3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected CONCLUSION Chronic ethanol consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be mediated by changes in microRNA expression. PMID:24329418

  7. Involvement of MicroRNAs in the Regulation of Muscle Wasting during Catabolic Conditions*

    PubMed Central

    Soares, Ricardo José; Cagnin, Stefano; Chemello, Francesco; Silvestrin, Matteo; Musaro, Antonio; De Pitta, Cristiano; Lanfranchi, Gerolamo; Sandri, Marco

    2014-01-01

    Loss of muscle proteins and the consequent weakness has important clinical consequences in diseases such as cancer, diabetes, chronic heart failure, and in aging. In fact, excessive proteolysis causes cachexia, accelerates disease progression, and worsens life expectancy. Muscle atrophy involves a common pattern of transcriptional changes in a small subset of genes named atrophy-related genes or atrogenes. Whether microRNAs play a role in the atrophy program and muscle loss is debated. To understand the involvement of miRNAs in atrophy we performed miRNA expression profiling of mouse muscles under wasting conditions such as fasting, denervation, diabetes, and cancer cachexia. We found that the miRNA signature is peculiar of each catabolic condition. We then focused on denervation and we revealed that changes in transcripts and microRNAs expression did not occur simultaneously but were shifted. Indeed, whereas transcriptional control of the atrophy-related genes peaks at 3 days, changes of miRNA expression maximized at 7 days after denervation. Among the different miRNAs, microRNA-206 and -21 were the most induced in denervated muscles. We characterized their pattern of expression and defined their role in muscle homeostasis. Indeed, in vivo gain and loss of function experiments revealed that miRNA-206 and miRNA-21 were sufficient and required for atrophy program. In silico and in vivo approaches identified transcription factor YY1 and the translational initiator factor eIF4E3 as downstream targets of these miRNAs. Thus miRNAs are important for fine-tuning the atrophy program and their modulation can be a novel potential therapeutic approach to counteract muscle loss and weakness in catabolic conditions. PMID:24891504

  8. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer

    PubMed Central

    Cekaite, Lina; Eide, Peter W.; Lind, Guro E.; Skotheim, Rolf I.; Lothe, Ragnhild A.

    2016-01-01

    Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression. PMID:26623728

  9. microRNA-155 is a negative regulator of Activation Induced Cytidine deaminase

    PubMed Central

    Teng, Grace; Hakimpour, Paul; Landgraf, Pablo; Rice, Amanda; Tuschl, Thomas; Casellas, Rafael; Papavasiliou, F. Nina

    2008-01-01

    Summary B lymphocytes perform somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin locus to generate an antibody repertoire diverse in both affinity and function. These somatic diversification processes are catalyzed by activation-induced cytidine deaminase (AID), a potent DNA mutator whose expression and function are highly regulated. Here we show that AID is regulated at the post-transcriptional level by a lymphocyte-specific microRNA, miR-155. We find that miR-155 is upregulated in murine B lymphocytes undergoing CSR, and furthermore targets a conserved site in the AID 3′untranslated region. Disruption of this target site in vivo results in quantitative and temporal deregulation of AID expression, accompanied by functional consequences for CSR and affinity maturation. Thus, miR-155, which has recently been shown to play important roles in regulating the germinal center reaction, does so in part by directly downmodulating AID expression. PMID:18450484

  10. An Intrinsic MicroRNA Timer Regulates Progressive Decline in Shoot Regenerative Capacity in Plants

    PubMed Central

    Zhang, Tian-Qi; Lian, Heng; Tang, Hongbo; Dolezal, Karel; Zhou, Chuan-Miao; Yu, Sha; Chen, Juan-Hua; Chen, Qi; Liu, Hongtao; Ljung, Karin

    2015-01-01

    Plant cells are totipotent and competent to regenerate from differentiated organs. It has been shown that two phytohormones, auxin and cytokinin, play critical roles within this process. As in animals, the regenerative capacity declines with age in plants, but the molecular basis for this phenomenon remains elusive. Here, we demonstrate that an age-regulated microRNA, miR156, regulates shoot regenerative capacity. As a plant ages, the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors leads to the progressive decline in shoot regenerative capacity. In old plants, SPL reduces shoot regenerative capacity by attenuating the cytokinin response through binding with the B-type ARABIDOPSIS RESPONSE REGULATORs, which encode the transcriptional activators in the cytokinin signaling pathway. Consistently, the increased amount of exogenous cytokinin complements the reduced shoot regenerative capacity in old plants. Therefore, the recruitment of age cues in response to cytokinin contributes to shoot regenerative competence. PMID:25649435

  11. Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating microRNA expression.

    PubMed

    Gao, Yuan; Han, Zhuo; Li, Qian; Wu, Yongyan; Shi, Xiaoyan; Ai, Zhiying; Du, Juan; Li, Wenzhong; Guo, Zekun; Zhang, Yong

    2015-02-01

    MicroRNAs (miRNAs), a group of noncoding RNAs, function as post-transcriptional gene regulators and control the establishment, self-renewal and differentiation of stem cells. Vitamin C has been recognized as a reprogramming enhancer because of its ability to induce a blastocyst-like state in embryonic stem cells (ESCs). However, knowledge on the regulation of miRNAs by vitamin C in ESCs is limited. In this study, we found that vitamin C induced miRNA expression, particularly of ESC-specific miRNAs. Moreover, vitamin C maintained the miRNA expression of the Dlk1-Dio3 imprinting region. The miRNAs in this region contain identical seed sequences, which target a class of genes, including Kdm6b, Klf13, and Sox6, and are mainly related to cell differentiation and development. These genes were significantly downregulated by vitamin C. Notably, miR-143 promoted self-renewal of mouse ESCs and suppressed expression of the de novo methyltransferase gene Dnmt3a. Knockdown of miR-143 by use of its inhibitor counteracted the vitamin C-induced reduction in Dnmt3a expression, showing that vitamin C repressed Dnmt3a expression via miR-143. Vitamin C also promoted DNA demethylation, including of pluripotency gene promoters (Tbx3, Tcl1, and Esrrb) and ESC-specific miRNA promoters (miR-290-295 and miR-17-92 clusters), and DNA hydroxymethylation, including of the intergenic differentially methylated region of the Dlk1-Dio3 region. These results strongly suggested that vitamin C promoted widespread DNA demethylation in gene promoters by modulating epigenetic modifiers, including Dnmt3a, which activated pluripotency genes and ESC-specific miRNAs. Then, differentiation and development genes were repressed by ESC-enriched miRNAs, which maintained the stem cell state. PMID:25491368

  12. MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus.

    PubMed

    Deng, Yun; Zhao, Jian; Sakurai, Daisuke; Kaufman, Kenneth M; Edberg, Jeffrey C; Kimberly, Robert P; Kamen, Diane L; Gilkeson, Gary S; Jacob, Chaim O; Scofield, R Hal; Langefeld, Carl D; Kelly, Jennifer A; Ramsey-Goldman, Rosalind; Petri, Michelle A; Reveille, John D; Vilá, Luis M; Alarcón, Graciela S; Vyse, Timothy J; Pons-Estel, Bernardo A; Freedman, Barry I; Gaffney, Patrick M; Sivils, Kathy Moser; James, Judith A; Gregersen, Peter K; Anaya, Juan-Manuel; Niewold, Timothy B; Merrill, Joan T; Criswell, Lindsey A; Stevens, Anne M; Boackle, Susan A; Cantor, Rita M; Chen, Weiling; Grossman, Jeniffer M; Hahn, Bevra H; Harley, John B; Alarcόn-Riquelme, Marta E; Brown, Elizabeth E; Tsao, Betty P

    2013-01-01

    We previously reported that the G allele of rs3853839 at 3'untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10(-10), odds ratio (OR) (95%CI) = 1.27 (1.17-1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10(-11), OR = 1.24 [1.18-1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3'UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R(2) = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3'UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta  = 2.0×10(-19), OR = 1.25 [1.20-1.32]), which confers allelic effect on transcript turnover via differential binding to the epigenetic factor

  13. MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus

    PubMed Central

    Sakurai, Daisuke; Kaufman, Kenneth M.; Edberg, Jeffrey C.; Kimberly, Robert P.; Kamen, Diane L.; Gilkeson, Gary S.; Jacob, Chaim O.; Scofield, R. Hal; Langefeld, Carl D.; Kelly, Jennifer A.; Ramsey-Goldman, Rosalind; Petri, Michelle A.; Reveille, John D.; Vilá, Luis M.; Alarcón, Graciela S.; Vyse, Timothy J.; Pons-Estel, Bernardo A.; Freedman, Barry I.; Gaffney, Patrick M.; Sivils, Kathy Moser; James, Judith A.; Gregersen, Peter K.; Anaya, Juan-Manuel; Niewold, Timothy B.; Merrill, Joan T.; Criswell, Lindsey A.; Stevens, Anne M.; Boackle, Susan A.; Cantor, Rita M.; Chen, Weiling; Grossman, Jeniffer M.; Hahn, Bevra H.; Harley, John B.; Alarcόn-Riquelme, Marta E.; Brown, Elizabeth E.; Tsao, Betty P.

    2013-01-01

    We previously reported that the G allele of rs3853839 at 3′untranslated region (UTR) of Toll-like receptor 7 (TLR7) was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE) in 9,274 Eastern Asians [P = 6.5×10−10, odds ratio (OR) (95%CI) = 1.27 (1.17–1.36)]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10−11, OR = 1.24 [1.18–1.34]). The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs) and elevated luciferase activity of reporter gene in transfected cells. TLR7 3′UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148), suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R2 = 0.255, P = 0.001). Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3′UTR segment bearing the C allele (P = 0.0003). Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta = 2.0×10−19, OR = 1.25 [1.20–1.32]), which confers allelic effect on transcript turnover via differential binding to the

  14. Herpesvirus saimiri MicroRNAs Preferentially Target Host Cell Cycle Regulators

    PubMed Central

    Guo, Yang Eric; Oei, Theresa

    2015-01-01

    ABSTRACT In latently infected marmoset T cells, Herpesvirus saimiri (HVS) expresses six microRNAs (known as miR-HSURs [H. saimiri U-rich RNAs]). The viral miR-HSURs are processed from chimeric primary transcripts, each containing a noncoding U-rich RNA (HSUR) and a pre-miRNA hairpin. To uncover the functions of miR-HSURs, we identified mRNA targets in infected cells using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP). HITS-CLIP revealed hundreds of robust Argonaute (Ago) binding sites mediated by miR-HSURs that map to the host genome but few in the HVS genome. Gene ontology analysis showed that several pathways regulating the cell cycle are enriched among cellular targets of miR-HSURs. Interestingly, miR-HSUR4-3p represses expression of the p300 transcriptional coactivator by binding the open reading frame of its mRNA. miR-HSUR5-3p directly regulates BiP, an endoplasmic reticulum (ER)-localized chaperone facilitating maturation of major histocompatibility complex class I (MHC-I) and the antiviral response. miR-HSUR5-3p also robustly downregulates WEE1, a key negative regulator of cell cycle progression, leading to reduced phosphorylation of its substrate, cyclin-dependent kinase (Cdk1). Consistently, inhibition of miR-HSUR5-3p in HVS-infected cells decreases their proliferation. Together, our results shed light on the roles of viral miRNAs in cellular transformation and viral latency. IMPORTANCE Viruses express miRNAs during various stages of infection, suggesting that viral miRNAs play critical roles in the viral life cycle. Compared to protein-coding genes, the functions of viral miRNAs are not well understood. This is because it has been challenging to identify their mRNA targets. Here, we focused on the functions of the recently discovered HVS miRNAs, called miR-HSURs. HVS is an oncogenic gammaherpesvirus that causes acute T-cell lymphomas and leukemias in New World primates and transforms human T cells. A better

  15. Modulation of microRNAs in two genetically disparate chicken lines showing different necrotic enteritis disease susceptibility.

    PubMed

    Dinh, Hue; Hong, Yeong Ho; Lillehoj, Hyun S

    2014-05-15

    MicroRNAs (miRNA) play a critical role in post-transcriptional regulation by influencing the 3'-UTR of target genes. Using two inbred White Leghorn chicken lines, line 6.3 and line 7.2 showing Marek's disease-resistant and -susceptible phenotypes, respectively, we used small RNA high-throughput sequencing (HTS) to investigate whether miRNAs are differently expressed in these two chicken lines after inducing necrotic enteritis (NE). The 12 miRNAs, selected from the most down-regulated or up-regulated miRNAs following NE induction, were confirmed by their expressions in real-time PCR. Among these miRNAs, miR-215, miR-217, miR-194, miR-200a, miR-200b, miR-216a, miR-216b, and miR-429 were highly expressed in intestine derived from line 7.2, whereas, miR-1782 and miR-499 were down-regulated. In spleen, miR-34b and miR-1684 were the most up-regulated miRNAs in line 6.3. Notably, five out of six target genes, CXCR5, BCL2, GJA1, TCF12, and TAB3 were differentially expressed between line 6.3 and line 7.2, and showed suppression in the MD-susceptible chicken line. Their expression levels were conversely correlated with those of miRNA obtained from both HTS and quantitative real-time PCR. These results suggest that some miRNAs are differentially altered in response to NE and they modulate the expression of their target genes in the two inbred lines. Collectively, HTS analysis of intestinal miRNAs from NE-afflicted inbred chickens showing different disease phenotypes led to the identification of host immunity genes regulated by miRNA. Future studies of the function of these miRNAs and their target genes in the host will lead to enhanced understanding of molecular mechanisms controlling host-pathogen interaction in NE. PMID:24629767

  16. MicroRNA-19b-3p Modulates Japanese Encephalitis Virus-Mediated Inflammation via Targeting RNF11

    PubMed Central

    Ashraf, Usama; Zhu, Bibo; Ye, Jing; Wan, Shengfeng; Nie, Yanru; Chen, Zheng; Cui, Min; Wang, Chong; Duan, Xiaodong; Zhang, Hao; Chen, Huanchun

    2016-01-01

    ABSTRACT Japanese encephalitis virus (JEV) can invade the central nervous system and consequently induce neuroinflammation, which is characterized by profound neuronal cell damage accompanied by astrogliosis and microgliosis. Albeit microRNAs (miRNAs) have emerged as major regulatory noncoding RNAs with profound effects on inflammatory response, it is unknown how astrocytic miRNAs regulate JEV-induced inflammation. Here, we found the involvement of miR-19b-3p in regulating the JEV-induced inflammatory response in vitro and in vivo. The data demonstrated that miR-19b-3p is upregulated in cultured cells and mouse brain tissues during JEV infection. Overexpression of miR-19b-3p led to increased production of inflammatory cytokines, including tumor necrosis factor alpha, interleukin-6, interleukin-1β, and chemokine (C-C motif) ligand 5, after JEV infection, whereas knockdown of miR-19b-3p had completely opposite effects. Mechanistically, miR-19b-3p modulated the JEV-induced inflammatory response via targeting ring finger protein 11, a negative regulator of nuclear factor kappa B signaling. We also found that inhibition of ring finger protein 11 by miR-19b-3p resulted in accumulation of nuclear factor kappa B in the nucleus, which in turn led to higher production of inflammatory cytokines. In vivo silencing of miR-19b-3p by a specific antagomir reinvigorates the expression level of RNF11, which in turn reduces the production of inflammatory cytokines, abrogates gliosis and neuronal cell death, and eventually improves the survival rate in the mouse model. Collectively, our results demonstrate that miR-19b-3p positively regulates the JEV-induced inflammatory response. Thus, miR-19b-3p targeting may constitute a thought-provoking approach to rein in JEV-induced inflammation. IMPORTANCE Japanese encephalitis virus (JEV) is one of the major causes of acute encephalitis in humans worldwide. The pathological features of JEV-induced encephalitis are inflammatory reactions and

  17. The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression

    PubMed Central

    Mehta, Arnav; Zhao, Jimmy L.; Sinha, Nikita; Marinov, Georgi K.; Mann, Mati; Kowalczyk, Monika S.; Galimidi, Rachel P.; Du, Xiaomi; Erikci, Erdem; Regev, Aviv; Chowdhury, Kamal; Baltimore, David

    2015-01-01

    Summary MicroRNAs are critical post-transcriptional regulators of hematopoietic cell-fate decisions, though little remains known about their role in aging hematopoietic stem cells (HSCs). We found that the microRNA-212/132 cluster (Mirc19) is enriched in HSCs and is up-regulated during aging. Both over-expression and deletion of microRNAs in this cluster leads to inappropriate hematopoiesis with age. Enforced expression of miR-132 in the bone marrow of mice led to rapid HSC cycling and depletion. A genetic deletion of Mirc19 in mice resulted in HSCs that had altered cycling, function, and survival in response to growth factor starvation. We found that miR-132 exerted its effect on aging HSCs by targeting the transcription factor FOXO3, a known aging associated gene. Our data demonstrates that Mirc19 plays a role in maintaining balanced hematopoietic output by buffering FOXO3 expression. We have thus identified it as a potential target that may play a role in age-related hematopoietic defects. PMID:26084022

  18. Alpaca fiber growth is mediated by microRNA let-7b via down-regulation of target gene FGF5.

    PubMed

    Wang, T; Zhang, Y; Wang, H D; Shen, Y; Liu, N; Cao, J; Yu, X J; Dong, C S; He, X Y

    2015-01-01

    MicroRNAs are very small endogenous RNA molecules that play a crucial role in an array of biological processes, including regulation of skin morphogenesis. The microRNA let-7b is thought to modulate animal hair growth, by binding target genes that encode growth factors. Fibroblast growth factor 5 (FGF5) has been previously reported to be involved in the initiation of the catagen phase of hair growth. In this study, we combined previous reports with bioinformatic analysis techniques to identify and validate FGF5 and, using lucerifase assay, confirmed targeted binding of let-7b to FGF5. To investigate the interaction between let-7b and FGF5, alpaca skin fibroblasts were transfected with let-7b over-expression vectors, and then mRNA and protein expression levels of FGF5 and the gene encoding its receptor, FGFR1, were evaluated. Levels of FGF5 mRNA and protein were remarkably lower in transfected groups, as compared to controls. In summary, this study confirmed that let-7b acts as a regulator of skin morphogenesis, by directly targeting FGF5 and down-regulating its expression. It provides the evidence of hair growth regulated by miRNAs in animals and may have important applications in wool production. PMID:26535691

  19. Rapamycin (Sirolimus) alters mechanistic target of rapamycin pathway regulation and microRNA expression in mouse meiotic spermatocytes.

    PubMed

    Mukherjee, A; Koli, S; Reddy, K V R

    2015-09-01

    Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of

  20. The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are involved in developmental programs of plants including seed germination and post-germination. Here, we provide evidence that two different miRNA pathways, miR156 and miR172, interact during the post-germination stages in Arabidopsis. Mutant seedlings expressing miR156resistant...

  1. Regulation of mitochondrial morphology and cell cycle by microRNA-214 targeting Mitofusin2.

    PubMed

    Bucha, Sudha; Mukhopadhyay, Debashis; Bhattacharyya, Nitai Pada

    2015-10-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by the increase in CAG repeats beyond 36 at the exon1 of the gene Huntingtin (HTT). Among the various dysfunctions of biological processes in HD, transcription deregulation due to abnormalities in actions of transcription factors has been considered to be one of the important pathological conditions. In addition, deregulation of microRNA (miRNA) expression has been described in HD. Earlier, expression of microRNA-214 (miR-214) has been shown to increase in HD cell models and target HTT gene; the expression of the later being inversely correlated to that of miR-214. In the present communication, we observed that the expressions of several HTT co-expressed genes are modulated by exogenous expression of miR-214 or by its mutant. Among several HTT co-expressed genes, MFN2 was shown to be the direct target of miR-214. Exogenous expression of miR-214, repressed the expression of MFN2, increased the distribution of fragmented mitochondria and altered the distribution of cells in different phases of cell cycle. In summary, we have shown that increased expression of miR-214 observed in HD cell model could target MFN2, altered mitochondrial morphology and deregulated cell cycle. Inhibition of miR-214 could be a possible target of intervention in HD pathogenesis. PMID:26307536

  2. MicroRNA-491 regulates the proliferation and apoptosis of CD8+ T cells

    PubMed Central

    Yu, Ting; Zuo, Qian-Fei; Gong, Li; Wang, Li-Na; Zou, Quan-Ming; Xiao, Bin

    2016-01-01

    T lymphocyte-mediated immune responses are critical for antitumour immunity; however, T cell function is impaired in the tumour environment. MicroRNAs are involved in regulation of the immune system. While little is known about the function of intrinsic microRNAs in CD8+ T cells in the tumour microenvironment. Here, we found that miR-491 was upregulated in CD8+ T cells from mice with colorectal cancer. Retroviral overexpression of miR-491 in CD8+ and CD4+ T cells inhibited cell proliferation and promoted cell apoptosis and decreased the production of interferon-γ in CD8+ T cells. We found that miR-491 directly targeted cyclin-dependent kinase 4, the transcription factor T cell factor 1 and the anti-apoptotic protein B-cell lymphoma 2-like 1 in CD8+ T cells. Furthermore, tumour-derived TGF-β induced miR-491 expression in CD8+ T cells. Taken together, our results suggest that miR-491 can act as a negative regulator of T lymphocytes, especially CD8+ T cells, in the tumour environment; thus, this study provides a novel insight on dysfunctional CD8+ T cells during tumourigenesis and cancer progression. In conclusion, miR-491 may be a new target for antitumour immunotherapy. PMID:27484289

  3. MicroRNA-10 modulates Hox genes expression during Nile tilapia embryonic development.

    PubMed

    Giusti, Juliana; Pinhal, Danillo; Moxon, Simon; Campos, Camila Lovaglio; Münsterberg, Andrea; Martins, Cesar

    2016-05-01

    Hox gene clusters encode a family of transcription factors that govern anterior-posterior axis patterning during embryogenesis in all bilaterian animals. The time and place of Hox gene expression are largely determined by the relative position of each gene within its cluster. Furthermore, Hox genes were shown to have their expression fine-tuned by regulatory microRNAs (miRNAs). However, the mechanisms of miRNA-mediated regulation of these transcription factors during fish early development remain largely unknown. Here we have profiled three highly expressed miR-10 family members of Nile tilapia at early embryonic development, determined their genomic organization as well as performed functional experiments for validation of target genes. Quantitative analysis during developmental stages showed miR-10 family expression negatively correlates with the expression of HoxA3a, HoxB3a and HoxD10a genes, as expected for bona fide miRNA-mRNA interactions. Moreover, luciferase assays demonstrated that HoxB3a and HoxD10a are targeted by miR-10b-5p. Overall, our data indicate that the miR-10 family directly regulates members of the Hox gene family during Nile tilapia embryogenesis. PMID:26980108

  4. microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis

    PubMed Central

    Santulli, Gaetano

    2016-01-01

    Endothelial cells (EC) and vascular smooth muscle cells (VSMC) are the main cell types within the vasculature. We describe here how microRNAs (miRs)—noncoding RNAs that can regulate gene expression via translational repression and/or post-transcriptional degradation—distinctively modulate EC and VSMC function in physiology and disease. In particular, the specific roles of miR-126 and miR-143/145, master regulators of EC and VSMC function, respectively, are deeply explored. We also describe the mechanistic role of miRs in the regulation of the pathophysiology of key cardiovascular processes including angiogenesis, atherosclerosis, and in-stent restenosis post-angioplasty. Drawbacks of currently available therapeutic options are discussed, pointing at the challenges and potential clinical opportunities provided by miR-based treatments. PMID:26662986

  5. MicroRNA-511 Binds to FKBP5 mRNA, Which Encodes a Chaperone Protein, and Regulates Neuronal Differentiation.

    PubMed

    Zheng, Dali; Sabbagh, Jonathan J; Blair, Laura J; Darling, April L; Wen, Xiaoqi; Dickey, Chad A

    2016-08-19

    Single nucleotide polymorphisms in the FKBP5 gene increase the expression of the FKBP51 protein and have been associated with increased risk for neuropsychiatric disorders such as major depression and post-traumatic stress disorder. Moreover, levels of FKBP51 are increased with aging and in Alzheimer disease, potentially contributing to disease pathogenesis. However, aside from its glucocorticoid responsiveness, little is known about what regulates FKBP5 In recent years, non-coding RNAs, and in particular microRNAs, have been shown to modulate disease-related genes and processes. The current study sought to investigate which miRNAs could target and functionally regulate FKBP5 Following in silico data mining and initial target expression validation, miR-511 was found to suppress FKBP5 mRNA and protein levels. Using luciferase p-miR-Report constructs and RNA pulldown assays, we confirmed that miR-511 bound directly to the 3'-UTR of FKBP5, validating the predicted gene-microRNA interaction. miR-511 suppressed glucocorticoid-induced up-regulation of FKBP51 in cells and primary neurons, demonstrating functional, disease-relevant control of the protein. Consistent with a regulator of FKBP5, miR-511 expression in the mouse brain decreased with age but increased following chronic glucocorticoid treatment. Analysis of the predicted target genes of miR-511 revealed that neurogenesis, neuronal development, and neuronal differentiation were likely controlled by these genes. Accordingly, miR-511 increased neuronal differentiation in cells and enhanced neuronal development in primary neurons. Collectively, these findings show that miR-511 is a functional regulator of FKBP5 and can contribute to neuronal differentiation. PMID:27334923

  6. Regulation of Nicotine Biosynthesis by an Endogenous Target Mimicry of MicroRNA in Tobacco1[OPEN

    PubMed Central

    Li, Fangfang; Wang, Weidi; Zhao, Nan; Xiao, Bingguang; Cao, Peijian; Wu, Xingfu; Ye, Chuyu; Shen, Enhui; Qiu, Jie; Zhu, Qian-Hao; Xie, Jiahua; Zhou, Xueping; Fan, Longjiang

    2015-01-01

    The interaction between noncoding endogenous target mimicry (eTM) and its corresponding microRNA (miRNA) is a newly discovered regulatory mechanism and plays pivotal roles in various biological processes in plants. Tobacco (Nicotiana tabacum) is a model plant for studying secondary metabolite alkaloids, of which nicotine accounts for approximately 90%. In this work, we identified four unique tobacco-specific miRNAs that were predicted to target key genes of the nicotine biosynthesis and catabolism pathways and an eTM, novel tobacco miRNA (nta)-eTMX27, for nta-miRX27 that targets QUINOLINATE PHOSPHORIBOSYLTRANSFERASE2 (QPT2) encoding a quinolinate phosphoribosyltransferase. The expression level of nta-miRX27 was significantly down-regulated, while that of QPT2 and nta-eTMX27 was significantly up-regulated after topping, and consequently, nicotine content increased in the topping-treated plants. The topping-induced down-regulation of nta-miRX27 and up-regulation of QPT2 were only observed in plants with a functional nta-eTMX27 but not in transgenic plants containing an RNA interference construct targeting nta-eTMX27. Our results demonstrated that enhanced nicotine biosynthesis in the topping-treated tobacco plants is achieved by nta-eTMX27-mediated inhibition of the expression and functions of nta-miRX27. To our knowledge, this is the first report about regulation of secondary metabolite biosynthesis by an miRNA-eTM regulatory module in plants. PMID:26246450

  7. MicroRNAs downregulated in neuropathic pain regulate MeCP2 and BDNF related to pain sensitivity.

    PubMed

    Manners, Melissa T; Tian, Yuzhen; Zhou, Zhaolan; Ajit, Seena K

    2015-01-01

    Nerve injury induces chronic pain and dysregulation of microRNAs in dorsal root ganglia (DRG). Several downregulated microRNAs are predicted to target Mecp2. MECP2 mutations cause Rett syndrome and these patients report decreased pain perception. We confirmed MeCP2 upregulation in DRG following nerve injury and repression of MeCP2 by miRNAs in vitro. MeCP2 regulates brain-derived neurotrophic factor (BDNF) and downregulation of MeCP2 by microRNAs decreased Bdnf in vitro. MeCP2 T158A mice exhibited reduced mechanical sensitivity and Mecp2-null and MeCP2 T158A mice have decreased Bdnf in DRG. MeCP2-mediated regulation of Bdnf in the DRG could contribute to altered pain sensitivity. PMID:26448907

  8. microRNA-222 modulates liver fibrosis in a murine model of biliary atresia

    SciTech Connect

    Shen, Wen-jun; Dong, Rui; Chen, Gong Zheng, Shan

    2014-03-28

    Highlights: • The RRV infected group showed cholestasis, retardation and extrahepatic biliary atresia. • miR-222 was highly expressed, and PPP2R2A was inhibited in the murine biliary atresia model. • miR-222 profoundly modulated the process of fibrosis in the murine biliary atresia model. • miR-222 might represent a potential target for improving biliary atresia prognosis. - Abstract: microRNA-222 (miR-222) has been shown to initiate the activation of hepatic stellate cells, which plays an important role in the pathogenesis of liver fibrosis. The aim of our study was to evaluate the role of miR-22 in a mouse model of biliary atresia (BA) induced by Rhesus Rotavirus (RRV) infection. New-born Balb/c mice were randomized into control and RRV infected groups. The extrahepatic bile ducts were evaluated. The experimental group was divided into BA group and negative group based on histology. The expression of miR-222, protein phosphatase 2 regulatory subunit B alpha (PPP2R2A), proliferating cell nuclear antigen (PCNA) and phospho-Akt were detected. We found that the experimental group showed signs of cholestasis, retardation and extrahepatic biliary atresia. No abnormalities were found in the control group. In the BA group, miR-222, PCNA and Akt were highly expressed, and PPP2R2A expression was significantly inhibited. Our findings suggest that miR-222 profoundly modulated the process of fibrosis in the murine BA model, which might represent a potential target for improving BA prognosis.

  9. MicroRNA in intervertebral disc degeneration.

    PubMed

    Li, Zheng; Yu, Xin; Shen, Jianxiong; Chan, Matthew T V; Wu, William Ka Kei

    2015-06-01

    Aetiology of intervertebral disc degeneration (IDD) is complex, with genetic, developmental, biochemical and biomechanical factors contributing to the disease process. It is becoming obvious that epigenetic processes influence evolution of IDD as strongly as the genetic background. Deregulated phenotypes of nucleus pulposus cells, including differentiation, migration, proliferation and apoptosis, are involved in all stages of progression of human IDD. Non-coding RNAs, including microRNAs, have recently been recognized as important regulators of gene expression. Research into roles of microRNAs in IDD has been very active over the past 5 years. Our review summarizes current research enlightenment towards understanding roles of microRNAs in regulating nucleus pulposus cell functions in IDD. These exciting findings support the notion that specific modulation of microRNAs may represent an attractive approach for management of IDD. PMID:25736871

  10. A long non-coding RNA, BC048612 and a microRNA, miR-203 coordinate the gene expression of neuronal growth regulator 1 (NEGR1) adhesion protein.

    PubMed

    Kaur, Prameet; Tan, Jun Rong; Karolina, Dwi Setyowati; Sepramaniam, Sugunavathi; Armugam, Arunmozhiarasi; Wong, Peter T-H; Jeyaseelan, Kandiah

    2016-04-01

    The regulatory roles for non-coding RNAs, the long non-coding RNAs and microRNAs, are emerging as crucial determinants of central nervous system development and function. Neuronal growth regulator 1 (NEGR1) is a cell adhesion molecule that has been shown to play an important role in neurite outgrowth during neuronal development. Precise expression of the Negr1 gene is crucial for proper brain development and is dysregulated during brain injury. Hence, we attempted to elucidate the non-coding RNAs that control Negr1 gene expression. A long non-coding RNA, BC048612, transcribed from the bidirectional GC-rich Negr1 gene promoter was found to influence Negr1 mRNA expression. In vitro knockdown of the long non-coding RNA resulted in significant down-regulation of Negr1 mRNA expression, NEGR1 protein levels and neurite length whereas over-expression enhanced Negr1 mRNA expression, NEGR1 protein levels and increased neurite length. Meanwhile, another non-coding RNA, microRNA-203, was found to target the 3' untranslated region of the Negr1 mRNA. Inhibition of microRNA-203 led to increased expression of Negr1 mRNA, elevated NEGR1 protein levels and increased neurite length. Conversely, microRNA-203 over-expression decreased the level of Negr1 mRNA, NEGR1 protein and neurite length. Neither microRNA-203 nor the long non-coding RNA, BC048612 could influence each other's expression. Hence, the long non-coding RNA, BC048612, and microRNA-203 were determined to be positive and negative regulators of Negr1 gene expression respectively. These processes have a direct effect on NEGR1 protein levels and neurite length, thus highlighting the importance of the regulatory non-coding RNAs in modulating Negr1 gene expression for precise neuronal development. PMID:26723899

  11. Family of microRNA-146 Regulates RARβ in Papillary Thyroid Carcinoma.

    PubMed

    Czajka, Agnieszka Anna; Wójcicka, Anna; Kubiak, Anna; Kotlarek, Marta; Bakuła-Zalewska, Elwira; Koperski, Łukasz; Wiechno, Wiesław; Jażdżewski, Krystian

    2016-01-01

    Retinoic acid is a promising tool in adjuvant cancer therapies, including refractory thyroid cancer, and its biological role is mediated by the retinoic acid receptor beta (RARβ). However, expression of RARβ is lowered in papillary thyroid carcinoma (PTC), contributing to promotion of tumor growth and inefficiency of retinoic acid and radioactive iodine treatment. The causes of aberrant RARB expression are largely unknown. We hypothesized that the culpable mechanisms include the action of microRNAs from the miR-146 family, previously identified as significantly upregulated in PTC tumors. To test this hypothesis, we assessed the expression of RARB as well as miR-146a-5p and miR-146b-5p in 48 PTC tumor/normal tissue pairs by Taqman assay to reveal that the expression of RARB was 3.28-fold decreased, and miR-146b-5p was 28.9-fold increased in PTC tumors. Direct interaction between miRs and RARB was determined in the luciferase assay and further confirmed in cell lines, where overexpression of miR-146a-5p and miR-146b-5p caused a 31% and 33% decrease in endogenous RARB mRNA levels. Inhibition of miR-146a and miR-146b resulted in 62.5% and 45.4% increase of RARB, respectively, and a concomitant decrease in proliferation rates of thyroid cancer cell lines, analyzed in xCELLigence system.We showed that two microRNAs of the miR-146 family directly regulate RARB. Inhibition of miRs resulted in restoration of RARB expression and decreased rates of proliferation of thyroid cancer cells. By restoring RARB levels, microRNA inhibitors may become part of an adjuvant therapy in thyroid cancer patients. PMID:27011326

  12. Family of microRNA-146 Regulates RARβ in Papillary Thyroid Carcinoma

    PubMed Central

    Czajka, Agnieszka Anna; Wójcicka, Anna; Kubiak, Anna; Kotlarek, Marta; Bakuła-Zalewska, Elwira; Koperski, Łukasz; Wiechno, Wiesław; Jażdżewski, Krystian

    2016-01-01

    Retinoic acid is a promising tool in adjuvant cancer therapies, including refractory thyroid cancer, and its biological role is mediated by the retinoic acid receptor beta (RARβ). However, expression of RARβ is lowered in papillary thyroid carcinoma (PTC), contributing to promotion of tumor growth and inefficiency of retinoic acid and radioactive iodine treatment. The causes of aberrant RARB expression are largely unknown. We hypothesized that the culpable mechanisms include the action of microRNAs from the miR-146 family, previously identified as significantly upregulated in PTC tumors. To test this hypothesis, we assessed the expression of RARB as well as miR-146a-5p and miR-146b-5p in 48 PTC tumor/normal tissue pairs by Taqman assay to reveal that the expression of RARB was 3.28-fold decreased, and miR-146b-5p was 28.9-fold increased in PTC tumors. Direct interaction between miRs and RARB was determined in the luciferase assay and further confirmed in cell lines, where overexpression of miR-146a-5p and miR-146b-5p caused a 31% and 33% decrease in endogenous RARB mRNA levels. Inhibition of miR-146a and miR-146b resulted in 62.5% and 45.4% increase of RARB, respectively, and a concomitant decrease in proliferation rates of thyroid cancer cell lines, analyzed in xCELLigence system.We showed that two microRNAs of the miR-146 family directly regulate RARB. Inhibition of miRs resulted in restoration of RARB expression and decreased rates of proliferation of thyroid cancer cells. By restoring RARB levels, microRNA inhibitors may become part of an adjuvant therapy in thyroid cancer patients. PMID:27011326

  13. microRNA regulation of neural precursor self-renewal and differentiation

    PubMed Central

    Hudish, Laura I; Appel, Bruce

    2014-01-01

    During early stages of development of the vertebrate central nervous system, neural precursors divide symmetrically to produce new precursors, thereby expanding the precursor population. During middle stages of neural development, precursors switch to an asymmetric division pattern whereby each mitosis produces one new precursor and one cell that differentiates as a neuron or glial cell. At late stages of development, most precursors stop dividing and terminally differentiate. Par complex proteins are associated with the apical membrane of neural precursors and promote precursor self-renewal. How Par proteins are down regulated to bring precursor self-renewal to an end has not been known. Our investigations of zebrafish neural development revealed that the microRNA miR-219 negatively regulates apical Par proteins, thereby promoting cessation of neural precursor division and driving terminal differentiation.

  14. MicroRNA-21 Down-regulates Rb1 Expression by Targeting PDCD4 in Retinoblastoma

    PubMed Central

    Shen, Fengmei; Mo, Meng-Hsuan; Chen, Liang; An, Shejuan; Tan, Xiaohui; Fu, Yebo; Rezaei, Katayoon; Wang, Zuoren; Zhang, Lin; Fu, Sidney W.

    2014-01-01

    Retinoblastoma (RB) is a children's ocular cancer caused by mutated retinoblastoma 1 (Rb1) gene on both alleles. Rb1 and other related genes could be regulated by microRNAs (miRNA) via complementarily pairing with their target sites. MicroRNA-21 (miR-21) possesses the oncogenic potential to target several tumor suppressor genes, including PDCD4, and regulates tumor progression and metastasis. However, the mechanism of how miR-21 regulates PDCD4 is poorly understood in RB. We investigated the expression of miRNAs in RB cell lines and identified that miR-21 is one of the most deregulated miRNAs in RB. Using qRT-PCR, we verified the expression level of several miRNAs identified by independent microarray assays, and analyzed miRNA expression patterns in three RB cell lines, including Weri-Rb1, Y79 and RB355. We found that miR-19b, -21, -26a, -195 and -222 were highly expressed in all three cell lines, suggesting their potential role in RB tumorigenesis. Using the TargetScan program, we identified a list of potential target genes of these miRNAs, of which PDCD4 is one the targets of miR-21. In this study, we focused on the regulatory mechanism of miR-21 on PDCD4 in RB. We demonstrated an inverse correlation between miR-21 and PDCD4 expression in Weri-Rb1 and Y79 cells. These data suggest that miR-21 down-regulates Rb1 by targeting PDCD4 tumor suppressor. Therefore, miR-21 could serve as a therapeutic target for retinoblastoma. PMID:25520758

  15. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar

    PubMed Central

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-01-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5′ and 3′ flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. PMID:25617468

  16. A microRNA from infectious spleen and kidney necrosis virus modulates expression of the virus-mock basement membrane component VP08R.

    PubMed

    Yan, Muting; He, Jianhui; Zhu, Weibin; Zhang, Jing; Xia, Qiong; Weng, Shaoping; He, Jianguo; Xu, Xiaopeng

    2016-05-01

    Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus, family Iridoviridae. Infection of ISKNV is characterized by a unique pathological phenomenon in that the infected cells are attached by lymphatic endothelial cells (LECs). ISKNV mediates the formation of a virus-mock basement membrane (VMBM) structure on the surface of infected cells to provide attaching sites for LECs. The viral protein VP08R is an important component of VMBM. In this study, a novel ISKNV-encoded microRNA, temporarily named ISKNV-miR-1, was identified. ISKNV-miR-1 is complementary to the VP08R-coding sequence and can modulate VP08R expression through reducing its mRNA level. This suggests that formation of VMBM may be under fine regulation by ISKNV. PMID:26896933

  17. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs.

    PubMed

    Lovis, Pascal; Gattesco, Sonia; Regazzi, Romano

    2008-03-01

    Fine-tuning of insulin secretion from pancreatic beta-cells participates in blood glucose homeostasis. Defects in this process can lead to chronic hyperglycemia and diabetes mellitus. Several proteins controlling insulin exocytosis have been identified, but the mechanisms regulating their expression remain poorly understood. Here, we show that two non-coding microRNAs, miR124a and miR96, modulate the expression of proteins involved in insulin exocytosis and affect secretion of the beta-cell line MIN6B1. miR124a increases the levels of SNAP25, Rab3A and synapsin-1A and decreases those of Rab27A and Noc2. Inhibition of Rab27A expression is mediated by direct binding to the 3'-untranslated region of Rab27A mRNA. The effect on the other genes is indirect and linked to changes in mRNA levels. Over-expression of miR124a leads to exaggerated hormone release under basal conditions and a reduction in glucose-induced secretion. miR96 increases mRNA and protein levels of granuphilin, a negative modulator of insulin exocytosis, and decreases the expression of Noc2, resulting in lower capacity of MIN6B1 cells to respond to secretagogues. Our data identify miR124a and miR96 as novel regulators of the expression of proteins playing a critical role in insulin exocytosis and in the release of other hormones and neurotransmitters. PMID:18177263

  18. MicroRNA-122 Down-Regulation Is Involved in Phenobarbital-Mediated Activation of the Constitutive Androstane Receptor

    PubMed Central

    Shizu, Ryota; Shindo, Sawako; Yoshida, Takemi; Numazawa, Satoshi

    2012-01-01

    Constitutive androstane receptor (CAR) is a nuclear receptor that regulates the transcription of target genes, including CYP2B and 3A. Phenobarbital activates CAR, at least in part, in an AMP-activated protein kinase (AMPK)-dependent manner. However, the precise mechanisms underlying phenobarbital activation of AMPK are still unclear. In the present study, it was demonstrated that phenobarbital administration to mice decreases hepatic miR-122, a liver-enriched microRNA involved in both hepatic differentiation and function. The time-course change in the phenobarbital-mediated down-regulation of miR-122 was inversely correlated with AMPK activation. Phenobarbital decreased primary miR-122 to approximately 25% of the basal level as early as 1 h and suppressed transactivity of mir-122 promoter in HuH-7 cells, suggesting that the down-regulation occurred at the transcriptional level. AMPK activation by metformin or 5-aminoimidazole-4-carboxamide 1-β-D-ribonucleoside had no evident effect on miR-122 levels. An inhibitory RNA specific for miR-122 increased activated AMPK and CAR-mediated trancactivation of the phenobarbital-responsive enhancer module in HepG2 cells. Conversely, the reporter activity induced by the ectopic CAR was almost completely suppressed by co-transfection with the miR-122 mimic RNA. GFP-tagged CAR was expressed in the cytoplasm in addition to the nucleus in the majority of HuH-7 cells in which miR-122 was highly expressed. Co-transfection of the mimic or the inhibitor RNA for miR-122 further increased or decreased, respectively, the number of cells that expressed GFP-CAR in the cytoplasm. Taken together, these results suggest that phenobarbital-mediated down-regulation of miR-122 is an early and important event in the AMPK-dependent CAR activation and transactivation of its target genes. PMID:22815988

  19. MicroRNA-122 down-regulation is involved in phenobarbital-mediated activation of the constitutive androstane receptor.

    PubMed

    Shizu, Ryota; Shindo, Sawako; Yoshida, Takemi; Numazawa, Satoshi

    2012-01-01

    Constitutive androstane receptor (CAR) is a nuclear receptor that regulates the transcription of target genes, including CYP2B and 3A. Phenobarbital activates CAR, at least in part, in an AMP-activated protein kinase (AMPK)-dependent manner. However, the precise mechanisms underlying phenobarbital activation of AMPK are still unclear. In the present study, it was demonstrated that phenobarbital administration to mice decreases hepatic miR-122, a liver-enriched microRNA involved in both hepatic differentiation and function. The time-course change in the phenobarbital-mediated down-regulation of miR-122 was inversely correlated with AMPK activation. Phenobarbital decreased primary miR-122 to approximately 25% of the basal level as early as 1 h and suppressed transactivity of mir-122 promoter in HuH-7 cells, suggesting that the down-regulation occurred at the transcriptional level. AMPK activation by metformin or 5-aminoimidazole-4-carboxamide 1-β-D-ribonucleoside had no evident effect on miR-122 levels. An inhibitory RNA specific for miR-122 increased activated AMPK and CAR-mediated trancactivation of the phenobarbital-responsive enhancer module in HepG2 cells. Conversely, the reporter activity induced by the ectopic CAR was almost completely suppressed by co-transfection with the miR-122 mimic RNA. GFP-tagged CAR was expressed in the cytoplasm in addition to the nucleus in the majority of HuH-7 cells in which miR-122 was highly expressed. Co-transfection of the mimic or the inhibitor RNA for miR-122 further increased or decreased, respectively, the number of cells that expressed GFP-CAR in the cytoplasm. Taken together, these results suggest that phenobarbital-mediated down-regulation of miR-122 is an early and important event in the AMPK-dependent CAR activation and transactivation of its target genes. PMID:22815988

  20. MicroRNA dependent regulation of DNMT-1 and tumor suppressor gene expression by Interleukin-6 in human malignant cholangiocytes

    PubMed Central

    Braconi, Chiara; Huang, Nianyuan; Patel, Tushar

    2014-01-01

    Although the inflammation-associated cytokine Interleukin-6 (IL-6) has been implicated in cholangiocarcinoma growth, the relationship between IL-6 and oncogenic changes is unknown. IL-6 can increase expression of DNA methyltransferase 1 (DNMT-1) and epigenetically regulate the expression of several genes, including microRNAs (miRNAs). DNMT-1 up-regulation occurs in hepatobiliary cancers and is associated with a poor prognosis. To understand the potential regulation of DNMT-1 by IL-6 dependent miRNAs, we examined the expression of a group of miRNAs which have sequence complementarity to the 3′-UTR of DNMT-1, namely miR-148a, miR-152 and miR-301. The expression of these miRNAs was decreased in cholangiocarcinoma cells. Moreover, the expression of all three miRNAs was decreased in IL-6 over-expressing malignant cholangiocytes in vitro and in tumor cell xenografts. There was a concomitant decrease in expression of the methylation-sensitive tumor suppressor genes Rassf1a, and p16INK4a. Using luciferase reporter constructs, DNMT-1 was verified as a target for miR-148a and miR-152. Precursors to miR-148a and miR-152 decreased DNMT-1 protein expression, increased Rassf1a and p16INK4a expression and reduced cell proliferation. Conclusion These data indicate that IL-6 can regulate the activity of DNMT-1 and expression of methylation-dependent tumor suppressor genes by modulation of miR-148a and miR-152, and provide a link between this inflammation-associated cytokines and oncogenesis in cholangiocarcinoma. PMID:20146264

  1. MicroRNA-326 acts as a molecular switch in the regulation of midbrain urocortin 1 expression

    PubMed Central

    Aschrafi, Armaz; Verheijen, Jan M.; Gordebeke, Peter M.; Olde Loohuis, Nikkie F.; Menting, Kelly; Jager, Amanda; Palkovits, Miklos; Geenen, Bram; Kos, Aron; Martens, Gerard J.M.; Glennon, Jeffrey C.; Kaplan, Barry B.; Gaszner, Balázs; Kozicz, Tamas

    2016-01-01

    Background Altered levels of urocortin 1 (Ucn1) in the centrally projecting Edinger–Westphal nucleus (EWcp) of depressed suicide attempters or completers mediate the brain’s response to stress, while the mechanism regulating Ucn1 expression is unknown. We tested the hypothesis that microRNAs (miRNAs), which are vital fine-tuners of gene expression during the brain’s response to stress, have the capacity to modulate Ucn1 expression. Methods Computational analysis revealed that the Ucn1 3′ untranslated region contained a conserved binding site for miR-326. We examined miR-326 and Ucn1 levels in the EWcp of depressed suicide completers. In addition, we evaluated miR-326 and Ucn1 levels in the serum and the EWcp of a chronic variable mild stress (CVMS) rat model of behavioural despair and after recovery from CVMS, respectively. Gain and loss of miR-326 function experiments examined the regulation of Ucn1 by this miRNA in cultured midbrain neurons. Results We found reduced miR-326 levels concomitant with elevated Ucn1 levels in the EWcp of depressed suicide completers as well as in the EWcp of CVMS rats. In CVMS rats fully recovered from stress, both serum and EWcp miR-326 levels rebounded to nonstressed levels. While downregulation of miR-326 levels in primary midbrain neurons enhanced Ucn1 expression levels, miR-326 overexpression selectively reduced the levels of this neuropeptide. Limitations This study lacked experiments showing that in vivo alteration of miR-326 levels alleviate depression-like behaviours. We show only correlative data for miR-325 and cocaine- and amphetamine-regulated transcript levels in the EWcp. Conclusion We identified miR-326 dysregulation in depressed suicide completers and characterized this miRNA as an upstream regulator of the Ucn1 neuropeptide expression in midbrain neurons. PMID:27045550

  2. A New Short Oligonucleotide-Based Strategy for the Precursor-Specific Regulation of microRNA Processing by Dicer

    PubMed Central

    Kurzynska-Kokorniak, Anna; Koralewska, Natalia; Tyczewska, Agata; Twardowski, Tomasz; Figlerowicz, Marek

    2013-01-01

    The precise regulation of microRNA (miRNA) biogenesis seems to be critically important for the proper functioning of all eukaryotic organisms. Even small changes in the levels of specific miRNAs can initiate pathological processes, including carcinogenesis. Accordingly, there is a great need to develop effective methods for the regulation of miRNA biogenesis and activity. In this study, we focused on the final step of miRNA biogenesis; i.e., miRNA processing by Dicer. To test our hypothesis that RNA molecules can function not only as Dicer substrates but also as Dicer regulators, we previously identified by SELEX a pool of RNA oligomers that bind to human Dicer. We found that certain of these RNA oligomers could selectively inhibit the formation of specific miRNAs. Here, we show that these specific inhibitors can simultaneously bind both Dicer and pre-miRNAs. These bifunctional riboregulators interfere with miRNA maturation by affecting pre-miRNA structure and sequestering Dicer. Based on these observations, we designed a set of short oligomers (12 nucleotides long) that were capable of influencing pre-miRNA processing in vitro, both in reactions involving recombinant human Dicer and in cytosolic extracts. We propose that the same strategy may be used to develop effective and selective regulators to control the production of any miRNA. Overall, our findings indicate that the interactions between pre-miRNAs and other RNAs may form very complex regulatory networks that modulate miRNA biogenesis and consequently gene expression. PMID:24204924

  3. E2F7 regulates transcription and maturation of multiple microRNAs to restrain cell proliferation

    PubMed Central

    Mitxelena, Jone; Apraiz, Aintzane; Vallejo-Rodríguez, Jon; Malumbres, Marcos; Zubiaga, Ana M.

    2016-01-01

    E2F transcription factors (E2F1-8) are known to coordinately regulate the expression of a plethora of target genes, including those coding for microRNAs (miRNAs), to control cell cycle progression. Recent work has described the atypical E2F factor E2F7 as a transcriptional repressor of cell cycle-related protein-coding genes. However, the contribution of E2F7 to miRNA gene expression during the cell cycle has not been defined. We have performed a genome-wide RNA sequencing analysis to identify E2F7-regulated miRNAs and show that E2F7 plays as a major role in the negative regulation of a set of miRNAs that promote cellular proliferation. We provide mechanistic evidence for an interplay between E2F7 and the canonical E2F factors E2F1-3 in the regulation of multiple miRNAs. We show that miR-25, -26a, -27b, -92a and -7 expression is controlled at the transcriptional level by the antagonistic activity of E2F7 and E2F1-3. By contrast, let-7 miRNA expression is controlled indirectly through a novel E2F/c-MYC/LIN28B axis, whereby E2F7 and E2F1-3 modulate c-MYC and LIN28B levels to impact let-7 miRNA processing and maturation. Taken together, our data uncover a new regulatory network involving transcriptional and post-transcriptional mechanisms controlled by E2F7 to restrain cell cycle progression through repression of proliferation-promoting miRNAs. PMID:26961310

  4. Therapeutic Potential of Modulating MicroRNA in Peripheral Artery Disease

    PubMed Central

    Hamburg, Naomi M.; Leeper, Nicholas J.

    2015-01-01

    Peripheral artery disease (PAD) produces significant disability attributable to lower extremity ischemia. Limited treatment modalities exist to ameliorate clinical symptoms in patients with PAD. Growing evidence links microRNAs to key processes that govern disease expression in PAD including angiogenesis, endothelial function, inflammation, vascular regeneration, vascular smooth muscle cell function, restenosis, and mitochondrial function. MicroRNAs have been identified in circulation and may serve as novel biomarkers in PAD. This article reviews the potential contribution of microRNA to key pathways of disease development in PAD that may lead to microRNA-based diagnostic and therapeutic approaches. PMID:23713861

  5. Regulating the regulators: modulators of transcription factor activity.

    PubMed

    Everett, Logan; Hansen, Matthew; Hannenhalli, Sridhar

    2010-01-01

    Gene transcription is largely regulated by DNA-binding transcription factors (TFs). However, the TF activity itself is modulated via, among other things, post-translational modifications (PTMs) by specific modification enzymes in response to cellular stimuli. TF-PTMs thus serve as "molecular switchboards" that map upstream signaling events to the downstream transcriptional events. An important long-term goal is to obtain a genome-wide map of "regulatory triplets" consisting of a TF, target gene, and a modulator gene that specifically modulates the regulation of the target gene by the TF. A variety of genome-wide data sets can be exploited by computational methods to obtain a rough map of regulatory triplets, which can guide directed experiments. However, a prerequisite to developing such computational tools is a systematic catalog of known instances of regulatory triplets. We first describe PTM-Switchboard, a recent database that stores triplets of genes such that the ability of one gene (the TF) to regulate a target gene is dependent on one or more PTMs catalyzed by a third gene, the modifying enzyme. We also review current computational approaches to infer regulatory triplets from genome-wide data sets and conclude with a discussion of potential future research. PTM-Switchboard is accessible at http://cagr.pcbi.upenn.edu/PTMswitchboard / PMID:20827600

  6. A novel role of microRNA 17-5p in the modulation of circadian rhythm.

    PubMed

    Gao, Qian; Zhou, Lan; Yang, Su-Yu; Cao, Ji-Min

    2016-01-01

    The circadian clock helps living organisms to adjust their physiology and behaviour to adapt environmental day-night cycles. The period length of circadian rhythm reflects the endogenous cycle transition rate and is modulated by environmental cues or internal molecules, and the latter are of substantial importance but remain poorly revealed. Here, we demonstrated that microRNA 17-5p (miR-17-5p), which has been associated with tumours, was an important factor in controlling the circadian period. MiR-17-5p was rhythmically expressed in synchronised fibroblasts and mouse master clock suprachiasmatic nuclei (SCN). MiR-17-5p and the gene Clock exhibited a reciprocal regulation: miR-17-5p inhibited the translation of Clock by targeting the 3'UTR (untranslated region) of Clock mRNA, whereas the CLOCK protein directly bound to the promoter of miR-17 and enhanced its transcription and production of miR-17-5p. In addition, miR-17-5p suppressed the expression of Npas2. At the cellular level, bidirectional changes in miR-17-5p or CLOCK resulted in CRY1 elevation. Accordingly, in vivo, both increase and decrease of miR-17-5p in the mouse SCN led to an increase in CRY1 level and shortening of the free-running period. We conclude that miR-17-5p has an important role in the inspection and stabilisation of the circadian-clock period by interacting with Clock and Npas2 and potentially via the output of CRY1. PMID:27440219

  7. MicroRNA-155 aggravates ischemia-reperfusion injury by modulation of inflammatory cell recruitment and the respiratory oxidative burst.

    PubMed

    Eisenhardt, Steffen U; Weiss, Jakob B W; Smolka, Christian; Maxeiner, Johanna; Pankratz, Franziska; Bemtgen, Xavier; Kustermann, Max; Thiele, Jan R; Schmidt, Yvonne; Bjoern Stark, G; Moser, Martin; Bode, Christoph; Grundmann, Sebastian

    2015-05-01

    The inflammatory sequelae of ischemia-reperfusion injury (IRI) are a major causal factor of tissue injury in various clinical settings. MicroRNAs (miRs) are short, non-coding RNAs, which regulate protein expression. Here, we investigated the role of miR-155 in IR-related tissue injury. Quantifying microRNA-expression levels in a human muscle tissue after IRI, we found miR-155 expression to be significantly increased and to correlate with the increased expression of TNF-α, IL-1β, CD105, and Caspase3 as well as with leukocyte infiltration. The direct miR-155 target gene SOCS-1 was downregulated. In a mouse model of myocardial infarction, temporary LAD ligation and reperfusion injury resulted in a smaller area of necrosis in miR-155-/- animals compared to wildtype animals. To investigate the underlying mechanisms, we evaluated the effect of miR-155 on inflammatory cell recruitment by intravital microscopy and on the generation of reactive oxygen species (ROS) of macrophages. Our intravital imaging results demonstrated a decreased recruitment of inflammatory cells in miR-155-/- animals during IRI. The generation of ROS in leukocytic cells of miR-155-/- animals was also reduced. RNA silencing of the direct miR-155 target gene SOCS-1 abrogated this effect. In conclusion, miR-155 aggravates the inflammatory response, leukocyte infiltration and tissue damage in IRI via modulation of SOCS-1-dependent generation of ROS. MiR-155 is thus a potential target for the treatment or prevention of IRI. PMID:25916938

  8. A novel role of microRNA 17-5p in the modulation of circadian rhythm

    PubMed Central

    Gao, Qian; Zhou, Lan; Yang, Su-Yu; Cao, Ji-Min

    2016-01-01

    The circadian clock helps living organisms to adjust their physiology and behaviour to adapt environmental day-night cycles. The period length of circadian rhythm reflects the endogenous cycle transition rate and is modulated by environmental cues or internal molecules, and the latter are of substantial importance but remain poorly revealed. Here, we demonstrated that microRNA 17-5p (miR-17-5p), which has been associated with tumours, was an important factor in controlling the circadian period. MiR-17-5p was rhythmically expressed in synchronised fibroblasts and mouse master clock suprachiasmatic nuclei (SCN). MiR-17-5p and the gene Clock exhibited a reciprocal regulation: miR-17-5p inhibited the translation of Clock by targeting the 3′UTR (untranslated region) of Clock mRNA, whereas the CLOCK protein directly bound to the promoter of miR-17 and enhanced its transcription and production of miR-17-5p. In addition, miR-17-5p suppressed the expression of Npas2. At the cellular level, bidirectional changes in miR-17-5p or CLOCK resulted in CRY1 elevation. Accordingly, in vivo, both increase and decrease of miR-17-5p in the mouse SCN led to an increase in CRY1 level and shortening of the free-running period. We conclude that miR-17-5p has an important role in the inspection and stabilisation of the circadian-clock period by interacting with Clock and Npas2 and potentially via the output of CRY1. PMID:27440219

  9. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    PubMed Central

    Cao, Dan-Dan; Li, Lu; Chan, Wai-Yee

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases. PMID:27240359

  10. MicroRNA-194 Modulates Glucose Metabolism and Its Skeletal Muscle Expression Is Reduced in Diabetes

    PubMed Central

    Latouche, Celine; Natoli, Alaina; Reddy-Luthmoodoo, Medini; Heywood, Sarah E.; Armitage, James A.; Kingwell, Bronwyn A.

    2016-01-01

    Background The regulation of microRNAs (miRNAs) at different stages of the progression of type 2 diabetes mellitus (T2DM) and their role in glucose homeostasis was investigated. Methods Microarrays were used to assess miRNA expression in skeletal muscle biopsies taken from healthy individuals and patients with pre-diabetes or T2DM, and insulin resistant offspring of rat dams fed a high fat diet during pregnancy. Results Twenty-three miRNAs were differentially expressed in patients with T2DM, and 7 in the insulin resistant rat offspring compared to their controls. Among these, only one miRNA was similarly regulated: miR-194 expression was significantly reduced by 25 to 50% in both the rat model and in human with pre-diabetes and established diabetes. Knockdown of miR-194 in L6 skeletal muscle cells induced an increase in basal and insulin-stimulated glucose uptake and glycogen synthesis. This occurred in conjunction with an increased glycolysis, indicated by elevated lactate production. Moreover, oxidative capacity was also increased as we found an enhanced glucose oxidation in presence of the mitochondrial uncoupler FCCP. When miR-194 was down-regulated in vitro, western blot analysis showed an increased phosphorylation of AKT and GSK3β in response to insulin, and an increase in expression of proteins controlling mitochondrial oxidative phosphorylation. Conclusions Type 2 diabetes mellitus is associated with regulation of several miRNAs in skeletal muscle. Interestingly, miR-194 was a unique miRNA that appeared regulated across different stages of the disease progression, from the early stages of insulin resistance to the development of T2DM. We have shown miR-194 is involved in multiple aspects of skeletal muscle glucose metabolism from uptake, through to glycolysis, glycogenesis and glucose oxidation, potentially via mechanisms involving AKT, GSK3 and oxidative phosphorylation. MiR-194 could be down-regulated in patients with early features of diabetes as an