Sample records for microscopy avaliacao das

  1. Biaxial seismic behaviour of reinforced concrete columns =

    NASA Astrophysics Data System (ADS)

    Rodrigues, Hugo Filipe Pinheiro

    A analise dos efeitos dos sismos mostra que a investigacao em engenharia sismica deve dar especial atencao a avaliacao da vulnerabilidade das construcoes existentes, frequentemente desprovidas de adequada resistencia sismica tal como acontece em edificios de betao armado (BA) de muitas cidades em paises do sul da Europa, entre os quais Portugal. Sendo os pilares elementos estruturais fundamentais na resistencia sismica dos edificios, deve ser dada especial atencao a sua resposta sob acoes ciclicas. Acresce que o sismo e um tipo de acao cujos efeitos nos edificios exige a consideracao de duas componentes horizontais, o que tem exigencias mais severas nos pilares comparativamente a acao unidirecional. Assim, esta tese centra-se na avaliacao da resposta estrutural de pilares de betao armado sujeitos a acoes ciclicas horizontais biaxiais, em tres linhas principais. Em primeiro lugar desenvolveu-se uma campanha de ensaios para o estudo do comportamento ciclico uniaxial e biaxial de pilares de betao armado com esforco axial constante. Para tal foram construidas quatro series de pilares retangulares de betao armado (24 no total) com diferentes caracteristicas geometricas e quantidades de armadura longitudinal, tendo os pilares sido ensaiados para diferentes historias de carga. Os resultados experimentais obtidos sao analisados e discutidos dando particular atencao a evolucao do dano, a degradacao de rigidez e resistencia com o aumento das exigencias de deformacao, a energia dissipada, ao amortecimento viscoso equivalente; por fim e proposto um indice de dano para pilares solicitados biaxialmente. De seguida foram aplicadas diferentes estrategias de modelacao nao-linear para a representacao do comportamento biaxial dos pilares ensaiados, considerando nao-linearidade distribuida ao longo dos elementos ou concentrada nas extremidades dos mesmos. Os resultados obtidos com as varias estrategias de modelacao demonstraram representar adequadamente a resposta em termos das curvas

  2. easyDAS: Automatic creation of DAS servers

    PubMed Central

    2011-01-01

    Background The Distributed Annotation System (DAS) has proven to be a successful way to publish and share biological data. Although there are more than 750 active registered servers from around 50 organizations, setting up a DAS server comprises a fair amount of work, making it difficult for many research groups to share their biological annotations. Given the clear advantage that the generalized sharing of relevant biological data is for the research community it would be desirable to facilitate the sharing process. Results Here we present easyDAS, a web-based system enabling anyone to publish biological annotations with just some clicks. The system, available at http://www.ebi.ac.uk/panda-srv/easydas is capable of reading different standard data file formats, process the data and create a new publicly available DAS source in a completely automated way. The created sources are hosted on the EBI systems and can take advantage of its high storage capacity and network connection, freeing the data provider from any network management work. easyDAS is an open source project under the GNU LGPL license. Conclusions easyDAS is an automated DAS source creation system which can help many researchers in sharing their biological data, potentially increasing the amount of relevant biological data available to the scientific community. PMID:21244646

  3. Life-cycle optimization model for distributed generation in buildings

    NASA Astrophysics Data System (ADS)

    Safaei, Amir

    O setor da construcao e responsavel por uma grande parte do consumo de energia e emissoes na Uniao Europeia. A Geracao Distribuida (GD) de energia, nomeadamente atraves de sistemas de cogeracao e tecnologias solares, representa um papel importante no futuro energetico deste setor. A otimizacao do funcionamento dos sistemas de cogeracao e uma tarefa complexa, devido as diversas variaveis em jogo, designadamente: os diferentes tipos de necessidades energeticas (eletricidade, aquecimento e arrefecimento), os precos dinamicos dos combustiveis (gas natural) e da eletricidade, e os custos fixos e variaveis dos diferentes sistemas de GD. Tal torna-se mais complexo considerando a natureza flutuante das tecnologias solares termicas e fotovoltaicas. Ao mesmo tempo, a liberalizacao do mercado da eletricidade permite exportar para a rede, a electricidade gerada localmente. Adicionalmente, a operacao estrategica de um sistema de GD deve atender aos quadros politicos nacionais, se tiver como objetivo beneficiar de tais regimes. Alem disso, considerando os elevados impactes ambientais do setor da construcao, qualquer avaliacao energetica de edificios rigorosa deve tambem integrar aspetos ambientais, utilizando uma abordagem de Ciclo de Vida (CV). Uma avaliacao de Ciclo de Vida (ACV) completa de um sistema de GD deve incluir as fases relativas a operacao e construcao do sistema, bem como os impactes associados a producao dos combustiveis. Foram analisadas as emissoes da producao de GN, as quais variam de acordo com a origem, tipo (convencional ou nao-convencional), e estado (na forma de GN Liquefeito (GNL) ou gas). Do mesmo modo, o impacte dos sistemas solares e afetado pela meteorologia e radiacao solar, de acordo com a sua localizacao geografica. Sendo assim, uma avaliacao adequada dos sistemas de GD exige um modelo de ACV adequado a localizacao geografica (Portugal), integrando tambem a producao de combustivel (GN), tendo em conta as suas diferentes fontes de abastecimento. O

  4. MyDas, an Extensible Java DAS Server

    PubMed Central

    Jimenez, Rafael C.; Quinn, Antony F.; Jenkinson, Andrew M.; Mulder, Nicola; Martin, Maria; Hunter, Sarah; Hermjakob, Henning

    2012-01-01

    A large number of diverse, complex, and distributed data resources are currently available in the Bioinformatics domain. The pace of discovery and the diversity of information means that centralised reference databases like UniProt and Ensembl cannot integrate all potentially relevant information sources. From a user perspective however, centralised access to all relevant information concerning a specific query is essential. The Distributed Annotation System (DAS) defines a communication protocol to exchange annotations on genomic and protein sequences; this standardisation enables clients to retrieve data from a myriad of sources, thus offering centralised access to end-users. We introduce MyDas, a web server that facilitates the publishing of biological annotations according to the DAS specification. It deals with the common functionality requirements of making data available, while also providing an extension mechanism in order to implement the specifics of data store interaction. MyDas allows the user to define where the required information is located along with its structure, and is then responsible for the communication protocol details. PMID:23028496

  5. MyDas, an extensible Java DAS server.

    PubMed

    Salazar, Gustavo A; García, Leyla J; Jones, Philip; Jimenez, Rafael C; Quinn, Antony F; Jenkinson, Andrew M; Mulder, Nicola; Martin, Maria; Hunter, Sarah; Hermjakob, Henning

    2012-01-01

    A large number of diverse, complex, and distributed data resources are currently available in the Bioinformatics domain. The pace of discovery and the diversity of information means that centralised reference databases like UniProt and Ensembl cannot integrate all potentially relevant information sources. From a user perspective however, centralised access to all relevant information concerning a specific query is essential. The Distributed Annotation System (DAS) defines a communication protocol to exchange annotations on genomic and protein sequences; this standardisation enables clients to retrieve data from a myriad of sources, thus offering centralised access to end-users.We introduce MyDas, a web server that facilitates the publishing of biological annotations according to the DAS specification. It deals with the common functionality requirements of making data available, while also providing an extension mechanism in order to implement the specifics of data store interaction. MyDas allows the user to define where the required information is located along with its structure, and is then responsible for the communication protocol details.

  6. "Das Konkrete ist das Abstrakte, an das man sich schließlich gewöhnt hat." (Laurent Schwartz) Über den Ablauf des mathematischen Verstehens

    NASA Astrophysics Data System (ADS)

    Lowsky, Martin

    Die im Titel genannte Aussage findet sich in den Lebenserinnerungen von Laurent Schwartz (1915-2002), einem der fruchtbarsten Mathematiker, Mitglied der Gruppe Bourbaki. Im Original lautet die Aussage: "un objet concret est un objet abstrait auquel on a fini par s'habituer." Schwartz erläutert sie am Beispiel des Integrals über {e^{-1/2{x^2}}} , das den Wert Wurzel aus 2π hat und in dem sich also die Zahlen e und π verknüpfen. Was Schwartz aber vor allem ausdrücken will, ist dies: Das mathematische Verständnisd geht langsam vor sich und es bedarf der Anstrengung. "Es ist eine Frage der Zeit und der Energie", sagt Schwartz, und gerade dies mache es so schwer, die höhere Mathematik unter das Volk zu bringen. Das Lernen und Lehren von Mathematik laufe eben mühevoll und langsam ab.

  7. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    PubMed Central

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  8. Integrating sequence and structural biology with DAS

    PubMed Central

    Prlić, Andreas; Down, Thomas A; Kulesha, Eugene; Finn, Robert D; Kähäri, Andreas; Hubbard, Tim JP

    2007-01-01

    Background The Distributed Annotation System (DAS) is a network protocol for exchanging biological data. It is frequently used to share annotations of genomes and protein sequence. Results Here we present several extensions to the current DAS 1.5 protocol. These provide new commands to share alignments, three dimensional molecular structure data, add the possibility for registration and discovery of DAS servers, and provide a convention how to provide different types of data plots. We present examples of web sites and applications that use the new extensions. We operate a public registry of DAS sources, which now includes entries for more than 250 distinct sources. Conclusion Our DAS extensions are essential for the management of the growing number of services and exchange of diverse biological data sets. In addition the extensions allow new types of applications to be developed and scientific questions to be addressed. The registry of DAS sources is available at PMID:17850653

  9. DASMiner: discovering and integrating data from DAS sources

    PubMed Central

    2009-01-01

    Background DAS is a widely adopted protocol for providing syntactic interoperability among biological databases. The popularity of DAS is due to a simplified and elegant mechanism for data exchange that consists of sources exposing their RESTful interfaces for data access. As a growing number of DAS services are available for molecular biology resources, there is an incentive to explore this protocol in order to advance data discovery and integration among these resources. Results We developed DASMiner, a Matlab toolkit for querying DAS data sources that enables creation of integrated biological models using the information available in DAS-compliant repositories. DASMiner is composed by a browser application and an API that work together to facilitate gathering of data from different DAS sources, which can be used for creating enriched datasets from multiple sources. The browser is used to formulate queries and navigate data contained in DAS sources. Users can execute queries against these sources in an intuitive fashion, without the need of knowing the specific DAS syntax for the particular source. Using the source's metadata provided by the DAS Registry, the browser's layout adapts to expose only the set of commands and coordinate systems supported by the specific source. For this reason, the browser can interrogate any DAS source, independently of the type of data being served. The API component of DASMiner may be used for programmatic access of DAS sources by programs in Matlab. Once the desired data is found during navigation, the query is exported in the format of an API call to be used within any Matlab application. We illustrate the use of DASMiner by creating integrative models of histone modification maps and protein-protein interaction networks. These enriched datasets were built by retrieving and integrating distributed genomic and proteomic DAS sources using the API. Conclusion The support of the DAS protocol allows that hundreds of molecular biology

  10. Fluorescence microscopy.

    PubMed

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  11. Fluorescence Microscopy

    PubMed Central

    Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.

    2016-01-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114

  12. Connecting the Dots in DAS

    ERIC Educational Resources Information Center

    Ford, Tracy

    2012-01-01

    Many institutions implement a distributed antenna system (DAS) as part of a holistic approach to providing better wireless coverage and capacity on campus. A DAS provides wireless service within a particular area or structure via a network of separate antenna nodes that are connected to a common source through fiber or coaxial cable. Because DAS…

  13. Dictionary of Microscopy

    NASA Astrophysics Data System (ADS)

    Heath, Julian

    2005-10-01

    The past decade has seen huge advances in the application of microscopy in all areas of science. This welcome development in microscopy has been paralleled by an expansion of the vocabulary of technical terms used in microscopy: terms have been coined for new instruments and techniques and, as microscopes reach even higher resolution, the use of terms that relate to the optical and physical principles underpinning microscopy is now commonplace. The Dictionary of Microscopy was compiled to meet this challenge and provides concise definitions of over 2,500 terms used in the fields of light microscopy, electron microscopy, scanning probe microscopy, x-ray microscopy and related techniques. Written by Dr Julian P. Heath, Editor of Microscopy and Analysis, the dictionary is intended to provide easy navigation through the microscopy terminology and to be a first point of reference for definitions of new and established terms. The Dictionary of Microscopy is an essential, accessible resource for: students who are new to the field and are learning about microscopes equipment purchasers who want an explanation of the terms used in manufacturers' literature scientists who are considering using a new microscopical technique experienced microscopists as an aide mémoire or quick source of reference librarians, the press and marketing personnel who require definitions for technical reports.

  14. Processing Approaches for DAS-Enabled Continuous Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Dou, S.; Wood, T.; Freifeld, B. M.; Robertson, M.; McDonald, S.; Pevzner, R.; Lindsey, N.; Gelvin, A.; Saari, S.; Morales, A.; Ekblaw, I.; Wagner, A. M.; Ulrich, C.; Daley, T. M.; Ajo Franklin, J. B.

    2017-12-01

    Distributed Acoustic Sensing (DAS) is creating a "field as laboratory" capability for seismic monitoring of subsurface changes. By providing unprecedented spatial and temporal sampling at a relatively low cost, DAS enables field-scale seismic monitoring to have durations and temporal resolutions that are comparable to those of laboratory experiments. Here we report on seismic processing approaches developed during data analyses of three case studies all using DAS-enabled seismic monitoring with applications ranging from shallow permafrost to deep reservoirs: (1) 10-hour downhole monitoring of cement curing at Otway, Australia; (2) 2-month surface monitoring of controlled permafrost thaw at Fairbanks, Alaska; (3) multi-month downhole and surface monitoring of carbon sequestration at Decatur, Illinois. We emphasize the data management and processing components relevant to DAS-based seismic monitoring, which include scalable approaches to data management, pre-processing, denoising, filtering, and wavefield decomposition. DAS has dramatically increased the data volume to the extent that terabyte-per-day data loads are now typical, straining conventional approaches to data storage and processing. To achieve more efficient use of disk space and network bandwidth, we explore improved file structures and data compression schemes. Because noise floor of DAS measurements is higher than that of conventional sensors, optimal processing workflow involving advanced denoising, deconvolution (of the source signatures), and stacking approaches are being established to maximize signal content of DAS data. The resulting workflow of data management and processing could accelerate the broader adaption of DAS for continuous monitoring of critical processes.

  15. Data Acquisition System(DAS) Sustaining Engineering

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This paper presents general information describing the Data Acquisition System contract, a summary of objectives, tasks performed and completed. The hardware deliverables which are comprised of: 1) Two ground DAS units; 2) Two flight DAS units; 3) Logistic spares; and 4) Shipping containers are described. Also included are the data requirements and scope of the contract.

  16. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, Nathan Muruganathan; Darling, Seth B.

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  17. Innovative Strategies for Clinical Microscopy Instruction: Virtual Versus Light Microscopy.

    PubMed

    McDaniel, M Jane; Russell, Gregory B; Crandall, Sonia J

    2018-06-01

    The purpose of the study was to compare virtual microscopy with light microscopy to determine differences in learning outcomes and learner attitudes in teaching clinical microscopy to physician assistant (PA) students. A prospective, randomized, crossover design study was conducted with a convenience sample of 67 first-year PA students randomized to 2 groups. One group used light microscopes to find microscopic structures, whereas the other group used instructor-directed video streaming of microscopic elements. At the midpoint of the study, the groups switched instructional strategies. Learning outcomes were assessed via posttest after each section of the study, with comparison of final practical examination results to previous cohorts. Attitudes about the 2 educational strategies were assessed through a postcourse questionnaire with a Likert scale. Analysis of the first posttest demonstrated that students in the video-streamed group had significantly better learning outcomes than those in the light microscopy group (P = .004; Cohen's d = 0.74). Analysis of the posttest after crossover showed no differences between the 2 groups (P = .48). Between the 2 posttests, students first assigned to the light microscopy group scored a 6.6 mean point increase (±10.4 SD; p = .0011), whereas students first assigned to the virtual microscopy group scored a 1.3 mean point increase (±7.1 SD; p = .29). The light microscopy group improved more than the virtual microscopy group (P = .019). Analysis of practical examination data revealed higher scores for the study group compared with 5 previous cohorts of first-year students (P < .0001; Cohen's d = 0.66). Students preferred virtual microscopy to traditional light microscopy. Virtual microscopy is an effective educational strategy, and students prefer this method when learning to interpret images of clinical specimens.

  18. Correlative Single-Molecule Localization Microscopy and Confocal Microscopy.

    PubMed

    Soeller, Christian; Hou, Yufeng; Jayasinghe, Isuru D; Baddeley, David; Crossman, David

    2017-01-01

    Single-molecule localization microscopy allows the ability to image fluorescence labeled molecular targets at nanoscale resolution. However, for many biological questions the ability to provide tissue and cellular context in addition to these high resolution data is eminently informative. Here, we describe a procedure to achieve this aim by correlatively imaging human cardiac tissue first at the nanoscale with direct stochastic optical reconstruction microscopy (dSTORM) and then at the diffraction limit with conventional confocal microscopy.

  19. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy

    PubMed Central

    Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda

    2017-01-01

    Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy. PMID:28441775

  20. Impact of virtual microscopy with conventional microscopy on student learning in dental histology.

    PubMed

    Hande, Alka Harish; Lohe, Vidya K; Chaudhary, Minal S; Gawande, Madhuri N; Patil, Swati K; Zade, Prajakta R

    2017-01-01

    In dental histology, the assimilation of histological features of different dental hard and soft tissues is done by conventional microscopy. This traditional method of learning prevents the students from screening the entire slide and change of magnification. To address these drawbacks, modification in conventional microscopy has evolved and become motivation for changing the learning tool. Virtual microscopy is the technique in which there is complete digitization of the microscopic glass slide, which can be analyzed on a computer. This research is designed to evaluate the effectiveness of virtual microscopy with conventional microscopy on student learning in dental histology. A cohort of 105 students were included and randomized into three groups: A, B, and C. Group A students studied the microscopic features of oral histologic lesions by conventional microscopy, Group B by virtual microscopy, and Group C by both conventional and virtual microscopy. The students' understanding of the subject was evaluated by a prepared questionnaire. The effectiveness of the study designs on knowledge gains and satisfaction levels was assessed by statistical assessment of differences in mean test scores. The difference in score between Groups A, B, and C at pre- and post-test was highly significant. This enhanced understanding of the subject may be due to benefits of using virtual microscopy in teaching histology. The augmentation of conventional microscopy with virtual microscopy shows enhancement of the understanding of the subject as compared to the use of conventional microscopy and virtual microscopy alone.

  1. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  2. Correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh M.; Leahy, Martin J.

    2015-03-01

    Changes in the microcirculation are associated with conditions such as Raynauds disease. Current modalities used to assess the microcirculation such as nailfold capillaroscopy are limited due to their depth ambiguity. A correlation mapping technique was recently developed to extend the capabilities of Optical Coherence Tomography to generate depth resolved images of the microcirculation. Here we present the extension of this technique to microscopy modalities, including confocal microscopy. It is shown that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution.

  3. Light sheet microscopy.

    PubMed

    Weber, Michael; Mickoleit, Michaela; Huisken, Jan

    2014-01-01

    This chapter introduces the concept of light sheet microscopy along with practical advice on how to design and build such an instrument. Selective plane illumination microscopy is presented as an alternative to confocal microscopy due to several superior features such as high-speed full-frame acquisition, minimal phototoxicity, and multiview sample rotation. Based on our experience over the last 10 years, we summarize the key concepts in light sheet microscopy, typical implementations, and successful applications. In particular, sample mounting for long time-lapse imaging and the resulting challenges in data processing are discussed in detail. © 2014 Elsevier Inc. All rights reserved.

  4. New approaches in renal microscopy: volumetric imaging and superresolution microscopy.

    PubMed

    Kim, Alfred H J; Suleiman, Hani; Shaw, Andrey S

    2016-05-01

    Histologic and electron microscopic analysis of the kidney has provided tremendous insight into structures such as the glomerulus and nephron. Recent advances in imaging, such as deep volumetric approaches and superresolution microscopy, have the capacity to dramatically enhance our current understanding of the structure and function of the kidney. Volumetric imaging can generate images millimeters below the surface of the intact kidney. Superresolution microscopy breaks the diffraction barrier inherent in traditional light microscopy, enabling the visualization of fine structures. Here, we describe new approaches to deep volumetric and superresolution microscopy of the kidney. Rapid advances in lasers, microscopic objectives, and tissue preparation have transformed our ability to deep volumetric image the kidney. Innovations in sample preparation have allowed for superresolution imaging with electron microscopy correlation, providing unprecedented insight into the structures within the glomerulus. Technological advances in imaging have revolutionized our capacity to image both large volumes of tissue and the finest structural details of a cell. These new advances have the potential to provide additional profound observations into the normal and pathologic functions of the kidney.

  5. Pedagogical Basis of DAS Formalism in Engineering Education

    ERIC Educational Resources Information Center

    Hiltunen, J.; Heikkinen, E.-P.; Jaako, J.; Ahola, J.

    2011-01-01

    The paper presents a new approach for a bachelor-level curriculum structure in engineering. The approach is called DAS formalism according to its three phases: description, analysis and synthesis. Although developed specifically for process and environmental engineering, DAS formalism has a generic nature and it could also be used in other…

  6. Microscopy and microanalysis 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.

    1996-12-31

    The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less

  7. M-DAS: System for multispectral data analysis. [in Saginaw Bay, Michigan

    NASA Technical Reports Server (NTRS)

    Johnson, R. H.

    1975-01-01

    M-DAS is a ground data processing system designed for analysis of multispectral data. M-DAS operates on multispectral data from LANDSAT, S-192, M2S and other sources in CCT form. Interactive training by operator-investigators using a variable cursor on a color display was used to derive optimum processing coefficients and data on cluster separability. An advanced multivariate normal-maximum likelihood processing algorithm was used to produce output in various formats: color-coded film images, geometrically corrected map overlays, moving displays of scene sections, coverage tabulations and categorized CCTs. The analysis procedure for M-DAS involves three phases: (1) screening and training, (2) analysis of training data to compute performance predictions and processing coefficients, and (3) processing of multichannel input data into categorized results. Typical M-DAS applications involve iteration between each of these phases. A series of photographs of the M-DAS display are used to illustrate M-DAS operation.

  8. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    PubMed

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  9. Superresolution microscopy for microbiology

    PubMed Central

    Coltharp, Carla; Xiao, Jie

    2014-01-01

    Summary This review provides a practical introduction to superresolution microscopy from the perspective of microbiological research. Because of the small sizes of bacterial cells, superresolution methods are particularly powerful and suitable for revealing details of cellular structures that are not resolvable under conventional fluorescence light microscopy. Here we describe the methodological concepts behind three major categories of super-resolution light microscopy: photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) and stimulated emission-depletion (STED) microscopy. We then present recent applications of each of these techniques to microbial systems, which have revealed novel conformations of cellular structures and described new properties of in vivo protein function and interactions. Finally, we discuss the unique issues related to implementing each of these superresolution techniques with bacterial specimens and suggest avenues for future development. The goal of this review is to provide the necessary technical background for interested microbiologists to choose the appropriate super-resolution method for their biological systems, and to introduce the practical considerations required for designing and analysing superresolution imaging experiments. PMID:22947061

  10. How to specify and measure sensitivity in Distributed Acoustic Sensing (DAS)?

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Eyal, Avishay

    2017-04-01

    In Rayleigh-scattering-based Distributed Acoustic Sensing (DAS) an optical fiber is transformed into an array of thousands of 'virtual microphones'. This approach has gained tremendous popularity in recent years and is one of the most successful examples of a fiber-optic sensing method which made its way from the academia to the market. Despite the great amount of work done in this field, sensitivity, which is ones of the most critical parameters of any sensing technique, was rarely investigated in this context. In particular, little attention was given to its random characteristics. Without careful consideration of the random aspects of DAS, any attempt to specify its sensitivity or to compare between different DAS modalities is of limited value. Recently we introduced a new statistical parameter which defines DAS sensitivity and enables comparison between the performances of different DAS systems. In this paper we generalize the previous parameter and give a broader, simple and intuitive definition to DAS sensitivity. An important attribute of these parameters is that they can be easily extracted from the static backscatter profile of the sensing fiber. In the paper we derive the relation between DAS sensitivity and the static backscatter profile and present an experimental verification of this relation.

  11. Using DAS for reflection seismology - lessons learned from three field studies

    NASA Astrophysics Data System (ADS)

    Freifeld, B. M.; Dou, S.; Ajo Franklin, J. B.; Robertson, M.; Wood, T.; Daley, T. M.; White, D. J.; Worth, K.; Pevzner, R.; Yavuz, S.; dos Santos Maia Correa, J.; McDonald, S.

    2017-12-01

    Distributed acoustic sensing (DAS) has rapidly gained recognition for its potential for seismic imaging. For surface reflection seismology, the wide spatial aperture afforded by DAS is a primary motivation for its application, however the lower SNR of DAS has proven to be a significant impediment to acquiring data that can replace conventional receiver arrays. A further limitation of DAS cables is that the strain-dependent response is insensitive to acoustic energy which arrives orthogonal to the cable axis, reducing its effectiveness at seeing energy reflected from the deep subsurface. To enhance the sensitivity of DAS cables for reflection seismology, we have trialed at three field sites DAS cables with helical construction in which there is a significant component of optical fiber that is coincident with arriving broadside energy. We have installed helically wound DAS cables at the PTRC Aquistore Project in Saskatchewan, Canada and the CO2CRC Otway Project in Nirranda South, Victoria, Australia in shallow trenches. For the ADM Intelligent Monitoring Systems Project in Decatur, Illinois, USA we used a horizontal directional drilling method to install DAS cables at a depth that is greater than can be achieved using trenched installation. At the Otway and ADM sites we operated surface orbital vibrators (SOVs) at fixed locations to enhance sensitivity by stacking large numbers of sweeps. We present survey results from the three sites. Analysis of both vibroseis survey and SOV results show that the helical cable design achieves its primary objective of improving sensitivity to reflected energy, with further gains needed to achieve the sensitivity of conventional geophones.

  12. Study of morphometry to debit drainage basin (DAS) arau Padang city

    NASA Astrophysics Data System (ADS)

    Utama, Lusi; Amrizal, Berd, Isril; Zuherna

    2017-11-01

    High intensity rain that happened in Padang city cause the happening of floods at DAS Arau. Floods that happened in Padang besides caused high rain intensity, require to be by research about morphometry that is cause parameter the happening of floods. Morphometry drainage basin physical network (DAS) quantitatively related to DAS geomorphology that is related to form of DAS, river network, closeness of stream, ramp, usage of farm, high and gradient steepness of river. Form DAS will influence rain concentration to outlet. Make an index to closeness of stream depict closeness of river stream at one particular DAS. Speed of river stream influenced by storey, level steepness of river. Steepness storey, level is comparison of difference height of river downstream and upstream. Ever greater of steepness of river stream, excelsior speed of river stream that way on the contrary. High to lower speed of river stream influence occurrence of floods, more than anything else if when influenced by debit big. Usage of farm in glove its link to process of infiltration where if geology type which is impermeable, be difficult the happening of infiltration, this matter will enlarge value of run off. Research by descriptive qualitative that is about characteristic of DAS. Method the used is method survey with data collecting, in the form of rainfall data of year 2005 until year 2015 and Image of DEM IFSAR with resolution 5 meter, analyzed use Software ARGIS. Result of research got by DAS reside in at condition of floods gristle.

  13. Ground Motion Analysis of Co-Located DAS and Seismometer Sensors

    NASA Astrophysics Data System (ADS)

    Wang, H. F.; Fratta, D.; Lord, N. E.; Lancelle, C.; Thurber, C. H.; Zeng, X.; Parker, L.; Chalari, A.; Miller, D.; Feigl, K. L.; Team, P.

    2016-12-01

    The PoroTomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench and 400-meters in a borehole at Brady Hot Springs, Nevada in March 2016 together with an array of 246, three-component geophones. The seismic sensors occupied a natural laboratory 1500 x 500 x 400 meters overlying the Brady geothermal field. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100-meters in length and geophones were spaced at approximately 50-m intervals. In several line segments, geophones were co-located within one meter of the DAS cable. Both DAS and the conventional geophones recorded continuously over 15 days. A large Vibroseis truck (T-Rex) provided the seismic source at approximately 250 locations outside and within the array. The Vibroseis protocol called for excitation in one vertical and two orthogonal horizontal directions at each location. For each mode, three, 5-to-80-Hz upsweeps were made over 20 seconds. In addition, a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km away. Several DAS line segments with co-located geophone stations were used to test relationships between the strain rate recorded by DAS and ground velocity recorded by the geophones.

  14. DAS: A Data Management System for Instrument Tests and Operations

    NASA Astrophysics Data System (ADS)

    Frailis, M.; Sartor, S.; Zacchei, A.; Lodi, M.; Cirami, R.; Pasian, F.; Trifoglio, M.; Bulgarelli, A.; Gianotti, F.; Franceschi, E.; Nicastro, L.; Conforti, V.; Zoli, A.; Smart, R.; Morbidelli, R.; Dadina, M.

    2014-05-01

    The Data Access System (DAS) is a and data management software system, providing a reusable solution for the storage of data acquired both from telescopes and auxiliary data sources during the instrument development phases and operations. It is part of the Customizable Instrument WorkStation system (CIWS-FW), a framework for the storage, processing and quick-look at the data acquired from scientific instruments. The DAS provides a data access layer mainly targeted to software applications: quick-look displays, pre-processing pipelines and scientific workflows. It is logically organized in three main components: an intuitive and compact Data Definition Language (DAS DDL) in XML format, aimed for user-defined data types; an Application Programming Interface (DAS API), automatically adding classes and methods supporting the DDL data types, and providing an object-oriented query language; a data management component, which maps the metadata of the DDL data types in a relational Data Base Management System (DBMS), and stores the data in a shared (network) file system. With the DAS DDL, developers define the data model for a particular project, specifying for each data type the metadata attributes, the data format and layout (if applicable), and named references to related or aggregated data types. Together with the DDL user-defined data types, the DAS API acts as the only interface to store, query and retrieve the metadata and data in the DAS system, providing both an abstract interface and a data model specific one in C, C++ and Python. The mapping of metadata in the back-end database is automatic and supports several relational DBMSs, including MySQL, Oracle and PostgreSQL.

  15. Advances in Urine Microscopy.

    PubMed

    Becker, Gavin J; Garigali, Giuseppe; Fogazzi, Giovanni B

    2016-06-01

    Urine microscopy is an important tool for the diagnosis and management of several conditions affecting the kidneys and urinary tract. In this review, we describe the automated instruments, based either on flow cytometry or digitized microscopy, that are currently in use in large clinical laboratories. These tools allow the examination of large numbers of samples in short periods. We also discuss manual urinary microscopy commonly performed by nephrologists, which we encourage. After discussing the advantages of phase contrast microscopy over bright field microscopy, we describe the advancements of urine microscopy in various clinical conditions. These include persistent isolated microscopic hematuria (which can be classified as glomerular or nonglomerular on the basis of urinary erythrocyte morphology), drug- and toxin-related cystalluria (which can be a clue for the diagnosis of acute kidney injury associated with intrarenal crystal precipitation), and some inherited conditions (eg, adenine phosphoribosyltransferase deficiency, which is associated with 2,8-dihydroxyadenine crystalluria, and Fabry disease, which is characterized by unique urinary lamellated fatty particles). Finally, we describe the utility of identifying "decoy cells" and atypical malignant cells, which can be easily done with phase contrast microscopy in unfixed samples. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  16. Diagnostic electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickersin, G.R.

    1988-01-01

    In this book the author presents a comprehensive reference text on diagnostic electron microscopy. Throughout the book he illustrates how ultrastructural identification can be helpful for the recognition of cell type and the identification of mechanisms of pathogenesis in various diseases. In addition to electron microscopy photographs, there are also numerous light microscopy photographs for comparison. This text presents the classification of neoplasms in the order and arrangement most familiar to the pathologist. Contents: Introduction; Diagram of a Normal Cell; Normal Cell Function; Embryology; Neoplasms; Infectious Agents; Metabolic Diseases; Renal Diseases; Skeletal Muscle and Peripheral Nerve Diseases; Index.

  17. A preliminary psychometric evaluation of Music in Dementia Assessment Scales (MiDAS).

    PubMed

    McDermott, Orii; Orgeta, Vasiliki; Ridder, Hanne Mette; Orrell, Martin

    2014-06-01

    Music in Dementia Assessment Scales (MiDAS), an observational outcome measure for music therapy with people with moderate to severe dementia, was developed from qualitative data of focus groups and interviews. Expert and peer consultations were conducted at each stage of the scale development to maximize its content validity. This study aimed to evaluate the psychometric properties of MiDAS. Care home residents with dementia attended weekly group music therapy for up to ten sessions. Music therapists and care home staff were requested to complete weekly MiDAS ratings. The Quality of Life Scale (QoL-AD) was completed at three time-points. A total of 629 (staff = 306, therapist = 323) MiDAS forms were completed. The statistical analysis revealed that MiDAS has high therapist inter-rater reliability, low staff inter-rater reliability, adequate staff test-retest reliability, adequate concurrent validity, and good construct validity. High factor loadings between the five MiDAS Visual Analogue Scale (VAS) items, levels of Interest, Response, Initiation, Involvement, and Enjoyment, were found. This study indicates that MiDAS has good psychometric properties despite the small sample size. Future research with a larger sample size could provide a more in-depth psychometric evaluation, including further exploration of the underlying factors. MiDAS provides a measure of engagement with musical experience and offers insight into who is likely to benefit on other outcomes such as quality of life or reduction in psychiatric symptoms.

  18. Fluorescence (Multiwave) Confocal Microscopy.

    PubMed

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Ito, Takashi

    2008-01-01

    This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…

  20. Intravital microscopy

    PubMed Central

    Masedunskas, Andrius; Milberg, Oleg; Porat-Shliom, Natalie; Sramkova, Monika; Wigand, Tim; Amornphimoltham, Panomwat; Weigert, Roberto

    2012-01-01

    Intravital microscopy is an extremely powerful tool that enables imaging several biological processes in live animals. Recently, the ability to image subcellular structures in several organs combined with the development of sophisticated genetic tools has made possible extending this approach to investigate several aspects of cell biology. Here we provide a general overview of intravital microscopy with the goal of highlighting its potential and challenges. Specifically, this review is geared toward researchers that are new to intravital microscopy and focuses on practical aspects of carrying out imaging in live animals. Here we share the know-how that comes from first-hand experience, including topics such as choosing the right imaging platform and modality, surgery and stabilization techniques, anesthesia and temperature control. Moreover, we highlight some of the approaches that facilitate subcellular imaging in live animals by providing numerous examples of imaging selected organelles and the actin cytoskeleton in multiple organs. PMID:22992750

  1. Nonlinear vibrational microscopy

    DOEpatents

    Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  2. Microscopy and Image Analysis.

    PubMed

    McNamara, George; Difilippantonio, Michael; Ried, Thomas; Bieber, Frederick R

    2017-07-11

    This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy-we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. Silver stain for electron microscopy

    NASA Technical Reports Server (NTRS)

    Corbett, R. L.

    1972-01-01

    Ammoniacal silver stain used for light microscopy was adapted advantageously for use with very thin biological sections required for electron microscopy. Silver stain can be performed in short time, has more contrast, and is especially useful for low power electron microscopy.

  4. Crosslinking effect of dialdehyde starch (DAS) on decellularized porcine aortas for tissue engineering.

    PubMed

    Wang, Xu; Gu, Zhipeng; Qin, Huanhuan; Li, Li; Yang, Xu; Yu, Xixun

    2015-08-01

    Biological tissue-derived biomaterials must be chemically modified to avoid immediate degradation and immune response before being implanted in human body to replace malfunctioning organs. DAS with active aldehyde groups was employed to replace glutaraldehyde (GA), a most common synthetic crosslinking reagent in clinical practice, to fix bioprostheses for lower cytotoxicity. The aim of this research was to evaluate fixation effect of DAS. The tensile strength, crosslinking stability, cytotoxicity especially the anti-calcification capability of DAS-fixed tissues were investigated. The tensile strength and resistance to enzymatic degradation of samples were increased after DAS fixation, the values maintained stably in D-Hanks solution for several days. Meanwhile, ultrastructure of samples preserved well and the anti-calcification capability of samples were improved, the amount of positive staining points in the whole visual field of 15% DAS-fixed samples was only 0.576 times to GA-fixed ones. Moreover, both unreacted DAS and its hydrolytic products were nontoxic in cytotoxicity study. The results demonstrated DAS might be an effective crosslinking reagent to fix biological tissue-derived biomaterials in tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A Safety Evaluation of DAS181, a Sialidase Fusion Protein, in Rodents

    PubMed Central

    Larson, Jeffrey L.; Kang, Seong-Kwi; Choi, Bo In; Hedlund, Maria; Aschenbrenner, Laura M.; Cecil, Beth; Machado, GloriaMay; Nieder, Matthew; Fang, Fang

    2011-01-01

    DAS181 is a novel inhaled drug candidate blocking influenza virus (IFV) and parainfluenza virus (PIV) infections through removal of sialic acid receptors from epithelial surface of the respiratory tract. To support clinical development, a 28-day Good Laboratory Practices inhalation toxicology study was conducted in Sprague-Dawley rats. In this study, achieved average daily doses based on exposure concentrations were 0.47, 0.90, 1.55, and 3.00 mg/kg/day of DAS181 in a dry powder formulation. DAS181 was well tolerated at all dose levels, and there were no significant toxicological findings. DAS181 administration did not affect animal body weight, food consumption, clinical signs, ophthalmology, respiratory parameters, or organ weight. Gross pathology evaluations were unremarkable. Histological examination of the lungs was devoid of pulmonary tissue damage, and findings were limited to mild and transient changes indicative of exposure and clearance of a foreign protein. DAS181 did not show any cytotoxic effects on human and animal primary cells, including hepatocytes, skeletal muscle cells, osteoblasts, or respiratory epithelial cells. DAS181 did not cause direct or indirect hemolysis. A laboratory abnormality observed in the 28-day toxicology study was mild and transient anemia in male rats at the 3.00 mg/kg dose, which is an expected outcome of enhanced clearance of desialylated red blood cells resulting from systemic exposure with DAS181. Another laboratory observation was a transient dose-dependent elevation in alkaline phosphatase (ALP), which can be attributed to reduced ALP clearance resulting from increased protein desialylation due to DAS181 systemic exposure. These laboratory parameters returned to normal at the end of the recovery period. PMID:21572096

  6. Amerikas Einschätzung der deutschen Atomforschung: Das deutsche Uranprojekt

    NASA Astrophysics Data System (ADS)

    Walker, Mark

    2002-07-01

    Die amerikanischen Wissenschaftler und ihre emigrierten Kollegen, die am Bau der Atombombe beteiligt waren, verfügten über sehr widersprüchliche und großteils falsche Informationen über den Fortschritt des deutschen Uranprogramms. Noch nach Kriegsende lässt sich dies an Aussagen des Leiters der amerikanischen Alsos-Mission, Samuel Goudsmit, festmachen. Tatsächlich war das deutsche Programm hinsichtlich seiner wissenschaftlichen Grundlagen und des Managements nicht so unterlegen, wie vielfach behauptet wurde. Aber die deutschen Behörden waren nicht in der Lage, Geld und Ressourcen in gleichem Maße in das Uranprojekt zu investieren, wie etwa in das Peenemünder Raketenprojekt.

  7. Concepts in Light Microscopy of Viruses

    PubMed Central

    Witte, Robert; Georgi, Fanny

    2018-01-01

    Viruses threaten humans, livestock, and plants, and are difficult to combat. Imaging of viruses by light microscopy is key to uncover the nature of known and emerging viruses in the quest for finding new ways to treat viral disease and deepening the understanding of virus–host interactions. Here, we provide an overview of recent technology for imaging cells and viruses by light microscopy, in particular fluorescence microscopy in static and live-cell modes. The review lays out guidelines for how novel fluorescent chemical probes and proteins can be used in light microscopy to illuminate cells, and how they can be used to study virus infections. We discuss advantages and opportunities of confocal and multi-photon microscopy, selective plane illumination microscopy, and super-resolution microscopy. We emphasize the prevalent concepts in image processing and data analyses, and provide an outlook into label-free digital holographic microscopy for virus research. PMID:29670029

  8. Concepts in Light Microscopy of Viruses.

    PubMed

    Witte, Robert; Andriasyan, Vardan; Georgi, Fanny; Yakimovich, Artur; Greber, Urs F

    2018-04-18

    Viruses threaten humans, livestock, and plants, and are difficult to combat. Imaging of viruses by light microscopy is key to uncover the nature of known and emerging viruses in the quest for finding new ways to treat viral disease and deepening the understanding of virus–host interactions. Here, we provide an overview of recent technology for imaging cells and viruses by light microscopy, in particular fluorescence microscopy in static and live-cell modes. The review lays out guidelines for how novel fluorescent chemical probes and proteins can be used in light microscopy to illuminate cells, and how they can be used to study virus infections. We discuss advantages and opportunities of confocal and multi-photon microscopy, selective plane illumination microscopy, and super-resolution microscopy. We emphasize the prevalent concepts in image processing and data analyses, and provide an outlook into label-free digital holographic microscopy for virus research.

  9. Validation of Digital Microscopy Compared With Light Microscopy for the Diagnosis of Canine Cutaneous Tumors.

    PubMed

    Bertram, Christof A; Gurtner, Corinne; Dettwiler, Martina; Kershaw, Olivia; Dietert, Kristina; Pieper, Laura; Pischon, Hannah; Gruber, Achim D; Klopfleisch, Robert

    2018-07-01

    Integration of new technologies, such as digital microscopy, into a highly standardized laboratory routine requires the validation of its performance in terms of reliability, specificity, and sensitivity. However, a validation study of digital microscopy is currently lacking in veterinary pathology. The aim of the current study was to validate the usability of digital microscopy in terms of diagnostic accuracy, speed, and confidence for diagnosing and differentiating common canine cutaneous tumor types and to compare it to classical light microscopy. Therefore, 80 histologic sections including 17 different skin tumor types were examined twice as glass slides and twice as digital whole-slide images by 6 pathologists with different levels of experience at 4 time points. Comparison of both methods found digital microscopy to be noninferior for differentiating individual tumor types within the category epithelial and mesenchymal tumors, but diagnostic concordance was slightly lower for differentiating individual round cell tumor types by digital microscopy. In addition, digital microscopy was associated with significantly shorter diagnostic time, but diagnostic confidence was lower and technical quality was considered inferior for whole-slide images compared with glass slides. Of note, diagnostic performance for whole-slide images scanned at 200× magnification was noninferior in diagnostic performance for slides scanned at 400×. In conclusion, digital microscopy differs only minimally from light microscopy in few aspects of diagnostic performance and overall appears adequate for the diagnosis of individual canine cutaneous tumors with minor limitations for differentiating individual round cell tumor types and grading of mast cell tumors.

  10. DAS Microseismic and Strain Monitoring During Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Kahn, D.; Karrenbach, M. H.; Cole, S.; Boone, K.; Ridge, A.; Rich, J.; Langton, D.; Silver, K.

    2017-12-01

    Hydraulic fracturing operations in unconventional subsurface reservoirs are typically monitored using geophones located either at the surface or in adjacent wellbores. A novel approach to record hydraulic stimulations utilizes fiber-optic Distributed Acoustic Sensing (DAS). A fiber-optic cable was installed in a treatment well in a subsurface reservoir (Meramec formation). DAS data were recorded during fluid injection of same fibered well and also during injection into a nearby treatment well at a distance of 350m. For both scenarios the DAS sensing array consisted of approximately 1000 channels at a fine spatial and temporal sampling and with a large sensing aperture. Thus, the full strain wave field is measured along the borehole over its entire length. A variety of physical effects, such as temperature, low-frequency strain and microseismicity were measured and correlated with the treatment program during hydraulic fracturing of the wells. These physical effects occur at various frequency scales and produce complementary measurements. Microseismic events in the magnitude range of -0.5 and -2.0 at a maximum distance of 500m were observed and analyzed for recordings from the fiber-equipped treatment well and also neighboring treatment well. The analysis of this DAS data set demonstrates that current fiber-optic sensing technology can provide enough sensitivity to detect a significant number of microseismic events and that these events can be integrated with temperature and strain measurements for an improved subsurface reservoir description.

  11. Microscopy techniques in flavivirus research.

    PubMed

    Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee

    2014-04-01

    The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fluorescence confocal microscopy for pathologists.

    PubMed

    Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni

    2014-03-01

    Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on

  13. Distributed Acoustic Sensing (DAS) Data for Periodic Hydraulic Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Thomas; Becker, Matthew

    California State University Long Beach evaluated hydraulic connectivity among geothermal wells using Periodic Hydraulic Testing (PHT) and Distributed Acoustic Sensing (DAS). The principal was to create a pressure signal in one well and observe the responding pressure signals in one or more observation wells to assess the permeability and storage of the fracture network that connects the two wells. DAS measured strain at mHz frequency in monitoring wells in response to PHT.

  14. Phenotypic and genotypic characterization of influenza virus mutants selected with the sialidase fusion protein DAS181

    PubMed Central

    Triana-Baltzer, Gallen B.; Sanders, Rebecca L.; Hedlund, Maria; Jensen, Kellie A.; Aschenbrenner, Laura M.; Larson, Jeffrey L.; Fang, Fang

    2011-01-01

    Background Influenza viruses (IFVs) frequently achieve resistance to antiviral drugs, necessitating the development of compounds with novel mechanisms of action. DAS181 (Fludase®), a sialidase fusion protein, may have a reduced potential for generating drug resistance due to its novel host-targeting mechanism of action. Methods IFV strains B/Maryland/1/59 and A/Victoria/3/75 (H3N2) were subjected to >30 passages under increasing selective pressure with DAS181. The DAS181-selected IFV isolates were characterized in vitro and in mice. Results Despite extensive passaging, DAS181-selected viruses exhibited a very low level of resistance to DAS181, which ranged between 3- and 18-fold increase in EC50. DAS181-selected viruses displayed an attenuated phenotype in vitro, as exhibited by slower growth, smaller plaque size and increased particle to pfu ratios relative to wild-type virus. Further, the DAS181 resistance phenotype was unstable and was substantially reversed over time upon DAS181 withdrawal. In mice, the DAS181-selected viruses exhibited no greater virulence than their wild-type counterparts. Genotypic and phenotypic analysis of DAS181-selected viruses revealed mutations in the haemagglutinin (HA) and neuraminidase (NA) molecules and also changes in HA and NA function. Conclusions Results indicate that resistance to DAS181 is minimal and unstable. The DAS181-selected IFV isolates exhibit reduced fitness in vitro, likely due to altered HA and NA functions. PMID:21097900

  15. Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid.

    PubMed

    Dukes, Madeline J; Peckys, Diana B; de Jonge, Niels

    2010-07-27

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7x12 nm were visible in a 5 microm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs.

  16. Molecular expressions: exploring the world of optics and microscopy. http://microscopy.fsu.edu.

    PubMed

    Eliceiri, Kevin W

    2004-08-01

    Our knowledge of the structure, dynamics and physiology of a cell has increased significantly in the last ten years through the emergence of new optical imaging modalities such as optical sectioning microscopy, computer- enhanced video microscopy and laser-scanning microscopy. These techniques together with the use of genetically engineered fluorophores have helped scientists visualize the 3-dimensional dynamic processes of living cells. However as powerful as these imaging tools are, they can often be difficult to understand and fully utilize. Below I will discuss my favorite website: The Molecular Expressions Web Site that endeavors to present the power of microscopy to its visitors. The Molecular Expressions group does a remarkable job of not only clearly presenting the principles behind these techniques in a manner approachable by lay and scientific audiences alike but also provides representative data from each as well.

  17. Three-dimensional Super Resolution Microscopy of F-actin Filaments by Interferometric PhotoActivated Localization Microscopy (iPALM).

    PubMed

    Wang, Yilin; Kanchanawong, Pakorn

    2016-12-01

    Fluorescence microscopy enables direct visualization of specific biomolecules within cells. However, for conventional fluorescence microscopy, the spatial resolution is restricted by diffraction to ~ 200 nm within the image plane and > 500 nm along the optical axis. As a result, fluorescence microscopy has long been severely limited in the observation of ultrastructural features within cells. The recent development of super resolution microscopy methods has overcome this limitation. In particular, the advent of photoswitchable fluorophores enables localization-based super resolution microscopy, which provides resolving power approaching the molecular-length scale. Here, we describe the application of a three-dimensional super resolution microscopy method based on single-molecule localization microscopy and multiphase interferometry, called interferometric PhotoActivated Localization Microscopy (iPALM). This method provides nearly isotropic resolution on the order of 20 nm in all three dimensions. Protocols for visualizing the filamentous actin cytoskeleton, including specimen preparation and operation of the iPALM instrument, are described here. These protocols are also readily adaptable and instructive for the study of other ultrastructural features in cells.

  18. Quantitative dispersion microscopy

    PubMed Central

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Yaqoob, Zahid; Dasari, Ramachandra R.; Feld, Michael

    2010-01-01

    Refractive index dispersion is an intrinsic optical property and a useful source of contrast in biological imaging studies. In this report, we present the first dispersion phase imaging of living eukaryotic cells. We have developed quantitative dispersion microscopy based on the principle of quantitative phase microscopy. The dual-wavelength quantitative phase microscope makes phase measurements at 310 nm and 400 nm wavelengths to quantify dispersion (refractive index increment ratio) of live cells. The measured dispersion of living HeLa cells is found to be around 1.088, which agrees well with that measured directly for protein solutions using total internal reflection. This technique, together with the dry mass and morphology measurements provided by quantitative phase microscopy, could prove to be a useful tool for distinguishing different types of biomaterials and studying spatial inhomogeneities of biological samples. PMID:21113234

  19. Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum Dot Labeled Proteins in Whole Cells in Liquid

    PubMed Central

    Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels

    2010-01-01

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. QDs of dimensions 7 × 12 nm were visible in a 5 μm thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs. PMID:20550177

  20. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Scanning ultrafast electron microscopy.

    PubMed

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  2. Scanning ultrafast electron microscopy

    PubMed Central

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933

  3. Polarized Light Microscopy

    NASA Technical Reports Server (NTRS)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  4. Consecutive light microscopy, scanning-transmission electron microscopy and transmission electron microscopy of traumatic human brain oedema and ischaemic brain damage.

    PubMed

    Castejon, O J; Castejon, H V; Diaz, M; Castellano, A

    2001-10-01

    Cortical biopsies of 11 patients with traumatic brain oedema were consecutively studied by light microscopy (LM) using thick plastic sections, scanning-transmission electron microscopy ((S)TEM) using semithin plastic sections and transmission electron microscopy (TEM) using ultrathin sections. Samples were glutaraldehyde-osmium fixed and embedded in Araldite or Epon. Thick sections were stained with toluidine-blue for light microscopy. Semithin sections were examined unstained and uncoated for (S)TEM. Ultrathin sections were stained with uranyl and lead. Perivascular haemorrhages and perivascular extravasation of proteinaceous oedema fluid were observed in both moderate and severe oedema. Ischaemic pyramidal and non-pyramidal nerve cells appeared shrunken, electron dense and with enlargement of intracytoplasmic membrane compartment. Notably swollen astrocytes were observed in all samples examined. Glycogen-rich and glycogen-depleted astrocytes were identified in anoxic-ischaemic regions. Dark and hydropic satellite, interfascicular and perivascular oligodendrocytes were also found. The status spongiosus of severely oedematous brain parenchyma observed by LM and (S)TEM was correlated with the enlarged extracellular space and disrupted neuropil observed by TEM. The (S)TEM is recommended as a suitable technique for studying pathological processes in the central nervous system and as an informative adjunct to LM and TEM.

  5. User Manual for the AZ-101 Data Acquisition System (AS-101 DAS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRAYTON, D.D.

    2000-02-17

    User manual for the TK AZ-101 Waste Retrieval System Data Acquisition System. The purpose of this document is to describe use of the AZ-101 Data Acquisition System (AZ-101 DAS). The AZ-101 DAS is provided to fulfill the requirements for data collection and monitoring as defined in Letters of Instruction (LOI) from Numatec Hanford Corporation (NHC) to Fluor Federal Services (FFS). For a complete description of the system, including design, please refer to the AZ-101 DAS System Description document, RPP-5572.

  6. Traditional microscopy instruction versus process-oriented virtual microscopy instruction: a naturalistic experiment with control group.

    PubMed

    Helle, Laura; Nivala, Markus; Kronqvist, Pauliina; Gegenfurtner, Andreas; Björk, Pasi; Säljö, Roger

    2011-03-30

    Virtual microscopy is being introduced in medical education as an approach for learning how to interpret information in microscopic specimens. It is, however, far from evident how to incorporate its use into existing teaching practice. The aim of the study was to explore the consequences of introducing virtual microscopy tasks into an undergraduate pathology course in an attempt to render the instruction more process-oriented. The research questions were: 1) How is virtual microscopy perceived by students? 2) Does work on virtual microscopy tasks contribute to improvement in performance in microscopic pathology in comparison with attending assistant-led demonstrations only? During a one-week period, an experimental group completed three sets of virtual microscopy homework assignments in addition to attending demonstrations. A control group attended the demonstrations only. Performance in microscopic pathology was measured by a pre-test and a post-test. Student perceptions of regular instruction and virtual microscopy were collected one month later by administering the Inventory of Intrinsic Motivation and open-ended questions. The students voiced an appreciation for virtual microscopy for the purposes of the course and for self-study. As for learning gains, the results indicated that learning was speeded up in a subgroup of students consisting of conscientious high achievers. The enriched instruction model may be suited as such for elective courses following the basic course. However, the instructional model needs further development to be suited for basic courses.

  7. Non-contact lateral force microscopy.

    PubMed

    Weymouth, A J

    2017-08-16

    The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.

  8. The 2015 super-resolution microscopy roadmap

    NASA Astrophysics Data System (ADS)

    Hell, Stefan W.; Sahl, Steffen J.; Bates, Mark; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J.; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Jakobs, Stefan; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J.; Eggeling, Christian; Klenerman, David; Willig, Katrin I.; Vicidomini, Giuseppe; Castello, Marco; Diaspro, Alberto; Cordes, Thorben

    2015-11-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough

  9. In vivo correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh; Leahy, Martin

    2016-04-01

    To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.

  10. Lasers for nonlinear microscopy.

    PubMed

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  11. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tong, Yongpeng; Li, Changming; Liang, Feng; Chen, Jianmin; Zhang, Hong; Liu, Guoqing; Sun, Huibin; Luong, John H. T.

    2008-12-01

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al 2O 3 and TiO 2) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl 2) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al 2O 3 and TiO 2 nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe 2O 3 nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  12. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    PubMed

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Moisture Forecast Bias Correction in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D.

    1999-01-01

    Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.

  14. Image correlation microscopy for uniform illumination.

    PubMed

    Gaborski, T R; Sealander, M N; Ehrenberg, M; Waugh, R E; McGrath, J L

    2010-01-01

    Image cross-correlation microscopy is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. Image cross-correlation microscopy has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy. In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy. Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning image cross-correlation microscopy, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function. Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function depends strongly on particle size and not particle shape. In this report, we establish the relationships between the spatial autocorrelation function feature size, temporal autocorrelation function characteristic time and the diffusion coefficient for uniform illumination image correlation microscopy using analytical, Monte Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate uniform illumination image correlation microscopy analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils.

  15. High-Resolution Intravital Microscopy

    PubMed Central

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  16. Microscopy

    Treesearch

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  17. 4Pi Microscopy.

    PubMed

    Schmidt, Roman; Engelhardt, Johann; Lang, Marion

    2013-01-01

    Optical microscopy has become a key technology in the life sciences today. Its noninvasive nature provides access to the interior of intact and even living cells, where specific molecules can be precisely localized by fluorescent tagging. However, the attainable 3D resolution of an optical microscope has long been hampered by a comparatively poor resolution along the optic axis. By coherent focusing through two objective lenses, 4Pi microscopy improves the axial resolution by three- to fivefold. This primer is intended as a starting point for the design and operation of a 4Pi microscope of type A.

  18. A Comparative Study Between Smartphone-Based Microscopy and Conventional Light Microscopy in 1021 Dermatopathology Specimens.

    PubMed

    Jahan-Tigh, Richard R; Chinn, Garrett M; Rapini, Ronald P

    2016-01-01

    The incorporation of high-resolution cameras into smartphones has allowed for a variety of medical applications including the use of lens attachments that provide telescopic, macroscopic, and dermatoscopic data, but the feasibility and performance characteristics of such a platform for use in dermatopathology have not been described. To determine the diagnostic performance of a smartphone microscope compared to traditional light microscopy in dermatopathology specimens. A simple smartphone microscope constructed with a 3-mm ball lens was used to prospectively evaluate 1021 consecutive dermatopathology cases in a blinded fashion. Referred, consecutive specimens from the community were evaluated at a single university hospital. The performance characteristics of the smartphone platform were calculated by using conventional light microscopy as the gold standard. The sensitivity and specificity for the diagnosis of melanoma, nonmelanoma skin cancers, and other miscellaneous conditions by the phone microscopy platform, as compared with traditional light microscopy, were calculated. For basal cell carcinoma (n = 136), the sensitivity and specificity of smartphone microscopy were 95.6% and 98.1%, respectively. The sensitivity and specificity for squamous cell carcinoma (n = 94) were 89.4% and 97.3%, respectively. The lowest sensitivity was found in melanoma (n = 15) at 60%, although the specificity was high at 99.1%. The accuracy of diagnosis of inflammatory conditions and other neoplasms was variable. Mobile phone-based microscopy has excellent performance characteristics for the inexpensive diagnosis of nonmelanoma skin cancers in a setting where a traditional microscope is not available.

  19. Brady's Geothermal Field DAS Earthquake Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    The submitted data correspond to the vibration caused by a 3.4 M earthquake and captured by the DAS horizontal and vertical arrays during the PoroTomo Experiment. Earthquake information : M 4.3 - 23km ESE of Hawthorne, Nevada Time: 2016-03-21 07:37:10 (UTC) Location: 38.479 N 118.366 W Depth: 9.9 km

  20. Prevalence of mabDAS-1 positivity in biopsy specimens from the esophagogastric junction.

    PubMed

    Rogge-Wolf, Claudia; Seldenrijk, Cornelis A; Das, Kiron M; Timmer, Robin; Breumelhof, Ronald; Smout, André J P M; Amenta, Peter S; Griffel, Louis H

    2002-12-01

    Intestinal metaplasia (IM) is a precursor for malignancies at the esophagogastric junction. A monoclonal antibody, mAbDAS-1, can probably identify cellular characteristics of IM before the appearance of goblet cells. The aim of this study was to examine the prevalence of mAbDAS-1 positivity in biopsies from the squamocolumnar junction (SCJ) and to correlate this positivity with the presence of IM and clinical findings. In 559 patients, reflux symptoms were scored, and the presence of reflux esophagitis and hiatus hernia was evaluated during endoscopy. Two biopsy specimens were obtained from the SCJ. In a subset of patients (n = 99), biopsies from the endoscopically defined cardiac region (2 cm distal to proximal margin of gastric folds) were available. Biopsy specimens were stained with hematoxylin and eosin, Alcian Blue, modified Giemsa, and mAbDAS-1. mAbDAS-1 positivity was observed in the SCJ biopsies of 201 of 486 (41.4%) patients without IM and in 64 of 73 (87.7%) patients with IM. Patients without IM but with antibody positivity showed similar histological characteristics as patients with IM at the SCJ. Biopsies of 123 of 559 patients (22%) revealed a columnar-cuboidal epithelium, which was found to be mAbDAS-1 positive in 64.2% (77 of 123). Tissue specimens from the cardiac region without IM stained positive in 14.2% (13 of 91), 12 of those also stained at the SCJ. In patients without IM, a high prevalence of mAbDAS-1 positivity was observed. Biopsies of these patients showed similar histological characteristics as patients with IM. Although not all patients exhibiting this reactivity may develop IM, mAbDAS-1 reactivity may help in the understanding of the histogenesis of IM at the SCJ.

  1. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy.

    PubMed

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M

    2012-12-03

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are

  2. Bessel light sheet structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in

  3. FRET-FLIM microscopy

    NASA Astrophysics Data System (ADS)

    Elangovan, Masilamani; Day, Richard N.; Periasamy, Ammasi

    2002-06-01

    Visualizing and quantifying protein-protein interactions is a recent trend in biomedical imaging. The current advances in fluorescence microscopy coupled with the development of new fluorescent probes provide the tools to study protein interactions in living specimens. Spectral bleed-through or cross talk is a problem in one- and two-photon microscopy to recognize whether one is observing the sensitized emission or the bleed-through signals. In contrast, FLIM (fluorescence lifetime imaging microscopy) or lifetime measurements are independent of excitation intensity or fluorophore concentration. The combination of FLIM and FRET will provide high spatial (nanometer) and temporal (nanoseconds) resolution when compared to steady state FRET imaging. Importantly, spectral bleed-through is not an issue in FLIM imaging because only the donor fluorophore lifetime is measured. The presence of acceptor molecules within the local environment of the donor that permit energy transfer will influence the fluorescence lifetime of the donor. By measuring the donor lifetime in the presence and the absence of acceptor one can accurately calculate the FRET efficiency and the distance between donor- and acceptor-labeled proteins. Moreover, the FRET-FLIM technique allows monitoring more than one pair of protein interactions in a single living cell.

  4. Adaptive optical fluorescence microscopy.

    PubMed

    Ji, Na

    2017-03-31

    The past quarter century has witnessed rapid developments of fluorescence microscopy techniques that enable structural and functional imaging of biological specimens at unprecedented depth and resolution. The performance of these methods in multicellular organisms, however, is degraded by sample-induced optical aberrations. Here I review recent work on incorporating adaptive optics, a technology originally applied in astronomical telescopes to combat atmospheric aberrations, to improve image quality of fluorescence microscopy for biological imaging.

  5. Near-Field Scanning Optical Microscopy and Raman Microscopy.

    NASA Astrophysics Data System (ADS)

    Harootunian, Alec Tate

    1987-09-01

    Both a one dimensional near-field scanning optical microscope and Raman microprobe were constructed. In near -field scanning optical microscopy (NSOM) a subwavelength aperture is scanned in the near-field of the object. Radiation transmitted through the aperture is collected to form an image as the aperture scans over the object. The resolution of an NSOM system is essentially wavelength independent and is limited by the diameter of the aperture used to scan the object. NSOM was developed in an effort to provide a nondestructive in situ high spatial resolution probe while still utilizing photons at optical wavelengths. The Raman microprobe constructed provided vibrational Raman information with spatial resolution equivalent that of a conventional diffraction limited microscope. Both transmission studies and near-field diffration studies of subwavelength apertures were performed. Diffraction theories for a small aperture in an infinitely thin conducting screen, a slit in a thick conducting screen, and an aperture in a black screen were examined. All three theories indicate collimation of radiation to the size to the size of the subwavelength aperture or slit in the near-field. Theoretical calculations and experimental results indicate that light transmitted through subwavelength apertures is readily detectable. Light of wavelength 4579 (ANGSTROM) was transmitted through apertures with diameters as small as 300 (ANGSTROM). These studies indicate the feasibility of constructing an NSOM system. One dimensional transmission and fluorescence NSOM systems were constructed. Apertures in the tips of metallized glass pipettes width inner diameters of less than 1000 (ANGSTROM) were used as a light source in the NSOM system. A tunneling current was used to maintain the aperture position in the near-field. Fluorescence NSOM was demonstrated for the first time. Microspectroscopic and Raman microscopic studies of turtle cone oil droplets were performed. Both the Raman vibrational

  6. Correlative microscopy of detergent granules.

    PubMed

    van Dalen, G; Nootenboom, P; Heussen, P C M

    2011-03-01

    The microstructure of detergent products for textile cleaning determines to a large extent the physical properties of these products. Correlative microscopy was used to reveal the microstructure by reconciling images obtained by scanning electron microscopy with energy dispersive X-ray analysis, X-ray microtomography and Fourier transform infrared microscopy. These techniques were applied on the same location of a subsample of a spray-dried detergent base powder embedded in polyacrylate. In this way, the three-dimensional internal and external structure of detergent granules could be investigated from milli to nano scale with detailed spatial information about the components present. This will generate knowledge how to design optimal microstructures for laundry products to obtain product properties demanded by the market. This method is also very useful for other powder systems used in a large variety of industries (e.g. for pharmaceutical, food, ceramic and metal industries). © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  7. Stochastic Optical Reconstruction Microscopy (STORM).

    PubMed

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  8. Cardiovascular Imaging Using Two-Photon Microscopy

    PubMed Central

    Scherschel, John A.; Rubart, Michael

    2008-01-01

    Two-photon excitation microscopy has become the standard technique for high resolution deep tissue and intravital imaging. It provides intrinsic three-dimensional resolution in combination with increased penetration depth compared to single-photon confocal microscopy. This article will describe the basic physical principles of two-photon excitation and will review its multiple applications to cardiovascular imaging, including second harmonic generation and fluorescence laser scanning microscopy. In particular, the capability and limitations of multiphoton microscopy to assess functional heterogeneity on a cellular scale deep within intact, Langendorff-perfused hearts are demonstrated. It will also discuss the use of two-photon excitation-induced release of caged compounds for the study of intracellular calcium signaling and intercellular dye transfer. PMID:18986603

  9. MiDAS: the field guide to the microbes of activated sludge.

    PubMed

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes--knowledge that will be an invaluable resource for the optimal design and operation of these systems. © The Author(s) 2015. Published by Oxford University Press.

  10. MiDAS: the field guide to the microbes of activated sludge

    PubMed Central

    McIlroy, Simon Jon; Saunders, Aaron Marc; Albertsen, Mads; Nierychlo, Marta; McIlroy, Bianca; Hansen, Aviaja Anna; Karst, Søren Michael; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2015-01-01

    The Microbial Database for Activated Sludge (MiDAS) field guide is a freely available online resource linking the identity of abundant and process critical microorganisms in activated sludge wastewater treatment systems to available data related to their functional importance. Phenotypic properties of some of these genera are described, but most are known only from sequence data. The MiDAS taxonomy is a manual curation of the SILVA taxonomy that proposes a name for all genus-level taxa observed to be abundant by large-scale 16 S rRNA gene amplicon sequencing of full-scale activated sludge communities. The taxonomy can be used to classify unknown sequences, and the online MiDAS field guide links the identity to the available information about their morphology, diversity, physiology and distribution. The use of a common taxonomy across the field will provide a solid foundation for the study of microbial ecology of the activated sludge process and related treatment processes. The online MiDAS field guide is a collaborative workspace intended to facilitate a better understanding of the ecology of activated sludge and related treatment processes—knowledge that will be an invaluable resource for the optimal design and operation of these systems. Database URL: http://www.midasfieldguide.org PMID:26120139

  11. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    PubMed

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  12. SRRF: Universal live-cell super-resolution microscopy.

    PubMed

    Culley, Siân; Tosheva, Kalina L; Matos Pereira, Pedro; Henriques, Ricardo

    2018-08-01

    Super-resolution microscopy techniques break the diffraction limit of conventional optical microscopy to achieve resolutions approaching tens of nanometres. The major advantage of such techniques is that they provide resolutions close to those obtainable with electron microscopy while maintaining the benefits of light microscopy such as a wide palette of high specificity molecular labels, straightforward sample preparation and live-cell compatibility. Despite this, the application of super-resolution microscopy to dynamic, living samples has thus far been limited and often requires specialised, complex hardware. Here we demonstrate how a novel analytical approach, Super-Resolution Radial Fluctuations (SRRF), is able to make live-cell super-resolution microscopy accessible to a wider range of researchers. We show its applicability to live samples expressing GFP using commercial confocal as well as laser- and LED-based widefield microscopes, with the latter achieving long-term timelapse imaging with minimal photobleaching. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Is bleach-sedimented smear microscopy an alternative to direct microscopy under programme conditions in India?

    PubMed Central

    Vishnu, P. H.; Bansal, A.; Satyanarayana, S.; Alavadi, U.; Ohri, B. S.; Shrinivas, M. S. Rao; Desikan, P.; Jaju, J.; Rao, V. G.; Moonan, P. K.

    2013-01-01

    This cross-sectional multi-centric study compared the yield of and potential benefit for detecting smear-positive pulmonary tuberculosis (PTB) by bleach sedimentation (2% sodium-hypochlorite) versus direct microscopy under programme conditions in India. Among 3168 PTB suspects, 684 (21.6%) were detected by bleach sedimentation vs. 625 (19.7%) by direct microscopy, with a proportional overall agreement of 96% (κ = 0.88). While 594 patients were smear-positive with both methods, 31 patients detected by direct microscopy were missed and an additional 90 patients were detected by bleach sedimentation. Overall, bleach sedimentation increased the yield of smear-positive TB detection; however; it also increased the time to results. PMID:26392991

  14. Super-resolution Microscopy in Plant Cell Imaging.

    PubMed

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Electronic Blending in Virtual Microscopy

    ERIC Educational Resources Information Center

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  16. Dereplication, Aggregation and Scoring Tool (DAS Tool) v1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SIEBER, CHRISTIAN

    Communities of uncultivated microbes are critical to ecosystem function and microorganism health, and a key objective of metagenomic studies is to analyze organism-specific metabolic pathways and reconstruct community interaction networks. This requires accurate assignment of genes to genomes, yet existing binning methods often fail to predict a reasonable number of genomes and report many bins of low quality and completeness. Furthermore, the performance of existing algorithms varies between samples and biotypes. Here, we present a dereplication, aggregation and scoring strategy, DAS Tool, that combines the strengths of a flexible set of established binning algorithms. DAS Tools applied to a constructedmore » community generated more accurate bins than any automated method. Further, when applied to samples of different complexity, including soil, natural oil seeps, and the human gut, DAS Tool recovered substantially more near-complete genomes than any single binning method alone. Included were three genomes from a novel lineage . The ability to reconstruct many near-complete genomes from metagenomics data will greatly advance genome-centric analyses of ecosystems.« less

  17. Light Microscopy at Maximal Precision

    NASA Astrophysics Data System (ADS)

    Bierbaum, Matthew; Leahy, Brian D.; Alemi, Alexander A.; Cohen, Itai; Sethna, James P.

    2017-10-01

    Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10-100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  18. Microscopy image segmentation tool: Robust image data analysis

    NASA Astrophysics Data System (ADS)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  19. NMR Microscopy - Micron-Level Resolution.

    NASA Astrophysics Data System (ADS)

    Kwok, Wing-Chi Edmund

    1990-01-01

    Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is

  20. GenExp: an interactive web-based genomic DAS client with client-side data rendering.

    PubMed

    Gel Moreno, Bernat; Messeguer Peypoch, Xavier

    2011-01-01

    The Distributed Annotation System (DAS) offers a standard protocol for sharing and integrating annotations on biological sequences. There are more than 1000 DAS sources available and the number is steadily increasing. Clients are an essential part of the DAS system and integrate data from several independent sources in order to create a useful representation to the user. While web-based DAS clients exist, most of them do not have direct interaction capabilities such as dragging and zooming with the mouse. Here we present GenExp, a web based and fully interactive visual DAS client. GenExp is a genome oriented DAS client capable of creating informative representations of genomic data zooming out from base level to complete chromosomes. It proposes a novel approach to genomic data rendering and uses the latest HTML5 web technologies to create the data representation inside the client browser. Thanks to client-side rendering most position changes do not need a network request to the server and so responses to zooming and panning are almost immediate. In GenExp it is possible to explore the genome intuitively moving it with the mouse just like geographical map applications. Additionally, in GenExp it is possible to have more than one data viewer at the same time and to save the current state of the application to revisit it later on. GenExp is a new interactive web-based client for DAS and addresses some of the short-comings of the existing clients. It uses client-side data rendering techniques resulting in easier genome browsing and exploration. GenExp is open source under the GPL license and it is freely available at http://gralggen.lsi.upc.edu/recerca/genexp.

  1. GenExp: An Interactive Web-Based Genomic DAS Client with Client-Side Data Rendering

    PubMed Central

    Gel Moreno, Bernat; Messeguer Peypoch, Xavier

    2011-01-01

    Background The Distributed Annotation System (DAS) offers a standard protocol for sharing and integrating annotations on biological sequences. There are more than 1000 DAS sources available and the number is steadily increasing. Clients are an essential part of the DAS system and integrate data from several independent sources in order to create a useful representation to the user. While web-based DAS clients exist, most of them do not have direct interaction capabilities such as dragging and zooming with the mouse. Results Here we present GenExp, a web based and fully interactive visual DAS client. GenExp is a genome oriented DAS client capable of creating informative representations of genomic data zooming out from base level to complete chromosomes. It proposes a novel approach to genomic data rendering and uses the latest HTML5 web technologies to create the data representation inside the client browser. Thanks to client-side rendering most position changes do not need a network request to the server and so responses to zooming and panning are almost immediate. In GenExp it is possible to explore the genome intuitively moving it with the mouse just like geographical map applications. Additionally, in GenExp it is possible to have more than one data viewer at the same time and to save the current state of the application to revisit it later on. Conclusions GenExp is a new interactive web-based client for DAS and addresses some of the short-comings of the existing clients. It uses client-side data rendering techniques resulting in easier genome browsing and exploration. GenExp is open source under the GPL license and it is freely available at http://gralggen.lsi.upc.edu/recerca/genexp. PMID:21750706

  2. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    PubMed

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  3. Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities.

    PubMed

    Hauser, Meghan; Wojcik, Michal; Kim, Doory; Mahmoudi, Morteza; Li, Wan; Xu, Ke

    2017-06-14

    Correlative microscopy, the integration of two or more microscopy techniques performed on the same sample, produces results that emphasize the strengths of each technique while offsetting their individual weaknesses. Light microscopy has historically been a central method in correlative microscopy due to its widespread availability, compatibility with hydrated and live biological samples, and excellent molecular specificity through fluorescence labeling. However, conventional light microscopy can only achieve a resolution of ∼300 nm, undercutting its advantages in correlations with higher-resolution methods. The rise of super-resolution microscopy (SRM) over the past decade has drastically improved the resolution of light microscopy to ∼10 nm, thus creating exciting new opportunities and challenges for correlative microscopy. Here we review how these challenges are addressed to effectively correlate SRM with other microscopy techniques, including light microscopy, electron microscopy, cryomicroscopy, atomic force microscopy, and various forms of spectroscopy. Though we emphasize biological studies, we also discuss the application of correlative SRM to materials characterization and single-molecule reactions. Finally, we point out current limitations and discuss possible future improvements and advances. We thus demonstrate how a correlative approach adds new dimensions of information and provides new opportunities in the fast-growing field of SRM.

  4. Digital microscopy as valid alternative to conventional microscopy for histological evaluation of Barrett's esophagus biopsies.

    PubMed

    van der Wel, M J; Duits, L C; Seldenrijk, C A; Offerhaus, G J; Visser, M; Ten Kate, F J; de Boer, O J; Tijssen, J G; Bergman, J J; Meijer, S L

    2017-11-01

    Management of Barrett's esophagus (BE) relies heavily on histopathological assessment of biopsies, associated with significant intra- and interobserver variability. Guidelines recommend biopsy review by an expert in case of dysplasia. Conventional review of biopsies, however, is impractical and does not allow for teleconferencing or annotations. An expert digital review platform might overcome these limitations. We compared diagnostic agreement of digital and conventional microscopy for diagnosing BE ± dysplasia. Sixty BE biopsy glass slides (non-dysplastic BE (NDBE); n = 25, low-grade dysplasia (LGD); n = 20; high-grade dysplasia (HGD); n = 15) were scanned at ×20 magnification. The slides were assessed four times by five expert BE pathologists, all practicing histopathologists (range: 5-30 years), in 2 alternating rounds of digital and conventional microscopy, each in randomized order and sequence of slides. Intraobserver and pairwise interobserver agreement were calculated, using custom weighted Cohen's kappa, adjusted for the maximum possible kappa scores. Split into three categories (NDBE, IND, LGD+HGD), the mean intraobserver agreement was 0.75 and 0.84 for digital and conventional assessment, respectively (p = 0.35). Mean pairwise interobserver agreement was 0.80 for digital and 0.85 for conventional microscopy (p = 0.17). In 47/60 (78%) of digital microscopy reviews a majority vote of ≥3 pathologists was reached before consensus meeting. After group discussion, a majority vote was achieved in all cases (60/60). Diagnostic agreement of digital microscopy is comparable to that of conventional microscopy. These outcomes justify the use of digital slides in a nationwide, web-based BE revision platform in the Netherlands. This will overcome the practical issues associated with conventional histologic review by multiple pathologists. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus

  5. Super-resolved linear fluorescence localization microscopy using photostable fluorophores: A virtual microscopy study

    NASA Astrophysics Data System (ADS)

    Birk, Udo; Szczurek, Aleksander; Cremer, Christoph

    2017-12-01

    Current approaches to overcome the conventional limit of the resolution potential of light microscopy (of about 200 nm for visible light), often suffer from non-linear effects, which render the quantification of the image intensities in the reconstructions difficult, and also affect the quantification of the biological structure under investigation. As an attempt to face these difficulties, we discuss a particular method of localization microscopy which is based on photostable fluorescent dyes. The proposed method can potentially be implemented as a fast alternative for quantitative localization microscopy, circumventing the need for the acquisition of thousands of image frames and complex, highly dye-specific imaging buffers. Although the need for calibration remains in order to extract quantitative data (such as the number of emitters), multispectral approaches are largely facilitated due to the much less stringent requirements on imaging buffers. Furthermore, multispectral acquisitions can be readily obtained using commercial instrumentation such as e.g. the conventional confocal laser scanning microscope.

  6. Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy.

    PubMed

    Dardikman, Gili; Nygate, Yoav N; Barnea, Itay; Turko, Nir A; Singh, Gyanendra; Javidi, Barham; Shaked, Natan T

    2018-03-01

    We suggest a new multimodal imaging technique for quantitatively measuring the integral (thickness-average) refractive index of the nuclei of live biological cells in suspension. For this aim, we combined quantitative phase microscopy with simultaneous 2-D fluorescence microscopy. We used 2-D fluorescence microscopy to localize the nucleus inside the quantitative phase map of the cell, as well as for measuring the nucleus radii. As verified offline by both 3-D confocal fluorescence microscopy and 2-D fluorescence microscopy while rotating the cells during flow, the nucleus of cells in suspension that are not during division can be assumed to be an ellipsoid. The entire shape of a cell in suspension can be assumed to be a sphere. Then, the cell and nucleus 3-D shapes can be evaluated based on their in-plain radii available from the 2-D phase and fluorescent measurements, respectively. Finally, the nucleus integral refractive index profile is calculated. We demonstrate the new technique on cancer cells, obtaining nucleus refractive index values that are lower than those of the cytoplasm, coinciding with recent findings. We believe that the proposed technique has the potential to be used for flow cytometry, where full 3-D refractive index tomography is too slow to be implemented during flow.

  7. Holographic techniques for cellular fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Myung K.

    2017-04-01

    We have constructed a prototype instrument for holographic fluorescence microscopy (HFM) based on self-interference incoherent digital holography (SIDH) and demonstrate novel imaging capabilities such as differential 3D fluorescence microscopy and optical sectioning by compressive sensing.

  8. Theory for measurements of penetration depth in magnetic superconductors by magnetic force microscopy and scanning SQUID microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Bulaevskii, Lev N.

    2012-07-01

    The working principle of magnetic force microscopy and scanning SQUID microscopy is introducing a magnetic source near a superconductor and measuring the magnetic field distribution near the superconductor, from which one can obtain the penetration depth. We investigate the magnetic field distribution near the surface of a magnetic superconductor when a magnetic source is placed close to the superconductor, which can be used to extract both the penetration depth λL and magnetic susceptibility χ by magnetic force microscopy or scanning SQUID microscopy. When the magnetic moments are parallel to the surface, one extracts λL/1-4πχ. When the moments are perpendicular to the surface, one obtains λL. By changing the orientation of the crystal, one thus is able to extract both χ and λL.

  9. Leakage radiation interference microscopy.

    PubMed

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  10. Functional photoacoustic microscopy of pH

    NASA Astrophysics Data System (ADS)

    Chatni, M. Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, imbalance of pH regulation may result from or result in serious illness. Even though the regulation system of pH is very robust, tissue pH can be altered in many diseases such as cancer, osteoporosis and diabetes mellitus. Traditional high-resolution optical imaging techniques, such as confocal microscopy, routinely image pH in cells and tissues using pH sensitive fluorescent dyes, which change their fluorescence properties with the surrounding pH. Since strong optical scattering in biological tissue blurs images at greater depths, high-resolution pH imaging is limited to penetration depths of 1mm. Here, we report photoacoustic microscopy (PAM) of commercially available pH-sensitive fluorescent dye in tissue phantoms. Using both opticalresolution photoacoustic microscopy (OR-PAM), and acoustic resolution photoacoustic microscopy (AR-PAM), we explored the possibility of recovering the pH values in tissue phantoms. In this paper, we demonstrate that PAM was capable of recovering pH values up to a depth of 2 mm, greater than possible with other forms of optical microscopy.

  11. Rotary-scanning optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Qi, Weizhi; Xi, Lei

    2016-10-01

    Optical resolution photoacoustic microscopy (ORPAM) is currently one of the fastest evolving photoacoustic imaging modalities. It has a comparable spatial resolution to pure optical microscopic techniques such as epifluorescence microscopy, confocal microscopy, and two-photon microscopy, but also owns a deeper penetration depth. In this paper, we report a rotary-scanning (RS)-ORPAM that utilizes a galvanometer scanner integrated with objective to achieve rotary laser scanning. A 15 MHz cylindrically focused ultrasonic transducer is mounted onto a motorized rotation stage to follow optical scanning traces synchronously. To minimize the loss of signal to noise ratio, the acoustic focus is precisely adjusted to reach confocal with optical focus. Black tapes and carbon fibers are firstly imaged to evaluate the performance of the system, and then in vivo imaging of vasculature networks inside the ears and brains of mice is demonstrated using this system.

  12. 4Pi-confocal microscopy of live cells

    NASA Astrophysics Data System (ADS)

    Bahlmann, Karsten; Jakobs, Stefan; Hell, Stefan W.

    2002-06-01

    By coherently adding the spherical wavefronts of two opposing lenses, two-photon excitation 4Pi-confocal fluorescence microscopy has achieved three-dimensional imaging with an axial resolution 3-7 times better than confocal microscopy. So far this improvement was possible only in glycerol-mounted, fixed cells. Here we report 4Pi-confocal microscopy of watery objects and its application to the imaging of live cells. Water immersion 4Pi-confocal microscopy of membrane stained live Escherichia coli bacteria attains a 4.3 fold better axial resolution as compared to the best water immersion confocal microscope. The resolution enhancement results into a vastly improved three-dimensional representation of the bacteria. The first images of live biological samples with an all-directional resolution in the 190-280 nm range are presented here, thus establishing a new resolution benchmark in live cell microscopy.

  13. Reisen im freien Fall - Teil 2: Das Zwillingsparadoxon aus dem Blickwinkel der ART

    NASA Astrophysics Data System (ADS)

    Sonne, Bernd; Weiß, Reinhard

    2013-07-01

    Nachdem wir uns mit den Prinzipien der ART und einigen Beispielen vertraut gemacht haben, kommen wir nun zur Berechnung des Zwillingsparadoxons aus Sicht des reisenden Zwillings. Dabei spielt das Äquivalenzprinzip eine große Rolle. Deshalb wird die Bewegungssituation noch einmal erläutert, diesmal aus Sicht von Katrin. Sie befindet sich in ihrem System S'in Ruhe. In ihrem System läuft die Zeit t'ab. Nach dem Start fühlt Katrin jedoch eine Kraft, die sie als Gravitationskraft interpretieren kann. Sie merkt es daran, dass sie in den Sitz gedrückt wird. Nach einiger Zeit werden die Triebwerke abgeschaltet, und das Raumschiff fliegt mit konstanter Geschwindigkeit weiter, Phase 2. Anschließend wird der Schub der Triebwerke solange umgekehrt, bis das Raumschiff irgendwo mit der Geschwindigkeit null am Umkehrpunkt U landet, Phase 3 (Abb. 15.1). Die Erde, auf der sich Michael befindet, bewegt sich mit x'(t') aus Sicht von Katrin im freien Fall von ihr weg, s. das Experiment mit dem steigenden Fahrstuhl in Abschn. 13.2.1.

  14. Das Prinzip Bewegung - Herz und Gehirn als Metaphern des menschlichen Lebens

    NASA Astrophysics Data System (ADS)

    Otis, Laura

    In diesem Jahr, in dem wir Charles Darwins gedenken, möchte ich etwas riskieren und eine Frage erörtern, die für die Literatur ebenso wie für die Biologie zentral ist: Was ist das Leben? Die Antwort auf diese Frage finden wir nicht in der Bibliothek und nicht im Labor, zumindest nicht an diesen erkenntnisproduzierenden Stellen allein. Als Literaturwissenschaftlerin und ehemalige Naturwissenschaftlerin glaube ich, dass wir das Leben nur verstehen werden, wenn wir seinen Wirkungen überall nachforschen, inklusive in der Literatur.

  15. Observation of multicellular spinning behavior of Proteus mirabilis by atomic force microscopy and multifunctional microscopy.

    PubMed

    Liu, Yanxia; Deng, Yuanxin; Luo, Shuxiu; Deng, Yu; Guo, Linming; Xu, Weiwei; Liu, Lei; Liu, Junkang

    2014-01-01

    This study aimed to observe the multicellular spinning behavior of Proteus mirabilis by atomic force microscopy (AFM) and multifunctional microscopy in order to understand the mechanism underlying this spinning movement and its biological significance. Multifunctional microscopy with charge-coupled device (CCD) and real-time AFM showed changes in cell structure and shape of P. mirabilis during multicellular spinning movement. Specifically, the morphological characteristics of P. mirabilis, multicellular spinning dynamics, and unique movement were observed. Our findings indicate that the multicellular spinning behavior of P. mirabilis may be used to collect nutrients, perform colonization, and squeeze out competitors. The movement characteristics of P. mirabilis are vital to the organism's biological adaptability to the surrounding environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Ophthalmic imaging using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Teng, Shu-Wen; Peng, Ju-Li; Lin, Huei-Hsing; Wu, Hai-Yin; Lo, Wen; Sun, Yen; Lin, Wei-Chou; Lin, Sung-Jan; Jee, Shiou-Hwa; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2005-04-01

    This purpose of this study is to demonstrate the feasibility of using multiphoton microscopy in ophthalmologic imaging. Without the introduction of extrinsic fluorescence molecules, multiphoton induced autofluorescence and second harmonic generation signals can be used to obtain useful structural information of normal and diseased corneas. Our work can potentially lead to the in vivo application of multiphoton microscopy in investigating corneal physiology and pathologies.

  17. Nonlinear Focal Modulation Microscopy.

    PubMed

    Zhao, Guangyuan; Zheng, Cheng; Kuang, Cuifang; Zhou, Renjie; Kabir, Mohammad M; Toussaint, Kimani C; Wang, Wensheng; Xu, Liang; Li, Haifeng; Xiu, Peng; Liu, Xu

    2018-05-11

    We demonstrate nonlinear focal modulation microscopy (NFOMM) to achieve superresolution imaging. Traditional approaches to superresolution that utilize point scanning often rely on spatially reducing the size of the emission pattern by directly narrowing (e.g., through minimizing the detection pinhole in Airyscan, Zeiss) or indirectly peeling its outer profiles [e.g., through depleting the outer emission region in stimulated emission depletion (STED) microscopy]. We show that an alternative conceptualization that focuses on maximizing the optical system's frequency shifting ability offers advantages in further improving resolution while reducing system complexity. In NFOMM, a spatial light modulator and a suitably intense laser illumination are used to implement nonlinear focal-field modulation to achieve a transverse spatial resolution of ∼60  nm (∼λ/10). We show that NFOMM is comparable with STED microscopy and suitable for fundamental biology studies, as evidenced in imaging nuclear pore complexes, tubulin and vimentin in Vero cells. Since NFOMM is readily implemented as an add-on module to a laser-scanning microscope, we anticipate wide utility of this new imaging technique.

  18. Nonlinear Focal Modulation Microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyuan; Zheng, Cheng; Kuang, Cuifang; Zhou, Renjie; Kabir, Mohammad M.; Toussaint, Kimani C.; Wang, Wensheng; Xu, Liang; Li, Haifeng; Xiu, Peng; Liu, Xu

    2018-05-01

    We demonstrate nonlinear focal modulation microscopy (NFOMM) to achieve superresolution imaging. Traditional approaches to superresolution that utilize point scanning often rely on spatially reducing the size of the emission pattern by directly narrowing (e.g., through minimizing the detection pinhole in Airyscan, Zeiss) or indirectly peeling its outer profiles [e.g., through depleting the outer emission region in stimulated emission depletion (STED) microscopy]. We show that an alternative conceptualization that focuses on maximizing the optical system's frequency shifting ability offers advantages in further improving resolution while reducing system complexity. In NFOMM, a spatial light modulator and a suitably intense laser illumination are used to implement nonlinear focal-field modulation to achieve a transverse spatial resolution of ˜60 nm (˜λ /10 ). We show that NFOMM is comparable with STED microscopy and suitable for fundamental biology studies, as evidenced in imaging nuclear pore complexes, tubulin and vimentin in Vero cells. Since NFOMM is readily implemented as an add-on module to a laser-scanning microscope, we anticipate wide utility of this new imaging technique.

  19. Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points

    PubMed Central

    Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.

    2014-01-01

    Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis. PMID:25479106

  20. Microscopy & microanalysis 2016 in Columbus, Ohio

    DOE PAGES

    Michael, Joseph R.

    2016-01-08

    The article provides information about an upcoming conference from the program chair. The Microscopy Society of America (MSA), the Microanalysis Society (MAS), and the International Metallographic Society (IMS) invite participation in Microscopy & Microanalysis 2016 in Columbus, Ohio, July 24 through July 28, 2016.

  1. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy.

    PubMed

    Gianoncelli, A; Vaccari, L; Kourousias, G; Cassese, D; Bedolla, D E; Kenig, S; Storici, P; Lazzarino, M; Kiskinova, M

    2015-05-14

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.

  2. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy

    PubMed Central

    Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.

    2015-01-01

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies. PMID:25974639

  3. Sputum Microscopy With Fluorescein Diacetate Predicts Tuberculosis Infectiousness.

    PubMed

    Datta, Sumona; Sherman, Jonathan M; Tovar, Marco A; Bravard, Marjory A; Valencia, Teresa; Montoya, Rosario; Quino, Willi; D'Arcy, Nikki; Ramos, Eric S; Gilman, Robert H; Evans, Carlton A

    2017-09-01

    Sputum from patients with tuberculosis contains subpopulations of metabolically active and inactive Mycobacterium tuberculosis with unknown implications for infectiousness. We assessed sputum microscopy with fluorescein diacetate (FDA, evaluating M. tuberculosis metabolic activity) for predicting infectiousness. Mycobacterium tuberculosis was quantified in pretreatment sputum of patients with pulmonary tuberculosis using FDA microscopy, culture, and acid-fast microscopy. These 35 patients' 209 household contacts were followed with prevalence surveys for tuberculosis disease for 6 years. FDA microscopy was positive for a median of 119 (interquartile range [IQR], 47-386) bacteria/µL sputum, which was 5.1% (IQR, 2.4%-11%) the concentration of acid-fast microscopy-positive bacteria (2069 [IQR, 1358-3734] bacteria/μL). Tuberculosis was diagnosed during follow-up in 6.4% (13/209) of contacts. For patients with lower than median concentration of FDA microscopy-positive M. tuberculosis, 10% of their contacts developed tuberculosis. This was significantly more than 2.7% of the contacts of patients with higher than median FDA microscopy results (crude hazard ratio [HR], 3.8; P = .03). This association maintained statistical significance after adjusting for disease severity, chemoprophylaxis, drug resistance, and social determinants (adjusted HR, 3.9; P = .02). Mycobacterium tuberculosis that was FDA microscopy negative was paradoxically associated with greater infectiousness. FDA microscopy-negative bacteria in these pretreatment samples may be a nonstaining, slowly metabolizing phenotype better adapted to airborne transmission. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  4. The e-evolution of microscopy in dental education.

    PubMed

    Farah, Camile S; Maybury, Terrence S

    2009-08-01

    Recent technological innovation has now made it possible to turn the computer into a microscope. This has entailed a shift from light microscopy to virtual microscopy. This development then foregrounds the issue of the pedagogy involved in this move from the analogue technology of the light microscope to the digital, computerized instance of virtual microscopy. In order to address this issue, undergraduate students enrolled in the Bachelor of Dental Science program at the University of Queensland School of Dentistry were surveyed to ascertain their preference for light or virtual microscopy. The value of this study is that it was conducted on the same cohort of students in two separate courses in 2006 and 2008, giving it longitudinal validity. The responses were overwhelmingly in favor of virtual microscopy. When it came to completely replacing the light microscope with virtual microscopy, however, students were much more ambivalent about such a wholesale change although this was less of an issue in the senior year. This shift from light to virtual microscopy signals larger changes in the tertiary sector from print-literate to electronic forms of knowledge and from teacher-centered to student-focused frames of learning. In short, we are in the midst of the e-evolution of microscopy in dental education.

  5. Diagnostic accuracy of same-day microscopy versus standard microscopy for pulmonary tuberculosis: a systematic review and meta-analysis.

    PubMed

    Davis, J Lucian; Cattamanchi, Adithya; Cuevas, Luis E; Hopewell, Philip C; Steingart, Karen R

    2013-02-01

    Sputum smear microscopy is the most widely available diagnostic test for pulmonary tuberculosis in countries with a high burden of the disease. Improving its accuracy is crucial to achievement of case-detection targets established by the Millennium Development Goals. Unfortunately, many patients are unable to submit all of the specimens needed for examination or to return for treatment because standard sputum collection and reporting requires several clinic visits. To inform policy recommendations by a WHO-convened Expert Group, we aimed to assess the accuracy of sputum smear examination with strategies for obtaining sputum on 1 day compared with strategies for obtaining sputum over 2 days. We did a systematic review and meta-analysis of research articles comparing the accuracy of front-loaded or same-day microscopy and standard sputum smear microscopy for diagnosis of culture-confirmed pulmonary tuberculosis. We searched Medline, Embase, Biosis, and Web of Science for articles published between Jan 1, 2005, and Feb 14, 2012. Two investigators identified eligible articles and extracted data for individual study sites. We generated pooled summary estimates (95% CIs) for sensitivity and specificity by use of random-effects meta-analysis when four or more studies were available. We identified eight relevant studies from five articles enrolling 7771 patients with suspected tuberculosis in low-income countries. Compared with the standard approach of examination of two smears with Ziehl-Neelsen light microscopy over 2 days, examination of two smears taken on the same day had much the same sensitivity (64% [95% CI 60 to 69] for standard microscopy vs 63% [58 to 68] for same-day microscopy) and specificity (98% [97 to 99] vs 98% [97 to 99]). We noted similar results for studies employing light-emitting diode fluorescence microscopy and for studies examining three smears, whether they were compared with two-smear strategies or with one another. Same-day sputum smear

  6. Establishment of feeder-free culture system for human induced pluripotent stem cell on DAS nanocrystalline graphene

    NASA Astrophysics Data System (ADS)

    Lee, Hyunah; Nam, Donggyu; Choi, Jae-Kyung; Araúzo-Bravo, Marcos J.; Kwon, Soon-Yong; Zaehres, Holm; Lee, Taehee; Park, Chan Young; Kang, Hyun-Wook; Schöler, Hans R.; Kim, Jeong Beom

    2016-02-01

    The maintenance of undifferentiated human pluripotent stem cells (hPSC) under xeno-free condition requires the use of human feeder cells or extracellular matrix (ECM) coating. However, human-derived sources may cause human pathogen contamination by viral or non-viral agents to the patients. Here we demonstrate feeder-free and xeno-free culture system for hPSC expansion using diffusion assisted synthesis-grown nanocrystalline graphene (DAS-NG), a synthetic non-biological nanomaterial which completely rule out the concern of human pathogen contamination. DAS-NG exhibited advanced biocompatibilities including surface nanoroughness, oxygen containing functional groups and hydrophilicity. hPSC cultured on DAS-NG could maintain pluripotency in vitro and in vivo, and especially cell adhesion-related gene expression profile was comparable to those of cultured on feeders, while hPSC cultured without DAS-NG differentiated spontaneously with high expression of somatic cell-enriched adhesion genes. This feeder-free and xeno-free culture method using DAS-NG will facilitate the generation of clinical-grade hPSC.

  7. X-ray microscopy of human malaria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magowan, C.; Brown, J.T.; Mohandas, N.

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in amore » way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.« less

  8. Analysis of Peroxisome Biogenesis in Pollen by Confocal Microscopy and Transmission Electron Microscopy.

    PubMed

    Jia, Peng-Fei; Li, Hong-Ju; Yang, Wei-Cai

    2017-01-01

    Peroxisome is an essential single-membrane bound organelle in most eukaryotic cells and functions in diverse cellular processes. De novo formation, division, and turnover of peroxisomes contribute to its biogenesis, morphology, and population regulation. In plants, peroxisome plays multiple roles, including metabolism, development, and stress response. Defective peroxisome biogenesis and development retard plant growth, adaption, and reproduction. Through tracing the subcellular localization of fluorescent reporter tagged matrix protein of peroxisome, fluorescence microscopy is a reliable and fast way to detect peroxisome biogenesis. Further fine-structural observation of peroxisome by TEM enables researchers to observe the detailed ultrastructure of its morphology and spatial contact with other organelles. Pollen grain is a specialized structure where two small sperm cells are enclosed in the cytoplasm of a large vegetative cell. Two features make pollen grain a good system to study peroxisome biogenesis: indispensable requirement of peroxisome for germination on the stigma and homogeneity. Here, we describe the methods of studying peroxisome biogenesis in Arabidopsis pollen grains by fluorescent live-imaging with confocal laser scanning microscopy (CLSM) and by DAB-staining based transmission electron microscopy (TEM).

  9. Detecting Changes Following the Provision of Assistive Devices: Utility of the WHO-DAS II

    ERIC Educational Resources Information Center

    Raggi, Alberto

    2010-01-01

    The World Health Organization Disability Assessment Schedule II (WHO-DAS II) is a non-disease-specific International Classification of Functioning, Disability, and Health-based disability assessment instrument developed to measure activity limitations and restrictions to participation. The aim of this pilot study is to evaluate WHO-DAS II…

  10. Fully Hydrated Yeast Cells Imaged with Electron Microscopy

    PubMed Central

    Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels

    2011-01-01

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. PMID:21575587

  11. Analysis of incomplete excisions of basal-cell carcinomas after breadloaf microscopy compared with 3D-microscopy: a prospective randomized and blinded study.

    PubMed

    Boehringer, Alexandra; Adam, Patrick; Schnabl, Saskia; Häfner, Hans-Martin; Breuninger, Helmut

    2015-08-01

    Basal-cell carcinomas may show irregular, asymmetric subclinical growth. This study analyzed the efficacy of 'breadloaf' microscopy (serial sectioning) and three-dimensional (3D) microscopy in detecting positive tumor margins. Two hundred eighty-three (283) tumors (51.2%) were put into the breadloaf microscopy group; 270 tumors (48.8%) into the 3D microscopy group. The position of any detected tumor outgrowths was identified in clock face fashion. The time required for cutting and embedding the specimens and the examination of the microscopic slides was measured. Patient/tumor characteristics and surgical margins did not differ significantly. Tumor outgrowths at the excision margin were found in 62 of 283 cases (21.9%) in the breadloaf microscopy group and in 115 of 270 cases (42.6%) in the 3D microscopy group, constituting a highly significant difference (p < 0.001). This difference held true with incomplete excision of fibrosing (infiltrative/sclerosing/morpheaform) tumors [32.9% in the breadloaf microscopy group and 57.5% in the 3D microscopy group (p = 0.003)] and also with solid (nodular) tumors [16.1 and 34.2%, respectively (p < 0.001)]. The mean overall examination time required showed no important difference. In summary, for detection of tumor outgrowths, 3D microscopy has almost twice the sensitivity of breadloaf microscopy, particularly in the situation of aggressive/infiltrative carcinomas. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. X-ray microscopy of live biological micro-organisms

    NASA Astrophysics Data System (ADS)

    Raja Al-Ani, Ma'an Nassar

    Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.

  13. Interferometric temporal focusing microscopy using three-photon excitation fluorescence.

    PubMed

    Toda, Keisuke; Isobe, Keisuke; Namiki, Kana; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi

    2018-04-01

    Super-resolution microscopy has become a powerful tool for biological research. However, its spatial resolution and imaging depth are limited, largely due to background light. Interferometric temporal focusing (ITF) microscopy, which combines structured illumination microscopy and three-photon excitation fluorescence microscopy, can overcome these limitations. Here, we demonstrate ITF microscopy using three-photon excitation fluorescence, which has a spatial resolution of 106 nm at an imaging depth of 100 µm with an excitation wavelength of 1060 nm.

  14. Numerical study of anomalous dynamic scaling behaviour of (1+1)-dimensional Das Sarma-Tamborenea model

    NASA Astrophysics Data System (ADS)

    Xun, Zhi-Peng; Tang, Gang; Han, Kui; Hao, Da-Peng; Xia, Hui; Zhou, Wei; Yang, Xi-Quan; Wen, Rong-Ji; Chen, Yu-Ling

    2010-07-01

    In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model, the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by using the kinetic Monte-Carlo method. In the simulation, noise reduction technique is used in order to eliminate the crossover effect. Our results show that due to the existence of the finite-size effect, the effective global roughness exponent of the (1+1)-dimensional Das Sarma-Tamborenea model systematically decreases with system size L increasing when L > 256. This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys. Rev. E 70 031607]. In addition, our simulation results also show that the Das Sarma-Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.

  15. Fully hydrated yeast cells imaged with electron microscopy.

    PubMed

    Peckys, Diana B; Mazur, Peter; Gould, Kathleen L; de Jonge, Niels

    2011-05-18

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccharomyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. A review of cellphone microscopy for disease detection.

    PubMed

    Dendere, R; Myburg, N; Douglas, T S

    2015-12-01

    The expansion in global cellphone network coverage coupled with advances in cellphone imaging capabilities present an opportunity for the advancement of cellphone microscopy as a low-cost alternative to conventional microscopy for disease detection in resource-limited regions. The development of cellphone microscopy has also benefitted from the availability of low-cost miniature microscope components such as low-power light-emitting diodes and ball lenses. As a result, researchers are developing hardware and software techniques that would enable such microscopes to produce high-resolution, diagnostic-quality images. This approach may lead to more widespread delivery of diagnostic services in resource-limited areas where there is a shortage of the skilled labour required for conventional microscopy and where prevalence of infectious and other diseases is still high. In this paper, we review current techniques, clinical applications and challenges faced in the field of cellphone microscopy. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  17. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy

    PubMed Central

    Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter

    2010-01-01

    Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836

  18. Coherent Raman Scattering Microscopy in Biology and Medicine.

    PubMed

    Zhang, Chi; Zhang, Delong; Cheng, Ji-Xin

    2015-01-01

    Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemical information available from CRS images. In this article, we review recent achievements in CRS microscopy, focusing on the theory of the CRS signal-to-noise ratio, imaging speed, technical developments, and applications of CRS imaging in bioscience and clinical settings. In addition, we present possible future directions that the use of this technology may take.

  19. Coherent Raman Scattering Microscopy in Biology and Medicine

    PubMed Central

    Zhang, Chi; Zhang, Delong; Cheng, Ji-Xin

    2016-01-01

    Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemical information available from CRS images. In this article, we review recent achievements in CRS microscopy, focusing on the theory of the CRS signal-to-noise ratio, imaging speed, technical developments, and applications of CRS imaging in bioscience and clinical settings. In addition, we present possible future directions that the use of this technology may take. PMID:26514285

  20. Earthquake recording at the Stanford DAS Array with fibers in existing telecomm conduits

    NASA Astrophysics Data System (ADS)

    Biondi, B. C.; Martin, E. R.; Yuan, S.; Cole, S.; Karrenbach, M. H.

    2017-12-01

    The Stanford Distributed Acoustic Sensing Array (SDASA-1) has been continuously recording seismic data since September 2016 on 2.5 km of single mode fiber optics in existing telecommunications conduits under Stanford's campus. The array is figure-eight shaped and roughly 600 m along its widest side with a channel spacing of roughly 8 m. This array is easy to maintain and is nonintrusive, making it well suited to urban environments, but it sacrifices some cable-to-ground coupling compared to more traditional seismometers. We have been testing its utility for earthquake recording, active seismic, and ambient noise interferometry. This talk will focus on earthquake observations. We will show comparisons between the strain rates measured throughout the DAS array and the particle velocities measured at the nearby Jasper Ridge Seismic Station (JRSC). In some of these events, we will point out directionality features specific to DAS that can require slight modifications in data processing. We also compare repeatability of DAS and JRSC recordings of blasts from a nearby quarry. Using existing earthquake databases, we have created a small catalog of DAS earthquake observations by pulling records of over 700 Northern California events spanning Sep. 2016 to Jul. 2017 from both the DAS data and JRSC. On these events we have tested common array methods for earthquake detection and location including beamforming and STA/LTA analysis in time and frequency. We have analyzed these events to approximate thresholds on what distances and magnitudes are clearly detectible by the DAS array. Further analysis should be done on detectability with methods tailored to small events (for example, template matching). In creating this catalog, we have developed open source software available for free download that can manage large sets of continuous seismic data files (both existing files, and files as they stream in). This software can both interface with existing earthquake networks, and

  1. Psychometric Properties of the Disability Assessment Schedule (DAS) for Behavior Problems: An Independent Investigation

    ERIC Educational Resources Information Center

    Tsakanikos, Elias; Underwood, Lisa; Sturmey, Peter; Bouras, Nick; McCarthy, Jane

    2011-01-01

    The present study employed the Disability Assessment Schedule (DAS) to assess problem behaviors in a large sample of adults with ID (N = 568) and evaluate the psychometric properties of this instrument. Although the DAS problem behaviors were found to be internally consistent (Cronbach's [alpha] = 0.87), item analysis revealed one weak item…

  2. Advanced SLMs for microscopy

    NASA Astrophysics Data System (ADS)

    Linnenberger, A.

    2018-02-01

    Wavefront shaping devices such as deformable mirrors, liquid crystal spatial light modulators (SLMs), and active lenses are of considerable interest in microscopy for aberration correction, volumetric imaging, and programmable excitation. Liquid crystal SLMs are high resolution phase modulators capable of creating complex phase profiles to reshape, or redirect light within a three-dimensional (3D) volume. Recent advances in Meadowlark Optics (MLO) SLMs reduce losses by increasing fill factor from 83.4% to 96%, and improving resolution from 512 x 512 pixels to 1920 x 1152 pixels while maintaining a liquid crystal response time of 300 Hz at 1064 nm. This paper summarizes new SLM capabilities, and benefits for microscopy.

  3. Investigation of Nematode Diversity using Scanning Electron Microscopy and Fluorescent Microscopy

    NASA Astrophysics Data System (ADS)

    Seacor, Taylor; Howell, Carina

    2013-03-01

    Nematode worms account for the vast majority of the animals in the biosphere. They are colossally important to global public health as parasites, and to agriculture both as pests and as beneficial inhabitants of healthy soil. Amphid neurons are the anterior chemosensory neurons in nematodes, mediating critical behaviors including chemotaxis and mating. We are examining the cellular morphology and external anatomy of amphid neurons, using fluorescence microscopy and scanning electron microscopy, respectively, of a wide range of soil nematodes isolated in the wild. We use both classical systematics (e.g. diagnostic keys) and molecular markers (e.g. ribosomal RNA) to classify these wild isolates. Our ultimate aim is to build a detailed anatomical database in order to dissect genetic pathways of neuronal development and function across phylogeny and ecology. Research supported by NSF grants 092304, 0806660, 1058829 and Lock Haven University FPDC grants

  4. Anbindung des SISIS-SunRise-Bibliothekssystems an das zentrale Identitätsmanagement

    NASA Astrophysics Data System (ADS)

    Ebner, Ralf; Pretz, Edwin

    Wir berichten über Konzepte und Implementierungen zur Datenprovisionierung aus den Personenverwaltungssystemen der Technischen Universität München (TUM) über das zentrale Metadirectory am Leibniz-Rechenzentrum (LRZ) in das SISIS-SunRise-Bibliothekssystem der Universitätsbibliothek der TUM (TUB). Es werden drei Implementierungsvarianten diskutiert, angefangen von der Generierung und Übertragung einfacher CSV-Dateien über ein OpenLDAP-basiertes Konzept als Backend für die SISIS-Datenbank bis zur endgültigen Implementierung mit dem OCLC IDM Connector.

  5. CARS microscopy of Alzheimer's diseased brain tissue

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Kiskis, Juris; Fink, Helen; Nyberg, Lena; Thyr, Jakob; Li, Jia-Yi

    2014-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder currently without cure, characterized by the presence of extracellular plaques surrounded by dystrophic neurites. In an effort to understand the underlying mechanisms, biochemical analysis (protein immunoblot) of plaque extracts reveals that they consist of amyloid-beta (Aβ) peptides assembled as oligomers, protofibrils and aggregates. Their spatial distribution has been confirmed by Thioflavin-S or immuno-staining with fluorescence microscopy. However, it is increasingly understood that the protein aggregation is only one of several mechanism that causes neuronal dysfunction and death. This raises the need for a more complete biochemical analysis. In this study, we have complemented 2-photon fluorescence microscopy of Thioflavin-S and Aβ immuno-stained human AD plaques with CARS microscopy. We show that the chemical build-up of AD plaques is more complex and that Aβ staining does not provide the complete picture of the spatial distribution or the molecular composition of AD plaques. CARS images provide important complementary information to that obtained by fluorescence microscopy, motivating a broader introduction of CARS microscopy in the AD research field.

  6. Genetically encoded sensors and fluorescence microscopy for anticancer research

    NASA Astrophysics Data System (ADS)

    Zagaynova, Elena V.; Shirmanova, Marina V.; Sergeeva, Tatiana F.; Klementieva, Natalia V.; Mishin, Alexander S.; Gavrina, Alena I.; Zlobovskay, Olga A.; Furman, Olga E.; Dudenkova, Varvara V.; Perelman, Gregory S.; Lukina, Maria M.; Lukyanov, Konstantin A.

    2017-02-01

    Early response of cancer cells to chemical compounds and chemotherapeutic drugs were studied using novel fluorescence tools and microscopy techniques. We applied confocal microscopy, two-photon fluorescence lifetime imaging microscopy and super-resolution localization-based microscopy to assess structural and functional changes in cancer cells in vitro. The dynamics of energy metabolism, intracellular pH, caspase-3 activation during staurosporine-induced apoptosis as well as actin cytoskeleton rearrangements under chemotherapy were evaluated. We have showed that new genetically encoded sensors and advanced fluorescence microscopy methods provide an efficient way for multiparameter analysis of cell activities

  7. Application of scanning acoustic microscopy to advanced structural ceramics

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1987-01-01

    A review is presentod of research investigations of several acoustic microscopy techniques for application to structural ceramics for advanced heat engines. Results obtained with scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM) are compared. The techniques were evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described with emphasis on statistics of detectability of flaws that constitute potential fracture origins.

  8. Applications of microscopy in Salmonella research.

    PubMed

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  9. Iterative expansion microscopy.

    PubMed

    Chang, Jae-Byum; Chen, Fei; Yoon, Young-Gyu; Jung, Erica E; Babcock, Hazen; Kang, Jeong Seuk; Asano, Shoh; Suk, Ho-Jun; Pak, Nikita; Tillberg, Paul W; Wassie, Asmamaw T; Cai, Dawen; Boyden, Edward S

    2017-06-01

    We recently developed a method called expansion microscopy, in which preserved biological specimens are physically magnified by embedding them in a densely crosslinked polyelectrolyte gel, anchoring key labels or biomolecules to the gel, mechanically homogenizing the specimen, and then swelling the gel-specimen composite by ∼4.5× in linear dimension. Here we describe iterative expansion microscopy (iExM), in which a sample is expanded ∼20×. After preliminary expansion a second swellable polymer mesh is formed in the space newly opened up by the first expansion, and the sample is expanded again. iExM expands biological specimens ∼4.5 × 4.5, or ∼20×, and enables ∼25-nm-resolution imaging of cells and tissues on conventional microscopes. We used iExM to visualize synaptic proteins, as well as the detailed architecture of dendritic spines, in mouse brain circuitry.

  10. Iterative expansion microscopy

    PubMed Central

    Chang, Jae-Byum; Chen, Fei; Yoon, Young-Gyu; Jung, Erica E.; Babcock, Hazen; Kang, Jeong Seuk; Asano, Shoh; Suk, Ho-Jun; Pak, Nikita; Tillberg, Paul W.; Wassie, Asmamaw; Cai, Dawen; Boyden, Edward S.

    2017-01-01

    We recently discovered it was possible to physically magnify preserved biological specimens by embedding them in a densely crosslinked polyelectrolyte gel, anchoring key labels or biomolecules to the gel, mechanically homogenizing the specimen, and then swelling the gel-specimen composite by ~4.5x in linear dimension, a process we call expansion microscopy (ExM). Here we describe iterative expansion microscopy (iExM), in which a sample is expanded, then a second swellable polymer mesh is formed in the space newly opened up by the first expansion, and finally the sample is expanded again. iExM expands biological specimens ~4.5 × 4.5 or ~20x, and enables ~25 nm resolution imaging of cells and tissues on conventional microscopes. We used iExM to visualize synaptic proteins, as well as the detailed architecture of dendritic spines, in mouse brain circuitry. PMID:28417997

  11. Fluorescence microscopy for the characterization of structural integrity

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  12. Handheld Fluorescence Microscopy based Flow Analyzer.

    PubMed

    Saxena, Manish; Jayakumar, Nitin; Gorthi, Sai Siva

    2016-03-01

    Fluorescence microscopy has the intrinsic advantages of favourable contrast characteristics and high degree of specificity. Consequently, it has been a mainstay in modern biological inquiry and clinical diagnostics. Despite its reliable nature, fluorescence based clinical microscopy and diagnostics is a manual, labour intensive and time consuming procedure. The article outlines a cost-effective, high throughput alternative to conventional fluorescence imaging techniques. With system level integration of custom-designed microfluidics and optics, we demonstrate fluorescence microscopy based imaging flow analyzer. Using this system we have imaged more than 2900 FITC labeled fluorescent beads per minute. This demonstrates high-throughput characteristics of our flow analyzer in comparison to conventional fluorescence microscopy. The issue of motion blur at high flow rates limits the achievable throughput in image based flow analyzers. Here we address the issue by computationally deblurring the images and show that this restores the morphological features otherwise affected by motion blur. By further optimizing concentration of the sample solution and flow speeds, along with imaging multiple channels simultaneously, the system is capable of providing throughput of about 480 beads per second.

  13. Using hydrogels in microscopy: A tutorial.

    PubMed

    Flood, Peter; Page, Henry; Reynaud, Emmanuel G

    2016-05-01

    Sample preparation for microscopy is a crucial step to ensure the best experimental outcome. It often requires the use of specific mounting media that have to be tailored to not just the sample but the chosen microscopy technique. The media must not damage the sample or impair the optical path, and may also have to support the correct physiological function/development of the sample. For decades, researchers have used embedding media such as hydrogels to maintain samples in place. Their ease of use and transparency has promoted them as mainstream mounting media. However, they are not as straightforward to implement as assumed. They can contain contaminants, generate forces on the sample, have complex diffusion and structural properties that are influenced by multiple factors and are generally not designed for microscopy in mind. This short review will discuss the advantages and disadvantages of using hydrogels for microscopy sample preparation and highlight some of the less obvious problems associated with the area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Introduction to Modern Methods in Light Microscopy.

    PubMed

    Ryan, Joel; Gerhold, Abby R; Boudreau, Vincent; Smith, Lydia; Maddox, Paul S

    2017-01-01

    For centuries, light microscopy has been a key method in biological research, from the early work of Robert Hooke describing biological organisms as cells, to the latest in live-cell and single-molecule systems. Here, we introduce some of the key concepts related to the development and implementation of modern microscopy techniques. We briefly discuss the basics of optics in the microscope, super-resolution imaging, quantitative image analysis, live-cell imaging, and provide an outlook on active research areas pertaining to light microscopy.

  15. Annotation and visualization of endogenous retroviral sequences using the Distributed Annotation System (DAS) and eBioX

    PubMed Central

    Martínez Barrio, Álvaro; Lagercrantz, Erik; Sperber, Göran O; Blomberg, Jonas; Bongcam-Rudloff, Erik

    2009-01-01

    Background The Distributed Annotation System (DAS) is a widely used network protocol for sharing biological information. The distributed aspects of the protocol enable the use of various reference and annotation servers for connecting biological sequence data to pertinent annotations in order to depict an integrated view of the data for the final user. Results An annotation server has been devised to provide information about the endogenous retroviruses detected and annotated by a specialized in silico tool called RetroTector. We describe the procedure to implement the DAS 1.5 protocol commands necessary for constructing the DAS annotation server. We use our server to exemplify those steps. Data distribution is kept separated from visualization which is carried out by eBioX, an easy to use open source program incorporating multiple bioinformatics utilities. Some well characterized endogenous retroviruses are shown in two different DAS clients. A rapid analysis of areas free from retroviral insertions could be facilitated by our annotations. Conclusion The DAS protocol has shown to be advantageous in the distribution of endogenous retrovirus data. The distributed nature of the protocol is also found to aid in combining annotation and visualization along a genome in order to enhance the understanding of ERV contribution to its evolution. Reference and annotation servers are conjointly used by eBioX to provide visualization of ERV annotations as well as other data sources. Our DAS data source can be found in the central public DAS service repository, , or at . PMID:19534743

  16. Optofluidic time-stretch microscopy: recent advances

    NASA Astrophysics Data System (ADS)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-06-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  17. Optofluidic time-stretch microscopy: recent advances

    NASA Astrophysics Data System (ADS)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  18. Electron microscopy of intermediate filaments: teaming up with atomic force and confocal laser scanning microscopy.

    PubMed

    Kreplak, Laurent; Richter, Karsten; Aebi, Ueli; Herrmann, Harald

    2008-01-01

    Intermediate filaments (IFs) were originally discovered and defined by electron microscopy in myoblasts. In the following it was demonstrated and confirmed that they constitute, in addition to microtubules and microfilaments, a third independent, general filament system in the cytoplasm of most metazoan cells. In contrast to the other two systems, IFs are present in cells in two principally distinct cytoskeletal forms: (i) extended and free-running filament arrays in the cytoplasm that are integrated into the cytoskeleton by associated proteins of the plakin type; and (ii) a membrane- and chromatin-bound thin 'lamina' of a more or less regular network of interconnected filaments made from nuclear IF proteins, the lamins, which differ in several important structural aspects from cytoplasmic IF proteins. In man, more than 65 genes code for distinct IF proteins that are expressed during embryogenesis in various routes of differentiation in a tightly controlled manner. IF proteins exhibit rather limited sequence identity implying that the different types of IFs have distinct biochemical properties. Hence, to characterize the structural properties of the various IFs, in vitro assembly regimes have been developed in combination with different visualization methods such as transmission electron microscopy of fixed and negatively stained samples as well as methods that do not use staining such as scanning transmission electron microscopy (STEM) and cryoelectron microscopy as well as atomic force microscopy. Moreover, with the generation of both IF-type specific antibodies and chimeras of fluorescent proteins and IF proteins, it has become possible to investigate the subcellular organization of IFs by correlative fluorescence and electron microscopic methods. The combination of these powerful methods should help to further develop our understanding of nuclear architecture, in particular how nuclear subcompartments are organized and in which way lamins are involved.

  19. Scanning Capacitance Microscopy | Materials Science | NREL

    Science.gov Websites

    obtained using scanning capacitance microscopy. Top Right: Image of p-type and n-type material, obtained 'fingers' of light-colored n-type material on a yellow and blue background representing p-type material ; measurement data were obtained using scanning capacitance microscopy. Bottom Right: Image of p-type and n-type

  20. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  1. Correlative Fluorescence and Electron Microscopy

    PubMed Central

    Schirra, Randall T.; Zhang, Peijun

    2014-01-01

    Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associate with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology have led to rapid improvement in the protocols and have ushered in a new generation of instruments to reach the next level of correlation – integration. PMID:25271959

  2. Confocal microscopy for astrocyte in vivo imaging: Recycle and reuse in microscopy

    PubMed Central

    Pérez-Alvarez, Alberto; Araque, Alfonso; Martín, Eduardo D.

    2013-01-01

    In vivo imaging is one of the ultimate and fundamental approaches for the study of the brain. Two-photon laser scanning microscopy (2PLSM) constitutes the state-of-the-art technique in current neuroscience to address questions regarding brain cell structure, development and function, blood flow regulation and metabolism. This technique evolved from laser scanning confocal microscopy (LSCM), which impacted the field with a major improvement in image resolution of live tissues in the 1980s compared to widefield microscopy. While nowadays some of the unparalleled features of 2PLSM make it the tool of choice for brain studies in vivo, such as the possibility to image deep within a tissue, LSCM can still be useful in this matter. Here we discuss the validity and limitations of LSCM and provide a guide to perform high-resolution in vivo imaging of the brain of live rodents with minimal mechanical disruption employing LSCM. We describe the surgical procedure and experimental setup that allowed us to record intracellular calcium variations in astrocytes evoked by sensory stimulation, and to monitor intact neuronal dendritic spines and astrocytic processes as well as blood vessel dynamics. Therefore, in spite of certain limitations that need to be carefully considered, LSCM constitutes a useful, convenient, and affordable tool for brain studies in vivo. PMID:23658537

  3. Electron Microscopy of Ebola Virus-Infected Cells.

    PubMed

    Noda, Takeshi

    2017-01-01

    Ebola virus (EBOV) replicates in host cells, where both viral and cellular components show morphological changes during the process of viral replication from entry to budding. These steps in the replication cycle can be studied using electron microscopy (EM), including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which is one of the most useful methods for visualizing EBOV particles and EBOV-infected cells at the ultrastructural level. This chapter describes conventional methods for EM sample preparation of cultured cells infected with EBOV.

  4. Scanning probe recognition microscopy investigation of tissue scaffold properties

    PubMed Central

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  5. Scanning probe recognition microscopy investigation of tissue scaffold properties.

    PubMed

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis.

  6. Hybrid label-free multiphoton and optoacoustic microscopy (MPOM)

    NASA Astrophysics Data System (ADS)

    Soliman, Dominik; Tserevelakis, George J.; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Many biological applications require a simultaneous observation of different anatomical features. However, unless potentially harmful staining of the specimens is employed, individual microscopy techniques do generally not provide multi-contrast capabilities. We present a hybrid microscope integrating optoacoustic microscopy and multiphoton microscopy, including second-harmonic generation, into a single device. This combined multiphoton and optoacoustic microscope (MPOM) offers visualization of a broad range of structures by employing different contrast mechanisms and at the same time enables pure label-free imaging of biological systems. We investigate the relative performance of the two microscopy modalities and demonstrate their multi-contrast abilities through the label-free imaging of a zebrafish larva ex vivo, simultaneously visualizing muscles and pigments. This hybrid microscopy application bears great potential for developmental biology studies, enabling more comprehensive information to be obtained from biological specimens without the necessity of staining.

  7. Aberrations and adaptive optics in super-resolution microscopy.

    PubMed

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-08-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy - or rather nanoscopy - to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy.

  8. Fibre-optic nonlinear optical microscopy and endoscopy.

    PubMed

    Fu, L; Gu, M

    2007-06-01

    Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.

  9. Super-resolution fluorescence microscopy by stepwise optical saturation

    PubMed Central

    Zhang, Yide; Nallathamby, Prakash D.; Vigil, Genevieve D.; Khan, Aamir A.; Mason, Devon E.; Boerckel, Joel D.; Roeder, Ryan K.; Howard, Scott S.

    2018-01-01

    Super-resolution fluorescence microscopy is an important tool in biomedical research for its ability to discern features smaller than the diffraction limit. However, due to its difficult implementation and high cost, the super-resolution microscopy is not feasible in many applications. In this paper, we propose and demonstrate a saturation-based super-resolution fluorescence microscopy technique that can be easily implemented and requires neither additional hardware nor complex post-processing. The method is based on the principle of stepwise optical saturation (SOS), where M steps of raw fluorescence images are linearly combined to generate an image with a M-fold increase in resolution compared with conventional diffraction-limited images. For example, linearly combining (scaling and subtracting) two images obtained at regular powers extends the resolution by a factor of 1.4 beyond the diffraction limit. The resolution improvement in SOS microscopy is theoretically infinite but practically is limited by the signal-to-noise ratio. We perform simulations and experimentally demonstrate super-resolution microscopy with both one-photon (confocal) and multiphoton excitation fluorescence. We show that with the multiphoton modality, the SOS microscopy can provide super-resolution imaging deep in scattering samples. PMID:29675306

  10. Lensfree On-Chip Microscopy and Tomography for Bio-Medical Applications

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Mudanyali, Onur; Sencan, Ikbal; Su, Ting-Wei; Tseng, Derek; Yaglidere, Oguzhan; Sikora, Uzair; Ozcan, Aydogan

    2012-01-01

    Lensfree on-chip holographic microscopy is an emerging technique that offers imaging of biological specimens over a large field-of-view without using any lenses or bulky optical components. Lending itself to a compact, cost-effective and mechanically robust architecture, lensfree on-chip holographic microscopy can offer an alternative toolset addressing some of the emerging needs of microscopic analysis and diagnostics in low-resource settings, especially for telemedicine applications. In this review, we summarize the latest achievements in lensfree optical microscopy based on partially coherent on-chip holography, including portable telemedicine microscopy, cell-phone based microscopy and field-portable optical tomographic microscopy. We also discuss some of the future directions for telemedicine microscopy and its prospects to help combat various global health challenges. PMID:24478572

  11. DHMI: dynamic holographic microscopy interface

    NASA Astrophysics Data System (ADS)

    He, Xuefei; Zheng, Yujie; Lee, Woei Ming

    2016-12-01

    Digital holographic microscopy (DHM) is a powerful in-vitro biological imaging tool. In this paper, we report a fully automated off-axis digital holographic microscopy system completed with a graphical user interface in the Matlab environment. The interface primarily includes Fourier domain processing, phase reconstruction, aberration compensation and autofocusing. A variety of imaging operations such as region of interest selection, de-noising mode (filtering and averaging), low frame rate imaging for immediate reconstruction and high frame rate imaging routine ( 27 fps) are implemented to facilitate ease of use.

  12. [Virtual microscopy in pathology teaching and postgraduate training (continuing education)].

    PubMed

    Sinn, H P; Andrulis, M; Mogler, C; Schirmacher, P

    2008-11-01

    As with conventional microscopy, virtual microscopy permits histological tissue sections to be viewed on a computer screen with a free choice of viewing areas and a wide range of magnifications. This, combined with the possibility of linking virtual microscopy to E-Learning courses, make virtual microscopy an ideal tool for teaching and postgraduate training in pathology. Uses of virtual microscopy in pathology teaching include blended learning with the presentation of digital teaching slides in the internet parallel to presentation in the histology lab, extending student access to histology slides beyond the lab. Other uses are student self-learning in the Internet, as well as the presentation of virtual slides in the classroom with or without replacing real microscopes. Successful integration of virtual microscopy depends on its embedding in the virtual classroom and the creation of interactive E-learning content. Applications derived from this include the use of virtual microscopy in video clips, podcasts, SCORM modules and the presentation of virtual microscopy using interactive whiteboards in the classroom.

  13. Applying Superresolution Localization-Based Microscopy to Neurons

    PubMed Central

    ZHONG, HAINING

    2016-01-01

    Proper brain function requires the precise localization of proteins and signaling molecules on a nanometer scale. The examination of molecular organization at this scale has been difficult in part because it is beyond the reach of conventional, diffraction-limited light microscopy. The recently developed method of superresolution, localization-based fluorescent microscopy (LBM), such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), has demonstrated a resolving power at a 10 nm scale and is poised to become a vital tool in modern neuroscience research. Indeed, LBM has revealed previously unknown cellular architectures and organizational principles in neurons. Here, we discuss the principles of LBM, its current applications in neuroscience, and the challenges that must be met before its full potential is achieved. We also present the unpublished results of our own experiments to establish a sample preparation procedure for applying LBM to study brain tissue. PMID:25648102

  14. Tomographic phase microscopy and its biological applications

    NASA Astrophysics Data System (ADS)

    Choi, Wonshik

    2012-12-01

    Conventional interferometric microscopy techniques such as digital holographic microscopy and quantitative phase microscopy are often classified as 3D imaging techniques because a recorded complex field image can be numerically propagated to a different depth. In a strict sense, however, a single complex field image contains only 2D information on a specimen. The measured 2D image is only a subset of the 3D structure. For the 3D mapping of an object, multiple independent 2D images are to be taken, for example at multiple incident angles or wavelengths, and then combined by the so-called optical diffraction tomography (ODT). In this Letter, tomographic phase microscopy (TPM) is reviewed that experimentally realizes the concept of the ODT for the 3D mapping of biological cells in their native state, and some of its interesting biological and biomedical applications are introduced. [Figure not available: see fulltext.

  15. A 90 day chronic toxicity study of Nigerian herbal preparation DAS-77 in rats

    PubMed Central

    2012-01-01

    Background The herbal preparation DAS-77, used for the treatment of various ailments in Nigeria, contains the milled bark of Mangifera indica L. and root of Carica papaya L. Toxicological assessment of the preparation was carried out in this study. Methods In the acute toxicity study, DAS-77 was administered to mice p.o. up to 20 g/kg in divided doses and i.p. at 250–3000 mg/kg. Mortality within 24 h was recorded. In the chronic toxicity study, rats were treated p.o. for 90 days at doses of 80, 400 (therapeutic dose, TD) and 2000 mg/kg. By 90 days, animals were sacrificed and blood samples collected for hematological and biochemical analysis. Organs were harvested for weight determination, antioxidants and histopathological assessments. Results DAS-77 did not produce any lethality administered p.o. up to 20 g/kg in divided doses but the i.p. LD50 was 1122.0 mg/kg. At TD, DAS-77 produced significant (p < 0.05) reductions in body weight, food intake and K+, and increases in ovary weight, neutrophils and HDL, which were reversible. Histopathological presentations were generally normal. Effects at the other doses were comparable to those at TD except for reversible increases in antioxidants in the liver, kidney and testes, and sperm abnormality, and reductions in liver enzymes, sperm motility and count. Conclusions Findings in this study revealed that DAS-77 is relatively safe with the potential for enhancing in vivo antioxidant activity. However, possibly reversible side-effects include electrolyte imbalance and sterility in males. PMID:22892317

  16. A 90 day chronic toxicity study of Nigerian herbal preparation DAS-77 in rats.

    PubMed

    Afolabi, Saheed O; Akindele, Abidemi J; Awodele, Olufunsho; Anunobi, Chidozie C; Adeyemi, Olufunmilayo O

    2012-06-28

    The herbal preparation DAS-77, used for the treatment of various ailments in Nigeria, contains the milled bark of Mangifera indica L. and root of Carica papaya L. Toxicological assessment of the preparation was carried out in this study. In the acute toxicity study, DAS-77 was administered to mice p.o. up to 20 g/kg in divided doses and i.p. at 250-3000 mg/kg. Mortality within 24 h was recorded. In the chronic toxicity study, rats were treated p.o. for 90 days at doses of 80, 400 (therapeutic dose, TD) and 2000 mg/kg. By 90 days, animals were sacrificed and blood samples collected for hematological and biochemical analysis. Organs were harvested for weight determination, antioxidants and histopathological assessments. DAS-77 did not produce any lethality administered p.o. up to 20 g/kg in divided doses but the i.p. LD50 was 1122.0 mg/kg. At TD, DAS-77 produced significant (p < 0.05) reductions in body weight, food intake and K+, and increases in ovary weight, neutrophils and HDL, which were reversible. Histopathological presentations were generally normal. Effects at the other doses were comparable to those at TD except for reversible increases in antioxidants in the liver, kidney and testes, and sperm abnormality, and reductions in liver enzymes, sperm motility and count. Findings in this study revealed that DAS-77 is relatively safe with the potential for enhancing in vivo antioxidant activity. However, possibly reversible side-effects include electrolyte imbalance and sterility in males.

  17. Two-Photon Fluorescence Microscopy Developed for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2004-01-01

    Recent research efforts within the Microgravity Fluid Physics Branch of the NASA Glenn Research Center have necessitated the development of a microscope capable of high-resolution, three-dimensional imaging of intracellular structure and tissue morphology. Standard optical microscopy works well for thin samples, but it does not allow the imaging of thick samples because of severe degradation caused by out-of-focus object structure. Confocal microscopy, which is a laser-based scanning microscopy, provides improved three-dimensional imaging and true optical sectioning by excluding the out-of-focus light. However, in confocal microscopy, out-of-focus object structure is still illuminated by the incoming beam, which can lead to substantial photo-bleaching. In addition, confocal microscopy is plagued by limited penetration depth, signal loss due to the presence of a confocal pinhole, and the possibility of live-cell damage. Two-photon microscopy is a novel form of laser-based scanning microscopy that allows three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon microscopy, it utilizes the nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption because of the nonlinear (i.e., quadratic) electric field dependence, so an ultrafast pulsed laser source must typically be employed. On the other hand, this stringent energy density requirement effectively localizes fluorophore excitation to the focal volume. Consequently, two-photon microscopy provides optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction in photo-damage because of the longer excitation wavelength, a reduction in background fluorescence, and a 4 increase in penetration depth over confocal methods because of the reduction in Rayleigh scattering.

  18. Low-cost cryo-light microscopy stage fabrication for correlated light/electron microscopy.

    PubMed

    Carlson, David B; Evans, James E

    2011-06-05

    The coupling of cryo-light microscopy (cryo-LM) and cryo-electron microscopy (cryo-EM) poses a number of advantages for understanding cellular dynamics and ultrastructure. First, cells can be imaged in a near native environment for both techniques. Second, due to the vitrification process, samples are preserved by rapid physical immobilization rather than slow chemical fixation. Third, imaging the same sample with both cryo-LM and cryo-EM provides correlation of data from a single cell, rather than a comparison of "representative samples". While these benefits are well known from prior studies, the widespread use of correlative cryo-LM and cryo-EM remains limited due to the expense and complexity of buying or building a suitable cryogenic light microscopy stage. Here we demonstrate the assembly, and use of an inexpensive cryogenic stage that can be fabricated in any lab for less than $40 with parts found at local hardware and grocery stores. This cryo-LM stage is designed for use with reflected light microscopes that are fitted with long working distance air objectives. For correlative cryo-LM and cryo-EM studies, we adapt the use of carbon coated standard 3-mm cryo-EM grids as specimen supports. After adsorbing the sample to the grid, previously established protocols for vitrifying the sample and transferring/handling the grid are followed to permit multi-technique imaging. As a result, this setup allows any laboratory with a reflected light microscope to have access to direct correlative imaging of frozen hydrated samples.

  19. Das CARNOTsche Paradigma und seine erkenntnistheoretischen Implikationen

    NASA Astrophysics Data System (ADS)

    Schöpf, Hans-Georg

    Der vorliegende historisch-kritische Essay führt die Eigentümlichkeiten der klassischen phänomenologischen Thermodynamik auf das von CARNOT geschaffene Paradigma zurück und greift einige damit zusammenhängende Fragen auf.Translated AbstractCARNOT's Paradigm and its Epistemological ImplicationsThe present historic-critical essay traces the pecularities of classical phenomenological thermodynamics back to the paradigm, created by CARNOT, and takes up some questions to which this paradigm gives rise.

  20. Digital microscopy. Bringing new technology into focus.

    PubMed

    2010-06-01

    Digital microscopy enables the scanning of microscope slides so that they can be viewed, analyzed, and archived on a computer. While the technology is not yet widely accepted by pathologists, a switch to digital microscopy systems seems to be inevitable in the near future.

  1. Digital differential confocal microscopy based on spatial shift transformation.

    PubMed

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  2. Two-photon speckle illumination for super-resolution microscopy.

    PubMed

    Negash, Awoke; Labouesse, Simon; Chaumet, Patrick C; Belkebir, Kamal; Giovannini, Hugues; Allain, Marc; Idier, Jérôme; Sentenac, Anne

    2018-06-01

    We present a numerical study of a microscopy setup in which the sample is illuminated with uncontrolled speckle patterns and the two-photon excitation fluorescence is collected on a camera. We show that, using a simple deconvolution algorithm for processing the speckle low-resolution images, this wide-field imaging technique exhibits resolution significantly better than that of two-photon excitation scanning microscopy or one-photon excitation bright-field microscopy.

  3. Paleomagnetic Analysis Using SQUID Microscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.

    2007-01-01

    Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.

  4. The SeaDAS Processing and Analysis System: SeaWiFS, MODIS, and Beyond

    NASA Astrophysics Data System (ADS)

    MacDonald, M. D.; Ruebens, M.; Wang, L.; Franz, B. A.

    2005-12-01

    The SeaWiFS Data Analysis System (SeaDAS) is a comprehensive software package for the processing, display, and analysis of ocean data from a variety of satellite sensors. Continuous development and user support by programmers and scientists for more than a decade has helped to make SeaDAS the most widely used software package in the world for ocean color applications, with a growing base of users from the land and sea surface temperature community. Full processing support for past (CZCS, OCTS, MOS) and present (SeaWiFS, MODIS) sensors, and anticipated support for future missions such as NPP/VIIRS, enables end users to reproduce the standard ocean archive product suite distributed by NASA's Ocean Biology Processing Group (OBPG), as well as a variety of evaluation and intermediate ocean, land, and atmospheric products. Availability of the processing algorithm source codes and a software build environment also provide users with the tools to implement custom algorithms. Recent SeaDAS enhancements include synchronization of MODIS processing with the latest code and calibration updates from the MODIS Calibration Support Team (MCST), support for all levels of MODIS processing including Direct Broadcast, a port to the Macintosh OS X operating system, release of the display/analysis-only SeaDAS-Lite, and an extremely active web-based user support forum.

  5. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morawski, Ireneusz; Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław; Spiegelberg, Richard

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. Themore » high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.« less

  6. Investigation of wear phenomena by microscopy

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1982-01-01

    The various wear mechanisms involved in the loss of material from metallic and nonmetallic surfaces are discussed. The results presented indicate how various microscopy techniques used in conjunction with other analytical tools can assist in the elucidation of a wear mechanism. Without question, microscopy is the single most important tool for the study of the wear of surfaces, to assess and address inherent mechanisms of the material removal process.

  7. Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy

    PubMed Central

    Chung, Chao-Yu; Boik, John; Potma, Eric O.

    2014-01-01

    Optical imaging with spectroscopic vibrational contrast is a label-free solution for visualizing, identifying, and quantifying a wide range of biomolecular compounds in biological materials. Both linear and nonlinear vibrational microscopy techniques derive their imaging contrast from infrared active or Raman allowed molecular transitions, which provide a rich palette for interrogating chemical and structural details of the sample. Yet nonlinear optical methods, which include both second-order sum-frequency generation (SFG) and third-order coherent Raman scattering (CRS) techniques, offer several improved imaging capabilities over their linear precursors. Nonlinear vibrational microscopy features unprecedented vibrational imaging speeds, provides strategies for higher spatial resolution, and gives access to additional molecular parameters. These advances have turned vibrational microscopy into a premier tool for chemically dissecting live cells and tissues. This review discusses the molecular contrast of SFG and CRS microscopy and highlights several of the advanced imaging capabilities that have impacted biological and biomedical research. PMID:23245525

  8. Nanoscale surface characterization using laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  9. Pure optical photoacoustic microscopy

    PubMed Central

    Xie, Zhixing; Chen, Sung-Liang; Ling, Tao; Guo, L. Jay; Carson, Paul L.; Wang, Xueding

    2011-01-01

    The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After the refinements of the microring’s working wavelength and in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM with high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5 μm and an axial resolution of 8 μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation

  10. Brady's Geothermal Field - Map of DAS, Nodal, Vibroseis and Reftek Station Deployment

    DOE Data Explorer

    Kurt Feigl

    2016-10-15

    Map of DAS, nodal, vibroseis and Reftek stations during March 2016 deployment. The plot on the left has nodal stations labeled; the plot on the right has vibroseis observations labeled. Stations are shown in map-view using Brady's rotated X-Y coordinates with side plots denoting elevation with respect to the WGS84 ellipsoid. Blue circles denote vibroseis data, x symbols denote DAS (cyan for horizontal and magenta for vertical), black asterisks denote Reftek data, and red plus signs denote nodal data. This map can be found on UW-Madison's askja server at /PoroTomo/DATA/MAPS/Deployment_Stations.pdf

  11. Photothermal imaging scanning microscopy

    DOEpatents

    Chinn, Diane [Pleasanton, CA; Stolz, Christopher J [Lathrop, CA; Wu, Zhouling [Pleasanton, CA; Huber, Robert [Discovery Bay, CA; Weinzapfel, Carolyn [Tracy, CA

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  12. Microscopy using source and detector arrays

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Castello, Marco; Vicidomini, Giuseppe; Duocastella, Martí; Diaspro, Alberto

    2016-03-01

    There are basically two types of microscope, which we call conventional and scanning. The former type is a full-field imaging system. In the latter type, the object is illuminated with a probe beam, and a signal detected. We can generalize the probe to a patterned illumination. Similarly we can generalize the detection to a patterned detection. Combining these we get a range of different modalities: confocal microscopy, structured illumination (with full-field imaging), spinning disk (with multiple illumination points), and so on. The combination allows the spatial frequency bandwidth of the system to be doubled. In general we can record a four dimensional (4D) image of a 2D object (or a 6D image from a 3D object, using an acoustic tuneable lens). The optimum way to directly reconstruct the resulting image is by image scanning microscopy (ISM). But the 4D image is highly redundant, so deconvolution-based approaches are also relevant. ISM can be performed in fluorescence, bright field or interference microscopy. Several different implementations have been described, with associated advantages and disadvantages. In two-photon microscopy, the illumination and detection point spread functions are very different. This is also the case when using pupil filters or when there is a large Stokes shift.

  13. Subpiconewton intermolecular force microscopy.

    PubMed

    Tokunaga, M; Aoki, T; Hiroshima, M; Kitamura, K; Yanagida, T

    1997-02-24

    We refined scanning probe force microscopy to improve the sensitivity of force detection and control of probe position. Force sensitivity was increased by incorporating a cantilever with very low stiffness, 0.1 pN/ nm, which is over 1000-fold more flexible than is typically used in conventional atomic force microscopy. Thermal bending motions of the cantilever were reduced to less than 1 nm by exerting feed-back positioning with laser radiation pressure. The system was tested by measuring electrostatic repulsive forces or hydrophobic attractive forces in aqueous solutions. Subpiconewton intermolecular forces were resolved at controlled gaps in the nanometer range between the probe and a material surface. These levels of force and position sensitivity meet the requirements needed for future investigations of intermolecular forces between biological macromolecules such as proteins, lipids and DNA.

  14. Perspectives on in situ electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Haimei; Zhu, Yimei

    In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less

  15. Perspectives on in situ electron microscopy

    DOE PAGES

    Zheng, Haimei; Zhu, Yimei

    2017-03-29

    In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less

  16. Light Microscopy's New Jobs

    NASA Astrophysics Data System (ADS)

    Ritsch-Marte, Monika

    2009-04-01

    300 years since the first glimpse through the earliest microscopes, light microscopy is still an active field of research, breaking new frontiers in optical imaging and even becoming a means of mechanical manipulation of microparticles.

  17. Digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Barkley, Solomon; Dimiduk, Thomas; Manoharan, Vinothan

    Digital holographic microscopy is a 3D optical imaging technique with high temporal ( ms) and spatial ( 10 nm) precision. However, its adoption as a characterization technique has been limited due to the inherent difficulty of recovering 3D data from the holograms. Successful analysis has traditionally required substantial knowledge about the sample being imaged (for example, the approximate positions of particles in the field of view), as well as expertise in scattering theory. To overcome the obstacles to widespread adoption of holographic microscopy, we developed HoloPy - an open source python package for analysis of holograms and scattering data. HoloPy uses Bayesian statistical methods to determine the geometry and properties of discrete scatterers from raw holograms. We demonstrate the use of HoloPy to measure the dynamics of colloidal particles at interfaces, to ascertain the structures of self-assembled colloidal particles, and to track freely swimming bacteria. The HoloPy codebase is thoroughly tested and well-documented to facilitate use by the broader experimental community. This research is supported by NSF Grant DMR-1306410 and NSERC.

  18. EDITORIAL: Scanning probe microscopy: a visionary development Scanning probe microscopy: a visionary development

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-07-01

    The development of scanning probe microscopy repositioned modern physics. When Rohrer and Binnig first used electronic tunnelling effects to image atoms and quantum states they did more than pin down theoretical hypotheses to real-world observables; the scanning tunnelling microscope fed imaginations, prompting researchers to consider new directions and possibilities [1]. As Rohrer once commented, 'We could show that you can easily manipulate or position something small in space with an accuracy of 10 pm.... When you can do that, you simply have ideas of what you can do' [2]. The development heralded a cavalry of scanning probe techniques—such as atomic force microscopy (AFM) [3-5], scanning near-field optical microscopy (SNOM) [6-8] and Kelvin probe force microscopy (KPFM) [9, 10]—that still continue to bring nanomaterials and nanoscale phenomena into fresh focus. Not long after the development of scanning tunnelling microscopy, Binnig, Quate and Gerber collaborating in California in the US published work on a new type of microscope also capable of atomic level resolution [3]. The original concept behind scanning tunnelling microscopy uses electrical conductance, which places substantial limitations on the systems that it can image. Binnig, Quate and Gerber developed the AFM to 'feel' the topology of surfaces like the needle of an old fashioned vinyl player. In this way insulators could be imaged as well. The development of a force modulation mode AFM extended the tool's reach to soft materials making images of biological samples accessible with the technique [4]. There have now been a number of demonstrations of image capture at rates that allow dynamics at the nanoscale to be tracked in real time, opening further possibilities in applications of the AFM as described in a recent review by Toshio Ando at Kanazawa University [5]. Researchers also found a way to retrieve optical information at 'super-resolution' [6, 7]. Optical microscopy provides spectral

  19. Resolution improvement by nonconfocal theta microscopy.

    PubMed

    Lindek, S; Stelzer, E H

    1999-11-01

    We present a novel scanning fluorescence microscopy technique, nonconfocal theta microscopy (NCTM), that provides almost isotropic resolution. In NCTM, multiphoton absorption from two orthogonal illumination directions is used to induce fluorescence emission. Therefore the point-spread function of the microscope is described by the product of illumination point-spread functions with reduced spatial overlap, which provides the resolution improvement and the more isotropic observation volume. We discuss the technical details of this new method.

  20. Superresolution Microscopy of the Nuclear Envelope and Associated Proteins.

    PubMed

    Xie, Wei; Horn, Henning F; Wright, Graham D

    2016-01-01

    Superresolution microscopy is undoubtedly one of the most exciting technologies since the invention of the optical microscope. Capable of nanometer-scale resolution to surpass the diffraction limit and coupled with the versatile labeling techniques available, it is revolutionizing the study of cell biology. Our understanding of the nucleus, the genetic and architectural center of the cell, has gained great advancements through the application of various superresolution microscopy techniques. This chapter describes detailed procedures of multichannel superresolution imaging of the mammalian nucleus, using structured illumination microscopy and single-molecule localization microscopy.

  1. Simultaneous Scanning Ion Conductance Microscopy and Atomic Force Microscopy with Microchanneled Cantilevers

    NASA Astrophysics Data System (ADS)

    Ossola, Dario; Dorwling-Carter, Livie; Dermutz, Harald; Behr, Pascal; Vörös, János; Zambelli, Tomaso

    2015-12-01

    We combined scanning ion conductance microscopy (SICM) and atomic force microscopy (AFM) into a single tool using AFM cantilevers with an embedded microchannel flowing into the nanosized aperture at the apex of the hollow pyramid. An electrode was positioned in the AFM fluidic circuit connected to a second electrode in the bath. We could thus simultaneously measure the ionic current and the cantilever bending (in optical beam deflection mode). First, we quantitatively compared the SICM and AFM contact points on the approach curves. Second, we estimated where the probe in SICM mode touches the sample during scanning on a calibration grid and applied the finding to image a network of neurites on a Petri dish. Finally, we assessed the feasibility of a double controller using both the ionic current and the deflection as input signals of the piezofeedback. The experimental data were rationalized in the framework of finite elements simulations.

  2. Scanning Tunneling Microscopy, Atomic Force Microscopy, and Related Techniques

    DTIC Science & Technology

    1992-02-26

    92. (B47) Fujui, T.; Suzuki, MA.; Miyashita, MA.; Yamaguchi, M.; Onuki , T.; Nakamura, H .; Matsubara, T.; Yamada, H .; Nakayamia, K. J. Vac. Sd...and seven deflection detection systems (A 15). (Al) Binnig, G.; Rohrer, H .; Gerber, Ch.; Weibel, E. Phys. Rev. Lett. 1982, 49, 57. (A2) Ray, M.A...J. J. Vac Sci. Technol. A 1ඣ, 9, 44-50. (AS) Scanning Tunneling Microscopy and Related Methods; Behm, RJ., Garcia, N., Rohrer, H ., Eds.; NATO ASI

  3. Nondestructive evaluation of structural ceramics by photoacoustic microscopy

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1987-01-01

    A photoacoustic microscopy (PAM) digital imaging system was developed and utilized to characterize silicon nitride material at the various stages of the ceramic fabrication process. Correlation studies revealed that photoacoustic microscopy detected failure initiating defects in substantially more specimens than microradiography and ultrasonic techniques. Photoacoustic microscopy detected 10 to 100 micron size surface and subsurface pores and inclusions, respectively, up to 80 microns below the interrogating surface in machined sintered silicon nitride. Microradiography detected 50 micron diameter fracture controlling pores and inclusions. Subsurface holes were detected up to a depth of 570 microns and 1.00 mm in sintered silicon nitride and silicon carbide, respectively. Seeded voids of 20 to 30 micron diameters at the surface and 50 microns below the interrogating surface were detected by photoacoustic microscopy and microradiography with 1 percent X-ray thickness sensitivity. Tight surface cracks of 96 micron length x 48 micron depth were detected by photoacoustic microscopy. PAM volatilized and removed material in the green state which resulted in linear shallow microcracks after sintering. This significantly limits the use of PAM as an in-process NDE technique.

  4. Boundary segmentation for fluorescence microscopy using steerable filters

    NASA Astrophysics Data System (ADS)

    Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2017-02-01

    Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.

  5. Global Gridded Data from the Goddard Earth Observing System Data Assimilation System (GEOS-DAS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Goddard Earth Observing System Data Assimilation System (GEOS-DAS) timeseries is a globally gridded atmospheric data set for use in climate research. This near real-time data set is produced by the Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center in direct support of the operational EOS instrument product generation from the Terra (12/1999 launch), Aqua (05/2002 launch) and Aura (01/2004 launch) spacecrafts. The data is archived in the EOS Core System (ECS) at the Goddard Earth Sciences Data and Information Services Center/Distributed Active Archive Center (GES DISC DAAC). The data is only a selection of the products available from the GEOS-DAS. The data is organized chronologically in timeseries format to facilitate the computation of statistics. GEOS-DAS data will be available for the time period January 1, 2000, through present.

  6. The EIGER detector for low-energy electron microscopy and photoemission electron microscopy.

    PubMed

    Tinti, G; Marchetto, H; Vaz, C A F; Kleibert, A; Andrä, M; Barten, R; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Franz, T; Fröjdh, E; Greiffenberg, D; Lopez-Cuenca, C; Mezza, D; Mozzanica, A; Nolting, F; Ramilli, M; Redford, S; Ruat, M; Ruder, Ch; Schädler, L; Schmidt, Th; Schmitt, B; Schütz, F; Shi, X; Thattil, D; Vetter, S; Zhang, J

    2017-09-01

    EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8-20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.

  7. Measuring Primary Teachers' Attitudes Toward Teaching Science: Development of the Dimensions of Attitude Toward Science (DAS) Instrument

    NASA Astrophysics Data System (ADS)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette

    2013-03-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the professionalization of these teachers in the field of primary science education. With the development of this instrument, we sought to fulfill the need for a statistically and theoretically valid and reliable instrument to measure pre-service and in-service teachers' attitudes. The DAS Instrument is based on a comprehensive theoretical framework for attitude toward (teaching) science. After pilot testing, the DAS was revised and subsequently validated using a large group of respondents (pre-service and in-service primary teachers) (N = 556). The theoretical underpinning of the DAS combined with the statistical data indicate that the DAS possesses good construct validity and that it proves to be a promising instrument that can be utilized for research purposes, and also as a teacher training and coaching tool. This instrument can therefore make a valuable contribution to progress within the field of science education.

  8. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    PubMed

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Platinum Replica Electron Microscopy: Imaging the Cytoskeleton Globally and Locally

    PubMed Central

    SVITKINA, Tatyana M.

    2017-01-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the “comfort zones” of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. PMID:28323208

  10. Brady's Geothermal Field DAS Vibroseis Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    2016-03-25

    The submitted data correspond to the monitored vibrations caused by a vibroseis seismically exciting the ground in the vertical direction and captured by the DAS horizontal and vertical arrays during the PoroTomo Experiment. The data also include a file with the acceleration record at the Vibroseis. Vibroseis Sweep Details: Sweep on location T84 Stage 4 (Mode P 60 s long record ) Time: 2016-03-25 14:01:15 (UTC) Location: 39.80476089N, -119.0027625W Elevation: 1272.0M (on ground surface at the site) Sweep length: 20 seconds Frequencies: 5 Hz to 20 Hz

  11. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2015-09-01

    The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficient Delivery and Visualization of Long Time-Series Datasets Using Das2 Tools

    NASA Astrophysics Data System (ADS)

    Piker, C.; Granroth, L.; Faden, J.; Kurth, W. S.

    2017-12-01

    For over 14 years the University of Iowa Radio and Plasma Wave Group has utilized a network transparent data streaming and visualization system for most daily data review and collaboration activities. This system, called Das2, was originally designed in support of the Cassini Radio and Plasma Wave Science (RPWS) investigation, but is now relied on for daily review and analysis of Voyager, Polar, Cluster, Mars Express, Juno and other mission results. In light of current efforts to promote automatic data distribution in space physics it seems prudent to provide an overview of our open source Das2 programs and interface definitions to the wider community and to recount lessons learned. This submission will provide an overview of interfaces that define the system, describe the relationship between the Das2 effort and Autoplot and will examine handling Cassini RPWS Wideband waveforms and dynamic spectra as examples of dealing with long time-series data sets. In addition, the advantages and limitations of the current Das2 tool set will be discussed, as well as lessons learned that are applicable to other data sharing initiatives. Finally, plans for future developments including improved catalogs to support 'no-software' data sources and redundant multi-server fail over, as well as new adapters for CSV (Comma Separated Values) and JSON (Javascript Object Notation) output to support Cassini closeout and the HAPI (Heliophysics Application Programming Interface) initiative are outlined.

  13. Piezoresponse force microscopy of ferroelectric relaxors =

    NASA Astrophysics Data System (ADS)

    Kiselev, Dmitry

    Nesta tese, ferroelectricos relaxor (I dont know uf the order is correct) de base Pb das familias (Pb,La)(Zr,Ti)O3 (PLZT), Pb(Mg1/3,Nb2/3)O3-PbTiO3 (PMN-PT), Pb(Zn1/3,Nb2/3)O3-PbTiO3 (PZN-PT) foram investigados e analisados. As propriedades ferroelectricas e dielectricas das amostras foram estudadas por metodos convencionais de macro e localmente por microscopia de forca piezoelectrica (PFM). Nos cerâmicos PLZT 9.75/65/35 o contraste da PFM a escala nanometrica foi investigado em funcao do tamanho e orientacao dos graos. Apurou-se que a intensidade do sinal piezoelectrico das nanoestruturas diminui com o aumento da temperatura e desaparece a 490 K (La mol. 8%) e 420 K (9,5%). Os ciclos de histerese locais foram obtidos em funcao da temperatura. A evolucao dos parâmetros macroscopicos e locais com a temperatura de superficie sugere um forte efeito de superficie nas transicoes de fase ferroelectricas do material investigado. A rugosidade da parede de dominio e determinada por PFM para a estrutura de dominio natural existente neste ferroelectrico policristalino. Alem disso, os dominios ferroelectricos artificiais foram criados pela aplicacao de pulsos electricos a ponta do condutor PFM e o tamanho de dominio in-plane foi medido em funcao da duracao do pulso. Todas estas experiencias levaram a conclusao de que a parede de dominio em relaxors do tipo PZT e quase uma interface unidimensional. O mecanismo de contraste na superficie de relaxors do tipo PLZT e medido por PFMAs estruturas de dominio versus evolucao da profundidade foram estudadas em cristais PZN-4,5%PT, com diferentes orientacoes atraves da PFM. Padroes de dominio irregulares com tamanhos tipicos de 20-100 nm foram observados nas superficies com orientacao das amostras unpoled?. Pelo contrario, os cortes de cristal exibem dominios regulares de tamanho micron normal, com os limites do dominio orientados ao longo dos planos cristalograficos permitidos. A existencia de nanodominios em cristais com orientacao

  14. Dark-field optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Pache, C.; Villiger, M. L.; Lasser, T.

    2010-02-01

    Many solutions have been proposed to produce phase quantitative images of biological cell samples. Among these, Spectral Domain Phase Microscopy combines the fast imaging speed and high sensitivity of Optical Coherence Microscopy (OCM) in the Fourier domain with the high phase stability of common-path interferometry. We report on a new illumination scheme for OCM that enhances the sensitivity for backscattered light and detects the weak sample signal, otherwise buried by the signal from specular reflection. With the use of a Bessel-like beam, a dark-field configuration was realized. Sensitivity measurements for three different illumination configurations were performed to compare our method to standard OCM and extended focus OCM. Using a well-defined scattering and reflecting object, we demonstrated an attenuation of -40 dB of the DC-component and a relative gain of 30 dB for scattered light, compared to standard OCM. In a second step, we applied this technique, referred to as dark-field Optical Coherence Microscopy (dfOCM), to living cells. Chinese hamster ovarian cells were applied in a drop of medium on a coverslide. The cells of ~15 μm in diameter and even internal cell structures were visualized in the acquired tomograms.

  15. Space station microscopy: Beyond the box

    NASA Technical Reports Server (NTRS)

    Hunter, N. R.; Pierson, Duane L.; Mishra, S. K.

    1993-01-01

    Microscopy aboard Space Station Freedom poses many unique challenges for in-flight investigations. Disciplines such as material processing, plant and animal research, human reseach, enviromental monitoring, health care, and biological processing have diverse microscope requirements. The typical microscope not only does not meet the comprehensive needs of these varied users, but also tends to require excessive crew time. To assess user requirements, a comprehensive survey was conducted among investigators with experiments requiring microscopy. The survey examined requirements such as light sources, objectives, stages, focusing systems, eye pieces, video accessories, etc. The results of this survey and the application of an Intelligent Microscope Imaging System (IMIS) may address these demands for efficient microscopy service in space. The proposed IMIS can accommodate multiple users with varied requirements, operate in several modes, reduce crew time needed for experiments, and take maximum advantage of the restrictive data/ instruction transmission environment on Freedom.

  16. Ultrafast Science Opportunities with Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durr, Hermann

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes themore » Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.« less

  17. Aberrations and adaptive optics in super-resolution microscopy

    PubMed Central

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-01-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194

  18. Multimodal Nonlinear Optical Microscopy

    PubMed Central

    Yue, Shuhua; Slipchenko, Mikhail N.; Cheng, Ji-Xin

    2013-01-01

    Because each nonlinear optical (NLO) imaging modality is sensitive to specific molecules or structures, multimodal NLO imaging capitalizes the potential of NLO microscopy for studies of complex biological tissues. The coupling of multiphoton fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS) has allowed investigation of a broad range of biological questions concerning lipid metabolism, cancer development, cardiovascular disease, and skin biology. Moreover, recent research shows the great potential of using CARS microscope as a platform to develop more advanced NLO modalities such as electronic-resonance-enhanced four-wave mixing, stimulated Raman scattering, and pump-probe microscopy. This article reviews the various approaches developed for realization of multimodal NLO imaging as well as developments of new NLO modalities on a CARS microscope. Applications to various aspects of biological and biomedical research are discussed. PMID:24353747

  19. Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy.

    PubMed

    Keevil, C W

    2003-01-01

    Knowledge of biofilm structure and function has changed significantly in the last few years due to advances in light microscopy. One pertinent example is the use of scanning confocal laser microscopy (SCLM) to visualise corrosion pits caused by the biofilm mosaic footprint on corroding metal surfaces. Nevertheless, SCLM has some limitations as to its widespread use, including cost, inability to observe motile bacteria and eukaryotic grazers within biofilms, and difficulty to scan a curved surface. By contrast, episcopic differential interference contrast (EDIC) microscopy has provided a rapid, real time analysis of biofilms on opaque, curved, natural or man-made surfaces without the need for cover slips and oil. EDIC, coupled with epi-fluorescence (EDIC/EF), microscopy has been used successfully to visualise the 3-D biofilm structure, physiological niches, protozoal grazing and iron biomineralization, and the location of specific pathogens such as Legionella pneumophila, Campylobacter jejuni and Cryptosporidium parvum. These species were identified using gold nanoparticles or fluorophores coupled to monoclonal antibodies or 16S rRNA probes, respectively. Among its many potential uses, the EDIC technique will provide a rapid procedure to facilitate the calibration of the modern generation of biofilm-sensing electrodes.

  20. The future of electron microscopy

    DOE PAGES

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifiesmore » to the importance of modern microscopy.« less

  1. Tomographic diffractive microscopy with a wavefront sensor.

    PubMed

    Ruan, Y; Bon, P; Mudry, E; Maire, G; Chaumet, P C; Giovannini, H; Belkebir, K; Talneau, A; Wattellier, B; Monneret, S; Sentenac, A

    2012-05-15

    Tomographic diffractive microscopy is a recent imaging technique that reconstructs quantitatively the three-dimensional permittivity map of a sample with a resolution better than that of conventional wide-field microscopy. Its main drawbacks lie in the complexity of the setup and in the slowness of the image recording as both the amplitude and the phase of the field scattered by the sample need to be measured for hundreds of successive illumination angles. In this Letter, we show that, using a wavefront sensor, tomographic diffractive microscopy can be implemented easily on a conventional microscope. Moreover, the number of illuminations can be dramatically decreased if a constrained reconstruction algorithm is used to recover the sample map of permittivity.

  2. Demonstration of transmission high energy electron microscopy

    DOE PAGES

    Merrill, F. E.; Goett, J.; Gibbs, J. W.; ...

    2018-04-06

    High energy electrons have been used to investigate an extension of transmission electron microscopy. This technique, transmission high energy electron microscopy (THEEM), provides two additional capabilities to electron microscopy. First, high energy electrons are more penetrating than low energy electrons, and thus, they are able to image through thicker samples. Second, the accelerating mode of a radio-frequency linear accelerator provides fast exposures, down to 1 ps, which are ideal for flash radiography, making THEEM well suited to study the evolution of fast material processes under dynamic conditions. Lastly, initial investigations with static objects and during material processing have been performedmore » to investigate the capabilities of this technique.« less

  3. A causa das estações do ano: modelos mentais

    NASA Astrophysics Data System (ADS)

    de Campos, J. A. S.; de Araujo, J. F. S.

    2003-08-01

    A década de 70 do século passado foi marcada pelo estudo das concepções alternativas que os alunos trazem para a sala de aula. A identificação destas concepções foi o ponto de partida para promover a mudança conceitual, onde as pré-concepções seriam trocadas pelas concepções científicas. Na década seguinte, surgiram muitas propostas de estratégias educacionais para facilitar esta troca, na sua maioria baseadas na idéia do conflito cognitivo, proposta por Piaget. Entretanto, os resultados pouco animadores conduziram à percepção de que a mudança conceitual é um processo mais complexo. Pelas idéias da Ciência Cognitiva, a mudança conceitual é uma mudança progressiva dos modelos mentais que o aluno tem sobre o mundo físico, através de enriquecimento e revisão. A causa das Estações do Ano é um tópico sobre o qual a maioria dos estudantes apresenta concepções alternativas. Os autores fizeram um levantamento sobre as pré-concepções encontradas em trabalhos sobre o tema (16 referências), procurando encontrar elementos comuns que indicassem a presença de modelos mentais específicos. As pré-concepções encontradas na literatura foram obtidas usando-se diversas metodologias (desde entrevistas clínicas até questionários de múltipla escolha) e envolvendo alunos e professores de diferentes regiões geográficas. A partir de uma análise aprofundada de cada trabalho, e utilizando-se a técnica das Redes Sistêmicas, chegou-se a conclusão que as diversas pré-concepções identificadas (em torno de 50), poderiam ser representadas por 6 modelos mentais, onde a explicação da causa das estações do ano tem um mecanismo causal responsável. Os mecanismos causais identificados foram: a dependência da distância, a dependência da orientação, a dependência conjunta da distância e orientação, a dependência da obstrução, a dependência da velocidade e a dependência da inclinação dos raios solares. Foram ainda identificadas

  4. Safety evaluation of genetically modified DAS-40278-9 maize in a subchronic rodent feeding study.

    PubMed

    Zou, Shiying; Lang, Tianqi; Liu, Xu; Huang, Kunlun; He, Xiaoyun

    2018-07-01

    Genetically modified (GM) maize, DAS-40278-9, expresses the aryloxyalkanoate dioxygenase-1 (AAD-1) protein, which confers tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D) and aryloxyphenoxypropionate (AOPP) herbicides. The aad-1 gene, which expresses the AAD-1 protein, was derived from Gram-negative soil bacterium, Sphingobium herbicidovorans. A 90-day sub-chronic toxicity study was conducted on rats as a component of the safety evaluation of DAS-40278-9 maize. Rats were given formulated diets containing maize grain from DAS-40278-9 or a non-GM near isogenic control comparator at an incorporation rate of 12.5%, 25%, or 50% (w/w), respectively for 90 days. In addition, another group of rats was fed a basic rodent diet. Animals were evaluated by cage-side and hand-held detailed clinical observations, ophthalmic examinations, body weights/body weight gains, feed consumption, hematology, serum chemistry, selected organ weights, and gross and histopathological examinations. Under the condition of this study, DAS-40278-9 maize did not cause any treatment-related effects in rats compared with rats fed diets containing non-GM maize. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).

    PubMed

    Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P

    2009-08-01

    Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.

  6. Recent Advances in Fiber Lasers for Nonlinear Microscopy

    PubMed Central

    Xu, C.; Wise, F. W.

    2013-01-01

    Nonlinear microscopy techniques developed over the past two decades have provided dramatic new capabilities for biological imaging. The initial demonstrations of nonlinear microscopies coincided with the development of solid-state femtosecond lasers, which continue to dominate applications of nonlinear microscopy. Fiber lasers offer attractive features for biological and biomedical imaging, and recent advances are leading to high-performance sources with the potential for robust, inexpensive, integrated instruments. This article discusses recent advances, and identifies challenges and opportunities for fiber lasers in nonlinear bioimaging. PMID:24416074

  7. Revision of an automated microseismic location algorithm for DAS - 3C geophone hybrid array

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; LeCalvez, J.; Raymer, D.

    2017-12-01

    Application of distributed acoustic sensing (DAS) has been studied in several areas in seismology. One of the areas is microseismic reservoir monitoring (e.g., Molteni et al., 2017, First Break). Considering the present limitations of DAS, which include relatively low signal-to-noise ratio (SNR) and no 3C polarization measurements, a DAS - 3C geophone hybrid array is a practical option when using a single monitoring well. Considering the large volume of data from distributed sensing, microseismic event detection and location using a source scanning type algorithm is a reasonable choice, especially for real-time monitoring. The algorithm must handle both strain rate along the borehole axis for DAS and particle velocity for 3C geophones. Only a small quantity of large SNR events will be detected throughout a large aperture encompassing the hybrid array; therefore, the aperture is to be optimized dynamically to eliminate noisy channels for a majority of events. For such hybrid array, coalescence microseismic mapping (CMM) (Drew et al., 2005, SPE) was revised. CMM forms a likelihood function of location of event and its origin time. At each receiver, a time function of event arrival likelihood is inferred using an SNR function, and it is migrated to time and space to determine hypocenter and origin time likelihood. This algorithm was revised to dynamically optimize such a hybrid array by identifying receivers where a microseismic signal is possibly detected and using only those receivers to compute the likelihood function. Currently, peak SNR is used to select receivers. To prevent false results due to small aperture, a minimum aperture threshold is employed. The algorithm refines location likelihood using 3C geophone polarization. We tested this algorithm using a ray-based synthetic dataset. Leaney (2014, PhD thesis, UBC) is used to compute particle velocity at receivers. Strain rate along the borehole axis is computed from particle velocity as DAS microseismic

  8. Spectroscopic photon localization microscopy: breaking the resolution limit of single molecule localization microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Biqin; Almassalha, Luay Matthew; Urban, Ben E.; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2017-02-01

    Distinguishing minute differences in spectroscopic signatures is crucial for revealing the fluorescence heterogeneity among fluorophores to achieve a high molecular specificity. Here we report spectroscopic photon localization microscopy (SPLM), a newly developed far-field spectroscopic imaging technique, to achieve nanoscopic resolution based on the principle of single-molecule localization microscopy while simultaneously uncovering the inherent molecular spectroscopic information associated with each stochastic event (Dong et al., Nature Communications 2016, in press). In SPLM, by using a slit-less monochromator, both the zero-order and the first-order diffractions from a grating were recorded simultaneously by an electron multiplying charge-coupled device to reveal the spatial distribution and the associated emission spectra of individual stochastic radiation events, respectively. As a result, the origins of photon emissions from different molecules can be identified according to their spectral differences with sub-nm spectral resolution, even when the molecules are within close proximity. With the newly developed algorithms including background subtraction and spectral overlap unmixing, we established and tested a method which can significantly extend the fundamental spatial resolution limit of single molecule localization microscopy by molecular discrimination through spectral regression. Taking advantage of this unique capability, we demonstrated improvement in spatial resolution of PALM/STORM up to ten fold with selected fluorophores. This technique can be readily adopted by other research groups to greatly enhance the optical resolution of single molecule localization microscopy without the need to modify their existing staining methods and protocols. This new resolving capability can potentially provide new insights into biological phenomena and enable significant research progress to be made in the life sciences.

  9. Hybrid microscopy of human carotid atheroma by means of optical-resolution optoacoustic and non-linear optical microscopy

    NASA Astrophysics Data System (ADS)

    Seeger, Markus; Karlas, Angelos; Soliman, Dominik; Pelisek, Jaroslav; Ntziachristos, Vasilis

    2017-03-01

    Carotid atheromatosis is causally related to stroke, a leading cause of disability and death. We present the analysis of a human carotid atheroma using a novel hybrid microscopy system that combines optical-resolution optoacoustic (photoacoustic) microscopy and several non-linear optical microscopy modalities (second and third harmonic generation, as well as, two-photon excitation fluorescence) to achieve a multimodal examination of the extracted tissue within the same imaging framework. Our system enables the label-free investigation of atheromatous human carotid tissue with a resolution of about 1 μm and allows for the congruent interrogation of plaque morphology and clinically relevant constituents such as red blood cells, collagen, and elastin. Our data reveal mutual interactions between blood embeddings and connective tissue within the atheroma, offering comprehensive insights into its stage of evolution and severity, and potentially facilitating the further development of diagnostic tools, as well as treatment strategies.

  10. Application of Multiphoton Microscopy in Dermatological Studies: a Mini-Review

    PubMed Central

    Yew, Elijah; Rowlands, Christopher

    2014-01-01

    This review summarizes the historical and more recent developments of multiphoton microscopy, as applied to dermatology. Multiphoton microscopy offers several advantages over competing microscopy techniques: there is an inherent axial sectioning, penetration depths that compete well with confocal microscopy on account of the use of near-infrared light, and many two-photon contrast mechanisms, such as second-harmonic generation, have no analogue in one-photon microscopy. While the penetration depths of photons into tissue are typically limited on the order of hundreds of microns, this is of less concern in dermatology, as the skin is thin and readily accessible. As a result, multiphoton microscopy in dermatology has generated a great deal of interest, much of which is summarized here. The review covers the interaction of light and tissue, as well as the various considerations that must be made when designing an instrument. The state of multiphoton microscopy in imaging skin cancer and various other diseases is also discussed, along with the investigation of aging and regeneration phenomena, and finally, the use of multiphoton microscopy to analyze the transdermal transport of drugs, cosmetics and other agents is summarized. The review concludes with a look at potential future research directions, especially those that are necessary to push these techniques into widespread clinical acceptance. PMID:25075226

  11. Functional photoacoustic microscopy of pH.

    PubMed

    Chatni, Muhammad Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin I; Wang, Lihong V

    2011-10-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, an imbalance of pH regulation may result from or result in serious illness. In this paper, we report photoacoustic microscopy (PAM) of a commercially available pH-sensitive fluorescent dye (SNARF-5F carboxylic acid) in tissue phantoms. We demonstrated that PAM is capable of pH imaging in absolute values at tissue depths of up to 2.0 mm, greater than possible with other forms of optical microscopy.

  12. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  13. Advanced 3D Optical Microscopy in ENS Research.

    PubMed

    Vanden Berghe, Pieter

    2016-01-01

    Microscopic techniques are among the few approaches that have survived the test of time. Being invented half way the seventeenth century by Antonie van Leeuwenhoek and Robert Hooke, this technology is still essential in modern biomedical labs. Many microscopy techniques have been used in ENS research to guide researchers in their dissections and later to enable electrode recordings. Apart from this, microscopy has been instrumental in the identification of subpopulations of cells in the ENS, using a variety of staining methods. A significant step forward in the use of microscopy was the introduction of fluorescence approaches. Due to the fact that intense excitation light is now filtered away from the longer wavelength emission light, the contrast can be improved drastically, which helped to identify subpopulations of enteric neurons in a variety of species. Later functionalized fluorescent probes were used to measure and film activity in muscle and neuronal cells. Another important impetus to the use of microscopy was the discovery and isolation of the green fluorescent protein (GFP), as it gave rise to the development of many different color variants and functionalized constructs. Recent advances in microscopy are the result of a continuous search to enhance contrast between the item of interest and its background but also to improve resolving power to tell two small objects apart. In this chapter three different microscopy approaches will be discussed that can aid to improve our understanding of ENS function within the gut wall.

  14. Sputum Microscopy With Fluorescein Diacetate Predicts Tuberculosis Infectiousness

    PubMed Central

    Datta, Sumona; Sherman, Jonathan M; Tovar, Marco A; Bravard, Marjory A; Valencia, Teresa; Montoya, Rosario; Quino, Willi; D’Arcy, Nikki; Ramos, Eric S; Gilman, Robert H; Evans, Carlton A

    2017-01-01

    Abstract Background Sputum from patients with tuberculosis contains subpopulations of metabolically active and inactive Mycobacterium tuberculosis with unknown implications for infectiousness. Methods We assessed sputum microscopy with fluorescein diacetate (FDA, evaluating M. tuberculosis metabolic activity) for predicting infectiousness. Mycobacterium tuberculosis was quantified in pretreatment sputum of patients with pulmonary tuberculosis using FDA microscopy, culture, and acid-fast microscopy. These 35 patients’ 209 household contacts were followed with prevalence surveys for tuberculosis disease for 6 years. Results FDA microscopy was positive for a median of 119 (interquartile range [IQR], 47–386) bacteria/µL sputum, which was 5.1% (IQR, 2.4%–11%) the concentration of acid-fast microscopy–positive bacteria (2069 [IQR, 1358–3734] bacteria/μL). Tuberculosis was diagnosed during follow-up in 6.4% (13/209) of contacts. For patients with lower than median concentration of FDA microscopy–positive M. tuberculosis, 10% of their contacts developed tuberculosis. This was significantly more than 2.7% of the contacts of patients with higher than median FDA microscopy results (crude hazard ratio [HR], 3.8; P = .03). This association maintained statistical significance after adjusting for disease severity, chemoprophylaxis, drug resistance, and social determinants (adjusted HR, 3.9; P = .02). Conclusions Mycobacterium tuberculosis that was FDA microscopy negative was paradoxically associated with greater infectiousness. FDA microscopy–negative bacteria in these pretreatment samples may be a nonstaining, slowly metabolizing phenotype better adapted to airborne transmission. PMID:28510693

  15. Integrated photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy for multimodal chorioretinal imaging

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Zhang, Wei; Nguyen, Van Phuc; Huang, Ziyi; Wang, Xueding; Paulus, Yannis M.

    2018-02-01

    Current clinical available retinal imaging techniques have limitations, including limited depth of penetration or requirement for the invasive injection of exogenous contrast agents. Here, we developed a novel multimodal imaging system for high-speed, high-resolution retinal imaging of larger animals, such as rabbits. The system integrates three state-of-the-art imaging modalities, including photoacoustic microscopy (PAM), optical coherence tomography (OCT), and fluorescence microscopy (FM). In vivo experimental results of rabbit eyes show that the PAM is able to visualize laser-induced retinal burns and distinguish individual eye blood vessels using a laser exposure dose of 80 nJ, which is well below the American National Standards Institute (ANSI) safety limit 160 nJ. The OCT can discern different retinal layers and visualize laser burns and choroidal detachments. The novel multi-modal imaging platform holds great promise in ophthalmic imaging.

  16. Assimilation of SBUV Version 8 Radiances into the GEOS Ozone DAS

    NASA Technical Reports Server (NTRS)

    Mueller, Martin D.; Stajner, Ivanka; Bhartia, Pawan K.

    2004-01-01

    In operational weather forecasting, the assimilation of brightness temperatures from satellite sounders, instead of assimilation of 1D-retrievals has become increasingly common practice over the last two decades. Compared to these systems, assimilation of trace gases is still at a relatively early stage of development, and efforts to directly assimilate radiances instead of retrieved products have just begun a few years ago, partially because it requires much more computation power due to the employment of a radiative transport forward model (FM). This paper will focus on a method to assimilate SBUV/2 radiances (albedos) into the Global Earth Observation System Ozone Data Assimilation Scheme (GEOS-03DAS). While SBUV-type instruments cannot compete with newer sensors in terms of spectral and horizontal resolution, they feature a continuous data record back to 1978, which makes them very valuable for trend studies. Assimilation can help spreading their ground coverage over the whole globe, as has been previously demonstrated with the GEOS-03DAS using SBUV Version 6 ozone profiles. Now, the DAS has been updated to use the newly released SBUV Version 8 data. We will compare pre]lmlnarv results of SBUV radiance assimilation with the assimilation of retrieved ozone profiles, discuss methods to deal with the increased computational load, and try to assess the error characteristics and future potential of the new approach.

  17. Helium ion microscopy of Lepidoptera scales.

    PubMed

    Boden, Stuart A; Asadollahbaik, Asa; Rutt, Harvey N; Bagnall, Darren M

    2012-01-01

    In this report, helium ion microscopy (HIM) is used to study the micro and nanostructures responsible for structural color in the wings of two species of Lepidotera from the Papilionidae family: Papilio ulysses (Blue Mountain Butterfly) and Parides sesostris (Emerald-patched Cattleheart). Electronic charging of uncoated scales from the wings of these butterflies, due to the incident ion beam, is successfully neutralized, leading to images displaying a large depth-of-field and a high level of surface detail, which would normally be obscured by traditional coating methods used for scanning electron microscopy (SEM). The images are compared with those from variable pressure SEM, demonstrating the superiority of HIM at high magnifications. In addition, the large depth-of-field capabilities of HIM are exploited through the creation of stereo pairs that allows the exploration of the third dimension. Furthermore, the extraction of quantitative height information which matches well with cross-sectional transmission electron microscopy measurements from the literature is demonstrated. © Wiley Periodicals, Inc.

  18. Optofluidic time-stretch quantitative phase microscopy.

    PubMed

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Wavelength-multiplexing surface plasmon holographic microscopy.

    PubMed

    Zhang, Jiwei; Dai, Siqing; Zhong, Jinzhan; Xi, Teli; Ma, Chaojie; Li, Ying; Di, Jianglei; Zhao, Jianlin

    2018-05-14

    Surface plasmon holographic microscopy (SPHM), which combines surface plasmon microscopy with digital holographic microscopy, can be applied for amplitude- and phase-contrast surface plasmon resonance (SPR) imaging. In this paper, we propose an improved SPHM with the wavelength multiplexing technique based on two laser sources and a common-path hologram recording configuration. Through recording and reconstructing the SPR images at two wavelengths simultaneously employing the improved SPHM, tiny variation of dielectric refractive index in near field is quantitatively monitored with an extended measurement range while maintaining the high sensitivity. Moreover, imaging onion tissues is performed to demonstrate that the detection sensitivities of two wavelengths can compensate for each other in SPR imaging. The proposed wavelength-multiplexing SPHM presents simple structure, high temporal stability and inherent capability of phase curvature compensation, as well as shows great potentials for further applications in monitoring diverse dynamic processes related with refractive index variations and imaging biological tissues with low-contrast refractive index distributions in the near field.

  20. Einfluss des Internets auf das Informations-, Einkaufs- und Verkehrsverhalten

    NASA Astrophysics Data System (ADS)

    Nerlich, Mark R.; Schiffner, Felix; Vogt, Walter

    Mit Daten aus eigenen Erhebungen können das einkaufsbezogene Informations- und Einkaufsverhalten im Zusammenhang mit den verkehrlichen Aspekten (Distanzen, Verkehrsmittel, Wegekopplungen) dargestellt werden. Die Differenzierung in die drei Produktkategorien des täglichen, mittelfristigen und des langfristigen Bedarfs berücksichtigt in erster Linie die Wertigkeit eines Gutes, die seine Erwerbshäufigkeit unmittelbar bestimmt. Der Einsatz moderner IKT wie das Internet eröffnet dem Endverbraucher neue Möglichkeiten bei Information und Einkauf. Die verkehrliche Relevanz von Online-Shopping wird deutlich, wenn man berücksichtigt, dass im Mittel rund 17% aller Online-Einkäufe, die die Probanden durchgeführt haben, Einkäufe in Ladengeschäften ersetzen. Dies gilt in verstärktem Maße für Online-Informationen: etwa die Hälfte hätte alternativ im stationären Einzelhandel stattgefunden. Da der Erwerb von Gütern des täglichen Bedarfs häufig nahräumlich und in relevantem Anteil nicht-motorisiert erfolgen kann, sind in diesem Segment - im Gegensatz zum mittel- und langfristigen Bedarf - nur geringe Substitutionseffekte zu beobachten.

  1. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy

    PubMed Central

    Lerner, Thomas R.; Burden, Jemima J.; Nkwe, David O.; Pelchen-Matthews, Annegret; Domart, Marie-Charlotte; Durgan, Joanne; Weston, Anne; Jones, Martin L.; Peddie, Christopher J.; Carzaniga, Raffaella; Florey, Oliver; Marsh, Mark; Gutierrez, Maximiliano G.

    2017-01-01

    ABSTRACT The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. PMID:27445312

  2. Color-televised medical microscopy

    NASA Technical Reports Server (NTRS)

    Heath, M. A.; Peck, J. C.

    1968-01-01

    Color television microscopy used at laboratory range magnifications, reproduces a slide image with sufficient fidelity for medical laboratory and instructional use. The system is used for instant pathological reporting between operating room and remotely located pathologist viewing a biopsy through this medium.

  3. A history of urine microscopy.

    PubMed

    Cameron, J Stewart

    2015-11-01

    The naked-eye appearance of the urine must have been studied by shamans and healers since the Stone Age, and an elaborate interpretation of so-called Uroscopy began around 600 AD as a form of divination. A 1000 years later, the first primitive monocular and compound microscopes appeared in the Netherlands, and along with many other objects and liquids, urine was studied from around 1680 onwards as the enlightenment evolved. However, the crude early instruments did not permit fine study because of chromatic and linear/spherical blurring. Only after complex multi-glass lenses which avoided these problems had been made and used in the 1820s in London by Lister, and in Paris by Chevalier and Amici, could urinary microscopy become a practical, clinically useful tool in the 1830s. Clinical urinary microscopy was pioneered by Rayer and his pupils in Paris (especially Vigla), in the late 1830s, and spread to UK and Germany in the 1840s, with detailed descriptions and interpretations of cells and formed elements of the urinary sediment by Nasse, Henle, Robinson and Golding Bird. Classes were held, most notably by Donné in Paris. After another 50 years, optical microscopy had reached its apogee, with magnifications of over 1000 times obtainable free of aberration, using immersion techniques. Atlases of the urinary sediment were published in all major European countries and in the US. Polarised light and phase contrast was used also after 1900 to study urine, and by the early 20th century, photomicroscopy (pioneered by Donné and Daguerre 50 years previously, but then ignored) became usual for teaching and recording. In the 1940s electron microscopy began, followed by detection of specific proteins and cells using immunofluorescent antibodies. All this had been using handheld methodology. Around 1980, machine-assisted observations began, and have dominated progress since.

  4. Coherent nonlinear optical imaging: beyond fluorescence microscopy.

    PubMed

    Min, Wei; Freudiger, Christian W; Lu, Sijia; Xie, X Sunney

    2011-01-01

    The quest for ultrahigh detection sensitivity with spectroscopic contrasts other than fluorescence has led to various novel approaches to optical microscopy of biological systems. Coherent nonlinear optical imaging, especially the recently developed nonlinear dissipation microscopy (including stimulated Raman scattering and two-photon absorption) and pump-probe microscopy (including excited-state absorption, stimulated emission, and ground-state depletion), provides new image contrasts for nonfluorescent species. Thanks to the high-frequency modulation transfer scheme, these imaging techniques exhibit superb detection sensitivity. By directly interrogating vibrational and/or electronic energy levels of molecules, they offer high molecular specificity. Here we review the underlying principles and excitation and detection schemes, as well as exemplary biomedical applications of this emerging class of molecular imaging techniques.

  5. Biostatistical analysis of quantitative immunofluorescence microscopy images.

    PubMed

    Giles, C; Albrecht, M A; Lam, V; Takechi, R; Mamo, J C

    2016-12-01

    Semiquantitative immunofluorescence microscopy has become a key methodology in biomedical research. Typical statistical workflows are considered in the context of avoiding pseudo-replication and marginalising experimental error. However, immunofluorescence microscopy naturally generates hierarchically structured data that can be leveraged to improve statistical power and enrich biological interpretation. Herein, we describe a robust distribution fitting procedure and compare several statistical tests, outlining their potential advantages/disadvantages in the context of biological interpretation. Further, we describe tractable procedures for power analysis that incorporates the underlying distribution, sample size and number of images captured per sample. The procedures outlined have significant potential for increasing understanding of biological processes and decreasing both ethical and financial burden through experimental optimization. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  6. Distributed Acoustic Sensing (DAS) for Periodic Hydraulic Tests: Laboratory Data

    DOE Data Explorer

    Coleman, Thomas

    2015-02-27

    These data were collected in the laboratory located at California State University Long Beach. They consist of DAS data collected from a fiber optic cable placed in a tank of water, subjected to oscillating head. These tests are described in the article linked below.

  7. Advanced methods in fluorescence microscopy.

    PubMed

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbe limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.

  8. Advanced methods in fluorescence microscopy.

    PubMed

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.

  9. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  10. Atomic force microscopy of biological samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doktycz, Mitchel John

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate howmore » this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).« less

  11. Cryo-Scanning Electron Microscopy (SEM) and Scanning Transmission Electron Microscopy (STEM)-in-SEM for Bio- and Organo-Mineral Interface Characterization in the Environment.

    PubMed

    Wille, Guillaume; Hellal, Jennifer; Ollivier, Patrick; Richard, Annie; Burel, Agnes; Jolly, Louis; Crampon, Marc; Michel, Caroline

    2017-12-01

    Understanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4',6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7-11 µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.

  12. Accessible Microscopy Workstation for Students and Scientists with Mobility Impairments

    ERIC Educational Resources Information Center

    Duerstock, Bradley S.

    2006-01-01

    An integrated accessible microscopy workstation was designed and developed to allow persons with mobility impairments to control all aspects of light microscopy with minimal human assistance. This system, named AccessScope, is capable of performing brightfield and fluorescence microscopy, image analysis, and tissue morphometry requisite for…

  13. Evaluating performance in three-dimensional fluorescence microscopy

    PubMed Central

    MURRAY, JOHN M; APPLETON, PAUL L; SWEDLOW, JASON R; WATERS, JENNIFER C

    2007-01-01

    In biological fluorescence microscopy, image contrast is often degraded by a high background arising from out of focus regions of the specimen. This background can be greatly reduced or eliminated by several modes of thick specimen microscopy, including techniques such as 3-D deconvolution and confocal. There has been a great deal of interest and some confusion about which of these methods is ‘better’, in principle or in practice. The motivation for the experiments reported here is to establish some rough guidelines for choosing the most appropriate method of microscopy for a given biological specimen. The approach is to compare the efficiency of photon collection, the image contrast and the signal-to-noise ratio achieved by the different methods at equivalent illumination, using a specimen in which the amount of out of focus background is adjustable over the range encountered with biological samples. We compared spot scanning confocal, spinning disk confocal and wide-field/deconvolution (WFD) microscopes and find that the ratio of out of focus background to in-focus signal can be used to predict which method of microscopy will provide the most useful image. We also find that the precision of measurements of net fluorescence yield is very much lower than expected for all modes of microscopy. Our analysis enabled a clear, quantitative delineation of the appropriate use of different imaging modes relative to the ratio of out-of-focus background to in-focus signal, and defines an upper limit to the useful range of the three most common modes of imaging. PMID:18045334

  14. 50 CFR 648.53 - Acceptable biological catch (ABC), annual catch limits (ACL), annual catch targets (ACT), DAS...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... catch limits (ACL), annual catch targets (ACT), DAS allocations, and individual fishing quotas (IFQ... limits (ACL), annual catch targets (ACT), DAS allocations, and individual fishing quotas (IFQ). (a... process specified in § 648.55 and is equal to the overall scallop fishery ACL. The ABC/ACL shall be...

  15. 50 CFR 648.53 - Acceptable biological catch (ABC), annual catch limits (ACL), annual catch targets (ACT), DAS...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... catch limits (ACL), annual catch targets (ACT), DAS allocations, and individual fishing quotas (IFQ... limits (ACL), annual catch targets (ACT), DAS allocations, and individual fishing quotas (IFQ). (a... process specified in § 648.55 and is equal to the overall scallop fishery ACL. The ABC/ACL shall be...

  16. Simulated single molecule microscopy with SMeagol.

    PubMed

    Lindén, Martin; Ćurić, Vladimir; Boucharin, Alexis; Fange, David; Elf, Johan

    2016-08-01

    SMeagol is a software tool to simulate highly realistic microscopy data based on spatial systems biology models, in order to facilitate development, validation and optimization of advanced analysis methods for live cell single molecule microscopy data. SMeagol runs on Matlab R2014 and later, and uses compiled binaries in C for reaction-diffusion simulations. Documentation, source code and binaries for Mac OS, Windows and Ubuntu Linux can be downloaded from http://smeagol.sourceforge.net johan.elf@icm.uu.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  17. Single-wavelength functional photoacoustic microscopy in biological tissue.

    PubMed

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2011-03-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple-laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multiwavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy.

  18. Single-wavelength functional photoacoustic microscopy in biological tissue

    PubMed Central

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2011-01-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multi-wavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy. PMID:21368977

  19. Teaching Foreign Cultural Literacy with Margarethe von Trotta's "Das Versprechen"

    ERIC Educational Resources Information Center

    Kuttenberg, Eva

    2003-01-01

    This article describes model units for an in-depth cultural analysis of "Das Versprechen" in undergraduate college courses including intermediate German, German culture and civilization, advanced conversation and composition, and film. Practical suggestions for pre-viewing, viewing, and post-viewing activities as well as assessment in…

  20. Hyperspectral imaging with laser-scanning sum-frequency generation microscopy

    PubMed Central

    Hanninen, Adam; Shu, Ming Wai; Potma, Eric O.

    2017-01-01

    Vibrationally sensitive sum-frequency generation (SFG) microscopy is a chemically selective imaging technique sensitive to non-centrosymmetric molecular arrangements in biological samples. The routine use of SFG microscopy has been hampered by the difficulty of integrating the required mid-infrared excitation light into a conventional, laser-scanning nonlinear optical (NLO) microscope. In this work, we describe minor modifications to a regular laser-scanning microscope to accommodate SFG microscopy as an imaging modality. We achieve vibrationally sensitive SFG imaging of biological samples with sub-μm resolution at image acquisition rates of 1 frame/s, almost two orders of magnitude faster than attained with previous point-scanning SFG microscopes. Using the fast scanning capability, we demonstrate hyperspectral SFG imaging in the CH-stretching vibrational range and point out its use in the study of molecular orientation and arrangement in biologically relevant samples. We also show multimodal imaging by combining SFG microscopy with second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) on the same imaging platfrom. This development underlines that SFG microscopy is a unique modality with a spatial resolution and image acquisition time comparable to that of other NLO imaging techniques, making point-scanning SFG microscopy a valuable member of the NLO imaging family. PMID:28966861

  1. Scanning Probe Microscopy of Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Reid, Obadiah G.

    Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than tr

  2. Biological applications of phase-contrast electron microscopy.

    PubMed

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  3. [Pleural mesothelioma in a school teacher: asbestos exposure due to DAS paste].

    PubMed

    Barbieri, Pietro Gino; Somigliana, Anna; Girelli, Roberto; Lombardi, Sandra; Sarnico, Michela; Silvestri, Stefano

    2016-03-24

    Malignant mesothelioma cases among primary school teachers are usually linked with asbestos exposure due to the mineral contained in the building structure. Among the approximately 12,000 cases of mesothelioma described in the fourth report of the National Mesothelioma Register, 11 cases of primary school teachers are reported, in spite of the fact that the "catalogue of asbestos use" does not describe circumstances of asbestos exposure other than or different to that due to asbestos contained in the buildings. Four cases in the Brescia Provincial Mesothelioma Register are identified as teachers, without this circumstance of exposure. To characterize the asbestos concentration and fibre type retained in the lungs of a teacher reported as a new mesothelioma case and preliminarily classified as of unknown asbestos exposure. The mesothelioma case presented here was diagnosed at age 78 and malignant mesothelioma was confirmed at autopsy; the patient was interviewed directly for occupational history. Samples of lung parenchyma from necropsies were collected, stored and analyzed by scanning electron microscope (SEM) and samples of DAS paste were analyzed by SEM to detect asbestos fibre content. It was possible to confirm past exposure to DAS paste in forming and finishing dry items and toys during school recreational activity almost every day from the mid-60s to about the mid-70s. Subsequent SEM analysis showed: i) chrysotile fibres were found in an old and unused pack of DAS paste; ii) a lung burden of 1,400 asbestos bodies, 310.000 total asbestos fibres (33% chrysotile, 67% amphibole) and 210.000 talc fibre per gr/dry lung tissue was detected from necropsies performed on the subject. These results seem to be in agreement with an occupational exposure to asbestos due to past use of DAS paste. After the investigation, this case was reclassified from "unknowun" to " sure" occupational asbestos exposure. The occupational origin of the tumour was recognized by the Italian

  4. Reproducibility in light microscopy: Maintenance, standards and SOPs.

    PubMed

    Deagle, Rebecca C; Wee, Tse-Luen Erika; Brown, Claire M

    2017-08-01

    Light microscopy has grown to be a valuable asset in both the physical and life sciences. It is a highly quantitative method available in individual research laboratories and often centralized in core facilities. However, although quantitative microscopy is becoming a customary tool in research, it is rarely standardized. To achieve accurate quantitative microscopy data and reproducible results, three levels of standardization must be considered: (1) aspects of the microscope, (2) the sample, and (3) the detector. The accuracy of the data is only as reliable as the imaging system itself, thereby imposing the need for routine standard performance testing. Depending on the task some maintenance procedures should be performed once a month, some before each imaging session, while others conducted annually. This text should be implemented as a resource for researchers to integrate with their own standard operating procedures to ensure the highest quality quantitative microscopy data. Copyright © 2017. Published by Elsevier Ltd.

  5. Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.

    PubMed

    Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter

    2018-06-01

    There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.

  6. Advanced Methods in Fluorescence Microscopy

    PubMed Central

    Fritzky, Luke; Lagunoff, David

    2013-01-01

    It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres. PMID:23271142

  7. Speckle-field digital holographic microscopy.

    PubMed

    Park, YongKeun; Choi, Wonshik; Yaqoob, Zahid; Dasari, Ramachandra; Badizadegan, Kamran; Feld, Michael S

    2009-07-20

    The use of coherent light in conventional holographic phase microscopy (HPM) poses three major drawbacks: poor spatial resolution, weak depth sectioning, and fixed pattern noise due to unwanted diffraction. Here, we report a technique which can overcome these drawbacks, but maintains the advantage of phase microscopy - high contrast live cell imaging and 3D imaging. A speckle beam of a complex spatial pattern is used for illumination to reduce fixed pattern noise and to improve optical sectioning capability. By recording of the electric field of speckle, we demonstrate high contrast 3D live cell imaging without the need for axial scanning - neither objective lens nor sample stage. This technique has great potential in studying biological samples with improved sensitivity, resolution and optical sectioning capability.

  8. Sparse imaging for fast electron microscopy

    NASA Astrophysics Data System (ADS)

    Anderson, Hyrum S.; Ilic-Helms, Jovana; Rohrer, Brandon; Wheeler, Jason; Larson, Kurt

    2013-02-01

    Scanning electron microscopes (SEMs) are used in neuroscience and materials science to image centimeters of sample area at nanometer scales. Since imaging rates are in large part SNR-limited, large collections can lead to weeks of around-the-clock imaging time. To increase data collection speed, we propose and demonstrate on an operational SEM a fast method to sparsely sample and reconstruct smooth images. To accurately localize the electron probe position at fast scan rates, we model the dynamics of the scan coils, and use the model to rapidly and accurately visit a randomly selected subset of pixel locations. Images are reconstructed from the undersampled data by compressed sensing inversion using image smoothness as a prior. We report image fidelity as a function of acquisition speed by comparing traditional raster to sparse imaging modes. Our approach is equally applicable to other domains of nanometer microscopy in which the time to position a probe is a limiting factor (e.g., atomic force microscopy), or in which excessive electron doses might otherwise alter the sample being observed (e.g., scanning transmission electron microscopy).

  9. Brillouin microscopy: assessing ocular tissue biomechanics.

    PubMed

    Yun, Seok Hyun; Chernyak, Dimitri

    2018-07-01

    Assessment of corneal biomechanics has been an unmet clinical need in ophthalmology for many years. Many researchers and clinicians have identified corneal biomechanics as source of variability in refractive procedures and one of the main factors in keratoconus. However, it has been difficult to accurately characterize corneal biomechanics in patients. The recent development of Brillouin light scattering microscopy heightens the promise of bringing biomechanics into the clinic. The aim of this review is to overview the progress and discuss prospective applications of this new technology. Brillouin microscopy uses a low-power near-infrared laser beam to determine longitudinal modulus or mechanical compressibility of tissue by analyzing the return signal spectrum. Human clinical studies have demonstrated significant difference in the elastic properties of normal corneas versus corneas diagnosed with mild and severe keratoconus. Clinical data have also shown biomechanical changes after corneal cross-linking treatment of keratoconus patients. Brillouin measurements of the crystalline lens and sclera have also been demonstrated. Brillouin microscopy is a promising technology under commercial development at present. The technique enables physicians to characterize the biomechanical properties of ocular tissues.

  10. Incorporating Parallel Computing into the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    NASA Technical Reports Server (NTRS)

    Larson, Jay W.

    1998-01-01

    Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.

  11. I/O Parallelization for the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    NASA Technical Reports Server (NTRS)

    Lucchesi, Rob; Sawyer, W.; Takacs, L. L.; Lyster, P.; Zero, J.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a data assimilation system that provides production support for NASA missions and will support NASA's Earth Observing System (EOS) in the coming years. The GEOS DAS will be used to provide background fields of meteorological quantities to EOS satellite instrument teams for use in their data algorithms as well as providing assimilated data sets for climate studies on decadal time scales. The DAO has been involved in prototyping parallel implementations of the GEOS DAS for a number of years and is now embarking on an effort to convert the production version from shared-memory parallelism to distributed-memory parallelism using the portable Message-Passing Interface (MPI). The GEOS DAS consists of two main components, an atmospheric General Circulation Model (GCM) and a Physical-space Statistical Analysis System (PSAS). The GCM operates on data that are stored on a regular grid while PSAS works with observational data that are scattered irregularly throughout the atmosphere. As a result, the two components have different data decompositions. The GCM is decomposed horizontally as a checkerboard with all vertical levels of each box existing on the same processing element(PE). The dynamical core of the GCM can also operate on a rotated grid, which requires communication-intensive grid transformations during GCM integration. PSAS groups observations on PEs in a more irregular and dynamic fashion.

  12. Microfluidics and Raman microscopy: current applications and future challenges.

    PubMed

    Chrimes, Adam F; Khoshmanesh, Khashayar; Stoddart, Paul R; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2013-07-07

    Raman microscopy systems are becoming increasingly widespread and accessible for characterising chemical species. Microfluidic systems are also progressively finding their way into real world applications. Therefore, it is anticipated that the integration of Raman systems with microfluidics will become increasingly attractive and practical. This review aims to provide an overview of Raman microscopy-microfluidics integrated systems for researchers who are actively interested in utilising these tools. The fundamental principles and application strengths of Raman microscopy are discussed in the context of microfluidics. Various configurations of microfluidics that incorporate Raman microscopy methods are presented, with applications highlighted. Data analysis methods are discussed, with a focus on assisting the interpretation of Raman-microfluidics data from complex samples. Finally, possible future directions of Raman-microfluidic systems are presented.

  13. Ultrafast optical pulse delivery with fibers for nonlinear microscopy

    PubMed Central

    Kim, Daekeun; Choi, Heejin; Yazdanfar, Siavash; So, Peter T. C.

    2008-01-01

    Nonlinear microscopies including multiphoton excitation fluorescence microscopy and multiple-harmonic generation microscopy have recently gained popularity for cellular and tissue imaging. The optimization of these imaging methods for minimally invasive use will require optical fibers to conduct light into tight space where free space delivery is difficult. The delivery of high peak power laser pulses with optical fibers is limited by dispersion resulting from nonlinear refractive index responses. In this paper, we characterize a variety of commonly used optical fibers in terms of how they affect pulse profile and imaging performance of nonlinear microscopy; the following parameters are quantified: spectral bandwidth and temporal pulse width, two-photon excitation efficiency, and optical resolution. A theoretical explanation for the measured performance of these is also provided. PMID:18816597

  14. Fluorescence Microscopy of Single Molecules

    ERIC Educational Resources Information Center

    Zimmermann, Jan; van Dorp, Arthur; Renn, Alois

    2004-01-01

    The investigation of photochemistry and photophysics of individual quantum systems is described with the help of a wide-field fluorescence microscopy approach. The fluorescence single molecules are observed in real time.

  15. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  16. Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.

    2013-01-01

    Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024

  17. Nanodiamonds as multi-purpose labels for microscopy.

    PubMed

    Hemelaar, S R; de Boer, P; Chipaux, M; Zuidema, W; Hamoh, T; Martinez, F Perona; Nagl, A; Hoogenboom, J P; Giepmans, B N G; Schirhagl, R

    2017-04-07

    Nanodiamonds containing fluorescent nitrogen-vacancy centers are increasingly attracting interest for use as a probe in biological microscopy. This interest stems from (i) strong resistance to photobleaching allowing prolonged fluorescence observation times; (ii) the possibility to excite fluorescence using a focused electron beam (cathodoluminescence; CL) for high-resolution localization; and (iii) the potential use for nanoscale sensing. For all these schemes, the development of versatile molecular labeling using relatively small diamonds is essential. Here, we show the direct targeting of a biological molecule with nanodiamonds as small as 70 nm using a streptavidin conjugation and standard antibody labelling approach. We also show internalization of 40 nm sized nanodiamonds. The fluorescence from the nanodiamonds survives osmium-fixation and plastic embedding making them suited for correlative light and electron microscopy. We show that CL can be observed from epon-embedded nanodiamonds, while surface-exposed nanoparticles also stand out in secondary electron (SE) signal due to the exceptionally high diamond SE yield. Finally, we demonstrate the magnetic read-out using fluorescence from diamonds prior to embedding. Thus, our results firmly establish nanodiamonds containing nitrogen-vacancy centers as unique, versatile probes for combining and correlating different types of microscopy, from fluorescence imaging and magnetometry to ultrastructural investigation using electron microscopy.

  18. Detection and Mapping of the September 2017 Mexico Earthquakes Using DAS Fiber-Optic Infrastructure Arrays

    NASA Astrophysics Data System (ADS)

    Karrenbach, M. H.; Cole, S.; Williams, J. J.; Biondi, B. C.; McMurtry, T.; Martin, E. R.; Yuan, S.

    2017-12-01

    Fiber-optic distributed acoustic sensing (DAS) uses conventional telecom fibers for a wide variety of monitoring purposes. Fiber-optic arrays can be located along pipelines for leak detection; along borders and perimeters to detect and locate intruders, or along railways and roadways to monitor traffic and identify and manage incidents. DAS can also be used to monitor oil and gas reservoirs and to detect earthquakes. Because thousands of such arrays are deployed worldwide and acquiring data continuously, they can be a valuable source of data for earthquake detection and location, and could potentially provide important information to earthquake early-warning systems. In this presentation, we show that DAS arrays in Mexico and the United States detected the M8.1 and M7.2 Mexico earthquakes in September 2017. At Stanford University, we have deployed a 2.4 km fiber-optic DAS array in a figure-eight pattern, with 600 channels spaced 4 meters apart. Data have been recorded continuously since September 2016. Over 800 earthquakes from across California have been detected and catalogued. Distant teleseismic events have also been recorded, including the two Mexican earthquakes. In Mexico, fiber-optic arrays attached to pipelines also detected these two events. Because of the length of these arrays and their proximity to the event locations, we can not only detect the earthquakes but also make location estimates, potentially in near real time. In this presentation, we review the data recorded for these two events recorded at Stanford and in Mexico. We compare the waveforms recorded by the DAS arrays to those recorded by traditional earthquake sensor networks. Using the wide coverage provided by the pipeline arrays, we estimate the event locations. Such fiber-optic DAS networks can potentially play a role in earthquake early-warning systems, allowing actions to be taken to minimize the impact of an earthquake on critical infrastructure components. While many such fiber

  19. Chemistry Viewed through the Eyes of High-Resolution Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael; And Others

    1981-01-01

    This special report, prepared by several chemists working in the field of electron microscopy, provides information regarding the most recent developments in transmission and scanning electron microscopy that have chemical significance. (CS)

  20. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection

    PubMed Central

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2016-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches—including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy—have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact–free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina. PMID:27480461

  1. Toward single cell traction microscopy within 3D collagen matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives onmore » the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.« less

  2. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.

    PubMed

    Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L

    2017-06-14

    Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.

  3. Fluorescence microscopy: A tool to study autophagy

    NASA Astrophysics Data System (ADS)

    Rai, Shashank; Manjithaya, Ravi

    2015-08-01

    Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.

  4. [Watching dance of the molecules - CARS microscopy].

    PubMed

    Korczyński, Jaroslaw; Kubiak, Katarzyna; Węgłowska, Edyta

    2017-01-01

    CARS (Coherent Anti-Stokes Raman Scattering) microscopy is an imaging method for living cells visualization as well as for food or cosmetics material analysis without the need for staining. The near infrared laser source generates the CARS signal - the characteristic intrinsic vibrational contrast of the molecules in a sample which is no longer caused by staining, but by the molecules themselves. It provides the benefit of a non-toxic, non-destructive and almost noninvasive method for sample imaging. CARS can easily be combined with fluorescence confocal microscopy so it is an excellent complementary imaging method. In this article we showed some of the applications for this technology: imaging of lipid droplets inside human HaCaT cells and analysis of the composition of cosmetic products. Moreover we believe, that soon new fields of application become accessible for this rapidly developing branch of microscopy.

  5. Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.

    PubMed

    Killingsworth, Murray C; Bobryshev, Yuri V

    2016-08-07

    A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region.

  6. Imaging bacterial spores by soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores bymore » soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.« less

  7. Garlic extract diallyl sulfide (DAS) activates nuclear receptor CAR to induce the Sult1e1 gene in mouse liver.

    PubMed

    Sueyoshi, Tatsuya; Green, William D; Vinal, Kellie; Woodrum, Tyler S; Moore, Rick; Negishi, Masahiko

    2011-01-01

    Constituent chemicals in garlic extract are known to induce phase I and phase II enzymes in rodent livers. Here we have utilized Car(+/+) and Car(-/-) mice to demonstrate that the nuclear xenobiotic receptor CAR regulated the induction of the estrogen sulfotransferase Sult1e1 gene by diallyl sulfide (DAS) treatment in mouse liver. DAS treatment caused CAR accumulation in the nucleus, resulting in a remarkable increase of SULT1E1 mRNA (3,200 fold) and protein in the livers of Car(+/+) females but not of Car(-/-) female mice. DAS also induced other CAR-regulated genes such as Cyp2b10, Cyp3a11 and Gadd45β. Compared with the rapid increase of these mRNA levels, which began as early as 6 hours after DAS treatment, the levels of SULT1E1 mRNA began increasing after 24 hours. This slow response to DAS suggested that CAR required an additional factor to activate the Sult1e1 gene or that this activation was indirect. Despite the remarkable induction of SULT1E1, there was no decrease in the serum levels of endogenous E2 or increase of estrone sulfate while the clearance of exogenously administrated E2 was accelerated in DAS treated mice.

  8. (Re)locating (I)dentity With(in) Politicized (Re)presentation of Fe/Male Body in Kamala Das' Poetry

    ERIC Educational Resources Information Center

    Sultana, Sharmin; Sarwar, Nadia

    2016-01-01

    This paper is going to argue that the selected poems of renowned Indian poet Kamala Das are inclined to relocate both feminine and masculine identity through the politicized representation of body. Kamala Das' representation of body in her poems has always been viewed as a medium of re-historicizing the pain, sufferings, and psychological trauma…

  9. The Deaf Acculturation Scale (DAS): Development and Validation of a 58-Item Measure

    PubMed Central

    Maxwell-McCaw, Deborah; Zea, Maria Cecilia

    2011-01-01

    This study involved the development and validation of the Deaf Acculturation Scale (DAS), a new measure of cultural identity for Deaf and hard-of-hearing (hh) populations. Data for this study were collected online and involved a nation-wide sample of 3,070 deaf/hh individuals. Results indicated strong internal reliabilities for all the subscales, and construct validity was established by demonstrating that the DAS could discriminate groups based on parental hearing status, school background, and use of self-labels. Construct validity was further demonstrated through factorial analyses, and findings resulted in a final 58-item measure. Directions for future research are discussed. PMID:21263041

  10. Enhancing Analytical Separations Using Super-Resolution Microscopy

    NASA Astrophysics Data System (ADS)

    Moringo, Nicholas A.; Shen, Hao; Bishop, Logan D. C.; Wang, Wenxiao; Landes, Christy F.

    2018-04-01

    Super-resolution microscopy is becoming an invaluable tool to investigate structure and dynamics driving protein interactions at interfaces. In this review, we highlight the applications of super-resolution microscopy for quantifying the physics and chemistry that occur between target proteins and stationary-phase supports during chromatographic separations. Our discussion concentrates on the newfound ability of super-resolved single-protein spectroscopy to inform theoretical parameters via quantification of adsorption-desorption dynamics, protein unfolding, and nanoconfined transport.

  11. Statistical Quality Control of Moisture Data in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D. P.; Rukhovets, L.; Todling, R.

    1999-01-01

    A new statistical quality control algorithm was recently implemented in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The final step in the algorithm consists of an adaptive buddy check that either accepts or rejects outlier observations based on a local statistical analysis of nearby data. A basic assumption in any such test is that the observed field is spatially coherent, in the sense that nearby data can be expected to confirm each other. However, the buddy check resulted in excessive rejection of moisture data, especially during the Northern Hemisphere summer. The analysis moisture variable in GEOS DAS is water vapor mixing ratio. Observational evidence shows that the distribution of mixing ratio errors is far from normal. Furthermore, spatial correlations among mixing ratio errors are highly anisotropic and difficult to identify. Both factors contribute to the poor performance of the statistical quality control algorithm. To alleviate the problem, we applied the buddy check to relative humidity data instead. This variable explicitly depends on temperature and therefore exhibits a much greater spatial coherence. As a result, reject rates of moisture data are much more reasonable and homogeneous in time and space.

  12. Two-Photon Excitation Microscopy for the Study of Living Cells and Tissues

    PubMed Central

    Benninger, Richard K.P.; Piston, David W.

    2013-01-01

    Two-photon excitation microscopy is an alternative to confocal microscopy that provides advantages for three-dimensional and deep tissue imaging. This unit will describe the basic physical principles behind two-photon excitation and discuss the advantages and limitations of its use in laser-scanning microscopy. The principal advantages of two-photon microscopy are reduced phototoxicity, increased imaging depth, and the ability to initiate highly localized photochemistry in thick samples. Practical considerations for the application of two-photon microscopy will then be discussed, including recent technological advances. This unit will conclude with some recent applications of two-photon microscopy that highlight the key advantages over confocal microscopy and the types of experiments which would benefit most from its application. PMID:23728746

  13. The evolution of structured illumination microscopy in studies of HIV.

    PubMed

    Marno, Kelly; Al'Zoubi, Lara; Pearson, Matthew; Posch, Markus; McKnight, Áine; Wheeler, Ann P

    2015-10-15

    The resolution limit of conventional light microscopy has proven to be limiting for many biological structures such as viruses including Human immunodeficiency virus (HIV). Individual HIV virions are impossible to study using confocal microscopy as they are well below the 200 nm resolution limit of conventional light microscopes. Structured illumination microscopy (SIM) allows a twofold enhancement in image resolution compared to standard widefield illumination and so provides an excellent tool for study of HIV. Viral capsids (CAs) vary between 110 and 146 nm so this study challenges the performance of SIM microscopes. SIM microscopy was first developed in 2000, commercialised in 2007 and rapidly developed. Here we present the changes in capabilities of the SIM microscopes for study of HIV localisation as the instrumentation for structured illumination microscopy has evolved over the past 8 years. Copyright © 2015. Published by Elsevier Inc.

  14. Holographic microscopy studies of emulsions

    NASA Technical Reports Server (NTRS)

    Witherow, W. K.

    1981-01-01

    A holographic microscopy system that records and observes the dynamic properties of separation of dispersed immiscible fluids is described. The holographic construction system and reconstruction system that were used to obtain particle size and distribution information from the holograms are discussed. The holographic microscopy system is used to observed the phase separating processes in immiscible fluids that were isothermally cooled into the two phase region. Nucleation, growth rates, coalescence, and particle motion are successfully demonstrated with this system. Thus a holographic particle sizing system with a resolution of 2 micrometers and a field of view of 100 cu cm was developed that provides the capability of testing the theories of separating immiscible fluids for particle number densities in the range of 10 to 10 to the 7th power particles.

  15. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.

  16. High-Speed Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ando, Toshio; Uchihashi, Takayuki; Kodera, Noriyuki

    2012-08-01

    The technology of high-speed atomic force microscopy (HS-AFM) has reached maturity. HS-AFM enables us to directly visualize the structure and dynamics of biological molecules in physiological solutions at subsecond to sub-100 ms temporal resolution. By this microscopy, dynamically acting molecules such as myosin V walking on an actin filament and bacteriorhodopsin in response to light are successfully visualized. High-resolution molecular movies reveal the dynamic behavior of molecules in action in great detail. Inferences no longer have to be made from static snapshots of molecular structures and from the dynamic behavior of optical markers attached to biomolecules. In this review, we first describe theoretical considerations for the highest possible imaging rate, then summarize techniques involved in HS-AFM and highlight recent imaging studies. Finally, we briefly discuss future challenges to explore.

  17. SCANNING NEAR-FIELD OPTICAL MICROSCOPY

    PubMed Central

    Vobornik, Dušan; Vobornik, Slavenka

    2008-01-01

    An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today’s science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution. PMID:18318675

  18. Scanning near-field optical microscopy.

    PubMed

    Vobornik, Dusan; Vobornik, Slavenka

    2008-02-01

    An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today's science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution.

  19. Ultraviolet Microscopy of Candida albicans

    PubMed Central

    Balish, Edward; Svihla, George

    1966-01-01

    Balish, Edward (Argonne National Laboratory, Argonne, Ill.), and George Svihla. Ultraviolet microscopy of Candida albicans. J. Bacteriol. 92:1812–1820. 1966.—Yeast and mycelial strains of Candida albicans were grown in medium supplemented with sulfur amino acids in an effort to determine factors that control the morphology and pathogenicity of the organism. Ultraviolet microscopy revealed a greater concentration of S-adenosylmethionine in the vacuoles of the mycelial phase than in those of yeast phases. Supplementation with amino acids greatly increased the concentration of S-adenosylmethionine in the mycelial phase, and made these cells more sensitive to the lytic action of snail gut enzymes than two yeast phase strains. This indicates a difference in cell wall structure that may be related to the pathogenicity of the mycelial phase. Images PMID:5958110

  20. Microscopy basics and the study of actin-actin-binding protein interactions.

    PubMed

    Thomasson, Maggie S; Macnaughtan, Megan A

    2013-12-15

    Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin-ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Novas determinações dos parâmetros atmosféricos das estrelas anãs brancas DA

    NASA Astrophysics Data System (ADS)

    Giovannini, O.; Costa, A. F. M.; Kepler, S. O.

    2003-08-01

    Nós temos selecionado uma amostra de estrelas anãs brancas DA (atmosfera de hidrogênio) a partir dos índices de Strömgren cujos valores estão próximos a região de instabilidade das estrelas anãs brancas DA variáveis, as chamadas estrelas DAV ou ZZ Ceti. O objetivo é determinar os parâmetros fundamentais (temperatura efetiva, Teff, aceleração da gravidade, log g, e massa) destas estrelas para verificar quais os parâmetros estelares estão envolvidos com o mecanismo de pulsação das estrelas DAV. Nós obtemos, até agora, mais de 120 espectros óticos de estrelas DA. Entre as estrelas selecionadas há 20 estrelas variáveis (DAV). Assim, podemos verificar se existem ou não estrelas não variáveis dentro da faixa de instabilidade das estrelas ZZ Ceti. Neste trabalho nós apresentamos a determinação dos parâmetros atmosféricos (temperatura efetiva, Teff, e aceleração da gravidade, log g) das estrelas anãs brancas DA usando os novos modelos de atmosfera ML2/a = 0.6. Estes modelos têm sido utilizados recentemente por fornecerem uma excelente consistência interna na determinação das temperaturas nas regiões do ultra-violeta e ótico. Os parâmetros atmosféricos são determinados espectroscopicamente através da comparação do fluxo de energia das linhas de Balmer (Hb à H9) entre os espectros observados e sintéticos (gerados pelos modelos de atmosfera). As temperaturas obtidas com os novos modelos são, em geral, menores (~ 1000 K menos) que as temperaturas determinadas anteriormente, com modelos ML1. Os valores de log g não mudaram significativamente (menos de 10%). A faixa de instabilidade das DAVs está entre 11000 e 13000 K, consistente com dados de outros autores.

  2. Lobster eye as a collector for water window microscopy

    NASA Astrophysics Data System (ADS)

    Pina, L.; Maršíková, V.; Inneman, A.; Nawaz, M. F.; Jančárek, A.; Havlíková, R.

    2017-08-01

    Imaging in EUV, SXR and XR spectral bands of radiation is of increasing interest. Material science, biology and hot plasma are examples of relevant fast developing areas. Applications include spectroscopy, astrophysics, Soft X-ray Ray metrology, Water Window microscopy, radiography and tomography. Especially Water Window imaging has still not fully recognized potential in biology and medicine microscopy applications. Theoretical study and design of Lobster Eye (LE) optics as a collector for water window (WW) microscopy and comparison with a similar size ellipsoidal mirror condensor are presented.

  3. Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; van Oosten Slingeland, Daan S. B.; Baudoin, Jean-Pierre; Kruit, Pieter; Piston, David W.; Hoogenboom, Jacob P.

    2016-01-01

    We present an approach toward dynamic nanoimaging: live fluorescence of cells encapsulated in a bionanoreactor is complemented with in situ scanning electron microscopy (SEM) on an integrated microscope. This allows us to take SEM snapshots on-demand, that is, at a specific location in time, at a desired region of interest, guided by the dynamic fluorescence imaging. We show that this approach enables direct visualization, with EM resolution, of the distribution of bioconjugated quantum dots on cellular extensions during uptake and internalization. PMID:26580231

  4. Using environmental forensic microscopy in exposure science.

    PubMed

    Millette, James R; Brown, Richard S; Hill, Whitney B

    2008-01-01

    Environmental forensic microscopy investigations are based on the methods and procedures developed in the fields of criminal forensics, industrial hygiene and environmental monitoring. Using a variety of microscopes and techniques, the environmental forensic scientist attempts to reconstruct the sources and the extent of exposure based on the physical evidence left behind after particles are exchanged between an individual and the environments he or she passes through. This article describes how environmental forensic microscopy uses procedures developed for environmental monitoring, criminal forensics and industrial hygiene investigations. It provides key references to the interdisciplinary approach used in microscopic investigations. Case studies dealing with lead, asbestos, glass fibers and other particulate contaminants are used to illustrate how environmental forensic microscopy can be very useful in the initial stages of a variety of environmental exposure characterization efforts to eliminate some agents of concern and to narrow the field of possible sources of exposure.

  5. Spectroscopy and atomic force microscopy of biomass.

    PubMed

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  6. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    PubMed

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  7. PREFACE: Time-resolved scanning tunnelling microscopy Time-resolved scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Zandvliet, Harold J. W.; Lin, Nian

    2010-07-01

    Scanning tunnelling microscopy has revolutionized our ability to image, manipulate, and investigate solid surfaces on the length scale of individual atoms and molecules. The strength of this technique lies in its imaging capabilities, since for many scientists 'seeing is believing'. However, scanning tunnelling microscopy also suffers from a severe limitation, namely its poor time resolution. Recording a scanning tunnelling microscopy image typically requires a few tens of seconds for a conventional scanning tunnelling microscope to a fraction of a second for a specially designed fast scanning tunnelling microscope. Designing and building such a fast scanning tunnelling microscope is a formidable task in itself and therefore, only a limited number of these microscopes have been built [1]. There is, however, another alternative route to significantly enhance the time resolution of a scanning tunnelling microscope. In this alternative method, the tunnelling current is measured as a function of time with the feedback loop switched off. The time resolution is determined by the bandwidth of the IV converter rather than the cut-off frequency of the feedback electronics. Such an approach requires a stable microscope and goes, of course, at the expense of spatial information. In this issue, we have collected a set of papers that gives an impression of the current status of this rapidly emerging field [2]. One of the very first attempts to extract information from tunnel current fluctuations was reported by Tringides' group in the mid-1990s [3]. They showed that the collective diffusion coefficient can be extracted from the autocorrelation of the time-dependent tunnelling current fluctuations produced by atom motion in and out of the tunnelling junction. In general, current-time traces provide direct information on switching/conformation rates and distributions of residence times. In the case where these processes are thermally induced it is rather straightforward to map

  8. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events

    PubMed Central

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461

  9. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    PubMed

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  10. Distributed Acoustic Sensing (DAS) Array near a Highway for Traffic Monitoring and Near-Surface Shear-Wave Velocity Profiles

    NASA Astrophysics Data System (ADS)

    Wang, H. F.; Fratta, D.; Lancelle, C.; Ak, E. Ms; Lord, N. E.

    2017-12-01

    Monitoring traffic is important for many technical reasons. It allows for better design of future roads and assessment of the state of current roads. The number, size, weight, and speed of vehicles control deterioration rate. Also, real-time information supplies data to intelligent information systems to help control traffic. Recently there have been studies looking at monitoring traffic seismically as vibrations from traffic are not sensitive to weather and poor visibility. Furthermore, traffic noise can be used to image S-wave velocity distribution in the near surface by capturing and interpreting Rayleigh and Love waves (Nakata, 2016; Zeng et al. 2016). The capability of DAS for high spatial sampling (1 m), temporal sampling (up to 10 kHz), and distributed nature (tens of kilometers) allows for a closer look at the traffic as it passes and how the speed of the vehicle may change over the length of the array. The potential and difficulties of using DAS for these objectives were studied using two DAS arrays. One at Garner Valley in Southern California (a 700-meter array adjacent to CA Highway 74) and another in Brady Hot Springs, Nevada (an 8700-meter array adjacent to Interstate 80). These studies experimentally evaluated the use of DAS data for monitoring traffic and assessing the use of traffic vibration as non-localized sources for seismic imaging. DAS arrays should also be resilient to issues with lighting conditions that are problematic for video monitoring and it may be sensitive to the weight of a vehicle. This study along a major interstate provides a basis for examining DAS' potential and limitations as a key component of intelligent highway systems.

  11. Saturated virtual fluorescence emission difference microscopy based on detector array

    NASA Astrophysics Data System (ADS)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  12. Spontaneous Polarization in Bio-organic Materials Studied by Scanning Pyroelectric Microscopy (SPEM) and Second Harmonic Generation Microscopy (SHGM)

    NASA Astrophysics Data System (ADS)

    Putzeys, T.; Wübbenhorst, M.; van der Veen, M. A.

    2015-06-01

    Bio-organic materials such as bones, teeth, and tendon generally show nonlinear optical (Masters and So in Handbook of Biomedical Nonlinear Optical Microscopy, 2008), pyro- and piezoelectric (Fukada and Yasuda in J Phys Soc Jpn 12:1158, 1957) properties, implying a permanent polarization, the presence of which can be rationalized by describing the growth of the sample and the creation of a polar axis according to Markov's theory of stochastic processes (Hulliger in Biophys J 84:3501, 2003; Batagiannis et al. in Curr Opin Solid State Mater Sci 17:107, 2010). Two proven, versatile techniques for probing spontaneous polarization distributions in solids are scanning pyroelectric microscopy (SPEM) and second harmonic generation microscopy (SHGM). The combination of pyroelectric scanning with SHG-microscopy in a single experimental setup leading to complementary pyroelectric and nonlinear optical data is demonstrated, providing us with a more complete image of the polarization in organic materials. Crystals consisting of a known polar and hyperpolarizable material, CNS (4-chloro-4-nitrostilbene) are used as a reference sample, to verify the functionality of the setup, with both SPEM and SHGM images revealing the same polarization domain information. In contrast, feline and human nails exhibit a pyroelectric response, but a second harmonic response is absent for both keratin containing materials, implying that there may be symmetry-allowed SHG, but with very inefficient second harmonophores. This new approach to polarity detection provides additional information on the polar and hyperpolar nature in a variety of (bio) materials.

  13. Inducible fluorescent speckle microscopy

    PubMed Central

    Aguiar, Paulo; Belsley, Michael; Maiato, Helder

    2016-01-01

    The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration. PMID:26783303

  14. Inducible fluorescent speckle microscopy.

    PubMed

    Pereira, António J; Aguiar, Paulo; Belsley, Michael; Maiato, Helder

    2016-01-18

    The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration. © 2016 Pereira et al.

  15. Quantitative Aspects of Single Molecule Microscopy

    PubMed Central

    Ober, Raimund J.; Tahmasbi, Amir; Ram, Sripad; Lin, Zhiping; Ward, E. Sally

    2015-01-01

    Single molecule microscopy is a relatively new optical microscopy technique that allows the detection of individual molecules such as proteins in a cellular context. This technique has generated significant interest among biologists, biophysicists and biochemists, as it holds the promise to provide novel insights into subcellular processes and structures that otherwise cannot be gained through traditional experimental approaches. Single molecule experiments place stringent demands on experimental and algorithmic tools due to the low signal levels and the presence of significant extraneous noise sources. Consequently, this has necessitated the use of advanced statistical signal and image processing techniques for the design and analysis of single molecule experiments. In this tutorial paper, we provide an overview of single molecule microscopy from early works to current applications and challenges. Specific emphasis will be on the quantitative aspects of this imaging modality, in particular single molecule localization and resolvability, which will be discussed from an information theoretic perspective. We review the stochastic framework for image formation, different types of estimation techniques and expressions for the Fisher information matrix. We also discuss several open problems in the field that demand highly non-trivial signal processing algorithms. PMID:26167102

  16. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    PubMed

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  17. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin

    2016-07-25

    Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less

  18. Correlative super-resolution fluorescence microscopy combined with optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Kim, Gyeong Tae; Jang, Soohyun; Shim, Sang-Hee; Bae, Sung Chul

    2015-03-01

    Recent development of super-resolution fluorescence imaging technique such as stochastic optical reconstruction microscopy (STORM) and photoactived localization microscope (PALM) has brought us beyond the diffraction limits. It allows numerous opportunities in biology because vast amount of formerly obscured molecular structures, due to lack of spatial resolution, now can be directly observed. A drawback of fluorescence imaging, however, is that it lacks complete structural information. For this reason, we have developed a super-resolution multimodal imaging system based on STORM and full-field optical coherence microscopy (FF-OCM). FF-OCM is a type of interferometry systems based on a broadband light source and a bulk Michelson interferometer, which provides label-free and non-invasive visualization of biological samples. The integration between the two systems is simple because both systems use a wide-field illumination scheme and a conventional microscope. This combined imaging system gives us both functional information at a molecular level (~20nm) and structural information at the sub-cellular level (~1μm). For thick samples such as tissue slices, while FF-OCM is readily capable of imaging the 3D architecture, STORM suffer from aberrations and high background fluorescence that substantially degrade the resolution. In order to correct the aberrations in thick tissues, we employed an adaptive optics system in the detection path of the STORM microscope. We used our multimodal system to obtain images on brain tissue samples with structural and functional information.

  19. A review and empirical study of the composite scales of the Das-Naglieri cognitive assessment system.

    PubMed

    McCrea, Simon M

    2009-01-01

    Alexander Luria's model of the working brain consisting of three functional units was formulated through the examination of hundreds of focal brain-injury patients. Several psychometric instruments based on Luria's syndrome analysis and accompanying qualitative tasks have been developed since the 1970s. In the mid-1970s, JP Das and colleagues defined a specific cognitive processes model based directly on Luria's two coding units termed simultaneous and successive by studying diverse cross-cultural, ability, and socioeconomic strata. The cognitive assessment system is based on the PASS model of cognitive processes and consists of four composite scales of Planning-Attention-Simultaneous-Successive (PASS) devised by Naglieri and Das in 1997. Das and colleagues developed the two new scales of planning and attention to more closely model Luria's theory of higher cortical functions. In this paper a theoretical review of Luria's theory, Das and colleagues elaboration of Luria's model, and the neural correlates of PASS composite scales based on extant studies is summarized. A brief empirical study of the neuropsychological specificity of the PASS composite scales in a sample of 33 focal cortical stroke patients using cluster analysis is then discussed. Planning and simultaneous were sensitive to right hemisphere lesions. These findings were integrated with recent functional neuroimaging studies of PASS scales. In sum it was found that simultaneous is strongly dependent on dual bilateral occipitoparietal interhemispheric coordination whereas successive demonstrated left frontotemporal specificity with some evidence of interhemispheric coordination across the prefrontal cortex. Hence, support for the validity of the PASS composite scales was found as well as for the axiom of the independence of code content from code type originally specified in 1994 by Das, Naglieri, and Kirby.

  20. Restoration of uneven illumination in light sheet microscopy images.

    PubMed

    Uddin, Mohammad Shorif; Lee, Hwee Kuan; Preibisch, Stephan; Tomancak, Pavel

    2011-08-01

    Light microscopy images suffer from poor contrast due to light absorption and scattering by the media. The resulting decay in contrast varies exponentially across the image along the incident light path. Classical space invariant deconvolution approaches, while very effective in deblurring, are not designed for the restoration of uneven illumination in microscopy images. In this article, we present a modified radiative transfer theory approach to solve the contrast degradation problem of light sheet microscopy (LSM) images. We confirmed the effectiveness of our approach through simulation as well as real LSM images.

  1. Three-dimensional image formation in fiber-optical second-harmonic-generation microscopy.

    PubMed

    Gu, Min; Fu, Ling

    2006-02-06

    Three-dimensional (3-D) image formation in fiber-optical second-harmonic-generation microscopy is revealed to be purely coherent and therefore can be described by a 3-D coherent transfer function (CTF) that exhibits the same spatial frequency passband as that of fiber-optical reflection-mode non-fluorescence microscopy. When the numerical aperture of the fiber is much larger than the angle of convergence of the illumination on the fiber aperture, the performance of fiber-optical second-harmonic-generation microscopy behaves as confocal second-harmonic-generation microscopy. The dependence of axial resolution on fiber coupling parameters shows an improvement of approximately 7%, compared with that in fiber-optical two-photon fluorescence microscopy.

  2. Garlic Extract Diallyl Sulfide (DAS) Activates Nuclear Receptor CAR to Induce the Sult1e1 Gene in Mouse Liver

    PubMed Central

    Sueyoshi, Tatsuya; Green, William D.; Vinal, Kellie; Woodrum, Tyler S.; Moore, Rick; Negishi, Masahiko

    2011-01-01

    Constituent chemicals in garlic extract are known to induce phase I and phase II enzymes in rodent livers. Here we have utilized Car +/+ and Car −/− mice to demonstrate that the nuclear xenobiotic receptor CAR regulated the induction of the estrogen sulfotransferase Sult1e1 gene by diallyl sulfide (DAS) treatment in mouse liver. DAS treatment caused CAR accumulation in the nucleus, resulting in a remarkable increase of SULT1E1 mRNA (3,200 fold) and protein in the livers of Car +/+ females but not of Car −/− female mice. DAS also induced other CAR-regulated genes such as Cyp2b10, Cyp3a11 and Gadd45β. Compared with the rapid increase of these mRNA levels, which began as early as 6 hourrs after DAS treatment, the levels of SULT1E1 mRNA began increasing after 24 hours. This slow response to DAS suggested that CAR required an additional factor to activate the Sult1e1 gene or that this activation was indirect. Despite the remarkable induction of SULT1E1, there was no decrease in the serum levels of endogenous E2 or increase of estrone sulfate while the clearance of exogenously administrated E2 was accelerated in DAS treated mice. PMID:21698271

  3. A high throughput spectral image microscopy system

    NASA Astrophysics Data System (ADS)

    Gesley, M.; Puri, R.

    2018-01-01

    A high throughput spectral image microscopy system is configured for rapid detection of rare cells in large populations. To overcome flow cytometry rates and use of fluorophore tags, a system architecture integrates sample mechanical handling, signal processors, and optics in a non-confocal version of light absorption and scattering spectroscopic microscopy. Spectral images with native contrast do not require the use of exogeneous stain to render cells with submicron resolution. Structure may be characterized without restriction to cell clusters of differentiation.

  4. Correlated Light and Electron Microscopy/Electron Tomography of Mitochondria In Situ

    PubMed Central

    Perkins, Guy A.; Sun, Mei G.; Frey, Terrence G.

    2009-01-01

    Three-dimensional light microscopy and three-dimensional electron microscopy (electron tomography) separately provide very powerful tools to study cellular structure and physiology, including the structure and physiology of mitochondria. Fluorescence microscopy allows one to study processes in live cells with specific labels and stains that follow the movement of labeled proteins and changes within cellular compartments but does not have sufficient resolution to define the ultrastructure of intracellular organelles such as mitochondria. Electron microscopy and electron tomography provide the highest resolution currently available to study mitochondrial ultrastructure but cannot follow processes in living cells. We describe the combination of these two techniques in which fluorescence confocal microscopy is used to study structural and physiologic changes in mitochondria within apoptotic HeLa cells to define the apoptotic timeframe. Cells can then be selected at various stages of the apoptotic timeframe for examination at higher resolution by electron microscopy and electron tomography. This is a form of “virtual” 4-dimensional electron microscopy that has revealed interesting structural changes in the mitochondria of HeLa cells during apoptosis. The same techniques can be applied, with modification, to study other dynamic processes within cells in other experimental contexts. PMID:19348881

  5. Three-Dimensional Reflectance Traction Microscopy

    PubMed Central

    Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo

    2016-01-01

    Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456

  6. Characterization of konjac glucomannan-ethyl cellulose film formation via microscopy.

    PubMed

    Xiao, Man; Wan, Li; Corke, Harold; Yan, Wenli; Ni, Xuewen; Fang, Yapeng; Jiang, Fatang

    2016-04-01

    Konjac glucomannan-ethyl cellulose (KGM-EC, 7:3, w/w) blended film shows good mechanical and moisture resistance properties. To better understand the basis for the KGM-EC film formation, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to observe the formation of the film from emulsion. Optical microscopy images showed that EC oil droplets were homogeneously dispersed in KGM water phase without obviously coalescence throughout the entire drying process. SEM images showed the surface and cross-sectional structures of samples maintained continuous and homogeneous appearance from the emulsion to dried film. AFM images indicated that KGM molecules entangled EC molecules in the emulsion. Interactions between KGM and EC improved the stability of KGM-EC emulsion, and contributed to uniformed structures of film formation. Based on these output information, a schematic model was built to elucidate KGM-EC film-forming process. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Environmental scanning electron microscopy in cell biology.

    PubMed

    McGregor, J E; Staniewicz, L T L; Guthrie Neé Kirk, S E; Donald, A M

    2013-01-01

    Environmental scanning electron microscopy (ESEM) (1) is an imaging technique which allows hydrated, insulating samples to be imaged under an electron beam. The resolution afforded by this technique is higher than conventional optical microscopy but lower than conventional scanning electron microscopy (CSEM). The major advantage of the technique is the minimal sample preparation needed, making ESEM quick to use and the images less susceptible to the artifacts that the extensive sample preparation usually required for CSEM may introduce. Careful manipulation of both the humidity in the microscope chamber and the beam energy are nevertheless essential to prevent dehydration and beam damage artifacts. In some circumstances it is possible to image live cells in the ESEM (2).In the following sections we introduce the fundamental principles of ESEM imaging before presenting imaging protocols for plant epidermis, mammalian cells, and bacteria. In the first two cases samples are imaged using the secondary electron (topographic) signal, whereas a transmission technique is employed to image bacteria.

  8. Pump-probe optical microscopy for imaging nonfluorescent chromophores.

    PubMed

    Wei, Lu; Min, Wei

    2012-06-01

    Many chromophores absorb light intensely but have undetectable fluorescence. Hence microscopy techniques other than fluorescence are highly desirable for imaging these chromophores inside live cells, tissues, and organisms. The recently developed pump-probe optical microscopy techniques provide fluorescence-free contrast mechanisms by employing several fundamental light-molecule interactions including excited state absorption, stimulated emission, ground state depletion, and the photothermal effect. By using the pump pulse to excite molecules and the subsequent probe pulse to interrogate the created transient states on a laser scanning microscope, pump-probe microscopy offers imaging capability with high sensitivity and specificity toward nonfluorescent chromophores. Single-molecule sensitivity has even been demonstrated. Here we review and summarize the underlying principles of this emerging class of molecular imaging techniques.

  9. High resolution MR microscopy

    NASA Astrophysics Data System (ADS)

    Ciobanu, Luisa

    Magnetic resonance imaging (MRI) microscopy [1] has the potential to bring the full capabilities of NMR to arbitrarily specified localized positions within small samples. The most interesting target of study is the living biological cell, with typical dimensions ˜100 mum, but with substructures that are much smaller, such as the cell nucleus (typically ˜10 mu m) and mitochondria (1--10 mum). One anticipates that the development of MR microscopy with resolution at the level of these substructures or better and with a wide, three dimensional field-of-view could open a new avenue of investigation into the biology of the living cell. Although the first MR image of a single biological cell was reported in 1987 [2], the cell imaged had quite large (˜1 mm diameter) spatial dimensions and the resolution obtained (on the order of 10 mu m) was not adequate for meaningful imaging of more typically sized cells. The quest for higher resolution has continued. In 1989 Zhou et al. [3] obtained fully three dimensional images with spatial resolution of (6.37 mum)3, or 260 femtoliters. While better "in-plane" resolutions (i.e., the resolution in 2 of the 3 spatial dimensions) have since been obtained, [4, 5] this volume resolution was not exceeded until quite recently by Lee et al., [6] who report 2D images having volume resolution of 75 mum 3 and in-plane resolution of 1 mum. In parallel with these advances in raw resolution several investigators [7, 8, 9] have focused on localized spectroscopy and/or chemical shift imaging. The key obstacles to overcome in MR microscopy are (1) the loss of signal to noise that occurs when observing small volumes and (2) molecular diffusion during the measurement or encoding. To date the problem of sensitivity has typically been addressed by employing small micro-coil receivers. [10] The problem of molecular diffusion can only be defeated with strong magnetic field gradients that can encode spatial information quickly. We report MR microscopy

  10. Bacterial cell identification in differential interference contrast microscopy images.

    PubMed

    Obara, Boguslaw; Roberts, Mark A J; Armitage, Judith P; Grau, Vicente

    2013-04-23

    Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins.

  11. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy

    PubMed Central

    Siegel, Nisan; Brooker, Gary

    2014-01-01

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called “CINCH”. PMID:25321701

  12. Quantitative X-ray Differential Interference Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function

  13. Brady's Geothermal Field DAS and DTS Surface and Borehole Array Metadata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dante Fratta

    This metadata submission includes the coordinates of the DAS and DTS surface and borehole arrays, the list of file names, and the list of recorded files during testing at the PoroTomo Natural Laboratory at Brady Hot Spring in Nevada. Testing was completed during March 2016.

  14. Contributed review: Review of integrated correlative light and electron microscopy.

    PubMed

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  15. Functional photoacoustic microscopy of pH

    PubMed Central

    Chatni, Muhammad Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2011-01-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, an imbalance of pH regulation may result from or result in serious illness. In this paper, we report photoacoustic microscopy (PAM) of a commercially available pH-sensitive fluorescent dye (SNARF-5F carboxylic acid) in tissue phantoms. We demonstrated that PAM is capable of pH imaging in absolute values at tissue depths of up to 2.0 mm, greater than possible with other forms of optical microscopy. PMID:22029342

  16. DNA origami-based standards for quantitative fluorescence microscopy.

    PubMed

    Schmied, Jürgen J; Raab, Mario; Forthmann, Carsten; Pibiri, Enrico; Wünsch, Bettina; Dammeyer, Thorben; Tinnefeld, Philip

    2014-01-01

    Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1-2 d.

  17. Three-dimensional nanoscale imaging by plasmonic Brownian microscopy

    NASA Astrophysics Data System (ADS)

    Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang

    2017-12-01

    Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.

  18. New developments in electron microscopy for serial image acquisition of neuronal profiles.

    PubMed

    Kubota, Yoshiyuki

    2015-02-01

    Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques

    PubMed Central

    Sivaguru, Mayandi; Mander, Luke; Fried, Glenn; Punyasena, Surangi W.

    2012-01-01

    Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (∼250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique

  20. The role of light microscopy in aerospace analytical laboratories

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.

    1977-01-01

    Light microscopy has greatly reduced analytical flow time and added new dimensions to laboratory capability. Aerospace analytical laboratories are often confronted with problems involving contamination, wear, or material inhomogeneity. The detection of potential problems and the solution of those that develop necessitate the most sensitive and selective applications of sophisticated analytical techniques and instrumentation. This inevitably involves light microscopy. The microscope can characterize and often identify the cause of a problem in 5-15 minutes with confirmatory tests generally less than one hour. Light microscopy has and will make a very significant contribution to the analytical capabilities of aerospace laboratories.

  1. Virtual microscopy and digital pathology in training and education.

    PubMed

    Hamilton, Peter W; Wang, Yinhai; McCullough, Stephen J

    2012-04-01

    Traditionally, education and training in pathology has been delivered using textbooks, glass slides and conventional microscopy. Over the last two decades, the number of web-based pathology resources has expanded dramatically with centralized pathological resources being delivered to many students simultaneously. Recently, whole slide imaging technology allows glass slides to be scanned and viewed on a computer screen via dedicated software. This technology is referred to as virtual microscopy and has created enormous opportunities in pathological training and education. Students are able to learn key histopathological skills, e.g. to identify areas of diagnostic relevance from an entire slide, via a web-based computer environment. Students no longer need to be in the same room as the slides. New human-computer interfaces are also being developed using more natural touch technology to enhance the manipulation of digitized slides. Several major initiatives are also underway introducing online competency and diagnostic decision analysis using virtual microscopy and have important future roles in accreditation and recertification. Finally, researchers are investigating how pathological decision-making is achieved using virtual microscopy and modern eye-tracking devices. Virtual microscopy and digital pathology will continue to improve how pathology training and education is delivered. © 2012 The Authors APMIS © 2012 APMIS.

  2. Condenser-free contrast methods for transmitted-light microscopy

    PubMed Central

    WEBB, K F

    2015-01-01

    Phase contrast microscopy allows the study of highly transparent yet detail-rich specimens by producing intensity contrast from phase objects within the sample. Presented here is a generalized phase contrast illumination schema in which condenser optics are entirely abrogated, yielding a condenser-free yet highly effective method of obtaining phase contrast in transmitted-light microscopy. A ring of light emitting diodes (LEDs) is positioned within the light-path such that observation of the objective back focal plane places the illuminating ring in appropriate conjunction with the phase ring. It is demonstrated that true Zernike phase contrast is obtained, whose geometry can be flexibly manipulated to provide an arbitrary working distance between illuminator and sample. Condenser-free phase contrast is demonstrated across a range of magnifications (4–100×), numerical apertures (0.13–1.65NA) and conventional phase positions. Also demonstrated is condenser-free darkfield microscopy as well as combinatorial contrast including Rheinberg illumination and simultaneous, colour-contrasted, brightfield, darkfield and Zernike phase contrast. By providing enhanced and arbitrary working space above the preparation, a range of concurrent imaging and electrophysiological techniques will be technically facilitated. Condenser-free phase contrast is demonstrated in conjunction with scanning ion conductance microscopy (SICM), using a notched ring to admit the scanned probe. The compact, versatile LED illumination schema will further lend itself to novel next-generation transmitted-light microscopy designs. The condenser-free illumination method, using rings of independent or radially-scanned emitters, may be exploited in future in other electromagnetic wavebands, including X-rays or the infrared. PMID:25226859

  3. Integriertes Informationsmanagement an der Westfälischen Wilhelms-Universität Münster - Das Projekt MIRO

    NASA Astrophysics Data System (ADS)

    Vogl, Raimund; Gildhorn, Antje; Labitzke, Jörg; Wibberg, Michael

    An der Westfälischen Wilhelms-Universität Münster (WWU) wurde bereits 1996 ein tragfähiges, kooperativ ausgerichtetes System der IT-Governance im Zusammenspiel zentraler und dezentraler IT-Leistungserbringer etabliert. Um den Anforderungen an ein integriertes Informationsmanagement im Überlappungsfeld von Information, Kommunikation und Medien (IKM) durch das Zusammenspiel der zentralen Einrichtungen Universitätsverwaltung (UniV), Universitäts- und Landesbibliothek (ULB) und Zentrum für Informationsverarbeitung (ZIV) gerecht zu werden, wurde 2003 der IKM-Service institutionalisiert. In diesem Rahmen wurde das Projekt Münster Information System for Research and Organization (MIRO) entwickelt, das als Leistungszentrum für Forschungsinformation von der DFG gefördert wird. Die bisherigen Projekterfahrungen, erreichten Ziele und verbleibenden Aufgaben werden dargestellt. Im Projektverlauf haben sich insbesondere die etablierten IT-Governance und Versorgungs-Strukturen sowie die Unterstützung der Hochschulleitung als essentielle Erfolgskriterien erwiesen.

  4. Circumventing photodamage in live-cell microscopy

    PubMed Central

    Magidson, Valentin; Khodjakov, Alexey

    2013-01-01

    Fluorescence microscopy has become an essential tool in cell biology. This technique allows researchers to visualize the dynamics of tissue, cells, individual organelles and macromolecular assemblies inside the cell. Unfortunately, fluorescence microscopy is not completely ‘non-invasive’ as the high-intensity excitation light required for excitation of fluorophores is inherently toxic for live cells. Physiological changes induced by excessive illumination can lead to artifacts and abnormal responses. In this chapter we review major factors that contribute to phototoxicity and discuss practical solutions for circumventing photodamage. These solutions include the proper choice of image acquisition parameters, optimization of filter sets, hardware synchronization, and the use of intelligent illumination to avoid unnecessary light exposure. PMID:23931522

  5. Detection of percolating paths in polyhedral segregated network composites using electrostatic force microscopy and conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Waddell, J.; Ou, R.; Capozzi, C. J.; Gupta, S.; Parker, C. A.; Gerhardt, R. A.; Seal, K.; Kalinin, S. V.; Baddorf, A. P.

    2009-12-01

    Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.

  6. Comparison of Distributed Acoustic Sensing (DAS) from Fiber-Optic Cable to Three Component Geophones in an Underground Mine

    NASA Astrophysics Data System (ADS)

    Speece, M. A.; Nesladek, N. J.; Kammerer, C.; Maclaughlin, M.; Wang, H. F.; Lord, N. E.

    2017-12-01

    We conducted experiments in the Underground Education Mining Center on the Montana Tech campus, Butte, Montana, to make a direct comparison between Digital Acoustic Sensing (DAS) and three-component geophones in a mining setting. The sources used for this project where a vertical sledgehammer, oriented shear sledgehammer, and blasting caps set off in both unstemmed and stemmed drillholes. Three-component Geospace 20DM geophones were compared with three different types of fiber-optic cable: (1) Brugg strain, (2) Brugg temperature, and (3) Optical Cable Corporation strain. We attached geophones to the underground mine walls and on the ground surface above the mine. We attached fiber-optic cables to the mine walls and placed fiber-optic cable in boreholes drilled through an underground pillar. In addition, we placed fiber-optic cables in a shallow trench at the surface of the mine. We converted the DAS recordings from strain rate to strain prior to comparison with the geophone data. The setup of the DAS system for this project led to a previously unknown triggering problem that compromised the early samples of the DAS traces often including the first-break times on the DAS records. Geophones clearly recorded the explosives; however, the large amount of energy and its close distance from the fiber-optic cables seemed to compromise the entire fiber loop. The underground hammer sources produced a rough match between the DAS records and the geophone records. However, the sources on the surface of the mine, specifically the sources oriented inline with the fiber-optic cables, produced a close match between the fiber-optic traces and the geophone traces. All three types of fiber-optic cable that were in the mine produced similar results, and one type did not clearly outperform the others. Instead, the coupling of the cable to rock appears to be the most important factor determining DAS data quality. Moreover, we observed the importance of coupling in the boreholes, where

  7. 4Pi microscopy of the nuclear pore complex.

    PubMed

    Kahms, Martin; Hüve, Jana; Peters, Reiner

    2015-01-01

    4Pi microscopy is a far-field fluorescence microscopy technique, in which the wave fronts of two opposing illuminating beams are adjusted to constructively interfere in a common focus. This yields a diffraction pattern in the direction of the optical axis, which essentially consists of a main focal spot accompanied by two smaller side lobes. At optimal conditions, the main peak of this so-called point spread function has a full width at half maximum: fixed phrase of 100 nm in the direction of the optical axis, and thus is 6-7-fold smaller than that of a confocal microscope. In this chapter, we describe the basic features of 4Pi microscopy and its application to cell biology using the example of the nuclear pore complex, a large protein assembly spanning the nuclear envelope.

  8. A Mobile Nanoscience and Electron Microscopy Outreach Program

    NASA Astrophysics Data System (ADS)

    Coffey, Tonya; Kelley, Kyle

    2013-03-01

    We have established a mobile nanoscience laboratory outreach program in Western NC that puts scanning electron microscopy (SEM) directly in the hands of K-12 students and the general public. There has been a recent push to develop new active learning materials to educate students at all levels about nanoscience and nanotechnology. Previous projects, such as Bugscope, nanoManipulator, or SPM Live! allowed remote access to advanced microscopies. However, placing SEM directly in schools has not often been possible because the cost and steep learning curve of these technologies were prohibitive, making this project quite novel. We have developed new learning modules for a microscopy outreach experience with a tabletop SEM (Hitachi TM3000). We present here an overview of our outreach and results of the assessment of our program to date.

  9. Real-time high dynamic range laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  10. Invited Review Article: Pump-probe microscopy.

    PubMed

    Fischer, Martin C; Wilson, Jesse W; Robles, Francisco E; Warren, Warren S

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  11. Phase-contrast scanning transmission electron microscopy.

    PubMed

    Minoda, Hiroki; Tamai, Takayuki; Iijima, Hirofumi; Hosokawa, Fumio; Kondo, Yukihito

    2015-06-01

    This report introduces the first results obtained using phase-contrast scanning transmission electron microscopy (P-STEM). A carbon-film phase plate (PP) with a small center hole is placed in the condenser aperture plane so that a phase shift is introduced in the incident electron waves except those passing through the center hole. A cosine-type phase-contrast transfer function emerges when the phase-shifted scattered waves interfere with the non-phase-shifted unscattered waves, which passed through the center hole before incidence onto the specimen. The phase contrast resulting in P-STEM is optically identical to that in phase-contrast transmission electron microscopy that is used to provide high contrast for weak phase objects. Therefore, the use of PPs can enhance the phase contrast of the STEM images of specimens in principle. The phase shift resulting from the PP, whose thickness corresponds to a phase shift of π, has been confirmed using interference fringes displayed in the Ronchigram of a silicon single crystal specimen. The interference fringes were found to abruptly shift at the edge of the PP hole by π. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Invited Review Article: Pump-probe microscopy

    PubMed Central

    Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-01-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications. PMID:27036751

  13. Whole Slide Imaging Versus Microscopy for Primary Diagnosis in Surgical Pathology

    PubMed Central

    Mukhopadhyay, Sanjay; Feldman, Michael D.; Abels, Esther; Ashfaq, Raheela; Beltaifa, Senda; Cacciabeve, Nicolas G.; Cathro, Helen P.; Cheng, Liang; Cooper, Kumarasen; Dickey, Glenn E.; Gill, Ryan M.; Heaton, Robert P.; Kerstens, René; Lindberg, Guy M.; Malhotra, Reenu K.; Mandell, James W.; Manlucu, Ellen D.; Mills, Anne M.; Mills, Stacey E.; Moskaluk, Christopher A.; Nelis, Mischa; Patil, Deepa T.; Przybycin, Christopher G.; Reynolds, Jordan P.; Rubin, Brian P.; Saboorian, Mohammad H.; Salicru, Mauricio; Samols, Mark A.; Sturgis, Charles D.; Turner, Kevin O.; Wick, Mark R.; Yoon, Ji Y.; Zhao, Po

    2018-01-01

    Most prior studies of primary diagnosis in surgical pathology using whole slide imaging (WSI) versus microscopy have focused on specific organ systems or included relatively few cases. The objective of this study was to demonstrate that WSI is noninferior to microscopy for primary diagnosis in surgical pathology. A blinded randomized noninferiority study was conducted across the entire range of surgical pathology cases (biopsies and resections, including hematoxylin and eosin, immunohistochemistry, and special stains) from 4 institutions using the original sign-out diagnosis (baseline diagnosis) as the reference standard. Cases were scanned, converted to WSI and randomized. Sixteen pathologists interpreted cases by microscopy or WSI, followed by a wash-out period of ≥4 weeks, after which cases were read by the same observers using the other modality. Major discordances were identified by an adjudication panel, and the differences between major discordance rates for both microscopy (against the reference standard) and WSI (against the reference standard) were calculated. A total of 1992 cases were included, resulting in 15,925 reads. The major discordance rate with the reference standard diagnosis was 4.9% for WSI and 4.6% for microscopy. The difference between major discordance rates for microscopy and WSI was 0.4% (95% confidence interval, −0.30% to 1.01%). The difference in major discordance rates for WSI and microscopy was highest in endocrine pathology (1.8%), neoplastic kidney pathology (1.5%), urinary bladder pathology (1.3%), and gynecologic pathology (1.2%). Detailed analysis of these cases revealed no instances where interpretation by WSI was consistently inaccurate compared with microscopy for multiple observers. We conclude that WSI is noninferior to microscopy for primary diagnosis in surgical pathology, including biopsies and resections stained with hematoxylin and eosin, immunohistochemistry and special stains. This conclusion is valid across a

  14. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to

  15. Multimodal hyperspectral optical microscopy

    DOE PAGES

    Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu; ...

    2017-09-02

    We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less

  16. Multimodal hyperspectral optical microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu

    We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less

  17. Recent advancements in structured-illumination microscopy toward live-cell imaging.

    PubMed

    Hirano, Yasuhiro; Matsuda, Atsushi; Hiraoka, Yasushi

    2015-08-01

    Fluorescence microscopy allows us to observe fluorescently labeled molecules in diverse biological processes and organelle structures within living cells. However, the diffraction limit restricts its spatial resolution to about half of its wavelength, limiting the capability of biological observation at the molecular level. Structured-illumination microscopy (SIM), a type of super-resolution microscopy, doubles the spatial resolution in all three dimensions by illuminating the sample with a patterned excitation light, followed by computer reconstruction. SIM uses a relatively low illumination power compared with other methods of super-resolution microscopy and is easily available for multicolor imaging. SIM has great potential for meeting the requirements of live-cell imaging. Recent developments in diverse types of SIM have achieved higher spatial (∼50 nm lateral) and temporal (∼100 Hz) resolutions. Here, we review recent advancements in SIM and discuss its application in noninvasive live-cell imaging. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Techniques for super-resolution microscopy using NV-diamond

    NASA Astrophysics Data System (ADS)

    Trifonov, Alexei; Glenn, David; Bar-Gill, Nir; Le Sage, David; Walsworth, Ronald

    2011-05-01

    We discuss the development and application of techniques for super-resolution microscopy using NV centers in diamond: stimulated emission depletion (STED), metastable ground state depletion (GSD), and stochastic optical reconstruction microscopy (STORM). NV centers do not bleach under optical excitation, are not biotoxic, and have long-lived electronic spin coherence and spin-state-dependent fluorescence. Thus NV-diamond has great potential as a fluorescent biomarker and as a magnetic biosensor.

  19. Applications of microscopy to genetic therapy of cystic fibrosis and other human diseases.

    PubMed

    Moninger, Thomas O; Nessler, Randy A; Moore, Kenneth C

    2006-01-01

    Gene therapy has become an extremely important and active field of biomedical research. Microscopy is an integral component of this effort. This chapter presents an overview of imaging techniques used in our facility in support of cystic fibrosis gene therapy research. Instrumentation used in these studies includes light and confocal microscopy, transmission electron microscopy, and scanning electron microscopy. Techniques outlined include negative staining, cryo-electron microscopy, three-dimentional reconstruction, enzyme cytochemistry, immunocytochemistry, and fluorescence imaging.

  20. Investigation of autofocus algorithms for brightfield microscopy of unstained cells

    NASA Astrophysics Data System (ADS)

    Wu, Shu Yu; Dugan, Nazim; Hennelly, Bryan M.

    2014-05-01

    In the past decade there has been significant interest in image processing for brightfield cell microscopy. Much of the previous research on image processing for microscopy has focused on fluorescence microscopy, including cell counting, cell tracking, cell segmentation and autofocusing. Fluorescence microscopy provides functional image information that involves the use of labels in the form of chemical stains or dyes. For some applications, where the biochemical integrity of the cell is required to remain unchanged so that sensitive chemical testing can later be applied, it is necessary to avoid staining. For this reason the challenge of processing images of unstained cells has become a topic of increasing attention. These cells are often effectively transparent and appear to have a homogenous intensity profile when they are in focus. Bright field microscopy is the most universally available and most widely used form of optical microscopy and for this reason we are interested in investigating image processing of unstained cells recorded using a standard bright field microscope. In this paper we investigate the application of a range of different autofocus metrics applied to unstained bladder cancer cell lines using a standard inverted bright field microscope with microscope objectives that have high magnification and numerical aperture. We present a number of conclusions on the optimum metrics and the manner in which they should be applied for this application.

  1. STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue.

    PubMed

    Ilgen, Peter; Stoldt, Stefan; Conradi, Lena-Christin; Wurm, Christian Andreas; Rüschoff, Josef; Ghadimi, B Michael; Liersch, Torsten; Jakobs, Stefan

    2014-01-01

    Formalin fixed and paraffin-embedded human tissue resected during cancer surgery is indispensable for diagnostic and therapeutic purposes and represents a vast and largely unexploited resource for research. Optical microscopy of such specimen is curtailed by the diffraction-limited resolution of conventional optical microscopy. To overcome this limitation, we used STED super-resolution microscopy enabling optical resolution well below the diffraction barrier. We visualized nanoscale protein distributions in sections of well-annotated paraffin-embedded human rectal cancer tissue stored in a clinical repository. Using antisera against several mitochondrial proteins, STED microscopy revealed distinct sub-mitochondrial protein distributions, suggesting a high level of structural preservation. Analysis of human tissues stored for up to 17 years demonstrated that these samples were still amenable for super-resolution microscopy. STED microscopy of sections of HER2 positive rectal adenocarcinoma revealed details in the surface and intracellular HER2 distribution that were blurred in the corresponding conventional images, demonstrating the potential of super-resolution microscopy to explore the thus far largely untapped nanoscale regime in tissues stored in biorepositories.

  2. STED Super-Resolution Microscopy of Clinical Paraffin-Embedded Human Rectal Cancer Tissue

    PubMed Central

    Wurm, Christian Andreas; Rüschoff, Josef; Ghadimi, B. Michael; Liersch, Torsten; Jakobs, Stefan

    2014-01-01

    Formalin fixed and paraffin-embedded human tissue resected during cancer surgery is indispensable for diagnostic and therapeutic purposes and represents a vast and largely unexploited resource for research. Optical microscopy of such specimen is curtailed by the diffraction-limited resolution of conventional optical microscopy. To overcome this limitation, we used STED super-resolution microscopy enabling optical resolution well below the diffraction barrier. We visualized nanoscale protein distributions in sections of well-annotated paraffin-embedded human rectal cancer tissue stored in a clinical repository. Using antisera against several mitochondrial proteins, STED microscopy revealed distinct sub-mitochondrial protein distributions, suggesting a high level of structural preservation. Analysis of human tissues stored for up to 17 years demonstrated that these samples were still amenable for super-resolution microscopy. STED microscopy of sections of HER2 positive rectal adenocarcinoma revealed details in the surface and intracellular HER2 distribution that were blurred in the corresponding conventional images, demonstrating the potential of super-resolution microscopy to explore the thus far largely untapped nanoscale regime in tissues stored in biorepositories. PMID:25025184

  3. The DAS28-ESR cutoff value necessary to achieve remission under the new Boolean-based remission criteria in patients receiving tocilizumab.

    PubMed

    Hirabayashi, Yasuhiko; Ishii, Tomonori

    2013-01-01

    To seek the cutoff value of the 28-joint disease activity score using erythrocyte sedimentation rate (DAS28-ESR) that is necessary to achieve remission under the new Boolean-based criteria, we analyzed the data for 285 patients with rheumatoid arthritis registered between May 2008 and November 2009 by the Michinoku Tocilizumab Study Group and observed for 1 year after receiving tocilizumab (TCZ) in real clinical practice. Remission rates under the DAS28-ESR criteria and the Boolean criteria were assessed every 6 months after the first TCZ dose. The DAS28-ESR cutoff value necessary to achieve remission under the new criteria was analyzed by receiver operating characteristic (ROC) analysis. Data were analyzed using last observation carried forward. After 12 months of TCZ use, remission was achieved in 164 patients (57.5 %) by DAS28-ESR and 71 patients (24.9 %) under the new criteria for clinical trials. CRP levels scarcely affected remission rates, and the difference between remission rates defined by DAS28-ESR and by the new criteria was mainly due to patient global assessment (PGA). Improvement of PGA was inversely related to disease duration. ROC analysis revealed that the DAS28-ESR cutoff value necessary to predict remission under the new criteria for clinical trials was 1.54, with a sensitivity of 88.7 %, specificity of 85.5 %, positive predictive value of 67.0 %, and negative predictive value of 95.8 %. A DAS28-ESR cutoff value of 1.54 may be reasonable to predict achievement of remission under the new Boolean-based criteria for clinical trials in patients receiving TCZ.

  4. Third harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Squier, Jeffrey A.; Muller, Michiel; Brakenhoff, G. J.; Wilson, Kent R.

    1998-10-01

    Third harmonic generation microscopy is used to make dynamical images of living systems for the first time. A 100 fs excitation pulse at 1.2 æm results in a 400 nm signal which is generated directly within the specimen. Chara plant rhizoids have been imaged, showing dynamic plant activity, and non-fading image characteristics even with continuous viewing, indicating prolonged viability under these THG-imaging conditions.

  5. Super-resolution optical microscopy for studying membrane structure and dynamics.

    PubMed

    Sezgin, Erdinc

    2017-07-12

    Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.

  6. Differential dynamic microscopy of bidisperse colloidal suspensions.

    PubMed

    Safari, Mohammad S; Poling-Skutvik, Ryan; Vekilov, Peter G; Conrad, Jacinta C

    2017-01-01

    Research tasks in microgravity include monitoring the dynamics of constituents of varying size and mobility in processes such as aggregation, phase separation, or self-assembly. We use differential dynamic microscopy, a method readily implemented with equipment available on the International Space Station, to simultaneously resolve the dynamics of particles of radius 50 nm and 1 μm in bidisperse aqueous suspensions. Whereas traditional dynamic light scattering fails to detect a signal from the larger particles at low concentrations, differential dynamic microscopy exhibits enhanced sensitivity in these conditions by accessing smaller wavevectors where scattering from the large particles is stronger. Interference patterns due to scattering from the large particles induce non-monotonic decay of the amplitude of the dynamic correlation function with the wavevector. We show that the position of the resulting minimum contains information on the vertical position of the particles. Together with the simple instrumental requirements, the enhanced sensitivity of differential dynamic microscopy makes it an appealing alternative to dynamic light scattering to characterize samples with complex dynamics.

  7. Axial tomography in live cell laser microscopy

    NASA Astrophysics Data System (ADS)

    Richter, Verena; Bruns, Sarah; Bruns, Thomas; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert

    2017-09-01

    Single cell microscopy in a three-dimensional (3-D) environment is reported. Cells are grown in an agarose culture gel, located within microcapillaries and observed from different sides after adaptation of an innovative device for sample rotation. Thus, z-stacks can be recorded by confocal microscopy in different directions and used for illustration in 3-D. This gives additional information, since cells or organelles that appear superimposed in one direction, may be well resolved in another one. The method is tested and validated with single cells expressing a membrane or a mitochondrially associated green fluorescent protein, or cells accumulating fluorescent quantum dots. In addition, axial tomography supports measurements of cellular uptake and distribution of the anticancer drug doxorubicin in the nucleus (2 to 6 h after incubation) or the cytoplasm (24 h). This paper discusses that upon cell rotation an enhanced optical resolution in lateral direction compared to axial direction can be utilized to obtain an improved effective 3-D resolution, which represents an important step toward super-resolution microscopy of living cells.

  8. eduSPIM: Light Sheet Microscopy in the Museum

    PubMed Central

    Schmid, Benjamin; Weber, Michael; Huisken, Jan

    2016-01-01

    Light Sheet Microscopy in the Museum Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. Design Principles of an Educational Light Sheet Microscope To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The eduSPIM Design Is Tailored Easily to Fit Numerous Applications The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided. PMID:27560188

  9. An introduction to optical super-resolution microscopy for the adventurous biologist

    NASA Astrophysics Data System (ADS)

    Vangindertael, J.; Camacho, R.; Sempels, W.; Mizuno, H.; Dedecker, P.; Janssen, K. P. F.

    2018-04-01

    Ever since the inception of light microscopy, the laws of physics have seemingly thwarted every attempt to visualize the processes of life at its most fundamental, sub-cellular, level. The diffraction limit has restricted our view to length scales well above 250 nm and in doing so, severely compromised our ability to gain true insights into many biological systems. Fortunately, continuous advancements in optics, electronics and mathematics have since provided the means to once again make physics work to our advantage. Even though some of the fundamental concepts enabling super-resolution light microscopy have been known for quite some time, practically feasible implementations have long remained elusive. It should therefore not come as a surprise that the 2014 Nobel Prize in Chemistry was awarded to the scientists who, each in their own way, contributed to transforming super-resolution microscopy from a technological tour de force to a staple of the biologist’s toolkit. By overcoming the diffraction barrier, light microscopy could once again be established as an indispensable tool in an age where the importance of understanding life at the molecular level cannot be overstated. This review strives to provide the aspiring life science researcher with an introduction to optical microscopy, starting from the fundamental concepts governing compound and fluorescent confocal microscopy to the current state-of-the-art of super-resolution microscopy techniques and their applications.

  10. Superresolution imaging of Drosophila tissues using expansion microscopy.

    PubMed

    Jiang, Nan; Kim, Hyeon-Jin; Chozinski, Tyler J; Azpurua, Jorge E; Eaton, Benjamin A; Vaughan, Joshua C; Parrish, Jay Z

    2018-06-15

    The limited resolving power of conventional diffraction-limited microscopy hinders analysis of small, densely packed structural elements in cells. Expansion microscopy (ExM) provides an elegant solution to this problem, allowing for increased resolution with standard microscopes via physical expansion of the specimen in a swellable polymer hydrogel. Here, we apply, validate, and optimize ExM protocols that enable the study of Drosophila embryos, larval brains, and larval and adult body walls. We achieve a lateral resolution of ∼70 nm in Drosophila tissues using a standard confocal microscope, and we use ExM to analyze fine intracellular structures and intercellular interactions. First, we find that ExM reveals features of presynaptic active zone (AZ) structure that are observable with other superresolution imaging techniques but not with standard confocal microscopy. We further show that synapses known to exhibit age-dependent changes in activity also exhibit age-dependent changes in AZ structure. Finally, we use the significantly improved axial resolution of ExM to show that dendrites of somatosensory neurons are inserted into epithelial cells at a higher frequency than previously reported in confocal microscopy studies. Altogether, our study provides a foundation for the application of ExM to Drosophila tissues and underscores the importance of tissue-specific optimization of ExM procedures.

  11. Peering at Brain Polysomes with Atomic Force Microscopy

    PubMed Central

    Lunelli, Lorenzo; Bernabò, Paola; Bolner, Alice; Vaghi, Valentina; Marchioretto, Marta; Viero, Gabriella

    2016-01-01

    The translational machinery, i.e., the polysome or polyribosome, is one of the biggest and most complex cytoplasmic machineries in cells. Polysomes, formed by ribosomes, mRNAs, several proteins and non-coding RNAs, represent integrated platforms where translational controls take place. However, while the ribosome has been widely studied, the organization of polysomes is still lacking comprehensive understanding. Thus much effort is required in order to elucidate polysome organization and any novel mechanism of translational control that may be embedded. Atomic force microscopy (AFM) is a type of scanning probe microscopy that allows the acquisition of 3D images at nanoscale resolution. Compared to electron microscopy (EM) techniques, one of the main advantages of AFM is that it can acquire thousands of images both in air and in solution, enabling the sample to be maintained under near physiological conditions without any need for staining and fixing procedures. Here, a detailed protocol for the accurate purification of polysomes from mouse brain and their deposition on mica substrates is described. This protocol enables polysome imaging in air and liquid with AFM and their reconstruction as three-dimensional objects. Complementary to cryo-electron microscopy (cryo-EM), the proposed method can be conveniently used for systematically analyzing polysomes and studying their organization. PMID:27023752

  12. A national facility for biological cryo-electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saibil, Helen R., E-mail: h.saibil@mail.cryst.bbk.ac.uk; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided ofmore » the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.« less

  13. Investigation of podosome ring protein arrangement using localization microscopy images.

    PubMed

    Staszowska, Adela D; Fox-Roberts, Patrick; Foxall, Elizabeth; Jones, Gareth E; Cox, Susan

    2017-02-15

    Podosomes are adhesive structures formed on the plasma membrane abutting the extracellular matrix of macrophages, osteoclasts, and dendritic cells. They consist of an f-actin core and a ring structure composed of integrins and integrin-associated proteins. The podosome ring plays a major role in adhesion to the underlying extracellular matrix, but its detailed structure is poorly understood. Recently, it has become possible to study the nano-scale structure of podosome rings using localization microscopy. Unlike traditional microscopy images, localization microscopy images are reconstructed using discrete points, meaning that standard image analysis methods cannot be applied. Here, we present a pipeline for podosome identification, protein position calculation, and creating a podosome ring model for use with localization microscopy data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Correlation of two-photon in vivo imaging and FIB/SEM microscopy

    PubMed Central

    Blazquez-Llorca, L; Hummel, E; Zimmerman, H; Zou, C; Burgold, S; Rietdorf, J; Herms, J

    2015-01-01

    Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three-dimensional high-resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system. Lay Description Neuroscience and the understanding of brain functions are closely linked to the technical advances in microscopy. In this study we performed a correlative microscopy technique that offers the possibility to combine 2 photon in vivo imaging and FIB/SEM microscopy. Long term 2 photon in vivo imaging allows the

  15. Correlative microscopy of a carbide-free bainitic steel.

    PubMed

    Hofer, Christina; Bliznuk, Vitaliy; Verdiere, An; Petrov, Roumen; Winkelhofer, Florian; Clemens, Helmut; Primig, Sophie

    2016-02-01

    In this work a carbide-free bainitic steel was examined by a novel correlative microscopy approach using transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The individual microstructural constituents could be identified by TKD based on their different crystal structure for bainitic ferrite and retained austenite and by image quality for the martensite-austenite (M-A) constituent. Subsequently, the same area was investigated in the TEM and a good match of these two techniques regarding the identification of the area position and crystal orientation could be proven. Additionally, the M-A constituent was examined in the TEM for the first time after preceded unambiguous identification using a correlative microscopy approach. The selected area diffraction pattern showed satellites around the main reflexes which might indicate a structural modulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Real-time high dynamic range laser scanning microscopy

    PubMed Central

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-01-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979

  17. A simple energy filter for low energy electron microscopy/photoelectron emission microscopy instruments.

    PubMed

    Tromp, R M; Fujikawa, Y; Hannon, J B; Ellis, A W; Berghaus, A; Schaff, O

    2009-08-05

    Addition of an electron energy filter to low energy electron microscopy (LEEM) and photoelectron emission microscopy (PEEM) instruments greatly improves their analytical capabilities. However, such filters tend to be quite complex, both electron optically and mechanically. Here we describe a simple energy filter for the existing IBM LEEM/PEEM instrument, which is realized by adding a single scanning aperture slit to the objective transfer optics, without any further modifications to the microscope. This energy filter displays a very high energy resolution ΔE/E = 2 × 10(-5), and a non-isochromaticity of ∼0.5 eV/10 µm. The setup is capable of recording selected area electron energy spectra and angular distributions at 0.15 eV energy resolution, as well as energy filtered images with a 1.5 eV energy pass band at an estimated spatial resolution of ∼10 nm. We demonstrate the use of this energy filter in imaging and spectroscopy of surfaces using a laboratory-based He I (21.2 eV) light source, as well as imaging of Ag nanowires on Si(001) using the 4 eV energy loss Ag plasmon.

  18. Ocean Color Measurements from Landsat-8 OLI using SeaDAS

    NASA Technical Reports Server (NTRS)

    Franz, Bryan Alden; Bailey, Sean W.; Kuring, Norman; Werdell, P. Jeremy

    2014-01-01

    The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a.

  19. High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites

    DTIC Science & Technology

    2005-01-01

    AFRL-ML-WP-TP-2006-464 HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES Lawrence F...HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES 5c. PROGRAM ELEMENT NUMBER 62102F 5d...transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was

  20. RGB digital lensless holographic microscopy

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, Jorge

    2013-11-01

    The recent introduction of color digital lensless holographic microscopy (CDLHM) has shown the possibility of imaging microscopic specimens at full color without the need of lenses. Owing to the simplicity, robustness, and compactness of the digital lensless holographic microscopes (DLHM), they have been presented as the ideal candidates to being developed into portable holographic microscopes. However, in the case of CDLHM the utilization of three independent lasers hinders the portability option for this microscope. In this contribution an alternative to reduce the complexity of CDLHM aimed to recover the portability of this microscopy technology is presented. A super-bright white-light light-emitting diode (LED) is spectrally and spatially filtered to produce the needed illumination by CDLHM to work. CDLHM with LED illumination is used to image at full color a section of the head of a drosophila melanogaster fly (fruit fly). The LED-CDLHM method shows the capability of imaging objects of 2μm size in comparison with the micrometer resolution reported for LASER-CDLHM.

  1. Limits to magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Mansfield, Peter, Sir

    2002-10-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit.

  2. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2018-02-13

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  3. Ion Microscopy on Diamond

    NASA Astrophysics Data System (ADS)

    Manfredotti, Claudio

    Because of its physical properties (strong radiation hardness, wide energy gap with a consequent extremely low dark current, very large electron and hole mobility) diamond is a very good candidate for nuclear particle detection, particularly in harsh environments or in conditions of strong radiation damage. Being commonly polycrystalline, diamond samples obtained by chemical vapour deposition (CVD) are not homogeneous, not only from the morphological point of view, but also from the electronic one. As a consequence, as it was indicated quite early starting from 1995, charge collection properties such as charge collection efficiency (cce) are not uniform, but they are depending on the site hit by incoming particle. Moreover, these properties are influenced by previous irradiations which are used in order to improve them and, finally, they are also dependent on the thickness of the sample, since the electronic non uniformity extends also in depth by affecting the profile of the electrical field from top to bottom electrode of the nuclear detector in the standard "sandwich" arrangement. By the use of focussed ion beams, it is possible to investigate these non uniformities by the aid of techniques like IBIC (Ion Beam Induced Charge) and IBIL (Ion Beam Induced Luminescence) with a space resolution of the order of 1 m. This relatively new kind of microscopy, which is called "ion microscopy", is capable not only to give 2D maps of cce, which can be quite precisely compared with morphological images obtained by Scanning Electron Microscopy (generally the grains display a much better cce than intergrain regions), but also to give the electric field profile from one electrode to the other one in a "lateral" arrangement of the ion beam. IBIL, by supplying 2D maps of luminescence intensity at different wavelength, can give information about the presence of specific radiative recombination centers and their distribution in the material. Finally, a new technique called XBIC (X

  4. Virtual Microscopy in Histopathology Training: Changing Student Attitudes in 3 Successive Academic Years.

    PubMed

    Bertram, Christof A; Firsching, Theresa; Klopfleisch, Robert

    2018-01-01

    Several veterinary faculties have integrated virtual microscopy into their curricula in recent years to improve and refine their teaching techniques. The many advantages of this recent technology are described in the literature, including remote access and an equal and constant slide quality for all students. However, no study has analyzed the change of perception toward virtual microscopy at different time points of students' academic educations. In the present study, veterinary students in 3 academic years were asked for their perspectives and attitudes toward virtual microscopy and conventional light microscopy. Third-, fourth-, and fifth-year veterinary students filled out a questionnaire with 12 questions. The answers revealed that virtual microscopy was overall well accepted by students of all academic years. Most students even suggested that virtual microscopy be implemented more extensively as the modality for final histopathology examinations. Nevertheless, training in the use of light microscopy and associated skills was surprisingly well appreciated. Regardless of their academic year, most students considered these skills important and necessary, and they felt that light microscopy should not be completely replaced. The reasons for this view differed depending on academic year, as the perceived main disadvantage of virtual microscopy varied. Third-year students feared that they would not acquire sufficient light microscopy skills. Fifth-year students considered technical difficulties (i.e., insufficient transmission speed) to be the main disadvantage of this newer teaching modality.

  5. Application of environmental scanning electron microscopy to determine biological surface structure.

    PubMed

    Kirk, S E; Skepper, J N; Donald, A M

    2009-02-01

    The use of environmental scanning electron microscopy in biology is growing as more becomes understood about the advantages and limitations of the technique. These are discussed and we include new evidence about the effect of environmental scanning electron microscopy imaging on the viability of mammalian cells. We show that although specimen preparation for high-vacuum scanning electron microscopy introduces some artefacts, there are also challenges in the use of environmental scanning electron microscopy, particularly at higher resolutions. This suggests the two technologies are best used in combination. We have used human monocyte-derived macrophages as a test sample, imaging their complicated and delicate membrane ruffles and protrusions. We have also explored the possibility of using environmental scanning electron microscopy for dynamic experiments, finding that mammalian cells cannot be imaged and kept alive in the environmental scanning electron microscopy. The dehydration step in which the cell surface is exposed causes irreversible damage, probably via loss of membrane integrity during liquid removal in the specimen chamber. Therefore, mammalian cells should be imaged after fixation where possible to protect against damage as a result of chamber conditions.

  6. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.

    PubMed

    Johnson, Sam A

    2015-01-01

    Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches. © 2014 Wiley Periodicals, Inc.

  7. Structured Illumination Microscopy for the Investigation of Synaptic Structure and Function.

    PubMed

    Hong, Soyon; Wilton, Daniel K; Stevens, Beth; Richardson, Douglas S

    2017-01-01

    The neuronal synapse is a primary building block of the nervous system to which alterations in structure or function can result in numerous pathologies. Studying its formation and elimination is the key to understanding how brains are wired during development, maintained throughout adulthood plasticity, and disrupted during disease. However, due to its diffraction-limited size, investigations of the synaptic junction at the structural level have primarily relied on labor-intensive electron microscopy or ultra-thin section array tomography. Recent advances in the field of super-resolution light microscopy now allow researchers to image synapses and associated molecules with high-spatial resolution, while taking advantage of the key characteristics of light microscopy, such as easy sample preparation and the ability to detect multiple targets with molecular specificity. One such super-resolution technique, Structured Illumination Microscopy (SIM), has emerged as an attractive method to examine synapse structure and function. SIM requires little change in standard light microscopy sample preparation steps, but results in a twofold improvement in both lateral and axial resolutions compared to widefield microscopy. The following protocol outlines a method for imaging synaptic structures at resolutions capable of resolving the intricacies of these neuronal connections.

  8. High resolution multiple excitation spot optical microscopy

    NASA Astrophysics Data System (ADS)

    Dilipkumar, Shilpa; Mondal, Partha Pratim

    2011-06-01

    We propose fundamental improvements in three-dimensional (3D) resolution of multiple excitation spot optical microscopy. The excitation point spread function (PSF) is generated by two interfering counter-propagating depth-of-focus beams along the optical axis. Detection PSF is obtained by coherently interfering the emitted fluorescent light (collected by both the objectives) at the detector. System PSF shows upto 14-fold reduction in focal volume as compared to confocal, and almost 2-fold improvement in lateral resolution. Proposed PSF has the ability to simultaneously excite multiple 3D-spots of sub-femtoliter volume. Potential applications are in fluorescence microscopy and nanobioimaging.

  9. Analysis of leaf surfaces using scanning ion conductance microscopy.

    PubMed

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  10. On the Law of Inertia. Translation of: Ueber das Beharrungsgesetz

    NASA Astrophysics Data System (ADS)

    Lange, Ludwig

    2014-04-01

    This article is a translation of Ludwig Lange: "Ueber das Beharrungsgesetz" in: Berichte ueber Verhandlungen der Koenigl. Saechsischen Gesellschaft der Wissenschaften, math.-physik. Klasse (Leipzig, 1885), SS. 333-351. Translated by Herbert Pfister, Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany; herbert.pfister@uni-tuebingen.de. Kind assistance by Julian Barbour is acknowledged.

  11. Autofocusing Airy beam STED microscopy with long focal distance

    NASA Astrophysics Data System (ADS)

    Hu, Di; Liang, Yao; Chen, Yin; Chen, Zan Hui; Huang, Xu Guang

    2017-12-01

    Stimulated emission depletion (STED) is a very important technique in super-resolution microscopy. Until now, while autofocusing Airy beam (AAB) has been an attractive theme for both theoretical and applied researches, there are almost no report on AABs being used in STED microscopy. In this paper, we propose a novel STED microscopy based on AABs. A radially symmetric 3/2 phase plate is involved to simultaneously generate autofocusing excitation- and depletion-Airy beams. Remarkably, the AAB can auto-focus to a wavelength-scale spot with a long focal depth (several millimeters): on the contrary, the working distance of a conventional high numerical aperture (NA) objective is usually very short (about 200 μm). Our calculations indicate that the AAB based STED microscopy can achieve a super-resolution spot with FWHM of 58 nm while the focal length is 4.638 mm. Moreover, with properties of non-diffracting and self-healing, the Airy beam could enable a reduction of the scattering distortion induced by the specimens and has a great potential in imaging thick specimens.

  12. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    PubMed Central

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Background Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Methods Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). Results We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. Conclusion The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes. PMID:18627634

  13. Extended Field Laser Confocal Microscopy (EFLCM): combining automated Gigapixel image capture with in silico virtual microscopy.

    PubMed

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-07-16

    Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes.

  14. Clinical evaluation of tuberculosis viability microscopy for assessing treatment response.

    PubMed

    Datta, Sumona; Sherman, Jonathan M; Bravard, Marjory A; Valencia, Teresa; Gilman, Robert H; Evans, Carlton A

    2015-04-15

    It is difficult to determine whether early tuberculosis treatment is effective in reducing the infectiousness of patients' sputum, because culture takes weeks and conventional acid-fast sputum microscopy and molecular tests cannot differentiate live from dead tuberculosis. To assess treatment response, sputum samples (n=124) from unselected patients (n=35) with sputum microscopy-positive tuberculosis were tested pretreatment and after 3, 6, and 9 days of empiric first-line therapy. Tuberculosis quantitative viability microscopy with fluorescein diacetate, quantitative culture, and acid-fast auramine microscopy were all performed in triplicate. Tuberculosis quantitative viability microscopy predicted quantitative culture results such that 76% of results agreed within ±1 logarithm (rS=0.85; P<.0001). In 31 patients with non-multidrug-resistant (MDR) tuberculosis, viability and quantitative culture results approximately halved (both 0.27 log reduction, P<.001) daily. For patients with non-MDR tuberculosis and available data, by treatment day 9 there was a >10-fold reduction in viability in 100% (24/24) of cases and quantitative culture in 95% (19/20) of cases. Four other patients subsequently found to have MDR tuberculosis had no significant changes in viability (P=.4) or quantitative culture (P=.6) results during early treatment. The change in viability and quantitative culture results during early treatment differed significantly between patients with non-MDR tuberculosis and those with MDR tuberculosis (both P<.001). Acid-fast microscopy results changed little during early treatment, and this change was similar for non-MDR tuberculosis vs MDR tuberculosis (P=.6). Tuberculosis quantitative viability microscopy is a simple test that within 1 hour predicted quantitative culture results that became available weeks later, rapidly indicating whether patients were responding to tuberculosis therapy. © The Author 2014. Published by Oxford University Press on behalf of

  15. Validation of Land-Surface Mosaic Heterogeneity in the GEOS DAS

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Molod, Andrea; Houser, Paul R.; Schubert, Siegfried

    1999-01-01

    The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.

  16. Identification of Foreign Particles in Human Tissues using Raman Microscopy.

    PubMed

    Campion, Alan; Smith, Kenneth J; Fedulov, Alexey V; Gregory, David; Fan, Yuwei; Godleski, John J

    2018-06-12

    The precise identification of foreign particles in tissue for patient care and research has been studied using polarized light microscopy, electron microscopy with X-ray analysis, and electron diffraction. The goal of this study was to unambiguously identify particles in tissues using a combina-tion of polarized light microscopy and Raman microscopy, which provides chemical composition and microstructural characterization of complex materials with submicron spatial resolution. We designed a model system of stained and unstained cells that contained birefringent talc particles, and systematically investigated the influence of slide and coverslip materials, laser wavelengths, and mounting media on the Raman spectra ob-tained. Hematoxylin and eosin stained slides did not produce useful results because of fluorescence interference from the stains. Unstained cell samples prepared with standard slides and coverslips produce high quality Raman spectra when excited at 532 nm; the spectra are uniquely as-signed to talc. We also obtain high quality Raman spectra specific for talc in unstained tissue samples (pleural tissue following talc pleurodesis and ovarian tissue following long-term perineal talc exposure). Raman microscopy is sufficiently sensitive and compositionally selective to identify particles as small as one micron in diameter. Among commonly used coverslip mounting media, Cytoseal 60 is recommended; Permount was unacceptable due to intense background interference. Raman spectra have been catalogued for thousands of substances, which suggests that this approach is likely to be successful in identifying other particles of interest in tissues, potentially making Raman microscopy a powerful new tool in pathology.

  17. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    NASA Astrophysics Data System (ADS)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  18. Two Photon Intravital Microscopy of Lyme Borrelia in Mice.

    PubMed

    Belperron, Alexia A; Mao, Jialing; Bockenstedt, Linda K

    2018-01-01

    Two-photon intravital microscopy is a powerful tool that allows visualization of cells in intact tissues in a live animal in real time. In recent years, this advanced technology has been applied to understand pathogen-host interactions using fluorescently labeled bacteria. In particular, infectious fluorescent transformants of the Lyme disease spirochete Borrelia burgdorferi, an Ixodes tick-transmitted pathogen, have been imaged by two-photon intravital microscopy to study bacterial motility and interactions of the pathogen with feeding ticks and host tissues. Here, we describe the techniques and equipment used to image mammalian-adapted spirochetes in the skin of living mice in vivo and in joints ex vivo using two-photon intravital microscopy.

  19. Super-resolution differential interference contrast microscopy by structured illumination.

    PubMed

    Chen, Jianling; Xu, Yan; Lv, Xiaohua; Lai, Xiaomin; Zeng, Shaoqun

    2013-01-14

    We propose a structured illumination differential interference contrast (SI-DIC) microscopy, breaking the diffraction resolution limit of differential interference contrast (DIC) microscopy. SI-DIC extends the bandwidth of coherent transfer function of the DIC imaging system, thus the resolution is improved. With 0.8 numerical aperture condenser and objective, the reconstructed SI-DIC image of 53 nm polystyrene beads reveals lateral resolution of approximately 190 nm, doubling that of the conventional DIC image. We also demonstrate biological observations of label-free cells with improved spatial resolution. The SI-DIC microscopy can provide sub-diffraction resolution and high contrast images with marker-free specimens, and has the potential for achieving sub-diffraction resolution quantitative phase imaging.

  20. Electron microscopy methods in studies of cultural heritage sites

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. L.; Kovalchuk, M. V.; Yatsishina, E. B.

    2016-11-01

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient "nanotechnologies"; hence, their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.

  1. Microscopy illumination engineering using a low-cost liquid crystal display.

    PubMed

    Guo, Kaikai; Bian, Zichao; Dong, Siyuan; Nanda, Pariksheet; Wang, Ying Min; Zheng, Guoan

    2015-02-01

    Illumination engineering is critical for obtaining high-resolution, high-quality images in microscope settings. In a typical microscope, the condenser lens provides sample illumination that is uniform and free from glare. The associated condenser diaphragm can be manually adjusted to obtain the optimal illumination numerical aperture. In this paper, we report a programmable condenser lens for active illumination control. In our prototype setup, we used a $15 liquid crystal display as a transparent spatial light modulator and placed it at the back focal plane of the condenser lens. By setting different binary patterns on the display, we can actively control the illumination and the spatial coherence of the microscope platform. We demonstrated the use of such a simple scheme for multimodal imaging, including bright-field microscopy, darkfield microscopy, phase-contrast microscopy, polarization microscopy, 3D tomographic imaging, and super-resolution Fourier ptychographic imaging. The reported illumination engineering scheme is cost-effective and compatible with most existing platforms. It enables a turnkey solution with high flexibility for researchers in various communities. From the engineering point-of-view, the reported illumination scheme may also provide new insights for the development of multimodal microscopy and Fourier ptychographic imaging.

  2. Exploring Local Electrostatic Effects with Scanning Probe Microscopy: Implications for Piezoresponse Force Microscopy and Triboelectricity

    DOE PAGES

    Balke, Nina; Maksymovych, Petro; Jesse, Stephen; ...

    2014-09-25

    The implementation of contact mode Kelvin probe force microscopy (KPFM) utilizes the electrostatic interactions between tip and sample when the tip and sample are in contact with each other. Surprisingly, the electrostatic forces in contact are large enough to be measured even with tips as stiff as 4.5 N/m. As for traditional non-contact KPFM, the signal depends strongly on electrical properties of the sample, such as the dielectric constant, and the tip-properties, such as the stiffness. Since the tip is in contact with the sample, bias-induced changes in the junction potential between tip and sample can be measured with highermore » lateral and temporal resolution compared to traditional non-contact KPFM. Significant and reproducible variations of tip-surface capacitance are observed and attributed to surface electrochemical phenomena. Lastly, observations of significant surface charge states at zero bias and strong hysteretic electromechanical responses at non-ferroelectric surface have significant implications for fields such as triboelectricity and piezoresponse force microscopy.« less

  3. Atomic force microscopy and transmission electron microscopy analyses of low-temperature laser welding of the cornea.

    PubMed

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-07-01

    Low-temperature laser welding of the cornea is a technique used to facilitate the closure of corneal cuts. The procedure consists of staining the wound with a chromophore (indocyanine green), followed by continuous wave irradiation with an 810 nm diode laser operated at low power densities (12-16 W/cm(2)), which induces local heating in the 55-65 degrees C range. In this study, we aimed to investigate the ultrastructural modifications in the extracellular matrix following laser welding of corneal wounds by means of atomic force microscopy and transmission electron microscopy. The results evidenced marked disorganization of the normal fibrillar assembly, although collagen appeared not to be denatured under the operating conditions we employed. The mechanism of low-temperature laser welding may be related to some structural modifications of the nonfibrillar extracellular components of the corneal stroma.

  4. Super-resolution atomic force photoactivated microscopy of biological samples (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Kim, Hyemin; Shin, Seungjun; Doh, Junsang; Kim, Chulhong

    2017-03-01

    Optical microscopy (OM) and photoacoustic microscopy (PAM) have previously been used to image the optical absorption of intercellular features of biological cells. However, the optical diffraction limit ( 200 nm) makes it difficult for these modalities to image nanoscale inner cell structures and the distribution of internal cell components. Although super-resolution fluorescence microscopy, such as stimulated emission depletion microscopy (STED) and stochastic optical reconstruction microscopy (STORM), has successfully performed nanoscale biological imaging, these modalities require the use of exogenous fluorescence agents, which are unfavorable for biological samples. Our newly developed atomic force photoactivated microscopy (AFPM) can provide optical absorption images with nanoscale lateral resolution without any exogenous contrast agents. AFPM combines conventional atomic force microscopy (AFM) and an optical excitation system, and simultaneously provides multiple contrasts, such as the topography and magnitude of optical absorption. AFPM can detect the intrinsic optical absorption of samples with 8 nm lateral resolution, easily overcoming the diffraction limit. Using the label-free AFPM system, we have successfully imaged the optical absorption properties of a single melanoma cell (B16F10) and a rosette leaf epidermal cell of Arabidopsis (ecotype Columbia (Col-0)) with nanoscale lateral resolution. The remarkable images show the melanosome distribution of a melanoma cell and the biological structures of a plant cell. AFPM provides superior imaging of optical absorption with a nanoscale lateral resolution, and it promises to become widely used in biological and chemical research.

  5. Single-molecule fluorescence microscopy review: shedding new light on old problems

    PubMed Central

    Shashkova, Sviatlana

    2017-01-01

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called ‘green revolution’, has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called ‘super-resolution’ fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. PMID:28694303

  6. Advanced fluorescence microscopy techniques for the life sciences

    PubMed Central

    Aguib, Yasmine; Yacoub, Magdi H.

    The development of super-resolved fluorescence microscopy, for which the Nobel Prize was awarded in 2014, has been a topic of interest to physicists and biologists alike. It is inevitable that numerous questions in biomedical research cannot be answered by means other than direct observation. In this review, advances to fluorescence microscopy are covered in a widely accessible fashion to facilitate its use in decisions related to its acquisition and utilization in biomedical research. PMID:29043264

  7. 50 CFR 648.10 - VMS and DAS requirements for vessel owners/operators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false VMS and DAS requirements for vessel owners/operators. 648.10 Section 648.10 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE NORTHEASTERN...

  8. Super-resolution optical microscopy study of telomere structure.

    PubMed

    Phipps, Mary Lisa; Goodwin, Peter M; Martinez, Jennifer S; Goodwin, Edwin H

    2016-09-01

    Chromosome ends are shielded from exonucleolytic attack and inappropriate end-joining by terminal structures called telomeres; these structures are potential targets for anticancer drugs. Telomeres are composed of a simple DNA sequence (5?-TTAGGG-3? in humans) repeated more than a thousand times, a short 3? single-stranded overhang, and numerous proteins. Electron microscopy has shown that the 3? overhang pairs with the complementary strand at an internal site creating a small displacement loop and a large double-stranded “t-loop.” Our goal is to determine whether all telomeres adopt the t-loop configuration, or whether there are two or more distinct configurations. Progress in optimizing super-resolution (SR) microscopy for this ongoing investigation is reported here. Results suggest that under certain conditions sample preparation procedures may disrupt chromatin by causing loss of nucleosomes. This finding may limit the use of SR microscopy in telomere studies.

  9. Understanding the optics to aid microscopy image segmentation.

    PubMed

    Yin, Zhaozheng; Li, Kang; Kanade, Takeo; Chen, Mei

    2010-01-01

    Image segmentation is essential for many automated microscopy image analysis systems. Rather than treating microscopy images as general natural images and rushing into the image processing warehouse for solutions, we propose to study a microscope's optical properties to model its image formation process first using phase contrast microscopy as an exemplar. It turns out that the phase contrast imaging system can be relatively well explained by a linear imaging model. Using this model, we formulate a quadratic optimization function with sparseness and smoothness regularizations to restore the "authentic" phase contrast images that directly correspond to specimen's optical path length without phase contrast artifacts such as halo and shade-off. With artifacts removed, high quality segmentation can be achieved by simply thresholding the restored images. The imaging model and restoration method are quantitatively evaluated on two sequences with thousands of cells captured over several days.

  10. Super-resolution optical microscopy study of telomere structure

    NASA Astrophysics Data System (ADS)

    Phipps, Mary Lisa; Goodwin, Peter M.; Martinez, Jennifer S.; Goodwin, Edwin H.

    2016-09-01

    Chromosome ends are shielded from exonucleolytic attack and inappropriate end-joining by terminal structures called telomeres; these structures are potential targets for anticancer drugs. Telomeres are composed of a simple DNA sequence (5‧-TTAGGG-3‧ in humans) repeated more than a thousand times, a short 3‧ single-stranded overhang, and numerous proteins. Electron microscopy has shown that the 3‧ overhang pairs with the complementary strand at an internal site creating a small displacement loop and a large double-stranded "t-loop." Our goal is to determine whether all telomeres adopt the t-loop configuration, or whether there are two or more distinct configurations. Progress in optimizing super-resolution (SR) microscopy for this ongoing investigation is reported here. Results suggest that under certain conditions sample preparation procedures may disrupt chromatin by causing loss of nucleosomes. This finding may limit the use of SR microscopy in telomere studies.

  11. In vivo confocal microscopy of human cornea covered with human amniotic membrane.

    PubMed

    Mimura, Tatsuya; Yamagami, Satoru; Usui, Tomohiko; Honda, Norihiko; Araki, Fumiyuki; Amano, Shiro

    2008-01-01

    Amniotic membrane transplantation has been widely performed to reconstruct the surface of the eye and treat chemical burns or epithelial defects. However, we have difficulty observing the cornea through the opaque transplanted amniotic membrane by slit-lamp biomicroscopy. We investigated the use of confocal microscopy for observation of human corneas covered with amniotic membrane. Human amniotic membrane was placed onto the normal corneas of five volunteers aged 22-24 years. Then, all layers of the covered corneas were observed by in vivo confocal microscopy. Confocal microscopy displayed the epithelium, basement membrane, and stroma of the amniotic membrane. It also displayed the corneal epithelium. Furthermore, corneal stromal keratocytes and the corneal endothelium were clearly observed through the amniotic membrane by confocal microscopy. We demonstrated that in vivo confocal microscopy enabled us to observe all layers of corneas covered with amniotic membrane in normal human eyes. Our findings suggest that confocal microscopy may have advantages for clinical examination of the ocular surface, including all layers of the cornea.

  12. Evaluation of virtual microscopy in medical histology teaching.

    PubMed

    Mione, Sylvia; Valcke, Martin; Cornelissen, Maria

    2013-01-01

    Histology stands as a major discipline in the life science curricula, and the practice of teaching it is based on theoretical didactic strategies along with practical training. Traditionally, students achieve practical competence in this subject by learning optical microscopy. Today, students can use newer information and communication technologies in the study of digital microscopic images. A virtual microscopy program was recently introduced at Ghent University. Since little empirical evidence is available concerning the impact of virtual microscopy (VM) versus optical microscopy (OM) on the acquisition of histology knowledge, this study was set up in the Faculty of Medicine and Health Sciences. A pretest-post test and cross-over design was adopted. In the first phase, the experiment yielded two groups in a total population of 199 students, Group 1 performing the practical sessions with OM versus Group 2 performing the same sessions with VM. In the second phase, the research subjects switched conditions. The prior knowledge level of all research subjects was assessed with a pretest. Knowledge acquisition was measured with a post test after each phase (T1 and T2). Analysis of covariance was carried out to study the differential gain in knowledge at T1 and T2, considering the possible differences in prior knowledge at the start of the study. The results pointed to non-significant differences at T1 and at T2. This supports the assumption that the acquisition of the histology knowledge is independent of the microscopy representation mode (VM versus OM) of the learning material. The conclusion that VM is equivalent to OM offers new directions in view of ongoing innovations in medical education technology. Copyright © 2013 American Association of Anatomists.

  13. A semi-automated, field-portable microscopy platform for clinical diagnostic applications

    NASA Astrophysics Data System (ADS)

    Jagannadh, Veerendra Kalyan; Srinivasan, Rajesh; Gorthi, Sai Siva

    2015-08-01

    Clinical microscopy is a versatile diagnostic platform used for diagnosis of a multitude of diseases. In the recent past, many microfluidics based point-of-care diagnostic devices have been developed, which serve as alternatives to microscopy. However, these point-of-care devices are not as multi-functional and versatile as clinical microscopy. With the use of custom designed optics and microfluidics, we have developed a versatile microscopy-based cellular diagnostic platform, which can be used at the point of care. The microscopy platform presented here is capable of detecting infections of very low parasitemia level (in a very small quantity of sample), without the use of any additional computational hardware. Such a cost-effective and portable diagnostic device, would greatly impact the quality of health care available to people living in rural locations of the world. Apart from clinical diagnostics, it's applicability to field research in environmental microbiology has also been outlined.

  14. Cost-Effectiveness of Automated Digital Microscopy for Diagnosis of Active Tuberculosis.

    PubMed

    Jha, Swati; Ismail, Nazir; Clark, David; Lewis, James J; Omar, Shaheed; Dreyer, Andries; Chihota, Violet; Churchyard, Gavin; Dowdy, David W

    2016-01-01

    Automated digital microscopy has the potential to improve the diagnosis of tuberculosis (TB), particularly in settings where molecular testing is too expensive to perform routinely. The cost-effectiveness of TB diagnostic algorithms using automated digital microscopy remains uncertain. Using data from a demonstration study of an automated digital microscopy system (TBDx, Applied Visual Systems, Inc.), we performed an economic evaluation of TB diagnosis in South Africa from the health system perspective. The primary outcome was the incremental cost per new TB diagnosis made. We considered costs and effectiveness of different algorithms for automated digital microscopy, including as a stand-alone test and with confirmation of positive results with Xpert MTB/RIF ('Xpert', Cepheid, Inc.). Results were compared against both manual microscopy and universal Xpert testing. In settings willing to pay $2000 per incremental TB diagnosis, universal Xpert was the preferred strategy. However, where resources were not sufficient to support universal Xpert, and a testing volume of at least 30 specimens per day could be ensured, automated digital microscopy with Xpert confirmation of low-positive results could facilitate the diagnosis of 79-84% of all Xpert-positive TB cases, at 50-60% of the total cost. The cost-effectiveness of this strategy was $1280 per incremental TB diagnosis (95% uncertainty range, UR: $340-$3440) in the base case, but improved under conditions likely reflective of many settings in sub-Saharan Africa: $677 per diagnosis (95% UR: $450-$935) when sensitivity of manual smear microscopy was lowered to 0.5, and $956 per diagnosis (95% UR: $40-$2910) when the prevalence of multidrug-resistant TB was lowered to 1%. Although universal Xpert testing is the preferred algorithm for TB diagnosis when resources are sufficient, automated digital microscopy can identify the majority of cases and halve the cost of diagnosis and treatment when resources are more scarce and

  15. Phase Velocity and Full-Waveform Analysis of Co-located Distributed Acoustic Sensing (DAS) Channels and Geophone Sensor

    NASA Astrophysics Data System (ADS)

    Parker, L.; Mellors, R. J.; Thurber, C. H.; Wang, H. F.; Zeng, X.

    2015-12-01

    A 762-meter Distributed Acoustic Sensing (DAS) array with a channel spacing of one meter was deployed at the Garner Valley Downhole Array in Southern California. The array was approximately rectangular with dimensions of 180 meters by 80 meters. The array also included two subdiagonals within the rectangle along which three-component geophones were co-located. Several active sources were deployed, including a 45-kN, swept-frequency, shear-mass shaker, which produced strong Rayleigh waves across the array. Both DAS and geophone traces were filtered in 2-Hz steps between 4 and 20 Hz to obtain phase velocities as a function of frequency from fitting the moveout of travel times over distances of 35 meters or longer. As an alternative to this traditional means of finding phase velocity, it is theoretically possible to find the Rayleigh-wave phase velocity at each point of co-location as the ratio of DAS and geophone responses, because DAS is sensitive to ground strain and geophones are sensitive to ground velocity, after suitable corrections for instrument response (Mikumo & Aki, 1964). The concept was tested in WPP, a seismic wave propagation program, by first validating and then using a 3D synthetic, full-waveform seismic model to simulate the effect of increased levels of noise and uncertainty as data go from ideal to more realistic. The results obtained from this study provide a better understanding of the DAS response and its potential for being combined with traditional seismometers for obtaining phase velocity at a single location. This analysis is part of the PoroTomo project (Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, http://geoscience.wisc.edu/feigl/porotomo).

  16. Multidepth imaging by chromatic dispersion confocal microscopy

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Shelton, Ryan L.; Saldua, Meagan A.; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2012-03-01

    Confocal microscopy has shown potential as an imaging technique to detect precancer. Imaging cellular features throughout the depth of epithelial tissue may provide useful information for diagnosis. However, the current in vivo axial scanning techniques for confocal microscopy are cumbersome, time-consuming, and restrictive when attempting to reconstruct volumetric images acquired in breathing patients. Chromatic dispersion confocal microscopy (CDCM) exploits severe longitudinal chromatic aberration in the system to axially disperse light from a broadband source and, ultimately, spectrally encode high resolution images along the depth of the object. Hyperchromat lenses are designed to have severe and linear longitudinal chromatic aberration, but have not yet been used in confocal microscopy. We use a hyperchromat lens in a stage scanning confocal microscope to demonstrate the capability to simultaneously capture information at multiple depths without mechanical scanning. A photonic crystal fiber pumped with a 830nm wavelength Ti:Sapphire laser was used as a supercontinuum source, and a spectrometer was used as the detector. The chromatic aberration and magnification in the system give a focal shift of 140μm after the objective lens and an axial resolution of 5.2-7.6μm over the wavelength range from 585nm to 830nm. A 400x400x140μm3 volume of pig cheek epithelium was imaged in a single X-Y scan. Nuclei can be seen at several depths within the epithelium. The capability of this technique to achieve simultaneous high resolution confocal imaging at multiple depths may reduce imaging time and motion artifacts and enable volumetric reconstruction of in vivo confocal images of the epithelium.

  17. Intravital hybrid optical-optoacoustic microscopy based on fiber-Bragg interferometry

    NASA Astrophysics Data System (ADS)

    Shnaiderman, Rami; Wissmeyer, Georg; Seeger, Markus; Estrada, Hector; Ntziachristos, Vasilis

    2018-02-01

    Optoacoustic microscopy (OAM) has enabled high-resolution, label-free imaging of tissues at depths not achievable with purely optical microscopy. However, widespread implementation of OAM into existing epi-illumination microscopy setups is often constrained by the performance and size of the commonly used piezoelectric ultrasound detectors. In this work, we introduce a novel acoustic detector based on a π-phase-shifted fiber Bragg grating (π-FBG) interferometer embedded inside an ellipsoidal acoustic cavity. The cavity enables seamless integration of epi-illumination OAM into existing microscopy setups by decoupling the acoustic and optical paths between the microscope objective and the sample. The cavity also acts as an acoustic condenser, boosting the sensitivity of the π-FBG and enabling cost effective CW-laser interrogation technique. We characterize the sensor's sensitivity and bandwidth and demonstrate hybrid OAM and second-harmonic imaging of phantoms and mouse tissue in vivo.

  18. Bending the Rules: Widefield Microscopy and the Abbe Limit of Resolution

    PubMed Central

    Verdaasdonk, Jolien S.; Stephens, Andrew D.; Haase, Julian; Bloom, Kerry

    2014-01-01

    One of the most fundamental concepts of microscopy is that of resolution–the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope–deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy. PMID:23893718

  19. Electron microscopy methods in studies of cultural heritage sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliev, A. L., E-mail: a.vasiliev56@gmail.com; Kovalchuk, M. V.; Yatsishina, E. B.

    The history of the development and application of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray microanalysis (EDXMA) in studies of cultural heritage sites is considered. In fact, investigations based on these methods began when electron microscopes became a commercial product. Currently, these methods, being developed and improved, help solve many historical enigmas. To date, electron microscopy combined with microanalysis makes it possible to investigate any object, from parchment and wooden articles to pigments, tools, and objects of art. Studies by these methods have revealed that some articles were made by ancient masters using ancient “nanotechnologies”; hence,more » their comprehensive analysis calls for the latest achievements in the corresponding instrumental methods and sample preparation techniques.« less

  20. Utility of fluorescence microscopy in embryonic/fetal topographical analysis.

    PubMed

    Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M

    1995-06-01

    For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.

  1. Enhancing multi-spot structured illumination microscopy with fluorescence difference

    NASA Astrophysics Data System (ADS)

    Ward, Edward N.; Torkelsen, Frida H.; Pal, Robert

    2018-03-01

    Structured illumination microscopy is a super-resolution technique used extensively in biological research. However, this technique is limited in the maximum possible resolution increase. Here we report the results of simulations of a novel enhanced multi-spot structured illumination technique. This method combines the super-resolution technique of difference microscopy with structured illumination deconvolution. Initial results give at minimum a 1.4-fold increase in resolution over conventional structured illumination in a low-noise environment. This new technique also has the potential to be expanded to further enhance axial resolution with three-dimensional difference microscopy. The requirement for precise pattern determination in this technique also led to the development of a new pattern estimation algorithm which proved more efficient and reliable than other methods tested.

  2. Enhancing multi-spot structured illumination microscopy with fluorescence difference

    PubMed Central

    Torkelsen, Frida H.

    2018-01-01

    Structured illumination microscopy is a super-resolution technique used extensively in biological research. However, this technique is limited in the maximum possible resolution increase. Here we report the results of simulations of a novel enhanced multi-spot structured illumination technique. This method combines the super-resolution technique of difference microscopy with structured illumination deconvolution. Initial results give at minimum a 1.4-fold increase in resolution over conventional structured illumination in a low-noise environment. This new technique also has the potential to be expanded to further enhance axial resolution with three-dimensional difference microscopy. The requirement for precise pattern determination in this technique also led to the development of a new pattern estimation algorithm which proved more efficient and reliable than other methods tested. PMID:29657751

  3. Evaluation of mobile digital light-emitting diode fluorescence microscopy in Hanoi, Viet Nam.

    PubMed

    Chaisson, L H; Reber, C; Phan, H; Switz, N; Nilsson, L M; Myers, F; Nhung, N V; Luu, L; Pham, T; Vu, C; Nguyen, H; Nguyen, A; Dinh, T; Nahid, P; Fletcher, D A; Cattamanchi, A

    2015-09-01

    Hanoi Lung Hospital, Hanoi, Viet Nam. To compare the accuracy of CellScopeTB, a manually operated mobile digital fluorescence microscope, with conventional microscopy techniques. Patients referred for sputum smear microscopy to the Hanoi Lung Hospital from May to September 2013 were included. Ziehl-Neelsen (ZN) smear microscopy, conventional light-emitting diode (LED) fluorescence microscopy (FM), CellScopeTB-based LED FM and Xpert(®) MTB/RIF were performed on sputum samples. The sensitivity and specificity of microscopy techniques were determined in reference to Xpert results, and differences were compared using McNemar's paired test of proportions. Of 326 patients enrolled, 93 (28.5%) were Xpert-positive for TB. The sensitivity of ZN microscopy, conventional LED FM, and CellScopeTB-based LED FM was respectively 37.6% (95%CI 27.8-48.3), 41.9% (95%CI 31.8-52.6), and 35.5% (95%CI 25.8-46.1). The sensitivity of CellScopeTB was similar to that of conventional LED FM (difference -6.5%, 95%CI -18.2 to 5.3, P = 0.33) and ZN microscopy (difference -2.2%, 95%CI -9.2 to 4.9, P = 0.73). The specificity was >99% for all three techniques. CellScopeTB performed similarly to conventional microscopy techniques in the hands of experienced TB microscopists. However, the sensitivity of all sputum microscopy techniques was low. Options enabled by digital microscopy, such as automated imaging with real-time computerized analysis, should be explored to increase sensitivity.

  4. Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.

    PubMed

    Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue

    2014-03-01

    One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

  5. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez-Salgado, J.; Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx; Castro-Domínguez, B.

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite wasmore » detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.« less

  6. Wide-field two-photon microscopy with temporal focusing and HiLo background rejection

    NASA Astrophysics Data System (ADS)

    Yew, Elijah Y. S.; Choi, Heejin; Kim, Daekeun; So, Peter T. C.

    2011-03-01

    Scanningless depth-resolved microscopy is achieved through spatial-temporal focusing and has been demonstrated previously. The advantage of this method is that a large area may be imaged without scanning resulting in higher throughput of the imaging system. Because it is a widefield technique, the optical sectioning effect is considerably poorer than with conventional spatial focusing two-photon microscopy. Here we propose wide-field two-photon microscopy based on spatio-temporal focusing and employing background rejection based on the HiLo microscope principle. We demonstrate the effects of applying HiLo microscopy to widefield temporally focused two-photon microscopy.

  7. In Vitro Efficacy of Diallyl Sulfides against the Periodontopathogen Aggregatibacter actinomycetemcomitans

    PubMed Central

    Ganeshnarayan, Krishnaraj; Velusamy, Senthil Kumar; Fine, Daniel H.

    2012-01-01

    The in vitro antibacterial effects of diallyl sulfide (DAS) against the Gram-negative periodontopathogen Aggregatibacter actinomycetemcomitans, the key etiologic agent of the severe form of localized aggressive periodontitis and other nonoral infections, were studied. A. actinomycetemcomitans was treated with garlic extract, allicin, or DAS, and the anti-A. actinomycetemcomitans effects of the treatment were evaluated. Garlic extract, allicin, and DAS significantly inhibited the growth of A. actinomycetemcomitans (greater than 3 log; P < 0.01) compared to control cells. Heat inactivation of the garlic extracts significantly reduced the protein concentration; however, the antimicrobial effect was retained. Purified proteins from garlic extract did not exhibit antimicrobial activity. Allicin lost all its antimicrobial effect when it was subjected to heat treatment, whereas DAS demonstrated an antimicrobial effect similar to that of the garlic extract, suggesting that the antimicrobial activity of garlic extract is mainly due to DAS. An A. actinomycetemcomitans biofilm-killing assay performed with DAS showed a significant reduction in biofilm cell numbers, as evidenced by both confocal microscopy and culture. Scanning electron microscopy (SEM) analysis of DAS-treated A. actinomycetemcomitans biofilms showed alterations of colony architecture indicating severe stress. Flow cytometry analysis of OBA9 cells did not demonstrate apoptosis or cell cycle arrest at therapeutic concentrations of DAS (0.01 and 0.1 μg/ml). DAS-treated A. actinomycetemcomitans cells demonstrated complete inhibition of glutathione (GSH) S-transferase (GST) activity. However, OBA9 cells, when exposed to DAS at similar concentrations, showed no significant differences in GST activity, suggesting that DAS-induced GST inhibition might be involved in A. actinomycetemcomitans cell death. These findings demonstrate that DAS exhibits significant antibacterial activity against A. actinomycetemcomitans and

  8. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  9. Analysis of acute brain slices by electron microscopy: a correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning.

    PubMed

    Loussert Fonta, Celine; Leis, Andrew; Mathisen, Cliff; Bouvier, David S; Blanchard, Willy; Volterra, Andrea; Lich, Ben; Humbel, Bruno M

    2015-01-01

    Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of

  10. Correlation of live-cell imaging with volume scanning electron microscopy.

    PubMed

    Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger

    2017-01-01

    Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Accessible microscopy workstation for students and scientists with mobility impairments.

    PubMed

    Duerstock, Bradley S

    2006-01-01

    An integrated accessible microscopy workstation was designed and developed to allow persons with mobility impairments to control all aspects of light microscopy with minimal human assistance. This system, named AccessScope, is capable of performing brightfield and fluorescence microscopy, image analysis, and tissue morphometry requisite for undergraduate science courses to graduate-level research. An accessible microscope is necessary for students and scientists with mobility impairments to be able to use a microscope independently to better understand microscopical imaging concepts and cell biology. This knowledge is not always apparent by simply viewing a catalog of histological images. The ability to operate a microscope independently eliminates the need to hire an assistant or rely on a classmate and permits one to take practical laboratory examinations by oneself. Independent microscope handling is also crucial for graduate students and scientists with disabilities to perform scientific research. By making a personal computer as the user interface for controlling AccessScope functions, different upper limb mobility impairments could be accommodated by using various computer input devices and assistive technology software. Participants with a range of upper limb mobility impairments evaluated the prototype microscopy workstation. They were able to control all microscopy functions including loading different slides without assistance.

  12. A Barcoding Strategy Enabling Higher-Throughput Library Screening by Microscopy.

    PubMed

    Chen, Robert; Rishi, Harneet S; Potapov, Vladimir; Yamada, Masaki R; Yeh, Vincent J; Chow, Thomas; Cheung, Celia L; Jones, Austin T; Johnson, Terry D; Keating, Amy E; DeLoache, William C; Dueber, John E

    2015-11-20

    Dramatic progress has been made in the design and build phases of the design-build-test cycle for engineering cells. However, the test phase usually limits throughput, as many outputs of interest are not amenable to rapid analytical measurements. For example, phenotypes such as motility, morphology, and subcellular localization can be readily measured by microscopy, but analysis of these phenotypes is notoriously slow. To increase throughput, we developed microscopy-readable barcodes (MiCodes) composed of fluorescent proteins targeted to discernible organelles. In this system, a unique barcode can be genetically linked to each library member, making possible the parallel analysis of phenotypes of interest via microscopy. As a first demonstration, we MiCoded a set of synthetic coiled-coil leucine zipper proteins to allow an 8 × 8 matrix to be tested for specific interactions in micrographs consisting of mixed populations of cells. A novel microscopy-readable two-hybrid fluorescence localization assay for probing candidate interactions in the cytosol was also developed using a bait protein targeted to the peroxisome and a prey protein tagged with a fluorescent protein. This work introduces a generalizable, scalable platform for making microscopy amenable to higher-throughput library screening experiments, thereby coupling the power of imaging with the utility of combinatorial search paradigms.

  13. Event DAS-444Ø6-6 soybean grown in Brazil is compositionally equivalent to non-transgenic soybean.

    PubMed

    Fast, Brandon J; Galan, Maria P; Schafer, Ariane C

    2016-04-02

    Soybean event DAS-444Ø6-6 is tolerant to the herbicides 2,4-D, glyphosate, and glufosinate. An investigation of potential unintended adverse compositional changes in a genetically modified crop is required to meet government regulatory requirements in various geographies. A study to meet these requirements in Brazil was completed demonstrating compositional equivalency between DAS-444Ø6-6 and non-transgenic soybean. This study supplements the extensive literature supporting transgenesis as less disruptive of crop composition compared with traditional breeding methods.

  14. Fusion of lens-free microscopy and mobile-phone microscopy images for high-color-accuracy and high-resolution pathology imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2017-03-01

    Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.

  15. In vivo microscopy of the mouse brain using multiphoton laser scanning techniques

    NASA Astrophysics Data System (ADS)

    Yoder, Elizabeth J.

    2002-06-01

    The use of multiphoton microscopy for imaging mouse brain in vivo offers several advantages and poses several challenges. This tutorial begins by briefly comparing multiphoton microscopy with other imaging modalities used to visualize the brain and its activity. Next, an overview of the techniques for introducing fluorescence into whole animals to generate contrast for in vivo microscopy using two-photon excitation is presented. Two different schemes of surgically preparing mice for brain imaging with multiphoton microscopy are reviewed. Then, several issues and problems with in vivo microscopy - including motion artifact, respiratory and cardiac rhythms, maintenance of animal health, anesthesia, and the use of fiducial markers - are discussed. Finally, examples of how these techniques have been applied to visualize the cerebral vasculature and its response to hypercapnic stimulation are provided.

  16. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    PubMed

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Systems microscopy: an emerging strategy for the life sciences.

    PubMed

    Lock, John G; Strömblad, Staffan

    2010-05-01

    Dynamic cellular processes occurring in time and space are fundamental to all physiology and disease. To understand complex and dynamic cellular processes therefore demands the capacity to record and integrate quantitative multiparametric data from the four spatiotemporal dimensions within which living cells self-organize, and to subsequently use these data for the mathematical modeling of cellular systems. To this end, a raft of complementary developments in automated fluorescence microscopy, cell microarray platforms, quantitative image analysis and data mining, combined with multivariate statistics and computational modeling, now coalesce to produce a new research strategy, "systems microscopy", which facilitates systems biology analyses of living cells. Systems microscopy provides the crucial capacities to simultaneously extract and interrogate multiparametric quantitative data at resolution levels ranging from the molecular to the cellular, thereby elucidating a more comprehensive and richly integrated understanding of complex and dynamic cellular systems. The unique capacities of systems microscopy suggest that it will become a vital cornerstone of systems biology, and here we describe the current status and future prospects of this emerging field, as well as outlining some of the key challenges that remain to be overcome. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy

    DOE PAGES

    Collins, Liam; Jesse, Stephen; Kilpatrick, J.; ...

    2015-01-19

    Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q watermore » and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.« less

  19. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Jesse, Stephen; Yu, Pu

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  20. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE PAGES

    Balke, Nina; Jesse, Stephen; Yu, Pu; ...

    2016-09-15

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  1. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall.

    PubMed

    Ma, Jianfeng; Ji, Zhe; Zhou, Xia; Zhang, Zhiheng; Xu, Feng

    2013-02-01

    Transmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.

  2. Light Sheet Fluorescence Microscopy (LSFM)

    PubMed Central

    Adams, Michael W.; Loftus, Andrew F.; Dunn, Sarah E.; Joens, Matthew S.; Fitzpatrick, James A.J.

    2015-01-01

    The development of confocal microscopy techniques introduced the ability to optically section fluorescent samples in the axial dimension, perpendicular to the image plane. These approaches, via the placement of a pinhole in the conjugate image plane, provided superior resolution in the axial (z) dimension resulting in nearly isotropic optical sections. However, increased axial resolution, via pinhole optics, comes at the cost of both speed and excitation efficiency. Light Sheet Fluorescent Microscopy (LSFM), a century old idea (Siedentopf and Zsigmondy, 1902) made possible with modern developments in both excitation and detection optics, provides sub-cellular resolution and optical sectioning capabilities without compromising speed or excitation efficiency. Over the past decade, several variations of LSFM have been implemented each with its own benefits and deficiencies. Here we discuss LSFM fundamentals and outline the basic principles of several major light sheet based imaging modalities (SPIM, inverted SPIM, multi-view SPIM, Bessel beam SPIM, and stimulated emission depletion SPIM while considering their biological relevance in terms of intrusiveness, temporal resolution, and sample requirements. PMID:25559221

  3. Nonlinear microscopy of collagen fibers

    NASA Astrophysics Data System (ADS)

    Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Fabre, A.; Marchal-Somme, J.; Crestani, B.; Débarre, D.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C.

    2007-02-01

    We used intrinsic Second Harmonic Generation (SHG) by fibrillar collagen to visualize the three-dimensional architecture of collagen fibrosis at the micrometer scale using laser scanning nonlinear microscopy. We showed that SHG signals are highly specific to fibrillar collagen and provide a sensitive probe of the micrometer-scale structural organization of collagen in tissues. Moreover, recording simultaneously other nonlinear optical signals in a multimodal setup, we visualized the tissue morphology using Two-Photon Excited Fluorescence (2PEF) signals from endogenous chromophores such as NADH or elastin. We then compared different methods to determine accurate indexes of collagen fibrosis using nonlinear microscopy, given that most collagen fibrils are smaller than the microscope resolution and that second harmonic generation is a coherent process. In order to define a robust method to process our three-dimensional images, we either calculated the fraction of the images occupied by a significant SHG signal, or averaged SHG signal intensities. We showed that these scores provide an estimation of the extension of renal and pulmonary fibrosis in murine models, and that they clearly sort out the fibrotic mice.

  4. Shaping field for deep tissue microscopy

    NASA Astrophysics Data System (ADS)

    Colon, J.; Lim, H.

    2015-05-01

    Information capacity of a lossless image-forming system is a conserved property determined by two imaging parameters - the resolution and the field of view (FOV). Adaptive optics improves the former by manipulating the phase, or wavefront, in the pupil plane. Here we describe a homologous approach, namely adaptive field microscopy, which aims to enhance the FOV by controlling the phase, or defocus, in the focal plane. In deep tissue imaging, the useful FOV can be severely limited if the region of interest is buried in a thick sample and not perpendicular to the optic axis. One must acquire many z-scans and reconstruct by post-processing, which exposes tissue to excessive radiation and is also time consuming. We demonstrate the effective FOV can be substantially enhanced by dynamic control of the image plane. Specifically, the tilt of the image plane is continuously adjusted in situ to match the oblique orientation of the sample plane within tissue. The utility of adaptive field microscopy is tested for imaging tissue with non-planar morphology. Ocular tissue of small animals was imaged by two-photon excited fluorescence. Our results show that adaptive field microscopy can utilize the full FOV. The freedom to adjust the image plane to account for the geometrical variations of sample could be extremely useful for 3D biological imaging. Furthermore, it could facilitate rapid surveillance of cellular features within deep tissue while avoiding photo damages, making it suitable for in vivo imaging.

  5. Video-rate resonant scanning multiphoton microscopy

    PubMed Central

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2013-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  6. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: AXIAL RESOLUTION

    EPA Science Inventory

    Abstract

    Confocal Microscopy System Performance: Axial resolution.
    Robert M. Zucker, PhD

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Re...

  7. Two-dimensional profiling of carriers in terahertz quantum cascade lasers using calibrated scanning spreading resistance microscopy and scanning capacitance microscopy.

    PubMed

    Dhar, R S; Ban, D

    2013-07-01

    The distribution of charge carriers inside the active region of a terahertz (THz) quantum cascade laser (QCL) has been measured with scanning spreading resistance microscopy (SSRM) and scanning capacitance microscopy (SCM). Individual quantum well-barrier modules with a 35.7-nm single module thickness in the active region of the device have been resolved for the first time using high-resolution SSRM and SCM techniques at room temperature. SSRM and SCM measurements on the quantum well-barrier structure were calibrated utilizing known GaAs dopant staircase samples. Doping concentrations derived from SSRM and SCM measurements were found to be in quantitative agreement with the designed average doping values of the n-type active region in the terahertz quantum cascade laser. The secondary ion mass spectroscopy provides a partial picture of internal device parameters, and we have demonstrated with our results the efficacy of uniting calibrated SSRM and SCM to delineate quantitatively the transverse cross-sectional structure of complex two-dimensional terahertz quantum cascade laser devices. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  8. Laser scanning saturated structured illumination microscopy based on phase modulation

    NASA Astrophysics Data System (ADS)

    Huang, Yujia; Zhu, Dazhao; Jin, Luhong; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2017-08-01

    Wide-field saturated structured illumination microscopy has not been widely used due to the requirement of high laser power. We propose a novel method called laser scanning saturated structured illumination microscopy (LS-SSIM), which introduces high order of harmonics frequency and greatly reduces the required laser power for SSIM imaging. To accomplish that, an excitation PSF with two peaks is generated and scanned along different directions on the sample. Raw images are recorded cumulatively by a CCD detector and then reconstructed to form a high-resolution image with extended optical transfer function (OTF). Our theoretical analysis and simulation results show that LS-SSIM method reaches a resolution of 0.16 λ, equivalent to 2.7-fold resolution than conventional wide-field microscopy. In addition, LS-SSIM greatly improves the optical sectioning capability of conventional wide-field illumination system by diminishing our-of-focus light. Furthermore, this modality has the advantage of implementation in multi-photon microscopy with point scanning excitation to image samples in greater depths.

  9. Intravital Microscopy Imaging Approaches for Image-Guided Drug Delivery Systems

    PubMed Central

    Kirui, Dickson K.; Ferrari, Mauro

    2016-01-01

    Rapid technical advances in the field of non-linear microscopy have made intravital microscopy a vital pre-clinical tool for research and development of imaging-guided drug delivery systems. The ability to dynamically monitor the fate of macromolecules in live animals provides invaluable information regarding properties of drug carriers (size, charge, and surface coating), physiological, and pathological processes that exist between point-of-injection and the projected of site of delivery, all of which influence delivery and effectiveness of drug delivery systems. In this Review, we highlight how integrating intravital microscopy imaging with experimental designs (in vitro analyses and mathematical modeling) can provide unique information critical in the design of novel disease-relevant drug delivery platforms with improved diagnostic and therapeutic indexes. The Review will provide the reader an overview of the various applications for which intravital microscopy has been used to monitor the delivery of diagnostic and therapeutic agents and discuss some of their potential clinical applications. PMID:25901526

  10. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    PubMed

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  11. Camera array based light field microscopy

    PubMed Central

    Lin, Xing; Wu, Jiamin; Zheng, Guoan; Dai, Qionghai

    2015-01-01

    This paper proposes a novel approach for high-resolution light field microscopy imaging by using a camera array. In this approach, we apply a two-stage relay system for expanding the aperture plane of the microscope into the size of an imaging lens array, and utilize a sensor array for acquiring different sub-apertures images formed by corresponding imaging lenses. By combining the rectified and synchronized images from 5 × 5 viewpoints with our prototype system, we successfully recovered color light field videos for various fast-moving microscopic specimens with a spatial resolution of 0.79 megapixels at 30 frames per second, corresponding to an unprecedented data throughput of 562.5 MB/s for light field microscopy. We also demonstrated the use of the reported platform for different applications, including post-capture refocusing, phase reconstruction, 3D imaging, and optical metrology. PMID:26417490

  12. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    PubMed

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  13. X-ray Microscopy as an Approach to Increasing Accuracy and Efficiency of Serial Block-face Imaging for Correlated Light and Electron Microscopy of Biological Specimens

    PubMed Central

    Bushong, Eric A.; Johnson, Donald D.; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T.; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H.

    2015-01-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging. PMID:25392009

  14. Coherent Raman scattering microscopy for label-free imaging of live amphioxus

    NASA Astrophysics Data System (ADS)

    Yu, Zhilong; Chen, Tao; Zhang, Xiannian; Shen, Jie; Chen, Junyuan; Huang, Yanyi

    2012-03-01

    The existence of notochord distinguishes chordates from other phyla. Amphioxus is the only animal that keeps notochord during the whole life. Notochord is a unique organ for amphioxus, with its vertically arranged muscular notochordal plates, which is different from notochords in embryos of other chordates. We use stimulated Raman scattering (SRS) microscopy as a non-invasive technique to image the chemical components in amphioxus notochord. SRS provides chemical specificity as spontaneous Raman does and offers a higher sensitivity for fast acquisition. Unlike coherent anti- Stokes Raman scattering (CARS) microscopy, SRS microscopy doesn't have non-resonant background and can better differentiate different components in the specimen. We verify that the notochord is a protein-rich organ, which agrees well with the result of conventional staining methods. Detailed structures in notochordal plates and notochordal sheath are revealed by SRS microscopy with diffraction limited resolution. Our experiment shows that SRS microscopy is an excellent imaging tool for biochemical research with its intrinsic chemical selectivity, high spatiotemporal resolution and native 3D optical sectioning ability.

  15. A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics

    PubMed Central

    Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf

    2016-01-01

    Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419

  16. Temporal focusing microscopy combined with three-dimensional structured illumination

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi

    2017-05-01

    Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.

  17. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    PubMed

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described. © 2014 Elsevier Inc. All rights reserved.

  18. eduSPIM: Light Sheet Microscopy in the Museum.

    PubMed

    Jahr, Wiebke; Schmid, Benjamin; Weber, Michael; Huisken, Jan

    2016-01-01

    Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided.

  19. A Brief History of the J.P. Das Developmental Disabilities Centre

    ERIC Educational Resources Information Center

    Sobsey, Dick

    2008-01-01

    The J.P. Das Developmental Disabilities Centre celebrated its 40th anniversary on September 1, 2007, followed by The University of Alberta's 100th anniversary in 2008. The year 2008 also brought the appointment of a new Director for the Centre. As the immediate past Director of the Centre, the author recounts some of the history of the J.P. Das…

  20. Different patterns of collagen-proteoglycan interaction: a scanning electron microscopy and atomic force microscopy study.

    PubMed

    Raspanti, M; Congiu, T; Alessandrini, A; Gobbi, P; Ruggeri, A

    2000-01-01

    The extracellular matrix of unfixed, unstained rat corneal stroma, visualized with high-resolution scanning electron microscopy and atomic force microscopy after minimal preliminary treatment, appears composed of straight, parallel, uniform collagen fibrils regularly spaced by a three-dimensional, irregular network of thin, delicate proteoglycan filaments. Rat tail tendon, observed under identical conditions, appears instead made of heterogeneous, closely packed fibrils interwoven with orthogonal proteoglycan filaments. Pre-treatment with cupromeronic blue just thickens the filaments without affecting their spatial layout. Digestion with chondroitinase ABC rids the tendon matrix of all its interconnecting filaments while the corneal stroma architecture remains virtually unaffected, its fibrils always being separated by an evident interfibrillar spacing which is never observed in tendon. Our observations indicate that matrix proteoglycans are responsible for both the highly regular interfibrillar spacing which is distinctive of corneal stroma, and the strong interfibrillar binding observed in tendon. These opposite interaction patterns appear to be distinctive of different proteoglycan species. The molecular details of proteoglycan interactions are still incompletely understood and are the subject of ongoing research.

  1. Scanning Probe Microscopy | Materials Science | NREL

    Science.gov Websites

    . Capability of use with ultra-high vacuum makes NREL Scanning Probe Microscopy particularly valuable for vacuum, as appropriate Field of view from atoms up to about 100 µm (vertical limit of about 7 µm

  2. In vivo multiphoton microscopy of deep tissue with gradient index lenses

    NASA Astrophysics Data System (ADS)

    Levene, Michael J.; Dombeck, Daniel A.; Williams, Rebecca M.; Skoch, Jesse; Hickey, Gregory A.; Kasischke, Karl A.; Molloy, Raymond P.; Ingelsson, Martin; Stern, Edward A.; Klucken, Jochen; Bacskai, Brian J.; Zipfel, Warren R.; Hyman, Bradley T.; Webb, Watt W.

    2004-06-01

    Gradient index lenses enable multiphoton microscopy of deep tissues in the intact animal. In order to assess their applicability to clinical research, we present in vivo multiphoton microscopy with gradient index lenses in brain regions associated with Alzheimer's disease and Parkinson's disease in both transgenic and wild-type mice. We also demonstrate microscopy of ovary in wild type mouse using only intrinsic fluorescence and second harmonic generation, signal sources which may prove useful for both the study and diagnosis of cancer.

  3. Boundary fitting based segmentation of fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Lee, Soonam; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2015-03-01

    Segmentation is a fundamental step in quantifying characteristics, such as volume, shape, and orientation of cells and/or tissue. However, quantification of these characteristics still poses a challenge due to the unique properties of microscopy volumes. This paper proposes a 2D segmentation method that utilizes a combination of adaptive and global thresholding, potentials, z direction refinement, branch pruning, end point matching, and boundary fitting methods to delineate tubular objects in microscopy volumes. Experimental results demonstrate that the proposed method achieves better performance than an active contours based scheme.

  4. Chapter 7: Total internal reflection fluorescence microscopy.

    PubMed

    Axelrod, Daniel

    2008-01-01

    Total internal reflection fluorescence microscopy (TIRFM), also known as evanescent wave microscopy, is used in a wide range of applications, particularly to view single molecules attached to planar surfaces and to study the position and dynamics of molecules and organelles in living culture cells near the contact regions with the glass coverslip. TIRFM selectively illuminates fluorophores only in a very thin (less than 100 nm deep) layer near the substrate, thereby avoiding excitation of fluorophores outside this subresolution optical section. This chapter reviews the history, current applications in cell biology and biochemistry, basic optical theory, combinations with numerous other optical and spectroscopic approaches, and a range of setup methods, both commercial and custom.

  5. Automated microscopy for high-content RNAi screening

    PubMed Central

    2010-01-01

    Fluorescence microscopy is one of the most powerful tools to investigate complex cellular processes such as cell division, cell motility, or intracellular trafficking. The availability of RNA interference (RNAi) technology and automated microscopy has opened the possibility to perform cellular imaging in functional genomics and other large-scale applications. Although imaging often dramatically increases the content of a screening assay, it poses new challenges to achieve accurate quantitative annotation and therefore needs to be carefully adjusted to the specific needs of individual screening applications. In this review, we discuss principles of assay design, large-scale RNAi, microscope automation, and computational data analysis. We highlight strategies for imaging-based RNAi screening adapted to different library and assay designs. PMID:20176920

  6. Open-source do-it-yourself multi-color fluorescence smartphone microscopy

    PubMed Central

    Sung, Yulung; Campa, Fernando; Shih, Wei-Chuan

    2017-01-01

    Fluorescence microscopy is an important technique for cellular and microbiological investigations. Translating this technique onto a smartphone can enable particularly powerful applications such as on-site analysis, on-demand monitoring, and point-of-care diagnostics. Current fluorescence smartphone microscope setups require precise illumination and imaging alignment which altogether limit its broad adoption. We report a multi-color fluorescence smartphone microscope with a single contact lens-like add-on lens and slide-launched total-internal-reflection guided illumination for three common tasks in investigative fluorescence microscopy: autofluorescence, fluorescent stains, and immunofluorescence. The open-source, simple and cost-effective design has the potential for do-it-yourself fluorescence smartphone microscopy. PMID:29188104

  7. Electrochemical force microscopy

    DOEpatents

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  8. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    PubMed Central

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463

  9. Microsphere-aided optical microscopy and its applications for super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2017-12-01

    The spatial resolution of a standard optical microscope (SOM) is limited by diffraction. In visible spectrum, SOM can provide ∼ 200 nm resolution. To break the diffraction limit several approaches were developed including scanning near field microscopy, metamaterial super-lenses, nanoscale solid immersion lenses, super-oscillatory lenses, confocal fluorescence microscopy, techniques that exploit non-linear response of fluorophores like stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, etc. Recently, photonic nanojet generated by a dielectric microsphere was used to break the diffraction limit. The microsphere-approach is simple, cost-effective and can be implemented under a standard microscope, hence it has gained enormous attention for super-resolution imaging. In this article, we briefly review the microsphere approach and its applications for super-resolution imaging in various optical imaging modalities.

  10. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGES

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  11. Preface to Special Topic: Piezoresponse Force Microscopy

    DOE PAGES

    Balke, Nina; Bassiri-Gharb, Nazanin; Lichtensteiger, Céline

    2015-08-19

    Almost two decades beyond the inception of piezoresponse force microscopy (PFM) and the seminal papers by G€uthner and Dransfeld1 and Gruverman et al., the technique has become the prevailing approach for nanoscale functional characterization of polar materials and has been extended to the probing of other electromechanical effects through the advent of electrochemical strain microscopy (ESM). This focus issue celebrates some of the recent advances in the field and offers a wider outlook of polar materials and their overall characterization. In this paper, we cover topics that include discussions of the properties of traditional ferroelectrics, such as lead zirconate titanatemore » (PZT) and lithium niobate, relaxorferroelectrics, as well as more “exotic” ferroelectric oxides such as hafnia, ferroelectric biological matter, and multiferroic materials. Technique-oriented contributions include papers on the coupling of PFM with other characterization methods such as x-ray diffraction (XRD) and superconducting quantum interface device (SQUID), in addition to considerations on the open questions on the electromechanical response in biased scanning probe microscopy (SPM) techniques, including the effects of the laser spot placement on the readout cantilever displacement, the influence of the tip on the creation of the domain shapes, and the impact of ionic and electronic dynamics on the observed nanoscale hysteretic phenomena.« less

  12. Single cell elemental analysis using nuclear microscopy

    NASA Astrophysics Data System (ADS)

    Ren, M. Q.; Thong, P. S. P.; Kara, U.; Watt, F.

    1999-04-01

    The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS).

  13. Diabetes screening by telecentric digital holographic microscopy.

    PubMed

    Doblas, A; Roche, E; Ampudia-Blasco, F J; Martínez-Corral, M; Saavedra, G; Garcia-Sucerquia, J

    2016-03-01

    Diabetes is currently the world's fastest growing chronic disease and it is caused by deficient production of insulin by the endocrine pancreas or by abnormal insulin action in peripheral tissues. This results in persistent hyperglycaemia that over time may produce chronic diabetic complications. Determination of glycated haemoglobin level is currently the gold standard method to evaluate and control sustained hyperglycaemia in diabetic people. This measurement is currently made by high-performance liquid chromatography, which is a complex chemical process that requires the extraction of blood from the antecubital vein. To reduce the complexity of that measurement, we propose a fully-optical technique that is based in the fact that there are changes in the optical properties of erythrocytes due to the presence of glucose-derived adducts in the haemoglobin molecule. To evaluate these changes, we propose to perform quantitative phase maps of erythrocytes by using telecentric digital holographic microscopy. Our experiments show that telecentric digital holographic microscopy allows detecting, almost in real time and from a single drop of blood, significant differences between erythrocytes of diabetic patients and healthy patients. Besides, our phase measurements are well correlated with the values of glycated haemoglobin and the blood glucose values. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  14. Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy.

    PubMed

    Parent, Lucas R; Bakalis, Evangelos; Proetto, Maria; Li, Yiwen; Park, Chiwoo; Zerbetto, Francesco; Gianneschi, Nathan C

    2018-01-16

    Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.

  15. Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment.

    PubMed

    Utsunomiya, Satoshi; Ewing, Rodney C

    2003-02-15

    A major challenge to the development of a fundamental understanding of transport and retardation mechanisms of trace metal contaminants (<10 ppm) is their identification and characterization at the nanoscale. Atomic-scale techniques, such as conventional transmission electron microscopy, although powerful, are limited by the extremely small amounts of material that are examined. However, recent advances in electron microscopy provide a number of new analytical techniques that expand its application in environmental studies, particularly those concerning heavy metals on airborne particulates or water-borne colloids. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-energy-dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM) can be effectively used to identify and characterize nanoparticles. The image contrast in HAADF-STEM is strongly correlated to the atomic mass: heavier elements contribute to brighter contrast. Gold nanocrystals in pyrite and uranium nanocrystals in atmospheric aerosols have been identified by HAADF-STEM and STEM-EDX mapping and subsequently characterized by high-resolution TEM (HRTEM). EFTEM was used to identify U and Fe nanocrystals embedded in an aluminosilicate. A rare, As-bearing nanophase, westerveldite (FeAs), was identified by STEM-EDX and HRTEM. The combined use of these techniques greatly expands the effective application of electron microscopy in environmental studies, especially when applied to metals of very low concentrations. This paper describes examples of how these electron microbeam techniques can be used in combination to characterize a low concentration of heavy metals (a few ppm) on nanoscale particles.

  16. Confocal microscopy imaging of solid tissue

    EPA Science Inventory

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...

  17. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy

    DOE PAGES

    Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; ...

    2016-03-15

    Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.

  18. Three-Dimensional Unstained Live-Cell Imaging Using Stimulated Parametric Emission Microscopy

    NASA Astrophysics Data System (ADS)

    Dang, Hieu M.; Kawasumi, Takehito; Omura, Gen; Umano, Toshiyuki; Kajiyama, Shin'ichiro; Ozeki, Yasuyuki; Itoh, Kazuyoshi; Fukui, Kiichi

    2009-09-01

    The ability to perform high-resolution unstained live imaging is very important to in vivo study of cell structures and functions. Stimulated parametric emission (SPE) microscopy is a nonlinear-optical microscopy based on ultra-fast electronic nonlinear-optical responses. For the first time, we have successfully applied this technique to archive three-dimensional (3D) images of unstained sub-cellular structures, such as, microtubules, nuclei, nucleoli, etc. in live cells. Observation of a complete cell division confirms the ability of SPE microscopy for long time-scale imaging.

  19. Reflectance Confocal Microscopy in Lentigo Maligna.

    PubMed

    Gamo, R; Pampín, A; Floristán, U

    2016-12-01

    Lentigo maligna is the most common type of facial melanoma. Diagnosis is complicated, however, as it shares clinical and dermoscopic characteristics with other cutaneous lesions of the face. Reflectance confocal microscopy is an imaging technique that permits the visualization of characteristic features of lentigo maligna. These include a disrupted honeycomb pattern and pagetoid cells with a tendency to show folliculotropism. These cells typically have a dendritic morphology, although they may also appear as round cells measuring over 20μm with atypical nuclei. Poorly defined dermal papillae and atypical cells may be seen at the dermal-epidermal junction and can form bridges resembling mitochondrial structures. Other characteristic findings include junctional swelling with atypical cells located around the follicles, resembling caput medusae. Reflectance confocal microscopy is a very useful tool for diagnosing lentigo maligna. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Advances in Light Microscopy for Neuroscience

    PubMed Central

    Wilt, Brian A.; Burns, Laurie D.; Ho, Eric Tatt Wei; Ghosh, Kunal K.; Mukamel, Eran A.

    2010-01-01

    Since the work of Golgi and Cajal, light microscopy has remained a key tool for neuroscientists to observe cellular properties. Ongoing advances have enabled new experimental capabilities using light to inspect the nervous system across multiple spatial scales, including ultrastructural scales finer than the optical diffraction limit. Other progress permits functional imaging at faster speeds, at greater depths in brain tissue, and over larger tissue volumes than previously possible. Portable, miniaturized fluorescence microscopes now allow brain imaging in freely behaving mice. Complementary progress on animal preparations has enabled imaging in head-restrained behaving animals, as well as time-lapse microscopy studies in the brains of live subjects. Mouse genetic approaches permit mosaic and inducible fluorescence-labeling strategies, whereas intrinsic contrast mechanisms allow in vivo imaging of animals and humans without use of exogenous markers. This review surveys such advances and highlights emerging capabilities of particular interest to neuroscientists. PMID:19555292

  1. Automated seeding-based nuclei segmentation in nonlinear optical microscopy.

    PubMed

    Medyukhina, Anna; Meyer, Tobias; Heuke, Sandro; Vogler, Nadine; Dietzek, Benjamin; Popp, Jürgen

    2013-10-01

    Nonlinear optical (NLO) microscopy based, e.g., on coherent anti-Stokes Raman scattering (CARS) or two-photon-excited fluorescence (TPEF) is a fast label-free imaging technique, with a great potential for biomedical applications. However, NLO microscopy as a diagnostic tool is still in its infancy; there is a lack of robust and durable nuclei segmentation methods capable of accurate image processing in cases of variable image contrast, nuclear density, and type of investigated tissue. Nonetheless, such algorithms specifically adapted to NLO microscopy present one prerequisite for the technology to be routinely used, e.g., in pathology or intraoperatively for surgical guidance. In this paper, we compare the applicability of different seeding and boundary detection methods to NLO microscopic images in order to develop an optimal seeding-based approach capable of accurate segmentation of both TPEF and CARS images. Among different methods, the Laplacian of Gaussian filter showed the best accuracy for the seeding of the image, while a modified seeded watershed segmentation was the most accurate in the task of boundary detection. The resulting combination of these methods followed by the verification of the detected nuclei performs high average sensitivity and specificity when applied to various types of NLO microscopy images.

  2. Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping

    NASA Astrophysics Data System (ADS)

    Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung

    2017-08-01

    Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.

  3. Quantitative light and scanning electron microscopy of ferret sperm.

    PubMed

    Van der Horst, G; Curry, P T; Kitchin, R M; Burgess, W; Thorne, E T; Kwiatkowski, D; Parker, M; Atherton, R W

    1991-11-01

    Sperm were obtained via electroejaculation from Domestic ferret, (Mustela putorius furo), Siberian ferret (M. eversmanni), Black-footed ferret (M. nigripes), and a hybrid between Siberian and Domestic, called the Fitch ferret (M. sp.). Comparisons of sperm were made by four different microscopy techniques to determine whether differences exist among species. First, Nomarski differential interference microscopy could be used to distinguish domestic ferret sperm from the others on the basis of the structure of the posterior part of the acrosome. Second, both silver staining, which demonstrates argentophilic protein distribution, and scanning electron microscopy (SEM), revealed differences among the morphology of sperm for each species; variation in the unique appearance of the acrosome in ferret sperm was detected especially well by SEM. To quantify differences in morphology, five sperm head parameters were measured using image analysis; light microscopy produced significantly larger values than did SEM (all parameters and all species but Fitch), and there were significant differences owing to species for all parameters but one. Generally, our data demonstrate the value of complementary techniques to distinguish among sperm of closely related species and more specifically may help establish evolutionary relationships among the ferret species studied. In addition, they provide baseline data important for the captive breeding of the endangered Black-footed ferret.

  4. Lensless microscopy technique for static and dynamic colloidal systems.

    PubMed

    Alvarez-Palacio, D C; Garcia-Sucerquia, J

    2010-09-15

    We present the application of a lensless microscopy technique known as digital in-line holographic microscopy (DIHM) to image dynamic and static colloidal systems of microspheres. DIHM has been perfected up to the point that submicrometer lateral resolution with several hundreds of micrometers depth of field is achieved with visible light; it is shown that the lateral resolution of DIHM is enough to resolve self-assembled colloidal monolayers built up from polystyrene spheres with submicrometer diameters. The time resolution of DIHM is of the order of 4 frames/s at 2048 x 2048 pixels, which represents an overall improvement of 16 times the time resolution of confocal scanning microscopy. This feature is applied to the visualization of the migration of dewetting fronts in dynamic colloidal systems and the formation of front-like arrangements of particles. Copyright 2010 Elsevier Inc. All rights reserved.

  5. DMD-based quantitative phase microscopy and optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie

    2018-02-01

    Digital micromirror devices (DMDs), which offer high speed and high degree of freedoms in steering light illuminations, have been increasingly applied to optical microscopy systems in recent years. Lately, we introduced DMDs into digital holography to enable new imaging modalities and break existing imaging limitations. In this paper, we will first present our progress in using DMDs for demonstrating laser-illumination Fourier ptychographic microscopy (FPM) with shotnoise limited detection. After that, we will present a novel common-path quantitative phase microscopy (QPM) system based on using a DMD. Building on those early developments, a DMD-based high speed optical diffraction tomography (ODT) system has been recently demonstrated, and the results will also be presented. This ODT system is able to achieve video-rate 3D refractive-index imaging, which can potentially enable observations of high-speed 3D sample structural changes.

  6. Light Microscopy Module (LMM)-Emulator

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Smith, Trent M.; Richards, Stephanie E.

    2016-01-01

    The Light Microscopy Module (LMM) is a microscope facility developed at Glenn Research Center (GRC) that provides researchers with powerful imaging capability onboard the International Space Station (ISS). LMM has the ability to have its hardware recongured on-orbit to accommodate a wide variety of investigations, with the capability of remotely acquiring and downloading digital images across multiple levels of magnication.

  7. Diffraction and microscopy with attosecond electron pulse trains

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a < 10-as delay of Bragg emission and demonstrates the possibility of analytic attosecond-ångström diffraction. Real-space electron microscopy visualizes with sub-light-cycle resolution how an optical wave propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.

  8. Nanoscale Membrane Curvature detected by Polarized Localization Microscopy

    NASA Astrophysics Data System (ADS)

    Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin

    Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.

  9. Experiments in electron microscopy: from metals to nerves

    NASA Astrophysics Data System (ADS)

    Unwin, Nigel

    2015-04-01

    Electron microscopy has advanced remarkably as a tool for biological structure research since the development of methods to examine radiation-sensitive unstained specimens and the introduction of cryo-techniques. Structures of biological molecules at near-atomic resolution can now be obtained from images of single particles as well as crystalline arrays. It has also become possible to analyze structures of molecules in their functional context, i.e. in their natural membrane or cellular setting, and in an ionic environment like that in living tissue. Electron microscopy is thus opening ways to answer definitively questions about physiological mechanisms. Here I recall a number of experiments contributing to, and benefiting from the technical advances that have taken place. I begin—in the spirit of this crystallography series—with some biographical background, and then sketch the path to an analysis by time-resolved microscopy of the opening mechanism of an ion channel (nicotinic acetylcholine receptor). This analysis illustrates how electron imaging can be combined with freeze-trapping to illuminate a transient biological event: in our case, chemical-to-electrical transduction at the nerve-muscle synapse.

  10. Simulated microsurgery monitoring using intraoperative multimodal surgical microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Lee, Changho; Kim, Sehui; Zhou, Qifa; Kim, Jeehyun; Kim, Chulhong

    2016-03-01

    We have developed an intraoperative multimodal surgical microscopy system that provides simultaneous real-time enlarged surface views and subsurface anatomic information during surgeries by integrating spectral domain optical coherence tomography (SD-OCT), optical-resolution photoacoustic microscopy (OR-PAM), and conventional surgical microscopy. By sharing the same optical path, both OCT and PAM images were simultaneously acquired. Additionally, the custom-made needle-type transducer received the generated PA signals enabling convenient surgical operation without using a water bath. Using a simple augmented device, the OCT and PAM images were projected on the view plane of the surgical microscope. To quantify the performance of our system, we measured spatial resolutions of our system. Then, three microsurgery simulation and analysis were processed: (1) ex vivo needle tracking and monitoring injection of carbon particles in biological tissues, (2) in vivo needle tracking and monitoring injection of carbon particles in tumor-bearing mice, and (3) in vivo guiding of melanoma removal in melanoma-bearing mice. The results indicate that this triple modal system is useful for intraoperative purposes, and can potentially be a vital tool in microsurgeries.

  11. Quantum enhanced superresolution microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oron, Dan; Tenne, Ron; Israel, Yonatan; Silberberg, Yaron

    2017-02-01

    Far-field optical microscopy beyond the Abbe diffraction limit, making use of nonlinear excitation (e.g. STED), or temporal fluctuations in fluorescence (PALM, STORM, SOFI) is already a reality. In contrast, overcoming the diffraction limit using non-classical properties of light is very difficult to achieve due to the fragility of quantum states of light. Here, we experimentally demonstrate superresolution microscopy based on quantum properties of light naturally emitted by fluorophores used as markers in fluorescence microscopy. Our approach is based on photon antibunching, the tendency of fluorophores to emit photons one by one rather than in bursts. Although a distinctively quantum phenomenon, antibunching is readily observed in most common fluorophores even at room temperature. This nonclassical resource can be utilized directly to enhance the imaging resolution, since the non-classical far-field intensity correlations induced by antibunching carry high spatial frequency information on the spatial distribution of emitters. Detecting photon statistics simultaneously in the entire field of view, we were able to detect non-classical correlations of the second and third order, and reconstructed images with resolution significantly beyond the diffraction limit. Alternatively, we demonstrate the utilization of antibunching for augmenting the capabilities of localization-based superresolution imaging in the presence of multiple emitters, using a novel detector comprised of an array of single photon detectors connected to a densely packed fiber bundle. These features allow us to enhance the spatial and temporal resolution with which multiple emitters can be imaged compared with other techniques that rely on CCD cameras.

  12. Image Restoration in Cryo-electron Microscopy

    PubMed Central

    Penczek, Pawel A.

    2011-01-01

    Image restoration techniques are used to obtain, given experimental measurements, the best possible approximation of the original object within the limits imposed by instrumental conditions and noise level in the data. In molecular electron microscopy, we are mainly interested in linear methods that preserve the respective relationships between mass densities within the restored map. Here, we describe the methodology of image restoration in structural electron microscopy, and more specifically, we will focus on the problem of the optimum recovery of Fourier amplitudes given electron microscope data collected under various defocus settings. We discuss in detail two classes of commonly used linear methods, the first of which consists of methods based on pseudoinverse restoration, and which is further subdivided into mean-square error, chi-square error, and constrained based restorations, where the methods in the latter two subclasses explicitly incorporates non-white distribution of noise in the data. The second class of methods is based on the Wiener filtration approach. We show that the Wiener filter-based methodology can be used to obtain a solution to the problem of amplitude correction (or “sharpening”) of the electron microscopy map that makes it visually comparable to maps determined by X-ray crystallography, and thus amenable to comparable interpretation. Finally, we present a semi-heuristic Wiener filter-based solution to the problem of image restoration given sets of heterogeneous solutions. We conclude the chapter with a discussion of image restoration protocols implemented in commonly used single particle software packages. PMID:20888957

  13. In vitro excystation of Echinostoma paraensei (Digenea: Echinostomatidae) metacercariae assessed by light microscopy, morphometry and confocal laser scanning microscopy.

    PubMed

    Souza, Joyce; Garcia, Juberlan; Neves, Renata H; Machado-Silva, José Roberto; Maldonado, Arnaldo

    2013-12-01

    Trypsin and bile salts have been identified as important triggers for excystation of Echinostoma metacercariae. Although excystation in trematodes is a well-known phenomenon, some morphological developmental changes remain to be elucidated. In order to gain further insight into the in vitro development of metacercariae, we assayed different cultivating conditions: 0.5% trypsin and 0.5% bile salts; 1% trypsin and 1% bile salts; 1% trypsin and 0.5% bile salts; 0.5% bile salts; or 0.5% trypsin. By means of light microscopy and confocal microscopy, we characterized each encysted, activated, breached and excysted stage based on the morphological features. However, breached and excysted stages were not revealed in both bile salts and trypsin-free medium. Excretory concretions (25 ± 3.9) were visualized within excretory tubules, close to the ventral sucker and genital anlage. The oral sucker armed with spines and digestive system was similar to those of adult worms. The reproductive system is composed of a genital anlage and the cirrus sac primordium. In short, trypsin and bile salts associated were fundamental for the in vitro metacercariae excystation of Echinostoma paraensei. This article presents the first detailed information of all stages of metacercariae excystation obtained through light and confocal microscopy. Copyright © 2013. Published by Elsevier Inc.

  14. Re-scan confocal microscopy: scanning twice for better resolution

    PubMed Central

    De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422

  15. Re-scan confocal microscopy: scanning twice for better resolution.

    PubMed

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  16. Biological imaging with coherent Raman scattering microscopy: a tutorial

    PubMed Central

    Alfonso-García, Alba; Mittal, Richa; Lee, Eun Seong; Potma, Eric O.

    2014-01-01

    Abstract. Coherent Raman scattering (CRS) microscopy is gaining acceptance as a valuable addition to the imaging toolset of biological researchers. Optimal use of this label-free imaging technique benefits from a basic understanding of the physical principles and technical merits of the CRS microscope. This tutorial offers qualitative explanations of the principles behind CRS microscopy and provides information about the applicability of this nonlinear optical imaging approach for biological research. PMID:24615671

  17. Near-infrared branding efficiently correlates light and electron microscopy.

    PubMed

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  18. Image scanning fluorescence emission difference microscopy based on a detector array.

    PubMed

    Li, Y; Liu, S; Liu, D; Sun, S; Kuang, C; Ding, Z; Liu, X

    2017-06-01

    We propose a novel imaging method that enables the enhancement of three-dimensional resolution of confocal microscopy significantly and achieve experimentally a new fluorescence emission difference method for the first time, based on the parallel detection with a detector array. Following the principles of photon reassignment in image scanning microscopy, images captured by the detector array were arranged. And by selecting appropriate reassign patterns, the imaging result with enhanced resolution can be achieved with the method of fluorescence emission difference. Two specific methods are proposed in this paper, showing that the difference between an image scanning microscopy image and a confocal image will achieve an improvement of transverse resolution by approximately 43% compared with that in confocal microscopy, and the axial resolution can also be enhanced by at least 22% experimentally and 35% theoretically. Moreover, the methods presented in this paper can improve the lateral resolution by around 10% than fluorescence emission difference and 15% than Airyscan. The mechanism of our methods is verified by numerical simulations and experimental results, and it has significant potential in biomedical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  19. Sample holder for axial rotation of specimens in 3D microscopy.

    PubMed

    Bruns, T; Schickinger, S; Schneckenburger, H

    2015-10-01

    In common light microscopy, observation of samples is only possible from one perspective. However, especially for larger three-dimensional specimens observation from different views is desirable. Therefore, we are presenting a sample holder permitting rotation of the specimen around an axis perpendicular to the light path of the microscope. Thus, images can be put into a defined multidimensional context, enabling reliable three-dimensional reconstructions. The device can be easily adapted to a great variety of common light microscopes and is suitable for various applications in science, education and industry, where the observation of three-dimensional specimens is essential. Fluorescence z-projection images of copepods and ixodidae ticks at different rotation angles obtained by confocal laser scanning microscopy and light sheet fluorescence microscopy are reported as representative results. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  20. Analysis-Preserving Video Microscopy Compression via Correlation and Mathematical Morphology

    PubMed Central

    Shao, Chong; Zhong, Alfred; Cribb, Jeremy; Osborne, Lukas D.; O’Brien, E. Timothy; Superfine, Richard; Mayer-Patel, Ketan; Taylor, Russell M.

    2015-01-01

    The large amount video data produced by multi-channel, high-resolution microscopy system drives the need for a new high-performance domain-specific video compression technique. We describe a novel compression method for video microscopy data. The method is based on Pearson's correlation and mathematical morphology. The method makes use of the point-spread function (PSF) in the microscopy video acquisition phase. We compare our method to other lossless compression methods and to lossy JPEG, JPEG2000 and H.264 compression for various kinds of video microscopy data including fluorescence video and brightfield video. We find that for certain data sets, the new method compresses much better than lossless compression with no impact on analysis results. It achieved a best compressed size of 0.77% of the original size, 25× smaller than the best lossless technique (which yields 20% for the same video). The compressed size scales with the video's scientific data content. Further testing showed that existing lossy algorithms greatly impacted data analysis at similar compression sizes. PMID:26435032