Science.gov

Sample records for microscopy electron scanning

  1. Feature Adaptive Sampling for Scanning Electron Microscopy.

    PubMed

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning. PMID:27150131

  2. Feature Adaptive Sampling for Scanning Electron Microscopy

    PubMed Central

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-01-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning. PMID:27150131

  3. Feature Adaptive Sampling for Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Dahmen, Tim; Engstler, Michael; Pauly, Christoph; Trampert, Patrick; de Jonge, Niels; Mücklich, Frank; Slusallek, Philipp

    2016-05-01

    A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and a-posteriori image processing techniques were applied to remove the resulting noise. The technique was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate a first, noisy image using a low electron dose. This image was analyzed automatically, and a software algorithm generated a sparse pattern of regions of the image that require additional sampling. A second scan generated a sparse image of only these regions, but using a highly increased electron dose. By applying a selective low-pass filter and combining both datasets, a single image was generated. The resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on a Cartesian grid and the same total acquisition time. This result implies that the required electron dose (or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning.

  4. [Pili annulati. A scanning electron microscopy study].

    PubMed

    Lalević-Vasić, B; Polić, D

    1988-01-01

    A case of ringed hair studied by light and electron microscopy is reported. The patient, a 20-year old girl, had been presenting with the hair abnormality since birth. At naked eye examination the hairs were dry, 6 to 7 cm long, and they showed dull and shining areas giving the scalp hair a scintillating appearance (fig. 1). Several samples of hair were taken and examined by light microscopy under white and polarized light. Hair shafts and cryo-fractured surfaces were examined by scanning electron microscopy. RESULTS. 1. Light microscopy. Lesions were found in every hair examined. There were abnormal, opaque and fusiform areas alternating with normal areas all along the hair shaft (fig. 2). The abnormal areas resulted from intracortical air-filled cavities. Fractures similar to those of trichorrhexis nodosa were found in the opaque areas of the distal parts of the hairs. 2. Scanning electron microscopy. A. Hair shaft surface. The abnormal areas showed a longitudinal, "curtain-like" folding of the cuticular cells which had punctiform depressions on their surface and worn free edges (fig. 4, 5, 6); trichorrhexis-type fractures were seen in the distal parts of the hair shafts (fig. 7, 8). Normal areas regularly presented with longitudinal, superficial, short and non-systematized depressions (fig. 9); the cuticular cells were worn, and there were places where the denuded cortex showed dissociated cortical fibres (fig. 10).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3415147

  5. Scanning electron microscopy of superficial white onychomycosis.

    PubMed

    Almeida, Hiram Larangeira de; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques E; Castro, Luis Antonio Suita de

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  6. Scanning electron microscopy of superficial white onychomycosis*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  7. Immunogold Labeling for Scanning Electron Microscopy.

    PubMed

    Goldberg, Martin W; Fišerová, Jindřiška

    2016-01-01

    Scanning electron microscopes are useful biological tools that can be used to image the surface of whole organisms, tissues, cells, cellular components, and macromolecules. Processes and structures that exist at surfaces can be imaged in pseudo, or real 3D at magnifications ranging from about 10× to 1,000,000×. Therefore a whole multicellular organism, such as a fly, or a single protein embedded in one of its cell membranes can be visualized. In order to identify that protein at high resolution, or to see and quantify its distribution at lower magnifications, samples can be labeled with antibodies. Any surface that can be exposed can potentially be studied in this way. Presented here is a generic method for immunogold labeling for scanning electron microscopy, using two examples of specimens: isolated nuclear envelopes and the cytoskeleton of mammalian culture cells. Various parameters for sample preparation, fixation, immunogold labeling, drying, metal coating, and imaging are discussed so that the best immunogold scanning electron microscopy results can be obtained from different types of specimens. PMID:27515090

  8. Scanning electron microscopy studies of bacterial cultures

    NASA Astrophysics Data System (ADS)

    Swinger, Tracy; Blust, Brittni; Calabrese, Joseph; Tzolov, Marian

    2012-02-01

    Scanning electron microscopy is a powerful tool to study the morphology of bacteria. We have used conventional scanning electron microscope to follow the modification of the bacterial morphology over the course of the bacterial growth cycle. The bacteria were fixed in vapors of Glutaraldehyde and ruthenium oxide applied in sequence. A gold film of about 5 nm was deposited on top of the samples to avoid charging and to enhance the contrast. We have selected two types of bacteria Alcaligenes faecalis and Kocuria rhizophila. Their development was carefully monitored and samples were taken for imaging in equal time intervals during their cultivation. These studies are supporting our efforts to develop an optical method for identification of the Gram-type of bacterial cultures.

  9. Hexamethyldisilazane for scanning electron microscopy of Gastrotricha.

    PubMed

    Hochberg, R; Litvaitis, M K

    2000-01-01

    We evaluated treatment with hexamethyldisilazane (HMDS) as an alternative to critical-point drying (CPD) for preparing microscopic Gastrotricha for scanning electron microscopy (SEM). We prepared large marine (2 mm) and small freshwater (100 microm) gastrotrichs using HMDS as the primary dehydration solvent and compared the results to earlier investigations using CPD. The results of HMDS dehydration are similar to or better than CPD for resolution of two important taxonomic features: cuticular ornamentation and patterns of ciliation. The body wall of both sculpted (Lepidodermella) and smooth (Dolichodasys) gastrotrichs retained excellent morphology as did the delicate sensory and locomotory cilia. The only unfavorable result of HMDS dehydration was an occasional coagulation of gold residue when the solvent had not fully evaporated before sputter-coating. We consider HMDS an effective alternative for preparing of gastrotrichs for SEM because it saves time and expense compared to CPD. PMID:10810982

  10. Scanning electron microscopy of tinea nigra*

    PubMed Central

    Guarenti, Isabelle Maffei; de Almeida, Hiram Larangeira; Leitão, Aline Hatzenberger; Rocha, Nara Moreira; Silva, Ricardo Marques e

    2014-01-01

    Tinea nigra is a rare superficial mycosis caused by Hortaea werneckii. This infection presents as asymptomatic brown to black maculae mostly in palmo-plantar regions. We performed scanning electron microscopy of a superficial shaving of a tinea nigra lesion. The examination of the outer surface of the sample showed the epidermis with corneocytes and hyphae and elimination of fungal filaments. The inner surface of the sample showed important aggregation of hyphae among keratinocytes, which formed small fungal colonies. The ultrastructural findings correlated with those of dermoscopic examination - the small fungal aggregations may be the dark spicules seen on dermoscopy - and also allowed to document the mode of dissemination of tinea nigra, showing how hyphae are eliminated on the surface of the lesion. PMID:24770516

  11. Electric fields in Scanning Electron Microscopy simulations

    NASA Astrophysics Data System (ADS)

    Arat, K. T.; Bolten, J.; Klimpel, T.; Unal, N.

    2016-03-01

    The electric field distribution and charging effects in Scanning Electron Microscopy (SEM) were studied by extending a Monte-Carlo based SEM simulator by a fast and accurate multigrid (MG) based 3D electric field solver. The main focus is on enabling short simulation times with maintaining sufficient accuracy, so that SEM simulation can be used in practical applications. The implementation demonstrates a gain in computation speed, when compared to a Gauss-Seidel based reference solver is roughly factor of 40, with negligible differences in the result (~10-6 𝑉). In addition, the simulations were compared with experimental SEM measurements using also complex 3D sample, showing that i) the modelling of e-fields improves the simulation accuracy, and ii) multigrid method provide a significant benefit in terms of simulation time.

  12. Optical microscopy versus scanning electron microscopy in urolithiasis.

    PubMed

    Marickar, Y M Fazil; Lekshmi, P R; Varma, Luxmi; Koshy, Peter

    2009-10-01

    Stone analysis is incompletely done in many clinical centers. Identification of the stone component is essential for deciding future prophylaxis. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM) still remains a distant dream for routine hospital work. It is in this context that optical microscopy is suggested as an alternate procedure. The objective of this article was to assess the utility of an optical microscope which gives magnification of up to 40x and gives clear picture of the surface of the stones. In order to authenticate the morphological analysis of urinary stones, SEM and elemental distribution analysis were performed. A total of 250 urinary stones of different compositions were collected from stone clinic, photographed, observed under an optical microscope, and optical photographs were taken at different angles. Twenty-five representative samples among these were gold sputtered to make them conductive and were fed into the SEM machine. Photographs of the samples were taken at different angles at magnifications up to 4,000. Elemental distribution analysis (EDAX) was done to confirm the composition. The observations of the two studies were compared. The different appearances of the stones under optical illuminated microscopy were mostly standardized appearances, namely bosselations of pure whewellite, spiculations of weddellite, bright yellow colored appearance of uric acid, and dirty white amorphous appearance of phosphates. SEM and EDAX gave clearer pictures and gave added confirmation of the stone composition. From the references thus obtained, it was possible to confirm the composition by studying the optical microscopic pictures. Higher magnification capacity of the SEM and the EDAX patterns are useful to give reference support for performing optical microscopy work. After standardization, routine analysis can be performed with optical microscopy. The advantage of the optical microscope is that, it

  13. Image Resolution in Scanning Transmission Electron Microscopy

    SciTech Connect

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  14. System and method for compressive scanning electron microscopy

    DOEpatents

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  15. Scanning electron microscopy analysis of corrosion degradation on tinplate substrates.

    PubMed

    Zumelzu, E; Cabezas, C; Vera, A

    2003-01-01

    The degradation of electrolytic tinplate used in food containers was analysed and evaluated, using scanning electron microscopy and electrochemical measurements of microcorrosion and ion dissolution by atomic absorption to prevent food contamination caused by metal traces and to increase the durability of such tinplates. PMID:12627896

  16. 'GIARDIA MURIS': SCANNING ELECTRON MICROSCOPY OF IN VITRO EXCYSTATION

    EPA Science Inventory

    A recently developed in vitro excystation procedure results in almost total excystation of Giardia muris, an intestinal parasite of mice. The present experiment examines the G. muris cyst morphology by scanning electron microscopy and evaluates the efficacy of the excystation pro...

  17. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  18. Surface morphology of Trichinella spiralis by scanning electron microscopy

    SciTech Connect

    Kim, C.W.; Ledbetter, M.C.

    1980-02-01

    The surface morphology of larval and adult Trichinella spiralis was studied by scanning electron microscopy (SEM) of fixed, dried, and metal-coated specimens. The results are compared with those found earlier by various investigators using light and transmission electron microscopy. Some morphological features reported here are revealed uniquely by SEM. These include the pores of the cephalic sense organs, the character of secondary cuticular folds, variations of the hypodermal gland cell openings or pores, and the presence of particles on the copulatory bell.

  19. Structural examination of lithium niobate ferroelectric crystals by combining scanning electron microscopy and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Efremova, P. V.; Ped'ko, B. B.; Kuznecova, Yu. V.

    2016-02-01

    The structure of lithium niobate single crystals is studied by a complex technique that combines scanning electron microscopy and atomic force microscopy. By implementing the piezoresponse force method on an atomic force microscope, the domain structure of lithium niobate crystals, which was not revealed without electron beam irradiation, is visualized

  20. Environmental scanning electron microscopy gold immunolabeling in cell biology.

    PubMed

    Rosso, Francesco; Papale, Ferdinando; Barbarisi, Alfonso

    2013-01-01

    Immunogold labeling (IGL) technique has been utilized by many authors in combination with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain the identification/localization of receptors and antigens, both in cells and tissues. Environmental scanning electron microscopy (ESEM) represents an important tool in biomedical research, since it does not require any severe processing of the sample, lowering the risk of generating artifacts and interfere with the IGL procedure. The absence of metal coating could yield further advantages for our purpose as the labeling detection is based on the atomic number difference between nanogold spheres and the biological material. Using the gaseous secondary electron detector, compositional contrast is easily revealed by the backscattered electron component of the signal. In spite of this fact, only few published papers present a combination of ESEM and IGL. Hereby we present our method, optimized to improve the intensity and the specificity of the labeling signal, in order to obtain a semiquantitative evaluation of the labeling signal.In particular, we used a combination of IGL and ESEM to detect the presence of a protein on the cell surface. To achieve this purpose, we chose as an experimental system 3T3 Swiss albino mouse fibroblasts and galectin-3. PMID:23027021

  1. Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy

    PubMed Central

    Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.

    2013-01-01

    Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024

  2. Imaging Nanobubbles in Water with Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    White, Edward R.; Mecklenburg, Matthew; Singer, Scott B.; Aloni, Shaul; Regan, Brian Christopher

    2011-05-01

    We present a technique based on scanning transmission electron microscopy (STEM) that is capable of probing nanobubble dynamics with nanometer spatial resolution. A vacuum-tight vessel holds a sub-micrometer layer of water between two electron-transparent dielectric membranes. Electrical current pulses passing through a platinum wire on one of the membranes inject sufficient heat locally to initiate single bubble formation. In the absence of power input, all bubbles are observed to be unstable against collapse, but the STEM beam alone can cause a shrinking bubble to grow.

  3. Scanning electron microscopy: preparation and imaging for SEM.

    PubMed

    Jones, Chris G

    2012-01-01

    Scanning electron microscopy (SEM) has been almost universally applied for the surface examination and characterization of both natural and man-made objects. Although an invasive technique, developments in electron microscopy over the years has given the microscopist a much clearer choice in how invasive the technique will be. With the advent of low vacuum SEM in the 1970s (The environmental cold stage, 1970) and environmental SEM in the late 1980s (J Microsc 160(pt. 1):9-19, 1989), it is now possible in some circumstances to examine samples without preparation. However, for the examination of biological tissue and cells it is still advisable to chemically fix, dehydrate, and coat samples for SEM imaging and analysis. This chapter aims to provide an overview of SEM as an imaging tool, and a general introduction to some of the methods applied for the preparation of samples. PMID:22907399

  4. Effects of instrument imperfections on quantitative scanning transmission electron microscopy.

    PubMed

    Krause, Florian F; Schowalter, Marco; Grieb, Tim; Müller-Caspary, Knut; Mehrtens, Thorsten; Rosenauer, Andreas

    2016-02-01

    Several instrumental imperfections of transmission electron microscopes are characterized and their effects on the results of quantitative scanning electron microscopy (STEM) are investigated and quantified using simulations. Methods to either avoid influences of these imperfections during acquisition or to include them in reference calculations are proposed. Particularly, distortions inflicted on the diffraction pattern by an image-aberration corrector can cause severe errors of more than 20% if not accounted for. A procedure for their measurement is proposed here. Furthermore, afterglow phenomena and nonlinear behavior of the detector itself can lead to incorrect normalization of measured intensities. Single electrons accidentally impinging on the detector are another source of error but can also be exploited for threshold-less calibration of STEM images to absolute dose, incident beam current determination and measurement of the detector sensitivity. PMID:26686661

  5. Scanning electron microscopy of Purkinje fibres of the pig heart.

    PubMed

    Bytzer, P

    1979-01-01

    Scanning electron microscopy (SEM) of Purkinje fibres (P-fibres) from the septal walls and the septomarginal trabecula was performed on deparaffinized sections, the identification in SEM made possible by comparative light microscopy. The myofibrils in P-fibres from the septal walls were arranged in a cart-wheel fashion, whereas P-fibres from the septomarginal trabecula showed a nearly parallel alignment of the contractile material. Z-line ridges resembling the T-tubules of the myocardial fibres were observed in both kinds of P-fibres. The myofibrillar arrangements are discussed in relation to the expected mechanical stress put upon P-fibres in the 2 locations during systolic-diastolic activity. An adaptive function of the contractile material to the mechanical stress is suggested and the possible need of a T-tubular system is discussed. PMID:507370

  6. Sample heating system for spin-polarized scanning electron microscopy.

    PubMed

    Kohashi, Teruo; Motai, Kumi

    2013-08-01

    A sample-heating system for spin-polarized scanning electron microscopy (spin SEM) has been developed and used for microscopic magnetization analysis at temperatures up to 500°C. In this system, a compact ceramic heater and a preheating operation keep the ultra-high vacuum conditions while the sample is heated during spin SEM measurement. Moreover, the secondary-electron collector, which is arranged close to the sample, was modified so that it is not damaged at high temperatures. The system was used to heat a Co(1000) single-crystal sample from room temperature up to 500°C, and the magnetic-domain structures were observed. Changes of the domain structures were observed around 220 and 400°C, and these changes are considered to be due to phase transitions of this sample. PMID:23349241

  7. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect

    Dahmen, Tim; Baudoin, Jean-Pierre G; Lupini, Andrew R; Kubel, Christian; Slusallek, Phillip; De Jonge, Niels

    2014-01-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  8. Measuring electron-phonon coupling with Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Madhavan, Vidya

    Electron-boson interactions are ubiquitous in systems ranging from simple metals to novel materials such as graphene, high-temperature superconductors and topological insulators. Of particular interest is the coupling between electrons and phonons. In general, electron-phonon coupling gives rise to quasiparticles of decreased mobility and increased effective mass. Nearly all information about electron-phonon coupling is contained in the Eliashberg function (α2 F (ω k , E)) of the material. In this talk I discuss the various methods by which the effects of electron-phonon coupling can be measured by scanning tunneling microscopy. I will present STM data on a variety of systems ranging from metals to topological insulators and discuss the signatures of electron-phonon interactions in different types of STM data. In particular I discuss how high resolution measurements allow us to measure the dispersion and obtain the real part of the self-energy, which can in principle be inverted to obtain the Eliashberg function.

  9. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    SciTech Connect

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  10. Morphological classification of bioaerosols from composting using scanning electron microscopy

    SciTech Connect

    Tamer Vestlund, A.; Al-Ashaab, R.; Tyrrel, S.F.; Longhurst, P.J.; Pollard, S.J.T.; Drew, G.H.

    2014-07-15

    Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.

  11. Scanning electron microscopy of a liver cavernous hemangioma.

    PubMed

    Yamamoto, K; Itoshima, T; Ito, T; Ukida, M; Ogawa, H; Kitadai, M; Hattori, S; Mizutani, S; Nagashima, H

    1983-02-01

    A 39-year-old female with a large cavernous hemangioma of the liver was successfully treated by ligation of the left hepatic artery. A wedge biopsy specimen of the hemangioma was obtained after the ligation and was examined by scanning electron microscopy. The hemangioma was demarcated from the surrounding normal liver parenchyma and had a labyrinth of caves 50-150 microns in diameter. The caves were separated by fibrous septa 20-40 microns in width. Endothelial cells of the caves were spindle-shaped and arranged in parallel. The surface property of the caves resembled that of the hepatic artery and differed from that of the portal vein or hepatic vein. These findings support that the cavernous hemangioma of the liver was supplied by the hepatic artery. The labyrinthine structure of the cavernous hemangioma may explain the long standing contrast enhancement of the hemangioma after hepatic arteriography. PMID:6832546

  12. High Resolution Scanning Electron Microscopy of Cells Using Dielectrophoresis

    PubMed Central

    Tang, Shi-Yang; Zhang, Wei; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2014-01-01

    Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment. PMID:25089528

  13. Scanning electron microscopy of Strongylus spp. in zebra.

    PubMed

    Els, H J; Malan, F S; Scialdo-Krecek, R C

    1983-12-01

    The external ultrastructure of the anterior and posterior extremities of the nematodes, Strongylus asini , Strongylus vulgaris, Strongylus equinus and Strongylus edentatus, was studied with scanning electron microscopy (SEM). Fresh specimens of S. asini were collected from the caecum, ventral colon and vena portae of Equus burchelli and Equus zebra hartmannae ; S. vulgaris from the caecum, colon and arteria ileocolica of E. burchelli ; S. equinus from the ventral colon of E. z. hartmannae and S. edentatus from the caecum and ventral colon of both zebras , during surveys of parasites in zebras in the Etosha Game Reserve, South West Africa/Namibia, and the Kruger National Park, Republic of South Africa. The worms were cleaned, fixed and mounted by standard methods and photographed in a JEOL JSM - 35C scanning electron microscope (SEM) operating at 12kV . The SEM showed the following differences: the tips of the external leaf-crowns varied and were fine and delicate in S. asini , coarse and broad in S. vulgaris and, in S. equinus and S. edentatus, closely adherent, separating into single elements for half their length. The excretory pores showed only slight variation, and the morphology of the copulatory bursae did not differ from those seen with light microscopy. The genital cones differed markedly: S. asini had a ventral triangular projection and laterally 2 finger-like projections: in S. vulgaris there were numerous bosses on the lateral and ventral aspects of the cone; in S. equinus 2 finger-like processes projected laterocaudally ; and in S. edentatus 2 pairs of papilla-like processes projected laterally on the ventral aspects, and a pair of rounded projections and a pair of hair-like structures adorned the dorsal aspects.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6676687

  14. Three-Dimensional Scanning Transmission Electron Microscopy of Biological Specimens

    PubMed Central

    de Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2–3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. PMID:20082729

  15. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum’s magnetosome chains

    SciTech Connect

    Keutner, Christoph; von Bohlen, Alex; Berges, Ulf; Espeter, Philipp; Schneider, Claus M.; Westphal, Carsten

    2014-10-07

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.

  16. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  17. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM. PMID:26206941

  18. Histological preparation of developing vestibular otoconia for scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Huss, D.; Dickman, J. D.

    2003-01-01

    The unique nature of vestibular otoconia as calcium carbonate biominerals makes them particularly susceptible to chemical deformation during histological processing. We fixed and stored otoconia from all three otolith endorgans of embryonic, hatchling and adult Japanese quail in glutaraldehyde containing either phosphate or non-phosphate buffers for varying lengths of time and processed them for scanning electron microscopy. Otoconia from all age groups and otolith endorgans processed in 0.1 M phosphate buffer (pH 7.4) showed abnormal surface morphology when compared to acetone fixed controls. Otoconia processed in 0.1 M sodium cacodylate or HEPES buffered artificial endolymph (pH 7.4) showed normal morphology that was similar to controls. The degree of otoconial deformation was directly related to the time exposed to phosphate buffer. Short duration exposure produced particulate deformations while longer exposures resulted in fused otoconia that formed solid sheets. Otoconial surface deformation and fusing was independent of the glutaraldehyde component of the histological processing. These findings should help vestibular researchers to develop appropriate histological processing protocols in future studies of otoconia.

  19. Life Cycle of Neurospora crassa Viewed by Scanning Electron Microscopy

    PubMed Central

    Seale, Thomas

    1973-01-01

    Scanning electron microscopy was used to examine the major stages of the life cycle of two wild-type strains of Neurospora crassa Shear and Dodge (St. Lawrence 3.1a and 74A): mycelia, protoperithecium formation, perithecia, ascospores, ascospore germination and outgrowth, macro and microconidia, and germination and outgrowth of macroconidia. Structures seen at the limit of resolution of bright-field and phase-contrast microscopes, e.g., the ribbed surface of ascospores, are well resolved. New details of conidial development and surface structure are revealed. There appears to be only one distinguishable morphological difference between the two strains. The pattern of germination and outgrowth which seems relatively constant for strain 74A or strain 3.1a, appears to be different for each. Conidia from strain 3.1a almost always germinate from a site between interconidial attachment points; whereas the germ tubes of strain 74A usually emerge from or very near the interconidial attachment site. These germination patterns usually do not segregate 2:2 in asci dissected in order. This observation suggests that conidial germination pattern is not under the control of a single gene. Images PMID:4266170

  20. In-vivo Candida biofilms in scanning electron microscopy.

    PubMed

    Paulitsch, Astrid Helga; Willinger, Birgit; Zsalatz, Benedikt; Stabentheiner, Edith; Marth, Egon; Buzina, Walter

    2009-11-01

    Candida biofilms on indwelling devices are an increasing problem in patients treated at intensive care units. The goal of this study was to examine the occurrence and frequency of these biofilms. A total of 172 catheters were collected from 105 male and 67 female patients (the age range of both patient groups was from 3 weeks to 98 years old). The catheters were incubated on blood agar plates and the resulting yeast colonies were subsequently identified. Furthermore, pieces of catheters were fixed, dried and sputter coated with gold for investigation with scanning electron microscopy (SEM). Yeasts were recovered from significantly more catheters obtained from men than from women (chi(2): n = 67; P < 0.01). In SEM, 56.4% catheters turned out to be positive for biofilm formation. Again catheters from male patients were statistically significant (chi(2): n = 40; P < 0.01) more often positive than those from women. Candida albicans (71.1%) was the most common species isolated from the catheters, followed by C. glabrata (10.3%), C. parapsilosis (8.2%) and C. tropicalis (5.2%). Based on the results of this investigation, the epidemiology of Candida biofilms on indwelling devices seems to be a promising target for future investigations. PMID:19888801

  1. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    NASA Astrophysics Data System (ADS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Deyneka, I. G.; Meshkovskii, I. K.; Jäger, A.; Syková, E.; Kubinová, Š.; Dejneka, A.

    2015-02-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin-stained rat skin sections from plasma-treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  2. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    SciTech Connect

    Lunov, O. Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-02-02

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  3. Scanning electron microscopy of lung following alpha irradiation

    SciTech Connect

    Sanders, C.L.; Lauhala, K.E.; McDonald, K.E. )

    1989-09-01

    Pulmonary aggregation of inhaled {sup 239}PuO{sub 2} particles leads to a cellular evolution of focal inflammation, fibrosis, epithelial dysplasia and lung tumor formation. Female Wistar rats were exposed to an aerosol of high-fired {sup 239}PuO{sub 2} (initial lung burden, 3.9 kBq) and the lungs examined at intervals from 1 day to 700 days after exposure by light and scanning electron microscopy and autoradiography. Peribronchiolar Pu particle aggregation increased with time, resulting in well-defined focal inflammatory lesions after 120 days and fibrotic lesions after 180 days. A generalized hypertrophy and hyperplasia of nonciliated bronchiolar cells was seen at 15 days and type II cell hyperplasia by 30 days after exposure. Focal dysplastic changes in type II alveolar epithelium and terminal nonciliated bronchiolar epithelium preceded carcinoma formation. Alveolar bronchiolarization was first noted at 120 days, squamous metaplasia at 210 days, squamous carcinoma at 270 days and adenocarcinoma at 600 days after exposure.

  4. Surface treatment of feldspathic porcelain: scanning electron microscopy analysis

    PubMed Central

    Valian, Azam

    2014-01-01

    PURPOSE Topographic analysis of treated ceramics provides qualitative information regarding the surface texture affecting the micromechanical retention and locking of resin-ceramics. This study aims to compare the surface microstructure following different surface treatments of feldspathic porcelain. MATERIALS AND METHODS This in-vitro study was conducted on 72 porcelain discs randomly divided into 12 groups (n=6). In 9 groups, feldspathic surfaces were subjected to sandblasting at 2, 3 or 4 bar pressure for 5, 10 or 15 seconds with 50 µm alumina particles at a 5 mm distance. In group 10, 9.5% hydrofluoric acid (HF) gel was applied for 120 seconds. In group 11, specimens were sandblasted at 3 bar pressure for 10 seconds and then conditioned with HF. In group 12, specimens were first treated with HF and then sandblasted at 3 bar pressure for 10 seconds. All specimens were then evaluated under scanning electron microscopy (SEM) at different magnifications. RESULTS SEM images of HF treated specimens revealed deep porosities of variable sizes; whereas, the sandblasted surfaces were more homogenous and had sharper peaks. Increasing the pressure and duration of sandblasting increased the surface roughness. SEM images of the two combined techniques showed that in group 11 (sandblasted first), HF caused deeper porosities; whereas in group 12 (treated with HF first) sandblasting caused irregularities with less homogeneity. CONCLUSION All surface treatments increased the surface area and caused porous surfaces. In groups subjected to HF, the porosities were deeper than those in sandblasted only groups. PMID:25352961

  5. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    NASA Astrophysics Data System (ADS)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  6. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions.

    PubMed

    Ophus, Colin; Ciston, Jim; Nelson, Chris T

    2016-03-01

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method. PMID:26716724

  7. [High resolution scanning electron microscopy of isolated outer hair cells].

    PubMed

    Koitschev, A; Müller, H

    1996-11-01

    Isolated hair cell preparations have gained wide acceptance as a model for studying physiological and molecular properties of the sensory cells involved in the hearing process. Ultrastructural details, such as stereocilia links, lateral membrane substructure or synaptic links are of crucial importance for normal sensory transduction. For this reason, we developed a high-resolution scanning electron microscopy (SEM) procedure to study the surface of isolated hair cells. Cells were mechanically and/or enzymatically separated, isolated and immobilized on cover slips by alcian blue and fixed by 2% glutardialdehyde or 1% OsO4. After dehydration, preparations were critical point-dried and sputter-coated with gold-palladium (2-4 nm). Up to 5 nm resolution was achieved. Optimal fixation kept the cells in their typical cylindrical forms. Preservation of the stereocilia and the apical plates of the outer hair cells depended strongly on the fixation process. Tip- and side-links were observed only sporadically because of the aggressive preparation procedure. The lateral plasma membranes of the cell bodies showed regular granular structures of 5-7 nm diameter at maximal magnification. The granular structure of the cell membrane seemed to correspond to putative transmembrane proteins believed to generate membrane-based motility. The remnants of the nerve endings and/or supporting cells usually covered the cell base. The preservation of the cells was better when enzymatic isolation was omitted. The technique used allowed for high resolution ultrastructural examination of isolated hair cells and, when combined with immunological labeling, may permit the identification of proteins at a molecular level. PMID:9064297

  8. Low-pass secondary electron detector for outlens scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Takashi; Iwai, Hideo

    2015-08-01

    A low-pass secondary electron detector has been invented for outlens scanning electron microscopy. This detector is composed of a bias grid above and an electron detector below the specimen. The upward low-energy electrons emitted from the specimen are reflected downward by the bias grid and reach the secondary electron detector. The high-energy electrons penetrate the grid and are not detected. This detector has an advantage of quantitative analysis because the secondary electron trajectories are easily traced with simple parabolic motion. The energy-filtered images of the GaN/Si sample are obtained using this detector.

  9. Visualization of Microbial Biomarkers by Scanning Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wainwright, Norman R.; Allen, Carlton C.; Child, Alice

    2001-01-01

    . Fortunately, many antimicrobial defense systems of higher organisms require sensitive detection to combat microbial pathogens. We employ here the primitive immune system of the evolutionarily ancient horseshoe crab, Limulus polyphemus. This species relies on multi-enzyme signal amplification detection of cell wall molecules and they can be applied to the development of useful detectors of life. An extension of this work includes the visualization of microbial signatures by labeling LAL components with chromogenic or electron dense markers. The protein Limulus Anti-LPS Factor (LALF) has an extremely high affinity for LPS. By coupling LALF binding with colloidal gold labels we demonstrate a correlation of the structures visible by electron microscopy with biochemical evidence of microbial cell wall materials. Pure silica particles were mixed with cultures of E. coli (10(exp 6) cfu/mL). Samples were washed sequentially with buffered saline, LALF, antibody to LALF and finally colloidal gold-labeled Protein A. Negative controls were not exposed to E. coli but received identical treatment otherwise. Samples were coated with carbon and imaged on a JEOL JSM-840 scanning electron microscope with LaB6 source in the back scatter mode with the JEOL annular back scatter detector. 20 nm-scale black spots in this contrast-reversed image originate from electrons back-scattered by gold atoms. Negative controls did not give any signal. Future work will expand application of this technique to soil simulants and mineralized rock samples.

  10. Investigation of Nematode Diversity using Scanning Electron Microscopy and Fluorescent Microscopy

    NASA Astrophysics Data System (ADS)

    Seacor, Taylor; Howell, Carina

    2013-03-01

    Nematode worms account for the vast majority of the animals in the biosphere. They are colossally important to global public health as parasites, and to agriculture both as pests and as beneficial inhabitants of healthy soil. Amphid neurons are the anterior chemosensory neurons in nematodes, mediating critical behaviors including chemotaxis and mating. We are examining the cellular morphology and external anatomy of amphid neurons, using fluorescence microscopy and scanning electron microscopy, respectively, of a wide range of soil nematodes isolated in the wild. We use both classical systematics (e.g. diagnostic keys) and molecular markers (e.g. ribosomal RNA) to classify these wild isolates. Our ultimate aim is to build a detailed anatomical database in order to dissect genetic pathways of neuronal development and function across phylogeny and ecology. Research supported by NSF grants 092304, 0806660, 1058829 and Lock Haven University FPDC grants

  11. Time-resolved scanning electron microscopy with polarization analysis

    NASA Astrophysics Data System (ADS)

    Frömter, Robert; Kloodt, Fabian; Rößler, Stefan; Frauen, Axel; Staeck, Philipp; Cavicchia, Demetrio R.; Bocklage, Lars; Röbisch, Volker; Quandt, Eckhard; Oepen, Hans Peter

    2016-04-01

    We demonstrate the feasibility of investigating periodically driven magnetization dynamics in a scanning electron microscope with polarization analysis based on spin-polarized low-energy electron diffraction. With the present setup, analyzing the time structure of the scattering events, we obtain a temporal resolution of 700 ps, which is demonstrated by means of imaging the field-driven 100 MHz gyration of the vortex in a soft-magnetic FeCoSiB square. Owing to the efficient intrinsic timing scheme, high-quality movies, giving two components of the magnetization simultaneously, can be recorded on the time scale of hours.

  12. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography.

    PubMed

    Jesse, S; Chi, M; Belianinov, A; Beekman, C; Kalinin, S V; Borisevich, A Y; Lupini, A R

    2016-01-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called "big-data" methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy. PMID:27211523

  13. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    PubMed Central

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-01-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy. PMID:27211523

  14. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    NASA Astrophysics Data System (ADS)

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-05-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.

  15. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    DOE PAGESBeta

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-05-23

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. In this paper, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature andmore » does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. Finally, however, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.« less

  16. Advantages of environmental scanning electron microscopy in studies of microorganisms.

    PubMed

    Collins, S P; Pope, R K; Scheetz, R W; Ray, R I; Wagner, P A; Little, B J

    1993-08-01

    Microorganisms, including bacteria, fungi, protozoa, and microalgae, are composed predominantly of water which prohibits direct observation in a traditional scanning electron microscope (SEM). Preparation for SEM requires that microorganisms be fixed, frozen or dehydrated, and coated with a conductive film before observation in a high vacuum environment. Sample preparation may mechanically disturb delicate samples, compromise morphological information, and introduce other artifacts. The environmental scanning electron microscope (ESEM) provides a technology for imaging hydrated or dehydrated biological samples with minimal manipulation and without the need for conductive coatings. Sporulating cultures of three fungi, Aspergillus sp., Cunninghamella sp., and Mucor sp., were imaged in the ESEM to assess usefulness of the instrument in the direct observation of delicate, uncoated, biological specimens. Asexual sporophores showed no evidence of conidial displacement or disruption of sporangia. Uncoated algal cells of Euglena gracilis and Spirogyra sp. were examined using the backscatter electron detector (BSE) and the environmental secondary electron detector (ESD) of the ESEM. BSE images had more clearly defined intracellular structures, whereas ESD gave a clearer view of the surface E. gracilis cells fixed with potassium permanganate, Spirogyra sp. stained with Lugol's solution, and Saprolegnia sp. fixed with osmium tetroxide were compared using BSE and ESD to demonstrate that cellular details could be enhanced by the introduction of heavy metals. The effect of cellular water on signal quality was evaluated by comparing hydrated to critical point dried specimens. PMID:8400431

  17. The theory and practice of high resolution scanning electron microscopy

    SciTech Connect

    Joy, D.C. Oak Ridge National Lab., TN )

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  18. Electron tomography of HEK293T cells using scanning electron microscope-based scanning transmission electron microscopy.

    PubMed

    You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong

    2012-10-01

    Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged. PMID:23026379

  19. A scanning transmission electron microscopy study of two dental amalgams.

    PubMed

    Williams, K R

    1983-10-01

    Two fully aged amalgam alloys were examined using a scanning transmission electron microscope both in the transmission and scanning mode. The dispersed type amalgam containing a distribution of silver-copper spheres in addition to the Ag3Sn powder showed a markedly reduced gamma 1 grain size compared to a conventional Ag3Sn type amalgam. It is suggested that the increased compressive creep strength of the dispersed type material is a direct result of the reduced gamma 1 grain size and not due to a dispersion hardening effect from the cores of the remaining Ag-Cu spheres. Similarly, the formation of complex Cu-Sn intermediate phases at the Ag-Cu sphere surfaces are unlikely to lead to a dispersion strengthening effect. It is postulated that the reduced grain size in high copper amalgams is a consequence of the enhanced nucleating effect of a copper based phase on gamma 1. PMID:6640049

  20. Atomic scale characterization of materials using scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Aguiar, Jeffery Andrew

    Coupling the development of emerging experimental techniques in STEM and EELS with a fundamental understanding of atomic electronic structure afforded by DFT represents the unique approach and intention of this thesis. Scanning transmission electron microscopes equipped with high-angle annular dark field (HAADF) detectors and Gatan image filters (GIF) provide images and spectra, where the image brightness is interpreted as a function of atomic mass and thickness, and elemental specific spectra provide a means for the exploration of electronic and chemical structure of materials at the angstrom size scale. Over the past 20 years, the application of EELS in STEM has enabled more accurate elemental identification and exploration of electronic and chemical structure on angstrom-length scales, and arguably has provided an unprecedented wealth of materials characterization compared to other available techniques. Many materials issues related to specific novel properties that cannot be analyzed using the traditional techniques of the past, however, still remain unanswered. These concepts require a married approach of experiment and theory to fully explain. The intent of this dissertation is the development of improved analysis techniques that derive quantitative atomic scale information in connection with unraveling the origins of materials properties linked to the electronic structure and chemistry of materials.

  1. Dopant profiling based on scanning electron and helium ion microscopy.

    PubMed

    Chee, Augustus K W; Boden, Stuart A

    2016-02-01

    In this paper, we evaluate and compare doping contrast generated inside the scanning electron microscope (SEM) and scanning helium ion microscope (SHIM). Specialised energy-filtering techniques are often required to produce strong doping contrast to map donor distributions using the secondary electron (SE) signal in the SEM. However, strong doping contrast can be obtained from n-type regions in the SHIM, even without energy-filtering. This SHIM technique is more sensitive than the SEM to donor density changes above its sensitivity threshold, i.e. of the order of 10(16) or 10(17)donorscm(-3) respectively on specimens with or without a p-n junction; its sensitivity limit is well above 2×10(17)acceptorscm(-3) on specimens with or without a p-n junction. Good correlation is found between the widths and slopes of experimentally measured doping contrast profiles of thin p-layers and the calculated widths and slopes of the potential energy distributions across these layers, at a depth of 1 to 3nm and 5 to 10nm below the surface in the SHIM and the SEM respectively. This is consistent with the mean escape depth of SEs in silicon being about 1.8nm and 7nm in the SHIM and SEM respectively, and we conclude that short escape depth, low energy SE signals are most suitable for donor profiling. PMID:26624515

  2. Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy.

    PubMed

    Mavrocordatos, D; Pronk, W; Boiler, M

    2004-01-01

    Due to their large specific surface and their abundance, micro and nano particles play an important role in the transport of micropollutants in the environment. Natural particles are usually composed of a mixture of inorganic amorphous or crystalline material (mainly FeOOH, Fe(x)Oy, Mn(x)Oy and clays) and organic material (humics and polysaccharides). They all tend to occur as very small particles (1-1,000 nm in diameter). Most natural amorphous particles are unstable and tend to transform with time towards more crystalline forms, either by aging or possibly, by dissolution and re-crystallization. Such transformations affect the fate of sorbed micropollutants and the scavenging properties are therefore changed. As these entities are sensitive to dehydration (aggregation, changes in the morphology), it is highly important to observe their morphology in their natural environment and understand their composition at the scale of the individual particles. Also for the understanding and optimization of water treatment technologies, the knowledge of the occurrence and behavior of nano-particles is of high importance. Some of the possible particle analysis methods are presented: aggregation processes, biomineralization, bacterial adhesion, biofilms in freshwaters, ferrihydrite as heavy metals remover from storm water. These examples demonstrate the capabilities and focus of the microscopes. Atomic Force Microscopy (AFM) allows to analyze the particles in their own environment, meaning in air or in the water. Thus, native aspects of particles can be observed. As well, forces of interactions between particles or between particles and other surfaces such as membranes will be highly valuable data. Scanning Electron Microscopy (SEM) and for higher lateral resolution, Transmission Electron Microscopy (TEM) allow measurement of the morphology and composition. Especially, TEM coupled with Electron Energy Loss Spectroscopy (TEM-EELS) is a powerful technique for elemental analysis

  3. Application of ESEM to environmental colloids. [Environmental Scanning Electron Microscopy

    SciTech Connect

    Nuttall, H.E.; Kale, R. . Dept. of Chemical/Nuclear Engineering)

    1993-08-01

    Environmental colloids are toxic or radioactive particles suspended in ground or surface water. These hazardous particles can facilitate and accelerate the transport of toxicants and enhance the threat to humans by exposure to pathogenic substances. The chemical and physical properties of hazardous colloids have not been well characterized nor are there standard colloid remediation technologies to prevent their deleterious effects. Colloid characterization requires measurement of their size distribution, zeta potential, chemical composition, adsorption capacity and morphology. The environmental scanning electron microscope (ESEM) by ElectroScan, Inc., analyzes particle sizes, composition, and morphology. It is also used in this study to identify the attachment of colloids onto packing or rock surfaces in the development of a colloid remediation process. The ESEM has confirmed the composition of groundwater colloids in these studies to be generally the same material as the surrounding rock. The morphology studies have generally shown that colloids are simply small pieces of the rock surface that have exfoliated into the surrounding water. However, in general, the source and chemical composition of groundwater colloids is site dependent. The authors have found that an ESEM works best as a valuable analysis tool within a suite of colloid characterization instruments.

  4. Moessbauer spectroscopy and scanning electron microscopy of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Brown, Christopher L.; Oliver, Frederick W.; Hammond, Ernest C., Jr.

    1989-01-01

    Meteorites provide a wealth of information about the solar system's formation, since they have similar building blocks as the Earth's crust but have been virtually unaltered since their formation. Some stony meteorites contain minerals and silicate inclusions, called chondrules, in the matrix. Utilizing Moessbauer spectroscopy, we identified minerals in the Murchison meteorite, a carbonaceous chondritic meteorite, by the gamma ray resonance lines observed. Absorption patterns of the spectra were found due to the minerals olivine and phyllosilicate. We used a scanning electron microscope to describe the structure of the chondrules in the Murchison meteorite. The chondrules were found to be deformed due to weathering of the meteorite. Diameters varied in size from 0.2 to 0.5 mm. Further enhancement of the microscopic imagery using a digital image processor was used to describe the physical characteristics of the inclusions.

  5. [Using of scanning electron microscopy for detection of gunshot residue].

    PubMed

    Havel, J; Vajtr, D; Starý, V; Vrána, J; Zelenka, K; Adámek, T

    2006-07-01

    Scanning electron microscope improves the possibility of investigation of surroundings near of gunshot wounds in forensic medicine, it is the next subsequent method for differentiating of area of entrance and exit wound, supplemental method for determination of firing distance, permit of detection (GSR) on the hand of shooter and ensured describing of samples and their stored. Detection of GSR provides many information about composition of bullet and primer. Authors are demonstrating the possibility of detection of GSR on experimental shooting to the krupon (pigs' skin) in different situation (such as in a room and in outside area) and using of different weapon (hand gun CZ No.75 and machine gun No.58). PMID:16948447

  6. Scanning electron microscopy of human cortical bone failure surfaces.

    PubMed

    Braidotti, P; Branca, F P; Stagni, L

    1997-02-01

    Undecalcified samples extracted from human femoral shafts are fractured by bending and the fracture surfaces are examined with a scanning electron microscope (SEM). The investigation is performed on both dry and wet (hydrated with a saline solution) specimens. SEM micrographs show patterns in many respects similar to those observed in fractography studies of laminated fiber-reinforced synthetic composites. In particular, dry and wet samples behave like brittle and ductile matrix laminates, respectively. An analysis carried out on the basis of the mechanisms that dominate the fracture process of laminates shows that a reasonable cortical bone model is that of a laminated composite material whose matrix is composed of extracellular noncollagenous calcified proteins, and the reinforcement is constituted by the calcified collagen fiber system. PMID:9001936

  7. [Scanning electron microscopy study of experimental chorioretinitis in guinea pigs].

    PubMed

    Renard, G; Usui, M; De Kozak, Y; Faure, J P

    1976-04-01

    Retinal lesions are described with the scanning electron microscope in the uveo retinitis induced in guinea pigs by immunization with rod outer segments of bovine retina. The two surfaces in contact of the pigment epithelium and the photoreceptors are separated from each other and observed on flat preparations. On the epithelial side, the evolution of the degenerescence of epithelial cells is observed, from the early disappearance of villosities until the total destruction of the cells. Through lacks in the epithelial layer where the choroid appears, inflammatory cells migrate towards the retina. The impairement of the visual cells is characterized by progressive destruction of outer then inner segments, with preservation of the external limiting membrane. In some areas the degenerative process reaches the layer of visual cells nuclei. Macrophages, and local clusters of lymphocytes are seen in contact with the retinal surface. PMID:135548

  8. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy

    PubMed Central

    Levin, Barnaby D.A.; Padgett, Elliot; Chen, Chien-Chun; Scott, M.C.; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D.; Robinson, Richard D.; Ercius, Peter; Kourkoutis, Lena F.; Miao, Jianwei; Muller, David A.; Hovden, Robert

    2016-01-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data. PMID:27272459

  9. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy.

    PubMed

    Levin, Barnaby D A; Padgett, Elliot; Chen, Chien-Chun; Scott, M C; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D; Robinson, Richard D; Ercius, Peter; Kourkoutis, Lena F; Miao, Jianwei; Muller, David A; Hovden, Robert

    2016-01-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data. PMID:27272459

  10. Customized patterned substrates for highly versatile correlative light-scanning electron microscopy

    PubMed Central

    Benedetti, Lorena; Sogne, Elisa; Rodighiero, Simona; Marchesi, Davide; Milani, Paolo; Francolini, Maura

    2014-01-01

    Correlative light electron microscopy (CLEM) combines the advantages of light and electron microscopy, thus making it possible to follow dynamic events in living cells at nanometre resolution. Various CLEM approaches and devices have been developed, each of which has its own advantages and technical challenges. We here describe our customized patterned glass substrates, which improve the feasibility of correlative fluorescence/confocal and scanning electron microscopy. PMID:25391455

  11. Customized patterned substrates for highly versatile correlative light-scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Benedetti, Lorena; Sogne, Elisa; Rodighiero, Simona; Marchesi, Davide; Milani, Paolo; Francolini, Maura

    2014-11-01

    Correlative light electron microscopy (CLEM) combines the advantages of light and electron microscopy, thus making it possible to follow dynamic events in living cells at nanometre resolution. Various CLEM approaches and devices have been developed, each of which has its own advantages and technical challenges. We here describe our customized patterned glass substrates, which improve the feasibility of correlative fluorescence/confocal and scanning electron microscopy.

  12. Scanning electron microscopy and electron probe X-ray microanalysis (SEM-EPMA) of pink teeth

    SciTech Connect

    Ikeda, N.; Watanabe, G.; Harada, A.; Suzuki, T.

    1988-11-01

    Samples of postmortem pink teeth were investigated by scanning electron microscopy and electron probe X-ray microanalysis. Fracture surfaces of the dentin in pink teeth were noticeably rough and revealed many more smaller dentinal tubules than those of the control white teeth. Electron probe X-ray microanalysis showed that the pink teeth contained iron which seemed to be derived from blood hemoglobin. The present study confirms that under the same circumstance red coloration of teeth may occur more easily in the teeth in which the dentin is less compact and contains more dentinal tubules.

  13. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    PubMed

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics. PMID:24420248

  14. Engineering and Characterization of Collagen Networks Using Wet Atomic Force Microscopy and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Osborn, Jenna; Coffey, Tonya; Conrad, Brad; Burris, Jennifer; Hester, Brooke

    2014-03-01

    Collagen is an abundant protein and its monomers covalently crosslink to form fibrils which form fibers which contribute to forming macrostructures like tendon or bone. While the contribution is well understood at the macroscopic level, it is not well known at the fibril level. We wish to study the mechanical properties of collagen for networks of collagen fibers that vary in size and density. We present here a method to synthesize collagen networks from monomers and that allows us to vary the density of the networks. By using biotynilated collagen and a surface that is functionalized with avidin, we generate two-dimensional collagen networks across the surface of a silicon wafer. During network synthesis, the incubation time is varied from 30 minutes to 3 hours or temperature is varied from 25°C to 45°C. The two-dimensional collagen network created in the process is characterized using environmental atomic force microscopy (AFM) and scanning electron microscopy (SEM). The network density is measured by the number of strands in one frame using SPIP software. We expect that at body temperature (37°C) and with longer incubation times, the network density should increase.

  15. Light microscopy and scanning electron microscopy study on microstructure of gallbladder mucosa in pig.

    PubMed

    Prozorowska, Ewelina; Jackowiak, Hanna

    2015-03-01

    The present light microscopy (LM) and scanning electron microscopy (SEM) studies on porcine gallbladder mucosa provide a description of the microstructures of great functional importance such as mucosal folds, the epithelium, glands, and lymphatic nodules. The results showed the regional structural differences of the porcine gallbladder wall. Depending on the part of the gallbladder, three types of mucosal structures were described: simple and branched folds and mucosal crypts. An important structural feature found in the mucosa is connected with the structural variety of type of mucosal folds, which change from simple located in the neck, to most composed, i.e., branched or joined, in the polygonal crypts toward the fundus of the gallbladder. The morphometric analysis showed statistically significantly differences in the form and size of the folds and between the fundus, body, and neck of the gallbladder. Differences in the size of mucosal epithelium are discussed in terms of processes of synthesis and secretion of glycoproteins. Regional, species-specific differences in morphology of mucosal subepithelial glands, i.e., their secretory units and openings, and intensity of mucus secretion were described. Our results on the pig gallbladder show adaptation and/or specialization in particular areas of the mucosa for (1) secretion of mucus in the neck or body of gallbladder and (2) for cyclic volume changes, especially in the fundus of gallbladder. The description of the microstructures of mucosa in the porcine gallbladder could be useful as reference data for numerous experiments on the bile tract in the pig. PMID:25604381

  16. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory

    Concerns about the environmental and public health effects of particulate matter (PM) have stimulated interest in analytical techniques capable of measuring the size and chemical composition of individual aerosol particles. Computer-controlled scanning electron microscopy (CCSE...

  17. SEM (SCANNING ELECTRON MICROSCOPY) EVIDENCE FOR A NEW SPECIES, 'GIARDIA PSITTACI' (JOURNAL VERSION)

    EPA Science Inventory

    Giardia trophozoites were isolated from the small intestine of budgerigars (parakeets) and examined morphologically with light and scanning electron microscopy. The presence of a claw-hammer shape median body suggested classification of these trophozoites as G. duodenalis. Howeve...

  18. Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device

    SciTech Connect

    Mueller, Knut; Rosenauer, Andreas; Ryll, Henning; Ordavo, Ivan; Ihle, Sebastian; Soltau, Heike; Strueder, Lothar; Volz, Kerstin; Zweck, Josef

    2012-11-19

    A high-speed direct electron detection system is introduced to the field of transmission electron microscopy and applied to strain measurements in semiconductor nanostructures. In particular, a focused electron probe with a diameter of 0.5 nm was scanned over a fourfold quantum layer stack with alternating compressive and tensile strain and diffracted discs have been recorded on a scintillator-free direct electron detector with a frame time of 1 ms. We show that the applied algorithms can accurately detect Bragg beam positions despite a significant point spread each 300 kV electron causes during detection on the scintillator-free camera. For millisecond exposures, we find that strain can be measured with a precision of 1.3 Multiplication-Sign 10{sup -3}, enabling, e.g., strain mapping in a 100 Multiplication-Sign 100 nm{sup 2} region with 0.5 nm resolution in 40 s.

  19. Immuno-electron microscopy of primary cell cultures from genetically modified animals in liquid by atmospheric scanning electron microscopy.

    PubMed

    Kinoshita, Takaaki; Mori, Yosio; Hirano, Kazumi; Sugimoto, Shinya; Okuda, Ken-ichi; Matsumoto, Shunsuke; Namiki, Takeshi; Ebihara, Tatsuhiko; Kawata, Masaaki; Nishiyama, Hidetoshi; Sato, Mari; Suga, Mitsuo; Higashiyama, Kenichi; Sonomoto, Kenji; Mizunoe, Yoshimitsu; Nishihara, Shoko; Sato, Chikara

    2014-04-01

    High-throughput immuno-electron microscopy is required to capture the protein-protein interactions realizing physiological functions. Atmospheric scanning electron microscopy (ASEM) allows in situ correlative light and electron microscopy of samples in liquid in an open atmospheric environment. Cells are cultured in a few milliliters of medium directly in the ASEM dish, which can be coated and transferred to an incubator as required. Here, cells were imaged by optical or fluorescence microscopy, and at high resolution by gold-labeled immuno-ASEM, sometimes with additional metal staining. Axonal partitioning of neurons was correlated with specific cytoskeletal structures, including microtubules, using primary-culture neurons from wild type Drosophila, and the involvement of ankyrin in the formation of the intra-axonal segmentation boundary was studied using neurons from an ankyrin-deficient mutant. Rubella virus replication producing anti-double-stranded RNA was captured at the host cell's plasma membrane. Fas receptosome formation was associated with clathrin internalization near the surface of primitive endoderm cells. Positively charged Nanogold clearly revealed the cell outlines of primitive endoderm cells, and the cell division of lactic acid bacteria. Based on these experiments, ASEM promises to allow the study of protein interactions in various complexes in a natural environment of aqueous liquid in the near future. PMID:24564988

  20. Immuno EM-OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM).

    PubMed

    Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara

    2012-11-01

    In the atmospheric scanning electron microscope (ASEM), an inverted SEM observes the wet sample from beneath an open dish while an optical microscope (OM) observes it from above. The disposable dish with a silicon nitride (SiN) film window can hold a few milliliters of culture medium, and allows various types of cells to be cultured in a stable environment. The use of this system for in situ correlative OM/SEM immuno-microscopy is explored, the efficiency of the required dual-tagged labeling assessed and the imaging capabilities of the ASEM documented. We have visualized the cytoskeletons formed by actin and tubulin, the chaperone PDI that catalyses native disulfide bond formation of proteins in the endoplasmic reticulum (ER) and the calcium sensor STIM1 that is integrated in ER membranes, using established cell lines. In particular, a dynamic string-like gathering of STIM1 was observed on the ER in Jurkat T cells in response to Ca(2+) store depletion. We have also visualized filamentous actin (F-actin) and tubulin in the growth cones of primary-culture neurons as well as in synapses. Further, radially running actin fibers were shown to partly colocalize with concentric bands of the Ca(2+) signaling component Homer1c in the lamellipodia of neuron primary culture growth cones. After synapse formation, neurite configurations were drastically rearranged; a button structure with a fine F-actin frame faces a spine with a different F-actin framework. Based on this work, ASEM correlative microscopy promises to allow the dynamics of various protein complexes to be investigated in the near future. PMID:22959994

  1. High bandwidth secondary electron detection in variable pressure scanning electron microscopy using a Frisch grid

    NASA Astrophysics Data System (ADS)

    Morgan, S. W.; Phillips, M. R.

    2008-03-01

    The bandwidth and contrast of secondary electron (SE) images obtained using variable pressure scanning electron microscopy are enhanced when a grounded Frisch grid is placed between the SE detecting anode and the negatively biased stage. The improvement in SE image quality occurs as a consequence of the grounded Frisch grid electrostatically screening the 'slow' induced ion current signal, generated below the grid, from the induced current detected above the grid by the anode. Ion induced artefacts, such as image smearing at fast scan rates, are virtually eliminated using a Frisch grid. Gas amplification data are presented to illustrate that gas gain can be optimized by varying the Frisch grid-stage (amplification region) separation Frisch grid-anode (drift region) separation and stage bias.

  2. Stochastic Micro-Pattern for Automated Correlative Fluorescence - Scanning Electron Microscopy

    PubMed Central

    Begemann, Isabell; Viplav, Abhiyan; Rasch, Christiane; Galic, Milos

    2015-01-01

    Studies of cellular surface features gain from correlative approaches, where live cell information acquired by fluorescence light microscopy is complemented by ultrastructural information from scanning electron micrographs. Current approaches to spatially align fluorescence images with scanning electron micrographs are technically challenging and often cost or time-intensive. Relying exclusively on open-source software and equipment available in a standard lab, we have developed a method for rapid, software-assisted alignment of fluorescence images with the corresponding scanning electron micrographs via a stochastic gold micro-pattern. Here, we provide detailed instructions for micro-pattern production and image processing, troubleshooting for critical intermediate steps, and examples of membrane ultra-structures aligned with the fluorescence signal of proteins enriched at such sites. Together, the presented method for correlative fluorescence – scanning electron microscopy is versatile, robust and easily integrated into existing workflows, permitting image alignment with accuracy comparable to existing approaches with negligible investment of time or capital. PMID:26647824

  3. Stochastic Micro-Pattern for Automated Correlative Fluorescence - Scanning Electron Microscopy.

    PubMed

    Begemann, Isabell; Viplav, Abhiyan; Rasch, Christiane; Galic, Milos

    2015-01-01

    Studies of cellular surface features gain from correlative approaches, where live cell information acquired by fluorescence light microscopy is complemented by ultrastructural information from scanning electron micrographs. Current approaches to spatially align fluorescence images with scanning electron micrographs are technically challenging and often cost or time-intensive. Relying exclusively on open-source software and equipment available in a standard lab, we have developed a method for rapid, software-assisted alignment of fluorescence images with the corresponding scanning electron micrographs via a stochastic gold micro-pattern. Here, we provide detailed instructions for micro-pattern production and image processing, troubleshooting for critical intermediate steps, and examples of membrane ultra-structures aligned with the fluorescence signal of proteins enriched at such sites. Together, the presented method for correlative fluorescence - scanning electron microscopy is versatile, robust and easily integrated into existing workflows, permitting image alignment with accuracy comparable to existing approaches with negligible investment of time or capital. PMID:26647824

  4. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.

    PubMed

    Tomitori, Masahiko; Sasahara, Akira

    2014-11-01

    Over a hundred years an atomistic point of view has been indispensable to explore fascinating properties of various materials and to develop novel functional materials. High-resolution microscopies, rapidly developed during the period, have taken central roles in promoting materials science and related techniques to observe and analyze the materials. As microscopies with the capability of atom-imaging, field ion microscopy (FIM), scanning tunneling microscopy (STM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) can be cited, which have been highly evaluated as methods to ultimately bring forward the viewpoint of reductionism in materials science. On one hand, there have been difficulties to derive useful and practical information on large (micro) scale unique properties of materials using these excellent microscopies and to directly advance the engineering for practical materials. To make bridges over the gap between an atomic scale and an industrial engineering scale, we have to develop emergence science step-by-step as a discipline having hierarchical structures for future prospects by combining nanoscale and microscale techniques; as promising ways, the combined microscopic instruments covering the scale gap and the extremely sophisticated methods for sample preparation seem to be required. In addition, it is noted that spectroscopic and theoretical methods should implement the emergence science.Fundamentally, the function of microscope is to determine the spatial positions of a finite piece of material, that is, ultimately individual atoms, at an extremely high resolution with a high stability. To define and control the atomic positions, the STM and AFM as scanning probe microscopy (SPM) have successfully demonstrated their power; the technological heart of SPM lies in an atomically sharpened tip, which can be observed by FIM and TEM. For emergence science we would like to set sail using the tip as a base. Meanwhile, it is significant

  5. Some strategies for quantitative scanning Auger electron microscopy

    NASA Technical Reports Server (NTRS)

    Browning, R.; Peacock, D. C.; Prutton, M.

    1985-01-01

    The general applicability of power law forms of the background in electron spectra is pointed out and exploited for background removal from under Auger peaks. This form of B(E) is found to be extremely sensitive to instrumental alignment and to fault-free construction - an observation which can be used to set up analyser configurations in an accurate way. Also, differences between N(E) and B(E) can be used to derive a spectrometer transmission function T(E). The questions of information density in an energy-analysing spatially-resolving instrument are addressed after reliable instrumental characterization has been established. Strategies involving ratio histograms, showing the population distribution of the ratio of a pair of Auger peak heights, composition scatter diagrams and windowed imaging are discussed and illustrated.

  6. Scanning and Transmission Electron Microscopy of High Temperature Materials

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.

  7. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses

    PubMed Central

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-01-01

    Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID

  8. A compilation of cold cases using scanning electron microscopy at the University of Rhode Island

    NASA Astrophysics Data System (ADS)

    Platek, Michael J.; Gregory, Otto J.

    2015-10-01

    Scanning electron microscopy combined with microchemical analysis has evolved into one of the most widely used instruments in forensic science today. In particular, the environmental scanning electron microscope (SEM) in conjunction with energy dispersive spectroscopy (EDS), has created unique opportunities in forensic science in regard to the examination of trace evidence; i.e. the examination of evidence without altering the evidence with conductive coatings, thereby enabling criminalists to solve cases that were previously considered unsolvable. Two cold cases were solved at URI using a JEOL 5900 LV SEM in conjunction with EDS. A cold case murder and a cold missing person case will be presented from the viewpoint of the microscopist and will include sample preparation, as well as image and chemical analysis of the trace evidence using electron microscopy and optical microscopy.

  9. High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy.

    PubMed

    Tapia, Juan Carlos; Kasthuri, Narayanan; Hayworth, Kenneth J; Schalek, Richard; Lichtman, Jeff W; Smith, Stephen J; Buchanan, JoAnn

    2012-02-01

    Conventional heavy metal poststaining methods on thin sections lend contrast but often cause contamination. To avoid this problem, we tested several en bloc staining techniques to contrast tissue in serial sections mounted on solid substrates for examination by field emission scanning electron microscopy (FESEM). Because FESEM section imaging requires that specimens have higher contrast and greater electrical conductivity than transmission electron microscopy (TEM) samples, our technique uses osmium impregnation (OTO) to make the samples conductive while heavily staining membranes for segmentation studies. Combining this step with other classic heavy metal en bloc stains, including uranyl acetate (UA), lead aspartate, copper sulfate and lead citrate, produced clean, highly contrasted TEM and scanning electron microscopy (SEM) samples of insect, fish and mammalian nervous systems. This protocol takes 7-15 d to prepare resin-embedded tissue, cut sections and produce serial section images. PMID:22240582

  10. Atomic-resolution scanning transmission electron microscopy through 50-nm-thick silicon nitride membranes

    SciTech Connect

    Ramachandra, Ranjan; Jonge, Niels de; Demers, Hendrix

    2011-02-28

    Silicon nitride membranes can be used for windows of environmental chambers for in situ electron microscopy. We report that aberration corrected scanning transmission electron microscopy (STEM) achieved atomic resolution on gold nanoparticles placed on both sides of a 50-nm-thick silicon nitride membrane at 200 keV electron beam energy. Spatial frequencies of 1/1.2 A were visible for a beam semi-angle of 26.5 mrad. Imaging though a 100-nm-thick membrane was also tested. The achieved imaging contrast was evaluated using Monte Carlo simulations of the STEM imaging of a sample of with a representative geometry and composition.

  11. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory


    Recent interest in monitoring and speciation of particulate matter has led to increased application of scanning electron microscopy (SEM) coupled with energy-dispersive x-ray analysis (EDX) to individual particle analysis. SEM/EDX provides information on the size, shape, co...

  12. Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport

    NASA Astrophysics Data System (ADS)

    Andrei, Eva Y.; Li, Guohong; Du, Xu

    2012-05-01

    This review covers recent experimental progress in probing the electronic properties of graphene and how they are influenced by various substrates, by the presence of a magnetic field and by the proximity to a superconductor. The focus is on results obtained using scanning tunneling microscopy, spectroscopy, transport and magnetotransport techniques.

  13. Evaluation of Fan-Pattern Spray Nozzle Wear Using Scanning Electron Microscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Worn nozzles on spray equipment severely affect efficiency of crop management system while causing unnecessary pesticide contamination of non-target areas. Scanning electron microscopy and x-ray microanalysis that have been used to directly measure pesticide deposition, was used to observe both wor...

  14. SCANNING ELECTRON MICROSCOPY/X-RAY FLUORESCENCE CHARACTERIZATION OF POST-ABATEMENT DUST

    EPA Science Inventory

    Scanning electron microscopy (SEM) and laboratory X-ray fluorescence (XRF) were used to characterize post-abatement dust collected with a HEPA filtered vacuum. hree size fractions of resuspended dust (0-30 pm, 2.5-15 pm, and <2.5 pm) were collected on teflon filters and analyzed ...

  15. The material dependence of temperature measurement resolution in thermal scanning electron microscopy

    SciTech Connect

    Wu, Xiaowei; Hull, Robert

    2013-03-18

    Thermal scanning electron microscopy is a recently developed temperature mapping technique based on thermal diffuse scattering in electron backscatter diffraction in a scanning electron microscope. It provides nano-scale and non-contact temperature mapping capabilities. Due to the specific temperature sensitive mechanism inherent to this technique, the temperature resolution is highly material dependent. A thorough investigation of what material properties affect the temperature resolution is important for realizing the inherent temperature resolution limit for each material. In this paper, three material dependent parameters-the Debye-Waller B-factor temperature sensitivity, backscatter yield, and lattice constant-are shown to control the temperature resolution.

  16. SEM, TEM and SLEEM (scanning low energy electron microscopy) of CB2 steel after creep testing

    NASA Astrophysics Data System (ADS)

    Kasl, J.; Mikmeková, Š.; Jandová, D.

    2014-03-01

    The demand to produce electrical power with higher efficiency and with lower environmental pollution is leading to the use of new advanced materials in the production of power plant equipment. To understand the processes taking place in parts produced from these materials during their operation under severe conditions (such as high temperature, high stress, and environmental corrosion) requires detailed evaluation of their substructure. It is usually necessary to use transmission electron microscopy (TEM). However, this method is very exacting and time-consuming. So there is an effort to use new scanning electron microscopy techniques instead of TEM. One of them is scanning low energy electron microscopy (SLEEM). This paper deals with an assessment of the possibility to use SLEEM for describing the substructure of creep resistant steel CB2 after long-term creep testing. In the SLEEM images more information is contained about the microstructure of the material in comparison with standard scanning electron microscopy. Study of materials using slow and very slow electrons opens the way to better understanding their microstructures.

  17. Scanning electron microscopy and electron probe microanalysis studies of human pineal concretions.

    PubMed

    Kodaka, T; Mori, R; Debari, K; Yamada, M

    1994-10-01

    The calcareous concretions of human pineal bodies were investigated with scanning electron microscopy and electron probe microanalysis. The initial concretions measuring 5-7 microns in diameter may have started at the calcified pinealocytes. They grew appositionally forming concentric laminations, and then the simple calcospherulites over 20 microns occasionally aggregated with each other. Some of them became numerous spherulite-aggregated concretions. Others individually grew with scallop-shaped concentric laminations at intervals of 0.05-1 microns and became lobated calcospherulites up to 0.5 mm. The concretions over 0.5 mm were formed by their attachments. The major elements were Ca and P, while traces of S, Mg, and Na were detected. In the calcification and crystallization values, the center of the concretions over 50 microns was significantly higher than the periphery, while there were no differences among the centers and also among the peripheries. The Ca and P amounts in the center were 30.8% and 14.2% by weight and the Ca/P molar ratio was 1.68; thereby the sand-grain-shaped crystals may be nearly hydroxyapatite, as reported previously. PMID:7699308

  18. Visualizing Macromolecular Complexes with In Situ Liquid Scanning Transmission Electron Microscopy

    SciTech Connect

    Evans, James E.; Jungjohann, K. L.; Wong, Peony C. K.; Chiu, Po-Lin; Dutrow, Gavin H.; Arslan, Ilke; Browning, Nigel D.

    2012-11-01

    A central focus of biological research is understanding the structure/function relationship of macromolecular protein complexes. Yet conventional transmission electron microscopy techniques are limited to static observations. Here we present the first direct images of purified macromolecular protein complexes using in situ liquid scanning transmission electron microscopy. Our results establish the capability of this technique for visualizing the interface between biology and nanotechnology with high fidelity while also probing the interactions of biomolecules within solution. This method represents an important advancement towards allowing future high-resolution observations of biological processes and conformational dynamics in real-time.

  19. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    SciTech Connect

    Lansåker, Pia C. Niklasson, Gunnar A.; Granqvist, Claes G.; Hallén, Anders

    2014-10-15

    Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness d{sub g}—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM) combined with image analysis as well as by atomic force microscopy (AFM). The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for d{sub g} were obtained by SEM with image analysis and by AFM.

  20. Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy

    NASA Astrophysics Data System (ADS)

    Hashimoto, Ayako; Shimojo, Masayuki; Mitsuishi, Kazutaka; Takeguchi, Masaki

    2009-10-01

    Although scanning confocal electron microscopy (SCEM) shows a promise for optical depth sectioning with high resolution, practical and theoretical problems have prevented its application to three-dimensional (3D) imaging. We employed a stage-scanning system in which only the specimen is moved three dimensionally under a fixed lens configuration, and an annular dark-field (ADF) aperture which blocks direct beams and selects only the scattered electrons. This ADF-SCEM improved depth resolution sufficiently to perform optical depth sectioning. Finally, we succeeded in demonstrating the 3D reconstruction of carbon nanocoils using ADF-SCEM.

  1. Comparison of Scheimpflug-photography, specular microscopy and scanning electron microscopy to detect corneal changes in toxicity studies in rats

    SciTech Connect

    Boeker, T.W.; Wegener, A.; Koch, F.; Hockwin, O. )

    1990-01-01

    With an increasing number of in-vivo methods to examine the eyes of laboratory animals, the rat has become an important animal model in experimental eye research. Specular microscopy is a clinical tool to examine the corneal endothelium in-vivo. To evaluate the versatility of this method for small animal eyes, we studied both corneal endothelial cell-count and corneal thickness in normal rats as well as those with diabetic, naphthalene and UV-B cataract. As a reference scanning electron microscopy (SEM) of the corneal endothelium was performed. For cell-counts the correlation coefficient between both methods was found to be sufficient. The comparison of corneal thickness measurement (SEM-values) with specular microscopy and with Scheimpflugbiometry failed to show a satisfactory correlation. The study proves that specular microscopy is a useful tool to document changes also in the endothelium of the rat-cornea.

  2. Cytogenetic Characterization of the TM4 Mouse Sertoli Cell Line. II. Chromosome Microdissection, FISH, Scanning Electron Microscopy, and Confocal Laser Scanning Microscopy.

    PubMed

    Schmid, Michael; Guttenbach, Martina; Steinlein, Claus; Wanner, Gerhard; Houben, Andreas

    2015-01-01

    The chromosomes and interphase cell nuclei of the permanent mouse Sertoli cell line TM4 were examined by chromosome microdissection, FISH, scanning electron microscopy, and confocal laser scanning microscopy. The already known marker chromosomes m1-m5 were confirmed, and 2 new large marker chromosomes m6 and m7 were characterized. The minute heterochromatic marker chromosomes m4 and m5 were microdissected and their DNA amplified by DOP-PCR. FISH of this DNA probe on TM4 metaphase chromosomes demonstrated that the m4 and m5 marker chromosomes have derived from the centromeric regions of normal telocentric mouse chromosomes. Ectopic pairing of the m4 and m5 marker chromosomes with the centromeric region of any of the other chromosomes (centromeric associations) was apparent in ∼60% of the metaphases. Scanning electron microscopy revealed DNA-protein bridges connecting the centromeric regions of normal chromosomes and the associated m4 and m5 marker chromosomes. Interphase cell nuclei of TM4 Sertoli cells did not exhibit the characteristic morphology of Sertoli cells in the testes of adult mice as shown by fluorescence microscopy and confocal laser scanning microscopy. PMID:26900862

  3. Scanning electron microscopy of the nail plate in onychomycosis patients with negative fungal culture.

    PubMed

    Yue, Xueping; Li, Qing; Wang, Hongwei; Sun, Yilin; Wang, Aiping; Zhang, Qi; Zhang, Cuiping

    2016-03-01

    Onychomycosis is a common dermatological problem and can be identified by direct microscopic examination and fungal culture. However, the positive rate of fungal culture is low. This study investigated the application of scanning electron microscopy in the diagnosis of onychomycosis in 20 patients with negative fungal culture. In this study, a routine glutaraldehyde fixation method was used to prepare specimens for electron microscope examination. Results showed that under the scanning electron microscope, significant structural damage was observed in the nail plate in all patients. Hyphaes were seen in 70% of cases. A mixture of scattered hyphaes, pseudohyphaes, and spores was observed in 30% of cases. A mixture of spores and bacteria was observed in 10% of cases. A mixture of hyphaes and bacteria was observed in 20% of cases. The typical hyphae pierced a thin layer or single layer of corneocytes. Hyphaes could be smooth, sleek, and straight with visible separation, or dry, bent, and folded with a smooth surface. The diameter of hyphaes was 1-2 µm. The scattered spores were the main form of spore growth, and the growth of budding spores can be seen attached to the surface of layered armor. Most of the bacteria were gathered in clumps on the ventral surface, especially in grooves. In conclusion, scanning electron microscopy can be used to preliminarily identify the pathogen involved and the degree of damage in cases where onychomycosis is clinically diagnosed, but fungal culture is negative. SCANNING 38:172-176, 2016. © 2015 Wiley Periodicals, Inc. PMID:26291603

  4. Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts.

    PubMed

    Yankovich, Andrew B; Berkels, Benjamin; Dahmen, W; Binev, P; Sanchez, S I; Bradley, S A; Li, Ao; Szlufarska, Izabela; Voyles, Paul M

    2014-01-01

    Measuring picometre-scale shifts in the positions of individual atoms in materials provides new insight into the structure of surfaces, defects and interfaces that influence a broad variety of materials' behaviour. Here we demonstrate sub-picometre precision measurements of atom positions in aberration-corrected Z-contrast scanning transmission electron microscopy images based on the non-rigid registration and averaging of an image series. Non-rigid registration achieves five to seven times better precision than previous methods. Non-rigidly registered images of a silica-supported platinum nanocatalyst show pm-scale contraction of atoms at a (111)/(111) corner towards the particle centre and expansion of a flat (111) facet. Sub-picometre precision and standardless atom counting with <1 atom uncertainty in the same scanning transmission electron microscopy image provide new insight into the three-dimensional atomic structure of catalyst nanoparticle surfaces, which contain the active sites controlling catalytic reactions. PMID:24916914

  5. Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts

    NASA Astrophysics Data System (ADS)

    Yankovich, Andrew B.; Berkels, Benjamin; Dahmen, W.; Binev, P.; Sanchez, S. I.; Bradley, S. A.; Li, Ao; Szlufarska, Izabela; Voyles, Paul M.

    2014-06-01

    Measuring picometre-scale shifts in the positions of individual atoms in materials provides new insight into the structure of surfaces, defects and interfaces that influence a broad variety of materials’ behaviour. Here we demonstrate sub-picometre precision measurements of atom positions in aberration-corrected Z-contrast scanning transmission electron microscopy images based on the non-rigid registration and averaging of an image series. Non-rigid registration achieves five to seven times better precision than previous methods. Non-rigidly registered images of a silica-supported platinum nanocatalyst show pm-scale contraction of atoms at a ()/() corner towards the particle centre and expansion of a flat () facet. Sub-picometre precision and standardless atom counting with <1 atom uncertainty in the same scanning transmission electron microscopy image provide new insight into the three-dimensional atomic structure of catalyst nanoparticle surfaces, which contain the active sites controlling catalytic reactions.

  6. Scanning electron microscopy analysis of experimental bone hacking trauma of the mandible.

    PubMed

    Alunni-Perret, Véronique; Borg, Cybèle; Laugier, Jean-Pierre; Bertrand, Marie-France; Staccini, Pascal; Bolla, Marc; Quatrehomme, Gérald; Muller-Bolla, Michèle

    2010-12-01

    The authors report on a macroscopic and microscopic study of human mandible bone lesions achieved by a single-blade knife and a hatchet. The aim of this work was to complete the previous data (scanning electron microscopy analysis of bone lesions made by a single-blade knife and a hatchet, on human femurs) and to compare the lesions of the femur with those of the mandible. The results indicate that the mandible is a more fragile bone, but the features observed on the mandible are quite similar to those previously observed on the femur. This work spells out the main scanning electron microscopy characteristics of sharp (bone cutting) and blunt (exerting a pressure on the bone) mechanisms on human bone. Weapon characteristics serve to explain all of these features. PMID:20890172

  7. Correlative In Vivo 2 Photon and Focused Ion Beam Scanning Electron Microscopy of Cortical Neurons

    PubMed Central

    Maco, Bohumil; Holtmaat, Anthony; Cantoni, Marco; Kreshuk, Anna; Straehle, Christoph N.; Hamprecht, Fred A.; Knott, Graham W.

    2013-01-01

    Correlating in vivo imaging of neurons and their synaptic connections with electron microscopy combines dynamic and ultrastructural information. Here we describe a semi-automated technique whereby volumes of brain tissue containing axons and dendrites, previously studied in vivo, are subsequently imaged in three dimensions with focused ion beam scanning electron microcopy. These neurites are then identified and reconstructed automatically from the image series using the latest segmentation algorithms. The fast and reliable imaging and reconstruction technique avoids any specific labeling to identify the features of interest in the electron microscope, and optimises their preservation and staining for 3D analysis. PMID:23468982

  8. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    NASA Astrophysics Data System (ADS)

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-02-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.

  9. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    PubMed Central

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  10. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.

    PubMed

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  11. Corneal endothelium of the Magellanic penguin (Spheniscus magellanicus) by scanning electron microscopy.

    PubMed

    Pigatto, João A T; Laus, José L; Santos, Jaime M; Cerva, Cristine; Cunha, Luciana S; Ruoppolo, Valéria; Barros, Paulo S M

    2005-12-01

    The corneal endothelium is essential for the maintenance of the corneal transparency. The aim of this study was to examine the morphology of the endothelial surface and perform morphometric analysis of the normal corneal endothelial cells of the Magellanic penguin (Spheniscus magellanicus) using scanning electron microscopy. The present work demonstrates that the corneal endothelium of the Magellanic penguin is similar to those described in other vertebrates. PMID:17312730

  12. Scanning electron microscopy of lunar regolith from the Sea of Fertility

    NASA Technical Reports Server (NTRS)

    Antoshin, M. K.; Ilin, N. P.; Spivak, G. V.

    1974-01-01

    Scanning electron microscopy was used in studying the morphology and cathodoluminescence of lunar regolith particles. Surface and structure of two groups of particles are differentiated: (1) Crystalline with well defined facets and spalling surfaces, which are grains of minerals and rock fragments: and (2) amorphous, fused, and partially or entirely glazed particles. Local melting of particles and the round openings on their surfaces are attributed to secondary influence on the regolith of factors of lunar weathering and above all micrometeoric impacts.

  13. Electron Microscopy.

    ERIC Educational Resources Information Center

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  14. Application of low vacuum scanning electron microscopy for Papanicolaou-stained slides for cytopathology examinations.

    PubMed

    Yano, Tetsuya; Soejima, Yurie; Sawabe, Motoji

    2016-06-01

    Papanicolaou (Pap)-stained slides are usually observed using a transmitted light microscope for cytopathology. However, progress in pathological examinations has created a need for new diagnostic tools, because cytopathological preparations do not allow additional examinations without a loss of specimen, unlike histopathology. Low-vacuum scanning electron microscopy (LVSEM) can reveal the surface topography at an ultrastructual resolution without metal coating. The aim of this study was to determine the conditions required for observing Pap-stained slides of oral smears using LVSEM without any loss of specimen and to reexamine the same slides again using light microscopy, while preserving the cytopathological information. PMID:26957591

  15. A method of comparing spermatozoa with light and scanning electron microscopy.

    PubMed

    Sauvalle, A M; Prigent, J R; Izard, J Y

    1982-01-01

    A new method of comparing light microscopy and scanning electron microscopy in the study of small cells, such as spermatozoa, that must be examined under oil immersion is described. A grid is etched on the corner of a microscope glass slide, and its inner edges are incised. Its surface area is calculated as a function f the chamber of the critical-point drying apparatus. This method dispenses with the need for any special coverslip and enables the cells to be observed under oil immersion. PMID:6179330

  16. Reporting methods for processing and analysis of data from serial block face scanning electron microscopy.

    PubMed

    Borrett, S; Hughes, L

    2016-07-01

    Serial block face scanning electron microscopy is rapidly becoming a popular tool for collecting large three-dimensional data sets of cells and tissues, filling the resolution and volume gap between fluorescence microscopy and high-resolution electron microscopy. The automated collection of data within the instrument occupies the smallest proportion of the time required to prepare and analyse biological samples. It is the processing of data once it has been collected that proves the greatest challenge. In this review we discuss different methods that are used to process data. We suggest potential workflows that can be used to facilitate the transfer of raw image stacks into quantifiable data as well as propose a set of criteria for reporting methods for data analysis to enable replication of work. PMID:26800017

  17. Challenges of microtome‐based serial block‐face scanning electron microscopy in neuroscience

    PubMed Central

    WANNER, A. A.; KIRSCHMANN, M. A.

    2015-01-01

    Summary Serial block‐face scanning electron microscopy (SBEM) is becoming increasingly popular for a wide range of applications in many disciplines from biology to material sciences. This review focuses on applications for circuit reconstruction in neuroscience, which is one of the major driving forces advancing SBEM. Neuronal circuit reconstruction poses exceptional challenges to volume EM in terms of resolution, field of view, acquisition time and sample preparation. Mapping the connections between neurons in the brain is crucial for understanding information flow and information processing in the brain. However, information on the connectivity between hundreds or even thousands of neurons densely packed in neuronal microcircuits is still largely missing. Volume EM techniques such as serial section TEM, automated tape‐collecting ultramicrotome, focused ion‐beam scanning electron microscopy and SBEM (microtome serial block‐face scanning electron microscopy) are the techniques that provide sufficient resolution to resolve ultrastructural details such as synapses and provides sufficient field of view for dense reconstruction of neuronal circuits. While volume EM techniques are advancing, they are generating large data sets on the terabyte scale that require new image processing workflows and analysis tools. In this review, we present the recent advances in SBEM for circuit reconstruction in neuroscience and an overview of existing image processing and analysis pipelines. PMID:25907464

  18. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Pelliccione, M.; Bartel, J.; Sciambi, A.; Pfeiffer, L. N.; West, K. W.; Goldhaber-Gordon, D.

    2014-11-01

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called "virtual scanning tunneling microscopy" that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  19. Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Béché, A.; Goris, B.; Freitag, B.; Verbeeck, J.

    2016-02-01

    The concept of compressed sensing was recently proposed to significantly reduce the electron dose in scanning transmission electron microscopy (STEM) while still maintaining the main features in the image. Here, an experimental setup based on an electromagnetic beam blanker placed in the condenser plane of a STEM is proposed. The beam blanker deflects the beam with a random pattern, while the scanning coils are moving the beam in the usual scan pattern. Experimental images at both the medium scale and high resolution are acquired and reconstructed based on a discrete cosine algorithm. The obtained results confirm that compressed sensing is highly attractive to limit beam damage in experimental STEM even though some remaining artifacts need to be resolved.

  20. Application of low-vacuum scanning electron microscopy for renal biopsy specimens.

    PubMed

    Miyazaki, Hiroki; Uozaki, Hiroshi; Tojo, Akihiro; Hirashima, Sayuri; Inaga, Sumire; Sakuma, Kei; Morishita, Yasuyuki; Fukayama, Masashi

    2012-09-15

    Low-vacuum scanning electron microscopy (LV-SEM) has been developed which enables the observation of soft, moist, and electrically insulating materials without any pretreatment unlike conventional scanning electron microscopy, in which samples must be solid, dry and usually electrically conductive. The purpose of this study was to assess the usefulness of LV-SEM for renal biopsy specimens. We analyzed 20 renal biopsy samples obtained for diagnostic purposes. The sections were stained with periodic acid methenamine silver to enhance the contrast, and subsequently examined by LV-SEM. LV-SEM showed a precise and fine structure of the glomerulus in both formalin fixed paraffin and glutaraldehyde-osmium tetroxide-fixed epoxy resin sections up to 10,000-fold magnification. The spike formation on the basement membrane was clearly observed in the membranous nephropathy samples. Similarly to transmission electron microscopy, electron dense deposits were observed in the epoxy resin sections of the IgA nephropathy and membranous nephropathy samples. LV-SEM could accurately show various glomerular lesions at high magnification after a simple and rapid processing of the samples. We consider that this is a novel and useful diagnostic tool for renal pathologies. PMID:22795691

  1. Specimen preparation by ion beam slope cutting for characterization of ductile damage by scanning electron microscopy.

    PubMed

    Besserer, Hans-Bernward; Gerstein, Gregory; Maier, Hans Jürgen; Nürnberger, Florian

    2016-04-01

    To investigate ductile damage in parts made by cold sheet-bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel. Microsc. Res. Tech. 79:321-327, 2016. © 2016 Wiley Periodicals, Inc. PMID:26854331

  2. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells.

    PubMed

    Havrdova, M; Polakova, K; Skopalik, J; Vujtek, M; Mokdad, A; Homolkova, M; Tucek, J; Nebesarova, J; Zboril, R

    2014-12-01

    When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine. PMID:25173605

  3. Variable Temperature Setup for Scanning Electron Microscopy in Liquids and Atmospheric Pressure Gaseous Environments

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed; Zhang, Jie; Li, Jianbo; Denault, Lauraine; Potyrailo, Radislav; Kolmakov, Andrei

    2014-03-01

    A thermoelectric cooling / heating setup for commercial Quantomix QX WETSEM scanning electron microscopy environmental cells was designed and tested. This addition allows extending ambient pressure in situ studies to be conducted in a wide temperature range both in liquid and gaseous environments. Instead of cooling/heating the entire body of QX-WETCELL, ultrathin polyimide electron transparent membrane window supported by metal mesh on the top of the cell has been used as an agent for heat transfer to/ from the Pelltier element. A butterfly wing of Morph sulkowskyi has been used as a model object in the QX-WETCELL's chamber due to its unique micro/nanostructure and peculiar wettability behavior. The dynamics of the water desorption, condensation and freezing processes were observed complementary using both optical microscopy and Scanning Electron Microscopy in vivo. The observations revel that the initial droplet formation were most likely taking place on the top of the wing ridges due to the waxy component of its surface. In addition, The SEM observation showed that the high intensity electron beam can heat the butterfly wing locally delaying the water condensation and freezing processes.

  4. The development of field-emission scanning electron microscopy for imaging biological surfaces.

    PubMed

    Pawley, J

    1997-08-01

    This article traces the important milestones in the development of high-resolution, field-emission, scanning electron microscopes (SEM). Such instruments are now capable of producing images of the surfaces of biological specimens that rival, in terms of resolution and contrast, those produced by conventional transmission electron microscopy (TEM). Even though one of the first instruments to produce a useful transmission electron microscope image was, in fact, an early scanning microscope, TEM reached its full potential for biological imaging almost 30 years sooner than did SEM. The main reason for this slow rate of development is the dependence of any scanning technique on source brightness. The only suitable electron source was the field-emission source, originally developed in the 1930's. Making this into a stable and reliable electron source for microscopy required many technical barriers to be overcome. An additional delay may have been caused by the great success that attended the introduction of early SEM instruments. These instruments which employed heated, tungsten hairpin cathodes, were inexpensive and reliable, but they that were also far from optimal in terms of optical performance. Their market success may have engendered the sense of inertia and complacency that further delayed the introduction of low aberrations objective lenses and field-emission sources for almost 20 years after they were first introduced to electron microscopy. In addition, the fact that these early SEMs accustomed users to operating with a much higher beam voltage than was either necessary or wise, lead many to assume that the SEM was incapable of producing high-resolution images of biological surfaces. This left them open to fascination with newer ahd slower techniques that, on balance, were less suitable than optimized SEM for most of their imaging needs. In parallel to these developments in instrumentation, major improvements were also made in the way that the specimen surface

  5. Metal resist for extreme ultraviolet lithography characterized by scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Sato, Yuta; Koshino, Masanori; Suenaga, Kazu; Itani, Toshiro

    2016-03-01

    We characterized the structures of metal resists used in EUV lithography by low-voltage aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS). This study presents the first atomic-level observation of resist components in resist film. The structures of metal (zirconium or titanium) oxide cores are unambiguously identified, and the local elemental distribution in the resist film is obtained. The initial size of zirconium oxide cores is well maintained in the resist film. However, titanium oxide cores tend to aggregate to form an indefinite structure. The spatial distribution of metal cores may influence lithographic characteristics.

  6. Serial block face scanning electron microscopy and the reconstruction of plant cell membrane systems.

    PubMed

    Kittelmann, M; Hawes, C; Hughes, L

    2016-08-01

    Serial block face imaging with the scanning electron microscope has been developed as an alternative to serial sectioning and transmission electron microscopy for the ultrastructural analysis of the three-dimensional organization of cells and tissues. An ultramicrotome within the microscope specimen chamber permits sectioning and imaging to a depth of many microns within resin-embedded specimens. The technology has only recently been adopted by plant microscopists and here we describe some specimen preparation procedures suitable for plant tissue, suggested microscope imaging parameters and discuss the software required for image reconstruction and analysis. PMID:27197647

  7. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    SciTech Connect

    Kim, Suhyun; Kim, Joong Jung; Jung, Younheum; Lee, Kyungwoo; Byun, Gwangsun; Hwang, KyoungHwan; Lee, Sunyoung; Lee, Kyupil

    2013-09-15

    Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  8. Large-scale Scanning Transmission Electron Microscopy (Nanotomy) of Healthy and Injured Zebrafish Brain.

    PubMed

    Kuipers, Jeroen; Kalicharan, Ruby D; Wolters, Anouk H G; van Ham, Tjakko J; Giepmans, Ben N G

    2016-01-01

    Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae(1-7). Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture(1-5). Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)(8) on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner. PMID:27285162

  9. Large-scale Scanning Transmission Electron Microscopy (Nanotomy) of Healthy and Injured Zebrafish Brain

    PubMed Central

    Kuipers, Jeroen; Kalicharan, Ruby D.; Wolters, Anouk H. G.

    2016-01-01

    Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae1-7. Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture1-5. Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)8 on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner. PMID:27285162

  10. Low temperature scanning electron microscopy of dog and guinea-pig hyaline articular cartilage.

    PubMed Central

    Gardner, D L; O'Connor, P; Oates, K

    1981-01-01

    Fifty seven blocks of cartilage excised from the femoral condyles of 20 beagle dogs, and whole lower ends of 5 guinea-pig femora, were examined at -195 degrees (78 K), by scanning electron microscopy. The unfixed tissue, taken into slushy nitrogen at -210 degrees (63 K), was not exposed to atmospheric air after quenching and remained fully hydrated throughout long periods of observation. Images susceptible to analysis were obtained from washed and from unwashed cartilage surfaces. Preliminary coating with gold or with aluminium, known to be possible without exposing cold cartilage surfaces to changes in temperature likely to cause water loss by sublimation, was valuable in minimising charging and in facilitating the recording of electron images at higher magnifications. Although examination was possible without coating, the resultant images were of low resolution. Microscopy revealed a pattern of secondary surface irregularities of tertiary elevations closely resembling those seen by the conventional scanning electron microscopy of fixed, dehydrated hyaline cartilage. However, the pattern of tertiary surface structures was predominantly that of elevations, not of hollows. Quaternary surface ridges were common on the surfaces of excised dog cartilage blocks and were not seen on the surfaces of guinea-pig cartilage which remained on the femoral condyles. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:7024225

  11. Scanning electron microscopy study of adhesion in sea urchin blastulae. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Crowther, Susan D.

    1988-01-01

    The dissociation supernatant (DS) isolated by disaggregating Strongylocentrotus purpuratus blastulae in calcium- and magnesium-free seawater specifically promotes reaggregation of S. purpuratus blastula cells. The purpose of this study was to use scanning electron microscopy to examine the gross morphology of aggregates formed in the presence of DS to see if it resembles adhesion in partially dissociated blastulae. A new reaggregation procedure developed here, using large volumes of cell suspension and a large diameter of rotation, was utilized to obtain sufficient quantities of aggregates for scanning electron microscopy. The results indicate that aggregates formed in the presence of DS resemble partially dissociated intact embryos in terms of the direct cell-cell adhesion observed. DS did not cause aggregation to form as a result of the entrapment of cells in masses of extracellular material. These studies provide the groundwork for further studies using transmission electron microscopy to more precisely define the adhesive contacts made by cells in the presence of the putative adhesion molecules present in DS.

  12. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    PubMed

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams. PMID:26750260

  13. Use of fluorescence and scanning electron microscopy as tools in teaching biology

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Silva, Jessica; Vazquez, Aracely; Das, A. B.; Smith, Don W.

    2011-06-01

    Recent nationwide surveys reveal significant decline in students' interest in Math and Sciences. The objective of this project was to inspire young minds in using various techniques involved in Sciences including Scanning Electron Microscopy. We used Scanning Electron Microscope in demonstrating various types of Biological samples. An SEM Tabletop model in the past decade has revolutionized the use of Scanning Electron Microscopes. Using SEM Tabletop model TM 1000 we studied biological specimens of fungal spores, pollen grains, diatoms, plant fibers, dust mites, insect parts and leaf surfaces. We also used fluorescence microscopy to view, to record and analyze various specimens with an Olympus BX40 microscope equipped with FITC and TRITC fluorescent filters, a mercury lamp source, DP-70 digital camera with Image Pro 6.0 software. Micrographs were captured using bright field microscopy, the fluoresceinisothiocyanate (FITC) filter, and the tetramethylrhodamine (TRITC) filter settings at 40X. A high pressure mercury lamp or UV source was used to excite the storage molecules or proteins which exhibited autofluorescence. We used fluorescent microscopy to confirm the localization of sugar beet viruses in plant organs by viewing the vascular bundles in the thin sections of the leaves and other tissues. We worked with the REU summer students on sample preparation and observation on various samples utilizing the SEM. Critical Point Drying (CPD) and metal coating with the sputter coater was followed before observing some cultured specimen and the samples that were soft in textures with high water content. SEM Top allowed investigating the detailed morphological features that can be used for classroom teaching. Undergraduate and graduate researchers studied biological samples of Arthropods, pollen grains and teeth collected from four species of snakes using SEM. This project inspired the research students to pursue their career in higher studies in science and 45% of the

  14. Accurate Nanoscale Crystallography in Real-Space Using Scanning Transmission Electron Microscopy.

    PubMed

    Dycus, J Houston; Harris, Joshua S; Sang, Xiahan; Fancher, Chris M; Findlay, Scott D; Oni, Adedapo A; Chan, Tsung-Ta E; Koch, Carl C; Jones, Jacob L; Allen, Leslie J; Irving, Douglas L; LeBeau, James M

    2015-08-01

    Here, we report reproducible and accurate measurement of crystallographic parameters using scanning transmission electron microscopy. This is made possible by removing drift and residual scan distortion. We demonstrate real-space lattice parameter measurements with <0.1% error for complex-layered chalcogenides Bi2Te3, Bi2Se3, and a Bi2Te2.7Se0.3 nanostructured alloy. Pairing the technique with atomic resolution spectroscopy, we connect local structure with chemistry and bonding. Combining these results with density functional theory, we show that the incorporation of Se into Bi2Te3 causes charge redistribution that anomalously increases the van der Waals gap between building blocks of the layered structure. The results show that atomic resolution imaging with electrons can accurately and robustly quantify crystallography at the nanoscale. PMID:26169835

  15. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    SciTech Connect

    Pelliccione, M.; Bartel, J.; Goldhaber-Gordon, D.; Sciambi, A.; Pfeiffer, L. N.; West, K. W.

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  16. Atomic-scale mapping of electronic structures across heterointerfaces by cross-sectional scanning tunneling microscopy.

    PubMed

    Chiu, Ya-Ping; Huang, Bo-Chao; Shih, Min-Chuan; Huang, Po-Cheng; Chen, Chun-Wei

    2015-09-01

    Interfacial science has received much attention recently based on the development of state-of-the-art analytical tools that can create and manipulate the charge, spin, orbital, and lattice degrees of freedom at interfaces. Motivated by the importance of nanoscale interfacial science that governs device operation, we present a technique to probe the electronic characteristics of heterointerfaces with atomic resolution. In this work, the interfacial characteristics of heteroepitaxial structures are investigated and the fundamental mechanisms that pertain in these systems are elucidated through cross-sectional scanning tunneling microscopy (XSTM). The XSTM technique is employed here to directly observe epitaxial interfacial structures and probe local electronic properties with atomic-level capability. Scanning tunneling microscopy and spectroscopy experiments with atomic precision provide insight into the origin and spatial distribution of electronic properties across heterointerfaces. The first part of this report provides a brief description of the cleavage technique and spectroscopy analysis in XSTM measurements. The second part addresses interfacial electronic structures of several model heterostructures in current condensed matter research using XSTM. Topics to be discussed include high-κ's/III-V's semiconductors, polymer heterojunctions, and complex oxide heterostructures, which are all material systems whose investigation using this technique is expected to benefit the research community. Finally, practical aspects and perspectives of using XSTM in interface science are presented. PMID:26202580

  17. Atomic-scale mapping of electronic structures across heterointerfaces by cross-sectional scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Chiu, Ya-Ping; Huang, Bo-Chao; Shih, Min-Chuan; Huang, Po-Cheng; Chen, Chun-Wei

    2015-09-01

    Interfacial science has received much attention recently based on the development of state-of-the-art analytical tools that can create and manipulate the charge, spin, orbital, and lattice degrees of freedom at interfaces. Motivated by the importance of nanoscale interfacial science that governs device operation, we present a technique to probe the electronic characteristics of heterointerfaces with atomic resolution. In this work, the interfacial characteristics of heteroepitaxial structures are investigated and the fundamental mechanisms that pertain in these systems are elucidated through cross-sectional scanning tunneling microscopy (XSTM). The XSTM technique is employed here to directly observe epitaxial interfacial structures and probe local electronic properties with atomic-level capability. Scanning tunneling microscopy and spectroscopy experiments with atomic precision provide insight into the origin and spatial distribution of electronic properties across heterointerfaces. The first part of this report provides a brief description of the cleavage technique and spectroscopy analysis in XSTM measurements. The second part addresses interfacial electronic structures of several model heterostructures in current condensed matter research using XSTM. Topics to be discussed include high-κ‘s/III-V’s semiconductors, polymer heterojunctions, and complex oxide heterostructures, which are all material systems whose investigation using this technique is expected to benefit the research community. Finally, practical aspects and perspectives of using XSTM in interface science are presented.

  18. Scanning Transmission X-Ray, Laser Scanning, and Transmission Electron Microscopy Mapping of the Exopolymeric Matrix of Microbial Biofilms

    PubMed Central

    Lawrence, J. R.; Swerhone, G. D. W.; Leppard, G. G.; Araki, T.; Zhang, X.; West, M. M.; Hitchcock, A. P.

    2003-01-01

    Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provided the highest-resolution structural imaging, CLSM provided detailed compositional information when used in conjunction with molecular probes, and STXM provided compositional mapping of macromolecule distributions without the addition of probes. By examining exactly the same region of a sample with combinations of these techniques (STXM with CLSM and STXM with TEM), we demonstrate that this combination of multimicroscopy analysis can be used to create a detailed correlative map of biofilm structure and composition. We are using these correlative techniques to improve our understanding of the biochemical basis for biofilm organization and to assist studies intended to investigate and optimize biofilms for environmental remediation applications. PMID:12957944

  19. Scanning electron acoustic microscopy of residual stresses in ceramics: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Qian, Menglu

    1992-01-01

    Several reviews have highlighted a number of applications of scanning electron acoustic microscopy (SEAM) to metals and semiconductors which show that SEAM can provide new information on surface and near-surface features of such materials, but there have been few studies attempting to determine the capabilities of SEAM for characterizing ceramic materials. We have recently observed image contrast in SEAM from residual stress fields induced in brittle materials by Vickers indentations that is strongly dependent on the electron beam chopping frequency. We have also recently developed a three-dimensional mathematical model of signal generation and contrast in SEAM, appropriate to the brittle materials studied, that we use as a starting point in this paper for modeling the effect of residual stress fields on the generated electron acoustic signal. The influence of the electron beam chopping frequency is also considered under restrictive assumptions.

  20. Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Clauss, W.; Bergeron, D. J.; Freitag, M.; Kane, C. L.; Mele, E. J.; Johnson, A. T.

    1999-09-01

    Single-wall carbon nanotubes, seamless cylindrical molecules formed from a graphene sheet, are either conducting or semiconducting, depending on the particular "wrapping vector" that defines the waist of the tube. Scanning tunneling microscopy experiments have tested this idea by simultaneously measuring a tube's lattice structure and electronic properties. Here we present a series of STM images of single-wall carbon nanotubes with a strikingly rich set of superstructures. The observed patterns can be understood as due to interference between propagating electron waves that are reflected from defects on the tube walls and ends, or as intrinsic to states propagating on semiconducting tubes. The measured broken symmetries can be used to directly probe electronic backscattering on the tube and provide a key element in the understanding of low-energy electron transport on these structures.

  1. A differentially pumped secondary electron detector for low-vacuum scanning electron microscopy.

    PubMed

    Jacka, M; Zadrazil, M; Lopour, F

    2003-01-01

    A new design of secondary electron (SE) detector is described for use in low-vacuum scanning electron microscopes. Its distinguishing feature is a separate detector chamber, which can be maintained at a pressure independent of the pressure in the specimen chamber. The two chambers are separated by a perforated membrane or mesh across which an electric field is applied, making it relatively transparent to low-energy electrons but considerably less so to the gas molecules. The benefits of this arrangement are discussed. The final means of detecting the electrons can be a conventional scintillator and photomultiplier arrangement or any of the methods using the ambient gas as an amplifying medium. Images obtained with the detector show good SE contrast and low backscattered electron contribution. PMID:14748387

  2. Ti-6Al-4V electron beam weld qualification using laser scanning confocal microscopy

    SciTech Connect

    Wanjara, P. . E-mail: priti.wanjara@cnrc-nrc.gc.ca; Brochu, M.; Jahazi, M.

    2005-03-15

    Processing conditions for manufacturing Ti-6Al-4V components by welding using an electron beam source are known to influence the transformation microstructure in the narrow fusion and heat-affected zones of the weld region. This work examined the effect of multiple-sequence welding on the characteristics of the transformed beta microstructure, using laser scanning confocal microscopy to resolve the Widmanstaetten alpha-beta structure in the fusion zone. The evolution in the alpha interlamellar spacing and plate thickness with processing was then related to microhardness measurements in the weld region.

  3. Study of environmental biodegradation of LDPE films in soil using optical and scanning electron microscopy.

    PubMed

    Mumtaz, Tabassum; Khan, M R; Hassan, Mohd Ali

    2010-07-01

    An outdoor soil burial test was carried out to evaluate the degradation of commercially available LDPE carrier bags in natural soil for up to 2 years. Biodegradability of low density polyethylene films in soil was monitored using both optical and scanning electron microscopy (SEM). After 7-9 months of soil exposure, microbial colonization was evident on the film surface. Exposed LDPE samples exhibit progressive changes towards degradation after 17-22 months. SEM images reveal signs of degradation such as exfoliation and formation of cracks on film leading to disintegration. The possible degradation mode and consequences on the use and disposal of LDPE films is discussed. PMID:20207547

  4. Scanning electron microscopy of growing dental plaque: a quantitative study with different mouth rinses.

    PubMed

    Jentsch, Holger; Mozaffari, Eshan; Jonas, Ludwig

    2013-08-01

    The aim of this study was to quantify the influence of different mouth rinses on dental plaque. Wearing splints with enamel pieces 24 volunteers rinsed with essential oils, amine/stannous fluoride, or chlorhexidine digluconate (0.12%) mouth rinses. After 24, 48, 72, and 96 h the enamel pieces were analyzed by scanning electron microscopy. The counts of cocci and bacilli in different plaque layers and the plaque thickness were almost similar using essential oils and amine/stannous fluoride. These results differed significantly from those of chlorhexidine digluconate mouth rinses. The results for plaque thickness were without significant differences between the groups at any appointment. PMID:23758106

  5. Scanning electron microscopy of scales and its taxonomic application in the fish genus Channa.

    PubMed

    Dey, Sudip; Biswas, Shyama P; Dey, Samujjwal; Bhattacharyya, Shankar P

    2014-08-01

    Scanning electron microscopy (SEM) of scales in six species of the fish genus Channa revealed certain features relevant to taxonomic significance. The location of focus, inter-radial distance and width of circuli, inter-circular space, width of radii, shape and size of lepidonts, etc. were found to be different in different species. The importance of SEM of scales in poorly understood taxonomy and phylogeny of the fish genus Channa is discussed with the help of relevant literature. Further, the role of SEM of fish scales for taxonomic applications is discussed in detail. PMID:24870451

  6. Scanning gate microscopy of electronic inhomogeneities in single-walled carbon nanotube (SWCNT) devices

    NASA Astrophysics Data System (ADS)

    Hunt, Steven R.; Collins, Phillip G.

    2010-03-01

    The electronic properties of graphitic carbon devices are primarily determined by the contact metal and the carbon band structure. However, inhomogeneities such as substrate imperfections, surface defects, and mobile contaminants also contribute and can lead to transistor-like behaviors. We experimentally investigate this phenomena in the 1-D limit using metallic single-walled carbon nanotubes (SWCNTs) before and after the electrochemical creation of sidewall defects. While scanning gate microscopy readily identifies the defect sites, the energy-dependence of the technique allows quantitative analysis of the defects and discrimination of different defect types. This research is partly supported by the NSF (DMR 08-xxxx).

  7. Three-dimensional aspects of superficial disseminated porokeratosis with scanning electron microscopy*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; de Abreu, Luciana Boff; Rampon, Greice; Silva, Ricardo Marques e; Rocha, Nara Moreira

    2014-01-01

    The three-dimensional findings of the surface and from a cross section from a case of disseminated superficial porokeratois using scanning electron microscopy are reported. On the surface of the skin, irregular keratin with a serpiginous distribution was seen. A gross aspect of keratin in the hyperkeratotic wall was also observed and compared to the normal area, in which the release of corneocytes seemed normal. The cross-sectional imaging easily identified the cornoid lamella, with compact keratin surrounded by normal stratum corneum. PMID:25387509

  8. Three-dimensional aspects of superficial disseminated porokeratosis with scanning electron microscopy.

    PubMed

    Almeida, Hiram Larangeira de; Abreu, Luciana Boff de; Rampon, Greice; Silva, Ricardo Marques e; Rocha, Nara Moreira

    2014-01-01

    The three-dimensional findings of the surface and from a cross section from a case of disseminated superficial porokeratois using scanning electron microscopy are reported. On the surface of the skin, irregular keratin with a serpiginous distribution was seen. A gross aspect of keratin in the hyperkeratotic wall was also observed and compared to the normal area, in which the release of corneocytes seemed normal. The cross-sectional imaging easily identified the cornoid lamella, with compact keratin surrounded by normal stratum corneum. PMID:25387509

  9. Scanning electron microscopy of a blister roof in dystrophic epidermolysis bullosa*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Monteiro, Luciane; Silva, Ricardo Marques e; Rocha, Nara Moreira; Scheffer, Hans

    2013-01-01

    In dystrophic epidermolysis bullosa the genetic defect of anchoring fibrils leads to cleavage beneath the basement membrane, with its consequent loss. We performed scanning electron microscopy of an inverted blister roof of a case of dystrophic epidermolysis bullosa, confirmed by immunomapping and gene sequencing. With a magnification of 2000 times a net attached to the blister roof could be easily identified. This net was composed of intertwined flat fibers. With higher magnifications, different fiber sizes could be observed, some thin fibers measuring around 80 nm and thicker ones measuring between 200 and 300 nm. PMID:24474107

  10. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy

    SciTech Connect

    Findlay, S. D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Yamamoto, T.; Ikuhara, Y.

    2009-11-09

    We show that an annular detector placed within the bright field cone in scanning transmission electron microscopy allows direct imaging of light elements in crystals. In contrast to common high angle annular dark field imaging, both light and heavy atom columns are visible simultaneously. In contrast to common bright field imaging, the images are directly and robustly interpretable over a large range of thicknesses. We demonstrate this through systematic simulations and present a simple physical model to obtain some insight into the scattering dynamics.

  11. On the visibility of very thin specimens in annular bright field scanning transmission electron microscopy

    SciTech Connect

    Phillips, P. J.; Klie, R. F.

    2013-07-15

    Annular bright field (ABF) scanning transmission electron microscopy (STEM) is emerging as an important observation mode for its ability to simultaneously image both heavy and light elements. However, recent results have demonstrated that in the limit of a very thin specimen (a few atomic layers), the ABF and high angle annular dark field (HAADF) signals cease to be intuitively related: a phenomenon which is generally irrelevant when imaging 'normal' specimens. ABF/HAADF STEM observations and multislice image simulations of two catalyst samples of differing atomic weights are presented; it is shown that the nature of the ABF signal is specimen dependent.

  12. Use of low-temperature scanning electron microscopy to observe icicles, ice fabric, rime and frost

    SciTech Connect

    Wergin, W.P.; Rango, A.; Erbe, E.F.

    1996-12-31

    Previous studies showed that low temperature scanning electron microscopy (SEM) can be used to record images of precipitated snow crystals, which collectively form structures that are commonly known as snowflakes. Information about the structure of snow crystals can be used to improve models that estimate the water equivalent of the winter snowpack. These models, which are based on satellite microwave data, have practical use in approximating the quantity of water that will be available for crop irrigation and hydroelectric power. Our previous success of using low temperature SEM to image snow crystals has encouraged us to utilize this technique for other types of frozen aqueous specimens.

  13. Gallocyanin-chromalum for improved scanning electron microscopy of whole nuclei without critical point drying.

    PubMed

    Welter, D A; Schöler, J; Rosenquist, T H

    1978-11-01

    Bone marrow nuclei fixed with modified Carnoy's, then stained with gallocyanin chromalum followed by air drying showed no difference in morphology when compared by means of scanning electron microscopy with similar nuclei prepared by critical point drying. Glutaraldehyde at pH 4.0 and 7.1, mercury-containing Zenker's fluid, and chromalum alone, all of which are considered to be nuclear protein cross-linking fixatives, failed to preserve the nuclear morphology as well as gallocyanin-chromalum or critical point prepared bone marro nuclei. PMID:89717

  14. Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids

    NASA Astrophysics Data System (ADS)

    Schuh, Tobias; de Jonge, Niels

    2014-02-01

    Scanning transmission electron microscopy (STEM) of specimens in liquid is possible using a microfluidic chamber with thin silicon nitride windows. This paper includes an analytic equation of the resolution as a function of the sample thickness and the vertical position of an object in the liquid. The equipment for STEM of liquid specimen is briefly described. STEM provides nanometer resolution in micrometer-thick liquid layers with relevance for both biological research and materials science. Using this technique, we investigated tagged proteins in whole eukaryotic cells, and gold nanoparticles in liquid with time-lapse image series. Possibly future applications are discussed.

  15. The Effect of Electron Beam Irradiation in Environmental Scanning Transmission Electron Microscopy of Whole Cells in Liquid.

    PubMed

    Hermannsdörfer, Justus; Tinnemann, Verena; Peckys, Diana B; de Jonge, Niels

    2016-06-01

    Whole cells can be studied in their native liquid environment using electron microscopy, and unique information about the locations and stoichiometry of individual membrane proteins can be obtained from many cells thus taking cell heterogeneity into account. Of key importance for the further development of this microscopy technology is knowledge about the effect of electron beam radiation on the samples under investigation. We used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to examine the effect of radiation for whole fixed COS7 fibroblasts in liquid. The main observation was the localization of nanoparticle labels attached to epidermal growth factor receptors (EGFRs). It was found that the relative distances between the labels remained mostly unchanged (<1.5%) for electron doses ranging from the undamaged native state at 10 e-/Å2 toward 103 e-/Å2. This dose range was sufficient to determine the EGFR locations with nanometer resolution and to distinguish between monomers and dimers. Various different forms of radiation damage became visible at higher doses, including severe dislocation, and the dissolution of labels. PMID:27137077

  16. Photosynthetic Electron Transport in Single Guard Cells as Measured by Scanning Electrochemical Microscopy.

    PubMed Central

    Tsionsky, M.; Cardon, Z. G.; Bard, A. J.; Jackson, R. B.

    1997-01-01

    Scanning electrochemical microscopy (SECM) is a powerful new tool for studying chemical and biological processes. It records changes in faradaic current as a microelectrode ([less than equal]7 [mu]m in diameter) is moved across the surface of a sample. The current varies as a function of both distance from the surface and the surface's chemical and electrical properties. We used SECM to examine in vivo topography and photosynthetic electron transport of individual guard cells in Tradescantia fluminensis, to our knowledge the first such analysis for an intact plant. We measured surface topography at the micrometer level and concentration profiles of O2 evolved in photosynthetic electron transport. Comparison of topography and oxygen profiles above single stomatal complexes clearly showed photosynthetic electron transport in guard cells, as indicated by induction of O2 evolution by photosynthetically active radiation. SECM is unique in its ability to measure topography and chemical fluxes, combining some of the attributes of patch clamping with scanning tunneling microscopy. In this paper we suggest several questions in plant physiology that it might address. PMID:12223651

  17. 3D imaging of the early embryonic chicken heart with focused ion beam scanning electron microscopy

    PubMed Central

    Rennie, Monique Y.; Gahan, Curran G.; López, Claudia S.; Thornburg, Kent L.; Rugonyi, Sandra

    2015-01-01

    Early embryonic heart development is a period of dynamic growth and remodeling, with rapid changes occurring at the tissue, cell, and subcellular levels. A detailed understanding of the events that establish the components of the heart wall has been hampered by a lack of methodologies for three dimensional (3D), high-resolution imaging. Focused ion beam-scanning electron microscopy (FIB-SEM) is a novel technology for imaging 3D tissue volumes at the subcellular level. FIB-SEM alternates between imaging the block face with a scanning electron beam and milling away thin sections of tissue with a focused ion beam, allowing for collection and analysis of 3D data. FIB-SEM was used to image the three layers of the day 4 chicken embryo heart: myocardium, cardiac jelly, and endocardium. Individual images obtained with FIB-SEM were comparable in quality and resolution to those obtained with transmission electron microscopy (TEM). Up to 1100 serial images were obtained in 4 nm increments at 4.88 nm resolution, and image stacks were aligned to create volumes 800–1500 μm3 in size. Segmentation of organelles revealed their organization and distinct volume fractions between cardiac wall layers. We conclude that FIB-SEM is a powerful modality for 3D subcellular imaging of the embryonic heart wall. PMID:24742339

  18. Ultrafast scanning probe microscopy

    SciTech Connect

    Botkin, D.; Weiss, S.; Ogletree, D.F.; Salmeron, M.; Chemla, D.S.

    1994-01-01

    The authors have developed a general technique which combines the temporal resolution of ultrafast laser spectroscopy with the spatial resolution of scanned probe microscopy (SPM). Using this technique with scanning tunneling microscopy (STM), they have obtained simultaneous 2 ps time resolution and 50 {angstrom} spatial resolution. This improves the time resolution currently attainable with STM by nine orders of magnitude. The potential of this powerful technique for studying ultrafast dynamical phenomena on surfaces with atomic resolution is discussed.

  19. New area detector for atomic-resolution scanning transmission electron microscopy.

    PubMed

    Shibata, Naoya; Kohno, Yuji; Findlay, Scott D; Sawada, Hidetaka; Kondo, Yukihito; Ikuhara, Yuichi

    2010-01-01

    A new area detector for atomic-resolution scanning transmission electron microscopy (STEM) is developed and tested. The circular detector is divided into 16 segments which are individually optically coupled with photomultiplier tubes. Thus, 16 atomic-resolution STEM images which are sensitive to the spatial distribution of scattered electrons on the detector plane can be simultaneously obtained. This new detector can be potentially used not only for the simultaneous formation of common bright-field, low-angle annular dark-field and high-angle annular dark-field images, but also for the quantification of images by detecting the full range of scattered electrons and even for exploring novel atomic-resolution imaging modes by post-processing combination of the individual images. PMID:20406732

  20. An In vitro Study on Post Bleaching Pigmentation Susceptibility of Teeth and Scanning Electron Microscopy Analysis

    PubMed Central

    Latha, S Pushpa; Hegde, Vani; Raheel, Syed Ahmed; Tarakji, Bassel; Azzeghaiby, Saleh Nasser; Nassani, Mohammad Zakaria

    2014-01-01

    Background: To determine the susceptibility of teeth for repigmentation after bleaching. Materials and Methods: Forty premolars were assigned to three groups (n = 12). Group 1 was bleached using 30% w/v hydrogen peroxide 15 min 3 times a day every other day for 4 days. In Group 2 was bleached using 16% carbamide peroxide (Polanight), 90 min a day for 15 days. 2 days later, the shades of the bleached teeth were recorded. Remaining 4 teeth were bleached according to Group 1 and 2 and were subjected to atomic force microscopy, scanning electron microscopy analysis. Results: Specimens of athome bleaching were lighter than the specimens of inoffice bleaching. Conclusion: The susceptibility of enamel to pigmentation can be increased after bleaching, and pigmentation is greater if bleaching is performed with H2O2. The percentage change (lighter) was more for athome bleaching specimens as compared to inoffice bleaching specimens. PMID:25395800

  1. Morphology of the dentin structure of sloths Bradypus tridactylus: a light and scanning electron microscopy investigation.

    PubMed

    Santana, L N S; Barbosa, L V M; Teixeira, F B; Costa, A M P; Fernandes, L M P; Lima, R R

    2013-12-01

    The aim of this study was to describe the dentine morphology of sloths (Bradypus tridactylus). The sloth teeth were removed and prepared for light microscopy (LM) and scanning electron microscopy analyses (SEM). LM revealed two patterns of tubular dentins: an outer with dentinary tubules over the all tooth length and one in the inner part with larger diameter and more spaced tubules, when compared to those present in the outer dentine. These findings were confirmed by SEM, which revealed a tubular pattern in the outer dentine like in humans. The inner dentine displayed pared grouped tubules that were characterized as vascular channels. It can be concluded that this sloth species present two types of dentins: an inner dentin (ortodentin) and an outer dentin characterized as a vascular dentin. This suggests a partial evolutive/adaptive process of this dental tissue, as compared to other mammalian species. PMID:23410180

  2. An assessment of the formation of electrodeposited scales using scanning electron and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Morizot, A. P.; Neville, A.; Taylor, J. D.

    2002-04-01

    The deposition of insoluble salts onto surfaces in process systems represents an important operational problem. Mineral scale formation (e.g. CaCO 3 and BaSO 4) can result from fluid streams becoming supersaturated when incompatible waters combine (e.g. in oil recovery) or can be formed when cathodic protection is applied and electrodeposition occurs. In this study, electrodeposition is studied on metal rotating disk electrodes (RDE) in artificial seawater under static conditions and under rotation at 400 rpm. Also, a Ca-free brine and a Mg-free brine of the same dissolved solids level were used in static tests. The focus of the study is the assessment of the electrochemical response of the system under potentiostatic control and correlation of the current versus time measurements to the characteristics of the scale determined via scanning electron microscopy and atomic force microscopy analysis.

  3. Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis

    SciTech Connect

    Krueger, Brenda J.; Grassian, Vicki H.; Iedema, Martin J.; Cowin, James P.; Laskin, Alexander

    2003-10-01

    In this paper, we demonstrate the utility of single-particle analysis to investigate the chemistry of isolated, individual particles of atmospheric relevance such as NaCl, sea salt, CaCO3, and SiO2. A variety of state-of-th-art scanning electron microscopy techniques, including environmental scanning electon microscopy and computer-controlled scanning electron microscopy/energy-dispersive X-ray analysis, were utilized for monitoring and quantifying phase transitions of individual particles, morphology, and compositional changes of individual particles as they react with nitric acid.

  4. High-resolution spin-polarized scanning electron microscopy (spin SEM).

    PubMed

    Kohashi, Teruo; Konoto, Makoto; Koike, Kazuyuki

    2010-01-01

    We have developed spin-polarized scanning electron microscopy (spin SEM) with a 5-nm resolution. The secondary electron optics is very important, as it needs to transfer a sufficient number of secondary electrons to the spin polarimeter, due to the low efficiency of the polarimeter. The optics was designed using a three-dimensional (3D) simulation program of the secondary electron trajectories, and it achieves highly efficient collection and transport of the secondary electrons even though the distance between the sample and the objective lens exit of the electron gun remains short. Moreover, the designed optics enables us to obtain clear SEM images in the spin SEM measurement and to precisely adjust the probe beam shape. These functions lead to images with high spatial resolution and sufficient signal-to-noise (S/N) ratios. This optics has been installed in an ultra-high vacuum (UHV) spin SEM chamber with a Schottky-type electron gun for the probe electron beam. We observed recorded bits on a perpendicular magnetic recording medium and visualized small irregularities in the bit shapes around the track edges and bit boundaries. The high resolution of 5 nm was demonstrated by observing the smallest domain composed by a single grain in the recording medium. PMID:19840986

  5. New Aspidoderidae species parasite of Didelphis aurita (Mammalia: Didelphidae): a light and scanning electron microscopy approach.

    PubMed

    Chagas-Moutinho, V A; Sant'anna, V; Oliveira-Menezes, A; De Souza, W

    2014-02-01

    Nematodes of the family Aspidoderidae (Nematoda: Heterakoidea) Skrjabin and Schikobalova, 1947, are widely distributed in the Americas. The family Aspidoderidae includes the subfamilies Aspidoderinae Skrjabin and Schikobalova, 1947, and Lauroiinae Skrjabin and Schikobalova, 1951. These two subfamilies are delineated by the presence or absence of cephalic cordons at the anterior region. The nematodes in the subfamily Aspidoderinae, which includes the genus AspidoderaRailliet and Henry, 1912, are represented by nematodes with anterior cephalic cordons at the anterior end. The nematodes of the genus AspidoderaRailliet and Henry, 1912, are found in the cecum and large intestine of mammals of the orders Edentata, Marsupialia and Rodentia. Species within this genus have many morphological similarities. The use of scanning electron microscopy allows the specific characterization of the species within this genus. In the present work, we describe a new species of Aspidodera parasite of the large intestine of Didelphis aurita (Mammalia: Didelphidae) Wied-Neuwied, 1826, collected from Cachoeiras de Macacu, Rio de Janeiro. The combination of light and scanning electron microscopy allowed us a detailed analysis of this nematode. PMID:24129095

  6. Plasmonic Field Enhancement of Individual Nanoparticles by Correlated Scanning and Photoemission Electron Microscopy

    SciTech Connect

    Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.

    2011-01-21

    We present results of a combined two-photon photoemission and scanning electron microscopy investigation to determine the electromagnetic enhancement factors of silver-coated spherical nanoparticles deposited on an atomically flat mica substrate. Femtosecond laser excitation, of the nanoparticles, produces intense photoemission, attributed to near-resonant excitation of localized surface plasmons. Enhancement factors are determined by comparing the respective two-photon photoemission yield measured for equal areas between single nanoparticles to that of the surrounding flat surface. For s-polarized, 400 nm (~ 3.1 eV) femtosecond radiation a distribution of enhancement factors are found with a large percentage (77%) of the nanoparticles falling within a median range. A correlated scanning electron microscopy analysis demonstrated that the nanoparticles typifying the median of the distribution were characterized by ideal spherical shapes and defect-free morphologies. The single largest enhancement factors were in contrast produced by a very small percentage (8%) of the total, for which evidence of silver defect anomalies were found that contributed to the overall structure of the nanoparticle. Comparisons are made between the experimentally measured enhancement factors and previously reported theoretical predictions of the localized surface plasmon near-field intensities for isolated nanometer-sized silver spheres.

  7. 3D imaging of mammalian cells with ion-abrasion scanning electron microscopy.

    PubMed

    Heymann, Jurgen A W; Shi, Dan; Kim, Sang; Bliss, Donald; Milne, Jacqueline L S; Subramaniam, Sriram

    2009-04-01

    Understanding the hierarchical organization of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. We are using ion-abrasion scanning electron microscopy (IA-SEM) to visualize this hierarchical organization in an approach that combines focused ion-beam milling with scanning electron microscopy. Here, we extend our previous studies on imaging yeast cells to image subcellular architecture in human melanoma cells and melanocytes at resolutions as high as approximately 6 and approximately 20 nm in the directions parallel and perpendicular, respectively, to the direction of ion-beam milling. The 3D images demonstrate the striking spatial relationships between specific organelles such as mitochondria and membranes of the endoplasmic reticulum, and the distribution of unique cellular components such as melanosomes. We also show that 10nm-sized gold particles and quantum dot particles with 7 nm-sized cores can be detected in single cross-sectional images. IA-SEM is thus a useful tool for imaging large mammalian cells in their entirety at resolutions in the nanometer range. PMID:19116171

  8. Probing core-electron orbitals by scanning transmission electron microscopy and measuring the delocalization of core-level excitations

    NASA Astrophysics Data System (ADS)

    Jeong, Jong Seok; Odlyzko, Michael L.; Xu, Peng; Jalan, Bharat; Mkhoyan, K. Andre

    2016-04-01

    By recording low-noise energy-dispersive x-ray spectroscopy maps from crystalline specimens using aberration-corrected scanning transmission electron microscopy, it is possible to probe core-level electron orbitals in real space. Both the 1 s and 2 p orbitals of Sr and Ti atoms in SrTi O3 are probed, and their projected excitation potentials are determined. This paper also demonstrates experimental measurement of the electronic excitation impact parameter and the delocalization of an excitation due to Coulombic beam-orbital interaction.

  9. Synthesis and Cs-Corrected Scanning Transmission Electron Microscopy Characterization of Multimetallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna; Bhattarai, Nabraj; Velázquez-Salazar, Jesus; Jose-Yacaman, Miguel; Subarna Khanal Team

    2014-03-01

    Multimetallic nanoparticles have been attracted greater attention both in materials science and nanotechnology due to its unique electronic, optical, biological, and catalytic properties lead by physiochemical interactions among different atoms and phases. The distinct features of multimetallic nanoparticles enhanced synergetic properties, large surface to volume ratio and quantum size effects ultimately lead to novel and wide range of possibilities for different applications than monometallic counterparts. For instance, PtPd, Pt/Cu, Au-Au3Cu, AgPd/Pt, AuCu/Pt and many other multimetallic nanoparticles have raised interest for their various applications in fuel cells, ethanol and methanol oxidation reactions, hydrogen storage, and so on. The nanostructures were analyzed by transmission electron microscopy (TEM) and by aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM), in combination with high angle annular dark field (HAADF), bright field (BF), energy dispersive X-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) detectors. These techniques allowed us to probe the structure at the atomic level of the nanoparticles revealing new structural information and elemental composition of the nanoparticles. The authors would like to acknowledge NSF grants DMR-1103730, ``Alloys at the Nanoscale: The Case of Nanoparticles Second Phase'' and NSF PREM Grant # DMR 0934218.

  10. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    DOE PAGESBeta

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, makingmore » it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Ultimately, simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.« less

  11. Analysis of high quality monatomic chromium films used in biological high resolution scanning electron microscopy.

    PubMed

    Apkarian, R P

    1994-01-01

    During the recent employment of field emission (FE) in-lens scanning electron microscopes (SEMs), refractory metal deposition technology has co-evolved to provide enhanced contrast of 1-10 nm hydrocarbon based biological structures imaged at high magnifications (> 200,000 times). Pioneer development employing the Penning sputter system in a high vacuum chamber proved that imaging of chromium (Cr) coated biological specimens contained enriched secondary electron (SE)-(I) contrasts. Single nanometer size fibrillar and particulate ectodomains within the context of complex biological membranes were accurately imaged without significant enlargement using the high resolution SE-I mode (HRSEM). This paper reports the transmission electron microscopy (TEM) testing of ultrathin (0.5-2.0 nm) Cr films deposited by planar magnetron sputter coating (PMSC). Essential parameters necessary to reproduce quality sputtered films of refractory metals used in HRSEM studies were described for the vacuum system and target operation conditions (current, voltage, and target distance). HRSEM imaging of biological specimens is presented to assess contrast attained from ultrathin fine grain Cr films deposited by PMSC. High magnification images were recorded to illustrate high quality contrasts attainable by HRSEM at low (1-5 kV) and high (10-30 kV) voltages. Dispersed molecules on formvar coated grids were sputter coated with a 1 nm thick Cr film before employing scanning transmission (STEM)/SEM modes of the FESEM to establish non-decorative image accuracy in the transmitted electron mode. PMID:7701300

  12. The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens.

    PubMed

    Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels

    2012-06-01

    Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as a function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as a function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens. PMID:22564444

  13. Adaptive scanning probe microscopies

    SciTech Connect

    Swartzentruber, B.S.; Bouchard, A.M.; Osbourn, G.C.

    1997-02-01

    This work is comprised of two major sections. In the first section the authors develop multivariate image classification techniques to distinguish and identify surface electronic species directly from multiple-bias scanning tunneling microscope (STM) images. Multiple measurements at each site are used to distinguish and categorize inequivalent electronic or atomic species on the surface via a computerized classification algorithm. Then, comparison with theory or other suitably chosen experimental data enables the identification of each class. They demonstrate the technique by analyzing dual-polarity constant-current topographs of the Ge(111) surface. Just two measurements, negative- and positive-bias topography height, permit pixels to be separated into seven different classes. Labeling four of the classes as adatoms, first-layer atoms, and two inequivalent rest-atom sites, they find excellent agreement with the c(2 x 8) structure. The remaining classes are associated with structural defects and contaminants. This work represents a first step toward developing a general electronic/chemical classification and identification tool for multivariate scanning probe microscopy imagery. In the second section they report measurements of the diffusion of Si dimers on the Si(001) surface at temperatures between room temperature and 128 C using a novel atom-tracking technique that can resolve every diffusion event. The atom tracker employs lateral-positioning feedback to lock the STM probe tip into position above selected atoms with sub-Angstrom precision. Once locked the STM tracks the position of the atoms as they migrate over the crystal surface. By tracking individual atoms directly, the ability of the instrument to measure dynamic events is increased by a factor of {approximately} 1,000 over conventional STM imaging techniques.

  14. Investigations on CMOS photodiodes using scanning electron microscopy with electron beam induced current measurements

    NASA Astrophysics Data System (ADS)

    Kraxner, A.; Roger, F.; Loeffler, B.; Faccinelli, M.; Kirnstoetter, S.; Minixhofer, R.; Hadley, P.

    2014-09-01

    In this work the characterization of CMOS diodes with Electron Beam Induced Current (EBIC) measurements in a Scanning Electron Microscope (SEM) are presented. Three-dimensional Technology Computer Aided Design (TCAD) simulations of the EBIC measurement were performed for the first time to help interpret the experimental results. The TCAD simulations provide direct access to the spatial distribution of physical quantities (like mobility, lifetime etc.) which are very difficult to obtain experimentally. For the calibration of the simulation to the experiments, special designs of vertical p-n diodes were fabricated. These structures were investigated with respect to doping concentration, beam energy, and biasing. A strong influence of the surface preparation on the measurements and the extracted diffusion lengths are shown.

  15. Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology

    SciTech Connect

    Forslind, B.

    1984-01-01

    Scanning electron microscopy is frequently applied to dermatological problems, as is evident from a review of the recent literature. In this paper, preparation methods and new techniques allowing experimental studies on the integumentary system are emphasized. Quantitative analysis in the electron microscope by use of energy-dispersive X-ray microanalysis (EDX) has become an important accessory technique. EDX can, for instance, be used to study problems involving physiological changes induced in skin by agents causing contact reactions. Recently, it has been shown that treatment with DNCB, chromate and nickel causes changes in elemental distribution in guinea-pig skin. In addition, elemental uptake in the integumentary system and in pathological inclusions in skin can be analyzed.

  16. Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Idrobo, Juan C; Walkosz, Weronika; Klie, Robert F; Oğüt, Serdar

    2012-12-01

    In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si(3)N(4)/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si(3)N(4)/SiO(2) interface and in bulk Si(3)N(4) using aberration-corrected scanning transmission electron microscopy. PMID:22726263

  17. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  18. Scanning tunneling microscopy characterization of the geometric and electronic structure of hydrogen-terminated silicon surfaces

    NASA Technical Reports Server (NTRS)

    Kaiser, W. J.; Bell, L. D.; Hecht, M. H.; Grunthaner, F. J.

    1988-01-01

    Scanning tunneling microscopy (STM) methods are used to characterize hydrogen-terminated Si surfaces prepared by a novel method. The surface preparation method is used to expose the Si-SiO2 interface. STM images directly reveal the topographic structure of the Si-SiO2 interface. The dependence of interface topography on oxide preparation conditions observed by STM is compared to the results of conventional surface characterization methods. Also, the electronic structure of the hydrogen-terminated surface is studied by STM spectroscopy. The near-ideal electronic structure of this surface enables direct tunnel spectroscopy measurements of Schottky barrier phenomena. In addition, this method enables probing of semiconductor subsurface properties by STM.

  19. Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy.

    PubMed

    van den Bos, Karel H W; De Backer, Annick; Martinez, Gerardo T; Winckelmans, Naomi; Bals, Sara; Nellist, Peter D; Van Aert, Sandra

    2016-06-17

    The development of new nanocrystals with outstanding physicochemical properties requires a full three-dimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures. PMID:27367396

  20. Silver methenamine staining for scanning electron microscopy of bone sections containing biomaterials.

    PubMed

    Frayssinet, P; Hanker, J S; Rouquet, N; Primout, I; Giammara, B

    1999-01-01

    Sections of tissue containing orthopedic materials are currently used to study the compatibility of those materials and to perform electron probe microanalysis at the material-tissue interface. Identification of the cells in contact with the material by Scanning electron microscopy (SEM) is of interest. We have developed a method for staining cells and tissue structures embedded in polymethyl methacrylate with silver methenamine once the sections have been obtained. Sections were prepared by grinding, and the silver methenamine was applied after oxidation with periodic acid. The procedure was carried out in a microwave oven. Backscatter SEM showed staining of the cell nucleus membrane, chromatin, the nuclear organizers, and the chromosomes of dividing cells. The cytoplasm and the cytoplasmic membrane were also stained. Collagen fibers of the extracellular matrix and the mineralized matrix of bone were labeled. Material particles in the macrophages were easily recognizable and Energy-Dispersive Spectrometer were not impaired by the presence of silver in the preparation. PMID:10190255

  1. 4D scanning transmission ultrafast electron microscopy: Single-particle imaging and spectroscopy.

    PubMed

    Ortalan, Volkan; Zewail, Ahmed H

    2011-07-20

    We report the development of 4D scanning transmission ultrafast electron microscopy (ST-UEM). The method was demonstrated in the imaging of silver nanowires and gold nanoparticles. For the wire, the mechanical motion and shape morphological dynamics were imaged, and from the images we obtained the resonance frequency and the dephasing time of the motion. Moreover, we demonstrate here the simultaneous acquisition of dark-field images and electron energy loss spectra from a single gold nanoparticle, which is not possible with conventional methods. The local probing capabilities of ST-UEM open new avenues for probing dynamic processes, from single isolated to embedded nanostructures, without being affected by the heterogeneous processes of ensemble-averaged dynamics. Such methodology promises to have wide-ranging applications in materials science and in single-particle biological imaging. PMID:21615171

  2. Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    van den Bos, Karel H. W.; De Backer, Annick; Martinez, Gerardo T.; Winckelmans, Naomi; Bals, Sara; Nellist, Peter D.; Van Aert, Sandra

    2016-06-01

    The development of new nanocrystals with outstanding physicochemical properties requires a full three-dimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures.

  3. Electronic structure of carbon nanotube systems measured with scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Hornbaker, Daniel Jay

    Carbon fullerenes are unusually structured molecules with robust mechanical and electronic properties. Their versatility is astounding; envisioned applications range from field emission displays to impregnated metal composites, battery storage media, and nanoelectronic devices. The combination of simple constituency, diverse behavior, and ease of fabrication makes these materials a cornerstone topic in current research. This thesis details scanning tunneling microscopy (STM) experiments investigating how carbon nanotube fullerenes interact with and couple to their local environment. Scanning tunneling microscopy continues to be a key method for characterizing fullerenes, particularly in regards to their electronic properties. The atomic scale nature of this technique makes it uniquely suited for observing individual molecules and determining correlations between locally measured electronic properties and the particular environment of the molecule. The primary subject of this study is single-wall carbon nanotubes (SWNTs), which were observed under various perturbative influences resulting in measurable changes in the electronic structure. Additionally, fullerene heterostructures formed by the encapsulation of C60 molecules within the hollow interiors of SWNTs were characterized for the first time with STM. These novel macromolecules (dubbed "peapods") demonstrate the potential for custom engineering the properties of fullerene materials. Measurements indicate that the properties of individual nanotubes depend sensitively on local interactions. In particular, pronounced changes in electronic behavior are observed in nanotubes exhibiting mechanical distortion, interacting with extrinsic materials (including other nanotubes), and possessing intrinsic defects in the atomic lattice. In fullerene peapods, while no discernable change in the atomic ordering of the encapsulating nanotubes was evident, the presence of interior C60 molecules has a dramatic effect on the

  4. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide.

    PubMed

    Rodighiero, Simona; Torre, Bruno; Sogne, Elisa; Ruffilli, Roberta; Cagnoli, Cinzia; Francolini, Maura; Di Fabrizio, Enzo; Falqui, Andrea

    2015-06-01

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. PMID:25810353

  5. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method.

    PubMed

    Ensikat, Hans J; Mayser, Matthias; Barthlott, Wilhelm

    2012-10-01

    In contrast to advancements in the fabrication of new superhydrophobic materials, the characterization of their water repellency and quality is often coarse and unsatisfactory. In view of the problems and inaccuracies, particularly in the measurement of very high contact angles, we developed alternative methods for the characterization of superhydrophobic surfaces. It was found that adhering water remnants after immersion are a useful criterion in determining the repellency quality. In this study, we introduce microscopy methods to detect traces of water-resembling test liquids on superhydrophobic surfaces by scanning electron microscopy (SEM) or fluorescence light microscopy (FLM). Diverse plant surfaces and some artificial superhydrophobic samples were examined. Instead of pure water, we used aqueous solutions containing a detectable stain and glycerol in order to prevent immediate evaporation of the microdroplets. For the SEM examinations, aqueous solutions of lead acetate were used, which could be detected in a frozen state at -90 °C with high sensitivity using a backscattered electron detector. For fluorescence microscopy, aqueous solutions of auramine were used. On different species of superhydrophobic plants, varying patterns of remaining microdroplets were found on their leaves. On some species, drop remnants occurred only on surface defects such as damaged epicuticular waxes. On others, microdroplets regularly decorated the locations of increased adhesion, particularly on hierarchically structured surfaces. Furthermore, it is demonstrated that the method is suitable for testing the limits of repellency under harsh conditions, such as drop impact or long-enduring contact. The supplementation of the visualization method by the measurement of the pull-off force between a water drop and the sample allowed us to determine the adhesive properties of superhydrophobic surfaces quantitatively. The results were in good agreement with former studies of the water

  6. Analysis of Brain Mitochondria Using Serial Block-Face Scanning Electron Microscopy.

    PubMed

    Mukherjee, Konark; Clark, Helen R; Chavan, Vrushali; Benson, Emily K; Kidd, Grahame J; Srivastava, Sarika

    2016-01-01

    Human brain is a high energy consuming organ that mainly relies on glucose as a fuel source. Glucose is catabolized by brain mitochondria via glycolysis, tri-carboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathways to produce cellular energy in the form of adenosine triphosphate (ATP). Impairment of mitochondrial ATP production causes mitochondrial disorders, which present clinically with prominent neurological and myopathic symptoms. Mitochondrial defects are also present in neurodevelopmental disorders (e.g. autism spectrum disorder) and neurodegenerative disorders (e.g. amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases). Thus, there is an increased interest in the field for performing 3D analysis of mitochondrial morphology, structure and distribution under both healthy and disease states. The brain mitochondrial morphology is extremely diverse, with some mitochondria especially those in the synaptic region being in the range of <200 nm diameter, which is below the resolution limit of traditional light microscopy. Expressing a mitochondrially-targeted green fluorescent protein (GFP) in the brain significantly enhances the organellar detection by confocal microscopy. However, it does not overcome the constraints on the sensitivity of detection of relatively small sized mitochondria without oversaturating the images of large sized mitochondria. While serial transmission electron microscopy has been successfully used to characterize mitochondria at the neuronal synapse, this technique is extremely time-consuming especially when comparing multiple samples. The serial block-face scanning electron microscopy (SBFSEM) technique involves an automated process of sectioning, imaging blocks of tissue and data acquisition. Here, we provide a protocol to perform SBFSEM of a defined region from rodent brain to rapidly reconstruct and visualize mitochondrial morphology. This technique could also be used to provide accurate information on

  7. Scanning Probe Microscopy and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wiesendanger, Roland

    1994-09-01

    Preface; List of acronyms; Introduction; Part I. Experimental Methods and Theoretical Background of Scanning Probe Microscopy and Spectroscopy: 1. Scanning tunnelling microscopy; 2. Scanning force microscopy; 3. Related scanning probe techniques; Part II. Applications of Scanning Probe Microscopy and Spectroscopy: 4. Condensed matter physics; 5. Chemistry; 6. Organic materials; 7. Metrology and standards; 8. Nanotechnology; References; Index.

  8. Scanning Electron Microscopy Study of Hair Shaft Damage Secondary to Cosmetic Treatments of the Hair

    PubMed Central

    Kaliyadan, Feroze; Gosai, BB; Al Melhim, Walid Naief; Feroze, Kaberi; Qureshi, Habib Ahmad; Ibrahim, Sayed; Kuruvilla, Joel

    2016-01-01

    Introduction and Background: Cosmetic procedures for hair, such as bleaching, dyeing, and straightening, are commonly used around the world. It has been suggested that excessive use of such procedures can cause damage to the hair shaft. We aimed to assess hair shaft changes using scanning electron microscopy (SEM) in female volunteers who frequently use hair treatment procedures such as bleaching, dyeing, or straightening. Methods: A cross-sectional, controlled study in a sample of 25 female volunteers (19 study group and 6 controls) in the age group of 18–45 years. The study group was composed of volunteers who regularly used different cosmetic hair treatment procedures such as bleaching, dyeing, and straightening (any one of these or a combination). The control group had never used any specific hair treatment procedure. The hair shaft damage as seen on SEM was assessed using a standardized scoring system and compared among the two groups statistically. The hair shafts were also examined clinically and with light microscopy. Results: No significant differences were seen between the test and control groups with regard to normal clinical examination and light microscopy findings. A higher degree of hair shaft damage was evident under SEM in the study group as compared to the control group. This difference was statistically significant. Conclusions: Regular use of procedures such as bleaching, dyeing, or straightening can lead to subtle changes in the hair shaft which can be detected early by SEM. PMID:27601867

  9. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)

    SciTech Connect

    Sato, Chikara; Manaka, Sachie; Nakane, Daisuke; Nishiyama, Hidetoshi; Suga, Mitsuo; Nishizaka, Takayuki; Miyata, Makoto; Maruyama, Yuusuke

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

  10. A scanning electron microscopy study of the macro-crystalline structure of 2-(2,4-dinitrobenzyl) pyridine

    NASA Technical Reports Server (NTRS)

    Ware, Jacqueline; Hammond, Ernest C., Jr.

    1989-01-01

    The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.

  11. Understanding the structure of nanocatalysts with high resolution scanning/transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Francis, L. D.; Rivas, J.; José-Yacamán, M.

    2014-03-01

    Nanomaterials including nanoparticles, nanowires and nanotubes play an important role in heterogeneous catalysis. Thanks to the rapid improvement of the electron microscopic techniques and with the advent of aberration corrected electron microscopy as well as theoretical methodologies, the potential effects induced by nanocatalysts are better understood than before by unravelling their atomic structure. A brief introduction to advanced electron microscopic techniques namely aberration corrected scanning transmission electron microscopy (Cs-STEM) is presented and subsequently two examples of nanocatalysts are considered in the present review. The first example will focus on the study of bimetallic/core-shell nanoalloys. In heterogeneous catalysis, catalysts containing two or more metals might show significantly different catalytic properties compared to the parent metals and thus are widely utilized in several catalytic reactions. Atom-by-atom insights of the nanoalloy based catalysts ex: Au-Pd will be described in the present review using a combination of advanced electron microscopic and spectroscopic techniques. A related example on the understanding of bimetallic clusters by HAADF-STEM will also be presented in addition to nanoparticles. In the second case understanding the structure of transition metal chalcogenide based nanocatalysts by HRTEM and aberration corrected STEM, for the case of MoS2 will be discussed. MoS2-based catalysts serve as model catalysts and are employed in the hydrodesulphurisations (HDS) reactions in the removal of sulphur from gasoline and related petrochemical products. They have been studied in various forms including nanowires, nanotubes and nanoplates. Their structure, atomic insights and as a consequence elucidation of their corresponding catalytic activity are thus important.

  12. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM).

    PubMed

    Sato, Chikara; Manaka, Sachie; Nakane, Daisuke; Nishiyama, Hidetoshi; Suga, Mitsuo; Nishizaka, Takayuki; Miyata, Makoto; Maruyama, Yuusuke

    2012-01-27

    Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3μm-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis. PMID:22226908

  13. Morphology and deflection properties of bat wing sensory hairs: scanning electron microscopy, laser scanning vibrometry, and mechanics model.

    PubMed

    Sterbing-D'Angelo, S J; Liu, H; Yu, M; Moss, C F

    2016-01-01

    Bat wings are highly adaptive airfoils that enable demanding flight maneuvers, which are performed with astonishing robustness under turbulent conditions, and stability at slow flight velocities. The bat wing is sparsely covered with microscopically small, sensory hairs that are associated with tactile receptors. In a previous study we demonstrated that bat wing hairs are involved in sensing airflow for improved flight maneuverability. Here, we report physical measurements of these hairs and their distribution on the wing surface of the big brown bat, Eptesicus fuscus, based on scanning electron microscopy analyses. The wing hairs are strongly tapered, and are found on both the dorsal and ventral wing surfaces. Laser scanning vibrometry tests of 43 hairs from twelve locations across the wing of the big brown bat revealed that their natural frequencies inversely correlate with length and range from 3.7 to 84.5 kHz. Young's modulus of the average wing hair was calculated at 4.4 GPa, which is comparable with rat whiskers or arthropod airflow-sensing hairs. PMID:27545727

  14. Subsurface Examination of a Foliar Biofilm Using Scanning Electron- and Focused-Ion-Beam Microscopy

    SciTech Connect

    Wallace, Patricia K.; Arey, Bruce W.; Mahaffee, Walt F.

    2011-08-01

    The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB can remove a predetermined amount of material from a selected site to allow for subsurface exploration and when coupled with SEM or scanning ion- beam microscopy (SIM) could be suitable to examine the subsurface structure of bacterial biofilms on the leaf surface. The suitability of chemical and cryofixation was examined for use with the FIB SEM to examine bacterial biofilms on leaf surfaces. The biological control agent, Burkholderia pyroccinia FP62, that rapidly colonizes the leaf surface and forms biofilms, was inoculated onto geranium leaves and incubated in a greenhouse for 7 or 14 days. Cryofixation was not suitable for examination of leaf biofilms because it created a frozen layer over the leaf surface that cracked when exposed to the electron beam and the protective cap required for FIB milling could not be accurately deposited. With chemically fixed samples, it was possible to precisely FIB mill a single cross section (5 µm) or sequential cross sections from a single site without any damage to the surrounding surface. Biofilms, 7 days post-inoculation (DPI), were composed of 2 to 5 bacterial cell layers while biofilms 14 DPI ranged from 5 to greater than 30 cell layers. Empty spaces between bacteria cells in the subsurface structure were observed in biofilms 7- and 14-DPI. Sequential cross sections inferred that the empty spaces were often continuous between FP62 cells and could possibly make up a network of channels throughout the biofilm. FIB SEM was a useful tool to observe the subsurface composition of a foliar biofilm.

  15. Further description of Cruzia tentaculata (Rudolphi, 1819) Travassos, 1917 (Nematoda: Cruzidae) by light and scanning electron microscopy.

    PubMed

    Adnet, F A O; Anjos, D H S; Menezes-Oliveira, A; Lanfredi, R M

    2009-04-01

    Species of Cruzia are parasites of the large intestine of marsupials, reptiles, amphibians, and mammalians. Cruzia tentaculata specimens were collected from the large intestine of Didelphis marsupialis (Mammalia: Didelphidae) from Colombia (new geographical record) and from Brazil and analyzed by light and scanning electron microscopy. The morphology of males and females by light microscopy corroborated most of the previous description and the ultrastructure by scanning electron microscopy evidence: the topography of the cuticle, deirids, amphids, phasmids in both sexes, a pair of papillae near the vulva opening, and the number and location of male caudal papillae, adding new features for species identification only observed by this technique. PMID:19130086

  16. Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy.

    PubMed

    Furukawa, Taichi; Fukushima, Shoichiro; Niioka, Hirohiko; Yamamoto, Naoki; Miyake, Jun; Araki, Tsutomu; Hashimoto, Mamoru

    2015-05-01

    We describe rare-earth-doped nanophosphors (RE-NPs) for biological imaging using cathodoluminescence(CL) microscopy based on scanning transmission electron microscopy (STEM). We report the first demonstration of multicolor CL nanobioimaging using STEM with nanophosphors. The CL spectra of the synthesized nanophosphors (Y2O3∶Eu, Y2O3∶Tb) were sufficiently narrow to be distinguished. From CL images of RE-NPs on an elastic carbon-coated copper grid, the spatial resolution was beyond the diffraction limit of light.Y2O3∶Tb and Y2O3∶Eu RE-NPs showed a remarkable resistance against electron beam exposure even at high acceleration voltage (80 kV) and retained a CL intensity of more than 97% compared with the initial intensity for 1 min. In biological CL imaging with STEM, heavy-metal-stained cell sections containing the RE-NPs were prepared,and both the CL images of RE-NPs and cellular structures, such as mitochondria, were clearly observed from STEM images with high contrast. The cellular CL imaging using RE-NPs also had high spatial resolution even though heavy-metal-stained cells are normally regarded as highly scattering media. Moreover, since theRE-NPs exhibit photoluminescence (PL) excited by UV light, they are useful for multimodal correlative imaging using CL and PL. PMID:26000793

  17. Scanning Electron Microscopy Reveals Two Distinct Classes of Erythroblastic Island Isolated from Adult Mammalian Bone Marrow.

    PubMed

    Yeo, Jia Hao; McAllan, Bronwyn M; Fraser, Stuart T

    2016-04-01

    Erythroblastic islands are multicellular clusters in which a central macrophage supports the development and maturation of red blood cell (erythroid) progenitors. These clusters play crucial roles in the pathogenesis observed in animal models of hematological disorders. The precise structure and function of erythroblastic islands is poorly understood. Here, we have combined scanning electron microscopy and immuno-gold labeling of surface proteins to develop a better understanding of the ultrastructure of these multicellular clusters. The erythroid-specific surface antigen Ter-119 and the transferrin receptor CD71 exhibited distinct patterns of protein sorting during erythroid cell maturation as detected by immuno-gold labeling. During electron microscopy analysis we observed two distinct classes of erythroblastic islands. The islands varied in size and morphology, and the number and type of erythroid cells interacting with the central macrophage. Assessment of femoral marrow isolated from a cavid rodent species (guinea pig, Cavis porcellus) and a marsupial carnivore species (fat-tailed dunnarts, Sminthopsis crassicaudata) showed that while the morphology of the central macrophage varied, two different types of erythroblastic islands were consistently identifiable. Our findings suggest that these two classes of erythroblastic islands are conserved in mammalian evolution and may play distinct roles in red blood cell production. PMID:26898901

  18. Direct observation of protein microcrystals in crystallization buffer by atmospheric scanning electron microscopy.

    PubMed

    Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Konyuba, Yuji; Senda, Miki; Numaga-Tomita, Takuro; Senda, Toshiya; Suga, Mitsuo; Sato, Chikara

    2012-01-01

    X-ray crystallography requires high quality crystals above a given size. This requirement not only limits the proteins to be analyzed, but also reduces the speed of the structure determination. Indeed, the tertiary structures of many physiologically important proteins remain elusive because of the so-called "crystallization bottleneck". Once microcrystals have been obtained, crystallization conditions can be optimized to produce bigger and better crystals. However, the identification of microcrystals can be difficult due to the resolution limit of optical microscopy. Electron microscopy has sometimes been utilized instead, with the disadvantage that the microcrystals usually must be observed in vacuum, which precludes the usage for crystal screening. The atmospheric scanning electron microscope (ASEM) allows samples to be observed in solution. Here, we report the use of this instrument in combination with a special thin-membrane dish with a crystallization well. It was possible to observe protein crystals of lysozyme, lipase B and a histone chaperone TAF-Iβ in crystallization buffers, without the use of staining procedures. The smallest crystals observed with ASEM were a few μm in width, and ASEM can be used with non-transparent solutions. Furthermore, the growth of salt crystals could be monitored in the ASEM, and the difference in contrast between salt and protein crystals made it easy to distinguish between these two types of microcrystals. These results indicate that the ASEM could be an important new tool for the screening of protein microcrystals. PMID:22949879

  19. Direct Observation of Protein Microcrystals in Crystallization Buffer by Atmospheric Scanning Electron Microscopy

    PubMed Central

    Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Konyuba, Yuji; Senda, Miki; Numaga-Tomita, Takuro; Senda, Toshiya; Suga, Mitsuo; Sato, Chikara

    2012-01-01

    X-ray crystallography requires high quality crystals above a given size. This requirement not only limits the proteins to be analyzed, but also reduces the speed of the structure determination. Indeed, the tertiary structures of many physiologically important proteins remain elusive because of the so-called “crystallization bottleneck”. Once microcrystals have been obtained, crystallization conditions can be optimized to produce bigger and better crystals. However, the identification of microcrystals can be difficult due to the resolution limit of optical microscopy. Electron microscopy has sometimes been utilized instead, with the disadvantage that the microcrystals usually must be observed in vacuum, which precludes the usage for crystal screening. The atmospheric scanning electron microscope (ASEM) allows samples to be observed in solution. Here, we report the use of this instrument in combination with a special thin-membrane dish with a crystallization well. It was possible to observe protein crystals of lysozyme, lipase B and a histone chaperone TAF-Iβ in crystallization buffers, without the use of staining procedures. The smallest crystals observed with ASEM were a few μm in width, and ASEM can be used with non-transparent solutions. Furthermore, the growth of salt crystals could be monitored in the ASEM, and the difference in contrast between salt and protein crystals made it easy to distinguish between these two types of microcrystals. These results indicate that the ASEM could be an important new tool for the screening of protein microcrystals. PMID:22949879

  20. Scanning electron microscopy of terminal airways of guinea pigs chronically inhaling diesel exhaust

    SciTech Connect

    Kucukcelebi, A.; Mohamed, F.; Barnhart, M.I.

    1983-01-01

    The structural physiology of airways from 80 guinea pigs was examined for changes induced by diesel exhaust (DE) exposure. Acute, subacute and chronic studies contrasted inhalation effects of 250, 750, 1500 and 6000 micrograms DE/m3 with ''clean air'' breathing of age-matched controls. Nonciliated epithelial (Clara) cells, epithelial type 2 cells and alveolar macrophages were increased in a DE dose dependent fashion. Also, eosinophils, were recruited. Epithelial type 1 cells of the distal airways internalized DEP. The relative dustiness (particulate density) of airways was assessed from coded specimens. Some 86% of DE exposed animals were correctly identified. Scanning Electron Microscopy (SEM) resolved surface located DE particulates (DEP). Single particles, loose clusters, low density agglomerates occurred. While SEM visual clues are insufficient for absolute identification of DE particles, there was supporting evidence from transmission electron microscopy (TEM) and from SEM studies comparing vascular with intratracheally fixed specimens. Presumptive DEP were notable on bifurcation bridges in respiratory bronchioles and alveolar ducts while alveolar outpockets had heavy dust burdens. Clumps of macrophages in such alveoli almost occluded the airspace. We conclude that normal guinea pigs appear to adapt to a chronic DE stress environment. But, the ultrastructural basis (cellular protrusions, DEP agglomerates and secretional debris) exists in peripheral airways for airflow instability and increased airflow resistance.

  1. The use of field emission scanning electron microscopy to assess recombinant adenovirus stability.

    PubMed

    Obenauer-Kutner, Linda J; Ihnat, Peter M; Yang, Tong-Yuan; Dovey-Hartman, Barbara J; Balu, Arthi; Cullen, Constance; Bordens, Ronald W; Grace, Michael J

    2002-09-20

    A field emission scanning electron microscopy (FESEM) method was developed to assess the stability of a recombinant adenovirus (rAd). This method was designed to simultaneously sort, count, and size the total number of rAd viral species observed within an image field. To test the method, a preparation of p53 transgene-expressing recombinant adenovirus (rAd/p53) was incubated at 37 degrees C and the viral particles were evaluated by number, structure, and degree of aggregation as a function of time. Transmission electron microscopy (TEM) was also used to obtain ultrastructural detail. In addition, the infectious activity of the incubated rAd/p53 samples was determined using flow cytometry. FESEM image-analysis revealed that incubation at 37 degrees C resulted in a time-dependent decrease in the total number of detectable single rAd/p53 virus particles and an increase in apparent aggregates composed of more than three adenovirus particles. There was also an observed decrease in both the diameter and perimeter of the single rAd/p53 viral particles. TEM further revealed the accumulation of damaged single particles with time at 37 degrees C. The results of this study demonstrate that FESEM, coupled with sophisticated image analysis, may be an important tool in quantifying the distribution of aggregated species and assessing the overall stability of rAd samples. PMID:12396622

  2. Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Furukawa, Taichi; Fukushima, Shoichiro; Niioka, Hirohiko; Yamamoto, Naoki; Miyake, Jun; Araki, Tsutomu; Hashimoto, Mamoru

    2015-05-01

    We describe rare-earth-doped nanophosphors (RE-NPs) for biological imaging using cathodoluminescence (CL) microscopy based on scanning transmission electron microscopy (STEM). We report the first demonstration of multicolor CL nanobioimaging using STEM with nanophosphors. The CL spectra of the synthesized nanophosphors (Y2O3:Eu, Y2O3:Tb) were sufficiently narrow to be distinguished. From CL images of RE-NPs on an elastic carbon-coated copper grid, the spatial resolution was beyond the diffraction limit of light. Y2O3:Tb and Y2O3:Eu RE-NPs showed a remarkable resistance against electron beam exposure even at high acceleration voltage (80 kV) and retained a CL intensity of more than 97% compared with the initial intensity for 1 min. In biological CL imaging with STEM, heavy-metal-stained cell sections containing the RE-NPs were prepared, and both the CL images of RE-NPs and cellular structures, such as mitochondria, were clearly observed from STEM images with high contrast. The cellular CL imaging using RE-NPs also had high spatial resolution even though heavy-metal-stained cells are normally regarded as highly scattering media. Moreover, since the RE-NPs exhibit photoluminescence (PL) excited by UV light, they are useful for multimodal correlative imaging using CL and PL.

  3. The ultrastructure of mono- and holocentric plant centromeres: an immunological investigation by structured illumination microscopy and scanning electron microscopy.

    PubMed

    Wanner, Gerhard; Schroeder-Reiter, Elizabeth; Ma, Wei; Houben, Andreas; Schubert, Veit

    2015-12-01

    The spatial distribution of the three centromere-associated proteins α-tubulin, CENH3, and phosphorylated histone H2A (at threonine 120, H2AThr120ph) was analysed by indirect immunodetection at monocentric cereal chromosomes and at the holocentric chromosomes of Luzula elegans by super-resolution light microscopy and scanning electron microscopy (SEM). Using structured illumination microscopy (SIM) as the super-resolution technique on squashed specimens and SEM on uncoated isolated specimens, the three-dimensional (3D) distribution of the proteins was visualized at the centromeres. Technical aspects of 3D SEM are explained in detail. We show that CENH3 forms curved "pads" mainly around the lateral centromeric region in the primary constriction of metacentric chromosomes. H2AThr120ph is present in both the primary constriction and in the pericentromere. α-tubulin-labeled microtubule bundles attach to CENH3-containing chromatin structures, either in single bundles with a V-shaped attachment to the centromere or in split bundles to bordering pericentromeric flanks. In holocentric L. elegans chromosomes, H2AThr120ph is located predominantly in the centromeric groove of each chromatid as proven by subsequent FIB/FESEM ablation and 3D reconstruction. α-tubulin localizes to the edges of the groove. In both holocentric and monocentric chromosomes, no additional intermediate structures between microtubules and the centromere were observed. We established models of the distribution of CENH3, H2AThr120ph and the attachment sites of microtubules for metacentric and holocentric plant chromosomes. PMID:26048589

  4. Fretting wear in titanium, Monel-400, and cobalt 25-percent-molybdenum using scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1972-01-01

    Damage scar volume measurements taken from like metal fretting pairs combined with scanning electron microscopy observations showed that three sequentially operating mechanisms result in the fretting of titanium, Monel-400, and cobalt - 25-percent molybdenum. Initially, adhesion and plastic deformation of the surface played an important role. This was followed after a few hundred cycles by a fatigue mechanism which produced spall-like pits in the damage scar. Finally, a combination of oxidation and abrasion by debris particles became most significant. Damage scar measurements made on several elemental metals after 600,000 fretting cycles suggested that the ratio of oxide hardness to metal hardness was a measure of the susceptibility of a metal to progressive damage by fretting.

  5. Interaction of water with different cellulose ethers: a Raman spectroscopy and environmental scanning electron microscopy study.

    PubMed

    Fechner, P M; Wartewig, S; Kiesow, A; Heilmann, A; Kleinebudde, P; Neubert, R H H

    2005-06-01

    Different non-ionic cellulose ethers like methyl cellulose (MC), hydroxypropyl cellulose (HPC) and hydroxypropylmethyl cellulose (HPMC) were investigated. The characterization of the cellulose ethers was carried out by thermogravimetry and sorption/desorption isotherms. Differences in the properties of the cellulose ether films were described by time-dependent contact angle measurements. Changes in molecular structure of the raw materials, gels and films caused by water contact were studied using Raman spectroscopy. Differences between the substitution types and changes due to the gel or film formation were observed. An environmental scanning electron microscopy (ESEM) technique was used to distinguish the morphological behaviour of the cellulose ether films in contact with water. Based on in-situ ESEM experiments, the swelling and drying behaviour of the various stages of cellulose ether films (film-hydrated film-dried film) were quantified by using image analysis. PMID:15969923

  6. A low-cost technique to manufacture a container to process meiofauna for scanning electron microscopy.

    PubMed

    Abolafia, J

    2015-09-01

    An easy and low-cost method to elaborate a container to dehydrate nematodes and other meiofauna in order to process them for scanning electron microscopy (SEM) is presented. Illustrations of its elaboration, step by step, are included. In addition, a brief methodology to process meiofauna, especially nematodes and kinorhynchs, and illustrations are provided. With this methodology it is possible to easily introduce the specimens, to lock them in a closed chamber allowing the infiltration of fluids and gases (ethanol, acetone, carbon dioxide) but avoiding losing the specimens. After using this meiofauna basket for SEM the results are efficient. Examples of nematode and kinorhynch SEM pictures obtained using this methodology are also included. PMID:26178782

  7. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    PubMed

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells. PMID:23742956

  8. Identifying dislocations and stacking faults in GaN films by scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Su, X. J.; Niu, M. T.; Zeng, X. H.; Huang, J.; Zhang, J. C.; Zhang, J. P.; Wang, J. F.; Xu, K.

    2016-08-01

    The application of annular bright field (ABF) and medium-angle annular dark field (MAADF) scanning transmission electron microscopy (STEM) imaging to crystalline defect analysis has been extended to dislocations and stacking faults (SFs). Dislocations and SFs have been imaged under zone-axis and two-beam diffraction conditions. Comparing to conventional two-beam diffraction contrast images, the ABF and MAADF images of dislocations and SFs not only are complementary and symmetrical with their peaks at dislocation core and SFs plane, but also show similar extinction phenomenon. It is demonstrated that conventional TEM rules for diffraction contrast, i.e. g · b and g · R invisibility criteria remain applicable. The contrast mechanism and extinction of dislocation and SFs in ABF and MAADF STEM are illuminated by zero-order Laue zone Kikuchi diffraction.

  9. Applications of scanning electron microscopy and X-ray microanalysis in inner ear pathology

    SciTech Connect

    Anniko, M.; Lim, D.J.; Sobin, A.; Wroblewski, R.

    1985-01-01

    Surface pathology of inner ear structures so far described in detail concern cochlear and vestibular hair cells and the stria vascularis. In man, surgical intervention into the inner ear is very uncommon and when performed is in general with the primary objective of destroying the diseased peripheral end organs. The vast majority of inner ear tissue available for use with scanning electron microscopy (SEM) is therefore obtained from animals. The present paper reviews the progression of surface pathology caused by aminoglycoside antibiotics, acoustic overstimulation and in a guinea pig strain with genetic inner ear disease. The primary site of onset of surface pathology differs, depending on the underlying cause. Advanced surface pathology shows a similar type of morphological degeneration independent of cause. The combination of SEM and energy dispersive X-ray microanalysis (XRMA) of inner ear pathology has as yet been reported in only three studies, all concerning inner ear fluids or otoconia.

  10. Evaluation of vermicompost maturity using scanning electron microscopy and paper chromatography analysis.

    PubMed

    Senthil Kumar, D; Satheesh Kumar, P; Rajendran, N M; Uthaya Kumar, V; Anbuganapathi, G

    2014-04-01

    Vermicompost was produced from flower waste inoculated with biofertilizers using the earthworm Eisenia fetida. Principal component analysis (PCA) and cluster analysis (CA) were carried out on the basis of physicochemical parameters of vermicomposted samples. From the results of the PCA and CA, it was possible to classify two different groups of vermicompost samples in the following categories: E2 and E5; and E1, E3, E4, and control. Scanning electron microscopy and biodynamic circular paper chromatography analysis were used to investigate the changes in surface morphology and functional groups in the control and vermicompost products. SEM analysis of E1-E5 shows more fragment and pores than the control. Chromatographic analysis of vermicompost indicated the mature condition of the compost materials. PMID:24634991

  11. Morphological study of Tetratrichomonas didelphidis isolated from opossum Lutreolina crassicaudata by scanning electron microscopy.

    PubMed

    Tasca, Tiana; De Carli, Geraldo Attilio

    2007-05-01

    Tetratrichomonas didelphidis is a flagellate protozoan found in the intestine of opossums Didelphis marsupialis, Didelphis albiventris, and Lutreolina crassicaudata. The isolate used in this study was from L. crassicaudata and it was cultivated in monoxenic culture with Escherichia coli in Diamond (TYM) medium without maltose and with starch solution (trypticase-yeast extract-starch), pH 7.5 at 28 degrees C. Scanning electron microscopy showed the fine morphological features of the trophozoites: the emergence of the anterior flagella, the structure of the undulating membrane, the axostyle and posterior flagellum. In addition, we described spherical forms that are probably pseudocysts. Our data will contribute to a better understanding of surface structures in T. didelphidis. PMID:17252276

  12. Small-scale patterning methods for digital image correlation under scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Kammers, A. D.; Daly, S.

    2011-12-01

    Digital image correlation (DIC) is a powerful, length-scale-independent methodology for examining full-field surface deformations. Recently, it has become possible to combine DIC with scanning electron microscopy (SEM), enabling the investigation of small-scale deformation mechanisms such as the strains accommodated within grains in polycrystalline metals, or around micro-scale constituents in composite materials. However, there exist significant challenges that need to be surmounted before the combination of DIC and SEM (here termed SEM-DIC) can be fully exploited. One of the primary challenges is the ability to pattern specimens at microstructural length scales with a random, isotropic and high contrast pattern needed for DIC. This paper provides a thorough survey of small-scale patterning methods for SEM-DIC and discusses their advantages and disadvantages for different applications.

  13. Big Data and Deep data in scanning and electron microscopies: functionality from multidimensional data sets

    SciTech Connect

    Belianinov, Alex; Vasudevan, Rama K; Strelcov, Evgheni; Steed, Chad A; Yang, Sang Mo; Tselev, Alexander; Jesse, Stephen; Biegalski, Michael D; Shipman, Galen M; Symons, Christopher T; Borisevich, Albina Y; Archibald, Richard K; Kalinin, Sergei

    2015-01-01

    The development of electron, and scanning probe microscopies in the second half of the twentieth century have produced spectacular images of internal structure and composition of matter with, at nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition and analysis. The progress in imaging technologies in the beginning of the twenty first century has opened the proverbial floodgates of high-veracity information on structure and functionality. High resolution imaging now allows information on atomic positions with picometer precision, allowing for quantitative measurements of individual bond length and angles. Functional imaging often leads to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this data into physically and chemically relevant information from imaging data.

  14. Devolatilization Studies of Oil Palm Biomass for Torrefaction Process through Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Daud, D.; Abd. Rahman, A.; Shamsuddin, A. H.

    2016-03-01

    In this work, palm oil biomass consisting of empty fruit bunch (EFB), mesocarp fibre and palm kernel shell (PKS) were chosen as raw material for torrefaction process. Torrefaction process was conducted at various temperatures of 240 °C, 270 °C and 300 °C with a residence time of 60 minutes. The morphology of the raw and torrefied biomass was then observed through Scanning Electron Microscopy (SEM) images. Also, through this experiment the correlation between the torrefaction temperatures with the volatile gases released were studied. From the observation, the morphology structure of the biomass exhibited inter-particle gaps due to the release of volatile gases and it is obviously seen more at higher temperatures. Moreover, the change of the biomass structure is influenced by the alteration of the lignocellulose biomass.

  15. Mapping electron-beam-injected trapped charge with scattering scanning near-field optical microscopy.

    PubMed

    Tranca, Denis E; Sánchez-Ortiga, Emilio; Saavedra, Genaro; Martínez-Corral, Manuel; Tofail, Syed A M; Stanciu, Stefan G; Hristu, Radu; Stanciu, George A

    2016-03-01

    Scattering scanning near-field optical microscopy (s-SNOM) has been demonstrated as a valuable tool for mapping the optical and optoelectronic properties of materials with nanoscale resolution. Here we report experimental evidence that trapped electric charges injected by an electron beam at the surface of dielectric samples affect the sample-dipole interaction, which has direct impact on the s-SNOM image content. Nanoscale mapping of the surface trapped charge holds significant potential for the precise tailoring of the electrostatic properties of dielectric and semiconductive samples, such as hydroxyapatite, which has particular importance with respect to biomedical applications. The methodology developed here is highly relevant to semiconductor device fabrication as well. PMID:26974112

  16. Analysis of Vero cell growth behavior on microcarrier by means of environmental scanning electron microscopy.

    PubMed

    Shao, Manjun; Jiang, Lei; Cong, Wei; Ouyang, Fan

    2002-04-01

    By using environmental scanning electron microscopy, the morphological changes of Vero cells attached to and grown on the microcarrier Cytodex-3 were observed, and their behavior of adhesion, spreading and proliferation was analyzed. The effect of exogenous fibronectin/ laminin on adhesion and spreading of MCC/Vero cell was studied. The images of ESEM showed that expansion of cell growth was directed toward vacancy space. The growth curve and cell concentration change during the whole culture process were obtained from the statistical counting method based on ESEM images and the crystal violet method. The growth rate of Vero cells increases with increasing the concentration of cell inoculation, that is, the specific growth rate increases quickly with increasing the concentration of cell inoculation. When serum concentration in medium #199 ranged from 5% to 10%, experimental results indicated that serum concentration is one of the important factors influencing cell growth, particularly in the cell adhesion and spreading stage. PMID:18763074

  17. Scanning electron acoustic microscopy of indentation-induced cracks and residual stresses in ceramics

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Qian, Menglu; Ravichandran, M. V.; Knowles, K. M.

    1990-01-01

    The ability of scanning electron acoustic microscopy (SEAM) to characterize ceramic materials is assessed. SEAM images of Vickers indentations in SiC whisker-reinforced alumina clearly reveal not only the radial cracks, the length of which can be used to estimate the fracture toughness of the material, but also reveal strong contrast, interpreted as arising from the combined effects of lateral cracks and the residual stress field left in the SiC whisker-reinforced alumina by the indenter. The strong contrast is removed after the material is heat treated at 1000 C to relieve the residual stresses around the indentations. A comparison of these observations with SEAM and reflected polarized light observations of Vickers indentations in soda-lime glass both before and after heat treatment confirms the interpretation of the strong contrast.

  18. Scanning Electron Microscopy Investigation of a Sample Depth Profile Through the Martian Meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Toporski, Jan; Steele, Andrew; Westall, Frances; McKay, David S.

    2000-01-01

    The ongoing scientific debate as to whether or not the Martian meteorite ALH84001 contained evidence of possible biogenic activities showed the need to establish consistent methods to ascertain the origin of such evidence. To distinguish between terrestrial organic material/microbial contaminants and possible indigenous microbiota within meteorites is therefore crucial. With this in mind a depth profile consisting of four samples from a new sample allocation of Martian meteorite Nakhla was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray analysis. SEM imaging of freshly broken fractured chips revealed structures strongly recent terrestrial microorganisms, in some cases showing evidence of active growth. This conclusion was supported by EDX analysis, which showed the presence of carbon associated with these structures, we concluded that these structures represent recent terrestrial contaminants rather than structures indigenous to the meteorite. Page

  19. Characterization of defect growth structure in ion plated films by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Copper and gold films (0.2 to 2 microns) were ion plated onto polished 304-stainless-steel surfaces. These coatings were examined by scanning electron microscopy for coating growth defects. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause and origin for each type of defect was traced. Nodular growth is primarily due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation. All these defects have adverse effects on the coatings. They induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. Friction and wear characteristics are affected by coating defects, since the large nodules are pulled out and additional wear debris is generated.

  20. The detection and influence of food soils on microorganisms on stainless steel using scanning electron microscopy and epifluorescence microscopy.

    PubMed

    Whitehead, Kathryn A; Smith, Lindsay A; Verran, Joanna

    2010-07-31

    A range of food soils and components (complex [meat extract, fish extract, and cottage cheese extract]; oils [cholesterol, fish oil, and mixed fatty acids]; proteins [bovine serum albumin (BSA), fish peptones, and casein]; and carbohydrates [glycogen, starch, and lactose]) were deposited onto 304 2B finish stainless steel surfaces at different concentrations (10-0.001%). Scanning electron microscopy (SEM) and epifluorescence microscopy were used to visualise the cell and food soil distribution across the surface. Epifluorescence microscopy was also used to quantify the percentage of a field covered by cells or soil. At 10% concentration, most soils, with the exception of BSA and fish peptone were easily visualised using SEM, presenting differences in gross soil morphology and distribution. When soil was stained with acridine orange and visualised by epifluorescence microscopy, the limit of detection of the method varied between soils, but some (meat, cottage cheese and glycogen) were detected at the lowest concentrations used (0.001%). The decrease in soil concentration did not always relate to the surface coverage measurement. When 10% food soil was applied to a surface with Escherichia coli and compared, cell attachment differed depending on the nature of the soil. The highest percentage coverage of cells was observed on surfaces with fish extract and related products (fish peptone and fish oil), followed by carbohydrates, meat extract/meat protein, cottage cheese/casein and the least to the oils (cholesterol and mixed fatty acids). Cells could not be clearly observed in the presence of some food soils using SEM. Findings demonstrate that food soils heterogeneously covered stainless steel surfaces in differing patterns. The pattern and amount of cell attachment was related to food soil type rather than to the amount of food soil detected. This work demonstrates that in the study of conditioning film and cell retention on the hygienic properties of surfaces, SEM

  1. Evaluation of three different rotary systems during endodontic retreatment - Analysis by scanning electron microscopy

    PubMed Central

    Vidal, Flávia-Teixeira; Nunes, Eduardo; Horta, Martinho-Campolina-Rebello; Freitas, Maria-Rita-Lopes-da Silva

    2016-01-01

    Background Endodontic therapy is considered a series of important and interdependent steps, and failure of any of these steps may compromise the treatment outcome. This study aimed to evaluate the effectiveness of three different rotary systems in removing obturation materials during endodontic retreatment using scanning electron microscopy (SEM) analysis. Material and Methods Thirty-six endodontically treated teeth were selected and divided into 3 groups of 10 and 1 control group with 6 dental elements. The groups were divided according to the rotary system used for removing gutta-percha, as follows: G1: ProTaper system; G2: K3 system; G3: Mtwo system; and G4: Control group. Thereafter, the roots were split and the sections were observed under SEM, for analysis and counting of clear dentinal tubules, creating the variable “degree of dentinal tubule patency” (0: intensely clear; 1: moderately clear; 2: slightly clear; 3: completely blocked). The data were subjected to the Friedman and Kruskal-Wallis statistical tests. Results No differences were observed in the “degree of dentinal tubule patency” neither between the root thirds (to each evaluated group) nor between the groups (to each evaluated third). Nevertheless, when the three root thirds were grouped (providing evaluation of all root extension), the “degree of dentinal tubule patency” was lower in G1 than in G3 (p<0.05), but showed no differences neither between G1 and G2 nor G2 and G3. Conclusions No technique was able to completely remove the canal obturation material, despite G1 having shown better results, although without significant difference to G2 Key words:Scanning electron microscopy, NiTi, retreatment. PMID:27034750

  2. Evaluation of exhibits from a murder case using the lead isotope method and scanning electron microscopy.

    PubMed

    Gulson, Brian L; Eames, John C; Davis, Jeffrey D

    2002-09-01

    We have used a combination of lead isotopes and scanning electron microscopy to determine the relationships between different exhibits in a murder case. Samples involved lead projectiles removed from the deceased's head and a pillow, lead-rich scrapings and particles (gunshot residues) from spent cartridges and a silencer, and particles from a pillowcase. The lead projectiles had the same isotopic composition. with the lead being derived from the same dominantly geologically old source(s). The lead smear from the silencer had the same isotopic composition as the projectiles, and the lead was probably from the same source. The particles from the spent cartridges had varying elemental compositions ranging from PbO to PbCuZn +/- Ba with or without Si and are consistent with derivation from the primer. The lead isotopic compositions of the particles from the spent cartridges show some variations, but these are markedly different from those of the projectiles, indicating lead from a mixture of geologically old and geologically young lead. The particles from the pillowcase were extremely small (usually <50 microm size) and showed varying isotopic compositions, some consistent with the gunshot residue from the cartridges. As the exhibits had been handled extensively prior to the present investigation, including some being sent to North America, there is a high likelihood that handling was not done in clean room environments and may have been contaminated. In this instance, as we were concerned about contamination, especially of the pillowcase, we felt contamination negated use of the results for assistance in proving the innocence or guilt of the accused. A combination of high-precision lead isotope measurements with scanning electron microscopy provides a powerful tool for forensic investigations if precautions are taken in handling the exhibits. PMID:12353538

  3. New insights into subsurface imaging of carbon nanotubes in polymer composites via scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladár, András E.; Liddle, J. Alexander

    2015-02-01

    Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by three-dimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.

  4. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    PubMed

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. PMID:26855205

  5. An endolithic microbial community in dolomite rock in central Switzerland: characterization by reflection spectroscopy, pigment analyses, scanning electron microscopy, and laser scanning microscopy.

    PubMed

    Horath, T; Neu, T R; Bachofen, R

    2006-04-01

    A community of endolithic microorganisms dominated by phototrophs was found as a distinct band a few millimeters below the surface of bare exposed dolomite rocks in the Piora Valley in the Alps. Using in situ reflectance spectroscopy, we detected chlorophyll a (Chl a), phycobilins, carotenoids, and an unknown type of bacteriochlorophyll-like pigment absorbing in vivo at about 720 nm. In cross sections, the data indicated a defined distribution of different groups of organisms perpendicular to the rock surface. High-performance liquid chromatography analyses of pigments extracted with organic solvents confirmed the presence of two types of bacteriochlorophylls besides chlorophylls and various carotenoids. Spherical organisms of varying sizes and small filaments were observed in situ with scanning electron microscopy and confocal laser scanning microscopy (one- and two-photon technique). The latter allowed visualization of the distribution of phototrophic microorganisms by the autofluorescence of their pigments within the rock. Coccoid cyanobacteria of various sizes predominated over filamentous ones. Application of fluorescence-labeled lectins demonstrated that most cyanobacteria were embedded in an exopolymeric matrix. Nucleic acid stains revealed a wide distribution of small heterotrophs. Some biological structures emitting a green autofluorescence remain to be identified. PMID:16598629

  6. Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy

    SciTech Connect

    Sutter, P. Sutter, E.

    2014-09-01

    We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.

  7. Atomic-Scale Imaging and Spectroscopy for In Situ Liquid Scanning Transmission Electron Microscopy

    SciTech Connect

    Jungjohann, K. L.; Evans, James E.; Aguiar, Jeff; Arslan, Ilke; Browning, Nigel D.

    2012-06-04

    Observation of growth, synthesis, dynamics and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope (TEM). In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle, and demonstrate characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution based catalysis and biological research.

  8. Direct Observation of Magnetic Vortex Cores using Scanning Electron Microscopy with Polarization Analysis (SEMPA)

    NASA Astrophysics Data System (ADS)

    Chung, Seok-Hwan; Pierce, Daniel; Unguris, John

    2008-03-01

    Magnetic singularities associated with magnetic vortex cores are a common feature in patterned magnetic nanostructures. Their small size, on the order of 10 nm, makes them technologically interesting, but also difficult to measure or image directly. We used Scanning Electron Microscopy with Polarization Analysis (SEMPA) to image magnetic vortices in a wide variety of patterned nanostructures. Since SEMPA can measure both the in-plane and the out-of-plane component of the surface magnetization, SEMPA can potentially determine both the chirality and the polarity of the vortex core, simultaneously. Samples consisted of NiFe (25nm) / Ta (3nm), and other soft magnetic films, patterned by electron beam lithography and lift-off into disks with various diameters. The films were grown on 85nm thick SiN membranes to reduce image degradation from backscattered electrons. The experimental results were compared to micromagnetic simulations and the vortex core profile showed a good correspondence with theoretical predictions, which considers only the exchange and magnetostatic energy. This work has been supported in part by the NIST-CNST/UMD-NanoCenter Cooperative Agreement.

  9. Snow crystal imaging using scanning electron microscopy: III. Glacier ice, snow and biota

    USGS Publications Warehouse

    Rango, A.; Wergin, W.P.; Erbe, E.F.; Josberger, E.G.

    2000-01-01

    Low-temperature scanning electron microscopy (SEM) was used to observe metamorphosed snow, glacial firn, and glacial ice obtained from South Cascade Glacier in Washington State, USA. Biotic samples consisting of algae (Chlamydomonas nivalis) and ice worms (a species of oligochaetes) were also collected and imaged. In the field, the snow and biological samples were mounted on copper plates, cooled in liquid nitrogen, and stored in dry shipping containers which maintain a temperature of -196??C. The firn and glacier ice samples were obtained by extracting horizontal ice cores, 8 mm in diameter, at different levels from larger standard glaciological (vertical) ice cores 7.5 cm in diameter. These samples were cooled in liquid nitrogen and placed in cryotubes, were stored in the same dry shipping container, and sent to the SEM facility. In the laboratory, the samples were sputter coated with platinum and imaged by a low-temperature SEM. To image the firn and glacier ice samples, the cores were fractured in liquid nitrogen, attached to a specimen holder, and then imaged. While light microscope images of snow and ice are difficult to interpret because of internal reflection and refraction, the SEM images provide a clear and unique view of the surface of the samples because they are generated from electrons emitted or reflected only from the surface of the sample. In addition, the SEM has a great depth of field with a wide range of magnifying capabilities. The resulting images clearly show the individual grains of the seasonal snowpack and the bonding between the snow grains. Images of firn show individual ice crystals, the bonding between the crystals, and connected air spaces. Images of glacier ice show a crystal structure on a scale of 1-2 mm which is considerably smaller than the expected crystal size. Microscopic air bubbles, less than 15 ??m in diameter, clearly marked the boundaries between these crystal-like features. The life forms associated with the glacier were

  10. Extended depth of field for high-resolution scanning transmission electron microscopy.

    PubMed

    Hovden, Robert; Xin, Huolin L; Muller, David A

    2011-02-01

    Aberration-corrected scanning transmission electron microscopes (STEMs) provide sub-Angstrom lateral resolution; however, the large convergence angle greatly reduces the depth of field. For microscopes with a small depth of field, information outside of the focal plane quickly becomes blurred and less defined. It may not be possible to image some samples entirely in focus. Extended depth-of-field techniques, however, allow a single image, with all areas in focus, to be extracted from a series of images focused at a range of depths. In recent years, a variety of algorithmic approaches have been employed for bright-field optical microscopy. Here, we demonstrate that some established optical microscopy methods can also be applied to extend the ∼ 6 nm depth of focus of a 100 kV 5th-order aberration-corrected STEM (α max = 33 mrad) to image Pt-Co nanoparticles on a thick vulcanized carbon support. These techniques allow us to automatically obtain a single image with all the particles in focus as well as a complimentary topography map. PMID:21122192

  11. Raman spectroscopy and scanning electron microscopy characterizations of fission track method datable zircon grains.

    PubMed

    Resende, Rosana Silveira; Sáenz, Carlos Alberto Tello; Curvo, Eduardo Augusto Campos; Constantino, Carlos José Leopoldo; Aroca, Ricardo F; Nakasuga, Wagner Massayuki

    2014-01-01

    Spectroscopic and morphological studies, designed to improve our understanding of the physicochemical phenomena that occur during zircon crystallization, are presented. The zircon fission track method (ZFTM) is used routinely in various laboratories around the world; however, there are some methodological difficulties needing attention. Depending on the surface fission track density observed under an optical microscope, the zircon grain surfaces are classified as homogeneous, heterogeneous, hybrid, or anomalous. In this study, zircon grain surfaces are characterized using complementary techniques such as optical microscopy (OM), micro-Raman spectroscopy, and scanning electron microscopy (SEM), both before and after chemical etching. Our results suggest that anomalous grains have subfamilies and that etching anisotropy related to heterogeneous grains is due to different crystallographic faces within the same polished surface that cannot be observed under an optical microscope. The improved methodology was used to determine the zircon fission track ages of samples collected from the Bauru Group located in the north of Paraná Basin, Brazil. A total of 514 zircon grains were analyzed, consisting of 10% homogeneous, about 10% heterogeneous, about 20% hybrid, and 60% anomalous grains. These results show that the age distributions obtained for homogeneous, heterogeneous, and hybrid grains are both statistically and geologically compatible. PMID:25014598

  12. Extended Depth of Field for High-Resolution Scanning Transmission Electron Microscopy

    SciTech Connect

    Hovden, Robert; Xin, Huolin L.; Muller, David A.

    2010-12-02

    Aberration-corrected scanning transmission electron microscopes (STEMs) provide sub-Angstrom lateral resolution; however, the large convergence angle greatly reduces the depth of field. For microscopes with a small depth of field, information outside of the focal plane quickly becomes blurred and less defined. It may not be possible to image some samples entirely in focus. Extended depth-of-field techniques, however, allow a single image, with all areas in focus, to be extracted from a series of images focused at a range of depths. In recent years, a variety of algorithmic approaches have been employed for bright-field optical microscopy. Here, we demonstrate that some established optical microscopy methods can also be applied to extend the ~6 nm depth of focus of a 100 kV 5th-order aberration-corrected STEM (α{sub max} = 33 mrad) to image Pt-Co nanoparticles on a thick vulcanized carbon support. These techniques allow us to automatically obtain a single image with all the particles in focus as well as a complimentary topography map.

  13. Regenerating Titanium Ventricular Assist Device Surfaces after Gold/ Palladium Coating for Scanning Electron Microscopy

    PubMed Central

    Achneck, Hardean E.; Serpe, Michael J; Jamiolkowski, Ryan; Eibest, Leslie M.; Craig, Stephen L.; Lawson, Jeffrey H.

    2014-01-01

    Titanium is one of the most commonly used materials for implantable devices in human s. Scanning electron microscopy (SEM) serves as an important tool for imaging titanium surfaces and analyzing cells and other organic matter adhering to titanium implants. However, high-vacuum SEM imaging of a non-conductive sample requires a conductive coating on the surface. A gold/ palladium coating is commonly used and to date no method has been described to ‘clean’ such gold/ palladium covered surfaces for repeated experiments without etching the titanium itself. This constitutes a major problem with titanium based implantable devices which are very expensive and thus in short supply. Our objective was to devise a protocol to regenerate titanium surfaces after SEM analysis. In a series of experiments, titanium samples from implantable cardiac assist devices were coated with fibronectin, seeded with cells and then coated with gold/palladium for SEM analysis. X-ray photoelectron spectroscopy spectra were obtained before and after five different cleaning protocols. Treatment with aqua regia (a 1:3 solution of concentrated nitric and hydrochloric acid), with or without ozonolysis, followed by sonication in soap solution and sonication in deionized water, allowed regenerating titanium surfaces to their original state. Atomic force microscopy confirmed that the established protocol did not alter the titanium microstructure. The protocol described herein is applicable to almost all titanium surfaces used in biomedical sciences and because of its short exposure time to aqua regia, will likely work for many titanium alloys as well. PMID:19642216

  14. Microwave irradiation for shortening the processing time of samples of flagellated bacteria for scanning electron microscopy.

    PubMed

    Hernández-Chavarría, Francisco

    2004-01-01

    Microwave irradiation (MWI) has been applied to the development of rapid methods to process biological samples for scanning electron microscopy (SEM). In this paper we propose two simple and quick techniques for processing bacteria (Proteus mirabilis and Vibrio mimicus) for SEM using MWI. In the simplest methodology, the bacteria were placed on a cover-glass, air-dried, and submitted to conductivity stain. The reagent used for the conductivity stain was the mordant of a light microscopy staining method (10 ml of 5% carbolic acid solution, 2 g of tannic acid, and 10 ml of saturated aluminum sulfate 12-H2O). In the second method the samples were double fixed (glutaraldehyde and then osmium), submitted to conductivity stain, dehydrated through a series of ethanol solutions of increasing concentration, treated with hexamethyldisilazine (HMDS), and dried at 35 degrees C for 5 minutes. In both methods the steps from fixation to treatment with HMDS were done under MWI for 2 minutes in an ice-water bath, in order to dissipate the heat generated by the MWI. Although both techniques preserve bacterial morphology adequately, the latter, technique showed the best preservation, including the appearance of flagella, and that process was completed in less than 2 hours at temperatures of MWI between 4 to 5 degrees C. PMID:17061527

  15. Regenerating titanium ventricular assist device surfaces after gold/palladium coating for scanning electron microscopy.

    PubMed

    Achneck, Hardean E; Serpe, Michael J; Jamiolkowski, Ryan M; Eibest, Leslie M; Craig, Stephen L; Lawson, Jeffrey H

    2010-01-01

    Titanium is one of the most commonly used materials for implantable devices in humans. Scanning electron microscopy (SEM) serves as an important tool for imaging titanium surfaces and analyzing cells and other organic matter adhering to titanium implants. However, high-vacuum SEM imaging of a nonconductive sample requires a conductive coating on the surface. A gold/palladium coating is commonly used and to date no method has been described to "clean" such gold/palladium covered surfaces for repeated experiments without etching the titanium itself. This constitutes a major problem with titanium-based implantable devices which are very expensive and thus in short supply. Our objective was to devise a protocol to regenerate titaniumsurfaces after SEM analysis. In a series of experiments, titanium samples from implantable cardiac assist devices were coated with fibronectin, seeded with cells and then coated with gold/palladium for SEM analysis. X-ray photoelectron spectroscopy spectra were obtained before and after five different cleaning protocols. Treatment with aqua regia (a 1:3 solution of concentrated nitric and hydrochloric acid), with or without ozonolysis, followed by sonication in soap solution and sonication in deionized water, allowed regenerating titanium surfaces to their original state. Atomic force microscopy confirmed that the established protocol did not alter the titanium microstructure. The protocol described herein is applicable to almost all titanium surfaces used in biomedical sciences and because of its short exposure time to aqua regia, will likely work for many titanium alloys as well. PMID:19642216

  16. Subsurface examination of a foliar biofilm using scanning electron- and focused-ion-beam microscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB is capable of removing small cross sections to view the subsurface features and may be s...

  17. Unbiased line width roughness measurements with critical dimension scanning electron microscopy and critical dimension atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Azarnouche, L.; Pargon, E.; Menguelti, K.; Fouchier, M.; Fuard, D.; Gouraud, P.; Verove, C.; Joubert, O.

    2012-04-01

    With the constant decrease of semiconductor device dimensions, line width roughness (LWR) becomes one of the most important sources of device variability and thus needs to be controlled below 2 nm for the future technological nodes of the semiconductor roadmap. The LWR control at the nanometer scale requires accurate measurements, which are inevitably impacted by the noise level of the equipment that causes bias from true LWR values. In this article, we compare the capability of two metrology tools, the critical dimension scanning electron microscopy (CD-SEM) and critical dimension atomic force microscopy (CD-AFM) to measure the true line width roughness of silicon and photoresist lines. For this purpose, we propose several methods based on previous works to estimate the noise level of those two equipments and thus extract the true LWR. One of the developed methods for the CD-SEM technique generalizes the power spectral densities (PSD) fitting method proposed by Hiraiwa and Nishida with a more universal autocorrelation function, which includes both correlation length and roughness exponent. However, PSD fitting method could not be used with CD-AFM due to the time consuming character of this technique. Hence, other experimental protocols have been set up for CD-AFM in order to accurately characterize the LWR. Our study shows that the CD-SEM technique combined with our PSD fitting method is much more powerful than CD-AFM to get all roughness information (true LWR, correlation length, and roughness exponent) with a good accuracy and efficiency on hard materials such as silicon. Concerning materials degradable under electron beam exposure such as photoresist, the choice is more disputable, since ultimately they are impacted by the electrons. Fortunately, our PSD fitting method allows working with low number of integration frames, which limits the resist degradation. Besides, we have highlighted some limitations of the CD-AFM technique due to the tip diameter. This

  18. Persistence of spermatozoa on decomposing human skin: a scanning electron microscopy study.

    PubMed

    Gibelli, D; Mazzarelli, D; Rizzi, A; Kustermann, A; Cattaneo, C

    2013-09-01

    Finding spermatozoa is of the utmost importance in judicial cases involving both the living and the dead; however, most of literature actually deals with inner genitalia and does not take into consideration the chance of external deposition of semen on skin, which is not rare. In addition, the most advanced microscopic technologies such as scanning electron microscopy (SEM) have not been thoroughly investigated within this specific field of research. This study aims at applying SEM analysis to samples of decomposed skin in order to test its potential in detecting spermatozoa particularly in decomposed cadavers. A sample of skin was obtained at autopsy and divided into two thin strips; one of the samples was used as a negative control. Semen was then taken from a "donor" (with a normal spermiogram) and was spread onto the other skin sample. Every 3 days for the first 15 days (for a total of six samples), a standard slide was prepared from swabs on the treated and control skin and analyzed by standard light microscopy. In addition, every 7 days up to 91 days (3 months circa), a skin sample was taken from the positive and negative control and examined by SEM for a total of 14 samples. Results show that after 12 days, light microscopy failed in detecting spermatozoa, whereas they were still visible up to 84 days by SEM analysis. This study therefore suggests the persistence of sperm structures in time and in decomposing material as well as the possible application of SEM technology to decomposed skin in order to detect semen. PMID:23324810

  19. Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Aschenbrenner, T.; Schowalter, M.; Mehrtens, T.; Müller-Caspary, K.; Fikry, M.; Heinz, D.; Tischer, I.; Madel, M.; Thonke, K.; Hommel, D.; Scholz, F.; Rosenauer, A.

    2016-05-01

    GaN nanotubes with coaxial InGaN quantum wells were analyzed by scanning transmission electron microscopy in order to determine their structural properties as well as the indium distribution across the InGaN quantum wells. For the latter, two process steps are necessary. First, a technique to prepare cross-sectional slices out of the nanotubes has been developed. Second, an existing scanning transmission electron microscopy analysis technique has been extended with respect to the special crystallographic orientation of this type of specimen. In particular, the shape of the nanotubes, their defect structure, and the incorporation of indium on different facets were investigated. The quantum wells preferentially grow on m-planes of the dodecagonally shaped nanotubes and on semipolar top facets while no significant indium signal was found on a-planes. An averaged indium concentration of 6% to 7% was found by scanning transmission electron microscopy analysis and could be confirmed by cathodoluminescence measurements.

  20. Microstructural Imaging of Shock-Recovered Berea Sandstone and Quartz Sand Using Scanning Electron Microscopy

    SciTech Connect

    Hiltl, M.; Hagelberg, C.R.; Swift, R.P.; Nellis, W.J.

    2000-02-03

    A number of shock-recovery experiments have been performed on Berea sandstone for different conditions: dry, water-saturated, hydrostatically water-pressurized and Helium gas-pressurized. The authors also conducted experiments with purified quartz sand in dry and water-saturated conditions with a grain size between 212 to 250 {micro}m and 250 to 300 {micro}m to compare with damaged Berea sandstone. The shock stresses in the range between 1.2 to 9.8 GPa were achieved by impacting projectiles accelerated by a single-stage light-gas gun. Different flyer plate thicknesses were used to produce different shock pulse durations. The water-pressurized sandstone targets were hydrostatically pressurized between 7.58-7.79 MPa, whereas the gas-pressure samples were pressurized to 27.5 MPa using helium gas. The microstructural damage of all specimens is being investigated by using scanning electron microscopy (SEM) in order to determine differences for these conditions. In this report they will present the results of the systematic SEM investigations for each experiment. The scientific results and discussions including X-ray computed micro tomography and statistical analysis are presented elsewhere. Overall, they collected around 1600 SEM pictures, which are available in electronic form on Compact Disks (CDs). They also provide the results of the laser particle analysis on the CDs.

  1. Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy.

    PubMed

    Sugimoto, Shinya; Okuda, Ken-Ichi; Miyakawa, Reina; Sato, Mari; Arita-Morioka, Ken-Ichi; Chiba, Akio; Yamanaka, Kunitoshi; Ogura, Teru; Mizunoe, Yoshimitsu; Sato, Chikara

    2016-01-01

    Biofilms are complex communities of microbes that attach to biotic or abiotic surfaces causing chronic infectious diseases. Within a biofilm, microbes are embedded in a self-produced soft extracellular matrix (ECM), which protects them from the host immune system and antibiotics. The nanoscale visualisation of delicate biofilms in liquid is challenging. Here, we develop atmospheric scanning electron microscopy (ASEM) to visualise Gram-positive and -negative bacterial biofilms immersed in aqueous solution. Biofilms cultured on electron-transparent film were directly imaged from below using the inverted SEM, allowing the formation of the region near the substrate to be studied at high resolution. We visualised intercellular nanostructures and the exocytosis of membrane vesicles, and linked the latter to the trafficking of cargos, including cytoplasmic proteins and the toxins hemolysin and coagulase. A thick dendritic nanotube network was observed between microbes, suggesting multicellular communication in biofilms. A universal immuno-labelling system was developed for biofilms and tested on various examples, including S. aureus biofilms. In the ECM, fine DNA and protein networks were visualised and the precise distribution of protein complexes was determined (e.g., straight curli, flagella, and excreted cytoplasmic molecular chaperones). Our observations provide structural insights into bacteria-substratum interactions, biofilm development and the internal microbe community. PMID:27180609

  2. Internal composition of atmospheric dust particles from focused ion-beam scanning electron microscopy.

    PubMed

    Conny, Joseph M

    2013-08-01

    Use of focused ion-beam scanning electron microscopy (FIB-SEM) to investigate the internal composition of atmospheric particles is demonstrated for assessing particle optical properties. In the FIB-SEM instrument equipped with an X-ray detector, a gallium-ion beam mills the particle, while the electron beam images the slice faces and energy-dispersive X-ray spectroscopy provides element maps of the particle. Differences in assessments of optical behavior based on FIB-SEM and conventional SEM were shown for five selected urban dust particles. The benefit of FIB-SEM for accurately determining the depth and size of optically important phases within particles was shown. FIB-SEM revealed that iron oxide grains left undetected by conventional SEM could potentially shift the single-scattering albedo of the particle from negative to positive radiative forcing. Analysis of a coke-like particle showed that 73% of the light-scattering inclusion went undetected with conventional SEM, causing the bulk absorption coefficient to vary by as much as 25%. Optical property calculations for particles as volume-equivalent spheres and as spheroids that approximated actual particle shapes revealed that the largest effect between conventional SEM and FIB-SEM analyses was on backscattering efficiency, in some cases varying several-fold. PMID:23763344

  3. Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy

    PubMed Central

    Sugimoto, Shinya; Okuda, Ken-ichi; Miyakawa, Reina; Sato, Mari; Arita-Morioka, Ken-ichi; Chiba, Akio; Yamanaka, Kunitoshi; Ogura, Teru; Mizunoe, Yoshimitsu; Sato, Chikara

    2016-01-01

    Biofilms are complex communities of microbes that attach to biotic or abiotic surfaces causing chronic infectious diseases. Within a biofilm, microbes are embedded in a self-produced soft extracellular matrix (ECM), which protects them from the host immune system and antibiotics. The nanoscale visualisation of delicate biofilms in liquid is challenging. Here, we develop atmospheric scanning electron microscopy (ASEM) to visualise Gram-positive and -negative bacterial biofilms immersed in aqueous solution. Biofilms cultured on electron-transparent film were directly imaged from below using the inverted SEM, allowing the formation of the region near the substrate to be studied at high resolution. We visualised intercellular nanostructures and the exocytosis of membrane vesicles, and linked the latter to the trafficking of cargos, including cytoplasmic proteins and the toxins hemolysin and coagulase. A thick dendritic nanotube network was observed between microbes, suggesting multicellular communication in biofilms. A universal immuno-labelling system was developed for biofilms and tested on various examples, including S. aureus biofilms. In the ECM, fine DNA and protein networks were visualised and the precise distribution of protein complexes was determined (e.g., straight curli, flagella, and excreted cytoplasmic molecular chaperones). Our observations provide structural insights into bacteria-substratum interactions, biofilm development and the internal microbe community. PMID:27180609

  4. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy.

    PubMed

    Sun, Jingya; Adhikari, Aniruddha; Shaheen, Basamat S; Yang, Haoze; Mohammed, Omar F

    2016-03-17

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser's relatively large penetration depth and consequently these techniques record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and subpicosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample's surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystal and its powder film. We also discuss the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces. PMID:26911313

  5. An optimized methodology to analyze biopolymer capsules by environmental scanning electron microscopy.

    PubMed

    Conforto, Egle; Joguet, Nicolas; Buisson, Pierre; Vendeville, Jean-Eudes; Chaigneau, Carine; Maugard, Thierry

    2015-02-01

    The aim of this paper is to describe an optimized methodology to study the surface characteristics and internal structure of biopolymer capsules using scanning electron microscopy (SEM) in environmental mode. The main advantage of this methodology is that no preparation is required and, significantly, no metallic coverage is deposited on the surface of the specimen, thus preserving the original capsule shape and its surface morphology. This avoids introducing preparation artefacts which could modify the capsule surface and mask information concerning important feature like porosities or roughness. Using this method gelatin and mainly fatty coatings, difficult to be analyzed by standard SEM technique, unambiguously show fine details of their surface morphology without damage. Furthermore, chemical contrast is preserved in backscattered electron images of unprepared samples, allowing visualizing the internal organization of the capsule, the quality of the envelope, etc... This study provides pointers on how to obtain optimal conditions for the analysis of biological or sensitive material, as this is not always studied using appropriate techniques. A reliable evaluation of the parameters used in capsule elaboration for research and industrial applications, as well as that of capsule functionality is provided by this methodology, which is essential for the technological progress in this domain. PMID:25492208

  6. Analysis of acute impact of oleoresin capsicum on rat nasal mucosa using scanning electron microscopy.

    PubMed

    Catli, Tolgahan; Acar, Mustafa; Olgun, Yüksel; Dağ, İlknur; Cengiz, Betül Peker; Cingi, Cemal

    2015-01-01

    Analysis of acute cellular changes seen in nasal mucosa of Wistar-Albino rats exposed to different doses of oleoresin capsicum for various time periods by means of scanning electron microscopy. Thirty-five Wistar-Albino rats were divided into five groups of seven rats each. 6-gram oleoresin capsicum per second was sprayed into cages of the groups except group 1. Spray times and duration of exposure to pepper gasses were different for each group. Thirty minutes after the exposure, the animals were killed and specimens from their nasal mucosas were harvested and examined under scanning electron microscope. Mucosal damage was scored from 0-4 points. Mean values of nasal mucosa damage scores of the groups were calculated and compared statistically. Average damage scores of the groups exposed to identical doses of oleoresin capsicum for various exposure times were compared and a statistically significant difference was seen between Groups 2 and 3 (p < 0.05), however the difference between Groups 4 and 5 was insignificant (p > 0.05). Average damage scores of the groups exposed to various doses for identical exposure times were compared, and statistically significant differences were observed between Groups 2 and 4 and also Groups 3 and 5 (p < 0.05). Outcomes of our study have demonstrated that pepper gas exerts destructive changes on rat nasal mucosa. The extent of these destructive changes increases with the prolonged exposure to higher doses. Besides, exposure time also stands out as an influential factor on the extent of the destructive changes. PMID:24627077

  7. Scanning and three-dimensional electron microscopy methods for the study of Trypanosoma brucei and Leishmania mexicana flagella

    PubMed Central

    Gluenz, Eva; Wheeler, Richard John; Hughes, Louise; Vaughan, Sue

    2015-01-01

    Three-dimensional electron microscopy tools have revolutionized our understanding of cell structure and molecular complexes in biology. Here, we describe methods for studying flagellar ultrastructure and biogenesis in two unicellular parasites—Trypanosoma brucei and Leishmania mexicana. We describe methods for the preparation of these parasites for scanning electron microscopy cellular electron tomography, and serial block face scanning electron microscopy (SBFSEM). These parasites have a highly ordered cell shape and form, with a defined positioning of internal cytoskeletal structures and organelles. We show how knowledge of these can be used to dissect cell cycles in both parasites and identify the old flagellum from the new in T. brucei. Finally, we demonstrate the use of SBFSEM three-dimensional models for analysis of individual whole cells, demonstrating the excellent potential this technique has for future studies of mutant cell lines. PMID:25837406

  8. Dislocation imaging for orthopyroxene using an atom-resolved scanning transmission electron microscopy.

    PubMed

    Kumamoto, Akihito; Kogure, Toshihiro; Raimbourg, Hugues; Ikuhara, Yuichi

    2014-11-01

    Dislocations, one-dimensional lattice defects, appear as a microscopic phenomenon while they are formed in silicate minerals by macroscopic dynamics of the earth crust such as shear stress. To understand ductile deformation mechanisms of silicates, atomic structures of the dislocations have been examined using transmission electron microscopy (TEM). Among them, it has been proposed that {100}<001> primary slip system of orthopyroxene (Opx) is dissociated into partial dislocations, and a stacking fault with the clinopyroxene (Cpx) structure is formed between the dislocations. This model, however, has not been determined completely due to the complex structures of silicates. Scanning transmission electron microscopy (STEM) has a potential to determine the structure of dislocations with single-atomic column sensitivity, particularly by using high-angle annular dark field (HAADF) and annular bright field (ABF) imaging with a probing aberration corrector.[1] Furthermore, successive analyses from light microscopy to atom-resolved STEM have been achieved by focused ion beam (FIB) sampling techniques.[2] In this study, we examined dislocation arrays at a low-angle grain boundary of ∼1° rotation about the b-axis in natural deformed Opx using a simultaneous acquisition of HAADF/ABF (JEM-ARM200F, JEOL) equipped with 100 mm2 silicon drift detector (SDD) for energy dispersive X-ray spectroscopy (EDS). Figure 1 shows averaged STEM images viewed along the b- axis of Opx extracted from repeating units. HAADF provides the cation-site arrangement, and ABF distinguishes the difference of slightly rotated SiO4 tetrahedron around the a- axis. This is useful to distinguish the change of stacking sequence between the partial dislocations. Two types of stacking faults with Cpx and protopyroxene (Ppx) structures were identified between three partial dislocations. Furthermore, Ca accumulation in M2 (Fe) site around the stacking faults was detected by STEM-EDS. Interestingly, Ca is

  9. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    NASA Astrophysics Data System (ADS)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  10. Quantitative high-angle annular dark field scanning transmission electron microscopy for materials science

    NASA Astrophysics Data System (ADS)

    Petrova, Rumyana V.

    Scanning transmission electron microscopy (STEM) has been widely used for characterization of materials; to identify micro- and nano-structures within a sample and to analyze crystal and defect structures. High-angle annular dark field (HAADF) STEM imaging using atomic number (Z) contrast has proven capable of resolving atomic structures with better than 2 A lateral resolution. In this work, the HAADF STEM imaging mode is used in combination with multislice simulations. This combination is applied to the investigation of the temperature dependence of the intensity collected by the HAADF detector in silicon, and to convergent beam electron diffraction (CBED) to measure the degree of chemical order in intermetallic nanoparticles. The experimental and simulation results on the high-angle scattering of 300 keV electrons in crystalline silicon provide a new contribution to the understanding of the temperature dependence of the HAADF intensity. In the case of 300 keV, the average high-angle scattered intensity slightly decreases as the temperature increases from 100 K to 300 K, and this is different from the temperature dependence at 100 keV and 200 keV where HAADF intensity increases with temperature, as had been previously reported by other workers. The L10 class of hard magnetic materials has attracted continuous attention as a candidate for high-density magnetic recording media, as this phase is known to have large magnetocrystalline anisotropy, with magnetocrystalline anisotropy constant, Ku, strongly dependent on the long-range chemical order parameter, S. A new method is developed to assess the degree of chemical order in small FePt L1 0 nanoparticles by implementing a CBED diffraction technique. Unexpectedly, the degree of order of individual particles is highly variable and not a simple function of particle size or sample composition. The particle-to-particle variability observed is an important new aspect to the understanding of phase transformations in