Sample records for microstructured molding technique

  1. Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique.

    PubMed

    Dupuis, Alexandre; Mazhorova, Anna; Désévédavy, Frédéric; Rozé, Mathieu; Skorobogatiy, Maksim

    2010-06-21

    We report two novel fabrication techniques, as well as THz spectral transmission and propagation loss measurements of subwavelength plastic wires with highly porous (up to 86%) and non-porous transverse geometries. The two fabrication techniques we describe are based on the microstructured molding approach. In one technique the mold is made completely from silica by stacking and fusing silica capillaries to the bottom of a silica ampoule. The melted material is then poured into the silica mold to cast the microstructured preform. Another approach uses a microstructured mold made of a sacrificial plastic which is co-drawn with a cast preform. Material from the sacrificial mold is then dissolved after fi ber drawing. We also describe a novel THz-TDS setup with an easily adjustable optical path length, designed to perform cutback measurements using THz fibers of up to 50 cm in length. We fi nd that while both porous and non-porous subwavelength fibers of the same outside diameter have low propagation losses (alpha

  2. Incipient flocculation molding: A new ceramic-forming technique

    NASA Astrophysics Data System (ADS)

    Arrasmith, Steven Reade

    Incipient Flocculation Molding (IFM) was conceived as a new near-net-shape forming technique for ceramic components. It was hypothesized that the development of a temperature-dependent deflocculant would result in a forming technique that is flexible, efficient, and capable of producing a superior microstructure with improved mechanical properties from highly reactive, submicron ceramic powders. IFM utilizes a concentrated, nonaqueous, sterically stabilized ceramic powder and/or colloidal suspension which is injected into a non-porous mold. The suspension is then flocculated by destabilizing the suspension by lowering the temperature. Flocculation is both rapid and reversible. Cooling to -20°C produces a green body with sufficient strength for removal from the mold. The solvent is removed from the green body by evaporation. The dried green body is subsequently sintered to form a dense ceramic monolith. This is the first ceramic forming method based upon the manipulation of a sterically-stabilized suspension. To demonstrate IFM, the process of grafting polyethylene glycol (PEG), with molecular weights from 600 to 8000, to alumina powders was investigated. The maximum grafted amounts were achieved by the technique of dispersing the alumina powders in molten polymer at 195°C. The ungrafted PEG was then removed by repeated centrifuging and redispersion in fresh distilled water. The rheological behavior of suspensions of the PEG-grafted powders in water, 2-propanol and 2-butanol were characterized. All of the aqueous suspensions were shear thinning. The PEG 4600-grafted alumina powder aqueous suspensions were the most fluid. Sample rods and bars were molded from 52 vol% PEG-grafted alumina suspensions in 2-butanol. The best results were obtained with a preheated aluminum mold lubricated with a fluorinated oil mold-release. The samples were dried, sintered, and their microstructure and density were compared with sintered samples dry pressed from the same alumina powder

  3. Fabrication, Densification, and Replica Molding of 3D Carbon Nanotube Microstructures

    PubMed Central

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A. John

    2012-01-01

    The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1, 2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT

  4. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.

    PubMed

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A John

    2012-07-02

    The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques (1, 2), and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT

  5. Fabrication of sinterable silicon nitride by injection molding

    NASA Technical Reports Server (NTRS)

    Quackenbush, C. L.; French, K.; Neil, J. T.

    1982-01-01

    Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.

  6. Characterization of Ni-Cr alloys using different casting techniques and molds.

    PubMed

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    NASA Astrophysics Data System (ADS)

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  8. Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al-Si alloy castings made in sand and Fe-Cr slag molds

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, I.; Babu Rao, J.

    2017-07-01

    The microstructure and mechanical properties of as-cast A356 (Al-Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome (Fe-Cr) slag, and a mixture of sand and Fe-Cr. A sodium silicate-CO2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing (SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe-Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe-Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe-Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds.

  9. Neonatal Ear Molding: Timing and Technique.

    PubMed

    Anstadt, Erin Elizabeth; Johns, Dana Nicole; Kwok, Alvin Chi-Ming; Siddiqi, Faizi; Gociman, Barbu

    2016-03-01

    The incidence of auricular deformities is believed to be ∼11.5 per 10,000 births, excluding children with microtia. Although not life-threatening, auricular deformities can cause undue distress for patients and their families. Although surgical procedures have traditionally been used to reconstruct congenital auricular deformities, ear molding has been gaining acceptance as an efficacious, noninvasive alternative for the treatment of newborns with ear deformations. We present the successful correction of bilateral Stahl's ear deformity in a newborn through a straightforward, nonsurgical method implemented on the first day of life. The aim of this report is to make pediatric practitioners aware of an effective and simple molding technique appropriate for correction of congenital auricular anomalies. In addition, it stresses the importance of very early initiation of ear cartilage molding for achieving the desired outcome. Copyright © 2016 by the American Academy of Pediatrics.

  10. Effect of modified mold shell on the microstructure and tensile fracture morphology of single-crystal nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Xu, Weitai; Zhao, Yutao; Sun, Shaochun; Liu, Manping; Ma, Dexin; Liang, Xiangfeng; Wang, Cunlong; Tao, Ran

    2018-04-01

    The mold shell used for single-crystal turbine blades preparation was modified from conventional process to fiber reinforcement technology. The wall thickness was decreased by 32.3 percent (pct) than the conventional process. Then these two mold shells were used to produce single crystal samples of nickel-base superalloy in a Bridgman furnace. The local temperature curves were recorded in the process. The results show that the modified mold shell can increase the temperature gradient in the mushy zone than the conventional mold shell. The primary and secondary dendrite arm space were reduced by 8 pct and 12 pct, respectively. Moreover, both the area fraction and mean size of the γ‧/γ eutectic were declined, as well as the dendritic segregation tendency. Therefore it contributed to the lower residual eutectic and micro-porosity in the heat-treated microstructure. Further, fracture surface of the samples made by modified mold shell exhibited smaller facets and more uniform dimples in the size and shape.

  11. Route to one-step microstructure mold fabrication for PDMS microfluidic chip

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Su, Yue; Fang, Weihao; Pei, Weihua; Chen, Hongda

    2018-04-01

    The microstructure mold fabrication for PDMS microfluidic chip remains complex and time-consuming process requiring special equipment and protocols: photolithography and etching. Thus, a rapid and cost-effective method is highly needed. Comparing with the traditional microfluidic chip fabricating process based on the micro-electromechanical system (MEMS), this method is simple and easy to implement, and the whole fabrication process only requires 1-2 h. Different size of microstructure from 100 to 1000 μm was fabricated, and used to culture four kinds of breast cancer cell lines. Cell viability and morphology was assessed when they were cultured in the micro straight channels, micro square holes and the bonding PDMS-glass microfluidic chip. The experimental results indicate that the microfluidic chip is good and meet the experimental requirements. This method can greatly reduce the process time and cost of the microfluidic chip, and provide a simple and effective way for the structure design and in the field of biological microfabrications and microfluidic chips.

  12. Fabrication of metallic microstructures by micromolding nanoparticles

    DOEpatents

    Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  13. Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique.

    PubMed

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-07-01

    Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding.

  14. Processing study of injection molding of silicon nitride for engine applications

    NASA Technical Reports Server (NTRS)

    Rorabaugh, M. E.; Yeh, H. C.

    1985-01-01

    The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.

  15. Dimensional Changes of Acrylic Resin Denture Bases: Conventional Versus Injection-Molding Technique

    PubMed Central

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Objective: Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. Materials and Methods: SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. Results: After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Conclusion: Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding. PMID:25584050

  16. Development of processes and techniques for molding thermally stable, fire-retardant, low-smoke-emitting polymeric materials

    NASA Technical Reports Server (NTRS)

    Silverman, B.

    1979-01-01

    All available newly developed nonmetallic thermally stable polymers were examined for the development of processes and techniques by compression molding, injection molding, or thermoforming cabin interior parts. Efforts were directed toward developing molding techniques of new polymers to economically produce usable nonmetallic molded parts. Data on the flame resistant characteristics of the materials were generated from pilot plant batches. Preliminary information on the molding characteristics of the various thermoplastic materials was obtained by producing actual parts.

  17. Supersoft lithography: Candy-based fabrication of soft silicone microstructures

    PubMed Central

    Moraes, Christopher; Labuz, Joseph M.; Shao, Yue; Fu, Jianping; Takayama, Shuichi

    2015-01-01

    We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based ‘hard candy’ recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues. PMID:26245893

  18. Supersoft lithography: candy-based fabrication of soft silicone microstructures.

    PubMed

    Moraes, Christopher; Labuz, Joseph M; Shao, Yue; Fu, Jianping; Takayama, Shuichi

    2015-01-01

    We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues.

  19. Comparative evaluation of border molding using two different techniques in maxillary edentulous arches: A clinical study

    PubMed Central

    Qanungo, Anchal; Aras, Meena Ajay; Chitre, Vidya; Coutinho, Ivy; Rajagopal, Praveen; Mysore, Ashwin

    2016-01-01

    Purpose: The aim of this in vivo study was to compare the single-step border molding technique using injectable heavy viscosity addition silicone with sectional border molding technique using low fusing impression compound by evaluating the retention of heat cure trial denture bases. Materials and Methods: Ten completely edentulous patients in need of prostheses were included in this study. Two border molding techniques, single-step (Group 1) and sectional (Group 2), were compared for retention. Both border molding techniques were performed in each patient. In both techniques, definitive wash impression was made with light viscosity addition silicone. The final results were analyzed using paired t-test to determine whether significant differences existed between the groups. Results: The t-value (3.031) infers that there was a significant difference between Group 1 and Group 2 (P = 0.014). The retention obtained in Group 2 (mean = 9.05 kgf) was significantly higher than that of Group 1 (mean = 8.26 kgf). Conclusion: Sectional border molding technique proved to be more retentive as compared to single-step border molding although clinically the retention appeared comparable. PMID:27746597

  20. Correction of Congenital Auricular Deformities Using the Ear-Molding Technique.

    PubMed

    Woo, Taeyong; Kim, Young Seok; Roh, Tai Suk; Lew, Dae Hyun; Yun, In Sik

    2016-11-01

    Studies of the ear-molding technique have emphasized the importance of initiating molding early to achieve the best results. In the present study, we describe the immediate effects and long-term outcomes of this technique, focusing on children who were older than the ideal age of treatment initiation. Patients who visited our institution from July 2014 to November 2015 were included. Medical charts were reviewed to collect data on demographics, the duration of treatment, the types of deformities, and the manner of recognition of the deformity and referral to our institution. Parents were surveyed to assess the degree of improvement, the level of procedural discomfort at the end of treatment, any changes in the shape of the molded auricle, and overall satisfaction 12 months after their last follow-up visits. A review of 28 ears in 18 patients was conducted, including the following types of deformities: constricted ear (64.2%), Stahl ear (21.4%), prominent ear (7.1%), and cryptotia (7.1%). The average score for the degree of improvement, rated on a 5-point scale (1, very poor; 5, excellent), was 3.5 at the end of treatment, with a score of 2.6 for procedural discomfort (1, very mild; 5, very severe). After 12 months, the shapes of all ears were well maintained. The average overall satisfaction score was 3.6 (1, very dissatisfied; 5, very satisfied). We had reasonable outcomes in older patients. After 1 year of follow-up, these outcomes were well maintained. Patients past the ideal age at presentation can still be candidates for the molding technique.

  1. Mold Flux Crystallization and Mold Thermal Behavior

    NASA Astrophysics Data System (ADS)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  2. Microstructures, mechanical properties, and fracture behaviors of metal-injection molded 17-4PH stainless steel

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Huang, Zeng-Kai; Tseng, Chun-Feng; Hwang, Kuen-Shyang

    2015-05-01

    Metal injection molding (MIM) is a versatile technique for economically manufacturing various metal parts with complicated shapes and excellent properties. The objective of this study was to clarify the effects of powder type (water-atomized and gas-atomized powders) and various heat treatments (sintering, solutioning, H900, and H1100) on the microstructures, mechanical properties, and fracture behaviors of MIM 17-4PH stainless steels. The results showed that better mechanical properties of MIM 17-4PH can be achieved with gas-atomized powder than with water-atomized powder due mainly to the lower silicon and oxygen contents and fewer SiO2 inclusions in the steels. The presence of 10 vol% δ ferrite does not impair the UTS or elongation of MIM 17-4PH stainless steels. The δ ferrite did not fracture, even though the neighboring martensitic matrix was severely cracked. Moreover, H900 treatment produces the highest hardness and UTS, along with moderate elongation. H1100 treatment produces the best elongation, along with moderate hardness and UTS.

  3. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    NASA Astrophysics Data System (ADS)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  4. Surface 3D Micro Free Forms: Multifunctional Microstructured Mesoporous α-Alumina by in Situ Slip Casting Using Excimer Laser Ablated Polycarbonate Molds.

    PubMed

    Rowthu, Sriharitha; Böhlen, Karl; Bowen, Paul; Hoffmann, Patrik

    2015-11-11

    Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. Here, we present a route to obtain intricate surface structures through in situ slip casting using polydimethylsiloxane (PDMS) negative molds which are replicated from excimer laser ablated polycarbonate (PC) master molds. PC sheets are ablated with a nanosecond KrF (λ = 248 nm) excimer laser mask projection system to obtain micron-scale 3D surface features over a large area of up to 3 m(2). Complex surface structures that include 3D free forms such as 3D topography of Switzerland, shallow structures such as diffractive optical elements (60 nm step) and conical micropillars have been obtained. The samples are defect-free produced with thicknesses of up to 10 mm and 120 mm diameter. The drying process of the slip cast alumina slurry takes place as a one-dimensional process, through surface evaporation and water permeation through the PDMS membrane. This allows homogeneous one-dimensional shrinkage during the drying process, independent of the sample's lateral dimensions. A linear mass diffusion model has been proposed to predict and explain the drying process of these ceramic colloidal suspensions. The calculated drying time is linearly proportional to the height of the slurry and the thickness of the negatively structured PDMS and is validated by the experimental results. An experimentally observed optimum Sylgard PDMS thickness range of ∼400 μm to 1 mm has achieved the best quality microstructured green compacts. Further, the model predicts that the drying time is independent of the microstructured areas and was validated using experimental observations carried out with microstructured areas of 300 mm(2), 1200 mm(2), and 120 cm(2). Therefore, in principle, the structures can be further replicated in areas up

  5. Fast and cheap fabrication of molding tools for polymer replication

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Kirschner, Nadine; Worgull, Matthias; Rapp, Bastian E.

    2017-02-01

    Polymer replication is a prerequisite for low-cost microstructure components for consumer and end user market. The production of cost-effective microstructure in polymers requires metal molding tools which are often fabricated by direct structuring methods like milling or laser machining both of which are time-consuming and cost-intensive. We present an alternative fabrication method based on replication processes which allows the cheap ( 50 €) and fast ( 12 h) replication of complex microstructures into metal. The process comprises three steps: 1. Generation of the microstructure in a photoresist via lithography. 2. Casting of the structure into a high-temperature silicone which serves as original mold for creation of the metal molding tool. 3. Melting of an eutectic alloy of Sn, Ag and Cu under light pressure directly inside of the silicone within an oven. After cooling to room temperature the metal molding tool can be used for polymer replication into conventional thermoplastic polymers. As a first example we structured polymethylmethacrylate (PMMA) foils with a thickness of 1 mm via hot embossing and feature sizes of 100 μm could be replicated with high fidelity.

  6. Direct micropatterning of polymer materials by ice mold

    NASA Astrophysics Data System (ADS)

    Yu, Xinhong; Xing, Rubo; Luan, Shifang; Wang, Zhe; Han, Yanchun

    2006-10-01

    Micropatterning of functional polymer materials by micromolding in capillaries (MIMIC) with ice mold is reported in this paper. Ice mold was selected due to its thaw or sublimation. Thus, the mold can be easily removed. Furthermore, the polymer solution did not react with, swell, or adhere to the ice mold, so the method is suitable for many kinds of materials (such as P3HT, PMMA Alq 3/PVK, PEDOT: PSS, PS, P2VP, etc.). Freestanding polymer microstructures, binary polymer pattern, and microchannels have been fabricated by the use of ice mold freely.

  7. Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Wang, Xin-da; Li, Xiang; Qi, Xiao-tong; Qu, Xuan-hui

    2017-09-01

    The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.

  8. An Integrated Approach Linking Process to Structural Modeling With Microstructural Characterization for Injections-Molded Long-Fiber Thermoplastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Smith, Mark T.

    2008-09-01

    The objective of our work is to enable the optimum design of lightweight automotive structural components using injection-molded long fiber thermoplastics (LFTs). To this end, an integrated approach that links process modeling to structural analysis with experimental microstructural characterization and validation is developed. First, process models for LFTs are developed and implemented into processing codes (e.g. ORIENT, Moldflow) to predict the microstructure of the as-formed composite (i.e. fiber length and orientation distributions). In parallel, characterization and testing methods are developed to obtain necessary microstructural data to validate process modeling predictions. Second, the predicted LFT composite microstructure is imported into amore » structural finite element analysis by ABAQUS to determine the response of the as-formed composite to given boundary conditions. At this stage, constitutive models accounting for the composite microstructure are developed to predict various types of behaviors (i.e. thermoelastic, viscoelastic, elastic-plastic, damage, fatigue, and impact) of LFTs. Experimental methods are also developed to determine material parameters and to validate constitutive models. Such a process-linked-structural modeling approach allows an LFT composite structure to be designed with confidence through numerical simulations. Some recent results of our collaborative research will be illustrated to show the usefulness and applications of this integrated approach.« less

  9. High-rate production of micro- and nanostructured surfaces: Injection molding and novel process for metal tooling manufacturing

    NASA Astrophysics Data System (ADS)

    De Jesus Vega, Marisely

    rapidly processed via liquid injection molding. LSR with its excellent mechanical properties, transparency, non-toxicity and rapid molding capabilities can bring the production of micro and nanostructured surfaces from laboratory research facilities to high-rate manufacturing. However, previous research on microstructured surfaces made off LSR does not focus on the processing aspect of this material. Therefore, there is a lack of understanding of how different processing conditions affect the replication of microstructures. Additionally, there are no reports molding nanostructures of LSR. Features between 115 microm and 0.250 microm were molded in this work and the effect of different processing conditions and features sizes were studied. For the last part of this work, a novel metal additive manufacturing technique was used for the production of microstructured surfaces to be used as tooling for injection molding. The printing method consists of metal pastes printed through a tip onto a steel substrate. Prior work has shown spreading and swelling of features when metal pastes extrude out of the printing tip. PDMS was studied as a binder material to minimize spreading and swelling of the features by curing right after printing. In addition, prior work has shown durability of this metal printed tool up to 5000 injection molding cycles. This work compares this durability to durability of commercially available selective laser sintering metal tools. Furthermore, surface roughness was studied as this is one of the most important things to consider when molding microchannels for certain applications.

  10. A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses

    NASA Astrophysics Data System (ADS)

    Shieh, Jen-Yu; Wang, Luke K.; Ke, Shih-Ying

    2010-07-01

    A computer aided engineering (CAE) tool-assisted technique, using Moldex3D and aspheric analysis utility (AAU) software in a polycarbonate injection molding design, is proposed to manufacture large diameter aspheric plastic lenses. An experiment is conducted to verify the applicability/feasibility of the proposed technique. Using the preceding two software tools, these crucial process parameters associated with the surface profile errors and birefringence of a molded lens can be attainable. The strategy adopted here is to use the actual quantity of shrinkage after an injection molding trial of an aspherical plastic lens as a reference to perform the core shaping job while keeping the coefficients of aspheric surface, radius, and conic constant unchanged. The design philosophy is characterized by using the CAE tool as a guideline to pursue the best symmetry condition, followed by injection molding trials, to accelerate a product’s developmental time. The advantages are less design complexity and shorter developmental time for a product.

  11. Precision glass molding of high-resolution diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas

    2016-04-01

    The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.

  12. Fabrication of spherical microlens array by combining lapping on silicon wafer and rapid surface molding

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Zhou, Tianfeng; Zhang, Lin; Zhou, Wenchen; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.

    2018-07-01

    Silicon is a promising mold material for compression molding because of its properties of hardness and abrasion resistance. Silicon wafers with carbide-bonded graphene coating and micro-patterns were evaluated as molds for the fabrication of microlens arrays. This study presents an efficient but flexible manufacturing method for microlens arrays that combines a lapping method and a rapid molding procedure. Unlike conventional processes for microstructures on silicon wafers, such as diamond machining and photolithography, this research demonstrates a unique approach by employing precision steel balls and diamond slurries to create microlenses with accurate geometry. The feasibility of this method was demonstrated by the fabrication of several microlens arrays with different aperture sizes and pitches on silicon molds. The geometrical accuracy and surface roughness of the microlens arrays were measured using an optical profiler. The measurement results indicated good agreement with the optical profile of the design. The silicon molds were then used to copy the microstructures onto polymer substrates. The uniformity and quality of the samples molded through rapid surface molding were also assessed and statistically quantified. To further evaluate the optical functionality of the molded microlens arrays, the focal lengths of the microlens arrays were measured using a simple optical setup. The measurements showed that the microlens arrays molded in this research were compatible with conventional manufacturing methods. This research demonstrated an alternative low-cost and efficient method for microstructure fabrication on silicon wafers, together with the follow-up optical molding processes.

  13. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    NASA Astrophysics Data System (ADS)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  14. Forehead augmentation with a methyl methacrylate onlay implant using an injection-molding technique.

    PubMed

    Park, Dong Kwon; Song, Ingook; Lee, Jin Hyo; You, Young June

    2013-09-01

    The forehead, which occupies about one third of the face, is one of the major determinants of a feminine or masculine look. Various methods have been used for the augmentation of the forehead using autologous fat grafts or alloplastic materials. Methylmethacrylate (MMA) is the most appropriate material for augmentation of the forehead, and we have used an injection-molding technique with MMA to achieve satisfactory results. Under local anesthesia with intravenous (IV) sedation, an incision was made on the scalp and a meticulous and delicate subperiosteal dissection was then performed. MMA monomers and polymers were mixed, the dough was injected into the space created, and manual molding was performed along with direct inspection. This surgery was indicated for patients who wanted to correct an unattractive appearance by forehead augmentation. Every patient in this study visited our clinics 3 months after surgery to evaluate the results. We judged the postoperative results in terms of re-operation rates caused by the dissatisfaction of the patients and complications. During a 13-year period, 516 patients underwent forehead augmentation with MMA. With the injection-molding technique, the inner surface of the MMA implant is positioned close to the underlying frontal bone, which minimizes the gap between the implant and bone. The borders of the implant should be tapered sufficiently until no longer palpable or visible. Only 28 patients (5.4%) underwent a re-operation due to an undesirable postoperative appearance. The injection-molding technique using MMA is a simple, safe, and ideal method for the augmentation of the forehead.

  15. Forehead Augmentation with a Methyl Methacrylate Onlay Implant Using an Injection-Molding Technique

    PubMed Central

    Park, Dong Kwon; Song, Ingook; Lee, Jin Hyo

    2013-01-01

    Background The forehead, which occupies about one third of the face, is one of the major determinants of a feminine or masculine look. Various methods have been used for the augmentation of the forehead using autologous fat grafts or alloplastic materials. Methylmethacrylate (MMA) is the most appropriate material for augmentation of the forehead, and we have used an injection-molding technique with MMA to achieve satisfactory results. Methods Under local anesthesia with intravenous (IV) sedation, an incision was made on the scalp and a meticulous and delicate subperiosteal dissection was then performed. MMA monomers and polymers were mixed, the dough was injected into the space created, and manual molding was performed along with direct inspection. This surgery was indicated for patients who wanted to correct an unattractive appearance by forehead augmentation. Every patient in this study visited our clinics 3 months after surgery to evaluate the results. We judged the postoperative results in terms of re-operation rates caused by the dissatisfaction of the patients and complications. Results During a 13-year period, 516 patients underwent forehead augmentation with MMA. With the injection-molding technique, the inner surface of the MMA implant is positioned close to the underlying frontal bone, which minimizes the gap between the implant and bone. The borders of the implant should be tapered sufficiently until no longer palpable or visible. Only 28 patients (5.4%) underwent a re-operation due to an undesirable postoperative appearance. Conclusions The injection-molding technique using MMA is a simple, safe, and ideal method for the augmentation of the forehead. PMID:24086816

  16. Permanent Mold Casting of JIS-AC4C Aluminum Alloy Using a Low-Temperature Mold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamagata, Hiroshi; Nikawa, Makoto

    2011-01-17

    Permanent mold casting using mold temperatures below 200 deg. C was conducted to obtain a high-strength, thin-walled casting. Al-7.36 mass% Si -0.18 Cu- 0.27Mg-0.34Fe alloy JIS-AC4C was cast using a bottom pouring cast plan. The product had a rectangular tube shape (70 mm W x 68 mm D x 180 mm H) with wall thicknesses of 1, 3 and 5 mm. The effect of heat insulation at the melt path was compared when using a sand runner insert and when using a steel runner insert as well as a powder mold release agent. Fine microstructures were observed in the casting.more » The smaller the thickness, the higher the hardness with smaller secondary dendrite arm spacing (SDAS). However, the hardness and the SDAS were unaffected by the mold temperature. It was proposed that the avoidance of the formation of primary {alpha} dendrite at the melt path generates a higher strength casting with adequate mold filling.« less

  17. Comparison of two nasoalveolar molding techniques in unilateral complete cleft lip patients: a randomized, prospective, single-blind trial to compare nasal outcomes.

    PubMed

    Chang, Chun-Shin; Wallace, Christopher Glenn; Pai, Betty Chien-Jung; Chiu, Yu-Ting; Hsieh, Yuh-Jia; Chen, I-Ju; Liao, Yu-Fang; Liou, Eric Jen-Wein; Chen, Philip Kuo-Ting

    2014-08-01

    Nasoalveolar molding became increasingly popular in the 1990s as a means of easing surgery and improving nasal outcomes for cleft lip repairs. In the late 1990s, three orthodontists from our center underwent nasoalveolar molding training: two at the Rush Craniofacial Center, in Chicago; and one at New York University Craniofacial Center. They brought two different nasoalveolar molding techniques back to Chang Gung Craniofacial Center: the modified Figueroa and the modified Grayson techniques. Outcomes following use of these techniques have not previously been compared prospectively. Between May of 2010 and March of 2013, a randomized, prospective, single-blind trial was conducted to compare the number of clinical visits, total costs, complications, and nasal symmetry between the two nasoalveolar molding techniques in 30 patients with unilateral complete cleft lip. There were no differences between nasoalveolar molding techniques in the number of clinical visits, total costs, nostril height, or nostril area ratio. Preoperatively but after nasoalveolar molding, the nostril width ratio was wider for the Figueroa group than for the Grayson group. Six months after surgical correction, there were no differences in nostril height, nostril width, nasal sill height, or nostril area ratio between nasoalveolar molding methods. Alveolar ulceration occurred more frequently in the Grayson group. The modified Grayson technique reduced nostril width more efficiently, but alveolar ulceration was more frequent and no differences in nostril width were found following surgery. Overall, the two nasoalveolar molding techniques produced similar nasal outcomes. Therapeutic, II.

  18. Bag molding processes

    NASA Astrophysics Data System (ADS)

    Slobodzinsky, A.

    Features, materials, and techniques of vacuum, pressure, and autoclave FRP bag molding processes are described. The bags are used in sealed environments, inflated to flexibly force a curing FRP laminate to conform to a stiff mold form which defines the shape of the finished product. Densification is achieved as the bag presses out the voids and excess resin from the laminate, and consolidation occurs as the plies and adherends are bonded by the bag pressure. Curing techniques nominally involved room temperature or high temperature, and investigations of alternative techniques, such as induction, dielectric, microwave, xenon flash, UV, electron beam, and gamma radiation heating are proceeding. Polysulfone is the most common thermoplastic. Details are given of mold preparations, peel plies or release films and fabrics, bagging techniques, and reusable venting blankets and silicone rubber bags.

  19. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  20. Electrically induced formation of uncapped, hollow polymeric microstructures

    NASA Astrophysics Data System (ADS)

    Lee, Sung Hun; Kim, Pilnam; Jeong, Hoon Eui; Suh, Kahp Y.

    2006-11-01

    Uncapped, hollow polymeric microstructures were fabricated on a silicon substrate using electric field induced stretching and detachment. Initially, square or cylinder microposts were generated using a solvent-assisted capillary molding technique, and a featureless electrode mask was positioned on the top of the microstructure with spacers maintaining an air gap (~20 µm). Upon exposure to an external electric field (1.0-3.0 V µm-1), the hollow microstructures were destabilized and stretched by the well-known electrohydrodynamic instability, resulting in contact of the top polymer surface with the mask. Subsequently, detachment of the capping layer occurred upon removal of the mask due to larger adhesion forces at the polymer/mask interface than cohesion forces of the polymer. These hollow microstructures were tested to capture the budding yeast, Saccharomyces cerevisiae, for shear protection.

  1. Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

    DOE PAGES

    Li, Yang; Chen, Zhangxing; Xu, Hongyi; ...

    2017-01-02

    Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less

  2. Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Chen, Zhangxing; Xu, Hongyi

    Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less

  3. Comparative evaluation of border molding, using two different techniques in maxillary edentulous arches - An in vivo study

    PubMed Central

    Yarapatineni, Rameshbabu; Vilekar, Abhishek; Kumar, J Phani; Kumar, G Ajay; Aravind, Prasad; Kumar, P Anil

    2013-01-01

    Background: This study was undertaken to compare the retention between sectional border molding using low fusing greenstick compound and single step border molding using condensation silicone (putty) impression material in three stages- A. Immediately following border molding, B. After final impression and C. With the finished permanent denture base. Materials & Methods: In this study evaluation of retentive values of sectional border molding (Group I) (custom impression trays border molded with green stick compound ) and single step border molding (Group II) ( border molding with condensation silicone (putty) impression material ). In both techniques definitive wash impression were made with light body condensation silicone and permanent denture base with heat cure polymerization resin. Results: Group II was significantly higher (mean=8011.43) than Group I (mean=5777.43) in test-A. The t-value (1.5883) infers that there was significant difference between Group I and Group II (p =0.15). Group I was significantly higher (mean=6718.57) than Group II (mean=5224.29) in test -B. The t-value (1.6909) infers that there was significant difference between Group I and Group II (p=0.17). Group II was higher (mean=4025.14) than Group I (mean=3835.07) in test -C. The t-value was 0.1239. But it was found to be statistically insignificant (p=0.005). Conclusion: Within the limitation of this clinical study border molding custom tray with low fusing green stick compound provided similar retention as compared to custom impression tray with condensation silicone in permanent denture base. How to cite this article: Yarapatineni R, Vilekar A, Kumar JP, Kumar GA, Aravind P, Kumar PA. Comparative evaluation of border molding, using two different techniques in maxillary edentulous arches - An in vivo study. J Int Oral Health 2013; 5(6):82-7 . PMID:24453450

  4. Acrylic Resin Molding Based Head Fixation Technique in Rodents.

    PubMed

    Roh, Mootaek; Lee, Kyungmin; Jang, Il-Sung; Suk, Kyoungho; Lee, Maan-Gee

    2016-01-12

    Head fixation is a technique of immobilizing animal's head by attaching a head-post on the skull for rigid clamping. Traditional head fixation requires surgical attachment of metallic frames on the skull. The attached frames are then clamped to a stationary platform resulting in immobilization of the head. However, metallic frames for head fixation have been technically difficult to design and implement in general laboratory environment. In this study, we provide a novel head fixation method. Using a custom-made head fixation bar, head mounter is constructed during implantation surgery. After the application of acrylic resin for affixing implants such as electrodes and cannula on the skull, additional resins applied on top of that to build a mold matching to the port of the fixation bar. The molded head mounter serves as a guide rails, investigators conveniently fixate the animal's head by inserting the head mounter into the port of the fixation bar. This method could be easily applicable if implantation surgery using dental acrylics is necessary and might be useful for laboratories that cannot easily fabricate CNC machined metal head-posts.

  5. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    PubMed

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-06-27

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.

  6. Bimodal metal micro-nanopowders for powder injection molding

    NASA Astrophysics Data System (ADS)

    Pervikov, Aleksandr; Rodkevich, Nikolay; Glazkova, Elena; Lerner, Marat

    2017-12-01

    The paper studies a bimodal metal powder composition designed to prepare feedstock for powder injection molding, as well as microstructure and porosity of sintered pats. Two kinds of metal powder compositions are used, in particular, a mixture of micro- and nanopowders and a bimodal powder prepared with dispersion of steel wire. The feedstock is prepared by mixing a bimodal metal powder composition with acetylacetone and paraffin wax. The microstructure of the debound parts is observed by scanning electron microscopy. The sintered parts are characterized by density measurements and metallographic analysis. The technique of the metal powder composition proves to affect the characteristics of sintered parts. Nanoparticles are shown in the interstitial spaces among the microparticles upon mixing micro- and nanopowders, but the regular distribution of nanoparticles on the surface of microparticles is observed in the bimodal powder providing the reduction of the porosity of sintered parts and increasing the density to the proper density of steel.

  7. Peri-implant bone formation and surface characteristics of rough surface zirconia implants manufactured by powder injection molding technique in rabbit tibiae.

    PubMed

    Park, Young-Seok; Chung, Shin-Hye; Shon, Won-Jun

    2013-05-01

    To evaluate osseointegration in rabbit tibiae and to investigate surface characteristics of novel zirconia implants made by powder injection molding (PIM) technique, using molds with and without roughened inner surfaces. A total of 20 rabbits received three types of external hex implants with identical geometry on the tibiae: machined titanium implants, PIM zirconia implants without mold etching, and PIM zirconia implants with mold etching. Surface characteristics of the three types of implant were evaluated. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined titanium implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined titanium implants (P < 0.001). The PIM zirconia implants using roughened mold showed significantly higher removal torque values than PIM zirconia implants without using roughened mold (P < 0.001). It is concluded that the osseointegration of PIM zirconia implant is promising and PIM using roughened mold etching technique can produce substantially rough surfaces on zirconia implants. © 2012 John Wiley & Sons A/S.

  8. Manufacturing plastic injection optical molds

    NASA Astrophysics Data System (ADS)

    Bourque, David

    2008-08-01

    ABCO Tool & Die, Inc. is a mold manufacturer specializing in the manufacturing of plastic injection molds for molded optical parts. The purpose of this presentation is to explain the concepts and procedures required to build a mold that produces precision optical parts. Optical molds can produce a variety of molded parts ranging from safety eyewear to sophisticated military lens parts, which must meet precise optical specifications. The manufacturing of these molds begins with the design engineering of precision optical components. The mold design and the related optical inserts are determined based upon the specific optical criteria and optical surface geometry. The mold manufacturing techniques will be based upon the optical surface geometry requirements and specific details. Manufacturing processes used will be specific to prescribed geometrical surface requirements of the molded part. The combined efforts result in a robust optical mold which can produce molded parts that meet the most precise optical specifications.

  9. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    PubMed Central

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  10. High-Temperature Properties of Mold Flux Observed and Measured In Situ by Single/Double Hot-Thermocouple Technique

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lyu, Peisheng; Zhou, Lejun; Li, Huan; Zhang, Tongsheng

    2018-05-01

    Mold flux plays very important roles in the continuous casting process, and its high-temperature properties affect the quality of the final as-cast product greatly. Investigations on the melting, isothermal and nonisothermal crystallization, and phase evolution behaviors under a simulated temperature field for the mold flux system using the single/double hot-thermocouple technique (S/DHTT) were reviewed. Meanwhile, further in situ observations on the wetting behavior and heat transfer ability of the mold flux system were also carried out using the S/DHTT. The results summarized here provide a clear understanding of both the high-temperature properties of mold flux and the detailed application of advanced real-time visual high-temperature S/DHTT to this molten slag system.

  11. Effect of Rotating Mold Speed on Microstructure of Al LM6 Hollow Cylinder Fabricated Using Centrifugal Method

    NASA Astrophysics Data System (ADS)

    Kohnizio Mahli, Maximus; Jamian, Saifulnizan; Ismail, Al Emran; Nor, Nik Hisyamudin Muhd; Nor, Mohd Khir Mohd; Azhar Kamarudin, Kamarul

    2017-10-01

    Al LM6 hollow cylinder is fabricated using horizontal centrifugal casting which produce a very fine grain on the outer surface of the structure. In this study, the effect of motor speed and pouring temperature on the microstructure of Al LM6 hollow cylinder is determined. The speed of the motor used during casting are 1300rpm, 1500rpm and 1700rpm and the pouring temperature are 690°C, 710°C and 725°C. The Al LM6 hollow cylinder is produced by pouring the molten Al LM6 into a cylindrical casting mold which is connected with a shaft and it is rotated by motor until it is solidified. Then, the cross-section is observed using OM and SEM/EDS. From the microstructure observation, the distributions of Si are more concentrated at the inner parts and the size of Si is bigger at the inner parts. The result shows that the Si particles at the inner part which is fabricated at the highest motor speed (1700rpm) have the most Si particles compared with the Si particles that are casted with other motor speeds.

  12. Microstructure and High Temperature Mechanical Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Metal Injection Molding Process

    NASA Astrophysics Data System (ADS)

    Lee, Kee-Ahn; Gwon, Jin-Han; Yoon, Tae-Sik

    2018-03-01

    This study investigated the microstructure and the room and high temperature mechanical properties of Fe-Cr-B alloy manufactured by metal injection molding. In addition, hot isostatic pressing was performed to increase the density of the material, and a comparison of properties was made. Microstructural observation confirmed a bi-continuous structure composed of a three-dimensional network of α-Fe phase and (Cr,Fe)2B phase. The HIPed specimen featured a well-formed adhesion between the α-Fe phase and boride, and the number of fine pores was significantly reduced. The tensile results confirmed that the HIPed specimen (RT to 900 °C) had higher strengths compared to the as-sintered specimen, and the change of elongation starting from 700 °C was significantly greater in the HIPed specimen. Fractography suggested that cracks propagated mostly along the interface between the α-Fe matrix and boride in the as-sintered specimen, while direct fracture of boride was observed in addition to interface separation in the HIPed specimen.

  13. Mold growth on gypsum wallboard--a summary of three techniques.

    PubMed

    Menetrez, M Y; Foarde, K K; Webber, T D; Dean, T R; Betancourt, D A

    2009-01-01

    Reducing occupant exposure to mold growing on damp gypsum wallboard and controlling mold contamination in the indoor environment was studied through 1) delineation of environmental conditions required to promote and avoid mold growth and 2) efficacy testing of antimicrobial products, specifically cleaners and paints, on gypsum wallboard (GWB) surfaces. The effects of moisture and relative humidity (RH) on mold growth and transport are important in avoiding and eliminating problems. These effects have been demonstrated on GWB and are discussed in this article for use as control guidance. The authors discuss the efficacy of antimicrobial cleaners and paints to remove, eliminate, or control mold growth on GWB. Research to control Stachybotrys chartarum growth using 13 separate antimicrobial cleaners and nine varieties of antimicrobial paint on contaminated GWB was performed in laboratory testing. GWB surfaces were subjected to high RH. GWB control measures are summarized and combined, and the antimicrobial product results are explained.

  14. Progress in Titanium Metal Powder Injection Molding.

    PubMed

    German, Randall M

    2013-08-20

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied-density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  15. Progress in Titanium Metal Powder Injection Molding

    PubMed Central

    German, Randall M.

    2013-01-01

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors. PMID:28811458

  16. Influence of different materials and techniques to transfer molding in multiple implants.

    PubMed

    Faria, Júlio C B; Cruz, Fernando L G; Silva-Concílio, Laís R; Neves, Ana C C

    2012-01-01

    The aim of this study was to compare different materials and techniques used in transfer molding of multiple implants, by evaluating the space between implants and superstructure. Four external hexagon implants were fixed in a master template and the same on a superstructure. Transfer molding of implants were done using the direct and indirect techniques, with transfers united or not, using the union chemically activated acrylic resin (QA) and other groups polymerized acrylic resin (FT), and sectioned and not split. The casts were made with polyether and models divided into 8 groups (n = 5). The space between the superstructure and the master implants was measured with a microscope and the data was analyzed statistically by Student's t test (p < 0.05). For the material of union there was no significant difference, except when the groups were compared with the resin Duralay QA (G4) and the resin Duolay FT (G8) and groups using resins Duolay QA (G5) and Duolay FT (G7) for the union of the transfers. When comparing the groups who had the union between the transfers and sectioned again united with those in which the union was not severed there was no statistically significant difference. QA resin was superior to the FT with respect to the union of transfers. Techniques with united transfers or not were similar.

  17. Simulations of the heat exchange in thermoplastic injection molds manufactured by additive techniques

    NASA Astrophysics Data System (ADS)

    Daldoul, Wafa; Toulorge, Thomas; Vincent, Michel

    2017-10-01

    The cost and quality of complex parts manufactured by thermoplastic injection is traditionally limited by design constraints on the cooling system of the mold. A possible solution is to create the mold by additive manufacturing, which makes it possible to freely design the cooling channels. Such molds normally contain hollow parts (alveoli) in order to decrease their cost. However, the complex geometry of the cooling channels and the alveoli makes it difficult to predict the performance of the cooling system. This work aims to compute the heat exchanges between the polymer, the mold and the cooling channels with complex geometries. An Immersed Volume approach is taken, where the different parts of the domain (i.e. the polymer, the cooling channels, the alveoli and the mold) are represented by level-sets and the thermo-mechanical properties of the materials vary smoothly at the interface between the parts. The energy and momentum equations are solved by a stabilized Finite Element method. In order to accurately resolve the large variations of material properties and the steep temperature gradients at interfaces, state-of-the art anisotropic mesh refinement techniques are employed. The filling stage of the process is neglected. In a first step, only the heat equation is solved, so that the packing stage is also disregarded. In a second step, thermo-mechanical effects occurring in the polymer during the packing stage are taken into account, which results in the injection of an additional amount of polymer that significantly influences the temperature evolution. The method is validated on the simple geometry of a center-gated disk and compared with experimental measurements. The agreement is very good. Simulations are performed on an industrial case which illustrates the ability of the method to deal with complex geometries.

  18. Topographic design and application of hierarchical polymer surfaces replicated by microinjection compression molding

    NASA Astrophysics Data System (ADS)

    Guan, Wei-Sheng; Huang, Han-Xiong; Wang, Bin

    2013-10-01

    In recent years, the fast growing demand for biomimetic surfaces featuring unique wettability and functionality in various fields highlights the necessity of developing a reliable technique for mass production. In this work, hierarchical topography designs of templates were applied to prepare superhydrophobic surfaces via microinjection compression molding, comprehensively considering the feasibility of mechanical demolding and the superhydrophobicity and mechanical robustness of the molded polypropylene parts. Mimicking the wettability of a lotus leaf or rose petal, superhydrophobic surfaces were replicated. An unstable wetting state formed on the surface exhibiting the petal effect. On such a surface, the increased water pressure could cause water penetration into the micro gaps between the hierarchical asperities featuring low-roughness sidewalls and bottom surface; the resultant water membrane led to drastically increased water adhesion of the surface. Moreover, the low-adhesion superhydrophobicity of the molded surface was changed into superhydrophilicity, by means of introducing carbonyl groups via ultraviolet/ozone treatment and the subsequent water membrane preserved in microstructures via the pre-wetting process. Patterning the superhydrophilic micro channel on the superhydrophobic surface developed the surface microfluidic devices for micro-liter fluid pumping and mixing processes driven by surface tension.

  19. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties.

    PubMed

    Zhang, Xuezheng; Chen, Tijun; Qin, He; Wang, Chong

    2016-05-24

    Microstructural and mechanical characterization of 10 vol% SiC particles (SiC p ) reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF) was investigated in comparison with the PTF and permanent mold cast (PMC) 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiC p , which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa) of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  20. Use of acrylic sheet molds for elastomeric products

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Koerner, A. E.; Messineo, S. M.

    1970-01-01

    Molds constructed of acrylic sheet are more easily machined than metal, are transparent to ensure complete filling during injection, and have smooth surfaces free of contamination. Technique eliminates flashing on molded parts and mold release agents.

  1. Effect of Reclamation on the Skin Layer of Ductile Iron Cast in Furan Molds

    NASA Astrophysics Data System (ADS)

    Dańko, R.; Holtzer, M.; Górny, M.; Żymankowska-Kumon, S.

    2013-11-01

    The paper presents the results of investigations of the influence of the quality of molding sand with furan resin hardened by paratoluenesulfonic acid, on the formation of microstructure and surface quality of ductile iron castings. Within the studies different molding sands were used: molding sand prepared with fresh sand and molding sands prepared with reclaimed sands of a different purification degree, determined by the ignition loss value. Various concentrations of sulfur and nitrogen in the sand molds as a function of the ignition loss were shown in the paper. A series of experimental melts of ductile iron in molds made of molding sand characterized by different levels of surface-active elements (e.g., sulfur) and different gas evolution rates were performed. It was shown that there exists a significant effect of the quality of the sand on the formation of the graphite degeneration layer.

  2. Novel high dose rate lip brachytherapy technique to improve dose homogeneity and reduce toxicity by customized mold.

    PubMed

    Feldman, Jon; Appelbaum, Limor; Sela, Mordechay; Voskoboinik, Ninel; Kadouri, Sarit; Weinberger, Jeffrey; Orion, Itzhak; Meirovitz, Amichay

    2014-12-23

    The purpose of this study is to describe a novel brachytherapy technique for lip Squamous Cell Carcinoma, utilizing a customized mold with embedded brachytherapy sleeves, which separates the lip from the mandible, and improves dose homogeneity. Seven patients with T2 lip cancer treated with a "sandwich" technique of High Dose Rate (HDR) brachytherapy to the lip, consisting of interstitial catheters and a customized mold with embedded catheters, were reviewed for dosimetry and outcome using 3D planning. Dosimetric comparison was made between the "sandwich" technique to "classic" - interstitial catheters only plan. We compared dose volume histograms for Clinical Tumor Volume (CTV), normal tissue "hot spots" and mandible dose. We are reporting according to the ICRU 58 and calculated the Conformal Index (COIN) to show the advantage of our technique. The seven patients (ages 36-81 years, male) had median follow-up of 47 months. Four patients received Brachytherapy and External Beam Radiation Therapy, 3 patients received brachytherapy alone. All achieved local control, with excellent esthetic and functional results. All patients are disease free. The Customized Mold Sandwich technique (CMS) reduced the high dose region receiving 150% (V150) by an average of 20% (range 1-47%), The low dose region (les then 90% of the prescribed dose) improved by 73% in average by using the CMS technique. The COIN value for the CMS was in average 0.92 as opposed to 0.88 for the interstitial catheter only. All differences (excluding the low dose region) were statistically significant. The CMS technique significantly reduces the high dose volume and increases treatment homogeneity. This may reduce the potential toxicity to the lip and adjacent mandible, and results in excellent tumor control, cosmetic and functionality.

  3. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Stuart S; Samulski, Edward; Lopez, Renee

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less

  4. Single Stage Silicone Border Molded Closed Mouth Impression Technique-Part II.

    PubMed

    Solomon, E G R

    2011-09-01

    Functioning of a complete denture depends to a great extent on the impression technique. Several impression techniques have been described in the literature since the turn of this century when Greene [Clinical courses in dental prothesis, 1916] brothers introduced the first scientific system of recording dental impression. Advocates of each technique have their own claim of superiority over the other. The introduction of elastomeric impression materials [Skinner and Cooper, J Am Dent Assoc 51:523-536, 1955] has made possible new techniques of recording impression for complete denture construction. These rubber like materials are of two types; one has a polysulfide base and is popularily known as polysulfide rubber (Thiokol and Mercaptan). The other variety has a silicone base known as silicone rubber or silicone elastomer. Silicone elastomers are available in four different consistencies; a thin easy flowing light bodied material,a creamy medium bodied material, a highly viscous heavy bodied material and a kneadable putty material. This paper describes an active closed mouth impression technique with one stage border molding using putty silicone material as a substitute for low fusing compound.

  5. A novel 2D silicon nano-mold fabrication technique for linear nanochannels over a 4 inch diameter substrate

    PubMed Central

    Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei

    2016-01-01

    A novel low-cost 2D silicon nano-mold fabrication technique was developed based on Cu inclined-deposition and Ar+ (argon ion) etching. With this technique, sub-100 nm 2D (two dimensional) nano-channels can be etched economically over the whole area of a 4 inch n-type <100> silicon wafer. The fabricating process consists of only 4 steps, UV (Ultraviolet) lithography, inclined Cu deposition, Ar+ sputter etching, and photoresist & Cu removing. During this nano-mold fabrication process, we investigated the influence of the deposition angle on the width of the nano-channels and the effect of Ar+ etching time on their depth. Post-etching measurements showed the accuracy of the nanochannels over the whole area: the variation in width is 10%, in depth it is 11%. However, post-etching measurements also showed the accuracy of the nanochannels between chips: the variation in width is 2%, in depth it is 5%. With this newly developed technology, low-cost and large scale 2D nano-molds can be fabricated, which allows commercial manufacturing of nano-components over large areas. PMID:26752559

  6. Lightweight custom composite prosthetic components using an additive manufacturing-based molding technique.

    PubMed

    Leddy, Michael T; Belter, Joseph T; Gemmell, Kevin D; Dollar, Aaron M

    2015-01-01

    Additive manufacturing techniques are becoming more prominent and cost-effective as 3D printing becomes higher quality and more inexpensive. The idea of 3D printed prosthetics components promises affordable, customizable devices, but these systems currently have major shortcomings in durability and function. In this paper, we propose a fabrication method for custom composite prostheses utilizing additive manufacturing, allowing for customizability, as well the durability of professional prosthetics. The manufacturing process is completed using 3D printed molds in a multi-stage molding system, which creates a custom finger or palm with a lightweight epoxy foam core, a durable composite outer shell, and soft urethane gripping surfaces. The composite material was compared to 3D printed and aluminum materials using a three-point bending test to compare stiffness, as well as gravimetric measurements to compare weight. The composite finger demonstrates the largest stiffness with the lowest weight compared to other tested fingers, as well as having customizability and lower cost, proving to potentially be a substantial benefit to the development of upper-limb prostheses.

  7. Nasoalveolar molding in cleft care: is it efficacious?

    PubMed

    Abbott, Megan M; Meara, John G

    2012-09-01

    In the era of evidence-based medicine, new treatment protocols and interventions should be routinely evaluated for their efficacy by reviewing the available evidence. In the cleft literature, nasoalveolar molding has garnered attention over the last decade as a new option for improving nasal form and symmetry before primary surgical repair. Systematic review of the evidence is, however, currently lacking. This review evaluates whether nasoalveolar molding can improve nasal symmetry and form toward the norm, as well as whether nasoalveolar molding demonstrates advantages over other protocols in achieving this goal. A literature search of five databases plus relevant reference lists retrieved 98 articles regarding nasoalveolar molding, 21 of which reported objective outcome measures of nasal symmetry and form, and six of which were able to be given evidence level ratings, all in the unilateral cleft population. Statistical analysis was not possible given the range of techniques and outcomes. Studies of bilateral cleft were not given evidence level ratings, given the inability to separate the effects of nasoalveolar molding from other primary nasal interventions in studies that would have otherwise been rated. In unilateral cleft lip-cleft palate, there was some evidence that nasoalveolar molding may improve nasal outcomes, though comparison with other techniques was limited. Despite a relative paucity of high-level evidence, nasoalveolar molding appears to be a promising technique that deserves further study.

  8. The "in situ molding technique: " an accurate and simple way to fix resorbable plates to the facial skeleton.

    PubMed

    Sadigh, Parviz Lionel; Chang, Li-Ren; Feng, Kuan-Ming; Jeng, Seng-Feng

    2014-09-01

    Bioabsorbable plates developed for use in the facial skeleton have become an integral part of the craniomaxillofacial surgeon's reconstructive armamentarium. They avoid the problems associated with the retention of metal plates and can be easily contoured when heated in a thermobath. The technical process of molding and securing these devices, often through small access incisions, to achieve rigid fixation of facial fractures can be difficult. In this article, we describe a simple, novel technique that we have developed, using hot water suction irrigation, to achieve in situ molding of resorbable plates during facial fracture fixation. We used this technique to fix 123 facial fractures in 110 patients over a 4-year period. No complications secondary to the use of hot water suction irrigation were encountered.

  9. Injection molding ceramics to high green densities

    NASA Technical Reports Server (NTRS)

    Mangels, J. A.; Williams, R. M.

    1983-01-01

    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.

  10. EVALUATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE STYRENE EMISSIONS FROM OPEN CONTACT MOLDING PROCESSES - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a study to evaluate several pollution prevention techniques that could be used to reduce styrene emissions from open molding processes in the fiberglass-reinforced plastics/composites (FRP/C) and fiberglass boat building industries. Styrene emissions u...

  11. Studies on the quantitative autoradiography. III. Quantitative comparison of a novel tissue-mold measurement technique "paste-mold method," to the semiquantitative whole body autoradiography (WBA), using the same animals.

    PubMed

    Motoji, N; Hamai, Y; Niikura, Y; Shigematsu, A

    1995-01-01

    A novel preparation technique, so called "Paste Mold," was devised for organ and tissue distribution studies. This is the most powerful by joining with autoradioluminography (ARLG), which was established and validated recently in the working group of Forum '93 of Japanese Society for study of xenobiotics. A small piece (10-50 mg) of each organ or tissue was available for measuring its radioactive concentration and it was sampled from the remains of frozen carcass used for macroautoradiography (MARG). The solubilization of the frozen pieces was performed with mixing a suitable volume of gelatine and strong alkaline solution prior to mild heating kept at 40 degrees C for a few hours. After that, the tissue paste was molded in template pattern to form the small plates. The molded plates were contacted with Imaging plate (IP) for recording their radioactive concentration. The recorded IP was processed by BAS2000. The molded plate was formed in thickness of 200 microns, so called infinit thickness against soft beta rays, and therefore the resulting relative intensities, represented by (PSL-BG)/S values, indicated practically responsible ratio of the radioactive concentration in organs and tissues, without any calibulation for beta-self absorption coefficiency. On the other hand, the left half body of the frozen carcass was used for making whole body autoradiography (WBA) before the Paste-Mold preparation. Comparison was performed for difference in (PSL-BG)/S values of organs and tissues between frozen and dried sections. A good concordance in relative intensities, (PSL-BG)/S by the Paste-Mold preparation was given with those by the frozen sections rather than dried sections.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Differences in time-dependent mechanical properties between extruded and molded hydrogels

    PubMed Central

    Ersumo, N; Witherel, CE; Spiller, KL

    2016-01-01

    The mechanical properties of hydrogels used in biomaterials and tissue engineering applications are critical determinants of their functionality. Despite the recent rise of additive manufacturing, and specifically extrusion-based bioprinting, as a prominent biofabrication method, comprehensive studies investigating the mechanical behavior of extruded constructs remain lacking. To address this gap in knowledge, we compared the mechanical properties and swelling properties of crosslinked gelatin-based hydrogels prepared by conventional molding techniques or by 3D bioprinting using a BioBots Beta pneumatic extruder. A preliminary characterization of the impact of bioprinting parameters on construct properties revealed that both Young's modulus and optimal extruding pressure increased with polymer content, and that printing resolution increased with both printing speed and nozzle gauge. High viability (>95%) of encapsulated NIH 3T3 fibroblasts confirmed the cytocompatibility of the construct preparation process. Interestingly, the Young's moduli of extruded and molded constructs were not different, but extruded constructs did show increases in both the rate and extent of time-dependent mechanical behavior observed in creep. Despite similar polymer densities, extruded hydrogels showed greater swelling over time compared to molded hydrogels, suggesting that differences in creep behavior derived from differences in microstructure and fluid flow. Because of the crucial roles of time-dependent mechanical properties, fluid flow, and swelling properties on tissue and cell behavior, these findings highlight the need for greater consideration of the effects of the extrusion process on hydrogel properties. PMID:27550945

  13. Grinding aspheric and freeform micro-optical molds

    NASA Astrophysics Data System (ADS)

    Tohme, Yazid E.

    2007-02-01

    Fueled by the need for better performing optics, glass optics are now replacing plastic optics in many industrial and consumer electronic devices. One of these devices is the mobile phone camera. The optical sub-assembly in a mobile phone includes several micro lenses that are spherical and/or aspherical in shape and require form tolerances in the submicron range. These micro glass lenses are mass produced by a replication process known as glass press molding. The process entails the compression of a glass gob between two precise optical quality molds at an elevated temperature, usually near the transition temperature of the glass material. The elevated forces and temperatures required in the glass molding process limits the materials of the molds to very tough materials such as tungsten carbide or silicon carbide. These materials can withstand large pressing forces at high temperatures without any significant deformation. These materials offer great mechanical properties for glass press molding but they are also a challenge to machine to submicron accuracy. The work in this paper discusses a deterministic micro grinding manufacturing process referred to as wheel normal grinding, which is utilized to produce these optical quality molds. Wheel normal grinding is more accurate and more deterministic than most other grinding techniques and can produce molds to the form and finish tolerances required for optical molding. This method relies on the ability to recognize and compensate for grinding wheel wear and machine repeatable errors. Results will be presented to illustrate the accuracy of this micro grinding technique.

  14. 21ST CENTURY MOLD ANALYSIS IN FOOD

    EPA Science Inventory

    Traditionally, the indoor air community has relied on mold analysis performed by either microscopic observations or the culturing of molds on various media to assess indoor air quality. These techniques were developed in the 19th century and are very laborious and time consumin...

  15. Applications of two- and three-dimensional microstructures formed by soft lithographic techniques

    NASA Astrophysics Data System (ADS)

    Jackman, Rebecca Jane

    This thesis describes the development of several soft lithographic techniques. Each of these techniques has applications in two- and three-dimensional microfabrication or in the design of microreactor systems. All soft lithographic techniques make use of an elastomeric element that is formed by casting and curing a prepolymer against a planar substrate having three-dimensional (3D) relief. Chapters 1--3 (and Appendices I--VII) describe the use of a soft lithographic technique, microcontact printing (muCP), to produce patterns with micron-scale resolution on both planar and non-planar substrates. Electrodeposition transforms patterns produced by muCP into functional, 3D structures. It is an additive method that: (i) strengthens the metallic patterns; (ii) increases the conductivity of the structures; (iii) enables high-strain deformations to be performed on the structures; and (iv) welds non-connected structures. Applications for cylindrical microstructures, formed by the combination of muCP and electroplating, are presented. Some important classes of materials---biological macromolecules, gels, sol-gels, some polymers, low molecular weight organic and organometallic species---are often incompatible with conventional patterning techniques. Chapters 4 and 5 describe the use of elastomeric membranes as dry resists or as masks in dry lift-off to produce simple features as small as 5 mum from these and other materials on both planar and non-planar surfaces. These procedures are "dry" because the membranes conformed and sealed reversibly to surfaces without the use of solvents. This technique, for example, produced a simple electroluminescent device. By using two membranes simultaneously, multicolored, photoluminescent patterns of organic materials were created. Membranes were also used in sequential, dry-lift off steps to produce patterns with greater complexity. Chapter 6 (and Appendix XII) demonstrates that the ability to mold elastomers enables the fabrication of

  16. Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding.

    PubMed

    Graf, Neil J; Bowser, Michael T

    2013-10-07

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.

  17. Development of improved asbestos reinforced phenolic insulating composites (optimization of physical properties as a function of molding technique and post cure conditions)

    NASA Technical Reports Server (NTRS)

    Hedges, L. M. (Editor)

    1973-01-01

    Detailed data are presented on phenolic-glass and phenolic-asbestos compounds which compare the effect of compression molding without degas to the effects of four variations of compression molding. These variations were designed to improve elimination of entrapped volatiles and the volatile products of the condensate reaction associated with the cure of phenolic resins. The utilization of conventional methods of degas plus degas by vacuum and directional heat flow methods are involved. Detailed data are also presented on these same compounds, comparing the effect of changes in post-bake time, and post-bake temperature for the five molding techniques.

  18. Curbing indoor mold growth with mold inhibitors

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2004-01-01

    Environmentally acceptable mold inhibitors are needed to curb the growth of mold fungi in woodframe housing when moisture management measures fail. Excess indoor moisture can lead to rapid mold establishment which, in turn, can have deleterious affects on indoor air quality. Compounds with known mold inhibitory properties and low mammalian toxicity, such as food...

  19. Influence of injection molding process parameters on fiber concentration distribution in long glass fiber reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Scantamburlo, Andrea; Gazzola, Luca; Sorgato, Marco; Lucchetta, Giovanni

    2018-05-01

    In parts manufactured by injection molding of long glass fiber reinforced polypropylene, the local fiber orientation, fiber concentration and fiber length distribution varies along both the thickness direction and the flow path. This heterogeneous microstructure significantly influences the mechanical properties variability in the molded parts. The aim of this work is to investigate the influence of the matrix viscosity, the injection speed and the mold geometry on the fiber concentration distribution. In particular, the factors involved in fiber-matrix separation and fiber pull-out during the injection phases were analyzed in order to understand the phenomenon.

  20. Resin film infusion mold tooling and molding method

    NASA Technical Reports Server (NTRS)

    Burgess, Roger (Inventor); Grossheim, Brian (Inventor); Mouradian, Karbis (Inventor); Thrash, Patrick J. (Inventor)

    1999-01-01

    A mold apparatus and method for resin film infusion molding including an outer mold tool having a facing sheet adapted to support a resin film and preform assembly. The facing sheet includes attachment features extending therefrom. An inner mold tool is positioned on the facing sheet to enclose the resin film and preform assembly for resin film infusion molding. The inner mold tool includes a plurality of mandrels positioned for engagement with the resin film and preform assembly. Each mandrel includes a slot formed therein. A plurality of locating bars cooperate with the slots and with the attachment features for locating the mandrels longitudinally on the outer mold tool.

  1. Study of parameters in precision optical glass molding

    NASA Astrophysics Data System (ADS)

    Ni, Ying; Wang, Qin-hua; Yu, Jing-chi

    2010-10-01

    Precision glass compression molding is an attractive approach to manufacture small precision optics in large volume over traditional manufacturing techniques because of its advantages such as lower cost, faster time to market and being environment friendly. In order to study the relationship between the surface figures of molded lenses and molding process parameters such as temperature, pressure, heating rate, cooling rate and so on, we present some glass compression molding experiments using same low Tg (transition temperature) glass material to produce two different kinds of aspheric lenses by different molding process parameters. Based on results from the experiments, we know the major factors influencing surface figure of molded lenses and the changing range of these parameters. From the knowledge we could easily catch proper molding parameters which are suitable for aspheric lenses with diameter from 10mm to 30mm.

  2. EVALUATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE STYRENE EMISIONS FROM OPEN CONTACT MOLDING PROCESSES - VOLUME 1. FINAL REPORT

    EPA Science Inventory

    The report gives results of a study to evaluate several pollution prevention techniques that could be used to reduce styrene emissions from open molding processes in the fiberglass-reinforced
    plastics/composites (FRP/C) and fiberglass boat building industries. Styrene emission...

  3. Failure strengths of denture teeth fabricated on injection molded or compression molded denture base resins.

    PubMed

    Robison, Nathan E; Tantbirojn, Daranee; Versluis, Antheunis; Cagna, David R

    2016-08-01

    Denture tooth fracture or debonding remains a common problem in removable prosthodontics. The purpose of this in vitro study was to explore factors determining failure strengths for combinations of different denture tooth designs (shape, materials) and injection or compression molded denture base resins. Three central incisor denture tooth designs were tested: nanohybrid composite (NHC; Ivoclar Phonares II), interpenetrating network (IPN; Dentsply Portrait), and microfiller reinforced polyacrylic (MRP; VITA Physiodens). Denture teeth of each type were processed on an injection molded resin (IvoBase HI; Ivoclar Vivadent AG) or a compression molded resin (Lucitone 199; Dentsply Intl) (n=11 or 12). The denture teeth were loaded at 45 degrees on the incisal edge. The failure load was recorded and analyzed with 2-way ANOVA (α=.05), and the fracture mode was categorized from observed fracture surfaces as cohesive, adhesive, or mixed failure. The following failure loads (mean ±SD) were recorded: NHC/injection molded 280 ±52 N; IPN/injection molded 331 ±41 N; MRP/injection molded 247 ±23 N; NHC/compression molded 204 ±31 N; IPN/compression molded 184 ±17 N; MRP/compression molded 201 ±16 N. Injection molded resin yielded significantly higher failure strength for all denture teeth (P<.001), among which IPN had the highest strength. Failure was predominantly cohesive in the teeth, with the exception of mixed mode for the IPN/compression group. When good bonding was achieved, the strength of the structure (denture tooth/base resin combination) was determined by the strength of the denture teeth, which may be affected by the processing technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Surface quality and microstructure of low-vacuum sintered orthodontic bracket 17-4 PH stainless steel fabricated by MIM process

    NASA Astrophysics Data System (ADS)

    Suharno, Bambang; Suharno, Lingga Pradinda; Saputro, Hantoro Restucondro; Irawan, Bambang; Prasetyadi, Tjokro; Ferdian, Deni; Supriyadi, Sugeng

    2018-02-01

    Surface roughness and microstructure play important role on orthodontic bracket quality. Therefore, orthodontic brackets need to have smooth surface roughness to reduce the friction and bacterial adhesion. Microstructure of orthodontic brackets also determine the mechanical properties and corrosion resistance. There are two methods to produce orthodontic bracket, investment casting and metal injection molding. The purpose of this study is to observe the surface roughness and microstructure of orthodontic bracket which were made from two different fabrication methods. To produce orthodontic bracket with metal injection molding method, 17-4 PH stainless steel feedstock was injected to the orthodontic bracket mold using injection molding machine. After injection, the binder was eliminated with solvent and thermal debinding. Solvent debinding process was conducted with hexane at 50 °C on magnetic stirrer for 1.5 hours. Thermal debinding process was conducted at 510 °C with 0.5 °C/min heat rate and 120 min holding time. Hereafter, sintering process were performed with vacuum tube furnace at 1360 °C with heat rate 5 °C/min and 90 min holding time in low vacuum atmosphere. To produce orthodontic bracket with investment casting method, the wax was injected into the mold then the wax pattern was arranged into the tree form. The tree form was then dipped into ceramic slurry and allowed to harden, the ceramic slurry has a thickness in the region of 10 mm. The ceramic mold was then heated at a temperature of over than 1100°C to strengthen the ceramic mold and to remove the remaining wax. After that, the molten 17-4 PH stainless steel was poured into the ceramic mold at a temperature of over 1600°C. The natural cooling process was carried out at temperature of 25°C, after which the ceramic mold was broken away. Then, the orthodontic bracket was cut from the tree form. The results show that the orthodontic bracket which were made with investment casting fabrication

  5. Mold Allergy

    MedlinePlus

    ... Home ▸ Conditions & Treatments ▸ Allergies ▸ Mold Allergy Share | Mold Allergy Overview Symptoms & Diagnosis Treatment & Management Mold Allergy Overview Molds are tiny fungi whose spores float ...

  6. Molds

    MedlinePlus

    Molds are fungi that can be found both outdoors and indoors. They grow best in warm, damp and humid conditions. If ... spots in your house, you will probably get mold. Molds can cause health problems. Inhaling or touching ...

  7. Effect of Cross Sectional Geometry on PDMS Micro Peristaltic Pump Performance: Comparison of SU-8 Replica Molding vs. Micro Injection Molding

    PubMed Central

    Graf, Neil J.

    2013-01-01

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM).1 The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold’s bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold’s bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263

  8. Processing-microstructure models for short- and long-fiber thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Phelps, Jay H.

    The research for this thesis has explored the important microstructural variables for injection-molded thermoplastic composites with discontinuous fiber reinforcement. Two variables, the distributions of fiber orientation and fiber length after processing, have proven to be not only important for correct material property prediction but also difficult to predict using currently available modeling and simulation techniques. In this work, we develop new models for the prediction of these two microstructural variables. Previously, the Folgar-Tucker model has been widely used to predict fiber orientation in injection molded SFT composites. This model accounts for the effects of both hydrodynamics and fiber-fiber interactions in order to give a prediction for a tensorial measure of fiber orientation. However, when applied to at least some classes of LFTs, this model does not match all components of experimental fiber orientation tensor data. In order to address this shortcoming of the model, we hypothesize that Folgar and Tucker's phenomenological treatment of the effects of fiber-fiber interactions with an isotropic rotary diffusion contribution to the rate of change of orientation is insufficient for materials with longer fibers. Instead, this work develops a fiber orientation model that incorporates anisotropic rotary diffusion (ARD). From kinetic theory we derive a general family of evolution equations for the second-order orientation tensor, correcting errors in earlier treatments, and identify a specific equation that is useful for predicting orientation in LFTs. The amount of diffusivity in this model used to approximate the effect of fiber-fiber interactions in each direction is assumed to depend on a second-order space tensor, which is taken to be a function of the orientation state and the rate of deformation. Also, concentrated fiber suspensions align more slowly with respect to strain than the Folgar-Tucker model predicts. Here, we borrow the technique of

  9. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  10. Laser-Etched Designs for Molding Hydrogel-Based Engineered Tissues

    PubMed Central

    Munarin, Fabiola; Kaiser, Nicholas J.; Kim, Tae Yun; Choi, Bum-Rak

    2017-01-01

    Rapid prototyping and fabrication of elastomeric molds for sterile culture of engineered tissues allow for the development of tissue geometries that can be tailored to different in vitro applications and customized as implantable scaffolds for regenerative medicine. Commercially available molds offer minimal capabilities for adaptation to unique conditions or applications versus those for which they are specifically designed. Here we describe a replica molding method for the design and fabrication of poly(dimethylsiloxane) (PDMS) molds from laser-etched acrylic negative masters with ∼0.2 mm resolution. Examples of the variety of mold shapes, sizes, and patterns obtained from laser-etched designs are provided. We use the patterned PDMS molds for producing and culturing engineered cardiac tissues with cardiomyocytes derived from human-induced pluripotent stem cells. We demonstrate that tight control over tissue morphology and anisotropy results in modulation of cell alignment and tissue-level conduction properties, including the appearance and elimination of reentrant arrhythmias, or circular electrical activation patterns. Techniques for handling engineered cardiac tissues during implantation in vivo in a rat model of myocardial infarction have been developed and are presented herein to facilitate development and adoption of surgical techniques for use with hydrogel-based engineered tissues. In summary, the method presented herein for engineered tissue mold generation is straightforward and low cost, enabling rapid design iteration and adaptation to a variety of applications in tissue engineering. Furthermore, the burden of equipment and expertise is low, allowing the technique to be accessible to all. PMID:28457187

  11. Effect of volatile removal during molding on the properties of two phenolic-fiber composites

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Lucy, M. H.

    1974-01-01

    A comparison has been made of the effect of three volatile-removing techniques during molding on the properties of phenolic-fiber composites. The first technique involved heating the molding compound from one side, initiating the volatile-producing reactions, and driving these volatiles through the compound toward the cooler side. The second technique involved the application of a vacuum to the molding cavity before and during the cure cycle. The third technique was a combination of the first two. These techniques were used in the compression molding of phenolic-asbestos and phenolic-glass composites. The effects of both the individual and combined techniques on the mechanical, thermal, and sorption properties of the composites are reported.

  12. Diagnosis of mold allergy by RAST and skin prick testing.

    PubMed

    Nordvall, S L; Agrell, B; Malling, H J; Dreborg, S

    1990-11-01

    Sera from 33 patients with mold allergy proven by bronchial provocation were analyzed for specific IgE against six mold species comparing an improved Phadebas RAST with four other techniques. The new method was more sensitive and gave significantly higher IgE antibody concentrations for all tested molds except Cladosporium herbarum.

  13. Tracing the Origin of Non-ferrous Oxides in Lamination Defects on Hot-Rolled Coils: Mold Slag Entrainment vs Submerged Entry Nozzle Reaction Products

    NASA Astrophysics Data System (ADS)

    Sengo, Sabri; Romano Triguero, Patricia; Zinngrebe, Enno; Mensonides, Fokko

    2017-06-01

    In this work, lamination defects (slivers) on hot-rolled coils of Ca-treated steel were investigated for microstructure and composition using optical and scanning electron microscopy combined with microanalysis (SEM/EDS). The goal was to identify possible origins for the observed defects which contain a complex assemblage of phases, such as different types of calcium aluminates (CA, CA2, CA6), melilite (C2AS), spinel (MA), and a newly identified phase, CNA2. Mold slag similar to that employed during the cast was absent. Analysis of the bulk composition of some of the defects indicated these to be too rich in alumina to be derived from mold slag through steel-slag redox exchange. In contrast, microstructural observation of the inner side of the submerged entry nozzles (SEN) used during casting showed deposits with compositions comparable to those of the defect material. Based on an estimation of the chemical evolution of mold slag interacting with steel, it is found that the defects are not likely to be entrained mold slag but remobilized SEN deposits, as supported by several microstructural and trace phase criteria. However, it should be noted that extensive reduction of mold slag by steel can lead to compositions rich in sodic-calcic aluminates (CNA2). Therefore, differentiation between specific locations of the defect materials within a casting system requires detailed analysis from the potential sources of origin as well as from the materials found in the defects.

  14. Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 1, Fabrication

    PubMed Central

    Antolino, Nicholas E.; Hayes, Gregory; Kirkpatrick, Rebecca; Muhlstein, Christopher L.; Frecker, Mary I.; Mockensturm, Eric M.; Adair, James H.

    2009-01-01

    Free-standing mesoscale (340 μm × 30 μm × 20 μm) bend bars with an aspect ratio over 15:1 and an edge resolution as fine as a single grain diameter (∼400 nm) have been fabricated in large numbers on refractory ceramic substrates by combining a novel powder processing approach with photoresist molds and an innovative lost-mold thermal process. The colloid and interfacial chemistry of the nanoscale zirconia particulates has been modeled and used to prepare highly concentrated suspensions. Engineering solutions to challenges in mold fabrication and casting have yielded free-standing, crack-free parts. Molds are fabricated using high-aspect-ratio photoresist on ceramic substrates. Green parts are formed using a rapid infiltration method that exploits the shear thinning behavior of the highly concentrated ceramic suspension in combination with gelcasting. The mold is thermally decomposed and the parts are sintered in place on the ceramic substrate. Chemically aided attrition milling disperses and concentrates the as-received 3Y-TZP powder to produce a dense, fine-grained sintered microstructure. Initial three-point bend strength data are comparable to that of conventional zirconia; however, geometric irregularities (e.g., trapezoidal cross sections) are present in this first generation and are discussed with respect to the distribution of bend strength. PMID:19809595

  15. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    DOE PAGES

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less

  16. From micro- to nano-scale molding of metals : size effect during molding of single crystal Al with rectangular strip punches.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Meng, W. J.; Mei, F.

    2011-02-01

    A single crystal Al specimen was molded at room temperature with long, rectangular, strip diamond punches. Quantitative molding response curves were obtained at a series of punch widths, ranging from 5 {micro}m to 550 nm. A significant size effect was observed, manifesting itself in terms of significantly increasing characteristic molding pressure as the punch width decreases to 1.5 {micro}m and below. A detailed comparison of the present strip punch molding results was made with Berkovich pyramidal indentation on the same single crystal Al specimen. The comparison reveals distinctly different dependence of the characteristic pressure on corresponding characteristic length. The presentmore » results show the feasibility of micro-/nano-scale compression molding as a micro-/nano-fabrication technique, and offer an experimental test case for size-dependent plasticity theories.« less

  17. Effects of process parameters on the molding quality of the micro-needle array

    NASA Astrophysics Data System (ADS)

    Qiu, Z. J.; Ma, Z.; Gao, S.

    2016-07-01

    Micro-needle array, which is used in medical applications, is a kind of typical injection molded products with microstructures. Due to its tiny micro-features size and high aspect ratios, it is more likely to produce short shots defects, leading to poor molding quality. The injection molding process of the micro-needle array was studied in this paper to find the effects of the process parameters on the molding quality of the micro-needle array and to provide theoretical guidance for practical production of high-quality products. With the shrinkage ratio and warpage of micro needles as the evaluation indices of the molding quality, the orthogonal experiment was conducted and the analysis of variance was carried out. According to the results, the contribution rates were calculated to determine the influence of various process parameters on molding quality. The single parameter method was used to analyse the main process parameter. It was found that the contribution rate of the holding pressure on shrinkage ratio and warpage reached 83.55% and 94.71% respectively, far higher than that of the other parameters. The study revealed that the holding pressure is the main factor which affects the molding quality of micro-needle array so that it should be focused on in order to obtain plastic parts with high quality in the practical production.

  18. An Investigation of the Mold-Flux Performance for the Casting of Cr12MoV Steel Using a Mold Simulator Technique

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Wang, Wanlin; Xu, Chao; Zhang, Chen

    2017-08-01

    Mold flux plays important roles in the process of continuous casting. In this article, the performance of mold flux for the casting of Cr12MoV steel was investigated by using a mold simulator. The results showed that the slag film formed in the gap between the initial shell and mold hot surface is thin and discontinuous during the casting process with the Flux BM, due to the absorption of chromic oxide inclusions into the liquid slag, while the slag film formed in the case of the optimized Flux NEW casting process is uniform. The main precipitated crystals in Flux BM slag film are cuspidine (Ca4Si2O7F2) and Cr3O4, but only Ca4Si2O7F2 precipitated in the Flux NEW case. Besides, both the responding temperature and heat flux in the case of Flux BM are relatively higher and fluctuate in a larger amplitude. The surface of the shell obtained in the case of the Flux BM experiment is quite uneven, and many severe depressions, cracks, and entrapped slags are observed in the surface due to the lack of lubrication. However, the obtained shell surface in the case of the Flux NEW shows good surface quality due to the addition of B2O3 and the adjustment of basicity, which can compensate for the negative effects of the mold-flux properties caused by the absorption of chromic oxide during the casting process.

  19. New methods and materials for molding and casting ice formations

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Richter, G. Paul

    1987-01-01

    This study was designed to find improved materials and techniques for molding and casting natural or simulated ice shapes that could replace the wax and plaster method. By utilizing modern molding and casting materials and techniques, a new methodology was developed that provides excellent reproduction, low-temperature capability, and reasonable turnaround time. The resulting casts are accurate and tough.

  20. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy,more » typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.« less

  1. 53. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL MOLDS IN THE MORAVIAN POTTERY AND TILE WORKS COLLECTION, AND ARE USED TO PRESS TILES. THE FACTORY KEEPS TEN PRODUCTION MOLDS FOR EACH IMAGE. THE ORIGINAL MOLDS ARE NOT USED IN PRODUCTION. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  2. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  3. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    NASA Astrophysics Data System (ADS)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  4. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  5. 92. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL MOLDS IN THE MORAVIAN POTTERY AND TILE WORKS COLLECTION, AND ARE USED TO PRESS TILES. THE FACTORY KEEPS TEN PRODUCTION MOLDS FOR EACH IMAGE. THE ORIGINAL MOLDS ARE NOT USED IN PRODUCTION. SAME VIEW AS PA-107-53. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  6. MOLD-SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Molds can cause health problems like infections and allergies, destroy crops, and contaminate our food or pharmaceuticals. We can't avoid molds. Molds are essential players in the biological processes on earth, but we can now identify and quantify the molds that will be most pr...

  7. Mold and Health

    EPA Pesticide Factsheets

    Molds have the potential to cause health problems. Molds produce allergens (substances that can cause allergic reactions) and irritants. Inhaling or touching mold or mold spores may cause allergic reactions in sensitive individuals.

  8. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity.

    PubMed

    Bayraktaroglu, Esra; Gulsoy, H Ozkan; Gulsoy, Nagihan; Er, Ozay; Kilic, Hasan

    2012-01-01

    The research was investigated the effect of boron additions on sintering characteristics, mechanical, corrosion properties and biocompatibility of injection molded austenitic grade 316L stainless steel. Addition of boron is promoted to get high density of sintered 316L stainless steels. The amount of boron plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders have been used with the elemental NiB powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperature. The debinded samples were sintered at different temperature for 60 min. Mechanical property, microstructural characterization and electrochemical property of the sintered samples were performed using tensile testing, hardness, optical, scanning electron microscopy and electrochemical corrosion experiments. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. Results of study showed that sintered 316L and 316L with NiB addition samples exhibited high mechanical and corrosion properties in a physiological environment. Especially, 316L with NiB addition can be used in some bioapplications.

  9. Warpage of QFN Package in Post Mold Cure Process of integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Sriwithoon, Nattha; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about warpage of QFN package in post mold cure process of integrated circuit (IC) packages using pre-plated (PPF) leadframe. For IC package, epoxy molding compound (EMC) are molded by cross linking of compound stiffness but incomplete crosslinked network and leading the fully cured thermoset by post mold cure (PMC) process. The cure temperature of PMC can change microstructure of EMC in term of stress inside the package and effect to warpage of the package due to coefficient of thermal expansion (CTE) between EMC and leadframe. In experiment, cure temperatures were varied to check the effect of internal stress due to different cure temperature after completed post mold cure for TDFN 2×3 8L. The cure temperature were varied with 180 °C, 170 °C, 160 °C, and 150°C with cure time 4 and 6 hours, respectively. For analysis, the TDFN 2×3 8L packages were analyzed the warpage by thickness gauge and scanning acoustic microscope (SAM) after take the test samples out from the oven cure. The results confirmed that effect of different CTE between EMC and leadframe due to different cure temperature resulting to warpage of the TDFN 2×3 8L packages.

  10. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques

    PubMed Central

    Kim, Hae Ri; Jang, Seong-Ho; Kim, Young Kyung; Son, Jun Sik; Min, Bong Ki; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    The microstructures and mechanical properties of cobalt-chromium (Co-Cr) alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures) or dumbbell- (mechanical properties) specimens made of Co-Cr alloys were prepared using casting (CS), milling (ML), selective laser melting (SLM), and milling/post-sintering (ML/PS). For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6). The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process. PMID:28773718

  11. Effect of Inoculation Techniques and Relative Humidity on the Growth of Molds on the Surfaces of Yellow Layer Cakes

    PubMed Central

    Fustier, Patrick; Lafond, Alain; Champagne, Claude P.; Lamarche, François

    1998-01-01

    Four inoculation techniques were compared for initiation of growth on cake surfaces: spot, air cabinet, spray (atomizer), and talc addition methods. Molds were isolated from commercial cakes and were identified as Aspergillus sydowii, Aspergillus ochraceus, Penicillium funiculosum, and Eurotium herbariorum. Cake surfaces were inoculated with mold spores and incubated under three equilibrium relative humidity (ERH) levels: 97, 85, and 75%. Random contamination by spores in a ventilated air cabinet was the simplest method of inoculation, but standard deviations in the inoculation rates (20% on a relative scale) were almost twice those observed with the other methods. The spot method was the most reproducible. Cake samples inoculated in the air cabinet had colony counts 10 times lower than those obtained for potato dextrose agar plates at 97% ERH, which was not the case with the spray and talc methods. Growth of molds was much slower in the samples incubated in 75% relative humidity, with all methods. Colony counts were generally similar in systems adjusted at 85 to 97% ERH but were lower for samples incubated at 75% ERH. In comparisons of the shelf life estimates obtained by the various inoculation methods, a correlation coefficient (r2) of 0.70 was obtained between the spot method and the other methods of inoculation, while talc, air cabinet, and spray shelf life data were correlated better (r2 ≈ 0.97). The spot method appeared to be the method of choice in consideration of ease of use, precision, and the ability to enable the study of the effects of the environment on mold-free shelf life as well as on the rate of growth of molds on cakes. PMID:16349479

  12. Effects of synthesis techniques on chemical composition, microstructure and dielectric properties of Mg-doped calcium titanate

    NASA Astrophysics Data System (ADS)

    Jongprateep, Oratai; Sato, Nicha

    2018-04-01

    Calcium titanate (CaTiO3) has been recognized as a material for fabrication of dielectric components, owing to its moderate dielectric constant and excellent microwave response. Enhancement of dielectric properties of the material can be achieved through doping, compositional and microstructural control. This study, therefore, aimed at investigating effects of powder synthesis techniques on compositions, microstructure, and dielectric properties of Mg-doped CaTiO3. Solution combustion and solid-state reaction were powder synthesis techniques employed in preparation of undoped CaTiO3 and CaTiO3 doped with 5-20 at% Mg. Compositional analysis revealed that powder synthesis techniques did not exhibit a significant effect on formation of secondary phases. When Mg concentration did not exceed 5 at%, the powders prepared by both techniques contained only a single phase. An increase of MgO secondary phase was observed as Mg concentrations increased from 10 to 20 at%. Experimental results, on the contrary, revealed that powder synthesis techniques contributed to significant differences in microstructure. Solution combustion technique produced powders with finer particle sizes, which consequently led to finer grain sizes and density enhancement. High-density specimens with fine microstructure generally exhibit improved dielectric properties. Dielectric measurements revealed that dielectric constants of all samples ranged between 231 and 327 at 1 MHz, and that superior dielectric constants were observed in samples prepared by the solution combustion technique.

  13. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.

    PubMed

    Gülsoy, H Özkan; Gülsoy, Nagihan; Calışıcı, Rahmi

    2014-01-01

    Titanium and Titanium alloys exhibits properties that are excellent for various bio-applications. Metal injection molding is a processing route that offers reduction in costs, with the added advantage of near net-shape components. Different physical properties of Titanium alloy powders, shaped and processed via injection molding can achieve high complexity of part geometry with mechanical and bioactivity properties, similar or superior to wrought material. This study describes that the effect of particle morphology on the microstructural, mechanical and biocompatibility properties of injection molded Ti-6Al-4V (Ti64) alloy powder for biomaterials applications. Ti64 powders irregular and spherical in shape were injection molded with wax based binder. Binder debinding was performed in solvent and thermal method. After debinding the samples were sintered under high vacuum. Metallographic studies were determined to densification and the corresponding microstructural changes. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. The results show that spherical and irregular powder could be sintered to a maximum theoretical density. Maximum tensile strength was obtained for spherical shape powder sintered. The tensile strength of the irregular shape powder sintered at the same temperature was lower due to higher porosity. Finally, mechanical tests show that the irregular shape powder has lower mechanical properties than spherical shape powder. The sintered irregular Ti64 powder exhibited better biocompatibility than sintered spherical Ti64 powder. Results of study showed that sintered spherical and irregular Ti64 powders exhibited high mechanical properties and good biocompatibility properties.

  14. A neural network technique for remeshing of bone microstructure.

    PubMed

    Fischer, Anath; Holdstein, Yaron

    2012-01-01

    Today, there is major interest within the biomedical community in developing accurate noninvasive means for the evaluation of bone microstructure and bone quality. Recent improvements in 3D imaging technology, among them development of micro-CT and micro-MRI scanners, allow in-vivo 3D high-resolution scanning and reconstruction of large specimens or even whole bone models. Thus, the tendency today is to evaluate bone features using 3D assessment techniques rather than traditional 2D methods. For this purpose, high-quality meshing methods are required. However, the 3D meshes produced from current commercial systems usually are of low quality with respect to analysis and rapid prototyping. 3D model reconstruction of bone is difficult due to the complexity of bone microstructure. The small bone features lead to a great deal of neighborhood ambiguity near each vertex. The relatively new neural network method for mesh reconstruction has the potential to create or remesh 3D models accurately and quickly. A neural network (NN), which resembles an artificial intelligence (AI) algorithm, is a set of interconnected neurons, where each neuron is capable of making an autonomous arithmetic calculation. Moreover, each neuron is affected by its surrounding neurons through the structure of the network. This paper proposes an extension of the growing neural gas (GNN) neural network technique for remeshing a triangular manifold mesh that represents bone microstructure. This method has the advantage of reconstructing the surface of a genus-n freeform object without a priori knowledge regarding the original object, its topology, or its shape.

  15. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronicmore » devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.« less

  16. A microstructural lattice model for strain oriented problems: A combined Monte Carlo finite element technique

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Srolovitz, D. J.

    1987-01-01

    A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.

  17. Rapid control of mold temperature during injection molding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liparoti, Sara; Titomanlio, Giuseppe; Hunag, Tsang Min

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during themore » entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.« less

  18. Challenges in mold manufacturing for high precision molded diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas

    2016-09-01

    Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.

  19. Characterizing TPS Microstructure: A Review of Some techniques

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Stackpole, Mairead; Agrawal, Parul; Chavez-Garcie, Jose

    2011-01-01

    I. When seeking to understand ablator microstructure and morphology there are several useful techniques A. SEM 1) Visual characteriza3on at various length scales. 2) Chemical mapping by backscatter or x-ray highlights areas of interest. 3) Combined with other techniques (density, weight change, chemical analysis) SEM is a powerful tool to aid in explaining thermo/structural data. B. ASAP. 1) Chemical characteriza3on at various length scales. 2) Chemical mapping of pore structure by gas adsorption. 3) Provides a map of pore size vs. pore volume. 4) Provided surface area of exposed TPS. II. Both methods help characterize and understand how ablators react with other chemical species and provides insight into how they oxidize.

  20. Allergies, asthma, and molds

    MedlinePlus

    Reactive airway - mold; Bronchial asthma - mold; Triggers - mold; Allergic rhinitis - pollen ... Things that make allergies or asthma worse are called triggers. Mold is a common trigger. When your asthma or allergies become worse due to mold, you are ...

  1. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, directmore » method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models

  2. Fabrication of a negative PMMA master mold for soft-lithography by MeV ion beam lithography

    NASA Astrophysics Data System (ADS)

    Puttaraksa, Nitipon; Unai, Somrit; Rhodes, Michael W.; Singkarat, Kanda; Whitlow, Harry J.; Singkarat, Somsorn

    2012-02-01

    In this study, poly(methyl methacrylate) (PMMA) was investigated as a negative resist by irradiation with a high-fluence 2 MeV proton beam. The beam from a 1.7 MV Tandetron accelerator at the Plasma and Beam Physics Research Facility (PBP) of Chiang Mai University is shaped by a pair of computer-controlled L-shaped apertures which are used to expose rectangular pattern elements with 1-1000 μm side length. Repeated exposure of rectangular pattern elements allows a complex pattern to be built up. After subsequent development, the negative PMMA microstructure was used as a master mold for casting poly(dimethylsiloxane) (PDMS) following a standard soft-lithography process. The PDMS chip fabricated by this technique was demonstrated to be a microfluidic device.

  3. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process.

    PubMed

    Park, Jeong Hun; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2014-06-01

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes.

  4. Injection Molding and its application to drug delivery.

    PubMed

    Zema, Lucia; Loreti, Giulia; Melocchi, Alice; Maroni, Alessandra; Gazzaniga, Andrea

    2012-05-10

    Injection Molding (IM) consists in the injection, under high pressure conditions, of heat-induced softened materials into a mold cavity where they are shaped. The advantages the technique may offer in the development of drug products concern both production costs (no need for water or other solvents, continuous manufacturing, scalability, patentability) and technological/biopharmaceutical characteristics of the molded items (versatility of the design and composition, possibility of obtaining solid molecular dispersions/solutions of the active ingredient). In this article, process steps and formulation aspects relevant to IM are discussed, with emphasis on the issues and advantages connected with the transfer of this technique from the plastics industry to the production of conventional and controlled-release dosage forms. Moreover, its pharmaceutical applications thus far proposed in the primary literature, intended as either alternative manufacturing strategies for existing products or innovative systems with improved design and performance characteristics, are critically reviewed. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Wetting Behavior of Mold Flux Droplet on Steel Substrate With or Without Interfacial Reaction

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Li, Jingwen; Wang, Wanlin; Sohn, Il

    2017-08-01

    The slag entrapment in mold tends to cause severe defects on the slab surface, especially for casting steels containing active alloy elements such as Al, Ti, and Mn. The wetting behavior of molten mold flux on the initial solidified shell is considered to be a key factor to determine the entrapment of mold slag on the shell surface. Therefore, the wetting behavior of mold flux droplet on the steel substrate with or without interfacial reaction was investigated by the sessile drop method. The results indicated that the melting process of mold flux has a significant influence on the variation of contact angle, and the final contact angle for Flux1 droplet on 20Mn23AlV is only 15 deg, which is lower than the other two cases due to the intensive interracial reactions occurring in this case. In addition, the thickness of the interaction layer for the case of Flux1 on 20Mn23AlV is 10- μm greater than the other two cases, which confirms that the most intensive reactions occurred at the interface area. The microstructure and element distribution at the interface analyzed by a scanning electron microscope (SEM) and energy dispersive spectrum (EDS) suggested that the increase of wettability of mold flux droplet on the steel substrate is caused by the migration of Al, Mn, and Si elements occurring in the vicinity of the interface. The results obtained in this article can reveal the mechanism of flux entrapment by hook or shell and provide theoretic guidance for mold flux design and optimization.

  6. Investigations on Microstructure and Corrosion behavior of Superalloy 686 weldments by Electrochemical Corrosion Technique

    NASA Astrophysics Data System (ADS)

    Arulmurugan, B.; Manikandan, M.

    2018-02-01

    In the present study, microstructure and the corrosion behavior of Nickel based superalloy 686 and its weld joints has been investigated by synthetic sea water environment. The weldments were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) techniques with autogenous mode and three different filler wires (ERNiCrMo-4, ERNiCrMo-10 and ERNiCrMo-14). Microstructure and Scanning electron microscope examination was carried out to evaluate the structural changes in the fusion zones of different weldments. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying elements in the different weld joints. Potentiodynamic polarization study was experimented on the base metal and weld joints in the synthetic sea water environment to evaluate the corrosion rate. Tafel’s interpolation technique was used to obtain the corrosion rate. The microstructure examination revealed that the fine equiaxed dendrites were observed in the pulsed current mode. EDS analysis shows the absence of microsegregation in the current pulsing technique. The corrosion rates of weldments are compared with the base metal. The results show that the fine microstructure with the absence of microsegregation in the PCGTA weldments shows improved corrosion resistance compared to the GTAW. Autogenous PCGTAW shows higher corrosion resistance irrespective of all weldments employed in the present study.

  7. Improved compression molding process

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1967-01-01

    Modified compression molding process produces plastic molding compounds that are strong, homogeneous, free of residual stresses, and have improved ablative characteristics. The conventional method is modified by applying a vacuum to the mold during the molding cycle, using a volatile sink, and exercising precise control of the mold closure limits.

  8. Influence of gating design on microstructure and fluidity of thin sections AA320.0 cast hypo-eutectic Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Ramadan, Mohamed

    2018-05-01

    Influence of gating design especially number of ingrates on microstructure and fluidity of thin sections of 2, 4, 6 mm AA320.0 cast hypo-eutectic Al-Si alloy was evaluated for sand casting molding technique. Increasing the number of ingates improves the microstructe to be fine and more globular. About 87 μm of α-Al grain size, 0.6 α-Al grain sphericity and 37 μm dendrite arm spacing DAS are achieved by using 4 ingates in gating system. Increasing the number of ingates up to 3 increases hardness, filling area and related fluditiy of all cast samples. The minimum thickness of 2.5 mm for each ingate should be considered in order to successfully production of high quality light weight thin sections castings in sand mold.

  9. Study on In-mold Punching during PPS/GF Injection Molding

    NASA Astrophysics Data System (ADS)

    Inuzuka, Takayuki; Fujita, Akihiro; Nakai, Asami; Hamada, Hiroyuki

    The influence of the punching condition on strength and the amount of shear droop was investigated to optimize the processing condition for punching in the mold during glass fiber reinforced polyphenylenesulfide (PPS/GF) injection molding. For in-mold punching part during cooling process, the tensile strength was constant because the pressure loss by the punch did not occur. The amount of the shear droop decreased in line with the increase in delay time because the rigidity of injection molded part in the mold increased when the resin was cooled. Moreover, when the resin temperature lowered more than the glass transition temperature, the amount of the shear droop was constant because the rigidity became constant. It is necessary to begin punching when the resin temperature lowers more than the glass transition temperature after holding pressure process is completed, to secure high strength and to assume 0.05 mm or less, at which level the shear droop cannot be visually recognized. The shortest delay time for PPS/GF is 8 sec. The delay time to minimize the amount of the shear droop can be guessed by analyzing the temperature change of the resin in the mold by injection molding CAE.

  10. Evaluation of Additive Manufacturing for Composite Part Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, Chad E.; Springfield, Robert M.

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  11. Ultrasonically-assisted Polymer Molding: An Evaluation

    NASA Astrophysics Data System (ADS)

    Moles, Matthew; Roy, Anish; Silberschmidt, Vadim

    Energy reduction in extrusion and injection molding processes can be achieved by the introduction of ultrasonic energy. Polymer flow can be enhanced on application of ultrasonic vibration, which can reduce the thermal and pressure input requirements to produce the same molding; higher productivity may also be achieved. In this paper, a design of an ultrasound-assisted injection mold machine is explored. An extrusion-die design was augmented with a commercial 1.5 kW ultrasonic transducer and sonotrode designed to resonate close to 20 kHz with up to 100 μm vibration amplitude. The design was evaluated with modal and thermal analysis using finite-element analysis software. The use of numerical techniques, including computational fluid dynamics, fluid-structure interaction and coupled Lagrangian-Eulerian method, to predict the effect of ultrasound on polymer flow was considered. A sonotrode design utilizing ceramic to enhance thermal isolation was also explored.

  12. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    NASA Astrophysics Data System (ADS)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan; Pranov, Henrik J.; Larsen, Niels B.

    2015-03-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes.

  13. Mold Testing or Sampling

    EPA Pesticide Factsheets

    In most cases, if visible mold growth is present, sampling is unnecessary. Since no EPA or other federal limits have been set for mold or mold spores, sampling cannot be used to check a building's compliance with federal mold standards.

  14. NUTRITION OF CELLULAR SLIME MOLDS I.

    PubMed Central

    Hohl, Hans-Rudolf; Raper, Kenneth B.

    1963-01-01

    Hohl, Hans-Rudolf (University of Wisconsin, Madison) and Kenneth B. Raper. Nutrition of cullular slime molds. I. Growth on living and dead bacteria. J. Bacteriol. 85:191–198. 1963.—Methods for growing selected species of cellular slime molds in liquid culture on living and dead bacteria are described. Species investigated included Polysphondylium pallidum, P. violaceum, Dictyostelium discoideum, and D. purpureum. Maximal growth of myxamoebae occurred in suspensions of 1010 living bacteria (Escherichia coli B/r)/ml in Sörensen's phosphate buffer (pH 6.0), reaching a density of 107 to 2 × 107 cells/ml in 48 hr. The generation time for the different slime molds ranged from 2.4 hr for P. violaceum to 2.9 hr for D. discoideum (strain V-12). Good growth of P. pallidum occurred between pH 3.6 and 7.8. The slime molds grew less well on dead (autoclaved) than on living bacteria and, except for P. pallidum, the amount and rate of growth decreased markedly as the time of autoclaving was increased from 2.5 to 80 min. Bacteria killed with propylene oxide supported growth equal to those autoclaved for a few minutes. The myxamoebae were very sensitive to the osmotic pressure of the culture medium, especially in the presence of living bacteria, and addition of as little as 0.01 m NaCl caused a measurable decrease in slime mold growth. The culture techniques employed afford useful methods for investigating the nutritional requirements of the cellular slime molds, and the experiments described provide the bases for subsequent studies relating to the axenic cultivation of these singular microorganisms. Images PMID:13961228

  15. Deflectometric analysis of high volume injection molds for production of occupational eye wear.

    PubMed

    Speck, Alexis; Zelzer, Benedikt; Speich, Marco; Börret, Rainer; Langenbucher, Achim; Eppig, Timo

    2013-12-01

    Most of the protective eye wear devices currently on the market are manufactured on simple polycarbonate shields, produced by injection molding techniques. Despite high importance of optical quality, injection molds are rarely inspected for surface quality before or during the manufacturing process. Quality degradation is mainly monitored by optical testing of the molded parts. The purpose of this work was to validate a non-contact deflectometric measurement technique for surface and shape analysis of injection molds to facilitate deterministic surface quality control and to monitor minor conformity of the injection mold with the design data. The system is based on phase-measuring deflectometry with a operating measurement field of 80×80 mm(2) (±18° slope), a lateral resolution of 60μm and a local sensitivity of some nanometers. The calibration was tested with a calibration normal and a reference sphere. The results were crosschecked against a measurement of the same object with a tactile coordinate measuring machine. Eight injection molds for production of safety goggles with radii of +58mm (convex) and -60mm (concave) were measured in this study. The molds were separated into two groups (cavity 1 and 2 of the tool with different polishing techniques) and measured to test whether the measurement tool could extract differences. The analysis was performed on difference height between the measured surface and the spherical model. The device could derive the surface change due to polishing and discriminate between both polishing techniques, on the basis of the measured data. The concave nozzle sides of the first group (cavity 1) showed good shape conformity. In comparison, the nozzle sides of the second group (cavity 2) showed local deviations from design data up to 14.4μm. Local form variations of about 5μm occurred in the field of view. All convex ejector sides of both groups (cavity 1 and 2) showed rotational symmetric errors and the molds were measured in

  16. Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments

    NASA Astrophysics Data System (ADS)

    Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.

    2014-05-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length < 15mm) this investigation concentrates on the prediction of the local mechanical properties of an injection molded part. To realize this, the Autodesk Simulation Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.

  17. Microstructural Characterization of Irradiated U0.7ZrH1.6 Using Ultrasonic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Jacob, Richard E.; MacFarlan, Paul J.

    In recent years, there has been an increased level of effort to understand the changes in microstructure that occur due to irradiation of nuclear fuel. The primary driver for this increased effort is the potential for designing new fuels that are safer and more reliable, in turn enabling new and improved reactor technologies. Much of the data on microstructural change in irradiated fuels is generated through a host of post irradiation examination techniques such as optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to determine grain structure, porosity, crack geometry, etc. in irradiated fuels. Such “traditional”more » examination techniques were recently used to characterize a novel new fuel consisting of U0.17ZrH1.6 pellets bonded to zircaloy-2 cladded with lead-bismuth eutectic before and after irradiation. However, alternative methods such as ultrasonic inspection can provide an opportunity for nondestructively assessing microstructure in both in-pile and post-irradiation examinations. In this paper, we briefly describe initial results of ultrasonic examination of the U0.17ZrH1.6 pellets (unirradiated and irradiated), in a post-irradiation examination study. Data indicate some correlation with microstructural changes due to irradiation; however, it is not clear what the specific microstructural changes are that are influencing the ultrasonic measurements. Interestingly, specimens with nominally identical burnup show differences in ultrasonic signatures, indicating apparent microstructural differences between these specimens. A summary of the experimental study, preliminary data and findings are presented in this short paper. Additional details of the analysis will be included in the presentation.« less

  18. Transferability of glass lens molding

    NASA Astrophysics Data System (ADS)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  19. Classification of buildings mold threat using electronic nose

    NASA Astrophysics Data System (ADS)

    Łagód, Grzegorz; Suchorab, Zbigniew; Guz, Łukasz; Sobczuk, Henryk

    2017-07-01

    Mold is considered to be one of the most important features of Sick Building Syndrome and is an important problem in current building industry. In many cases it is caused by the rising moisture of building envelopes surface and exaggerated humidity of indoor air. Concerning historical buildings it is mostly caused by outdated raising techniques among that is absence of horizontal isolation against moisture and hygroscopic materials applied for construction. Recent buildings also suffer problem of mold risk which is caused in many cases by hermetization leading to improper performance of gravitational ventilation systems that make suitable conditions for mold development. Basing on our research there is proposed a method of buildings mold threat classification using electronic nose, based on a gas sensors array which consists of MOS sensors (metal oxide semiconductor). Used device is frequently applied for air quality assessment in environmental engineering branches. Presented results show the interpretation of e-nose readouts of indoor air sampled in rooms threatened with mold development in comparison with clean reference rooms and synthetic air. Obtained multivariate data were processed, visualized and classified using a PCA (Principal Component Analysis) and ANN (Artificial Neural Network) methods. Described investigation confirmed that electronic nose - gas sensors array supported with data processing enables to classify air samples taken from different rooms affected with mold.

  20. Mold-Resistant Construction.

    ERIC Educational Resources Information Center

    Huckabee, Christopher

    2003-01-01

    Asserts that one of the surest ways to prevent indoor air quality and mold issues is to use preventive construction materials, discussing typical resistance to dealing with mold problems (usually budget-related) and describing mold-resistant construction, which uses concrete masonry, brick, and stone and is intended to withstand inevitable…

  1. Comparison of three‐dimensional analysis and stereological techniques for quantifying lithium‐ion battery electrode microstructures

    PubMed Central

    TAIWO, OLUWADAMILOLA O.; FINEGAN, DONAL P.; EASTWOOD, DAVID S.; FIFE, JULIE L.; BROWN, LEON D.; DARR, JAWWAD A.; LEE, PETER D.; BRETT, DANIEL J.L.

    2016-01-01

    Summary Lithium‐ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium‐ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3‐D imaging techniques, quantitative assessment of 3‐D microstructures from 2‐D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two‐dimensional (2‐D) data sets. In this study, stereological prediction and three‐dimensional (3‐D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium‐ion battery electrodes were imaged using synchrotron‐based X‐ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2‐D image sections generated from tomographic imaging, whereas direct 3‐D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2‐D image sections is bound to be associated with ambiguity and that volume‐based 3‐D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially‐dependent parameters, such as tortuosity and pore‐phase connectivity. PMID:26999804

  2. Comparison of three-dimensional analysis and stereological techniques for quantifying lithium-ion battery electrode microstructures.

    PubMed

    Taiwo, Oluwadamilola O; Finegan, Donal P; Eastwood, David S; Fife, Julie L; Brown, Leon D; Darr, Jawwad A; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R

    2016-09-01

    Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity. © 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  3. Chemorheology of in-mold coating for compression molded SMC applications

    NASA Astrophysics Data System (ADS)

    Ko, Seunghyun; Straus, Elliott J.; Castro, Jose M.

    2015-05-01

    In-mold coating (IMC) is applied to compression molded sheet molding compound (SMC) exterior automotive or truck body panels as an environmentally friendly alternative to make the surface conductive for subsequent electrostatic painting operations. The coating is a thermosetting liquid that when injected onto the surface of the part cures and bonds to provide a smooth conductive surface. In order to optimize the IMC process, it is essential to predict the time available for flow, that is the time before the thermosetting reaction starts (inhibition time) as well as the time when the coating has enough structural integrity so that the mold can be opened without damaging the part surface (cure time). To predict both the inhibition time and the cure time, it is critical to study the chemorheology of IMC. In this paper, we study the chemorheology for a typical commercial IMC system, and show its relevance to both the flow and cure time for the IMC stage during SMC compression molding.

  4. Single and Dual Drug Release Patterns from Shellac Wax-Lutrol Matrix Tablets Fabricated with Fusion and Molding Techniques

    PubMed Central

    Phaechamud, T.; Choncheewa, C.

    2015-01-01

    The objective of this investigation was to prepare the shellac wax matrix tablets by fusion and molding technique incorporated with Lutrol in different ratios to modify the hydrophobicity of matrix tablet. The matrix tablets with single drug were loaded either with propranolol hydrochloride or hydrochlorothiazide as hydrophilic and hydrophobic model drugs, and a dual drug formula was also prepared. The single and dual drug release patterns were studied in a dissolution apparatus using distilled water as medium. Propranolol hydrochloride released from matrix was easier than hydrochlorothiazide. Drug release from shellac wax matrix could be enhanced by incorporation of Lutrol. However retardation of drug release from some matrix tablets was evident for the systems that could form dispersion in the dissolution medium. The gel network from high content of Lutrol was hexagonal which was a dense and more compact structure than the other structures found when low amounts of Lutrol were present in the formula. Therefore, the formulae with high content of Lutrol could prolong drug release more efficiently than those containing low content of Lutrol. Hence shellac wax matrix could modulate the drug release with the addition of Lutrol. Sustainable dual drug release was also obtained from these developed matrix tablets. Thus shellac wax-Lutrol component could be used as a potential matrix tablet prepared with fusion and molding technique with excellent controlled drug release. PMID:25767320

  5. Injection molded polymer optics in the 21st Century

    NASA Astrophysics Data System (ADS)

    Beich, William S.

    2005-08-01

    Precision polymer optics, manufactured by injection molding techniques, has been a key enabling technology for several decades now. The technology, which can be thought of as a subset of the wider field of precision optics manufacturing, was pioneered in the United States by companies such as Eastman Kodak, US Precision Lens, and Polaroid. In addition to suppliers in the U.S. there are several companies worldwide that design and manufacture precision polymer optics, for example Philips High Tech Plastics in Europe and Fujinon in Japan. Designers who are considering using polymer optics need a fundamental understanding of exactly how the optics are created. This paper will survey the technology and processes that are employed in the successful implementation of a polymer optic solution from a manufacturer's perspective. Special emphasis will be paid to the unique relationship between the molds and the optics that they produce. We will discuss the key elements of production: molding resins, molds and molding equipment, and metrology. Finally we will offer a case study to illustrate just how the optics designer carries a design concept through to production. The underlying theme throughout the discussion of polymer optics is the need for the design team to work closely with an experienced polymer optics manufacturer with a solid track record of success in molded optics. As will be seen shortly, the complex interaction between thermoplastics, molds, and molding machines dictates the need for working closely with a supplier who has the critical knowledge needed to manage all aspects of the program.

  6. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M [Livermore, CA

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  7. Mold Charlatans.

    ERIC Educational Resources Information Center

    Woody, Daniel

    2002-01-01

    Offers a primer on toxic mold and its removal, warning against ignorant or unethical mold remediation companies and offering five considerations (checking references, considering the big picture, sampling more than the air, considering release, and considering the source) when hiring such services. (EV)

  8. Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.

    2018-04-01

    The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.

  9. MOLD POLLUTION

    EPA Science Inventory

    Mold pollution is the growth of molds in a building resulting in a negative impact on the use of that structure. The negative impacts generally fall into two categories: destruction of the structure itself and adverse health impacts on the building's occupants. It is estimated...

  10. Molds in the Environment

    MedlinePlus

    ... visit this page: About CDC.gov . Mold Cleanup & Remediation Homeowner’s and Renter’s Guide to Mold Cleanup After ... Home or Building with Mold Damage Prevention and Remediation Strategies for the Control and Removal of Fungal ...

  11. Design of Revolute Joints for In-Mold Assembly Using Insert Molding.

    PubMed

    Ananthanarayanan, Arvind; Ehrlich, Leicester; Desai, Jaydev P; Gupta, Satyandra K

    2011-12-01

    Creating highly articulated miniature structures requires assembling a large number of small parts. This is a very challenging task and increases cost of mechanical assemblies. Insert molding presents the possibility of creating a highly articulated structure in a single molding step. This can be accomplished by placing multiple metallic bearings in the mold and injecting plastic on top of them. In theory, this idea can generate a multi degree of freedom structures in just one processing step without requiring any post molding assembly operations. However, the polymer material has a tendency to shrink on top of the metal bearings and hence jam the joints. Hence, until now insert molding has not been used to create articulated structures. This paper presents a theoretical model for estimating the extent of joint jamming that occurs due to the shrinkage of the polymer on top of the metal bearings. The level of joint jamming is seen as the effective torque needed to overcome the friction in the revolute joints formed by insert molding. We then use this model to select the optimum design parameters which can be used to fabricate functional, highly articulating assemblies while meeting manufacturing constraints. Our analysis shows that the strength of weld-lines formed during the in-mold assembly process play a significant role in determining the minimum joint dimensions necessary for fabricating functional revolute joints. We have used the models and methods described in this paper to successfully fabricate the structure for a minimally invasive medical robot prototype with potential applications in neurosurgery. To the best of our knowledge, this is the first demonstration of building an articulated structure with multiple degrees of freedom using insert molding.

  12. Improved compression molding technology for continuous fiber reinforced composite laminates. Part 2: AS-4/Polyimidesulfone prepreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored.

  13. Controlling Radiative Heat Transfer Across the Mold Flux Layer by the Scattering Effect of the Borosilicate Mold Flux System with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo

    2017-08-01

    The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.

  14. Molded Magnetic Article

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Namkung, Min (Inventor); Wincheski, Russell A. (Inventor); Fulton, James P. (Inventor); Fox, Robert L. (Inventor)

    2000-01-01

    A molded magnetic article and fabrication method are provided. Particles of ferromagnetic material embedded in a polymer binder are molded under heat and pressure into a geometric shape. Each particle is an oblate spheroid having a radius-to-thickness aspect ratio approximately in the range of 15-30. Each oblate spheroid has flattened poles that are substantially in perpendicular alignment to a direction of the molding pressure throughout the geometric shape.

  15. Interactive Mold House Tour

    EPA Pesticide Factsheets

    Get a quick glimpse of some of the most important ways to protect your home from mold by this interactive tour of the Mold House. Room-by-room, you'll learn about common mold issues and how to address them.

  16. Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin

    2009-12-31

    Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fibermore » quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.« less

  17. Metal injection molding of titanium for medical and aerospace applications

    NASA Astrophysics Data System (ADS)

    Scharvogel, Matthias; Winkelmueller, Wendelin

    2011-02-01

    Mixing of titanium powder and thermoplastic binders creates a feedstock that is injection molded similar to plastic, has a chemical and thermal debinding process, and then is sintered to form a net-shape or near-net shape part. TiJet Medizintechnik GmbH (TiJet) developed and uses its own feedstock and powder processing technology to achieve desired mechanical properties. This paper explains the theory of the process and the possibilities that result from the development of this new powder processing technology, such as new alloys, design possibilities, etc. Discussed will be the microstructure, chemical composition, and mechanical properties of the manufactured parts.

  18. Grinding technoloy of aspheric molds for glass-molding; Technical Digest

    NASA Astrophysics Data System (ADS)

    Kojima, Yoichi

    2005-05-01

    We introduce the method of precisely grinding of axis-symmetric aspherical glass-molding dies by using a diamond wheel. Those show how to select vertical-grinding or slant-grinding, how to grind molds with high accuracy and actual grinding results.

  19. Fabricating microfluidic valve master molds in SU-8 photoresist

    NASA Astrophysics Data System (ADS)

    Dy, Aaron J.; Cosmanescu, Alin; Sluka, James; Glazier, James A.; Stupack, Dwayne; Amarie, Dragos

    2014-05-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution.

  20. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  1. Fabrication of high-transmission microporous membranes by proton beam writing-based molding technique

    NASA Astrophysics Data System (ADS)

    Wang, Liping; Meyer, Clemens; Guibert, Edouard; Homsy, Alexandra; Whitlow, Harry J.

    2017-08-01

    Porous membranes are widely used as filters in a broad range of micro and nanofluidic applications, e.g. organelle sorters, permeable cell growth substrates, and plasma filtration. Conventional silicon fabrication approaches are not suitable for microporous membranes due to the low mechanical stability of thin film substrates. Other techniques like ion track etching are limited to the production of randomly distributed and randomly orientated pores with non-uniform pore sizes. In this project, we developed a procedure for fabricating high-transmission microporous membranes by proton beam writing (PBW) with a combination of spin-casting and soft lithography. In this approach, focused 2 MeV protons were used to lithographically write patterns consisting of hexagonal arrays of high-density pillars of few μm size in a SU-8 layer coated on a silicon wafer. After development, the pillars were conformably coated with a thin film of poly-para-xylylene (Parylene)-C release agent and spin-coated with polydimethylsiloxane (PDMS). To facilitate demolding, a special technique based on the use of a laser-cut sealing tape ring was developed. This method facilitated the successful delamination of 20-μm thick PDMS membrane with high-density micropores from the mold without rupture or damage.

  2. New alnico magnets fabricated from pre-alloyed gas-atomized powder through diverse consolidation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, W.; Zhou, L.; Kassen, A. G.

    2015-05-25

    Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (H cj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology.more » As a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.« less

  3. Bulk microstructure and local elastic properties of carbon nanocomposites studied by impulse acoustic microscopy technique

    NASA Astrophysics Data System (ADS)

    Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.

    2016-05-01

    Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.

  4. Application of heat pipe technology in permanent mold casting of nonferrous alloys

    NASA Astrophysics Data System (ADS)

    Elalem, Kaled

    The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The

  5. Bleach Neutralizes Mold Allergens

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic…

  6. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective.

    PubMed

    Kuhn, D M; Ghannoum, M A

    2003-01-01

    Damp buildings often have a moldy smell or obvious mold growth; some molds are human pathogens. This has caused concern regarding health effects of moldy indoor environments and has resulted in many studies of moisture- and mold-damaged buildings. Recently, there have been reports of severe illness as a result of indoor mold exposure, particularly due to Stachybotrys chartarum. While many authors describe a direct relationship between fungal contamination and illness, close examination of the literature reveals a confusing picture. Here, we review the evidence regarding indoor mold exposure and mycotoxicosis, with an emphasis on S. chartarum. We also examine possible end-organ effects, including pulmonary, immunologic, neurologic, and oncologic disorders. We discuss the Cleveland infant idiopathic pulmonary hemorrhage reports in detail, since they provided important impetus for concerns about Stachybotrys. Some valid concerns exist regarding the relationship between indoor mold exposure and human disease. Review of the literature reveals certain fungus-disease associations in humans, including ergotism (Claviceps species), alimentary toxic aleukia (Fusarium), and liver disease (Aspergillys). While many papers suggest a similar relationship between Stachybotrys and human disease, the studies nearly uniformly suffer from significant methodological flaws, making their findings inconclusive. As a result, we have not found well-substantiated supportive evidence of serious illness due to Stachybotrys exposure in the contemporary environment. To address issues of indoor mold-related illness, there is an urgent need for studies using objective markers of illness, relevant animal models, proper epidemiologic techniques, and examination of confounding factors.

  7. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.

    PubMed

    Mi, Hao-Yang; Salick, Max R; Jing, Xin; Jacques, Brianna R; Crone, Wendy C; Peng, Xiang-Fang; Turng, Lih-Sheng

    2013-12-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. © 2013.

  8. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    PubMed Central

    Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Jacques, Brianna R.; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-01-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold’s microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. PMID:24094186

  9. Effecting aging time of epoxy molding compound to molding process for integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Tachapitunsuk, Jirayu; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about effecting aging time of epoxy molding compound (EMC) that effect to reliability performance of integrated circuit (IC) package in molding process. Molding process is so important of IC packaging process for protecting IC chip (or die) from temperature and humidity environment using encapsulated EMC. For general molding process, EMC are stored in the frozen at 5°C and left at room temperature at 25 °C for aging time on self before molding of die onto lead frame is 24 hours. The aging time effect to reliability performance of IC package due to different temperature and humidity inside the package. In experiment, aging time of EMC were varied from 0 to 24 hours for molding process of SOIC-8L packages. For analysis, these packages were tested by x-ray and scanning acoustic microscope to analyze properties of EMC with an aging time and also analyzed delamination, internal void, and wire sweep inside the packages with different aging time. The results revealed that different aging time of EMC effect to properties and reliability performance of molding process.

  10. Producing Zirconium Diboride Components with Complex, Near-Net Shape Geometries by Aqueous Room-Temperature Injection Molding

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Youngblood, Jeffrey; Trice, Rodney

    2014-01-01

    Room-temperature injection molding is proposed as a novel, low-cost and more energy efficient manufacturing process capable of forming complex-shaped zirconium diboride (ZrB2) parts. This innovative processing method utilized aqueous suspensions with high powder loading and a minimal amount (5 vol.) of water-soluble polyvinylpyrrolidone (PVP), which was used as a viscosity modifier. Rheological characterization was performed to evaluate the room-temperature flow properties of ZrB2-PVP suspensions. ZrB2 specimens were fabricated with high green body strength and were machinable prior to binder removal despite their low polymer content. After binder burnout and pressureless sintering, the bulk density and microstructure of specimens were characterized using Archimedes technique and scanning electron microscopy. X-Ray Diffraction was used to determine the phase compositions present in sintered specimens. Ultimate strength of sintered specimens will be determined using ASTM C1323-10 compressive C-ring test.

  11. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  12. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  13. QUANTIFYING INDOOR MOLDS

    EPA Science Inventory

    There is growing awareness that indoor molds/fungi may be connected to such conditions as asthma, allergies, hemorrhaging, chronic rhinosinusitis, memory loss, and a symptom complex called sick-building-syndrome. In addition, molds cause frequently fatal nosocomical infections. ...

  14. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing.

    PubMed

    Zhao, Qian; Liang, Yunhong; Ren, Lei; Qiu, Feng; Zhang, Zhihui; Ren, Luquan

    2018-02-01

    A hydrogel material system which was fit for molding and 3D printing was developed to fabricate bilayer hydrogel actuators with controllable temperature and near infrared laser responses. Polymerization on interface boundary of layered structure enhanced the bonding strength of hydrogel actuators. By utilizing anisotropic of microstructure along with thickness direction, bilayer hydrogel actuators fabricated via molding realized intelligent bending/shrinking responses, which guided the preparation of hydrogel ink for 3D printing. In-situ free radical polymerization under vacuum realized the solidification of printed hydrogel actuators with graphene oxide. Based on anisotropic swelling/deswelling behaviors of precise structure fabricated via 3D printing, the printed bilayer hydrogel actuators achieved temperature and near infrared laser responsive deformation. Changes of programmable printing path effectively resulted in corresponding deformation patterns. Combination of advantages of molding and 3D printing can promote the design and fabrication of hydrogel actuators with high mechanical strength, response speed and deformation ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Thermophilic molds: Biology and applications.

    PubMed

    Singh, Bijender; Poças-Fonseca, Marcio J; Johri, B N; Satyanarayana, Tulasi

    2016-11-01

    Thermophilic molds thrive in a variety of natural habitats including soils, composts, wood chip piles, nesting materials of birds and other animals, municipal refuse and others, and ubiquitous in their distribution. These molds grow in simple media containing carbon and nitrogen sources and mineral salts. Polyamines are synthesized in these molds and the composition of lipids varies considerably, predominantly containing palmitic, oleic and linoleic acids with low levels of lauric, palmiotoleic and stearic acids. Thermophilic molds are capable of efficiently degrading organic materials by secreting thermostable enzymes, which are useful in the bioremediation of industrial wastes and effluents that are rich in oil, heavy metals, anti-nutritional factors such as phytic acid and polysaccharides. Thermophilic molds synthesize several antimicrobial substances and biotechnologically useful miscellaneous enzymes. The analysis of genomes of thermophilic molds reveals high G:C contents, shorter introns and intergenic regions with lesser repetitive sequences, and further confirms their ability to degrade agro-residues efficiently. Genetic engineering has aided in ameliorating the characteristics of the enzymes of thermophilic molds. This review is aimed at focusing on the biology of thermophilic molds with emphasis on recent developments in the analysis of genomes, genetic engineering and potential applications.

  16. A novel technique for presurgical nasoalveolar molding using computer-aided reverse engineering and rapid prototyping.

    PubMed

    Yu, Quan; Gong, Xin; Wang, Guo-Min; Yu, Zhe-Yuan; Qian, Yu-Fen; Shen, Gang

    2011-01-01

    To establish a new method of presurgical nasoalveolar molding (NAM) using computer-aided reverse engineering and rapid prototyping technique in infants with unilateral cleft lip and palate (UCLP). Five infants (2 males and 3 females with mean age of 1.2 w) with complete UCLP were recruited. All patients were subjected to NAM before the cleft lip repair. The upper denture casts were recorded using a three-dimensional laser scanner within 2 weeks after birth in UCLP infants. A digital model was constructed and analyzed to simulate the NAM procedure with reverse engineering software. The digital geometrical data were exported to print the solid model with rapid prototyping system. The whole set of appliances was fabricated based on these solid models. Laser scanning and digital model construction simplified the NAM procedure and estimated the treatment objective. The appliances were fabricated based on the rapid prototyping technique, and for each patient, the complete set of appliances could be obtained at one time. By the end of presurgical NAM treatment, the cleft was narrowed, and the malformation of nasoalveolar segments was aligned normally. We have developed a novel technique of presurgical NAM based on a computer-aided design. The accurate digital denture model of UCLP infants could be obtained with laser scanning. The treatment design and appliance fabrication could be simplified with a computer-aided reverse engineering and rapid prototyping technique.

  17. Dimensional change in complete dentures fabricated by injection molding and microwave processing.

    PubMed

    Keenan, Phillip L J; Radford, David R; Clark, Robert K F

    2003-01-01

    Acrylic resin complete dentures undergo dimensional changes during polymerization. Techniques with injection molding and polymerization and microwave polymerization are reported to reduce these changes and thereby improve clinical fit. These dimensional changes need to be quantified. The purpose of this study was to compare differences in dimensional changes of simulated maxillary complete dentures during polymerization and storage in water after injection molding and conventional polymerization, or microwave polymerization against a control of conventionally packed and polymerized simulated maxillary complete dentures. Forty identical maxillary denture bases were prepared in dental wax with anatomic teeth. They were invested and the wax eliminated from the molds. Ten specimens each were randomly assigned to 1 of 4 groups. Group 1 was compression molded and conventionally polymerized; group 2 was injection molded and conventionally polymerized (Success); group 3 was injection molded and microwave polymerized (Acron MC); and group 4 was injection molded and microwave polymerized (Microbase). Intermolar width and changes in vertical dimension of occlusion, were determined after polymerization and after storage in water for 28 days. Measurements in triplicate were made between points scribed on the second molar teeth with a traveling microscope (accurate to 0.005 mm). Vertical dimension of occlusion was measured between points scribed on the upper and lower members of an articulator by use of an internal micrometer (accurate to 0.05 mm). Data were analyzed by use of a 1-way analysis of variance with Tukey post-hoc contrasts (P <.05). Polymerization contractions (intermolar widths) for each group were: group 1, -0.24%; group 2, -0.27%; group 3, -0.35%; and group 4, -0.37%. The Microbase specimens had greater shrinkage than conventionally polymerized specimens, but there were no significant differences between the groups. All injection methods had less

  18. MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...

  19. Mold Allergy: Proper Humidifier Care

    MedlinePlus

    ... Training Home Conditions Allergy Allergy Overview Allergy Allergens Mold Allergy Proper Humidifier Care Proper Humidifier Care Make ... neglected humidifier can be a major source of mold and mold spores. Learn how to keep a ...

  20. Dynamic fracture toughness of cellulose-fiber-reinforced polypropylene : preliminary investigation of microstructural effects

    Treesearch

    Craig M. Clemons; Daniel F. Caulfield; A. Jeffrey Giacomin

    1999-10-01

    In this study, the microstructure of injection-molded polypropylene reinforced with cellulose fiber was investigated. Scanning electron microscopy of the fracture surfaces and X-ray diffraction were used to investigate fiber orientation. The polypropylene matrix was removed by solvent extraction, and the lengths of the residual fibers were optically determined. Fiber...

  1. Prototyping of radially oriented piezoelectric ceramic-polymer tube composites using fused deposition and lost mold processing techniques

    NASA Astrophysics Data System (ADS)

    McNulty, Thomas Francis

    Piezoelectric tube composite hydrophones of 3-1, 3-2, and 2-2 connectivity were developed using Fused Deposition (FD) and lost mold processing (LMP). In this work, a new series of thermoplastic binder formulations, named the ECG series, were developed for the FD process. The ECG-9 formulation exhibits mechanical, thermal, and rheological properties suitable for the Fused Deposition of functional lead zirconate titanate ceramic devices. This binder consists of 100 parts (by weight) Vestoplast 408, 20 parts Escorez 2520, 15 parts Vestowax A-227, and 5 parts Indopol H-1500. Oleic acid, oleyl alcohol, stearic acid, and stearyl alcohol (in toluene) were tested for use as a dispersant in the PZT/ECG-9 system. It was found that stearic acid adsorbs the most onto PZT powder, adsorbing 8.1 mg/m2. Using stearic acid, solutions of increasing concentration (5.0--50.0 g/l) were measured for adsorption. It was found that 30.0 g/l is the minimum concentration necessary for optimum surface coverage. The surfactant-coated powder was compounded with ECG-9 binder to create a 54 vol.% mix. The mix was extruded using a single screw extrusion apparatus into continuous lengths (>30 m) of 1.78 mm diameter filament. Fused Deposition was used to create composite designs of 3-1, 3-2, and 2-2 connectivity. After sintering, samples exhibit a sintered density greater than 97%. Sanders Prototyping (SPI) was used to manufacture molds for use with LMP techniques. Molds of 3-1, 3-2, and 2-2 connectivity were developed. The molds were infiltrated with a 55 vol.% aqueous based PZT slurry. The parts were subjected to a binder decomposition cycle, followed by sintering. Resultant samples were highly variable due to random macro-pores present in the samples after sintering. The resultant preforms were embedded in epoxy, and polished to dimensions of 8.0 mm inside diameter (ID), 14.0 mm outside diameter (OD), and 10.0 mm length (l) the OD and l dimensions are accurate to +/--2%, while the ID is accurate

  2. Indoor Mold, Toxigenic Fungi, and Stachybotrys chartarum: Infectious Disease Perspective

    PubMed Central

    Kuhn, D. M.; Ghannoum, M. A.

    2003-01-01

    Damp buildings often have a moldy smell or obvious mold growth; some molds are human pathogens. This has caused concern regarding health effects of moldy indoor environments and has resulted in many studies of moisture- and mold-damaged buildings. Recently, there have been reports of severe illness as a result of indoor mold exposure, particularly due to Stachybotrys chartarum. While many authors describe a direct relationship between fungal contamination and illness, close examination of the literature reveals a confusing picture. Here, we review the evidence regarding indoor mold exposure and mycotoxicosis, with an emphasis on S. chartarum. We also examine possible end-organ effects, including pulmonary, immunologic, neurologic, and oncologic disorders. We discuss the Cleveland infant idiopathic pulmonary hemorrhage reports in detail, since they provided important impetus for concerns about Stachybotrys. Some valid concerns exist regarding the relationship between indoor mold exposure and human disease. Review of the literature reveals certain fungus-disease associations in humans, including ergotism (Claviceps species), alimentary toxic aleukia (Fusarium), and liver disease (Aspergillys). While many papers suggest a similar relationship between Stachybotrys and human disease, the studies nearly uniformly suffer from significant methodological flaws, making their findings inconclusive. As a result, we have not found well-substantiated supportive evidence of serious illness due to Stachybotrys exposure in the contemporary environment. To address issues of indoor mold-related illness, there is an urgent need for studies using objective markers of illness, relevant animal models, proper epidemiologic techniques, and examination of confounding factors. PMID:12525430

  3. Allergy and "toxic mold syndrome".

    PubMed

    Edmondson, David A; Nordness, Mark E; Zacharisen, Michael C; Kurup, Viswanath P; Fink, Jordan N

    2005-02-01

    "Toxic mold syndrome" is a controversial diagnosis associated with exposure to mold-contaminated environments. Molds are known to induce asthma and allergic rhinitis through IgE-mediated mechanisms, to cause hypersensitivity pneumonitis through other immune mechanisms, and to cause life-threatening primary and secondary infections in immunocompromised patients. Mold metabolites may be irritants and may be involved in "sick building syndrome." Patients with environmental mold exposure have presented with atypical constitutional and systemic symptoms, associating those symptoms with the contaminated environment. To characterize the clinical features and possible etiology of symptoms in patients with chief complaints related to mold exposure. Review of patients presenting to an allergy and asthma center with the chief complaint of toxic mold exposure. Symptoms were recorded, and physical examinations, skin prick/puncture tests, and intracutaneous tests were performed. A total of 65 individuals aged 1 1/2 to 52 years were studied. Symptoms included rhinitis (62%), cough (52%), headache (34%), respiratory symptoms (34%), central nervous system symptoms (25%), and fatigue (23%). Physical examination revealed pale nasal mucosa, pharyngeal "cobblestoning," and rhinorrhea. Fifty-three percent (33/62) of the patients had skin reactions to molds. Mold-exposed patients can present with a variety of IgE- and non-IgE-mediated symptoms. Mycotoxins, irritation by spores, or metabolites may be culprits in non-IgE presentations; environmental assays have not been perfected. Symptoms attributable to the toxic effects of molds and not attributable to IgE or other immune mechanisms need further evaluation as to pathogenesis. Allergic, rather than toxic, responses seemed to be the major cause of symptoms in the studied group.

  4. Molding process for imidazopyrrolone polymers

    NASA Technical Reports Server (NTRS)

    Johnson, C. L. (Inventor)

    1973-01-01

    A process is described for producing shaped articles of imidazopyrrolone polymers comprising molding imidazopyrrolone polymer molding power under pressure and at a temperature greater than 475 C. Moderate pressures may be employed. Preferably, prior to molding, a preform is prepared by isostatic compression. The preform may be molded at a relatively low initial pressure and temperature; as the temperature is increased to a value greater than 475 C., the pressure is also increased.

  5. Study of the injection molding of a polarizing beam splitter.

    PubMed

    Jose de Carvalho, Edson; Braga, Edmundo da Silva; Cescato, Lucila H

    2006-01-01

    We describe the replication of a relief grating that behaves like a polarizing beam splitter by injection molding. Measurements of the grating master, nickel shim, and replica, performed by atomic force microscopy, allow establishing a limit for the injection molding technique (currently used in CD fabrication) to aspect ratios of approximately 0.15. Although this limit strongly reduces the diffraction efficiency of the elements as well as their polarizing properties, extinction ratios of approximately 10:1 were measured for the replicas in a large range of wavelengths.

  6. Creating mold-free buildings: a key to avoiding health effects of indoor molds.

    PubMed

    Small, Bruce M

    2003-08-01

    In view of the high costs of building diagnostics and repair subsequent to water damage--as well as the large medical diagnostic and healthcare costs associated with mold growth in buildings--commitment to a philosophy of proactive preventive maintenance for home, apartment, school, and commercial buildings could result in considerable cost savings and avoidance of major health problems among building occupants. The author identifies common causes of mold growth in buildings and summarizes key building design and construction principles essential for preventing mold contamination indoors. Physicians and healthcare workers must be made aware of conditions within buildings that can give rise to mold growth, and of resulting health problems. Timely advice provided to patients already sensitized by exposure to molds could save these individuals, and their families, from further exposures as a result of inadequate building maintenance or an inappropriate choice of replacement housing.

  7. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    EPA Science Inventory

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  8. Computer-aided injection molding system

    NASA Astrophysics Data System (ADS)

    Wang, K. K.; Shen, S. F.; Cohen, C.; Hieber, C. A.; Isayev, A. I.

    1982-10-01

    Achievements are reported in cavity-filling simulation, modeling viscoelastic effects, measuring and predicting frozen-in birefringence in molded parts, measuring residual stresses and associated mechanical properties of molded parts, and developing an interactive mold-assembly design program and an automatic NC maching data generation and verification program. The Cornell Injection Molding Program (CIMP) consortium is discussed as are computer user manuals that have been published by the consortium. Major tasks which should be addressed in future efforts are listed, including: (1) predict and experimentally determine the post-fillin behavior of thermoplastics; (2) simulate and experimentally investigate the injection molding of thermosets and filled materials; and (3) further investigate residual stresses, orientation and mechanical properties.

  9. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Randommore » orientation of fibers was noted in the composites test bars produced from divergent melt flow.« less

  10. Micropattern array with gradient size (µPAGS) plastic surfaces fabricated by PDMS (polydimethylsiloxane) mold-based hot embossing technique for investigation of cell-surface interaction.

    PubMed

    Choi, Min Jin; Park, Ju Young; Cha, Kyoung Je; Rhie, Jong-Won; Cho, Dong-Woo; Kim, Dong Sung

    2012-12-01

    Recently, it was found that the variations of physical environment significantly affect cell behaviors including cell proliferation, migration and differentiation. Through a plastic surface with controlled mechanical properties such as stiffness, one can change the orientation and migration of cells in a particular direction, thereby determining cell behaviors. In this study, we demonstrate a polydimethylsiloxane (PDMS) mold-based hot embossing technique for rapid, simple and low-cost replication of polystyrene (PS) surfaces having micropatterns. The PDMS mold was fabricated by UV-photolithography followed by PDMS casting; the elastomeric properties of PDMS enabled us to obtain conformal contact of the PDMS mold to a PS surface and to create high transcription quality of micropatterns on the PS surface. Two different types of circular micropillar and microwell arrays were successfully replicated on the PS surfaces based on the suggested technique. The micropatterns were designed to have various diameters (2-150 µm), spacings (2-160 µm) and heights (1.4, 2.4, 8.2 and 14.9 µm), so as to generate the gradient of physical properties on the surface. Experimental parametric studies indicated that (1) the embossing temperature became a critical processing parameter as the aspect ratio of micropattern increased and (2) the PDMS mold-based hot embossing could successfully replicate micropatterns, even having an aspect ratio of 2.7 for micropattern diameter of 6 µm, with an optimal processing condition (embossing pressure and temperature of 0.4 MPa and 130 °C, respectively) in this study. We carried out cell experiments with adipose-derived stem cells on the replicated PS surface with the height of 1.4 µm to investigate cellular behaviors in response to the micropattern array with gradient size. Cellular experiment results showed that the micropillar-arrayed surface improved cell proliferation as compared with the microwell-arrayed surface. We could also estimate the

  11. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  12. ILLUSTRATED HANDBOOK OF SOME COMMON MOLDS.

    ERIC Educational Resources Information Center

    CHANDLER, MARION N.

    THIS DOCUMENT IS A PICTURE GUIDE FOR THE IDENTIFICATION OF TEN COMMON MOLDS. IT IS DESIGNED FOR USE WITH THE ELEMENTARY SCIENCE STUDY UNIT "MICROGARDENING" AND IS SUGGESTED FOR UPPER ELEMENTARY GRADES. INCLUDED FOR EACH MOLD ARE COLOR PHOTOGRAPHS AND PHOTOMICROGRAPHS OF THE INTACT MOLD MASS AND OF THE MOLD'S SPORE PRODUCING STRUCTURES.…

  13. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding.

    PubMed

    Ballyns, Jeffery J; Gleghorn, Jason P; Niebrzydowski, Vicki; Rawlinson, Jeremy J; Potter, Hollis G; Maher, Suzanne A; Wright, Timothy M; Bonassar, Lawrence J

    2008-07-01

    This study demonstrates for the first time the development of engineered tissues based on anatomic geometries derived from widely used medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). Computer-aided design and tissue injection molding techniques have demonstrated the ability to generate living implants of complex geometry. Due to its complex geometry, the meniscus of the knee was used as an example of this technique's capabilities. MRI and microcomputed tomography (microCT) were used to design custom-printed molds that enabled the generation of anatomically shaped constructs that retained shape throughout 8 weeks of culture. Engineered constructs showed progressive tissue formation indicated by increases in extracellular matrix content and mechanical properties. The paradigm of interfacing tissue injection molding technology can be applied to other medical imaging techniques that render 3D models of anatomy, demonstrating the potential to apply the current technique to engineering of many tissues and organs.

  14. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  15. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  16. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  17. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    PubMed

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mathematical modeling of the process of filling a mold during injection molding of ceramic products

    NASA Astrophysics Data System (ADS)

    Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.

    2015-10-01

    Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.

  19. Floods and Mold Growth

    EPA Pesticide Factsheets

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  20. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method

    NASA Astrophysics Data System (ADS)

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-01

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  1. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.

    PubMed

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-24

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  2. Rapid production of polymer microstructures

    NASA Astrophysics Data System (ADS)

    Nagarajan, Pratapkumar

    The goal of this research is to develop an integrated polymer embossing module, with which difficult-to-emboss polymer microstructures and microparts can be fabricated in a cost-effective manner. In particular, the research addresses three major limitations of the hot embossing process, namely, long cycle time, difficulty in producing shell patterns, and difficulty in building up a high embossing pressure on thick substrates. To overcome these limitations, three new technical approaches - two-station embossing, rubber-assisted embossing, and through-thickness embossing - were developed and investigated. Fundamental understanding of these new embossing techniques were achieved through extensive experimental and theoretical studies involving parametric experiments, rheological characterization, surface investigation, mathematical modeling, and computer simulation. A two-station embossing process was developed to reduce the hot embossing cycle time, accomplished by decoupling the heating and cooling stations. For this purpose, the standard hot embossing mold was replaced by a shell type mold, and separate hot and cold stations were used to selectively heat and cool the shell mold during the process. With this method, microlens arrays and micro channels were fabricated onto ABS and HDPE substrates with a cycle time of approximately 10 s. Numerical simulations were performed to study the effect of different design parameters, including thermal contact resistance, shell material and shell thickness, on the thermal response at the mold surface. Furthermore, the polymer flow during the two-station embossing process for the microlens was numerically studied. The simulated filling behavior agreed with the experimental observation, and the predicted thermal and deformation history of the polymer offers a good explanation on the experimentally observed process characteristics. The second technique, rubber-assisted embossing, involving a rubber pad as a soft counter tool, was

  3. A review of numerical techniques approaching microstructures of crystalline rocks

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Wong, Louis Ngai Yuen

    2018-06-01

    The macro-mechanical behavior of crystalline rocks including strength, deformability and failure pattern are dominantly influenced by their grain-scale structures. Numerical technique is commonly used to assist understanding the complicated mechanisms from a microscopic perspective. Each numerical method has its respective strengths and limitations. This review paper elucidates how numerical techniques take geometrical aspects of the grain into consideration. Four categories of numerical methods are examined: particle-based methods, block-based methods, grain-based methods, and node-based methods. Focusing on the grain-scale characters, specific relevant issues including increasing complexity of micro-structure, deformation and breakage of model elements, fracturing and fragmentation process are described in more detail. Therefore, the intrinsic capabilities and limitations of different numerical approaches in terms of accounting for the micro-mechanics of crystalline rocks and their phenomenal mechanical behavior are explicitly presented.

  4. Environmental Sustainability and Mold Hygiene in Buildings

    PubMed Central

    Ng, Tsz Wai; Lai, Ka Man

    2018-01-01

    Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management. PMID:29617339

  5. Environmental Sustainability and Mold Hygiene in Buildings.

    PubMed

    Wu, Haoxiang; Ng, Tsz Wai; Wong, Jonathan Wc; Lai, Ka Man

    2018-04-04

    Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  6. The effect of aging treatment on the fracture toughness and impact strength of injection molded Ni-625 superalloy parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özgün, Özgür, E-mail: oozgun@bingol.edu.tr; Yılmaz, Ramazan; Özkan Gülsoy, H.

    In this study, the effect of aging heat treatment on fracture toughness and impact strength of Ni-625 superalloy fabricated by using powder injection molding (PIM) method was examined. After a feedstock was prepared by mixing the prealloyed Ni-625 superalloy powder, which was fabricated by gas atomisation, with a polymeric binder system and then it was granulated, it was shaped through the use of injection. The molded specimens were sintered at 1300 °C for 3 h after a two-stage debinding process. Once the sintered specimens were treated in the solution at 1150 °C for 2 h, they were quenched. Aging treatmentmore » was performed by keeping specimens at 745 °C for 22 h. Fracture toughness and impact tests were performed on sintered and aged specimens. Microstructure examinations were performed by using optical microscope, scanning electron microscope, and transmission electron microscope. The results revealed that aging heat treatment led to the formation of some carbides and intermetallic phases in the microstructure. While the hardness of the aged specimens increased due to these phases, their fracture toughness and impact strength values decreased. - Highlights: • Ni-625 superalloy components were produced by means of powder injection molding. • The produced components were subjected to aging treatment. • Aging process provided approximately 50% increase in the hardness of components. • Intermetallic precipitates, carbides and TCP phases occurred within the aged parts. • Fracture toughness and impact strength values decreased due to the hard phases.« less

  7. Predicting shrinkage and warpage in injection molding: Towards automatized mold design

    NASA Astrophysics Data System (ADS)

    Zwicke, Florian; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.

  8. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-12-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc-10 kHz and 0-4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, Tg = 69 °C), whose the glass transition temperature (Tg) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not observed

  9. LCD real-time mask technique for fabrication of arbitrarily shaped microstructure

    NASA Astrophysics Data System (ADS)

    Peng, Qinjun; Guo, Yongkang; Chen, Bo; Du, Jinglei; Xiang, Jinshan; Cui, Zheng

    2002-04-01

    A new technique to fabricate arbitrarily shaped microstructures by using LCD (liquid crystal display) real- time mask is reported in this paper. Its principle and design method are explained. Based on partial coherent imaging theory, the process to fabricate micro-axicon array and zigzag grating has been simulated. The experiment using a color LCD as real-time mask has been set up. Micro-axicon array and zigzag grating has been fabricated by the LCD real-time mask technique. The 3D surface relief structures were made on pan chromatic silver-halide sensitized gelatin (Kodak-131) with trypsinase etching. The pitch size of zigzag grating is 46.26micrometers . The caliber of axicon is 118.7micrometers , and the etching depth is 1.332micrometers .

  10. Method for molding ceramic powders

    DOEpatents

    Janney, Mark A.

    1990-01-01

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  11. Method for molding ceramic powders

    DOEpatents

    Janney, M.A.

    1990-01-16

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  12. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  13. Exploring the problem of mold growth and the efficacy of various mold inhibitor methods during moisture sorption isotherm measurements.

    PubMed

    Yu, X; Martin, S E; Schmidt, S J

    2008-03-01

    Mold growth is a common problem during the equilibration of food materials at high relative humidity values using the standard saturated salt slurry method. Exposing samples to toluene vapor and mixing samples with mold inhibitor chemicals are suggested methods for preventing mold growth while obtaining isotherms. However, no published research was found that examined the effect of mold growth on isotherm performance or the efficacy of various mold inhibitor methods, including their possible effect on the physicochemical properties of food materials. Therefore, the objectives of this study were to (1) explore the effect of mold growth on isotherm performance in a range of food materials, (2) investigate the effectiveness of 4 mold inhibitor methods, irradiation, 2 chemical inhibitors (potassium sorbate and sodium acetate), and toluene vapor, on mold growth on dent corn starch inoculated with A. niger, and (3) examine the effect of mold inhibitor methods on the physicochemical properties of dent corn starch, including isotherm performance, pasting properties, gelatinization temperature, and enthalpy. Mold growth was found to affect starch isotherm performance by contributing to weight changes during sample equilibration. Among the 4 mold inhibitor methods tested, irradiation and toluene vapor were found to be the most effective for inhibiting growth of A. niger on dent cornstarch. However, both methods exhibited a significant impact on the starches' physiochemical properties, suggesting the need to probe the efficacy of other mold inhibitor methods and explore the use of new rapid isotherm instruments, which hamper mold growth by significantly decreasing measurement time.

  14. Using femtosecond laser to fabricate highly precise interior three-dimensional microstructures in polymeric flow chip.

    PubMed

    Lee, Chia-Yu; Chang, Ting-Chou; Wang, Shau-Chun; Chien, Chih-Wei; Cheng, Chung-Wei

    2010-10-18

    This paper reports using femtosecond laser marker to fabricate the three-dimensional interior microstructures in one closed flow channel of plastic substrate. Strip-like slots in the dimensions of 800 μm×400 μm×65 μm were ablated with pulse Ti:sapphire laser at 800 nm (pulse duration of ∼120 fs with 1 kHz repetition rate) on acrylic slide. After ablation, defocused beams were used to finish the surface of microstructures. Having finally polished with sonication, the laser fabricated structures are highly precise with the arithmetic roughness of 1.5 and 4.5 nm. Fabricating such highly precise microstructures cannot be accomplished with nanosecond laser marking or other mechanical drilling methods. In addition, since laser ablation can directly engrave interior microstructures in one closed chip, glue smearing problems to damage molded microstructures possibly to occur during the chip sealing procedures can be avoided too.

  15. Impact toughness of cellulose-fiber reinforced polypropylene : influence of microstructure in laminates and injection molded composites

    Treesearch

    Craig Clemons; Daniel Caulfield; A. Jeffrey Giacomin

    2003-01-01

    Unlike their glass reinforced counterparts, microstructure and dynamic fracture behavior of natural fiber-reinforced thermoplastics have hardly been investigated. Here, we characterize the microstructure of cellulose fiber-reinforced polypropylene and determined its effect on impact toughness. Fiber lengths were reduced by one-half when compounded in a high-intensity...

  16. REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-06-24

    Refractory coating for graphite molds used in the casting of uranium is described. The coating is an alumino-silicate refractory composition which may be used as a mold surface in solid form or as a coating applied to the graphite mold. The composition consists of a mixture of ball clay, kaolin, alumina cement, alumina, water, sodium silicate, and sodium carbonate.

  17. Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features

    NASA Astrophysics Data System (ADS)

    Park, Keun; Lee, Sang-Ik

    2010-03-01

    High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.

  18. Particle Image Velocimetry During Injection Molding

    NASA Astrophysics Data System (ADS)

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  19. Dynamic Feed Control For Injection Molding

    DOEpatents

    Kazmer, David O.

    1996-09-17

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  20. Optimization of injection molding process parameters for a plastic cell phone housing component

    NASA Astrophysics Data System (ADS)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  1. Incidence of oronasal fistula formation after nasoalveolar molding and primary cleft repair.

    PubMed

    Dec, Wojciech; Shetye, Pradip R; Grayson, Barry H; Brecht, Lawrence E; Cutting, Court B; Warren, Stephen M

    2013-01-01

    The incidence of postoperative complications in cleft care is low. In this 19-year retrospective analysis of cleft lip and palate patients treated with preoperative nasoalveolar molding, we examine the incidence of postoperative oronasal fistulae. The charts of 178 patients who underwent preoperative nasoalveolar molding by the same orthodontist/prosthodontist team and primary cleft lip/palate repair by the same surgeon over a 19-year period were reviewed. Millard, Mohler, Cutting, or Mulliken-type techniques were used for cleft lip repairs. Oxford-, Bardach-, or von Langenbeck-type techniques were used for cleft palate repairs. One nasolabial fistula occurred after primary cleft lip repair (0.56% incidence) and was repaired surgically. Four palatal fistulae (3 at the junction between soft and hard palate and 1 at the right anterior palate near the incisive foramen) occurred, but 3 healed spontaneously. Only 1 palatal fistula (0.71%) required surgical repair. All 5 fistulae occurred within the first 8 years of the study period, with 4 (80%) of 5 occurring within the first 3 years. Although fistula rate may be related to surgeon experience and the evolution of presurgical techniques, nasoalveolar molding in conjunction with nasal floor closure contributes to a low incidence of oronasal fistulae.

  2. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  3. Development of a PCR protocol to detect aflatoxigenic molds in food products.

    PubMed

    Luque, M Isabel; Rodríguez, Alicia; Andrade, María J; Martín, Alberto; Córdoba, Juan J

    2012-01-01

    Aflatoxins are secondary metabolites produced mainly by Aspergillus species growing in foodstuffs. Because aflatoxins have important health effects, the detection of early contamination of foods by aflatoxigenic molds should be useful. In the present work, a reliable conventional PCR method for detecting aflatoxigenic molds of various species was developed. Fifty-six aflatoxigenic and nonaflatoxigenic strains commonly reported in foodstuffs were tested. Aflatoxin production was first confirmed by micellar electrokinetic capillary electrophoresis or/and high-pressure liquid chromatography-mass spectrometry. Based on the conserved regions of the O-methyltransferase gene (omt-1) involved in the aflatoxin biosynthetic pathway, six primer pairs were designed. With only the designed primer pair AFF1-AFR3, the expected PCR product (381 bp) was obtained in all of the tested aflatoxigenic strains of various species and genera. Amplification products were not obtained with this primer pair for any of the nonaflatoxigenic reference molds. However, an amplicon of 453 bp was obtained for all aflatoxigenic and nonaflatoxigenic mold reference strains with a PCR protocol based on the constitutive fungal β-tubulin gene, which was used as a positive fungal control. The PCR protocol based on omt-1 detected as little as 15 pg of DNA from aflatoxigenic molds and 10(2) to 10(3) CFU/g in contaminated food samples. This PCR protocol should be used as a routine technique to detect aflatoxigenic molds in foods.

  4. Modified Activation Technique for Nasal Stent of Nasoalveolar Molding Appliance for Columellar Lengthening in Bilateral Cleft Lip/Palate.

    PubMed

    Patil, Pravinkumar G; Nimbalkar-Patil, Smita P

    2018-01-01

    Bilateral cleft lip/cleft palate is associated with nasal deformities typified by a short columella. The presurgical nasoalveolar molding (NAM) therapy approach includes reduction of the size of the intraoral alveolar cleft as well as positioning of the surrounding deformed soft tissues and cartilages. In a bilateral cleft patient, NAM, along with columellar elongation, eliminates the need for columellar lengthening surgery. Thus the frequent surgical intervention to achieve the desired esthetic results can be avoided. This article proposes a modified activation technique of the nasal stent for a NAM appliance for columellar lengthening in bilateral cleft lip/palate patients. The design highlights relining of the columellar portion of the nasal stent and the wire-bending of the nasal stent to achieve desirable results within the limited span of plasticity of the nasal cartilages. With this technique the vertical taping of the premaxilla to the oral plate can be avoided. © 2016 by the American College of Prosthodontists.

  5. Presurgical nasoalveolar molding for cleft lip and palate: the application of digitally designed molds.

    PubMed

    Shen, Congcong; Yao, Caroline A; Magee, William; Chai, Gang; Zhang, Yan

    2015-06-01

    The authors present a novel nasoalveolar molding protocol by prefabricating sets of nasoalveolar molding appliances using three-dimensional technology. Prospectively, 17 infants with unilateral complete cleft lip and palate underwent the authors' protocol before primary cheiloplasty. An initial nasoalveolar molding appliance was created based on the patient's first and only in-person maxillary cast, produced from a traditional intraoral dental impression. Thereafter, each patient's molding course was simulated using computer software that aimed to narrow the alveolar gap by 1 mm each week by rotating the greater alveolar segment. A maxillary cast of each predicted molding stage was created using three-dimensional printing. Subsequent appliances were constructed in advance, based on the series of computer-generated casts. Each patient had a total three clinic visits spaced 1 month apart. Anthropometric measurements and bony segment volumes were recorded before and after treatment. Alveolar cleft widths narrowed significantly (p < 0.01), soft-tissue volume of each segment expanded (p < 0.01), and the arc of the alveolus became more contiguous across the cleft (p < 0.01). One patient required a new appliance at the second visit because of bleeding and discomfort. Eleven patients had mucosal irritation and two experienced minor mucosal ulceration. Three-dimensional technology can precisely represent anatomic structures in pediatric clefts. Results from the authors' algorithm are equivalent to those of traditional nasoalveolar molding therapies; however, the number of required clinic visits and appliance adjustments decreased. As three-dimensional technology costs decrease, multidisciplinary teams may design customized nasoalveolar molding treatment with improved efficiency and less burden to medical staff, patients, and families. Therapeutic, IV.

  6. Controlled study of mold growth and cleaning procedure on treated and untreated wet gypsum wallboard in an indoor environment.

    PubMed

    Krause, Michael; Geer, William; Swenson, Lonie; Fallah, Payam; Robbins, Coreen

    2006-08-01

    The basis for some common gypsum wallboard mold remediation practices was examined. The bottom inch of several gypsum wallboard panels was immersed in bottled drinking water; some panels were coated and others were untreated. The panels were examined and tested for a period of 8 weeks. This study investigated: (a) whether mold growth, detectable visually or with tape lift samples, occurs within 1 week on wet gypsum wallboard; (b) the types, timing, and extent of mold growth on wet gypsum wallboard; (c) whether mold growth is present on gypsum wallboard surfaces 6 inches from visible mold growth; (d) whether some commonly used surface treatments affect the timing of occurrence and rate of mold growth; and (e) if moldy but dried gypsum wallboard can be cleaned with simple methods and then sealed with common surface treatments so that residual mold particles are undetectable with typical surface sampling techniques. Mold growth was not detected visually or with tape lift samples after 1 week on any of the wallboard panels, regardless of treatment, well beyond the 24-48 hours often mentioned as the incubation period. Growth was detected at 2 weeks on untreated gypsum. Penicillium, Cladosporium, and Acremonium were early colonizers of untreated panels. Aspergillus, Epicoccum, Alternaria, and Ulocladium appeared later. Stachybotrys was not found. Mold growth was not detected more than 6 inches beyond the margin of visible mold growth, suggesting that recommendations to remove gypsum wallboard more than 1 foot beyond visible mold are excessive. The surface treatments resulted in delayed mold growth and reduced the area of mold growth compared with untreated gypsum wallboard. Results showed that simple cleaning of moldy gypsum wallboard was possible to the extent that mold particles beyond "normal trapping" were not found on tape lift samples. Thus, cleaning is an option in some situations where removal is not feasible or desirable. In cases where conditions are not

  7. Using femtosecond laser to fabricate highly precise interior three-dimensional microstructures in polymeric flow chip

    PubMed Central

    Lee, Chia-Yu; Chang, Ting-Chou; Wang, Shau-Chun; Chien, Chih-Wei; Cheng, Chung-Wei

    2010-01-01

    This paper reports using femtosecond laser marker to fabricate the three-dimensional interior microstructures in one closed flow channel of plastic substrate. Strip-like slots in the dimensions of 800 μm×400 μm×65 μm were ablated with pulse Ti:sapphire laser at 800 nm (pulse duration of ∼120 fs with 1 kHz repetition rate) on acrylic slide. After ablation, defocused beams were used to finish the surface of microstructures. Having finally polished with sonication, the laser fabricated structures are highly precise with the arithmetic roughness of 1.5 and 4.5 nm. Fabricating such highly precise microstructures cannot be accomplished with nanosecond laser marking or other mechanical drilling methods. In addition, since laser ablation can directly engrave interior microstructures in one closed chip, glue smearing problems to damage molded microstructures possibly to occur during the chip sealing procedures can be avoided too. PMID:21079695

  8. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. Itmore » was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the

  9. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  10. Evaluation of Three Different Processing Techniques in the Fabrication of Complete Dentures.

    PubMed

    Chintalacheruvu, Vamsi Krishna; Balraj, Rajasekaran Uttukuli; Putchala, Lavanya Sireesha; Pachalla, Sreelekha

    2017-06-01

    The objective of the present study is to compare the effectiveness of three different processing techniques and to find out the accuracy of processing techniques through number of occlusal interferences and increase in vertical dimension after denture processing. A cross-sectional study was conducted on a sample of 18 patients indicated for complete denture fabrication was selected for the study and they were divided into three subgroups. Three processing techniques, compression molding and injection molding using prepolymerized resin and unpolymerized resin, were used to fabricate dentures for each of the groups. After processing, laboratory-remounted dentures were evaluated for number of occlusal interferences in centric and eccentric relations and change in vertical dimension through vertical pin rise in articulator. Data were analyzed using statistical test ANOVA and SPSS software version 19.0 by IBM was used. Data obtained from three groups were subjected to one-way ANOVA test. After ANOVA test, results with significant variations were subjected to post hoc test. Number of occlusal interferences with compression molding technique was reported to be more in both centric and eccentric positions as compared to the two injection molding techniques with statistical significance in centric, protrusive, right lateral nonworking, and left lateral working positions ( P < 0.05). Mean vertical pin rise (0.52 mm) was reported to more in compression molding technique as compared to injection molding techniques, which is statistically significant ( P < 0.001). Within the limitations of this study, injection molding techniques exhibited less processing errors as compared to compression molding technique with statistical significance. There was no statistically significant difference in processing errors reported within two injection molding systems.

  11. Relationship between microstructure and ductility of investment cast ASTM F-75 implant alloy.

    PubMed

    Gómez, M; Mancha, H; Salinas, A; Rodríguez, J L; Escobedo, J; Castro, M; Méndez, M

    1997-02-01

    Hip replacement implants fabricated using the ASTM F-75 alloy sometimes fail in a sudden catastrophic way. In general, fractures start at microstructural defects subjected to stress-corrosion under chemical attack by body fluids. In this paper the results of a study on the effect of casting parameters on the microstructure of ASTM F-75 are presented. The preheating mold temperature and the liquid temperature were varied between 900 and 1000 degrees C, and 1410 and 1470 degrees C, respectively. Optimum static strength and ductility were obtained when shrinkage microporosity and the volume fraction of M23C6 "eutectic" carbides precipitated at grain boundaries were minimized by increasing the preheating mold temperature to 1000 degrees C and by using intermediate pouring temperatures of 1455 degrees C. Under these casting conditions, however, the solidification rates are low, leading to large grain sizes, which, in turn, reduce the strength of the material under dynamic loading conditions. The volume fraction of the M23C6 "blocky" carbides appears to be independent of the casting conditions; however, their size and spatial distributions determine the strength of the as-cast alloys.

  12. Snow Mold Investigations in Eastern Washington

    Treesearch

    T. H. Filer; A. G. Law

    1961-01-01

    "Snow mold of turf" in the Pacific Northwest must include both Fusarium Patch caused by Calonectria graminicola (Berk and Br.) (conidial stage Fusarium nivale (Fr. ) CES.), and Gray snow mold caused by Typhula itoana Imai, which occur together to give a disease complex. Snow mold of turf is the most...

  13. Fabrication Process for Large Size Mold and Alignment Method for Nanoimprint System

    NASA Astrophysics Data System (ADS)

    Ishibashi, Kentaro; Kokubo, Mitsunori; Goto, Hiroshi; Mizuno, Jun; Shoji, Shuichi

    Nanoimprint technology is considered one of the mass production methods of the display for cellular phone or notebook computer, with Anti-Reflection Structures (ARS) pattern and so on. In this case, the large size mold with nanometer order pattern is very important. Then, we describe the fabrication process for large size mold, and the alignment method for UV nanoimprint system. We developed the original mold fabrication process using nanoimprint method and etching techniques. In 66 × 45 mm2 area, 200nm period seamless patterns were formed using this process. And, we constructed original alignment system that consists of the CCD-camera system, X-Y-θ table, method of moiré fringe, and image processing system, because the accuracy of pattern connection depends on the alignment method. This alignment system accuracy was within 20nm.

  14. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model**

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases. Damp/moldy environments have been associated with asthma exacerbation, but mold's role in allergic asthma induction is less clear. The molds selected for these studies are commonl...

  15. Scalable Inkjet-Based Structural Color Printing by Molding Transparent Gratings on Multilayer Nanostructured Surfaces.

    PubMed

    Jiang, Hao; Kaminska, Bozena

    2018-04-24

    To enable customized manufacturing of structural colors for commercial applications, up-scalable, low-cost, rapid, and versatile printing techniques are highly demanded. In this paper, we introduce a viable strategy for scaling up production of custom-input images by patterning individual structural colors on separate layers, which are then vertically stacked and recombined into full-color images. By applying this strategy on molded-ink-on-nanostructured-surface printing, we present an industry-applicable inkjet structural color printing technique termed multilayer molded-ink-on-nanostructured-surface (M-MIONS) printing, in which structural color pixels are molded on multiple layers of nanostructured surfaces. Transparent colorless titanium dioxide nanoparticles were inkjet-printed onto three separate transparent polymer substrates, and each substrate surface has one specific subwavelength grating pattern for molding the deposited nanoparticles into structural color pixels of red, green, or blue primary color. After index-matching lamination, the three layers were vertically stacked and bonded to display a color image. Each primary color can be printed into a range of different shades controlled through a half-tone process, and full colors were achieved by mixing primary colors from three layers. In our experiments, an image size as big as 10 cm by 10 cm was effortlessly achieved, and even larger images can potentially be printed on recombined grating surfaces. In one application example, the M-MIONS technique was used for printing customizable transparent color optical variable devices for protecting personalized security documents. In another example, a transparent diffractive color image printed with the M-MIONS technique was pasted onto a transparent panel for overlaying colorful information onto one's view of reality.

  16. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  17. Transfer molding of PMR-15 polyimide resin

    NASA Technical Reports Server (NTRS)

    Reardon, J. P.; Moyer, D. W.; Nowak, B. E.

    1985-01-01

    Transfer molding is an economically viable method of producing small shapes of PMR-15 polyimide. It is shown that with regard to flexural, compressive, and tribological properties transfer-molded PMR-15 polyimide is essentially equivalent to PMR-15 polyimide produced by the more common method of compression molding. Minor variations in anisotropy are predictable effects of molding design and secondary finishing operations.

  18. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    PubMed Central

    Jung, Woo-Chul; Heo, Young-Moo; Yoon, Gil-Sang; Shin, Kwang-Ho; Chang, Sung-Ho; Kim, Gun-Hee; Cho, Myeong-Woo

    2007-01-01

    Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip), has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for microfluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  19. Digital Twin concept for smart injection molding

    NASA Astrophysics Data System (ADS)

    Liau, Y.; Lee, H.; Ryu, K.

    2018-03-01

    Injection molding industry has evolved over decades and became the most common method to manufacture plastic parts. Monitoring and improvement in the injection molding industry are usually performed separately in each stage, i.e. mold design, mold making and injection molding process. However, in order to make a breakthrough and survive in the industrial revolution, all the stages in injection molding need to be linked and communicated with each other. Any changes in one stage will cause a certain effect in other stage because there is a correlation between each other. Hence, the simulation should not only based on the input of historical data, but it also needs to include the current condition of equipment and prediction of future events in other stages to make the responsive decision. This can be achieved by implementing the concept of Digital Twin that models the entire process as a virtual model and enables bidirectional control with the physical process. This paper presented types of data and technology required to build the Digital Twin for the injection molding industry. The concept includes Digital Twin of each stage and integration of these Digital Twin model as a thoroughgoing model of the injection molding industry.

  20. Mold inhibition on unseasoned southern pine

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2003-01-01

    Concerns about indoor air quality due to mold growth have increased dramatically in the United States. In the absence of moisture management, fungicides need to be developed for indoor use to control mold establishment. An ideal fungicide for prevention of indoor mold growth on wood-based materials needs to specifically prevent spore germination and provide long-term...

  1. Medical diagnostics for indoor mold exposure.

    PubMed

    Hurraß, Julia; Heinzow, Birger; Aurbach, Ute; Bergmann, Karl-Christian; Bufe, Albrecht; Buzina, Walter; Cornely, Oliver A; Engelhart, Steffen; Fischer, Guido; Gabrio, Thomas; Heinz, Werner; Herr, Caroline E W; Kleine-Tebbe, Jörg; Klimek, Ludger; Köberle, Martin; Lichtnecker, Herbert; Lob-Corzilius, Thomas; Merget, Rolf; Mülleneisen, Norbert; Nowak, Dennis; Rabe, Uta; Raulf, Monika; Seidl, Hans Peter; Steiß, Jens-Oliver; Szewszyk, Regine; Thomas, Peter; Valtanen, Kerttu; Wiesmüller, Gerhard A

    2017-04-01

    In April 2016, the German Society of Hygiene, Environmental Medicine and Preventative Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin (GHUP)) together with other scientific medical societies, German and Austrian medical societies, physician unions and experts has provided an AWMF (Association of the Scientific Medical Societies) guideline 'Medical diagnostics for indoor mold exposure'. This guideline shall help physicians to advise and treat patients exposed indoors to mold. Indoor mold growth is a potential health risk, even without a quantitative and/or causal association between the occurrence of individual mold species and health effects. Apart from the allergic bronchopulmonary aspergillosis (ABPA) and the mycoses caused by mold, there is only sufficient evidence for the following associations between moisture/mold damages and different health effects: Allergic respiratory diseases, asthma (manifestation, progression, exacerbation), allergic rhinitis, exogenous allergic alveolitis and respiratory tract infections/bronchitis. In comparison to other environmental allergens, the sensitizing potential of molds is estimated to be low. Recent studies show a prevalence of sensitization of 3-10% in the total population of Europe. The evidence for associations to mucous membrane irritation and atopic eczema (manifestation, progression, exacerbation) is classified as limited or suspected. Inadequate or insufficient evidence for an association is given for COPD, acute idiopathic pulmonary hemorrhage in children, rheumatism/arthritis, sarcoidosis, and cancer. The risk of infections from indoor molds is low for healthy individuals. Only molds that are capable to form toxins can cause intoxications. The environmental and growth conditions and especially the substrate determine whether toxin formation occurs, but indoor air concentrations are always very low. In the case of indoor moisture/mold damages, everyone can be affected by odor effects and

  2. Evaluation of Three Different Processing Techniques in the Fabrication of Complete Dentures

    PubMed Central

    Chintalacheruvu, Vamsi Krishna; Balraj, Rajasekaran Uttukuli; Putchala, Lavanya Sireesha; Pachalla, Sreelekha

    2017-01-01

    Aims and Objectives: The objective of the present study is to compare the effectiveness of three different processing techniques and to find out the accuracy of processing techniques through number of occlusal interferences and increase in vertical dimension after denture processing. Materials and Methods: A cross-sectional study was conducted on a sample of 18 patients indicated for complete denture fabrication was selected for the study and they were divided into three subgroups. Three processing techniques, compression molding and injection molding using prepolymerized resin and unpolymerized resin, were used to fabricate dentures for each of the groups. After processing, laboratory-remounted dentures were evaluated for number of occlusal interferences in centric and eccentric relations and change in vertical dimension through vertical pin rise in articulator. Data were analyzed using statistical test ANOVA and SPSS software version 19.0 by IBM was used. Results: Data obtained from three groups were subjected to one-way ANOVA test. After ANOVA test, results with significant variations were subjected to post hoc test. Number of occlusal interferences with compression molding technique was reported to be more in both centric and eccentric positions as compared to the two injection molding techniques with statistical significance in centric, protrusive, right lateral nonworking, and left lateral working positions (P < 0.05). Mean vertical pin rise (0.52 mm) was reported to more in compression molding technique as compared to injection molding techniques, which is statistically significant (P < 0.001). Conclusions: Within the limitations of this study, injection molding techniques exhibited less processing errors as compared to compression molding technique with statistical significance. There was no statistically significant difference in processing errors reported within two injection molding systems. PMID:28713763

  3. A Mold by Any Other Name: One Librarian's Battle Against a Mold Bloom.

    ERIC Educational Resources Information Center

    Smith, Laura Katz

    1997-01-01

    Describes how library staff at Virginia Polytechnic Institute and State University cleaned up materials after a mold bloom in the rare book room. Includes advice for controlling mold: set up a hygrothermograph, clean dust from books, set up fans, do a "skin" test at regular intervals, keep windows closed, have dehumidifiers available.…

  4. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    NASA Astrophysics Data System (ADS)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-02-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  5. Evacuated displacement compression molding

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1973-01-01

    A process for molding long, thin-wall tubular bodies from thermosetting plastic molding compounds is described. The tubular bodies produced may have body lengths several times the diameters. The application of the process for manufacturing rocket engine cases and nozzles is discussed. The advantages of the system over other methods of circular tube manufacture are analyzed.

  6. Mold and Indoor Air Quality in Schools

    MedlinePlus

    ... Centers Mold Contact Us Share Mold and Indoor Air Quality in Schools Mold and Moisture in Schools Webinar ... premier resource on this issue is the Indoor Air Quality Tools for Schools kit. Our schools-related resources ...

  7. Design and development of an injection-molded demultiplexer for optical communication systems in the visible range.

    PubMed

    Höll, S; Haupt, M; Fischer, U H P

    2013-06-20

    Optical simulation software based on the ray-tracing method offers easy and fast results in imaging optics. This method can also be applied in other fields of light propagation. For short distance communications, polymer optical fibers (POFs) are gradually gaining importance. This kind of fiber offers a larger core diameter, e.g., the step index POF features a core diameter of 980 μm. Consequently, POFs have a large number of modes (>3 million modes) in the visible range, and ray tracing could be used to simulate the propagation of light. This simulation method is applicable not only for the fiber itself but also for the key components of a complete POF network, e.g., couplers or other key elements of the transmission line. In this paper a demultiplexer designed and developed by means of ray tracing is presented. Compared to the classical optical design, requirements for optimal design differ particularly with regard to minimizing the insertion loss (IL). The basis of the presented key element is a WDM device using a Rowland spectrometer setup. In this approach the input fiber carries multiple wavelengths, which will be divided into multiple output fibers that transmit only one wavelength. To adapt the basic setup to POF, the guidance of light in this element has to be changed fundamentally. Here, a monolithic approach is presented with a blazed grating using an aspheric mirror to minimize most of the aberrations. In the simulations the POF is represented by an area light source, while the grating is analyzed for different orders and the highest possible efficiency. In general, the element should be designed in a way that it can be produced with a mass production technology like injection molding in order to offer a reasonable price. However, designing the elements with regard to injection molding leads to some inherent challenges. The microstructure of an optical grating and the thick-walled 3D molded parts both result in high demands on the injection molding

  8. Mold and Human Health: a Reality Check.

    PubMed

    Borchers, Andrea T; Chang, Christopher; Eric Gershwin, M

    2017-06-01

    There are possibly millions of mold species on earth. The vast majority of these mold spores live in harmony with humans, rarely causing disease. The rare species that does cause disease does so by triggering allergies or asthma, or may be involved in hypersensitivity diseases such as allergic bronchopulmonary aspergillosis or allergic fungal sinusitis. Other hypersensitivity diseases include those related to occupational or domiciliary exposures to certain mold species, as in the case of Pigeon Breeder's disease, Farmer's lung, or humidifier fever. The final proven category of fungal diseases is through infection, as in the case of onchomycosis or coccidiomycosis. These diseases can be treated using anti-fungal agents. Molds and fungi can also be particularly important in infections that occur in immunocompromised patients. Systemic candidiasis does not occur unless the individual is immunodeficient. Previous reports of "toxic mold syndrome" or "toxic black mold" have been shown to be no more than media hype and mass hysteria, partly stemming from the misinterpreted concept of the "sick building syndrome." There is no scientific evidence that exposure to visible black mold in apartments and buildings can lead to the vague and subjective symptoms of memory loss, inability to focus, fatigue, and headaches that were reported by people who erroneously believed that they were suffering from "mycotoxicosis." Similarly, a causal relationship between cases of infant pulmonary hemorrhage and exposure to "black mold" has never been proven. Finally, there is no evidence of a link between autoimmune disease and mold exposure.

  9. Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques

    PubMed Central

    Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon

    2017-01-01

    Abstract As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6–10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed. PMID:28398563

  10. 3D Fiber Orientation Simulation for Plastic Injection Molding

    NASA Astrophysics Data System (ADS)

    Lin, Baojiu; Jin, Xiaoshi; Zheng, Rong; Costa, Franco S.; Fan, Zhiliang

    2004-06-01

    Glass fiber reinforced polymer is widely used in the products made using injection molding processing. The distribution of fiber orientation inside plastic parts has direct effects on quality of molded parts. Using computer simulation to predict fiber orientation distribution is one of most efficient ways to assist engineers to do warpage analysis and to find a good design solution to produce high quality plastic parts. Fiber orientation simulation software based on 2-1/2D (midplane /Dual domain mesh) techniques has been used in industry for a decade. However, the 2-1/2D technique is based on the planar Hele-Shaw approximation and it is not suitable when the geometry has complex three-dimensional features which cannot be well approximated by 2D shells. Recently, a full 3D simulation software for fiber orientation has been developed and integrated into Moldflow Plastics Insight 3D simulation software. The theory for this new 3D fiber orientation calculation module is described in this paper. Several examples are also presented to show the benefit in using 3D fiber orientation simulation.

  11. Interface conditions of two-shot molded parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisslinger, Thomas, E-mail: thomas.kisslinger@pccl.at; Bruckmoser, Katharina, E-mail: katharina.bruckmoser@unileoben.ac.at; Resch, Katharina, E-mail: katharina.resch@unileoben.ac.at

    2014-05-15

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes,more » a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.« less

  12. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  13. Pressurized Shell Molds For Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday K.; Lusignea, Richard N.; Cornie, James

    1993-01-01

    Balanced-pressure molds used to make parts in complex shapes from fiber-reinforced metal-matrix composite materials. In single step, molding process makes parts in nearly final shapes; only minor finishing needed. Because molding pressure same on inside and outside, mold does not have to be especially strong and can be made of cheap, nonstructural material like glass or graphite. Fibers do not have to be cut to conform to molds. Method produces parts with high content of continuous fibers. Parts stiff but light in weight, and coefficients of thermal expansion adjusted. Parts resistant to mechanical and thermal fatigue superior to similar parts made by prior fabrication methods.

  14. The development of lab-on-a-chip fabricated from two molds

    NASA Astrophysics Data System (ADS)

    Pramuanjaroenkij, A.; Bunta, J.; Thiangpadung, J.; Sansaradee, S.; Kamsopa, P.; Sodsai, S.; Vichainsan, S.; Wongpanit, K.; Maturos, T.; Lomas, T.; Tuantranont, A.; Cetin, B.; Phankhoksoong, S.; Tongkratoke, A.

    2018-01-01

    Development of diagnostic technique of microfluidic or lab-on-a-chip (LOCs) is currently of great interest for researchers and inventors for their many advantages. It can be used as a real laboratory was many ways to help to the diagnosis faster. This research aims to develop Polydimethylsiloxane (PDMS) lab-on-a-chip (LOCs) which were produced from different molds; the silicon wafer mold and the stainless mold to investigate the flow of the biological sample as the flow in nanochannels. In addition, this research proposes a means to leakage and the blockage of the channel flow. The experimental results were found that the LOCs casted from the silicon wafer mold sandwiched by both the plasma cleaner machine and H shaped acrylic sheets showed leakages around the electrode areas because the first new electrodes were too thick, the proper thickness of the nickel electrode was at 0.05 millimeters. The LOCs casted from the stainless mold were inserted by the nickel electrodes produced by the from the prototype shaped electroplating process; this LOCs using nickel plated electrodes 2 times to make a groove on the nickel electrode backsides when pouring the PDMS into the LOCs casted from the stainless mold. It was found that PDMS was able to flow under the nickel electrode and the PDMS sheet could stick with the glass slide smoothly. In conclusion, it was possible to develop these LOC designs and new electrode fabrications continually under helps from Micro-Electro-Mechanical system, Thailand National Electronics and Computer Technology Center, since causes of the LOC problems were found, and demonstrated the feasibility of developing the LOCs for chemical detection and disease diagnostics.

  15. Computational discovery of extremal microstructure families

    PubMed Central

    Chen, Desai; Skouras, Mélina; Zhu, Bo; Matusik, Wojciech

    2018-01-01

    Modern fabrication techniques, such as additive manufacturing, can be used to create materials with complex custom internal structures. These engineered materials exhibit a much broader range of bulk properties than their base materials and are typically referred to as metamaterials or microstructures. Although metamaterials with extraordinary properties have many applications, designing them is very difficult and is generally done by hand. We propose a computational approach to discover families of microstructures with extremal macroscale properties automatically. Using efficient simulation and sampling techniques, we compute the space of mechanical properties covered by physically realizable microstructures. Our system then clusters microstructures with common topologies into families. Parameterized templates are eventually extracted from families to generate new microstructure designs. We demonstrate these capabilities on the computational design of mechanical metamaterials and present five auxetic microstructure families with extremal elastic material properties. Our study opens the way for the completely automated discovery of extremal microstructures across multiple domains of physics, including applications reliant on thermal, electrical, and magnetic properties. PMID:29376124

  16. Toxic mold: phantom risk vs science.

    PubMed

    Chapman, Jean A; Terr, Abba I; Jacobs, Robert L; Charlesworth, Ernest N; Bardana, Emil J

    2003-09-01

    To review the available literature on the subject of fungi (molds) and their potential impact on health and to segregate information that has scientific validity from information that is yet unproved and controversial. This review represents a synthesis of the available literature in this area with the authors' collective experience with many patients presenting with complaints of mold-related illness. Pertinent scientific investigation on toxic mold issues and previously published reviews on this and related subjects that met the educational objectives were critically reviewed. Indoor mold growth is variable, and its discovery in a building does not necessarily mean occupants have been exposed. Human response to fungal antigens may induce IgE or IgG antibodies that connote prior exposure but not necessarily a symptomatic state. Mold-related disease has been discussed in the framework of noncontroversial and controversial disorders. When mold-related symptoms occur, they are likely the result of transient irritation, allergy, or infection. Building-related illness due to mycotoxicosis has never been proved in the medical literature. Prompt remediation of water-damaged material and infrastructure repair should be the primary response to fungal contamination in buildings.

  17. Castable plastic mold with electroplatable base

    DOEpatents

    Domeier, Linda A.; Morales, Alfredo M.; Gonzales, Marcela G.; Keifer, Patrick M.

    2004-01-20

    A sacrificial plastic mold having an electroplatable backing is provided as are methods of making such a mold via the infusion of a castable liquid formulation through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale master mold. Upon casting and demolding, the porous metal substrate is embedded within the cast formulation and projects a plastic structure with features determined by the mold tool. The plastic structure provides a sacrificial plastic mold mechanically bonded to the porous metal substrate, which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved, leaving the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  18. Cell-micropatterning by micromolding in capillary technique based on UV polymerization

    NASA Astrophysics Data System (ADS)

    Park, Min J.; Choi, Won M.; Park, O. O.

    2006-01-01

    Although optical lithography or photolithography is one of the most well-established techniques for micro, nano-fabrication, its usage with proteins and cells is restricted by steps that must be carried out in harsh organic solvents. Here, we present simple methods for cell-micropatterning using poly(dimethylsiloxane) (PDMS) as a mold. Cell non-adhesive surface or nonfouling surface providing a physico-chemical barrier to cell attachment was introduced for biomaterial pattering, where cells fail to interact with the surface over desired periods of time determined by each application. Poly(ethylene glycol) (PEG) was selected as nonfouling material to inhibit protein adsorption from biological media. The fouling resistance of PEG polymer is often explained by a steric repulsion interaction, resulting from the compression of PEG chains as proteins approach the surface. We also chose fibronectin to direct cell attachment because it is an extracellular matrix protein that is involved in the adhesion and spreading of anchorage-dependent cells. In our experiment, we propose two methods by application of micromolding in capillary (MIMIC) method based on UV polymerization to obtain a surface of alternating PEG and fibronectin. First to fabricate PEG microstructure via MIMIC method, a pre-patterned PDMS mold is placed on a desired substrate, and then the relief structure in the mold forms a network of empty channels. A drop of ethylene glycol monomer solution containing initiator for UV polymerization is placed at the open ends of the network of channels, which is then polymerized by exposure to UV light at room temperature. Once PEG microstructure is fabricated, incubation of the patterned surface in a fibronectin-containing solution allows back-filling of only the bare regions with fibronectin via adsorption. In the alternative method, a substrate is first incubated in a fibronectin-containing solution, leading to the adsorption of fibronectin over the entire surface, and

  19. INDOOR MOLDS AND ALLERGIC POTENTIAL

    EPA Science Inventory

    Rationale: Damp/moldy environments have been associated with asthma exacerbation, but mold¿s role in allergic asthma induction is less clear. Recently, 5 molds were statistically associated with water-damaged asthmatic homes in the Cleveland area. The asthma exacerbation...

  20. 3D-glass molds for facile production of complex droplet microfluidic chips.

    PubMed

    Tovar, Miguel; Weber, Thomas; Hengoju, Sundar; Lovera, Andrea; Munser, Anne-Sophie; Shvydkiv, Oksana; Roth, Martin

    2018-03-01

    In order to leverage the immense potential of droplet microfluidics, it is necessary to simplify the process of chip design and fabrication. While polydimethylsiloxane (PDMS) replica molding has greatly revolutionized the chip-production process, its dependence on 2D-limited photolithography has restricted the design possibilities, as well as further dissemination of microfluidics to non-specialized labs. To break free from these restrictions while keeping fabrication straighforward, we introduce an approach to produce complex multi-height (3D) droplet microfluidic glass molds and subsequent chip production by PDMS replica molding. The glass molds are fabricated with sub-micrometric resolution using femtosecond laser machining technology, which allows directly realizing designs with multiple levels or even continuously changing heights. The presented technique significantly expands the experimental capabilities of the droplet microfluidic chip. It allows direct fabrication of multilevel structures such as droplet traps for prolonged observation and optical fiber integration for fluorescence detection. Furthermore, the fabrication of novel structures based on sloped channels (ramps) enables improved droplet reinjection and picoinjection or even a multi-parallelized drop generator based on gradients of confinement. The fabrication of these and other 3D-features is currently only available at such resolution by the presented strategy. Together with the simplicity of PDMS replica molding, this provides an accessible solution for both specialized and non-specialized labs to customize microfluidic experimentation and expand their possibilities.

  1. Rotational molding of pultruded profiles reinforced polyethylene

    NASA Astrophysics Data System (ADS)

    Greco, Antonio; Maffezzoli, Alfonso; Romano, Giorgio

    2014-05-01

    The aim of this paper is the production of fiber reinforced LLDPE components by rotational molding. To this purpose, a process upgrade was developed, for the incorporation of pultruded tapes in the rotational molding cycle. Pultruded tapes, made of 50% by weight of glass fibers dispersed in a high density polyethylene(HDPE) matrix, were glued on the internal surface of a cubic mold, and rotational molding process was run using the same processing conditions used for conventional LLDPE processing. During processing, melting of LLDPE powders and of HDPE allowed to incorporate the tapes inside rotational molded LLDPE. The glass fiber reinforced prototypes were characterized in terms of mechanical properties. Plate bending tests were performed on the square faces extracted from the rotational molded product. The rotational molding products were also subjected to internal hydrostatic pressure tests up to 10 bar. In any case, no failure of the cubic samples was observed. In both cases, it was found that addition of a single pultruded strips, which corresponds to addition of about 0.6% by weight of glass fibers, involved an increase of the stiffness of the faces by about 25%.

  2. Intelligent process development of foam molding for the Thermal Protection System (TPS) of the space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Bharwani, S. S.; Walls, J. T.; Jackson, M. E.

    1987-01-01

    A knowledge based system to assist process engineers in evaluating the processability and moldability of poly-isocyanurate (PIR) formulations for the thermal protection system of the Space Shuttle external tank (ET) is discussed. The Reaction Injection Molding- Process Development Advisor (RIM-PDA) is a coupled system which takes advantage of both symbolic and numeric processing techniques. This system will aid the process engineer in identifying a startup set of mold schedules and in refining the mold schedules to remedy specific process problems diagnosed by the system.

  3. Method for encapsulating hazardous wastes using a staged mold

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  4. Quality Control of Injection Molded Eyewear by Non-Contact Deflectometry

    NASA Astrophysics Data System (ADS)

    Speck, A.; Zelzer, B.; Langenbucher, A.; Eppig, T.

    2014-07-01

    Occupational eye wear such as safety spectacles are manufactured by injection molding techniques. Testing of the assembled safety spectacle lenses in transmission is state of the art, but there is a lack of surface measurement systems for occupational safety lenses. The purpose of this work was to validate a deflectometric setup for topography measurement, detection of defects and visualization of the polishing quality, e.g. casting indentations or impressions, for the production process of safety spectacles. The setup is based on a customized stereo phase measuring deflectometer (PMD), equipped with 3 cameras with f'1,2 = 16 mm and f'3 = 8.5 mm and a specified measurement uncertainty of ± 3 μm. Sixteen plastic lenses and 8 corresponding injection molds from 4 parallel cavities were used for validation of the deflectometer. For comparison an interferometric method and a reference standard (< λ/10 super polished) was used. The accuracy and bias with a spherical safety spectacle sample was below 1 μm, according to DIN ISO 5725-2.2002-12. The repeatability was 2.1 μm and 35.7 μm for a blind radius fit. In conclusion, the PMD technique is an appropriate tool for characterizing occupational safety spectacle and injections mold surfaces. With the presented setup we were able to quantify the surface quality. This can be useful and may optimize the quality of the end product, in addition to standardized measuring systems in transmission.

  5. Mold growth in on-reserve homes in Canada: the need for research, education, policy, and funding.

    PubMed

    Optis, Michael; Shaw, Karena; Stephenson, Peter; Wild, Peter

    2012-01-01

    The impact of mold growth in homes located on First Nations reserves in Canada is part of a national housing crisis that has not been adequately studied. Nearly half of the homes on reserves contain mold at levels of contamination associated with high rates of respiratory and other illnesses to residents. Mold thrives due to increased moisture levels in building envelopes and interior spaces. Increased moisture stems from several deficiencies in housing conditions, including structural damage to the building envelope, overcrowding and insufficient use of ventilation systems, and other moisture-control strategies. These deficiencies have developed due to a series of historical and socioeconomic factors, including disenfranchisement from traditional territory, environmentally inappropriate construction, high unemployment rates, lack of home ownership, and insufficient federal funding for on-reserve housing and socioeconomic improvements. The successful, long-term reduction of mold growth requires increased activity in several research and policy areas. First, the actual impacts on health need to be studied and associated with comprehensive experimental data on mold growth to understand the unique environmental conditions that permit the germination and growth of toxic mold species. Second, field data documenting the extent of mold growth in on-reserve homes do not exist but are essential in understanding the full extent of the crisis. Third, current government initiatives to educate homeowners in mold remediation and prevention techniques must be long lasting and effective. Finally, and most importantly, the federal government must make a renewed and lasting commitment to improve the socioeconomic conditions on reserves that perpetuate mold growth in homes. Without such improvement, the mold crisis will surely persist and likely worsen.

  6. The Temperature and Structure Dependence of Surface Tension of CaO-SiO2-Na2O-CaF2 Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Min, Yi; Jiang, Maofa

    2018-06-01

    The surface tension of mold flux is one of the most important properties and varies with the temperature from the top to the bottom of the mold, which influences the adhesion and lubrication between the liquid mold flux and the solidified shell, further influencing the quality of the continuous billet. In the present paper, the effect of temperature on the surface tension of CaO-SiO2-Na2O-CaF2 mold-flux melts with different CaO/SiO2 mass ratios was investigated using the maximum-pull method. Furthermore, the microstructure of mold fluxes was analyzed using FT-IR and Raman spectra to discuss the change mechanism of surface tension. The results indicated that the temperature dependence of surface tension was different with different CaO/SiO2 mass ratios, and agreed with the modification of melt structure. When the CaO/SiO2 mass ratio was 0.67 and 0.85, the change of surface tension with temperature was relatively stable, and the influence of temperature on the structure was small. When the CaO/SiO2 mass ratio was 1.03 and 1.16, with an increase of temperature, the surface tension decreased linearly and the changing amplitude was large; the degree of polymerization of melts and average radii of silicon-oxygen anions also decreased, which intensified the molecular thermal motion and weakened the intermolecular interaction, resulting in a decrease of surface tension of melts.

  7. The Temperature and Structure Dependence of Surface Tension of CaO-SiO2-Na2O-CaF2 Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Min, Yi; Jiang, Maofa

    2018-02-01

    The surface tension of mold flux is one of the most important properties and varies with the temperature from the top to the bottom of the mold, which influences the adhesion and lubrication between the liquid mold flux and the solidified shell, further influencing the quality of the continuous billet. In the present paper, the effect of temperature on the surface tension of CaO-SiO2-Na2O-CaF2 mold-flux melts with different CaO/SiO2 mass ratios was investigated using the maximum-pull method. Furthermore, the microstructure of mold fluxes was analyzed using FT-IR and Raman spectra to discuss the change mechanism of surface tension. The results indicated that the temperature dependence of surface tension was different with different CaO/SiO2 mass ratios, and agreed with the modification of melt structure. When the CaO/SiO2 mass ratio was 0.67 and 0.85, the change of surface tension with temperature was relatively stable, and the influence of temperature on the structure was small. When the CaO/SiO2 mass ratio was 1.03 and 1.16, with an increase of temperature, the surface tension decreased linearly and the changing amplitude was large; the degree of polymerization of melts and average radii of silicon-oxygen anions also decreased, which intensified the molecular thermal motion and weakened the intermolecular interaction, resulting in a decrease of surface tension of melts.

  8. An in vitro study to compare the transverse strength of thermopressed and conventional compression-molded polymethylmethacrylate polymers.

    PubMed

    Raut, Anjana; Rao, Polsani Laxman; Vikas, B V J; Ravindranath, T; Paradkar, Archana; Malakondaiah, G

    2013-01-01

    Acrylic resins have been in the center stage of Prosthodontics for more than half a century. The flexural fatigue failure of denture base materials is the primary mode of clinical failure. Hence there is a need for superior physical and mechanical properties. This in vitro study compared the transverse strength of specimens of thermopressed injection-molded and conventional compression-molded polymethylmethacrylate polymers and examined the morphology and microstructure of fractured acrylic specimens. The following denture base resins were examined: Brecrystal (Thermopressed injection-molded, modified polymethylmethacrylate) and Pyrax (compression molded, control group). Specimens of each material were tested according to the American Society for Testing and Materials standard D790-03 for flexural strength testing of reinforced plastics and subsequently examined under SEM. The data was analyzed with Student unpaired t test. Flexural strength of Brecrystal (82.08 ± 1.27 MPa) was significantly higher than Pyrax (72.76 ± 0.97 MPa). The tested denture base materials fulfilled the requirements regarding flexural strength (>65 MPa). The scanning electron microscopy image of Brecrystal revealed a ductile fracture with crazing. The fracture pattern of control group specimens exhibited poorly defined crystallographic planes with a high degree of disorganization. Flexural strength of Brecrystal was significantly higher than the control group. Brecrystal showed a higher mean transverse strength value of 82.08 ± 1.27 MPa and a more homogenous pattern at microscopic level. Based on flexural strength properties and handling characteristics, Brecrystal may prove to be an useful alternative to conventional denture base resins.

  9. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding

    NASA Astrophysics Data System (ADS)

    Berger, G. R.; Pacher, G. A.; Pichler, A.; Friesenbichler, W.; Gruber, D. P.

    2014-05-01

    Dynamic mold surface temperature control was examined for its influence on the warpage. A test mold, featuring two different rapid heat cycle molding (RHCM) technologies was used to manufacture complex plate-shaped parts having different ribs, varying thin-wall regions, and both, circular and rectangular cut-outs. The mold's nozzle side is equipped with the areal heating and cooling technology BFMOLD®, where the heating/cooling channels are replaced by a ball-filled slot near the cavity surface flooded through with hot and cold water sequentially. Two local electrical ceramic heating elements are installed into the mold's ejection side. Based on a 23 full-factorial design of experiments (DoE) plan, varying nozzle temperature (Tnozzle), rapid heat cycle molding temperature (TRHCM) and holding pressure (pn), specimens of POM were manufactured systematically. Five specimens were examined per DoE run. The resulting warpage was measured at 6 surface line scans per part using the non-contact confocal topography system FRT MicroProf®. Two warpage parameters were calculated, the curvature of a 2nd order approximation a, and the vertical deflection at the profile center d. Both, the influence strength and the acting direction of the process parameters and their interactions on a and d were calculated by statistical analysis. Linear mathematical process models were determined for a and d to predict the warpage as a function of the process parameter settings. Finally, an optimum process setting was predicted, based on the process models and Microsoft Excel GRG solver. Clear and significant influences of TRHCM, pn, Tnozzle, and the interaction of TRHCM and pn were determined. While TRHCM was dominant close to the gate, pn became more effective as the flow length increased.

  10. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  11. Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner.

    PubMed

    Shorter, Caroline; Crane, Julian; Pierse, Nevil; Barnes, Phillipa; Kang, Janice; Wickens, Kristin; Douwes, Jeroen; Stanley, Thorsten; Täubel, Martin; Hyvärinen, Anne; Howden-Chapman, Philippa

    2018-01-01

    Evidence is accumulating that indoor dampness and mold are associated with the development of asthma. The underlying mechanisms remain unknown. New Zealand has high rates of both asthma and indoor mold and is ideally placed to investigate this. We conducted an incident case-control study involving 150 children with new-onset wheeze, aged between 1 and 7 years, each matched to two control children with no history of wheezing. Each participant's home was assessed for moisture damage, condensation, and mold growth by researchers, an independent building assessor and parents. Repeated measures of temperature and humidity were made, and electrostatic dust cloths were used to collect airborne microbes. Cloths were analyzed using qPCR. Children were skin prick tested for aeroallergens to establish atopy. Strong positive associations were found between observations of visible mold and new-onset wheezing in children (adjusted odds ratios ranged between 1.30 and 3.56; P ≤ .05). Visible mold and mold odor were consistently associated with new-onset wheezing in a dose-dependent manner. Measurements of qPCR microbial levels, temperature, and humidity were not associated with new-onset wheezing. The association between mold and new-onset wheeze was not modified by atopic status, suggesting a non-allergic association. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Lightweight sheet molding compound (SMC) composites containing cellulose nanocrystals

    Treesearch

    Amir Asadi; Mark Miller; Arjun V. Singh; Robert J. Moon; Kyriaki Kalaitzidou

    2017-01-01

    A scalable technique was introduced to produce high volume lightweight composites using sheet molding compound (SMC) manufacturing method by replacing 10 wt% glass fibers (GF) with a small amount of cellulose nanocrystals (CNC). The incorporation of 1 and 1.5 wt% CNC by dispersing in the epoxy matrix of short GF/epoxy SMC composites with 25 wt% GF content (25GF/CNC-...

  13. Porous media heat transfer for injection molding

    DOEpatents

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  14. Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film

    NASA Astrophysics Data System (ADS)

    Jayadev, Shreshta; Pegan, Jonathan; Dyer, David; McLane, Jolie; Lim, Jessica; Khine, Michelle

    2013-01-01

    Superhydrophobic surfaces in nature exhibit desirable properties including self-cleaning, bacterial resistance, and flight efficiency. However, creating such intricate multi-scale features with conventional fabrication approaches is difficult, expensive, and not scalable. By patterning photoresist on pre-stressed shrink-wrap film, which contracts by 95% in surface area when heated, such features over large areas can be obtained easily. Photoresist serves as a dry etch mask to create complex and high-aspect ratio microstructures in the film. Using a double-shrink process, we introduce adaptive wettability-enhanced surfaces ordered on molded etched (AWESOME) substrates. We first create a mask out of the children’s toy ‘Shrinky-Dinks’ by printing dots using a laserjet printer. Heating this thermoplastic sheet causes the printed dots to shrink to a fraction of their original size. We then lithographically transfer the inverse pattern onto photoresist-coated shrink-wrap polyolefin film. The film is then plasma etched. After shrinking, the film serves as a high-aspect ratio mold for polydimethylsiloxane, creating a superhydrophobic surface with water contact angles >150° and sliding angles <10°. We pattern a microarray of ‘sticky’ spots with a dramatically different sliding angle compared to that of the superhydrophobic region, enabling microtiter-plate type assays without the need for a well plate.

  15. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and... CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites... Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and...

  16. Microcellular nanocomposite injection molding process

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt

    2003-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...

  17. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOEpatents

    Kulkarni, Satish V.; Christensen, Richard M.; Toland, Richard H.

    1985-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  18. Process optimization for ultrasonic vibration assisted polishing of micro-structured surfaces on super hard material

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Guo, Bing; Rao, Zhimin; Zhao, Qingliang

    2014-08-01

    In consideration of the excellent property of SiC, the ground micro-structured surface quality is hard to meet the requirement - consequently the ultrasonic vibration assisted polishing (UVAP) of micro-structures of molds is proposed in this paper. Through the orthogonal experiment, the parameters of UVAP of micro-structures were optimized. The experimental results show that, abrasive polishing process, the effect of the workpiece feed rate on the surface roughness (Ra), groove tip radius (R) and material removal rate (MRR) of micro-structures is significant. While, the UVAP, the most significant effect factor for Ra, R and MRR is the ultrasonic amplitude of the ultrasonic vibration. In addition, within the scope of the polishing process parameters selected by preliminary experiments, ultrasonic amplitude of 2.5μm, polishing force of 0.5N, workpiece feed rate of 5 mm·min-1, polishing wheel rotational speed of 50rpm, polishing time of 35min, abrasive size of 100nm and the polishing liquid concentration of 15% is the best technology of UVAP of micro-structures. Under the optimal parameters, the ground traces on the micro-structured surface were removed efficiently and the integrity of the edges of the micro-structure after grinding was maintained efficiently.

  19. Hot-Tearing Assessment of Multicomponent Nongrain-Refined Al-Cu Alloys for Permanent Mold Castings Based on Load Measurements in a Constrained Mold

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher; Li, Shimin; Apelian, Diran; Shyam, Amit; Allen Haynes, J.; Rodriguez, Andres F.

    2018-06-01

    The hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: "V"-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on the variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.

  20. Hot-Tearing Assessment of Multicomponent Nongrain-Refined Al-Cu Alloys for Permanent Mold Castings Based on Load Measurements in a Constrained Mold

    DOE PAGES

    Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher; ...

    2018-02-16

    Here, the hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: “V”-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on themore » variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.« less

  1. Hot-Tearing Assessment of Multicomponent Nongrain-Refined Al-Cu Alloys for Permanent Mold Castings Based on Load Measurements in a Constrained Mold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher

    Here, the hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: “V”-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on themore » variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.« less

  2. HOW to Recognize and Control Sooty Molds

    Treesearch

    Kenneth J. Jr. Kessler

    1992-01-01

    Sooty molds are dark fungi that grow on honeydew excreted by sucking insects or on exudates from leaves of certain plants. Typically, sooty mold growths are composed of fungal complexes made up of ascomycetes and fungi imperfecti. Some of the common genera of fungi found in sooty mold complexes are Cladosporium, Aureobasidium, Antennariella, Limacinula, Scorias, and...

  3. Magnetophoretic manipulation in microsystem using carbonyl iron-polydimethylsiloxane microstructures

    PubMed Central

    Faivre, Magalie; Gelszinnis, Renaud; Degouttes, Jérôme; Terrier, Nicolas; Rivière, Charlotte; Ferrigno, Rosaria; Deman, Anne-Laure

    2014-01-01

    This paper reports the use of a recent composite material, noted hereafter i-PDMS, made of carbonyl iron microparticles mixed in a PolyDiMethylSiloxane (PDMS) matrix, for magnetophoretic functions such as capture and separation of magnetic species. We demonstrated that this composite which combine the advantages of both components, can locally generate high gradients of magnetic field when placed between two permanent magnets. After evaluating the magnetic susceptibility of the material as a function of the doping ratio, we investigated the molding resolution offered by i-PDMS to obtain microstructures of various sizes and shapes. Then, we implemented 500 μm i-PDMS microstructures in a microfluidic channel and studied the influence of flow rate on the deviation and trapping of superparamagnetic beads flowing at the neighborhood of the composite material. We characterized the attraction of the magnetic composite by measuring the distance from the i-PDMS microstructure, at which the beads are either deviated or captured. Finally, we demonstrated the interest of i-PDMS to perform magnetophoretic functions in microsystems for biological applications by performing capture of magnetically labeled cells. PMID:25332740

  4. Characterization of polymeric binders for Metal Injection Molding (MIM) process

    NASA Astrophysics Data System (ADS)

    Adames, Juan M.

    The Metal Injection Molding (MIM) process is an economically attractive method of producing large amounts of small and complex metallic parts. This is achieved by combining the productivity of injection molding with the versatility of sintering of metal particulates. In MIM, the powdered metal is blended with a plastic binder to obtain the feedstock. The binder imparts flowability to the blend at injection molding conditions and strength at ambient conditions. After molding, the binder is removed in a sequence of steps that usually involves solvent-extraction and polymer burn-out. Once the binder is removed, the metal particles are sintered. In this research several topics of the MIM process were studied to understand how the polymeric binder, similar to the one used in the sponsoring company, works. This was done by examining the compounding and water debinding processes, the rheological and thermal properties, and the microstructure of the binder/metal composite at different processing stages. The factors studied included the metal contents, the composition of the binder and the processing conditions. The three binders prepared during the course of this research were blends of a polyolefin, polyoxymethylene copolymer (POM) and a water-soluble polymer (WSP). The polyolefin resins included polypropylene (PP), high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE). The powdered metal in the feedstocks was 316 L stainless steel. The compounding studies were completed in an internal mixer under different conditions of temperature, rotational speed and feedstock composition. It was found that the metal concentration was the most important factor in determining the torque evolution curves. The observation of microstructure with Scanning Electron Microscope (SEM) at different stages during compounding revealed that the metal particles neither agglomerate nor touch each other. The liquid extraction of the water-soluble polymer (WSP) from the molded

  5. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model

    EPA Science Inventory

    Introduction/Study Goal Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports and WHO gUidelines concluded that the role of molds in asthma induction is not clear bu...

  6. Serial corneal endothelial cell loss with lathe-cut and injection-molded posterior chamber intraocular lenses.

    PubMed

    Kraff, M C; Sanders, D R; Lieberman, H L

    1983-01-01

    We compared endothelial cell loss of patients implanted with lathe-cut posterior chamber lenses and those implanted with injection-molded lenses over a three-year postoperative period. Results were based on more than 2,500 measurements of corneal endothelial density. Although the technique of cataract extraction (anterior chamber phacoemulsification, posterior chamber phacoemulsification, or planned extracapsular extraction) significantly affected cell loss (P less than .01), the type of implant (lathe-cut or injection-molded) did not. Significant continuing endothelial cell loss did not occur during the first three postoperative years with injection-molded lenses. There was, however, a statistically significant 7% to 15% additional cell loss after surgery over the first two to three postoperative years with lathe-cut implants. There have been no cases of corneal endothelial decompensation developing after implantation of injection-molded or lathe-cut lenses. Because a standard field clinical specular microscope was used in this study, cell counting errors cannot be ruled out as a cause of these findings.

  7. Method for collecting spores from a mold

    DOEpatents

    Au, Frederick H. F.; Beckert, Werner F.

    1977-01-01

    A technique and apparatus used therewith for determining the uptake of plutonium and other contaminants by soil microorganisms which, in turn, gives a measure of the plutonium and/or other contaminants available to the biosphere at that particular time. A measured quantity of uncontaminated spores of a selected mold is added to a moistened sample of the soil to be tested. The mixture is allowed to sit a predetermined number of days under specified temperature conditions. An agar layer is then applied to the top of the sample. After three or more days, when spores of the mold growing in the sample have formed, the spores are collected by a miniature vacuum collection apparatus operated under preselected vacuum conditions, which collect only the spores with essentially no contamination by mycelial fragments or culture medium. After collection, the fungal spores are dried and analyzed for the plutonium and/or other contaminants. The apparatus is also suitable for collection of pollen, small insects, dust and other small particles, material from thin-layer chromatography plates, etc.

  8. The cellular slime mold: eukaryotic model microorganism.

    PubMed

    Urushihara, Hideko

    2009-04-01

    Cellular slime molds are eukaryotic microorganisms in the soil. They feed on bacteria as solitary amoebae but conditionally construct multicellular forms in which cell differentiation takes place. Therefore, they are attractive for the study of fundamental biological phenomena such as phagocytosis, cell division, chemotactic movements, intercellular communication, cell differentiation, and morphogenesis. The most widely used species, Dictyostelium discoideum, is highly amenable to experimental manipulation and can be used with most recent molecular biological techniques. Its genome and cDNA analyses have been completed and well-annotated data are publicly available. A larger number of orthologues of human disease-related genes were found in D. discoideum than in yeast. Moreover, some pathogenic bacteria infect Dictyostelium amoebae. Thus, this microorganism can also offer a good experimental system for biomedical research. The resources of cellular slime molds, standard strains, mutants, and genes are maintained and distributed upon request by the core center of the National BioResource Project (NBRP-nenkin) to support Dictyostelium community users as well as new users interested in new platforms for research and/or phylogenic consideration.

  9. Repurposing compact discs as master molds to fabricate high-performance organic nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghun; Cho, Jinhwi; Jhon, Heesauk; Jeon, Jongwook; Kang, Myounggon; Eon Park, Chan; Lee, Jihoon; An, Tae Kyu

    2017-05-01

    Organic field-effect transistors (OFETs) have been developed over the past few decades due to their potential applications in future electronics such as wearable and foldable electronics. As the electrical performance of OFETs has improved, patterning organic semiconducting crystals has become a key issue for their commercialization. However, conventional soft lithographic techniques have required the use of expensive processes to fabricate high-resolution master molds. In this study, we demonstrated a cost-effective method to prepare nanopatterned master molds for the fabrication of high-performance nanowire OFETs. We repurposed commercially available compact discs (CDs) as master molds because they already have linear nanopatterns on their surface. Flexible nanopatterned templates were replicated from the CDs using UV-imprint lithography. Subsequently, 6,13-bis-(triisopropylsilylethynyl) pentacene nanowires (NWs) were grown from the templates using a capillary force-assisted lithographic technique. The NW-based OFETs showed a high average field-effect mobility of 2.04 cm2 V-1 s-1. This result was attributed to the high crystallinity of the NWs and to their crystal orientation favorable for charge transport.

  10. Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Rekha, Suganthini; Bupesh Raja, V. K.

    2017-05-01

    The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.

  11. Imaging brain tumour microstructure.

    PubMed

    Nilsson, Markus; Englund, Elisabet; Szczepankiewicz, Filip; van Westen, Danielle; Sundgren, Pia C

    2018-05-08

    Imaging is an indispensable tool for brain tumour diagnosis, surgical planning, and follow-up. Definite diagnosis, however, often demands histopathological analysis of microscopic features of tissue samples, which have to be obtained by invasive means. A non-invasive alternative may be to probe corresponding microscopic tissue characteristics by MRI, or so called 'microstructure imaging'. The promise of microstructure imaging is one of 'virtual biopsy' with the goal to offset the need for invasive procedures in favour of imaging that can guide pre-surgical planning and can be repeated longitudinally to monitor and predict treatment response. The exploration of such methods is motivated by the striking link between parameters from MRI and tumour histology, for example the correlation between the apparent diffusion coefficient and cellularity. Recent microstructure imaging techniques probe even more subtle and specific features, providing parameters associated to cell shape, size, permeability, and volume distributions. However, the range of scenarios in which these techniques provide reliable imaging biomarkers that can be used to test medical hypotheses or support clinical decisions is yet unknown. Accurate microstructure imaging may moreover require acquisitions that go beyond conventional data acquisition strategies. This review covers a wide range of candidate microstructure imaging methods based on diffusion MRI and relaxometry, and explores advantages, challenges, and potential pitfalls in brain tumour microstructure imaging. Copyright © 2018. Published by Elsevier Inc.

  12. Optimization of the injection molding process for development of high performance calcium oxide -based ceramic cores

    NASA Astrophysics Data System (ADS)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    The binder composition used for ceramic injection molding plays a crucial role on the final properties of sintered ceramic and to avoid defects on green parts. In this study, the effects of binder compositions on the rheological, microstructures and the mechanical properties of CaO based ceramic cores were investigated. It was found that the optimized formulation for dispersant, solid loading was 1.5 wt% and 84 wt%, respectively. The microstructures, such as porosity, pore size distribution and grain boundary density were closely related to the plasticizer contents. The decrease of plasticizer contents can enhance the strength of the ceramic cores but with decreased shrinkage. Meanwhile, the creep resistance of ceramic cores was enhanced by decreasing of plasticizer contents. The flexural strength of the core was found to decrease with the increase of the porosity, the improvement of creep resistance is closely related to the decrease of porosity and grain boundary density.

  13. The Mold that Almost Ate the Principal

    ERIC Educational Resources Information Center

    Barry, Wayne; Bishop, Chuck; Byars, Jennifer

    2006-01-01

    New-building mold was a bane for many home construction companies and new homeowners during the 1990s. It was not unusual to read or watch the news and see the tragedy played out in one's local community. Untold, however, is the story of the toll new-building mold can take on school systems and their principals, especially as these mold problems…

  14. Slimeware: engineering devices with slime mold.

    PubMed

    Adamatzky, Andrew

    2013-01-01

    The plasmodium of the acellular slime mold Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioral patterns in response to environmental conditions. In a series of simple experiments we demonstrate how to make computing, sensing, and actuating devices from the slime mold. We show how to program living slime mold machines by configurations of repelling and attracting gradients and demonstrate the workability of the living machines on tasks of computational geometry, logic, and arithmetic.

  15. Adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by selective laser melting technique.

    PubMed

    Ye, Ye; Jiao, Ting; Zhu, Jiarui; Sun, Jian

    2018-01-24

    The purpose of the study was to evaluate the adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by the selective laser melting (SLM) technique. Twenty pairs of edentulous casts were randomly and evenly divided into two groups, and manufacturing of the Co-Cr alloy maxillary complete denture base was conducted either by the SLM technique or by the conventional method. The base-cast sets were transversally sectioned into three sections at the distal canines, mesial of the first molars and the posterior palatal zone. The gap between the metal base and cast was measured in these three sections with a stereoscopic microscope, and the data were analysed using t tests. A total of five specimens of 5 mm diameter were fabricated with the Co-Cr alloy by SLM and the traditional casting technology. A scanning electron microscope (SEM) was used to evaluate the differences in microstructure between these specimens. There was no statistical difference between the three sections in all four groups (P > 0.05). At the region of the canines, the clearance value for the SLM Co-Cr alloy group was larger than that of the conventional method group (P < 0.05). At the mesial of the first molar region and the posterior palatal zone, there was no statistical difference between the gaps observed in the two groups (P > 0.05). The SLM Co-Cr alloy has a denser microstructure behaviour and less casting defect than the cast Co-Cr alloy. The SLM technique showed initial feasibility for the manufacture of dental bases of complete dentures, but large sample studies are needed to prove its reliability in clinical applications. The mechanical properties and microstructure of the denture frameworks prepared by selective laser melting indicate that these dentures are appropriate for clinical use.

  16. Commercial and Residential Water Damage: The Mold Connection.

    ERIC Educational Resources Information Center

    Williams, Del

    2002-01-01

    Describes the problem of toxic mold in residential and commercial property resulting from excess moisture. Includes common sources of unwanted moisture, design and construction flaws, determining the presence of mold, and advice for identifying and hiring reputable mold remediators. (PKP)

  17. Mold Allergy

    MedlinePlus

    ... the AAAAI Foundation Donate Utility navigation Español Journals Pollen Counts Annual Meeting Member Login / My Membership Search ... email alert to keep tabs on mold and pollen counts in your area. • Keep away from uncut ...

  18. [Application of negative molds technology based on three-dimensional printing in digital maxillofacial prostheses].

    PubMed

    Gu, X Y; Chen, X B; Jiao, T; Zhang, F Q; Jiang, X Q

    2017-06-09

    Objective: To explore a digital negative molds technique based on three-dimensional (3D) printing to assist in the manufacture of maxillofacial prostheses, and to improve the deficiency of the current clinical treatment. Methods: Seventeen patients with maxillofacial defects (including nasal defects, orbital defects, cheek defects, auricle defect) were scanned by means of facial optical scanning and computer tomography (CT). The 3D models were then reconstructed and global registration was made to merge the reconstructed models into a new digital model for 3D design. The 3D design of the prostheses was implemented in software. The mechanical connection structure was designed by forward engineering technology for 3 patients with intra-oral defects in maxilla who needed to make removable partial dentures, so that the silicone prostheses and removable partial denture could be combined. The removable partial dentures were made by conventional method and connected with the prostheses. According to the 3D data of the prostheses, the digital negative molds were designed, and the 3D printing technology was used to finish the processing of the resin molds. Silicone for prostheses were filled and cured in the resin molds to fabricate the clinical restorations for the patients. The margin adaptation and retention of the prostheses was detected. Results: Twenty patients with varying degrees of maxillofacial defects were rehabilitated using the courses developed in the study. All patients reported no pain or discomfort during the treatment; and they were satisfied with the final prostheses of the shape, color, retention, stability, etc. Eighteen of the prostheses showed good marginal adaptation, and sixteen of the prostheses showed good retention effect. Conclusions: The digital negative molds technique used in this study could greatly reduce the intensity of manual operation and provided a good therapeutic effect for patients with maxillofacial defects.

  19. Volume-change indicator for molding plastic

    NASA Technical Reports Server (NTRS)

    Heler, W. C.

    1979-01-01

    Monitor consisting of two concentric disks measures change in volume of charge during compression/displacement molding. Device enables operator to decide whether process pressure and temperature are set properly or whether sufficient material has been placed in mold.

  20. Silicon micro-mold and method for fabrication

    DOEpatents

    Morales, Alfredo M.

    2005-01-11

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon micro-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  1. Replication of the nano-scale mold fabricated with focused ion beam

    NASA Astrophysics Data System (ADS)

    Gao, J. X.; Chan-Park, M. B.; Xie, D. Z.; Ngoi, Bryan K. A.

    2004-12-01

    Silicon mold fabricated with Focused Ion Beam lithography (FIB) was used to make silicone elastomer molds. The silicon mold is composed of lattice of holes which the diameter and depth are about 200 nm and 60 nm, respectively. The silicone elastomer material was then used to replicate slavery mold. Our study show the replication process with the elastomer mold had been performed successfully and the diameter of humps on the elastomer mold is near to that of holes on the master mold. But the height of humps in the elastomer mold is only 42 nm and it is different from the depth of holes in the master mold.

  2. Thermal Molding of Organic Thin-Film Transistor Arrays on Curved Surfaces.

    PubMed

    Sakai, Masatoshi; Watanabe, Kento; Ishimine, Hiroto; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Kudo, Kazuhiro

    2017-12-01

    In this work, a thermal molding technique is proposed for the fabrication of plastic electronics on curved surfaces, enabling the preparation of plastic films with freely designed shapes. The induced strain distribution observed in poly(ethylene naphthalate) films when planar sheets were deformed into hemispherical surfaces clearly indicated that natural thermal contraction played an important role in the formation of the curved surface. A fingertip-shaped organic thin-film transistor array molded from a real human finger was fabricated, and slight deformation induced by touching an object was detected from the drain current response. This type of device will lead to the development of robot fingers equipped with a sensitive tactile sense for precision work such as palpation or surgery.

  3. Thermal Molding of Organic Thin-Film Transistor Arrays on Curved Surfaces

    NASA Astrophysics Data System (ADS)

    Sakai, Masatoshi; Watanabe, Kento; Ishimine, Hiroto; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Kudo, Kazuhiro

    2017-05-01

    In this work, a thermal molding technique is proposed for the fabrication of plastic electronics on curved surfaces, enabling the preparation of plastic films with freely designed shapes. The induced strain distribution observed in poly(ethylene naphthalate) films when planar sheets were deformed into hemispherical surfaces clearly indicated that natural thermal contraction played an important role in the formation of the curved surface. A fingertip-shaped organic thin-film transistor array molded from a real human finger was fabricated, and slight deformation induced by touching an object was detected from the drain current response. This type of device will lead to the development of robot fingers equipped with a sensitive tactile sense for precision work such as palpation or surgery.

  4. Sacrificial plastic mold with electroplatable base

    DOEpatents

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2002-01-01

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  5. Sacrificial Plastic Mold With Electroplatable Base

    DOEpatents

    Domeier, Linda A.; Hruby, Jill M.; Morales, Alfredo M.

    2005-08-16

    A sacrificial plastic mold having an electroplatable backing is provided. One embodiment consists of the infusion of a softened or molten thermoplastic through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale molding tool contacting the porous metal substrate. Upon demolding, the porous metal substrate will be embedded within the thermoplastic and will project a plastic structure with features determined by the mold tool. This plastic structure, in turn, provides a sacrificial plastic mold mechanically bonded to the porous metal substrate which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved to leave the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  6. Study of injection molded microcellular polyamide-6 nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler

    2004-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...

  7. Microengineering of Metals and Ceramics: Part I: Design, Tooling and Injection Molding; Volume 3: Advanced Micro & Nanosystems

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Brand, Oliver; Fedder, Gary K.; Hierold, Christofer; Korvink, Jan G.; Tabata, Osamu; Löhe, Detlef; Haußelt, Jürgen

    2005-09-01

    Microstructures, electronics, nanotechnology - these vast fields of research are growing together as the size gap narrows and many different materials are combined. Current research, engineering sucesses and newly commercialized products hint at the immense innovative potentials and future applications that open up once mankind controls shape and function from the atomic level right up to the visible world without any gaps. In this volume, authors from three major competence centres for microengineering illustrate step by step the process from designing and simulating microcomponents of metallic and ceramic materials to replicating micro-scale components by injection molding.

  8. Rapid localized heating of graphene coating on a silicon mold by induction for precision molding of polymer optics.

    PubMed

    Zhang, Lin; Zhou, Wenchen; Yi, Allen Y

    2017-04-01

    In compression molding of polymer optical components with micro/nanoscale surface features, rapid heating of the mold surface is critical for the implementation of this technology for large-scale applications. In this Letter, a novel method of a localized rapid heating process is reported. This process is based on induction heating of a thin conductive coating deposited on a silicon mold. Since the graphene coating is very thin (∼45  nm), a high heating rate of 10∼20°C/s can be achieved by employing a 1200 W 30 kHz electrical power unit. Under this condition, the graphene-coated surface and the polymer substrate can be heated above the polymer's glass transition temperature within 30 s and subsequently cooled down to room temperature within several tens of seconds after molding, resulting in an overall thermal cycle of about 3 min or shorter. The feasibility of this process was validated by fabrication of optical gratings, micropillar matrices, and microlens arrays on polymethylmethacrylate (PMMA) substrates with very high precision. The uniformity and surface geometries of the replicated optical elements are evaluated using an optical profilometer, a diffraction test setup, and a Shack-Hartmann wavefront sensor built with a molded PMMA microlens array. Compared with the conventional bulk heating molding process, this novel rapid localized induction heating process could improve replication efficiency with better geometrical fidelity.

  9. Factors influencing microinjection molding replication quality

    NASA Astrophysics Data System (ADS)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  10. The experimental study of heat transfer around molds inside a model autoclave

    NASA Astrophysics Data System (ADS)

    Ghamlouch, Taleb; Roux, Stéphane; Lefèvre, Nicolas; Bailleul, Jean-Luc; Sobotka, Vincent

    2018-05-01

    The temperature distribution within composite parts manufactured inside autoclaves plays a key role in determining the parts quality at the end of the curing cycle. Indeed, heat transfer between the parts and the surroundings inside an autoclave is strongly coupled with the flow field around the molds and can be modeled through the convective heat transfer coefficient (HTC). The aerodynamically unsuitable geometry of the molds generates complex turbulent non-uniform flows around them accompanied with the presence of dead zones. This heterogeneity can imply non-uniform convective heat transfers leading to temperature gradients inside parts that can be prejudicial. Given this fact, the purpose of this study is to perform experimental measurements in order to describe the flow field and the convective heat transfer behavior around representative industrial molds installed inside a home-made model. A key point of our model autoclave is the ease of use of non-intrusive measuring instruments: the Particle Image Velocimetry (PIV) technique and infrared imaging camera for the study of the flow field and the heat transfer coefficient distribution around the molds respectively. The experimental measurements are then compared to computational fluid dynamics (CFD) calculations performed on the computer code ANSYS Fluent 16.0®. This investigation has revealed, as expected, a non-uniform distribution of the convective heat transfer coefficient around the molds and therefore the presence of thermal gradients which can reduce the composite parts quality during an autoclave process. A good agreement has been achieved between the experimental and the numerical results leading then to the validation of the performed numerical simulations.

  11. Taxonomic re-evaluation of black koji molds.

    PubMed

    Hong, Seung-Beom; Yamada, Osamu; Samson, Robert A

    2014-01-01

    Black koji molds including its albino mutant, the white koji mold, have been widely used for making the distilled spirit shochu in Northeast Asia because they produce citric acid which prevents undesirable contamination from bacteria. Since Inui reported Aspergillus luchuensis from black koji in Okinawa in 1901, many fungal names associated with black koji molds were reported. However, some species are similar and differentiation between species is difficult. Fungal taxonomists tried to arrange a taxonomic system for black koji molds, but the results were not clear. Recently, multi-locus sequence typing has been successfully used to taxonomy of black Aspergillus. According to β-tubulin and calmodulin gene sequences, black koji molds can be subdivided in three species, A. luchuensis, Aspergillus niger, and Aspergillus tubingensis. Aspergillus awamori, Aspergillus kawachii, Aspergillus inuii, Aspergillus nakazawai, and Aspergillus coreanus are synonyms of A. luchuensis, Aspergillus batatae, Aspergillus aureus (or Aspergillus foetidus), Aspergillus miyakoensis, and Aspergillus usamii (including A. usamii mut. shirousamii) are synonyms of A. niger and Aspergillus saitoi and A. saitoi var. kagoshimaensis are synonyms of A. tubingensis. A. luchuensis mut. kawachii was suggested particular names for A. kawachii because of their industrial importance. The history and modern taxonomy of black koji molds is further discussed.

  12. EXPOSURE OF CHILDREN TO INDOOR MOLDS

    EPA Science Inventory

    Children now spend more than 90% of their time indoors. Thus, any exposure to indoor pollutants may be critical to their health. Molds are one of the most important pollutants children are exposed to indoors. Molds produce hundreds of allergens and toxins. These products ha...

  13. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.

    PubMed

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Qian, Ma; Willumeit, Regine; Yan, Ming; Pyczak, Florian

    2013-12-01

    The application of titanium (Ti) based biomedical materials which are widely used at present, such as commercially pure titanium (CP-Ti) and Ti-6Al-4V, are limited by the mismatch of Young's modulus between the implant and the bones, the high costs of products, and the difficulty of producing complex shapes of materials by conventional methods. Niobium (Nb) is a non-toxic element with strong β stabilizing effect in Ti alloys, which makes Ti-Nb based alloys attractive for implant application. Metal injection molding (MIM) is a cost-efficient near-net shape process. Thus, it attracts growing interest for the processing of Ti and Ti alloys as biomaterial. In this investigation, metal injection molding was applied to the fabrication of a series of Ti-Nb binary alloys with niobium content ranging from 10wt% to 22wt%, and CP-Ti for comparison. Specimens were characterized by melt extraction, optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Titanium carbide formation was observed in all the as-sintered Ti-Nb binary alloys but not in the as-sintered CP-Ti. Selected area electron diffraction (SAED) patterns revealed that the carbides are Ti2C. It was found that with increasing niobium content from 0% to 22%, the porosity increased from about 1.6% to 5.8%, and the carbide area fraction increased from 0% to about 1.8% in the as-sintered samples. The effects of niobium content, porosity and titanium carbides on mechanical properties have been discussed. The as-sintered Ti-Nb specimens exhibited an excellent combination of high tensile strength and low Young's modulus, but relatively low ductility. © 2013 Elsevier Ltd. All rights reserved.

  14. Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel

    PubMed Central

    Liu, Hanghang; Fu, Paixian; Liu, Hongwei; Li, Dianzhong

    2018-01-01

    The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electron back-scattered diffraction (EBSD). The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT) possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT) steel. In addition, the test steel after austempering-tempering (A-T) demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17%) compared with the samples after N-QT (14.5%) treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels. PMID:29642642

  15. A hybrid optimization approach in non-isothermal glass molding

    NASA Astrophysics Data System (ADS)

    Vu, Anh-Tuan; Kreilkamp, Holger; Krishnamoorthi, Bharathwaj Janaki; Dambon, Olaf; Klocke, Fritz

    2016-10-01

    Intensively growing demands on complex yet low-cost precision glass optics from the today's photonic market motivate the development of an efficient and economically viable manufacturing technology for complex shaped optics. Against the state-of-the-art replication-based methods, Non-isothermal Glass Molding turns out to be a promising innovative technology for cost-efficient manufacturing because of increased mold lifetime, less energy consumption and high throughput from a fast process chain. However, the selection of parameters for the molding process usually requires a huge effort to satisfy precious requirements of the molded optics and to avoid negative effects on the expensive tool molds. Therefore, to reduce experimental work at the beginning, a coupling CFD/FEM numerical modeling was developed to study the molding process. This research focuses on the development of a hybrid optimization approach in Non-isothermal glass molding. To this end, an optimal configuration with two optimization stages for multiple quality characteristics of the glass optics is addressed. The hybrid Back-Propagation Neural Network (BPNN)-Genetic Algorithm (GA) is first carried out to realize the optimal process parameters and the stability of the process. The second stage continues with the optimization of glass preform using those optimal parameters to guarantee the accuracy of the molded optics. Experiments are performed to evaluate the effectiveness and feasibility of the model for the process development in Non-isothermal glass molding.

  16. Development of a statistically proven injection molding method for reaction bonded silicon nitride, sintering reaction bonded silicon nitride, and sintered silicon nitride

    NASA Astrophysics Data System (ADS)

    Steiner, Matthias

    A statistically proven, series injection molding technique for ceramic components was developed for the construction of engines and gas turbines. The flow behavior of silicon injection-molding materials was characterized and improved. Hot-isostatic-pressing reaction bonded silicon nitride (HIPRBSN) was developed. A nondestructive component evaluation method was developed. An injection molding line for HIPRBSN engine components precombustion chamber, flame spreader, and valve guide was developed. This line allows the production of small series for engine tests.

  17. Predicting and preventing mold spoilage of food products.

    PubMed

    Dagnas, Stéphane; Membré, Jeanne-Marie

    2013-03-01

    This article is a review of how to quantify mold spoilage and consequently shelf life of a food product. Mold spoilage results from having a product contaminated with fungal spores that germinate and form a visible mycelium before the end of the shelf life. The spoilage can be then expressed as the combination of the probability of having a product contaminated and the probability of mold growth (germination and proliferation) up to a visible mycelium before the end of the shelf life. For products packed before being distributed to the retailers, the probability of having a product contaminated is a function of factors strictly linked to the factory design, process, and environment. The in-factory fungal contamination of a product might be controlled by good manufacturing hygiene practices and reduced by particular processing practices such as an adequate air-renewal system. To determine the probability of mold growth, both germination and mycelium proliferation can be mathematically described by primary models. When mold contamination on the product is scarce, the spores are spread on the product and more than a few spores are unlikely to be found at the same spot. In such a case, models applicable for a single spore should be used. Secondary models can be used to describe the effect of intrinsic and extrinsic factors on either the germination or proliferation of molds. Several polynomial models and gamma-type models quantifying the effect of water activity and temperature on mold growth are available. To a lesser extent, the effect of pH, ethanol, heat treatment, addition of preservatives, and modified atmospheres on mold growth also have been quantified. However, mold species variability has not yet been properly addressed, and only a few secondary models have been validated for food products. Once the probability of having mold spoilage is calculated for various shelf lives and product formulations, the model can be implemented as part of a risk management

  18. Investigations on injection molded, glass-fiber reinforced polyamide 6 integral foams using breathing mold technology

    NASA Astrophysics Data System (ADS)

    Roch, A.; Kehret, L.; Huber, T.; Henning, F.; Elsner, P.

    2015-05-01

    Investigations on PA6-GF50 integral foams have been carried out using different material systems: longfiber- and shortfiber-reinforced PA6 as well as unreinforced PA6 as a reference material. Both chemical and physical blowing agents were applied. Breathing mold technology (decompression of the mold) was selected for the foaming process. The integral foam design, which can be conceived as a sandwich structure, helps to save material in the neutral axis area and maintains a distance between load-bearing, unfoamed skin layers. For all test series an initial mold gap of 2.5 mm was chosen and the same amount of material was injected. In order to realize different density reductions, the mold opening stroke was varied. The experiments showed that, at a constant mass per unit area, integral polyamide 6 foams have a significantly higher bending stiffness than compact components, due to their higher area moment of inertia after foaming. At a constant surface weight the bending stiffness in these experiments could be increased by up to 600 %. Both shortfiber- and longfiber-reinforced polyamide 6 showed an increase in energy absorption during foaming.

  19. Brightness field distributions of microlens arrays using micro molding.

    PubMed

    Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Yi; Shen, Yung-Kang

    2010-12-20

    This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.

  20. Molecular orientation distributions during injection molding of liquid crystalline polymers: Ex situ investigation of partially filled moldings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Burghardt, Wesley R.; Bubeck, Robert A.

    The development of molecular orientation in thermotropic liquid crystalline polymers (TLCPs) during injection molding has been investigated using two-dimensional wide-angle X-ray scattering coordinated with numerical computations employing the Larson-Doi polydomain model. Orientation distributions were measured in 'short shot' moldings to characterize structural evolution prior to completion of mold filling, in both thin and thick rectangular plaques. Distinct orientation patterns are observed near the filling front. In particular, strong extension at the melt front results in nearly transverse molecular alignment. Far away from the flow front shear competes with extension to produce complex spatial distributions of orientation. The relative influence ofmore » shear is stronger in the thin plaque, producing orientation along the filling direction. Exploiting an analogy between the Larson-Doi model and a fiber orientation model, we test the ability of process simulation tools to predict TLCP orientation distributions during molding. Substantial discrepancies between model predictions and experimental measurements are found near the flow front in partially filled short shots, attributed to the limits of the Hele-Shaw approximation used in the computations. Much of the flow front effect is however 'washed out' by subsequent shear flow as mold filling progresses, leading to improved agreement between experiment and corresponding numerical predictions.« less

  1. Proactive approaches for mold-free interior environments.

    PubMed

    Warsco, Katherine; Lindsey, Patricia F

    2003-08-01

    Interior design education and practice can contribute to the prevention of mold growth in indoor environments. The authors provide an overview of current thinking within the interior design educational and professional communities regarding proactive approaches to achieving mold-free building interiors, including identification of current best practices for the prevention of mold problems in buildings. They also discuss the development of certification programs. A review of recent literature points to the need for interior designers to be educated to specify the use of ecologically sound materials that support the health of building occupants. The authors present trade-offs between best practices for designing mold-free indoor environments (including considerations of cost, maintenance, and operation) and occupant comfort, health, and well-being.

  2. Mathematical modeling of the in-mold coating process for injection-molded thermoplastic parts

    NASA Astrophysics Data System (ADS)

    Chen, Xu

    In-Mold Coating (IMC) has been successfully used for many years for exterior body panels made from compression molded Sheet Molding Compound (SMC). The coating material is a single component reactive fluid, designed to improve the surface quality of SMC moldings in terms of functional and cosmetic properties. When injected onto a cured SMC part, IMC cures and bonds to provide a pain-like surface. Because of its distinct advantages, IMC is being considered for application to injection molded thermoplastic parts. For a successful in mold coating operation, there are two key issues related to the flow of the coating. First, the injection nozzle should be located such that the thermoplastic substrate is totally covered and the potential for air trapping is minimized. The selected location should be cosmetically acceptable since it most likely will leave a mark on the coated surface. The nozzle location also needs to be accessible for easy of maintenance. Secondly, the hydraulic force generated by the coating injection pressure should not exceed the available clamping tonnage. If the clamping force is exceeded, coating leakage will occur. In this study, mathematical models for IMC flow on the compressible thermoplastic substrate have been developed. Finite Difference Method (FDM) is first used to solve the 1 dimensional (1D) IMC flow problem. In order to investigate the application of Control Volume based Finite Element Method (CV/FEM) to more complicated two dimensional IMC flow, that method is first evaluated by solving the 1D IMC flow problem. An analytical solution, which can be obtained when a linear relationship between the coating thickness and coating injection pressure is assumed, is used to verify the numerical results. The mathematical models for the 2 dimensional (2D) IMC flow are based on the generalized Hele-Shaw approximation. It has been found experimentally that the power law viscosity model adequately predicts the rheological behavior of the coating

  3. Route 20, Autobahn 7, and Slime Mold: Approximating the Longest Roads in USA and Germany With Slime Mold on 3-D Terrains.

    PubMed

    Adamatzky, Andrew I

    2014-01-01

    A cellular slime mould Physarum polycephalum is a monstrously large single cell visible by an unaided eye. The slime mold explores space in parallel, is guided by gradients of chemoattractants, and propagates toward sources of nutrients along nearly shortest paths. The slime mold is a living prototype of amorphous biological computers and robotic devices capable of solving a range of tasks of graph optimization and computational geometry. When presented with a distribution of nutrients, the slime mold spans the sources of nutrients with a network of protoplasmic tubes. This protoplasmic network matches a network of major transport routes of a country when configuration of major urban areas is represented by nutrients. A transport route connecting two cities should ideally be a shortest path, and this is usually the case in computer simulations and laboratory experiments with flat substrates. What searching strategies does the slime mold adopt when exploring 3-D terrains? How are optimal and transport routes approximated by protoplasmic tubes? Do the routes built by the slime mold on 3-D terrain match real-world transport routes? To answer these questions, we conducted pioneer laboratory experiments with Nylon terrains of USA and Germany. We used the slime mold to approximate route 20, the longest road in USA, and autobahn 7, the longest national motorway in Europe. We found that slime mold builds longer transport routes on 3-D terrains, compared to flat substrates yet sufficiently approximates man-made transport routes studied. We demonstrate that nutrients placed in destination sites affect performance of slime mold, and show how the mold navigates around elevations. In cellular automaton models of the slime mold, we have shown variability of the protoplasmic routes might depends on physiological states of the slime mold. Results presented will contribute toward development of novel algorithms for sensorial fusion, information processing, and decision making, and

  4. Molded polymer solar water heater

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  5. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOEpatents

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  6. Indoor molds and lung function in healthy adults.

    PubMed

    Hernberg, Samu; Sripaiboonkij, Penpatra; Quansah, Reginald; Jaakkola, Jouni J K; Jaakkola, Maritta S

    2014-05-01

    Indoor mold exposure is common worldwide and constitutes an important health problem. There are very few studies assessing the relation between mold exposure and lung function levels among non-asthmatic adults. Our objective was to assess the relations between dampness and mold exposures at home and at work and lung function. In particular, we elaborated the importance of different exposure indicators. In a population-based study, 269 non-asthmatic adults from South Finland answered a questionnaire on indoor dampness and mold exposures at home or at work and other factors potentially influencing lung function, and performed spirometry. Multiple linear regression model was applied to study the relations between exposures and spirometric lung function levels. In linear regression adjusting for confounding, FEV1 level was reduced on average 200 ml related to mold odor at home (effect estimate -0.20, 95% CI -0.60 to 0.21) and FVC level was reduced on average 460 ml (-0.46, -0.95 to 0.03) respectively. Exposure to mold odor at home or at work or both was related to reduced FEV1 (-0.15, -0.42 to 0.12) and FVC (-0.22, -0.55 to 0.11) levels. Women had on average 510 ml reduced FEV1 levels (-0.51, -1.0 to 0.03) and 820 ml reduced FVC levels (-0.82, -1.4 to -0.20) related to mold odor exposure at home. Mold odor exposure was related to lower lung function levels among non-asthmatic adults, especially among women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Preparation and properties of an internal mold release for rigid urethane foam

    NASA Astrophysics Data System (ADS)

    Paker, B. G.

    1980-08-01

    Most mold release agents used in the molding of rigid polyurethane foam are applied to the internal surfaces of the mold. These materials form a thin layer between the surface of the mold and the foam, allowing for easy release of the molded parts. This type of mold release must be applied prior to each molding operation; and, after repeated use, cleaning of the mold is required. Small amounts of this mold release are transferred to the molded part, resulting in a part with poor surface bondability characteristics. An internal release agent, which can be mixed in a urethane foam resin was investigated. The internal mold release provided good releasability and resulted in urethane foam that has excellent surface bondability. No compatibility problems are expected from the use of this type of release agent.

  8. Applying simulation to optimize plastic molded optical parts

    NASA Astrophysics Data System (ADS)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  9. Mold exposure and health effects following hurricanes Katrina and Rita.

    PubMed

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  10. Micro-structure and Air-tightness of Squeeze Casting Motor housing for New Energy Vehicle

    NASA Astrophysics Data System (ADS)

    Jiang, Y. F.; Kang, Z. Q.; Jiang, W. F.; Wang, K. W.; Sha, D. L.; Li, M. L.; Sun, J.

    2018-05-01

    In order to improve the performance of automobile parts, the influence of squeeze casting process parameters on casting defects, material structure and air-tightness of aluminum alloy motor housing for new energy vehicle was studied. The results show that the density of the castings increases with the increase in pressure and mold temperature. With increase in pouring temperature, it increases first and then decreases. Pressure has the greatest influence on the density of the castings. Under a certain pressure, with moderate increase in casting temperature and mold temperature, the grain growth begins to increase; the dendrites become less, the new α - Al grains are spherical and granular, the micro-structure is uniform. Also, with increase in pressure, this effect is more pronounced, the air-tightness of castings improve. In conclusion, when the pressure is 110MPa, pouring temperature is 680° C, mold temperature is 280° C, pressure holding for 30s, and punch speed of 0.1m/s, there is no clear shrinkage in the casting, the structure is uniform, the qualified rate of air-tightness of production reaches 86%, and the performance is excellent.

  11. Testing single point incremental forming molds for thermoforming operations

    NASA Astrophysics Data System (ADS)

    Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo

    2016-10-01

    Low pressure polymer processing processes as thermoforming or rotational molding use much simpler molds then high pressure processes like injection. However, despite the low forces involved with the process, molds manufacturing for this operations is still a very material, energy and time consuming operation. The goal of the research is to develop and validate a method for manufacturing plastically formed sheets metal molds by single point incremental forming (SPIF) operation for thermoforming operation. Stewart platform based SPIF machines allow the forming of thick metal sheets, granting the required structural stiffness for the mold surface, and keeping the short lead time manufacture and low thermal inertia.

  12. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  13. Flow behavior in liquid molding

    NASA Technical Reports Server (NTRS)

    Hunston, D.; Phelan, F.; Parnas, R.

    1992-01-01

    The liquid molding (LM) process for manufacturing polymer composites with structural properties has the potential to significantly lower fabrication costs and increase production rates. LM includes both resin transfer molding and structural reaction injection molding. To achieve this potential, however, the underlying science base must be improved to facilitate effective process optimization and implementation of on-line process control. The National Institute of Standards and Technology (NIST) has a major program in LM that includes materials characterization, process simulation models, on-line process monitoring and control, and the fabrication of test specimens. The results of this program are applied to real parts through cooperative projects with industry. The key feature in the effort is a comprehensive and integrated approach to the processing science aspects of LM. This paper briefly outlines the NIST program and uses several examples to illustrate the work.

  14. Microstructural Effects on Initiation Behavior in HMX

    NASA Astrophysics Data System (ADS)

    Molek, Christopher; Welle, Eric; Hardin, Barrett; Vitarelli, Jim; Wixom, Ryan; Samuels, Philip

    Understanding the role microstructure plays on ignition and growth behavior has been the subject of a significant body of research within the detonation physics community. The pursuit of this understanding is important because safety and performance characteristics have been shown to strongly correlate to particle morphology. Historical studies have often correlated bulk powder characteristics to the performance or safety characteristics of pressed materials. We believe that a clearer and more relevant correlation is made between the pressed microstructure and the observed detonation behavior. This type of assessment is possible, as techniques now exist for the quantification of the pressed microstructures. Our talk will report on experimental efforts that correlate directly measured microstructural characteristics to initiation threshold behavior of HMX based materials. The internal microstructures were revealed using an argon ion cross-sectioning technique. This technique enabled the quantification of density and interface area of the pores within the pressed bed using methods of stereology. These bed characteristics are compared to the initiation threshold behavior of three HMX based materials using an electric gun based test method. Finally, a comparison of experimental threshold data to supporting theoretical efforts will be made.

  15. Performance of disposable endoscopic forceps according to the manufacturing techniques.

    PubMed

    Kwon, Chang-Il; Kim, Gwangil; Moon, Jong Pil; Yun, Ho; Ko, Weon Jin; Cho, Joo Young; Hong, Sung Pyo

    2018-03-05

    Recently, to lower the production costs and risk of infection, new disposable biopsy forceps made using simple manufacturing techniques have been introduced. However, the effects of the manufacturing techniques are unclear. The aim of this study was to evaluate which types of biopsy forceps could obtain good-quality specimens according to the manufacturing techniques. By using an in vitro nitrile glove popping model, we compared the popping ability among eight different disposable biopsy forceps (one pair of biopsy forceps with cups made by a cutting method [cutting forceps], four pairs of biopsy forceps with cups made by a pressing method [pressing forceps], and three pairs of biopsy forceps with cups made using a injection molding method [molding forceps]). Using an in vivo swine model, we compared the penetration depth and quality of specimen among the biopsy forceps. In the in vitro model, the molding forceps provided a significantly higher popping rate than the other forceps (cutting forceps, 25.0%; pressing forceps, 17.5%; and molding forceps, 41.7%; p = 0.006). In the in vivo model, the cutting and pressing forceps did not provide larger specimens, deeper biopsy specimen, and higher specimen adequacy than those obtained using the molding forceps (p = 0.2631, p = 0.5875, and p = 0.2147, respectively). However, the molding forceps showed significantly more common crush artifact than the others (cutting forceps, 0%; pressing forceps, 5.0%; and molding forceps, 43.3%; p = 0.0007). The molding forceps provided lower performance than the cutting and pressing forceps in terms of crush artifact.

  16. Retention of denture bases fabricated by three different processing techniques – An in vivo study

    PubMed Central

    Chalapathi Kumar, V. H.; Surapaneni, Hemchand; Ravikiran, V.; Chandra, B. Sarat; Balusu, Srilatha; Reddy, V. Naveen

    2016-01-01

    Aim: Distortion due to Polymerization shrinkage compromises the retention. To evaluate the amount of retention of denture bases fabricated by conventional, anchorized, and injection molding polymerization techniques. Materials and Methods: Ten completely edentulous patients were selected, impressions were made, and master cast obtained was duplicated to fabricate denture bases by three polymerization techniques. Loop was attached to the finished denture bases to estimate the force required to dislodge them by retention apparatus. Readings were subjected to nonparametric Friedman two-way analysis of variance followed by Bonferroni correction methods and Wilcoxon matched-pairs signed-ranks test. Results: Denture bases fabricated by injection molding (3740 g), anchorized techniques (2913 g) recorded greater retention values than conventional technique (2468 g). Significant difference was seen between these techniques. Conclusions: Denture bases obtained by injection molding polymerization technique exhibited maximum retention, followed by anchorized technique, and least retention was seen in conventional molding technique. PMID:27382542

  17. Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone stents using micro-injection molding and spray coating techniques.

    PubMed

    Liu, Shih-Jung; Chiang, Fu-Jun; Hsiao, Chao-Ying; Kau, Yi-Chuan; Liu, Kuo-Sheng

    2010-10-01

    The purpose of this report was to develop novel balloon-expandable self-lock drug-eluting poly(ε-caprolactone) stents. To fabricate the biodegradable stents, polycaprolactone (PCL) components were first fabricated by a lab-scale micro-injection molded machine. They were then assembled and hot-spot welded into mesh-like stents of 3 and 5 mm in diameters. A special geometry of the components was designed to self-lock the assembled stents and to resist the external pressure of the blood vessels after being expanded by balloons. Characterization of the biodegradable PCL stents was carried out. PCL stents exhibited comparable mechanical property to that of metallic stents. No significant collapse pressure reduction and weight loss of the stents were observed after being submerged in PBS for 12 weeks. In addition, the developed stent was coated with paclitaxel by a spray coating technique and the release characteristic of the drug was determined by an in vitro elution method. The high-performance liquid chromatography analysis showed that the biodegradable stents could release a high concentration of paclitaxel for more than 60 days. By adopting the novel techniques, we will be able to fabricate biodegradable drug-eluting PCL stents of different sizes for various cardiovascular applications.

  18. Chemistry in microstructured reactors.

    PubMed

    Jähnisch, Klaus; Hessel, Volker; Löwe, Holger; Baerns, Manfred

    2004-01-16

    The application of microstructured reactors in the chemical process industry has gained significant importance in recent years. Companies that offer not only microstructured reactors, but also entire chemical process plants and services relating to them, are already in existence. In addition, many institutes and universities are active within this field, and process-engineering-oriented reviews and a specialized book are available. Microstructured systems can be applied with particular success in the investigation of highly exothermic and fast reactions. Often the presence of temperature-induced side reactions can be significantly reduced through isothermal operations. Although microstructured reaction techniques have been shown to optimize many synthetic procedures, they have not yet received the attention they deserve in organic chemistry. For this reason, this Review aims to address this by providing an overview of the chemistry in microstructured reactors, grouped into liquid-phase, gas-phase, and gas-liquid reactions.

  19. Epoxy-resin patterns speed shell-molding of aluminum parts

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Half patterns cast from commercial epoxy resin containing aluminum powder are used for shell-molding of aluminum parts. The half patterns are cast in plastic molds of the original wooden pattern. Ten serviceable sand resin molds are made from each epoxy pattern.

  20. The Effect of Epoxy Molding Compound Floor Life to Reliability Performance and mold ability for QFN Package

    NASA Astrophysics Data System (ADS)

    Peanpunga, Udom; Ugsornrat, Kessararat; Thorlor, Panakamol; Sumithpibul, Chalermsak

    2017-09-01

    This research studied about an epoxy molding compound (EMC) floor life to reliability performance of integrated circuit (IC) package. Molding is the process for protecting the die of IC package form mechanical and chemical reaction from external environment by shaping EMC. From normal manufacturing process, the EMC is stored in the frozen at 5oC and left at around room temperature for aging time or floor life before molding process. The EMC floor life effect to its properties and reliability performance of IC package. Therefore, this work interested in varied the floor life of EMC before molding process to analyze properties of EMC such as spiral flow length, gelation time, and viscosity. In experiment, the floor life of EMC was varied to check the effect of its property to reliability performance. The EMC floor life were varied from 0 hours to 60 hours with a step of 12 hours and observed wire sweep, incomplete EMC, and delamination inside the packages for 3x3, 5x5 and 8x8 mm2 of QFN packages. The evaluation showed about clearly effect of EMC floor life to IC packaging reliability. EMC floor life is not any concern for EMC property, moldabilty, and reliability from 0 hours to 48 hours for molding process of 3x3,5x5 and 8x8 mm2 QFN packaging manufacturing

  1. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry.

    PubMed

    Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui

    2017-10-31

    Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.

  2. A programmable nanoreplica molding for the fabrication of nanophotonic devices.

    PubMed

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-03-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.

  3. A programmable nanoreplica molding for the fabrication of nanophotonic devices

    PubMed Central

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-01-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively. PMID:26925828

  4. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE...

  5. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE...

  6. Transfer molding processes for nanoscale patterning of poly-L-lactic acid (PLLA) films

    NASA Astrophysics Data System (ADS)

    Dhakal, Rabin; Peer, Akshit; Biswas, Rana; Kim, Jaeyoun

    2016-03-01

    Nanoscale patterned structures composed of biomaterials exhibit great potential for the fabrication of functional biostructures. In this paper, we report cost-effective, rapid, and highly reproducible soft lithographic transfer-molding techniques for creating periodic micro- and nano-scale textures on poly (L-lactic acid) (PLLA) surface. These artificial textures can increase the overall surface area and change the release dynamics of the therapeutic agents coated on it. Specifically, we use the double replication technique in which the master pattern is first transferred to the PDMS mold and the pattern on PDMS is then transferred to the PLLA films through drop-casting as well as nano-imprinting. The ensuing comparison studies reveal that the drop-cast PLLA allows pattern transfer at higher levels of fidelity, enabling the realization of nano-hole and nano-cone arrays with pitch down to ~700 nm. The nano-patterned PLLA film was then coated with rapamycin to make it drug-eluting.

  7. Obstetric balloon for treatment of foreshortened vagina using the McIndoe technique.

    PubMed

    Rauktys, Aubrey; Parikh, Pranay; Harmanli, Oz

    2015-01-01

    When conservative options such as the use of vaginal dilators fail, the McIndoe technique may be used in the surgical treatment of a foreshortened vagina. The McIndoe procedure, an approach commonly used for the treatment of vaginal agenesis, requires a mold over which a skin graft is sutured and placed inside the vagina. In most surgical descriptions, this mold is made from non-sterile foam, condoms, or gloves. Because makeshift molds can no longer be used in operating rooms owing to strict regulations, alternative methods must be employed. The obstetric balloon is a good choice for use as a soft and adjustable vaginal mold for a modified McIndoe procedure because it is readily available as an approved device in hospitals that provide obstetric services. This technique was successfully employed in a 54-year-old woman to treat foreshortened vagina. An obstetric balloon can be used effectively as a mold for vaginal reconstruction with the McIndoe technique.

  8. Additive Manufacturing of Wind Turbine Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian; Richardson, Bradley; Lloyd, Peter

    The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings andmore » material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).« less

  9. Neuropsychological exploration of alleged mold neurotoxicity.

    PubMed

    Reinhard, Matthew J; Satz, Paul; Scaglione, Cris A; D'Elia, Louis F; Rassovsky, Yuri; Arita, Anthony A; Hinkin, Charles H; Thrasher, Delaney; Ordog, Gary

    2007-05-01

    Cognitive and emotional correlates of toxic mold exposure and potential dose-response effects for both outcomes were investigated. Self-reported length of exposure, time since last exposure, and serum immunoglobulin (IgG) levels were assessed. Despite CNS complaints often seen with mold exposed individuals, overall results did not uncover concomitant cognitive deficits suggested in previous studies or a significant reduction in intellectual functioning. Fewer subjects were excluded as result of failing effort/motivation assessment than expected. Correlations of IgG and cognitive function are discussed. A dose-effect for self-reported length of exposure and cognitive outcome was not seen. The sample's overall Minnesota Multiphasic Personality Inventory II (MMPI-2) profile indicated elevations on scales 1, 2, 3, 7 and 8. MMPI-2 clinical scales 1 and 3 were significantly correlated with length of exposure. The MMPI-2 may be sensitive to increasing physical and emotional sequelae as length of exposure increases. A potential subgroup of cognitively impaired outliers within mold exposure litigants is explored. Limitations of self-reported and objective measurements for mold exposure and exploratory statistical methodology are discussed.

  10. Evacuated, displacement compression mold. [of tubular bodies from thermosetting plastics

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A process of molding long thin-wall tubular bodies from thermosetting plastic molding compounds is described wherein the tubular body lengths may be several times the diameters. The process is accomplished by loading a predetermined quantity of molding compound into a female mold cavity closed at one end by a force mandrel. After closing the other end of the female mold with a balance mandrel, the loaded cavity is evacuated by applying a vacuum of from one-to-five mm pressure for a period of fifteen-to-thirty minutes. The mold temperature is raised to the minimum temperature at which the resin constituent of the compound will soften or plasticize and a pressure of 2500 psi is applied.

  11. Breaking the Mold.

    ERIC Educational Resources Information Center

    Huckabee, Christopher

    2003-01-01

    Using the example of a Texas elementary school, describes how to eliminate mold and mildew from school facilities, including discovering the problem, responding quickly, reconstructing the area, and crisis planning and prevention. (EV)

  12. Genomic characterization of recurrent mold infections in thoracic transplant recipients.

    PubMed

    Messina, Julia A; Wolfe, Cameron R; Hemmersbach-Miller, Marion; Milano, Carmelo; Todd, Jamie L; Reynolds, John; Alexander, Barbara D; Schell, Wiley A; Cuomo, Christina A; Perfect, John R

    2018-05-31

    Invasive mold disease in thoracic organ transplant recipients is a well-recognized complication, but the long-term persistence of molds within the human body and evasion of host defenses has not been well-described. We present 2 cases of invasive mold disease (Verruconis gallopava and Aspergillus fumigatus) in thoracic transplant recipients who had the same mold cultured years prior to the invasive disease presentation. The paired isolates from the index and recurrent infections in both patients were compared using whole-genome sequencing to determine if the same strain of mold caused both the index and recurrent infections. In Case 1, the isolates were found to be of the same strain indicating that the initial colonizing isolate identified pre-transplant eventually caused invasive mold disease post-transplant while in Case 2, the 2 isolates were not of the same strain. These results demonstrate the distinct possibility of molds both persisting within the human body for years prior to invasive mold disease or the long-term risk of recurrent, persistent infection with more than one strain. Further studies of long-term molecular epidemiology of IMD and risk factors for mold persistence in transplant recipients are encouraged. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Effect of Custom-Molded Foot Orthoses on Foot Pain and Balance in Children With Symptomatic Flexible Flat Feet

    PubMed Central

    Lee, Hong-Jae; Lim, Kil-Byung; Yoo, JeeHyun; Yun, Hyun-Ju; Jeong, Tae-Ho

    2015-01-01

    Objective To evaluate the effect of custom-molded foot orthoses on foot pain and balance in children with symptomatic flexible flat foot 1 month and 3 months after fitting foot orthosis. Method A total of 24 children over 6 years old with flexible flat feet and foot pain for at least 6 months were recruited for this study. Their resting calcaneal stance position and calcaneal pitch angle were measured. Individual custom-molded rigid foot orthoses were prescribed using inverted orthotic technique to control foot overpronation. Pain questionnaire was used to obtain pain sites, degree, and frequency. Balancing ability was determined using computerized posturography. These evaluations were performed prior to custom-molded foot orthoses, 1 month, and 3 months after fitting foot orthoses. Result Of 24 children with symptomatic flexible flat feet recruited for this study, 20 completed the study. Significant (p<0.001) improvements in pain degree and frequency were noted after 1 and 3 months of custom-molded foot orthoses. In addition, significant (p<0.05) improvement in balancing ability was found after 3 months of custom-molded foot orthoses. Conclusion Short-term use of custom-molded foot orthoses significantly improved foot pain and balancing ability in children with symptomatic flexible flat foot. PMID:26798604

  14. [Biological monitoring in the molding of plastics and rubbers].

    PubMed

    Fustinoni, S; Campo, L; Cirla, A M; Cirla, P E; Cutugno, V; Lionetti, C; Martinotti, I; Mossini, E; Foà, V

    2007-01-01

    This survey was carried out in the molding of plastics and rubbers, in the "Professional Cancer Prevention Project" sponsored by the Lombardy region with the objective of developing and implementing protocols for evaluating exposure to carcinogens through the biological monitoring. The realities of molding the thermoplastic polymer ABS, rubber, and thermosetting plastics containing formaldehyde were examined. The carcinogenic substances identified in these processes were: 1,3-butadiene, acrylonitrile and styrene in molding ABS, polycyclic aromatic hydrocarbons (PAH) in molding rubber, and formaldehyde in molding the thermosetting plastics. Only for some of these substances biological indicators are available. The limited exposure to airborne chemicals in molding ABS and the intrinsic characteristics of biological indicators available for 1-3 butadiene have determined the non applicability of biological monitoring to this situation. The absence of a biological indicator of exposure to formaldehyde has made this situation not investigable. Exposure in the rubber molding was studied in 19 subjects applying the determination not metabolized PAH in urine. The levels of these indicators were similar to those measured in other groups of subjects without occupational exposure to PAH, confirming a low airborne contamination in this workplace.

  15. Static Mixer for Heat Transfer Enhancement for Mold Cooling Application

    NASA Astrophysics Data System (ADS)

    Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil

    Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.

  16. Treating "cauliflower ear" with silicone mold.

    PubMed

    Gross, C G

    1978-01-01

    Acute hematoma of the ear (cauliflower ear) can be satisfactorily treated with aspiration and the use of the silicone mold to prevent reaccumulation of the blood or serum in the ear. Advantages of the silicone mold over other dressings appears to be ease of application, patient acceptance, and prevention of reoccurrence of reaccumulation of the hematoma.

  17. Mold Image Library

    MedlinePlus

    ... condensation because there is a hole in the insulation and it is cold outdoors. Photo courtesy of ... Inside of wall from above, moldy gypsum board, insulation Photo courtesy of Terry Brennan Looking for mold ...

  18. High-Resolution Characterization of UMo Alloy Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Kovarik, Libor; Joshi, Vineet V.

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools thatmore » can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.« less

  19. Simulation of cracking cores when molding piston components

    NASA Astrophysics Data System (ADS)

    Petrenko, Alena; Soukup, Josef

    2014-08-01

    The article deals with pistons casting made from aluminum alloy. Pistons are casting at steel mold with steel core. The casting is provided by gravity casting machine. The each machine is equipped by two metal molds, which are preheated above temperature 160 °C before use. The steel core is also preheated by flame. The metal molds and cores are heated up within the casting process. The temperature of the metal mold raise up to 200 °C and temperature of core is higher. The surface of the core is treated by nitration. The mold and core are cooled down by water during casting process. The core is overheated and its top part is finally cracked despite its intensive water-cooling. The life time cycle of the core is decreased to approximately 5 to 15 thousands casting, which is only 15 % of life time cycle of core for production of other pistons. The article presents the temperature analysis of the core.

  20. Direct molding of pavement tiles made of ground tire rubber

    NASA Astrophysics Data System (ADS)

    Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore

    2016-10-01

    Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.

  1. Fundamentals of rapid injection molding for microfluidic cell-based assays.

    PubMed

    Lee, Ulri N; Su, Xiaojing; Guckenberger, David J; Dostie, Ashley M; Zhang, Tianzi; Berthier, Erwin; Theberge, Ashleigh B

    2018-01-30

    Microscale cell-based assays have demonstrated unique capabilities in reproducing important cellular behaviors for diagnostics and basic biological research. As these assays move beyond the prototyping stage and into biological and clinical research environments, there is a need to produce microscale culture platforms more rapidly, cost-effectively, and reproducibly. 'Rapid' injection molding is poised to meet this need as it enables some of the benefits of traditional high volume injection molding at a fraction of the cost. However, rapid injection molding has limitations due to the material and methods used for mold fabrication. Here, we characterize advantages and limitations of rapid injection molding for microfluidic device fabrication through measurement of key features for cell culture applications including channel geometry, feature consistency, floor thickness, and surface polishing. We demonstrate phase contrast and fluorescence imaging of cells grown in rapid injection molded devices and provide design recommendations to successfully utilize rapid injection molding methods for microscale cell-based assay development in academic laboratory settings.

  2. Indoor mold spore exposure: characteristics of 127 homes in southern California with endogenous mold problems.

    PubMed

    Gallup, J; Kozak, P; Cummins, L; Gillman, S

    1987-01-01

    We are constantly being exposed to molds in our environment. Indoor mold problems occur after prolonged or chronic water damage to a variety of organic materials such as unfinished wood, jutebacked carpeting, wallpaper, books, cardboard, leather, cork, paper, wallboard, and wicker baskets. Mechanisms for spore dispersal (such as air currents or foot traffic on carpets) must also be present. The presence of these organic materials and dispersal mechanisms leads to significant increases in indoor spore levels.

  3. A review of techniques for visualising soft tissue microstructure deformation and quantifying strain Ex Vivo.

    PubMed

    Disney, C M; Lee, P D; Hoyland, J A; Sherratt, M J; Bay, B K

    2018-04-14

    Many biological tissues have a complex hierarchical structure allowing them to function under demanding physiological loading conditions. Structural changes caused by ageing or disease can lead to loss of mechanical function. Therefore, it is necessary to characterise tissue structure to understand normal tissue function and the progression of disease. Ideally intact native tissues should be imaged in 3D and under physiological loading conditions. The current published in situ imaging methodologies demonstrate a compromise between imaging limitations and maintaining the samples native mechanical function. This review gives an overview of in situ imaging techniques used to visualise microstructural deformation of soft tissue, including three case studies of different tissues (tendon, intervertebral disc and artery). Some of the imaging techniques restricted analysis to observational mechanics or discrete strain measurement from invasive markers. Full-field local surface strain measurement has been achieved using digital image correlation. Volumetric strain fields have successfully been quantified from in situ X-ray microtomography (micro-CT) studies of bone using digital volume correlation but not in soft tissue due to low X-ray transmission contrast. With the latest developments in micro-CT showing in-line phase contrast capability to resolve native soft tissue microstructure, there is potential for future soft tissue mechanics research where 3D local strain can be quantified. These methods will provide information on the local 3D micromechanical environment experienced by cells in healthy, aged and diseased tissues. It is hoped that future applications of in situ imaging techniques will impact positively on the design and testing of potential tissue replacements or regenerative therapies. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  4. 56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS APPROXIMATELY 6,000 PLASTER MOLDS OF VARIOUS TYPES, INCLUDING THE DEEP CAVITY MOLDS IN THE CENTER OF THE PHOTOGRAPH. THESE MOLDS PRODUCED ALLEGORICAL FIGURES TO BE INSTALLED AROUND THE CORNICES OF PUBLIC SCHOOLS. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  5. Environmental Mold and Mycotoxin Exposures Elicit Specific Cytokine and Chemokine Responses

    PubMed Central

    Rosenblum Lichtenstein, Jamie H.; Hsu, Yi-Hsiang; Gavin, Igor M.; Donaghey, Thomas C.; Molina, Ramon M.; Thompson, Khristy J.; Chi, Chih-Lin; Gillis, Bruce S.; Brain, Joseph D.

    2015-01-01

    Background Molds can cause respiratory symptoms and asthma. We sought to use isolated peripheral blood mononuclear cells (PBMCs) to understand changes in cytokine and chemokine levels in response to mold and mycotoxin exposures and to link these levels with respiratory symptoms in humans. We did this by utilizing an ex vivo assay approach to differentiate mold-exposed patients and unexposed controls. While circulating plasma chemokine and cytokine levels from these two groups might be similar, we hypothesized that by challenging their isolated white blood cells with mold or mold extracts, we would see a differential chemokine and cytokine release. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from blood from 33 patients with a history of mold exposures and from 17 controls. Cultured PBMCs were incubated with the most prominent Stachybotrys chartarum mycotoxin, satratoxin G, or with aqueous mold extract, ionomycin, or media, each with or without PMA. Additional PBMCs were exposed to spores of Aspergillus niger, Cladosporium herbarum and Penicillium chrysogenum. After 18 hours, cytokines and chemokines released into the culture medium were measured by multiplex assay. Clinical histories, physical examinations and pulmonary function tests were also conducted. After ex vivo PBMC exposures to molds or mycotoxins, the chemokine and cytokine profiles from patients with a history of mold exposure were significantly different from those of unexposed controls. In contrast, biomarker profiles from cells exposed to media alone showed no difference between the patients and controls. Conclusions These findings demonstrate that chronic mold exposures induced changes in inflammatory and immune system responses to specific mold and mycotoxin challenges. These responses can differentiate mold-exposed patients from unexposed controls. This strategy may be a powerful approach to document immune system responsiveness to molds and other inflammation

  6. Presurgical Nasoalveolar Molding for Correction of Cleft Lip Nasal Deformity: Experience From Northern India

    PubMed Central

    Mishra, Brijesh; Singh, Arun K.; Zaidi, Javed; Singh, G. K.; Agrawal, Rajiv; Kumar, Vijay

    2010-01-01

    Context: The cleft lip type nasal deformity presents one of the most complex surgical challenges. The long-term postoperative results are still not satisfactory despite an emphasis on primary nasal correction. This is attributed to tissue memory and healing. Nasoalveolar molding is used effectively to reshape the nasal cartilage and to mold the maxillary arch before cleft lip repair. Aims: This study was undertaken to evaluate the role of presurgical nasoalveolar molding in correction of cleft lip nasal deformity for patients with unilateral and bilateral clefts of the lip. Settings and Design: Twenty-three cases of clefts of lip and palate with nasal deformity were subjected to present study from May 2004 to May 2006. These cases were initially treated on outpatient basis, and they were admitted at the time of operation. All of these patients were children of less than 1 year of age, belonging to north Indian population. Material and Methods: Study consisted of patients of cleft lip and palate who were given presurgical nasoalveolar splints at early age. Lip repair was done after at least 2 months of molding. These patients along with control group (without presurgical nasoalveolar molding) were followed up for 1 year. Measurements were taken at different intervals in study over dental cast and on patients. Data obtained from comparison of 2 groups were analyzed using “MSTAT” analysis software (developed by Dr Russel Freed, Professor & Director, Crop & Soil Sciences Department, Michigan State University, East Lansing, Michigan). Results: In our study, we found that nostril height was more in patients of experimental group (P = .18), while nostril width and alar perimeter were not changed significantly. Children with nasoalveolar molding had significant lengthening of columella (P = .02). Patients of unilateral cleft lip had more reduction in alveolar gap (P = .08) than bilateral group (P = .15). Conclusions: Nasoalveolar molding can be a useful adjunct for

  7. Mold contamination of automobile air conditioner systems.

    PubMed

    Kumar, P; Lopez, M; Fan, W; Cambre, K; Elston, R C

    1990-02-01

    Eight cars belonging to patients who were found to have exacerbation of allergic rhinitis and bronchial asthma after turning on the air conditioner in their cars were examined. Mold concentrations inside the passenger compartment with the a/c turned off and at different climate control settings were lower than concentrations in the outside air. After turning on the air conditioner to "Max", cultures obtained at various intervals revealed that mold concentrations decreased significantly with time. Furthermore, placement of a filter at the portal of entry of outside air significantly reduced the mold concentration in the passenger compartment.

  8. Rapid manufacturing of metallic Molds for parts in Automobile

    NASA Astrophysics Data System (ADS)

    Zhang, Renji; Xu, Da; Liu, Yuan; Yan, Xudong; Yan, Yongnian

    1998-03-01

    The recent research of RPM (Rapid Prototyping Manufacturing) in our lab has been focused on the rapid creation of alloyed cast iron (ACI) molds. There are a lot of machinery parts in an automobile, so a lot of mettallic molds are needed in automobile industry. A new mold manufacturing technology has been proposed. A new large scale RP machine has been set up in our lab now. Then rapid prototypes could be manufactured by means of laminated object manufacturing (LOM) technology. The molds for parts in automobile have been produced by ceramic shell precision casting. An example is a drawing mold for cover parts in automobile. Sufficient precision and surface roughness have been obtained. Itis proved that this is a vew kind of technology. Work supported by the Mational Science Foundation of China.

  9. Development of In-Mold Assembly Methods for Producing Mesoscale Revolute Joints

    DTIC Science & Technology

    2009-01-01

    tolerances available for manufacturing the molds are relatively low. Any inaccuracy in mold First stage part (ABS) Second stage part ( LDPE ) Pins...case, the viscosity of LDPE is also a function of temperature. For each of these cases, they have considered the filling of a thin mold cavity. From...predicting the weld-line strengths of crystalline polymers such as LDPE . 63 3 Issues in In-Mold Assembly at the Mesoscale 3.1 Motivation In-mold

  10. Development of porous lamellar poly(L-lactic acid) scaffolds by conventional injection molding process.

    PubMed

    Ghosh, Satyabrata; Viana, Júlio C; Reis, Rui L; Mano, João F

    2008-07-01

    A novel fabrication technique is proposed for the preparation of unidirectionally oriented, porous scaffolds by selective polymer leaching from lamellar structures created by conventional injection molding. The proof of the concept is implemented using a 50/50 wt.% poly(L-lactic acid)/poly(ethylene oxide) (PLLA/PEO) blend. With this composition, the PLLA and PEO blend is biphasic, containing a homogeneous PLLA/PEO phase and a PEO-rich phase. The two phases were structured using injection molding into well-defined alternating layers of homogeneous PLLA/PEO phase and PEO-rich phase. Leaching of water-soluble PEO from the PEO-rich phase produces macropores, and leaching of phase-separated PEO from the initially homogeneous PLLA/PEO phase produces micropores in the lamellae. Thus, scaffolds with a macroporous lamellar architecture with microporous walls can be produced. The lamellae are continuous along the flow direction, and a continuous lamellar thickness of less than 1 microm could be achieved. Porosities of 57-74% and pore sizes of around 50-100 microm can be obtained using this process. The tensile elastic moduli of the porous constructs were between 580 and 800 MPa. We propose that this organic-solvent-free method of preparing lamellar scaffolds with good mechanical properties, and the reproducibility associated with the injection molding technique, holds promise for a wide range of guided tissue engineering applications.

  11. Fabrication of high aspect ratio nanopillars and micro/nano combined structures with hydrophobic surface characteristics by injection molding

    NASA Astrophysics Data System (ADS)

    Zhou, Mingyong; Xiong, Xiang; Jiang, Bingyan; Weng, Can

    2018-01-01

    Polymer products with micro/nano-structures have excellent mechanical and optical properties, chemical resistance, and other advantages. Injection molding is one of the most potential techniques to fabricate polymer products with micro/nano-structures artificially in large numbers. In this study, a surface approach to fabricate high aspect ratio nanopillars and micro/nano combined structures was presented. Mold insert with micropillar arrays and nanopillars on its surface was prepared by combing anodic aluminum oxide (AAO) template and etched plate. Anti-sticking modification was done on the template to realize a better demolding quality. The influences of mold temperature and polymer material on the final replication quality were investigated. The results showed that the final replication quality of high aspect ratio nanopillars was greatly improved as compared with the unprocessed template. Polymer with low elongation at break was not suitable to fabricate structures with high aspect ratio via injection molding. For polypropylene surface, the experimental results of static contact angles were almost consistent with Cassie-Baxter equation. When the mold temperature reached 178 °C, hair-like polycarbonate nanopillars were observed, resulting in an excellent hydrophobic characteristic.

  12. Study of the Effect of Mold Corner Shape on the Initial Solidification Behavior of Molten Steel Using Mold Simulator

    NASA Astrophysics Data System (ADS)

    Lyu, Peisheng; Wang, Wanlin; Long, Xukai; Zhang, Kaixuan; Gao, Erzhuo; Qin, Rongshan

    2018-02-01

    The chamfered mold with a typical corner shape (angle between the chamfered face and hot face is 45 deg) was applied to the mold simulator study in this paper, and the results were compared with the previous results from a well-developed right-angle mold simulator system. The results suggested that the designed chamfered structure would increase the thermal resistance and weaken the two-dimensional heat transfer around the mold corner, causing the homogeneity of the mold surface temperatures and heat fluxes. In addition, the chamfered structure can decrease the fluctuation of the steel level and the liquid slag flow around the meniscus at mold corner. The cooling intensities at different longitudinal sections of shell are close to each other due to the similar time-average solidification factors, which are 2.392 mm/s1/2 (section A-A: chamfered center), 2.372 mm/s1/2 (section B-B: 135 deg corner), and 2.380 mm/s1/2 (section D-D: face), respectively. For the same oscillation mark (OM), the heights of OM roots at different positions (profile L1 (face), profile L2 (135 deg corner), and profile L3 (chamfered center)) are very close to each other. The average value of height difference (HD) between two OMs roots for L1 and L2 is 0.22 mm, and for L2 and L3 is 0.38 mm. Finally, with the help of metallographic examination, the shapes of different hooks were also discussed.

  13. Three-dimensional numerical simulation for plastic injection-compression molding

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  14. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.

    PubMed

    Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y

    2018-05-01

    A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.

  15. Improved ceramic slip casting technique. [application to aircraft model fabrication

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  16. 47 CFR 76.805 - Access to molding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Access to molding. 76.805 Section 76.805 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.805 Access to molding. (a) An MVPD shall be permitted...

  17. Ultrasound - Aided ejection in micro injection molding

    NASA Astrophysics Data System (ADS)

    Masato, D.; Sorgato, M.; Lucchetta, G.

    2018-05-01

    In this work, an ultrasound-aided ejection system was designed and tested for different polymers (PS, COC and POM) and mold topographies. The proposed solution aims at reducing the ejection friction by decreasing the adhesion component of the frictional force, which is controlled by the contact area developed during the filling stage of the injection molding process. The experimental results indicate a positive effect of ultrasound vibration on the friction force values, with a maximum reduction of 16. Moreover, it is demonstrated that the ultrasound effect is strictly related to both polymer selection and mold roughness. The combined effect on the ejection force of mold surface roughness, melt viscosity during filling and polymer elastic modulus at ejection was modeled to the experimental data, in order to demonstrate that the effect of ultrasound vibration on the ejection friction reduction is due to the heating of the contact interface and the consequent reduction of the polymer elastic modulus.

  18. Method and composition for molding low-density desiccant syntactic-foam articles

    DOEpatents

    Not Available

    1981-12-07

    These and other objects of the invention are achieved by a process for molding to size a desiccant syntactic foam article having a density of 0.2 to 0.9 g/cc and a moisture capacity of 1 to 12% by weight, comprising the steps of: charging a mold with a powdery mixture of an activated desiccant, microspheres and a thermosetting resin, the amount of the desiccant being sufficient to provide the required moisture capacity, and the amounts of the microspheres and resin being such that the microspheres/desiccant volume fraction exceeds the packing factor by an amount sufficient to substantially avoid shrinkage without causing excessively high molding pressures; covering the mold and heating the covered mold to a temperature and for an amount of time sufficient to melt the resin; and tightly closing the mold and heating the closed mold to a temperature and for an amount of time sufficient to cure the resin, and removing the resultant desiccant syntactic foam article from the mold. In a composition of matter aspect, the present invention provides desiccant syntactic foam articles, and a composition of matter for use in molding the same.

  19. Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.

    PubMed

    Lee, Bong Kuk; Yu, Han Young; Kim, Yarkyeon; Yoon, Yong Sun; Jang, Won Ik; Do, Lee-Mi; Park, Ji-Ho; Park, Jaehoon

    2016-03-01

    We report the fabrication of flexible replica molds for transfer printing of Ag ink on a rigid glass substrate. As mold precursors, acrylic mixtures were prepared from silsesquioxane-based materials, silicone acrylate, poly(propylene glycol) diacrylate, 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate, and photoinitiator. By using these materials, the replica molds were fabricated from a silicon master onto a flexible substrate by means of UV-assisted molding process at room temperature. The wettability of Ag ink decreased with increase in the water contact angle of replica molds. On the other hand, the transfer rate of Ag ink onto adhesive-modified substrates increased with increase in the water contact angle of replica molds. Transferred patterns were found to be thermally stable on the photocurable adhesive layer, whereas Ag-ink patterns transferred on non-photocurable adhesives were distorted by thermal treatment. We believe that these characteristics of replica molds and adhesives offer a new strategy for the development of the transfer printing of solution-based ink materials.

  20. A would-be nervous system made from a slime mold.

    PubMed

    Adamatzky, Andrew

    2015-01-01

    The slime mold Physarum polycephalum is a huge single cell that has proved to be a fruitful material for designing novel computing architectures. The slime mold is capable of sensing tactile, chemical, and optical stimuli and converting them to characteristic patterns of its electrical potential oscillations. The electrical responses to stimuli may propagate along protoplasmic tubes for distances exceeding tens of centimeters, as impulses in neural pathways do. A slime mold makes decisions about its propagation direction based on information fusion from thousands of spatially extended protoplasmic loci, similarly to a neuron collecting information from its dendritic tree. The analogy is distant yet inspiring. We speculate on whether alternative-would-be-nervous systems can be developed and practically implemented from the slime mold. We uncover analogies between the slime mold and neurons, and demonstrate that the slime mold can play the roles of primitive mechanoreceptors, photoreceptors, and chemoreceptors; we also show how the Physarum neural pathways develop. The results constituted the first step towards experimental laboratory studies of nervous system implementation in slime molds.

  1. Improving microstructural quantification in FIB/SEM nanotomography.

    PubMed

    Taillon, Joshua A; Pellegrinelli, Christopher; Huang, Yi-Lin; Wachsman, Eric D; Salamanca-Riba, Lourdes G

    2018-01-01

    FIB/SEM nanotomography (FIB-nt) is a powerful technique for the determination and quantification of the three-dimensional microstructure in subsurface features. Often times, the microstructure of a sample is the ultimate determiner of the overall performance of a system, and a detailed understanding of its properties is crucial in advancing the materials engineering of a resulting device. While the FIB-nt technique has developed significantly in the 15 years since its introduction, advanced nanotomographic analysis is still far from routine, and a number of challenges remain in data acquisition and post-processing. In this work, we present a number of techniques to improve the quality of the acquired data, together with easy-to-implement methods to obtain "advanced" microstructural quantifications. The techniques are applied to a solid oxide fuel cell cathode of interest to the electrochemistry community, but the methodologies are easily adaptable to a wide range of material systems. Finally, results from an analyzed sample are presented as a practical example of how these techniques can be implemented. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. TRUFLO GONDOLA, USED WITH THE HUNTER 10 MOLDING MACHINE, OPERATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRUFLO GONDOLA, USED WITH THE HUNTER 10 MOLDING MACHINE, OPERATES THE SAME AS THE TWO LARGER TRUFLOS USED IN CONJUNCTION WITH THE TWO HUNTER 20S. EACH GONDOLA IS CONNECTED TO THE NEXT AND RIDES ON A SINGLE TRACK RAIL FROM MOLDING MACHINES THROUGH POURING AREAS CARRYING A MOLD AROUND TWICE BEFORE THE MOLD IS PUSHED OFF ONTO A VIBRATING SHAKEOUT CONVEYOR. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  3. Production application of injection-molded diffractive elements

    NASA Astrophysics Data System (ADS)

    Clark, Peter P.; Chao, Yvonne Y.; Hines, Kevin P.

    1995-12-01

    We demonstrate that transmission kinoforms for visible light applications can be injection molded in acrylic in production volumes. A camera is described that employs molded Fresnel lenses to change the convergence of a projection ranging system. Kinoform surfaces are used in the projection system to achromatize the Fresnel lenses.

  4. Brachytherapy for Buccal Cancer: From Conventional Low Dose Rate (LDR) or Mold Technique to High Dose Rate Interstitial Brachytherapy (HDR-ISBT).

    PubMed

    Kotsuma, Tadayuki; Yamazaki, Hideya; Masui, Koji; Yoshida, Ken; Shimizutani, Kimishige; Akiyama, Hironori; Murakami, Shumei; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Tanaka, Eiichi

    2017-12-01

    To examine the effectiveness of newly-installed high-dose-rate interstitial brachytherapy (HDR-ISBT) for buccal cancer. We retrospectively reviewed 36 patients (25 men and 11 women) with buccal cancer treated with curative brachytherapy with or without external radiotherapy with a median follow-up of 99 months. A total of 15 HDR-ISBT (median 48 Gy/ 8 fractions, range=24-60 Gy) patients were compared to conventional 15 cases LDR-ISBT (70 Gy, range=42.8-110 Gy) and 7 molds techniques (15 Gy, range=9-74 Gy). A total of 31 patients also underwent external radiotherapy (30 Gy, range=24-48 Gy). They comprised of 3T1, 23 T2, 8 T3, 3 T4 including 11 node positive cases. HDR-ISBT provided 82% of local control rate at 5 years, whereas conventional brachytherapy showed 72% [p=0.44; LDR-ISBT (65%), mold therapy (85.7%)]. Patients with early lesions (T1-2 or stage I-II) showed better local control rates than those with advanced lesions (T3-4 or stage III-IV). Severe late grade 3 complications developed in two patients treated with LDR-ISBT and EBRT. There is no significant difference in toxicity grade ≤2 between conventional brachytherapy (5/15=33%) and HDR-ISBT (7/32=32%, p=0.92). HDR-ISBT achieved good and comparable local control rates to conventional brachytherapy without elevating the toxicity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Lost mold-rapid infiltration forming: Strength control in mesoscale 3Y-TZP ceramics

    NASA Astrophysics Data System (ADS)

    Antolino, Nicholas E.

    The strength of nanoparticulate enabled microdevices and components is directly related to the interfacial control between particles and the flaws introduced as these particles come together to form the device or component. One new application for micro-scale or meso-scale (10's microm to 100's microm) devices is surgical instruments designed to enter the body, perform a host of surgeries within the body cavity, and be extracted with no external incisions to the patient. This new concept in surgery, called natural orifice transluminal endoscopic surgery (NOTES), requires smaller and more functional surgical tools. Conventional processing routes do not exist for making these instruments with the desired size, topology, precision, and strength. A process, called lost mold-rapid infiltration forming (LM-RIF), was developed to satisfy this need. A tetragonally stabilized zirconia polycrystalline material (3Y-TZP) is a candidate material for this process and application because of its high strength, chemical stability, high elastic modulus, and reasonably high toughness for a ceramic. Modern technical ceramics, like Y-TZP, are predicated on dense, fine grained microstructures and functional mesoscale devices must also adhere to this standard. Colloid and interfacial chemistry was used to disperse and concentrate the Y-TZP nanoparticles through a very steep, yet localized, potential energy barrier against the van der Waals attractive force. The interparticle interaction energies were modeled and compared to rheological data on the suspension. At high concentrations, the suspension was pseudoplastic, which is evidence that a structure was formed within the suspension that could be disrupted by a shearing force. The LM-RIF process exploits this rheological behavior to fill mold cavities created by photolithography. The premise of the LM-RIF process is to process the particulate material into a dense ceramic body while the unsintered mesoscale parts are supported en masse

  6. Selection of antifungal protein-producing molds from dry-cured meat products.

    PubMed

    Acosta, Raquel; Rodríguez-Martín, Andrea; Martín, Alberto; Núñez, Félix; Asensio, Miguel A

    2009-09-30

    To control unwanted molds in dry-cured meats it is necessary to allow the fungal development essential for the desired characteristics of the final product. Molds producing antifungal proteins could be useful to prevent hazards due to the growth of mycotoxigenic molds. The objective has been to select Penicillium spp. that produce antifungal proteins against toxigenic molds. To obtain strains adapted to these products, molds were isolated from dry-cured ham. A first screening with 281 isolates by the radial inhibition assay revealed that 166 were active against some of the toxigenic P. echinulatum, P. commune, and Aspergillusniger used as reference molds. The activity of different extracts from cultured medium was evaluated by a microspectroscopic assay. Molds producing active chloroform extracts were eliminated from further consideration. A total of 16 Penicillium isolates were screened for antifungal activity from both cell-free media and the aqueous residues obtained after chloroform extraction. The cell-free media of 10 isolates that produced a strong inhibition of the three reference molds were fractionated by FPLC on a cationic column. For protein purification, the fractions of the three molds that showed high inhibitory activity were further chromatographed on a gel filtration column, and the subfractions containing the highest absorbance peaks were assayed against the most sensitive reference molds. One subfraction each from strains AS51D and RP42C from Penicilliumchrysogenum confirmed the inhibitory activity against the reference molds. SDS-PAGE revealed a single band from each subfraction, with estimated molecular masses of 37kDa for AS51D and 9kDa for RP42C. Although further characterisation is required, both these proteins and the producing strains can be of interest to control unwanted molds on foods.

  7. Differential allergy induction by molds found in water-damaged homes**

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports (NAS, 2004) and World Health Organization guidelines (WHO, 2009) concluded that the role of molds in asthma indu...

  8. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  9. Mold Remediation in Schools and Commercial Buildings.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This document describes how to investigate and evaluate moisture and mold problems in educational facilities, and presents the key steps for implementing a remediation plan. A checklist is provided for conducting mold remediation efforts along with a resource list of helpful organizations and governmental agencies. Appendices contain a glossary,…

  10. Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian K.; Chesser, Phillip C.; Lind, Randall F.

    The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. andmore » the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.« less

  11. QUANTIFYING INDOOR MOLDS

    EPA Science Inventory

    The US EPA has patented a mold ID technology (#6,387,652) licensed by 15 companies in the US and EU. This technology is based upon DNA sequences. In conjunction with HUD, this technology will be used in a National Survey of Homes.

  12. Prompt remediation of water intrusion corrects the resultant mold contamination in a home.

    PubMed

    Rockwell, William

    2005-01-01

    More patients are turning to their allergists with symptoms compatible with allergic rhinitis, allergic sinusitis, and/or bronchial asthma after exposure to mold-contaminated indoor environments. These patients often seek guidance from their allergists in the remediation of the contaminated home or office. The aim of this study was to determine baseline mold spore counts for noncontaminated homes and report a successful mold remediation in one mold-contaminated home. Indoor air quality was tested using volumetric spore counts in 50 homes where homeowners reported no mold-related health problems and in one mold-contaminated home that was remediated. The health of the occupant of the mold-contaminated home also was assessed. Indoor volumetric mold spore counts ranged from 300 to 1200 spores/m3 in the baseline homes. For the successful remediation, the mold counts started at 300 spores/m3, increased to 2800 spores/m3 at the height of the mold contamination, and then fell to 800 spores/m3 after remediation. The occupant's allergic symptoms ceased on complete remediation of the home. Indoor volumetric mold counts taken with the Allergenco MK-3 can reveal a potential indoor mold contamination, with counts above 1000 spores/m3 suggesting indoor mold contamination. Once the presence of indoor mold growth is found, a prompt and thorough remediation can bring mold levels back to near-baseline level and minimize negative health effects for occupants.

  13. INGOT MOLD

    DOEpatents

    Mangold, A.J. Jr.; MaHaffey, J.W.; Reese, S.L.

    1958-04-29

    An improved ingot-mold assembly is described, consisting of a body having a cavity and a recess extending through to the bottom of the body from the cavity, and the bottom of the cavity having an internal shoulder extending downward and a plug having an external shoulder. The plug extends above the shoulders and below the bottom of the body.

  14. Microstructures and properties of rapidly solidified alloys

    NASA Technical Reports Server (NTRS)

    Shechtman, D.; Horowitz, E.

    1984-01-01

    The microstructure and properties of rapidly solidified aluminum alloys were researched. The effects of powder and flake chemistry and morphology and alternative consolidation processing parameters are being conducted. Samples of the powders being utilized were obtained for comprehensive metallurgical characterization. Seven aluminum alloys in the form of thin foils were studied by a variety of techniques including optical metallography, scanning electron microscope, and transmission electron microscope. Details of the microstructural characteristics are presented along with a discussion of the solidification process. A better understanding of the microstructure of the rapidly solidified aluminum alloys prepared by a variety of techniques such as roller quenching, the vacuum atomized procedure, ultrasonically atomized in inert atmospheres, and atomized in flue gas was provided.

  15. Molded underfill (MUF) encapsulation for flip-chip package: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Abdullah, M. K.; Abdullah, M. Z.; Ariff, Z. M.; Saad, Abdullah Aziz; Hamid, M. F.; Ismail, M. A.

    2017-07-01

    This paper presents the numerical simulation of epoxy molding compound (EMC) filling in multi flip-chip packages during encapsulation process. The empty and a group flip chip packages were considered in the mold cavity in order to study the flow profile of the EMC. SOLIDWORKS software was used for three-dimensional modeling and it was incorporated into fluid analysis software namely as ANSYS FLUENT. The volume of fluid (VOF) technique was used for capturing the flow front profiles and Power Law model was applied for its rheology model. The numerical result are compared and discussed with previous experimental and it was shown a good conformity for model validation. The prediction of flow front was observed and analyzed at different filling time. The possibility and visual of void formation in the package is captured and the number of flip-chip is one factor that contributed to the void formation.

  16. THE DURABILITY OF LARGE-SCALE ADDITIVE MANUFACTURING COMPOSITE MOLDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian K; Love, Lonnie J; Duty, Chad

    2016-01-01

    Oak Ridge National Laboratory s Big Area Additive Manufacturing (BAAM) technology permits the rapid production of thermoplastic composite molds using a carbon fiber filled Acrylonitrile-Butadiene-Styrene (ABS) thermoplastic. Demonstration tools (i.e. 0.965 m X 0.559 m X 0.152 m) for composite part fabrication have been printed, coated, and finished with a traditional tooling gel. We present validation results demonstrating the stability of thermoplastic printed molds for room temperature Vacuum Assisted Resin Transfer Molding (VARTM) processes. Arkema s Elium thermoplastic resin was investigated with a variety of reinforcement materials. Experimental results include dimensional characterization of the tool surface using laser scanning techniquemore » following demolding of 10 parts. Thermoplastic composite molds offer rapid production compared to traditionally built thermoset molds in that near-net deposition allows direct digital production of the net geometry at production rate of 45 kg/hr.« less

  17. Quantitative analysis and feature recognition in 3-D microstructural data sets

    NASA Astrophysics Data System (ADS)

    Lewis, A. C.; Suh, C.; Stukowski, M.; Geltmacher, A. B.; Spanos, G.; Rajan, K.

    2006-12-01

    A three-dimensional (3-D) reconstruction of an austenitic stainless-steel microstructure was used as input for an image-based finite-element model to simulate the anisotropic elastic mechanical response of the microstructure. The quantitative data-mining and data-warehousing techniques used to correlate regions of high stress with critical microstructural features are discussed. Initial analysis of elastic stresses near grain boundaries due to mechanical loading revealed low overall correlation with their location in the microstructure. However, the use of data-mining and feature-tracking techniques to identify high-stress outliers revealed that many of these high-stress points are generated near grain boundaries and grain edges (triple junctions). These techniques also allowed for the differentiation between high stresses due to boundary conditions of the finite volume reconstructed, and those due to 3-D microstructural features.

  18. Additive Manufacturing of Molds for Fabrication of Insulated Concrete Block

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J.; Lloyd, Peter D.

    ORNL worked with concrete block manufacturer, NRG Insulated Block, to demonstrate additive manufacturing of a multi-component block mold for its line of insulated blocks. Solid models of the mold parts were constructed from existing two-dimensional drawings and the parts were fabricated on a Stratasys Fortus 900 using ULTEM 9085. Block mold parts were delivered to NRG and installed on one of their fabrication lines. While form and fit were acceptable, the molds failed to function during NRG’s testing.

  19. Introducing the slime mold graph repository

    NASA Astrophysics Data System (ADS)

    Dirnberger, M.; Mehlhorn, K.; Mehlhorn, T.

    2017-07-01

    We introduce the slime mold graph repository or SMGR, a novel data collection promoting the visibility, accessibility and reuse of experimental data revolving around network-forming slime molds. By making data readily available to researchers across multiple disciplines, the SMGR promotes novel research as well as the reproduction of original results. While SMGR data may take various forms, we stress the importance of graph representations of slime mold networks due to their ease of handling and their large potential for reuse. Data added to the SMGR stands to gain impact beyond initial publications or even beyond its domain of origin. We initiate the SMGR with the comprehensive Kist Europe data set focusing on the slime mold Physarum polycephalum, which we obtained in the course of our original research. It contains sequences of images documenting growth and network formation of the organism under constant conditions. Suitable image sequences depicting the typical P. polycephalum network structures are used to compute sequences of graphs faithfully capturing them. Given such sequences, node identities are computed, tracking the development of nodes over time. Based on this information we demonstrate two out of many possible ways to begin exploring the data. The entire data set is well-documented, self-contained and ready for inspection at http://smgr.mpi-inf.mpg.de.

  20. Comparison of peri-implant bone formation around injection-molded and machined surface zirconia implants in rabbit tibiae

    PubMed Central

    Kim, Hong-Kyun; Woo, Kyung mi; Shon, Won-Jun; Ahn, Jin-Soo; Cha, Seunghee; Park, Young-Seok

    2017-01-01

    The aim of this study was to compare osseointegration and surface characteristics of zirconia implants made by the powder injection molding (PIM) technique and made by the conventional milling procedure in rabbit tibiae. Surface characteristics of 2 types of implant were evaluated. Sixteeen rabbits received 2 types of external hex implants with similar geometry, machined zirconia implants and PIM zirconia implants, in the tibiae. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined zirconia implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined zirconia implants (P < 0.001). The osseointegration of the PIM zirconia implant is promising, and PIM, using the roughened mold etching technique, can produce substantially rough surfaces on zirconia implants. PMID:26235717

  1. 75 FR 55340 - Recovery Fact Sheet 9580.100, Mold Remediation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ...] Recovery Fact Sheet 9580.100, Mold Remediation AGENCY: Federal Emergency Management Agency, DHS. ACTION... accepting comments on Recovery Fact Sheet RP9580.100, Mold Remediation. DATES: Comments must be received by... 20472-3100. II. Background The Recovery Fact Sheet RP9580.100, Mold Remediation, identifies the expenses...

  2. Assessment of Current Process Modeling Approaches to Determine Their Limitations, Applicability and Developments Needed for Long-Fiber Thermoplastic Injection Molded Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Holbery, Jim; Smith, Mark T.

    2006-11-30

    This report describes the status of the current process modeling approaches to predict the behavior and flow of fiber-filled thermoplastics under injection molding conditions. Previously, models have been developed to simulate the injection molding of short-fiber thermoplastics, and an as-formed composite part or component can then be predicted that contains a microstructure resulting from the constituents’ material properties and characteristics as well as the processing parameters. Our objective is to assess these models in order to determine their capabilities and limitations, and the developments needed for long-fiber injection-molded thermoplastics (LFTs). First, the concentration regimes are summarized to facilitate the understandingmore » of different types of fiber-fiber interaction that can occur for a given fiber volume fraction. After the formulation of the fiber suspension flow problem and the simplification leading to the Hele-Shaw approach, the interaction mechanisms are discussed. Next, the establishment of the rheological constitutive equation is presented that reflects the coupled flow/orientation nature. The decoupled flow/orientation approach is also discussed which constitutes a good simplification for many applications involving flows in thin cavities. Finally, before outlining the necessary developments for LFTs, some applications of the current orientation model and the so-called modified Folgar-Tucker model are illustrated through the fiber orientation predictions for selected LFT samples.« less

  3. Method for forming pyrrone molding powders and products of said method

    NASA Technical Reports Server (NTRS)

    Hughes, C. T.; Mchenry, R. J. (Inventor)

    1972-01-01

    The formation of pyrrone resins of the ladder or semiladder structure is described. The technique involves initial formation of fully cyclized prepolymers having an average degree of polymerization of about 1.5, one with acidic terminal groups, another with amine terminal groups. Thereafter the prepolymers are intimately admixed on a 1:1 stoichiometric basis. The resulting powder mixture is molded at elevated pressures and temperatures to form a fully cyclized resin.

  4. in vivo quantification of white matter microstructure for use in aging: A focus on two emerging techniques

    PubMed Central

    Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A.; Dean, Douglas; Little, Deborah; Deoni, Sean C

    2013-01-01

    Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. While DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. PMID:24080382

  5. Ion channel recordings on an injection-molded polymer chip.

    PubMed

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnaes, Joergen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael

    2013-12-21

    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system.

  6. Homogeneous and heterogeneous micro-structuring of austenitic stainless steels by the low temperature plasma nitriding

    NASA Astrophysics Data System (ADS)

    Aizawa, T.; Yoshihara, S.-I.

    2018-06-01

    The austenitic stainless steels have been widely utilized as a structural component and member as well as a die and mold substrate for stamping. AISI316 dies and molds require for the surface treatment to accommodate the sufficient hardness and wear resistance to them. In addition, the candidate treatment methods must be free from toxicity, energy consumption and inefficiency. The low temperature plasma nitriding process has become one of the most promising methods to make solid-solution hardening by the nitrogen super-saturation. In the present paper, the high density RF/DC plasma nitriding process was applied to form the uniform nitrided layer in the AISI316 matrix and to describe the essential mechanism of inner nitriding in this low temperature nitriding process. In case of the nitrided AISI316 at 673 K for 14.4ks, the nitrided layer thickness became 60 μm with the surface hardness of 1700 HV and the surface nitrogen content of 7 mass %. This inner nitriding process is governed by the synergetic interrelation among the nitrogen super-saturation, the lattice expansion, the phase transformation, the plastic straining, the microstructure refinement and the acceleration of nitrogen diffusion. As far as this interrelation is sustained during the nitriding process, the original austenitic microstructure is homogeneously nitrided to have fine grains with the average size of 0.1 μm and the high crystallographic misorientation angles and to have two phase (γ + α’) structures with the plateau of nitrogen content by 5 mass%. Once this interrelation does not work anymore, the homogeneous microstructure changed itself to the heterogeneous one. The plastic straining took place in the selected coarse grains; they were partially refined into subgrains. This plastic localization accompanied the localized phase transformation.

  7. Metallurgical characterization of orthodontic brackets produced by Metal Injection Molding (MIM).

    PubMed

    Zinelis, Spiros; Annousaki, Olga; Makou, Margarita; Eliades, Theodore

    2005-11-01

    The aim of this study was to investigate the bonding base surface morphology, alloy type, microstructure, and hardness of four types of orthodontic brackets produced by Metal Injection Molding technology (Discovery, Extremo, Freedom, and Topic). The bonding base morphology of the brackets was evaluated by scanning electron microscopy (SEM). Brackets from each manufacturer were embedded in epoxy resin, and after metallographic grinding, polishing and coating were analyzed by x-ray energy-dispersive spectroscopic (EDS) microanalysis to assess their elemental composition. Then, the brackets were subjected to metallographic etching to reveal their metallurgical structure. The same specimen surfaces were repolished and used for Vickers microhardness measurements. The results were statistically analyzed with one-way analysis of variance and Student-Newman-Keuls multiple comparison test at the 0.05 level of significance. The findings of SEM observations showed a great variability in the base morphology design among the brackets tested. The x-ray EDS analysis demonstrated that each bracket was manufactured from different ferrous or Co-based alloys. Metallographic analysis showed the presence of a large grain size for the Discovery, Freedom, and Topic brackets and a much finer grain size for the Extremo bracket. Vickers hardness showed great variations among the brackets (Topic: 287 +/- 16, Freedom: 248 +/- 13, Discovery: 214 +/- 12, and Extremo: 154 +/- 9). The results of this study showed that there are significant differences in the base morphology, composition, microstructure, and microhardness among the brackets tested, which may anticipate significant clinical implications.

  8. Imprint Molding of a Microfluidic Optical Cell on Thermoplastics with Reduced Surface Roughness for the Detection of Copper Ions.

    PubMed

    Wu, Jing; Lee, Nae Yoon

    2016-01-01

    Here, we introduce a simple and facile technique for fabricating microfluidic optical cells by utilizing a micropatterned polymer mold, followed by imprinting on thermoplastic substrates. This process has reduced the surface roughness of the microchannel, making it suitable for microscale optical measurements. The micropatterned polymer mold was fabricated by first micromilling on a poly(methylmethacrylate) (PMMA) substrate, and then transferring the micropattern onto an ultraviolet (UV)-curable optical adhesive. After an anti-adhesion treatment of the polymer mold fabricated using the UV-curable optical adhesive, the polymer mold was used repeatedly for imprinting onto various thermoplastics, such as PMMA, polycarbonate (PC), and poly(ethyleneterephthalate) (PET). The roughness values for the PMMA, PC, and PET microchannels were approximately 11.3, 20.3, and 14.2 nm, respectively, as compared to those obtained by micromilling alone, which were 15.9, 76.8, and 207.5 nm, respectively. Using the imprint-molded thermoplastic optical cell, rhodamine B and copper ions were successfully quantified. The reduced roughness of the microchannel surface resulted in improved sensitivity and reduced noise, paving the way for integration of the detection module so as to realize totally integrated microdevices.

  9. Chemotaxis in the Plasmodial Slime Mold, Physarum polycephalum.

    ERIC Educational Resources Information Center

    Bozzone, Donna M.; Martin, Denise A.

    1998-01-01

    Describes a biology unit designed so that students pose their own questions and perform experiments to answer these questions. Plasmodial slime mold is employed as the focus of the study with background information about the mold provided. (DDR)

  10. Crack-resistant siloxane molding compounds. [Patent application

    DOEpatents

    McFarland, J.W.; Swearngin, C.B.

    1980-11-03

    The crack resistance of phenyl silicone molding resins containing siliceous fillers is improved by incorporating therein about 0.5 to 5.5% by weight of ..beta..-eucryptite, a lithium aluminum silicate having a negative thermal expansion coefficient. These molding resins are particularly suitable for encapsulating electronic devices such as diodes, coils, resistors, and the like.

  11. Microstructural characterization of multiphase chocolate using X-ray microtomography.

    PubMed

    Frisullo, Pierangelo; Licciardello, Fabio; Muratore, Giuseppe; Del Nobile, Matteo Alessandro

    2010-09-01

    In this study, X-ray microtomography (μCT) was used for the image analysis of the microstructure of 12 types of Italian aerated chocolate chosen to exhibit variability in terms of cocoa mass content. Appropriate quantitative 3-dimensional parameters describing the microstructure were calculated, for example, the structure thickness (ST), object structure volume ratio (OSVR), and the percentage object volume (POV). Chemical analysis was also performed to correlate the microstructural data to the chemical composition of the samples. Correlation between the μCT parameters acquired for the pore microstructure evaluation and the chemical analysis revealed that the sugar crystals content does not influence the pore structure and content. On the other hand, it revealed that there is a strong correlation between the POV and the sugar content obtained by chemical analysis. The results from this study show that μCT is a suitable technique for the microstructural analysis of confectionary products such as chocolates and not only does it provide an accurate analysis of the pores and microstructure but the data obtained could also be used to aid in the assessment of its composition and consistency with label specifications. X-ray microtomography (μCT) is a noninvasive and nondestructive 3-D imaging technique that has several advantages over other methods, including the ability to image low-moisture materials. Given the enormous success of μCT in medical applications, material science, chemical engineering, geology, and biology, it is not surprising that in recent years much attention has been focused on extending this imaging technique to food science as a useful technique to aid in the study of food microstructure. X-ray microtomography provides in-depth information on the microstructure of the food product being tested; therefore, a better understanding of the physical structure of the product and from an engineering perspective, knowledge about the microstructure of

  12. Method and mold for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  13. Epidemics of mold poisoning past and present.

    PubMed

    Meggs, William J

    2009-01-01

    Molds are ubiquitous throughout the biosphere of planet earth and cause infectious, allergic, and toxic diseases. Toxic diseases arise from exposure to mycotoxins produced by molds. Throughout history, there have been a number of toxic epidemics associated with exposure to mycotoxins. Acute epidemics of ergotism are caused by consumption of grain infested by fungi of the genus Claviceps, which produce the bioactive amine ergotamine that mimics the neurotransmitters norepinephrine, serotonin, and dopamine. Acute aflatoxin outbreaks have occurred from ingestion of corn stored in damp conditions that potentiate growth of the molds of the species Aspergillus. Contemporary construction methods that use cellulose substrates such as fiber board and indoor moisture have caused an outbreak of contaminated buildings with Stachybotrys chartarum, with the extent of health effects still a subject of debate and ongoing research. This article reviews several of the more prominent epidemics and discusses the nature of the toxins. Two diseases that were leading causes of childhood mortality in England in the 1970s and vanished with changing dietary habits, putrid malignant fever, and slow nervous fever were most likely toxic mold epidemics.

  14. Index change of chalcogenide materials from precision glass molding processes

    NASA Astrophysics Data System (ADS)

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  15. Onychomycosis due to opportunistic molds*

    PubMed Central

    Martínez-Herrera, Erick Obed; Arroyo-Camarena, Stefanie; Tejada-García, Diana Luz; Porras-López, Carlos Francisco; Arenas, Roberto

    2015-01-01

    BACKGROUND: Onychomycosis are caused by dermatophytes and Candida, but rarely by non- dermatophyte molds. These opportunistic agents are filamentous fungi found as soil and plant pathogens. OBJECTIVES: To determine the frequency of opportunistic molds in onychomycosis. METHODS: A retrospective analysis of 4,220 cases with onychomycosis, diagnosed in a 39-month period at the Institute of Dermatology and Skin surgery "Prof. Dr. Fernando A. Cordero C." in Guatemala City, and confirmed with a positive KOH test and culture. RESULTS: 32 cases (0.76%) of onychomycosis caused by opportunistic molds were confirmed. The most affected age group ranged from 41 to 65 years (15 patients, 46.9%) and females were more commonly affected (21 cases, 65.6%) than males. Lateral and distal subungual onychomycosis (OSD-L) was detected in 20 cases (62.5%). The microscopic examination with KOH showed filaments in 19 cases (59.4%), dermatophytoma in 9 cases (28.1%), spores in 2 cases (6.25%), and filaments and spores in 2 cases (6.25%). Etiologic agents: Aspergillus sp., 11 cases (34.4%); Scopulariopsis brevicaulis, 8 cases (25.0%); Cladosporium sp., 3 cases (9.4%); Acremonium sp., 2 cases (6.25%); Paecilomyces sp., 2 cases (6.25%); Tritirachium oryzae, 2 cases (6.25%); Fusarium sp., Phialophora sp., Rhizopus sp. and Alternaria alternate, 1 case (3.1%) each. CONCLUSIONS: We found onychomycosis by opportunistic molds in 0.76% of the cases and DLSO was present in 62.5%. The most frequent isolated etiological agents were: Aspergillus sp. and Scopulariopsis brevicaulis. PMID:26131862

  16. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offersmore » an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.« less

  17. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    PubMed

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively.

  18. Design and Checking Analysis of Injection Mold for a Plastic Cup

    NASA Astrophysics Data System (ADS)

    Li, Xuebing

    2018-03-01

    A special injection mold was designed for the structural characteristics of a plastic cup part. The mold was simulated by Moldflow software and verified by calculating the stripping force, the pulling force and the clamping force of the mold so that to determine the appropriate injection parameters. It has been proved that the injection mold is effective and practical in the actual producing and can meet the quality requirements during the course of using it, which solved some problems for injection molding of this kind of parts and can provide some reference for the production of other products in the same industry.

  19. Analysis of in-service failures and advances in microstructural characterization. Microstructural science Volume 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramovici, E.; Northwood, D.O.; Shehata, M.T.

    1999-01-01

    The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).

  20. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  1. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    NASA Astrophysics Data System (ADS)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  2. Molding apparatus. [for thermosetting plastic compositions

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    Apparatus for compression molding of thermosetting plastics compositions including interfitting hollow male and female components is reported. The components are adapted to be compressed to form a rocket nozzle in a cavity. A thermal jacket is provided exteriorly adjacent to the female component for circulating a thermal transfer fluid to effect curing of a thermosetting plastics material being molded. Each of the male and female components is provided with suitable inlets and outlets for circulating a thermal transfer fluid.

  3. Neural autoantibodies and neurophysiologic abnormalities in patients exposed to molds in water-damaged buildings.

    PubMed

    Campbell, Andrew W; Thrasher, Jack D; Madison, Roberta A; Vojdani, Aristo; Gray, Michael R; Johnson, Al

    2003-08-01

    Adverse health effects of fungal bioaerosols on occupants of water-damaged homes and other buildings have been reported. Recently, it has been suggested that mold exposure causes neurological injury. The authors investigated neurological antibodies and neurophysiological abnormalities in patients exposed to molds at home who developed symptoms of peripheral neuropathy (i.e., numbness, tingling, tremors, and muscle weakness in the extremities). Serum samples were collected and analyzed with the enzyme-linked immunosorbent assay (ELISA) technique for antibodies to myelin basic protein, myelin-associated glycoprotein, ganglioside GM1, sulfatide, myelin oligodendrocyte glycoprotein, alpha-B-crystallin, chondroitin sulfate, tubulin, and neurofilament. Antibodies to molds and mycotoxins were also determined with ELISA, as reported previously. Neurophysiologic evaluations for latency, amplitude, and velocity were performed on 4 motor nerves (median, ulnar, peroneal, and tibial), and for latency and amplitude on 3 sensory nerves (median, ulnar, and sural). Patients with documented, measured exposure to molds had elevated titers of antibodies (immunoglobulin [Ig]A, IgM, and IgG) to neural-specific antigens. Nerve conduction studies revealed 4 patient groupings: (1) mixed sensory-motor polyneuropathy (n = 55, abnormal), (2) motor neuropathy (n = 17, abnormal), (3) sensory neuropathy (n = 27, abnormal), and (4) those with symptoms but no neurophysiological abnormalities (n = 20, normal controls). All groups showed significantly increased autoantibody titers for all isotypes (IgA, IgM, and IgG) of antibodies to neural antigens when compared with 500 healthy controls. Groups 1 through 3 also exhibited abnormal neurophysiologic findings. The authors concluded that exposure to molds in water-damaged buildings increased the risk for development of neural autoantibodies, peripheral neuropathy, and neurophysiologic abnormalities in exposed individuals.

  4. Microstructural Evolution of Al2O3-ZrO2 (Y2O3) Composites and its Correlation with Toughness

    NASA Astrophysics Data System (ADS)

    Kim, Hee Seung; Seo, Mi Young; Kim, Ik Jin

    2008-02-01

    The microstructure of zirconia (ZrO2) toughened alumina (Al2O3) ceramics was carefully controlled so as to obtain dense and fine-grained ceramics, thereby improving the properties and reliability of the ceramics for capillary applications in semiconductor bonding technology. Al2O3-ZrO2(Y2O3) composite was produced via Ceramic Injection Molding (CIM) technology, followed by Sinter-HIP process. Room temperature strength, hardness, Young's modulus, thermal expansion coefficient and toughness were determined, as well as surface strengthening induced by the fine grained homogenous microstructure and the thermal treatment. The changes in alumina/zirconia grain size, sintering condition and HIP treatment were found to be correlated.

  5. METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE

    EPA Science Inventory

    A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...

  6. Investigation of interfacial fracture behavior on injection molded parts

    NASA Astrophysics Data System (ADS)

    Fischer, Matthieu; Ausias, Gilles; Kuehnert, Ines

    2016-03-01

    In this study the interfacial morphology of different polymers joined by various assembly injection molding (AIM) technologies were discussed. Melt streams were injected successively using tools with core-back or rotation techniques. To compare bulk specimen strength and weld line strength, the fracture behavior of different specimen scales and thin sections were investigated. An in-situ SEM tensile test and a new thin section testing device which is used in polarized (transmitted) light microscopy were used to observe specimen failure. The effects of processing on spherulitic structures were linked to bonding strength and mechanical properties.

  7. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    NASA Astrophysics Data System (ADS)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  8. MOLD GROWTH ON GYPSUM WALLBOARD--A RESEARCH SUMMARY

    EPA Science Inventory

    Reducing occupant exposure to mold growing on damp gypsum wallboard is a research objective of the U.S. Environmental Protection Agency. Often mold contaminated building materials are not properly removed but instead surface cleaners are used and then paint is applied in an attem...

  9. High rate fabrication of compression molded components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.

    2016-04-19

    A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; andmore » applying molding pressure to the pre-form to form the composite component.« less

  10. Material flow data for numerical simulation of powder injection molding

    NASA Astrophysics Data System (ADS)

    Duretek, I.; Holzer, C.

    2017-01-01

    The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.

  11. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    NASA Astrophysics Data System (ADS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-07-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μm and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns.

  12. Manufacturing Science of Improved Molded Optics

    DTIC Science & Technology

    2013-12-05

    Forrer, “Interaction of N-FK5 and L- BAL35 optical glass with various carbide and other precision glass mold tooling”, SPIE Optifab 2013 Conference...Richardson, S. Mourad, M. Huber, A. Kunz, M. Forrer. Interaction of N-FK5 and L-BAL35 optical glass with various carbide and other precision glass mold...stoichiometric compounds. As an example, if silicon and oxygen are present in a material, then it was assumed that they are present in the form of

  13. Microstructural Evolution and Mechanical Properties of Ti-22Al-25Nb (At.%) Orthorhombic Alloy with Three Typical Microstructures

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zeng, Weidong; Liu, Yantao; Xie, Guoxin; Liang, Xiaobo

    2018-01-01

    Microstructural evolution, tensile and creep behavior of Ti-22Al-25Nb (at.%) orthorhombic alloy with three typical microstructures were investigated. The three typical microstructures were obtained by different solution and age treatment temperatures and analyzed by the BSE technique. The tensile strengths of the alloy at room temperature and 650 °C were investigated. The creep behaviors of the three typical microstructures were also studied at 650 °C/150 MPa for 100 h in air. The phase transformation mechanisms in creep deformation were also found. The experimental results showed that the formations of the three typical microstructures were decided by the isothermal forging and heat treatment. It was supposed that the high-temperature solution treatment might be dominant for the volume fraction and diameter of the equiaxed particles. While the double age treatment would lead to lamellar O phases. Due to grain refinement strengthening, the equiaxed microstructure presented the best tensile strength and ductility. The fully lamellar microstructure had the best creep resistance than that of other microstructures. In this paper, the phenomenon of creep-induced α 2 phase decomposition was occurred during creep deformation of the equiaxed microstructure.

  14. Antibodies to molds and satratoxin in individuals exposed in water-damaged buildings.

    PubMed

    Vojdani, Aristo; Thrasher, Jack D; Madison, Roberta A; Gray, Michael R; Heuser, Gunnar; Campbell, Andrew W

    2003-07-01

    Immunoglobulin (Ig)A, IgM, and IgG antibodies against Penicillium notatum, Aspergillus niger, Stachybotrys chartarum, and satratoxin H were determined in the blood of 500 healthy blood donor controls, 500 random patients, and 500 patients with known exposure to molds. The patients were referred to the immunological testing laboratory for health reasons other than mold exposure, or for measurement of mold antibody levels. Levels of IgA, IgM, and IgG antibodies against molds were significantly greater in the patients (p < 0.001 for all measurements) than in the controls. However, in mold-exposed patients, levels of these antibodies against satratoxin differed significantly for IgG only (p < 0.001), but not for IgM or IgA. These differences in the levels of mold antibodies among the 3 groups were confirmed by calculation of z score and by Scheffé's significant difference tests. A general linear model was applied in the majority of cases, and 3 different subsets were formed, meaning that the healthy control groups were different from the random patients and from the mold-exposed patients. These findings indicated that mold exposure was more common in patients who were referred for immunological evaluation than it was in healthy blood donors. The detection of antibodies to molds and satratoxin H likely resulted from antigenic stimulation of the immune system and the reaction of serum with specially prepared mold antigens. These antigens, which had high protein content, were developed in this laboratory and used in the enzyme-linked immunosorbent assay (ELISA) procedure. The authors concluded that the antibodies studied are specific to mold antigens and mycotoxins, and therefore could be useful in epidemiological and other studies of humans exposed to molds and mycotoxins.

  15. Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming

    NASA Astrophysics Data System (ADS)

    Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali

    2018-03-01

    Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.

  16. ASTHMATIC HUMAN SERUM IGE-REACTIVITY WITH MOLD EXTRACTS

    EPA Science Inventory

    Although molds have demonstrated the ability to induce allergic asthma-like responses in mouse models, their role in human disease is unclear. This study was undertaken to provide insight into the prevalence of human IgE-reactivity and identify the target mold protein(s). The st...

  17. Failure Analysis in Platelet Molded Composite Systems

    NASA Astrophysics Data System (ADS)

    Kravchenko, Sergii G.

    Long-fiber discontinuous composite systems in the form of chopped prepreg tapes provide an advanced, structural grade, molding compound allowing for fabrication of complex three-dimensional components. Understanding of process-structure-property relationship is essential for application of prerpeg platelet molded components, especially because of their possible irregular disordered heterogeneous morphology. Herein, a structure-property relationship was analyzed in the composite systems of many platelets. Regular and irregular morphologies were considered. Platelet-based systems with more ordered morphology possess superior mechanical performance. While regular morphologies allow for a careful inspection of failure mechanisms derived from the morphological characteristics, irregular morphologies are representative of the composite architectures resulting from uncontrolled deposition and molding with chopped prerpegs. Progressive failure analysis (PFA) was used to study the damaged deformation up to ultimate failure in a platelet-based composite system. Computational damage mechanics approaches were utilized to conduct the PFA. The developed computational models granted understanding of how the composite structure details, meaning the platelet geometry and system morphology (geometrical arrangement and orientation distribution of platelets), define the effective mechanical properties of a platelet-molded composite system, its stiffness, strength and variability in properties.

  18. Mold After a Disaster

    MedlinePlus

    ... U.S. Environmental Protection Agency (EPA) guide titled Mold Remediation in Schools and Commercial Buildings . Also available is ... Resources NIOSH Interim Recommendations for the Cleaning and Remediation of Flood-Contaminated HVAC Systems: A Guide for ...

  19. Mold: Cleanup and Remediation

    MedlinePlus

    ... National Center for Environmental Health (NCEH) Cleanup and Remediation Recommend on Facebook Tweet Share Compartir On This ... CDC and EPA on mold cleanup, removal and remediation. Cleanup information for you and your family Homeowner’s ...

  20. Imaging brain microstructure with diffusion MRI: practicality and applications.

    PubMed

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui

    2017-11-29

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.

  1. In vivo quantification of white matter microstructure for use in aging: a focus on two emerging techniques.

    PubMed

    Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A; Dean, Douglas; Little, Deborah; Deoni, Sean C

    2014-02-01

    Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. Although DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Design and fabricate multi channel microfluidic mold on top of glass slide using SU-8

    NASA Astrophysics Data System (ADS)

    Azman, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. A.; Hashim, U.

    2017-09-01

    Microfluidic is the study of fluid in microscale. Microfluidics provides miniaturized fluidic networks for processing and analyzing liquids in the nanoliter to milliliter range. Microfluidic device comprises of some essential segments or structure that are micromixer, microchannel and microchamber. The SU-8 mold is known as the most used technique in microfluidic fabrication due to the characteristic of very gooey polymer that can be spread over a thickness. In this study, in order to reduce the fabrication cost, the development and fabrication of SU-8 mold is replace by using a glass plate instead of silicon wafer which is used in the previous research. We designed a microfluidic chip for use with an IDE sensors to conduct multiplex detection of multiple channels. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The multi-channel microfluidic chip was designed, including the fluid outlet and inlet. A multi-channel microfluidic chip was used for pathogen detection. This paper sum up the fabrication of lab SU-8 mold using glass slide.

  3. Comparison of culture media, simplate, and petrifilm for enumeration of yeasts and molds in food.

    PubMed

    Taniwaki, M H; Silva, N; Banhe, A A; Iamanaka, B T

    2001-10-01

    The efficacy of three culture media, dichloran rose bengal chloramphenicol (DRBC), dichloran 18% glycerol agar (DG18), and potato dextrose agar (PDA) supplemented with two antibiotics, were compared with the Simplate and Petrifilm techniques for mold and yeast enumeration. The following foods were analyzed: corn meal, wheat flour, cassava flour, bread crumbs, whole meal, sliced bread, ground peanuts, mozzarella cheese, grated parmesan cheese, cheese rolls, orange juice, pineapple pulp, pineapple cake, and mushroom in conserve. Correlation coefficients of DRBC versus PDA and DG18 for recovering total mold and yeast counts from the composite of 14 foods indicated that the three media were generally equivalent. Correlation coefficients for Petrifilm versus culture media were acceptable, although not as good as between culture media. Correlation coefficients of Simplate versus DRBC, DG18, PDA, and Petrifilm for recovering total yeasts and molds from a composite of 11 foods demonstrated that there was no equivalence between the counts obtained by Simplate and other culture media and Petrifilm, with significant differences observed for the most foods analyzed.

  4. THE COMPARISON OF SEVERAL STANDARD MATERIALS AND TECHNIQUES FOR THE WARREN-AVERBACH DETERMINATION OF MICRO-STRUCTURE CHARACTERISTICS OF CALCIUM HYDROXIDE SORBENT MATERIALS

    EPA Science Inventory

    The paper gives results of a comparison of several standard materials and techniques for the Warren-Averbach determination of microstructure characteristics of calcium hydroxide--Ca(OH)2--sorbent materials. The comparison is part of an investigation of the injection of dry Ca(OH)...

  5. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikin, Jr., Robert M.

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerousmore » defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic

  6. Crystallization Behavior and Heat Transfer of Fluorine-Free Mold Fluxes with Different Na2O Concentration

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki

    2016-08-01

    In this study, the crystallization behavior and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O fluorine-free mold fluxes with different Na2O contents (5 to 11 mass pct) were studied using single/double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that crystallization temperature increased and incubation time shortened with the increase of Na2O concentration, indicating an enhanced crystallization tendency. The crystallization process of mold fluxes in the temperature field simulating the casting condition was also investigated using DHTT. X-ray diffraction (XRD) analysis of the quenched mold fluxes showed that the dominant phase changed from CaSiO3 to Ca11Si4B2O22 with the increasing concentration of Na2O. The heat transfer examined by IET showed that the increase of Na2O concentration reduced the responding heat flux when Na2O was lower than 9 mass pct but the further increase of Na2O to 11 mass pct enhanced the heat flux. The correlation between crystallinity and heat transfer was discussed in terms of crystallization tendency and crystal morphology.

  7. An Impedance-Based Mold Sensor with on-Chip Optical Reference

    PubMed Central

    Papireddy Vinayaka, Poornachandra; van den Driesche, Sander; Blank, Roland; Tahir, Muhammad Waseem; Frodl, Mathias; Lang, Walter; Vellekoop, Michael J.

    2016-01-01

    A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8) as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip. PMID:27690039

  8. Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Cetinbas, Firat C.; Ahluwalia, Rajesh K.; Kariuki, Nancy; De Andrade, Vincent; Fongalland, Dash; Smith, Linda; Sharman, Jonathan; Ferreira, Paulo; Rasouli, Somaye; Myers, Deborah J.

    2017-03-01

    The cost and performance of proton exchange membrane fuel cells strongly depend on the cathode electrode due to usage of expensive platinum (Pt) group metal catalyst and sluggish reaction kinetics. Development of low Pt content high performance cathodes requires comprehensive understanding of the electrode microstructure. In this study, a new approach is presented to characterize the detailed cathode electrode microstructure from nm to μm length scales by combining information from different experimental techniques. In this context, nano-scale X-ray computed tomography (nano-CT) is performed to extract the secondary pore space of the electrode. Transmission electron microscopy (TEM) is employed to determine primary C particle and Pt particle size distributions. X-ray scattering, with its ability to provide size distributions of orders of magnitude more particles than TEM, is used to confirm the TEM-determined size distributions. The number of primary pores that cannot be resolved by nano-CT is approximated using mercury intrusion porosimetry. An algorithm is developed to incorporate all these experimental data in one geometric representation. Upon validation of pore size distribution against gas adsorption and mercury intrusion porosimetry data, reconstructed ionomer size distribution is reported. In addition, transport related characteristics and effective properties are computed by performing simulations on the hybrid microstructure.

  9. Modeling and control of flow during impregnation of heterogeneous porous media, with application to composite mold-filling processes

    NASA Astrophysics Data System (ADS)

    Bickerton, Simon

    Liquid Composite Molding (LCM) encompasses a growing list of composite material manufacturing techniques. These processes have provided the promise for complex fiber reinforced plastics parts, manufactured from a single molding step. In recent years a significant research effort has been invested in development of process simulations, providing tools that have advanced current LCM technology and broadened the range of applications. The requirement for manufacture of larger, more complex parts has motivated investigation of active control of LCM processes. Due to the unlimited variety of part geometries that can be produced, finite element based process simulations will be used to some extent in design of actively controlled processes. Ongoing efforts are being made to improve material parameter specification for process simulations, increasing their value as design tools. Several phenomena occurring during mold filling have been addressed through flow visualization experimentation and analysis of manufactured composite parts. The influence of well defined air channels within a mold cavity is investigated, incorporating their effects within existing filling simulations. Three different flow configurations have been addressed, testing the application of 'equivalent permeabilities', effectively approximating air channels as representative porous media. LCM parts having doubly curved regions require preform fabrics to undergo significant, and varying deformation throughout a mold cavity. Existing methods for predicting preform deformation, and the resulting permeability distribution have been applied to a conical mold geometry. Comparisons between experiment and simulation are promising, while the geometry studied has required large deformation over much of the part, shearing the preform fabric beyond the scope of the models applied. An investigational study was performed to determine the magnitude of effect, if any, on mold filling caused by corners within LCM mold

  10. Surface microstructuring of biocompatible bone analogue material HAPEX using LIGA technique and embossing

    NASA Astrophysics Data System (ADS)

    Schneider, Andreas; Rea, Susan; Huq, Ejaz; Bonfield, William

    2003-04-01

    HAPEX is an artificial bone analogue composite based on hydroxyapatite and polyethylene, which can be applied for growth of bone cells. Due to its biocompatibility and favourable mechanical properties, HAPEX is used for orthopaedic implants like tympanic (middle ear) bones. The morphology of HAPEX surfaces is of high interest and it is believed that surface structuring on a micron scale might improve the growth conditions for bone cells. A new and simple approach for the microstructuring of HAPEX surfaces has been investigated using LIGA technique. LIGA is a combination of several processes, in particular lithography, electroplating and forming/moulding. For HAPEX surface structuring, arrays of dots, grids and lines with typical lateral dimension ranging from 5 μm to 50 μm were created on a chromium photomask and the patterns were transferred into thick SU-8 photoresist (structure height > 10 μm) by UV lithography. Subsequently, the SU-8 structures served as moulds for electroplating nickel on Si wafers and nickel substrates. The final nickel microstructures were used as embossing master for the HAPEX material. Embossing was carried out using a conventional press (> 500 hPa) with the facility to heat the master and the HAPEX. The temperature ranged from ambient to a few degrees above glass transition temperature (Tg) of HAPEX. The paper will include details of the fabrication process and process tolerances in lateral and vertical directions. Data obtained are correlated to the temperature used during embossing.

  11. Addressing environmental health Implications of mold exposure after major flooding.

    PubMed

    Metts, Tricia A

    2008-03-01

    Extensive water damage resulting from major flooding is often associated with mold growth if materials are not quickly and thoroughly dried. Exposure to fungal contamination can lead to several infectious and noninfectious health effects impacting the respiratory system, skin, and eyes. Adverse health effects can be categorized as infections, allergic or hypersensitivity reactions, or toxic-irritant reactions. Workers and building occupants can minimize their exposure to mold by avoiding areas with excessive mold growth, using personal protective equipment, and implementing environmental controls. Occupational health professionals should encourage workers to seek health care if they experience any symptoms that may be linked to mold exposure.

  12. Cross Section of Legislative Approaches to Reducing Indoor Dampness and Mold

    PubMed Central

    Boese, Gerald W.

    2017-01-01

    Exposure to indoor dampness and mold is associated with numerous adverse respiratory conditions, including asthma. While no quantitative health-based threshold currently exists for mold, the conditions that support excessive dampness and mold are known and preventable; experts agree that controlling these conditions could lead to substantial savings in health care costs and improvement in public health. This article reviews a sample of state and local policies to limit potentially harmful exposures. Adoption of laws to strengthen building codes, specify dampness and mold in habitability laws, regulate mold contractors, and other legislative approaches are discussed, as are key factors supporting successful implementation. Communicating these lessons learned could accelerate the process for other jurisdictions considering similar approaches. Information about effectiveness of legislation as prevention is lacking; thus, evaluation could yield important information to inform the development of model state or local laws that significantly address mold as a public health concern. PMID:27977504

  13. Modeling and flow analysis of pure nylon polymer for injection molding process

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  14. Fabrication of a high aspect ratio thick silicon wafer mold and electroplating using flipchip bonding for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Hwan; Kim, Jong-Bok

    2009-06-01

    We have developed a microfabrication process for high aspect ratio thick silicon wafer molds and electroplating using flipchip bonding with THB 151N negative photoresist (JSR micro). This fabrication technique includes large area and high thickness silicon wafer mold electroplating. The process consists of silicon deep reactive ion etching (RIE) of the silicon wafer mold, photoresist bonding between the silicon mold and the substrate, nickel electroplating and a silicon removal process. High thickness silicon wafer molds were made by deep RIE and flipchip bonding. In addition, nickel electroplating was developed. Dry film resist (ORDYL MP112, TOK) and thick negative-tone photoresist (THB 151N, JSR micro) were used as bonding materials. In order to measure the bonding strength, the surface energy was calculated using a blade test. The surface energy of the bonding wafers was found to be 0.36-25.49 J m-2 at 60-180 °C for the dry film resist and 0.4-1.9 J m-2 for THB 151N in the same temperature range. Even though ORDYL MP112 has a better value of surface energy than THB 151N, it has a critical disadvantage when it comes to removing residue after electroplating. The proposed process can be applied to high aspect ratio MEMS structures, such as air gap inductors or vertical MEMS probe tips.

  15. Effect of low doses beta irradiation on micromechanical properties of surface layer of injection molded polypropylene composite

    NASA Astrophysics Data System (ADS)

    Manas, David; Manas, Miroslav; Gajzlerova, Lenka; Ovsik, Martin; Kratky, Petr; Senkerik, Vojtěch; Skrobak, Adam; Danek, Michal; Manas, Martin

    2015-09-01

    The influence of beta radiation on the changes in the structure and selected properties (mechanical and thermal) was proved. Using low doses of beta radiation for 25% glass fiber filled polypropylene and its influence on the changes of micromechanical properties of surface layer has not been studied in detail so far. The specimens of 25% glass fiber filled PP were made by injection molding technology and irradiated by low doses of beta radiation (0, 15 and 33 kGy). The changes in the microstructure and micromechanical properties of surface layer were evaluated using FTIR, SEM, WAXS and instrumented microhardness test. The results of the measurements showed considerable increase in micromechanical properties (indentation hardness, indentation elastic modulus) when low doses of beta radiation are used.

  16. Numerical prediction of flow induced fibers orientation in injection molded polymer composites

    NASA Astrophysics Data System (ADS)

    Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.

    2015-12-01

    Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.

  17. Coupled Oscillators System in the True Slime Mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, A.; Fujii, T.; Endo, I.

    The Plasmodium of true slime mold, Physarum polycephalum, which shows various oscillatory phenomena, can be regarded as a coupled nonlinear oscillators system. The partial bodies of the Plasmodium are interconnected by microscale tubes, whose dimension can be related to the coupling strength between the plasmodial oscillators. Investigation on the collective behavior of the oscillators under the condition that the configuration of the tube structure can be manipulated gives significant information on the characteristics of the Plasmodium from the viewpoint of nonlinear dynamics. In this study, we propose a living coupled oscillators system. Using a microfabricated structure, we patterned the geometry and the dimensions of the microscale tube structure of the Plasmodium. As the first step, the Plasmodium was grown in the microstructure for coupled two oscillators system that has two wells (oscillator part) and a microchannel (coupling part). We investigated the oscillation bahavior by monitoring the thickness oscillation of Plasmodium in the strucutre with various width (W) and length (L) of microchannel. We found that there are various types of oscillation bahavior, such as anti-phase and in-phase oscillations depending on the channel dimension W and L. The present method is suitable for further studies of the network of the Plasmodium as a collective nonlinear oscillators system.

  18. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cure 25 lb/ton.4 NA—this is considered to be a closed molding operation. 25 lb/ton.4 Use the... vented during spinning and cure 20 lb/ton.4 NA—this is considered to be a closed molding operation. 20 lb...

  19. Investigation of the adhesion interface obtained through two-component injection molding

    NASA Astrophysics Data System (ADS)

    Fetecau, Catalin; Stan, Felicia; Dobrea, Daniel

    2011-01-01

    In this paper we study the interface strength obtained through two-component (2C) injection molding of LDPE-HDPE polymers. First, numerical simulation of the over-molding process is carried out using Moldflow technology. Second, butt-joint specimens were produced by over-molding under different process condition, and tested. Two injection sequences were considered, injection of LDPE on HDPE polymer, and HDLE on LDPE, respectively. To investigate the effects of the mold surface roughness on the polymers adhesion at interface, different inserts with different roughness are employed.

  20. Airborne Mold and Endotoxin Concentrations in New Orleans, Louisiana, after Flooding, October through November 2005

    PubMed Central

    Solomon, Gina M.; Hjelmroos-Koski, Mervi; Rotkin-Ellman, Miriam; Hammond, S. Katharine

    2006-01-01

    Background The hurricanes and flooding in New Orleans, Louisiana, in October and November 2005 resulted in damp conditions favorable to the dispersion of bioaerosols such as mold spores and endotoxin. Objective Our objective in this study was to assess potential human exposure to bioaerosols in New Orleans after the flooding of the city. Methods A team of investigators performed continuous airborne sampling for mold spores and endotoxin outdoors in flooded and nonflooded areas, and inside homes that had undergone various levels of remediation, for periods of 5–24 hr during the 2 months after the flooding. Results The estimated 24-hr mold concentrations ranged from 21,000 to 102,000 spores/m3 in outdoor air and from 11,000 to 645,000 spores/m3 in indoor air. The mean outdoor spore concentration in flooded areas was roughly double the concentration in nonflooded areas (66,167 vs. 33,179 spores/m3; p < 0.05). The highest concentrations were inside homes. The most common mold species were from the genera of Cladosporium and Aspergillus/Penicillium; Stachybotrys was detected in some indoor samples. The airborne endotoxin concentrations ranged from 0.6 to 8.3 EU (endo-toxin units)/m3 but did not vary with flooded status or between indoor and outdoor environments. Conclusions The high concentration of mold measured indoors and outdoors in the New Orleans area is likely to be a significant respiratory hazard that should be monitored over time. Workers and returning residents should use appropriate personal protective equipment and exposure mitigation techniques to prevent respiratory morbidity and long-term health effects. PMID:16966092

  1. Analysis of form deviation in non-isothermal glass molding

    NASA Astrophysics Data System (ADS)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  2. MOLD SPECIFIC QUANTITATIVE PCR FOR RAPID IDENTIFICATION AND ENUMERATION

    EPA Science Inventory

    There is growing awareness that indoor molds/fungi may be connected to such conditions as asthma, allergies, hemorrhaging, chronic rhinosinusitis, memory loss, and a symptom complex called sick-building-syndrome. In addition, molds cause frequently fatal nosocomical infections. ...

  3. An in-mold packaging process for plastic fluidic devices.

    PubMed

    Yoo, Y E; Lee, K H; Je, T J; Choi, D S; Kim, S K

    2011-01-01

    Micro or nanofluidic devices have many channel shapes to deliver chemical solutions, body fluids or any fluids. The channels in these devices should be covered to prevent the fluids from overflowing or leaking. A typical method to fabricate an enclosed channel is to bond or weld a cover plate to a channel plate. This solid-to-solid bonding process, however, takes a considerable amount of time for mass production. In this study, a new process for molding a cover layer that can enclose open micro or nanochannels without solid-to-solid bonding is proposed and its feasibility is estimated. First, based on the design of a model microchannel, a brass microchannel master core was machined and a plastic microchannel platform was injection-molded. Using this molded platform, a series of experiments was performed for four process or mold design parameters. Some feasible conditions were successfully found to enclosed channels without filling the microchannels for the injection molding of a cover layer over the plastic microchannel platform. In addition, the bond strength and seal performance were estimated in a comparison with those done by conventional bonding or welding processes.

  4. Fabrication of injection molded sintered alpha SiC turbine components

    NASA Technical Reports Server (NTRS)

    Storm, R. S.; Ohnsorg, R. W.; Frechette, F. J.

    1981-01-01

    Fabrication of a sintered alpha silicon carbide turbine blade by injection molding is described. An extensive process variation matrix was carried out to define the optimum fabrication conditions. Variation of molding parameters had a significant impact on yield. Turbine blades were produced in a reasonable yield which met a rigid quality and dimensional specification. Application of injection molding technology to more complex components such as integral rotors is also described.

  5. Resin transfer molding of textile preforms for aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Hasko, Gregory H.; Dexter, H. Benson; Weideman, Mark H.

    1992-01-01

    The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.

  6. A catalyst-free, temperature controlled gelation system for in-mold fabrication of microgels.

    PubMed

    Krüger, Andreas J D; Köhler, Jens; Cichosz, Stefan; Rose, Jonas C; Gehlen, David B; Haraszti, Tamás; Möller, Martin; De Laporte, Laura

    2018-06-19

    Anisometric microgels are prepared via thermal crosslinking using an in-mold polymerization technique. Star-shaped poly(ethylene oxide-stat-propylene oxide) polymers, end-modified with amine and epoxy groups, form hydrogels, of which the mechanical properties and gelation rate can be adjusted by the temperature, duration of heating, and polymer concentration. Depending on the microgel stiffness, the rod-shaped microgels self-assemble into ordered or disordered structures.

  7. Mass Culture of a Slime Mold, Physarum polycephalum1

    PubMed Central

    Brewer, E. N.; Kuraishi, S.; Garver, J. C.; Strong, F. M.

    1964-01-01

    The slime mold, Physarum polycephalum, was cultivated in a soluble natural medium in shake flasks and in 30-liter and 50-gal conventional baffled fermentors. Yields of 6 to 10 g (dry weight) per liter were obtained in the large-scale fermentations. Because of the slow growth of the myxomycete, particular attention had to be paid to aseptic technique. The inability of this organism to withstand the normal degree of agitation employed with most aerobic fermentations made it difficult to obtain adequate aeration. Conditions for growth of the organism on a pilot-plant scale are presented. PMID:14131366

  8. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and lowmore » residual stresses. The products fabricated are used on multiple programs.« less

  9. Parylene C coating for high-performance replica molding.

    PubMed

    Heyries, Kevin A; Hansen, Carl L

    2011-12-07

    This paper presents an improvement to the soft lithography fabrication process that uses chemical vapor deposition of poly(chloro-p-xylylene) (parylene C) to protect microfabricated masters and to improve the release of polymer devices following replica molding. Chemical vapor deposition creates nanometre thick conformal coatings of parylene C on silicon wafers having arrays of 30 μm high SU8 pillars with densities ranging from 278 to 10,040 features per mm(2) and aspect ratios (height : width) from 1 : 1 to 6 : 1. A single coating of parylene C was sufficient to permanently promote poly(dimethyl)siloxane (PDMS) mold release and to protect masters for an indefinite number of molding cycles. We also show that the improved release properties of parylene treated masters allow for fabrication with hard polymers, such as poly(urethane), that would otherwise not be compatible with SU8 on silicon masters. Parylene C provides a robust and high performance mold release coating for soft lithography microfabrication that extends the life of microfabricated masters and improves the achievable density and aspect ratio of replicated features.

  10. Injection molding of iPP samples in controlled conditions and resulting morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessa, Nino, E-mail: ninosessa.ns@gmail.com; De Santis, Felice, E-mail: fedesantis@unisa.it; Pantani, Roberto, E-mail: rpantani@unisa.it

    2015-12-17

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy.

  11. Treatment Principles for the Management of Mold Infections

    PubMed Central

    Kontoyiannis, Dimitrios P.; Lewis, Russell E.

    2015-01-01

    Survival rates among immunocompromised patients with invasive mold infections have markedly improved over the last decade with earlier diagnosis and new antifungal treatment options. Yet, increasing antifungal resistance, breakthrough infections with intrinsically resistant fungi, and potentially life-threatening adverse effects and drug interactions are becoming more problematic, especially with prolonged therapy. Evidence-based recommendations for treating invasive aspergillosis and mucormycosis provide excellent guidance on the initial workup and treatment of these molds, but they cannot address all of the key management issues. Herein, we discuss 10 general treatment principles in the management of invasive mold disease in immunocompromised patients and discuss how these principles can be integrated to develop an effective, individualized treatment plan. PMID:25377139

  12. Chalcogenide molded freeform optics for mid-infrared lasers

    NASA Astrophysics Data System (ADS)

    Chenard, Francois; Alvarez, Oseas; Yi, Allen

    2017-05-01

    High-precision chalcogenide molded micro-lenses were produced to collimate mid-infrared Quantum Cascade Lasers (QCLs). Molded cylindrical micro-lens prototypes with aspheric contour (acylindrical), high numerical aperture (NA 0.8) and small focal length (f<2 mm) were fabricated to collimate the QCL fast-axis beam. Another innovative freeform micro-lens has an input acylindrical surface to collimate the fast axis and an orthogonal output acylindrical surface to collimate the slow axis. The thickness of the freeform lens is such that the output fast- and slow-axis beams are circular. This paper presents results on the chalcogenide molded freeform micro-lens designed to collimate and circularize QCL at 4.6 microns.

  13. 3D Molding of Veneers by Mechanical and Pneumatic Methods

    PubMed Central

    Gaff, Milan; Gašparík, Miroslav

    2017-01-01

    This paper deals with the influence of selected methods (mechanical and pneumatic) as well as various factors (wood species, moisture content, veneer shape, punch diameter, laminating foil thickness, holding method, plasticizing) on 3D molding of veneers. 3D molding was evaluated on the basis of maximum deflection of birch and beech veneers. Cracks and warping edges were also evaluated in selected groups of mechanical molding. Mechanical methods tested veneers with various treatments (steaming, water and ammonia plasticizing and lamination). The pneumatic method was based on veneer shaping using air pressure. The results indicate that birch veneers are more suitable for 3D molding. The differences between the mechanical and pneumatic methods were not considerable. The most suitable method for mechanical 3D molding was the veneer lamination by polyethylene foils with thicknesses of 80 and 125 μm, inasmuch as these achieved better results than veneer plasticized by steam. The occurrence of cracks was more frequent in beech veneers, whereas, edge warping occurred at similar rates for both wood species and depends rather on holding method during 3D molding. Use of the ammonia solution is more suitable and there occurs no marked increase in moisture as happens when soaking in water. PMID:28772684

  14. Saliva secretory IgA antibodies against molds and mycotoxins in patients exposed to toxigenic fungi.

    PubMed

    Vojdani, Aristo; Kashanian, Albert; Vojdani, Elroy; Campbell, Andrew W

    2003-11-01

    Upper respiratory exposure to different environmental antigens results first in the activation of mucosal immunity and production of IgA antibodies in different secretions including saliva. Despite this there is no study, which addresses secretory antibodies against molds and mycotoxins. The purpose of this study was to evaluate mold-specific salivary IgA in individuals exposed to molds and mycotoxins in a water-damaged building environment. Saliva IgA antibody levels against seven different molds and two mycotoxins were studied in 40 patients exposed to molds and in 40 control subjects. Mold-exposed patients showed significantly higher levels of salivary IgA antibodies against one or more mold species. A majority of patients with high IgA antibodies against molds exhibited elevation in salivary IgA against mycotoxins, as well. These IgA antibodies against molds and mycotoxins are specific, since using molds and mycotoxins in immune absorption could reduce antibody levels, significantly. Detection of high counts of molds in water-damaged buildings, strongly suggests the existence of a reservoir of mold spores in the environment. This viable microbial activity with specific mold and mycotoxin IgA in saliva may assist in the diagnosis of mold exposure. Whether mold and mycotoxin specific IgA antibodies detected in saliva are indicative of the role of IgA antibodies in the late phase of type-1 hypersensitivity reaction or in type-2 and type-3 delayed sensitivities is a matter that warrants further investigation.

  15. Differentiation of Toxic Molds via Headspace SPME-GC/MS and Canine Detection

    PubMed Central

    Griffith, Robert T.; Jayachandran, Krishnaswamy; Shetty, Kateel G.; Whitstine, William; Furton, Kenneth G.

    2007-01-01

    Indoor mold growth has recently become a concern in the legal world in regards to insurance litigation. Hazardous mold exposure to humans has been linked to many acute and chronic adverse health effects including death. As it grows, mold produces several types of primary and secondary metabolites, including microbial volatile organic compounds (MVOCs). Microbial volatile organic compound emission may be used as a preliminary indication of a mold infestation that is invisible to the unaided eye. The objective of the study is to identify the unique odor signatures of three species of molds, Aspergillus versicolor, Penicillium chrysogenum, and Stachybotrys chartarum by SPME-GC/MS analysis. Determining the compounds that are emitted by the selected species has made it possible to conduct validation studies of canine detection of these mold species through a series of field tests.

  16. Higher Potassium Concentration in Shoots Reduces Gray Mold in Sweet Basil.

    PubMed

    Yermiyahu, Uri; Israeli, Lior; David, Dalia Rav; Faingold, Inna; Elad, Yigal

    2015-08-01

    Nutritional elements can affect plant susceptibility to plant pathogens, including Botrytis cinerea. We tested the effect of potassium (K) fertilization on gray mold in sweet basil grown in pots, containers, and soil. Increased K in the irrigation water and in the sweet basil tissue resulted in an exponential decrease in gray mold severity. Potassium supplied to plants by foliar application resulted in a significant decrease in gray mold in plants grown with a low rate of K fertigation. Lower K fertigation resulted in a significant increase in B. cinerea infection under semi-commercial conditions. Gray mold severity in harvested shoots was significantly negatively correlated with K concentration in the irrigation solution, revealing resistance to B. cinerea infection as a result of high K concentration in sweet basil tissue. Gray mold was reduced following K foliar application of the plants. In general, there was no synergy between the fertigation and foliar spray treatments. Proper K fertilization can replace some of the required chemical fungicide treatments and it may be integrated into gray mold management for improved disease suppression.

  17. Removing function model and experiments on ultrasonic polishing molding die

    NASA Astrophysics Data System (ADS)

    Huang, Qitai; Ni, Ying; Yu, Jingchi

    2010-10-01

    Low temperature glass molding technology is the main method on volume-producing high precision middle and small diameter optical cells in the future. While the accuracy of the molding die will effect the cell precision, so the high precision molding die development is one of the most important part of the low temperature glass molding technology. The molding die is manufactured from high rigid and crisp metal alloy, with the ultrasonic vibration character of high vibration frequency and concentrative energy distribution; abrasive particles will impact the rigid metal alloy surface with very high speed that will remove the material from the work piece. Ultrasonic can make the rigid metal alloy molding die controllable polishing and reduce the roughness and surface error. Different from other ultrasonic fabrication method, untouched ultrasonic polishing is applied on polish the molding die, that means the tool does not touch the work piece in the process of polishing. The abrasive particles vibrate around the balance position with high speed and frequency under the drive of ultrasonic vibration in the liquid medium and impact the workspace surface, the energy of abrasive particles come from ultrasonic vibration, while not from the direct hammer blow of the tool. So a nummular vibrator simple harmonic vibrates on an infinity plane surface is considered as a model of ultrasonic polishing working condition. According to Huygens theory the sound field distribution on a plane surface is analyzed and calculated, the tool removing function is also deduced from this distribution. Then the simple point ultrasonic polishing experiment is proceeded to certificate the theory validity.

  18. Understanding the impact of molds on indoor air quality and possible links to health effects Indoor Molds - More than Just a Musty Smell

    EPA Science Inventory

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed ...

  19. SPECIFIC MOLDS ASSOCIATED WITH ASTHMA IN WATER-DAMAGED HOMES

    EPA Science Inventory

    Objective: We sought to determine if specific molds were found in significantly higher concentrations in the water-damaged homes of asthmatic children compared to homes with no visible water damage. Methods: The mold concentrations in the dust in asthmatic children's bedrooms i...

  20. Psychological, neuropsychological, and electrocortical effects of mixed mold exposure.

    PubMed

    Crago, B Robert; Gray, Michael R; Nelson, Lonnie A; Davis, Marilyn; Arnold, Linda; Thrasher, Jack D

    2003-08-01

    The authors assessed the psychological, neuropsychological, and electrocortical effects of human exposure to mixed colonies of toxigenic molds. Patients (N = 182) with confirmed mold-exposure history completed clinical interviews, a symptom checklist (SCL-90-R), limited neuropsychological testing, quantitative electroencephalogram (QEEG) with neurometric analysis, and measures of mold exposure. Patients reported high levels of physical, cognitive, and emotional symptoms. Ratings on the SCL-90-R were "moderate" to "severe," with a factor reflecting situational depression accounting for most of the variance. Most of the patients were found to suffer from acute stress, adjustment disorder, or post-traumatic stress. Differential diagnosis confirmed an etiology of a combination of external stressors, along with organic metabolically based dysregulation of emotions and decreased cognitive functioning as a result of toxic or metabolic encephalopathy. Measures of toxic mold exposure predicted QEEG measures and neuropsychological test performance. QEEG results included narrowed frequency bands and increased power in the alpha and theta bands in the frontal areas of the cortex. These findings indicated a hypoactivation of the frontal cortex, possibly due to brainstem involvement and insufficient excitatory input from the reticular activating system. Neuropsychological testing revealed impairments similar to mild traumatic brain injury. In comparison with premorbid estimates of intelligence, findings of impaired functioning on multiple cognitive tasks predominated. A dose-response relationship between measures of mold exposure and abnormal neuropsychological test results and QEEG measures suggested that toxic mold causes significant problems in exposed individuals. Study limitations included lack of a comparison group, patient selection bias, and incomplete data sets that did not allow for comparisons among variables.

  1. EPA Scientists Develop Research Methods for Studying Mold Fact Sheet

    EPA Pesticide Factsheets

    In 2002, U.S. Environmental Protection Agency researchers developed a DNA-based Mold Specific Quantitative Polymerase Chain Reaction method (MSQPCR) for identifying and quantifying over 100 common molds and fungi.

  2. MOLDED SEALING ELEMENT

    DOEpatents

    Bradford, B.W.; Skinner, W.J.

    1959-03-24

    Molded sealing elements suitable for use under conditions involving exposure to uranium hexafluoride vapor are described. Such sealing elements are made by subjecting graphitic carbons to a preliminary treatment with uranium hexafluoride vapor, and then incorporating polytetrafluorethylene in them. The resulting composition has good wear resistant and frictional properties and is resistant to disintegration by uranium hexafluoride over long periods of exposure.

  3. Method for molding ceramic powders using a water-based gel casting

    DOEpatents

    Janney, Mark A.; Omatete, Ogbemi O.

    1991-07-02

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant, and a monomer solution. The monomer solution includes at least one monofunctional monomer and at least one difunctional monomer, a free-radical initiator, and a aqueous solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product any be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  4. Understanding the impact of molds on indoor air quality and ...

    EPA Pesticide Factsheets

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed (NAS. 2000). The growth of molds in homes, schools, offices, and other public buildings has been implicated as the cause of a wide variety of adverse health effects. Headlines resulting from moldy, water-damaged homes, particularly

  5. Deformable silicone grating fabricated with a photo-imprinted polymer mold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Itsunari, E-mail: yamada.i@e.usp.ac.jp; Nishii, Junji; Saito, Mitsunori

    A tunable transmission grating was fabricated by molding a silicone elastomer (polydimethylsiloxane). Its optical characteristics were then evaluated during compression. For fabrication, a glass plate with a photoimprinted polymer grating film was used as a mold. Both the grating period and diffraction transmittance of the molded elastomer were functions of the compressive stress. The grating period changed from 3.02 to 2.86 μm during compressing the elastomer in the direction perpendicular to the grooves.

  6. Fungi in Ontario maple syrup & some factors that determine the presence of mold damage.

    PubMed

    Frasz, Samantha L; Miller, J David

    2015-08-17

    Maple syrup is a high value artisanal product produced mainly in Canada and a number of States primarily in the northeast USA. Mold growth (Wallemia sebi) on commercial product was first reported in syrup in 1908. Since then, few data have been published. We conducted a systematic examination for fungi in maple syrup from 68 producers from all of the syrup-producing areas of Ontario, Canada. The mean pH of the samples was pH 6.82, sugar content averaged 68.0±0.89 °Brix and aw averaged 0.841±0.011. Some 23 species of fungi were isolated based on morphology and molecular techniques. The most common fungus in the maple syrup samples was Eurotium herbariorum, followed by Penicillium chrysogenum, Aspergillus penicillioides, Aspergillus restrictus, Aspergillus versicolor and two species of Wallemia. Cladosporium cladosporioides was also common but only recovered when fungi known from high sugar substrates were also present in the mold damaged sample. The rarely reported yeast Citeromyces matrinsis was found in samples from three producers. There appear to be three potential causes for mold damage observed. High aw was associated with about one third of the mold damage. Independently, cold packing (bottling at ~25 °C) was a risk factor. However, syrup of good quality and quite low aw values was contaminated. We hypothesize that sanitation in the bottling line and other aspects of the bottling process may be partial explanations. Clarifying this requires further study. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Treatment principles for the management of mold infections.

    PubMed

    Kontoyiannis, Dimitrios P; Lewis, Russell E

    2014-11-06

    Survival rates among immunocompromised patients with invasive mold infections have markedly improved over the last decade with earlier diagnosis and new antifungal treatment options. Yet, increasing antifungal resistance, breakthrough infections with intrinsically resistant fungi, and potentially life-threatening adverse effects and drug interactions are becoming more problematic, especially with prolonged therapy. Evidence-based recommendations for treating invasive aspergillosis and mucormycosis provide excellent guidance on the initial workup and treatment of these molds, but they cannot address all of the key management issues. Herein, we discuss 10 general treatment principles in the management of invasive mold disease in immunocompromised patients and discuss how these principles can be integrated to develop an effective, individualized treatment plan. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. Decontamination formulation with additive for enhanced mold remediation

    DOEpatents

    Tucker, Mark D [Albuquerque, NM; Irvine, Kevin [Huntsville, AL; Berger, Paul [Rome, NY; Comstock, Robert [Bel Air, MD

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  9. An investigation into the injection molding of PMR-15 polyimide

    NASA Technical Reports Server (NTRS)

    Colaluca, M. A.

    1984-01-01

    The chemorheological behavior of the PRM-15 molding compounds were characterized, the range of suitable processing parameters for injection molding in a reciprocating screw injection molding machine was determined, and the effects of the injection molding processing parameters on the mechanical properties of molded PMR-15 parts were studied. The apparatus and procedures for measuring viscosity and for determining the physical response of the material during heating are described. Results show that capillary rheometry can be effectively used with thermosets if the equipment is designed to overcome some of the inherent problems of these materials. A uniform temperature was provided in the barrel by using a circulating hot oil system. Standard capillary rheometry methods can provide the dependence of thermoset apparent viscosity on shear rate, temperature, and time. Process conditions resulting in complete imidization should be carefully defined. Specification of controlled oven temperature is inadequate and can result in incomplete imidization. For completely imidized PMR-15 heat at 15 C/min melt flow without gas evolution occurs in the temperature range of 325 C to 400 C.

  10. [Effects of different excipients on properties of Tongsaimai mixture and pellet molding].

    PubMed

    Wang, Jin; Lv, Zhiyang; Wu, Xiaoyan; Di, Liuqing; Dong, Yu; Cai, Baochang

    2011-01-01

    To study preliminarily on the relationship between properties of the mixture composed of Tongsaimai extract and different excipients and pellet molding. The multivariate regression analysis was used to investigate the correlation of different mixture and pellet molding by measuring the cohesion, liquid-plastic limit of mixture, and the powder properties of pellets. The weighted coefficients of the powder properties were determined by analytic hierarchy process combined with criteria importance through intercriteria correlation. The results showed that liquid-plastic limit seemed to be a major factor, which had positive correlation with pellet molding, while cohesion had negative correlation with pellet molding in the measured range. The physical properties of the mixture has marked influence on pellet molding.

  11. Effects of process parameters in plastic, metal, and ceramic injection molding processes

    NASA Astrophysics Data System (ADS)

    Lee, Shi W.; Ahn, Seokyoung; Whang, Chul Jin; Park, Seong Jin; Atre, Sundar V.; Kim, Jookwon; German, Randall M.

    2011-09-01

    Plastic injection molding has been widely used in the past and is a dominant forming approach today. As the customer demands require materials with better engineering properties that were not feasible with polymers, powder injection molding with metal and ceramic powders has received considerable attention in recent decades. To better understand the differences in the plastic injection molding, metal injection molding, and ceramic injection molding, the effects of the core process parameters on the process performances has been studied using the state-of-the-art computer-aided engineering (CAE) design tool, PIMSolver® The design of experiments has been conducted using the Taguchi method to obtain the relative contributions of various process parameters onto the successful operations.

  12. Predictive Engineering Tools for Injection-molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Third Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Mathur, Raj N.

    2014-08-15

    This report describes the technical progresses made during the third quarter of FY 2014: 1) Autodesk introduced the options for fiber inlet condition to the 3D solver. These options are already available in the mid-plane/dual domain solver. 2) Autodesk improved the accuracy of 3D fiber orientation calculation around the gate. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on the implementation of the reduced order model for fiber length, and discussed with Prof. Tucker the methods to reduce memory usage. 4) PlastiComp delivered to PNNL center-gated and edge-fan-gated 20-wt% to 30-wt% LCF/PP and LCF/PA66more » (7”x7”x1/8”) plaques molded by the in-line direct injection molding (D-LFT) process. 5) PlastiComp molded ASTM tensile, flexural and impact bars under the same D-LFT processing conditions used for plaques for Certification of Assessment and ascertaining the resultant mechanical properties. 6) Purdue developed a new polishing routine, utilizing the automated polishing machine, to reduce fiber damage during surface preparation. 7) Purdue used a marker-based watershed segmentation routine, in conjunction with a hysteresis thresholding technique, for fiber segmentation during fiber orientation measurement. 8) Purdue validated Purdue’s fiber orientation measurement method using the previous fiber orientation data obtained from the Leeds machine and manually measured data by the University of Illinois. 9) PNNL conducted ASMI mid-plane analyses for a 30wt% LCF/PP plaque and compared the predicted fiber orientations with the measured data provided by Purdue University at the selected locations on this plaque. 10) PNNL put together the DOE 2014 Annual Merit Review (AMR) presentation with the team and presented it at the AMR meetings on June 17, 2014. 11) PNNL built ASMI dual domain models for the Toyota complex part and commenced mold filling analyses of the complex part with different wall thicknesses in order

  13. Applications of polyamide/cellulose fiber/wollastonite composites for microcellular injection molding

    Treesearch

    Herman Winata; Lih-Sheng Turng; Daniel F. Caulfield; Tom Kuster; Rick Spindler; Rod Jacobson

    2003-01-01

    In this study, a cellulose-fiber-reinforced Polyamide-6 (PA-6) composite, a hybrid composite (PA-6/cellulose/Wollastonite), and the neat PA-6 resin were injection molded into ASTM test–bar samples with conventional and microcellular injection molding. The impact and tensile strengths of molded samples were measured and the Scanning Electron Microscopy (SEM) images were...

  14. Using Direct Metal Deposition to Fabricate Mold Plates for an Injection Mold Machine Allowing for the Evaluation of Cost Effective Near-Sourcing Opportunities in Larger, High Volume Consumer Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, Chad E; Groh, Bill

    2014-10-31

    ORNL collaborated with Radio Systems Corporation to investigate additive manufacturing (AM) of mold plates for plastic injection molding by direct metal deposition. The team s modelling effort identified a 100% improvement in heat transfer through use of conformal cooling lines that could be built into the mold using a revolutionary design enabled by additive manufacturing. Using the newly installed laser deposition system at the ORNL Manufacturing Demonstration Facility (MDF) a stainless steel mold core was printed.

  15. THE CHALLENGE OF MOLDS FOR THE U.S. ARMY

    EPA Science Inventory

    The US Army and all armies have been interested in molds since there were armies. The most obvious interest was human infections by molds like trench foot. Then there were losses of military animals and contamination of their fodder, most notably the Soviet loss of thousands o...

  16. Microstructure evolution of zinc oxide films derived from dip-coating sol-gel technique: formation of nanorods through orientation attachment.

    PubMed

    Huang, Nan; Sun, Chao; Zhu, Mingwei; Zhang, Bin; Gong, Jun; Jiang, Xin

    2011-07-01

    ZnO:Al thin films with Al incorporation of 0-20 at.% were deposited through the sol-gel technique. Such a film undergoes a significant microstructure development, from columnar to granular structures and then nanorod arrays with increasing Al content. The important role of Al incorporation level in the microstructure evolution was determined using scanning electron microscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. At low Al level, the transition from columnar to granular grains can be attributed to the coarsening barrier resulting from the introduction of Al into the matrix. However, oriented structures of ZnO nanorod arrays are formed at a high Al level. TEM investigation reveals that a nanorod with smooth morphology at the top and rough morphology at the bottom has a single-crystalline wurtzite structure, which is the aggregation of nanoparticles of a few nanometers in size formed through the orientation attachment mechanism followed by epitaxial growth on the aggregated particles. Finally, the physical properties of the ZnO films with different degrees of Al concentration are discussed. Such detailed microstructure studies may aid the understanding of the doping effect process on the growth of a film, which is essential to altering its physical or chemical properties.

  17. Powder Injection Molding of Ceramic Engine Components for Transportation

    NASA Astrophysics Data System (ADS)

    Lenz, Juergen; Enneti, Ravi K.; Onbattuvelli, Valmikanathan; Kate, Kunal; Martin, Renee; Atre, Sundar

    2012-03-01

    Silicon nitride has been the favored material for manufacturing high-efficiency engine components for transportation due to its high temperature stability, good wear resistance, excellent corrosion resistance, thermal shock resistance, and low density. The use of silicon nitride in engine components greatly depends on the ability to fabricate near net-shape components economically. The absence of a material database for design and simulation has further restricted the engineering community in developing parts from silicon nitride. In this paper, the design and manufacturability of silicon nitride engine rotors for unmanned aerial vehicles by the injection molding process are discussed. The feedstock material property data obtained from experiments were used to simulate the flow of the material during injection molding. The areas susceptible to the formation of defects during the injection molding process of the engine component were identified from the simulations. A test sample was successfully injection molded using the feedstock and sintered to 99% density without formation of significant observable defects.

  18. Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection

    NASA Astrophysics Data System (ADS)

    Mingji, Huang; Geng, Wu; yan, Shan

    2017-11-01

    The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.

  19. Selection of UV Resins for Nanostructured Molds for Thermal-NIL.

    PubMed

    Jia, Zheng; Choi, Junseo; Park, Sunggook

    2018-06-18

    Nanoimprint molds made of soft polymeric materials have advantages of low demolding force and low fabrication cost over Si or metal-based hard molds. However, such advantages are often sacrificed by their reduced replication fidelity associated with the low mechanical strength. In this paper, we studied replication fidelity of different UV-resin molds copied from a Si master mold via UV nanoimprint lithography (NIL) and their thermal imprinting performance into a thermoplastic polymer. Four different UV resins were studied: two were high surface energy UV resins based on tripropyleneglycol diacrylate (TPGDA resin) and polypropyleneglycol diacrylate (PPGDA resin), and the other two were commercially available, low surface energy poly-urethane acrylate (PUA resin) and fluorine-containing (MD 700) UV resins. The replication fidelity among the four UV-resins during UV nanoimprint lithograph from a Si master with sharp nanostructures was in the increasing order of (poorest) PUA resin < MD 700 < PPGDA resin < TPGDA resin (best). The results show that the high surface energy and small monomer size are keys to achieving good UV resin filling into sharp nanostructures over the viscosity of the resin solution. When the four UV-resin molds were used for thermal-NIL into a thermoplastic polymer, the replication fidelity was in the increasing order of (poorest) MD 700 < TPGDA resin < PUA resin (best), which follows the same order of their Young's moduli. Our results indicate that the selection of an appropriate UV resin for NIL molds requires consideration of the replication fidelities in the mold fabrication and the subsequent thermal-NIL into thermoplastic polymers. © 2018 IOP Publishing Ltd.

  20. Exposed-core chalcogenide microstructured optical fibers for chemical sensing

    NASA Astrophysics Data System (ADS)

    Troles, Johann; Toupin, Perrine; Brilland, Laurent; Boussard-Plédel, Catherine; Bureau, Bruno; Cui, Shuo; Mechin, David; Adam, Jean-Luc

    2013-05-01

    Chemical bonds of most of the molecules vibrate at a frequency corresponding to the near or mid infrared field. It is thus of a great interest to develop sensitive and portable devices for the detection of specific chemicals and biomolecules for various applications in health, the environment, national security and so on. Optical fibers define practical sensing tools. Chalcogenide glasses are known for their transparency in the infrared optical range and their ability to be drawn as fibers. They are consequently good candidates to be used in biological/chemical sensing. For that matter, in the past decade, chalcogenide glass fibers have been successfully implemented in evanescent wave spectroscopy experiments, for the detection of bio-chemical species in various fields of applications including microbiology and medicine, water pollution and CO2 detection. Different types of fiber can be used: single index fibers or microstructured fibers. Besides, in recent years a new configuration of microstructured fibers has been developed: microstructured exposed-core fibers. This design consists of an optical fiber with a suspended micron-scale core that is partially exposed to the external environment. This configuration has been chosen to elaborate, using the molding method, a chalcogenide fiber for chemical species detection. The sensitivity of this fiber to detect molecules such as propan-2-ol and acetone has been compared with those of single index fibers. Although evanescent wave absorption is inversely proportional to the fiber diameter, the result shows that an exposed-core fiber is much more sensitive than a single index fiber having a twice smaller external diameter.