Science.gov

Sample records for microtubule doublet interactions

  1. Structural insights into microtubule doublet interactions inaxonemes

    SciTech Connect

    Downing, Kenneth H.; Sui, Haixin

    2007-06-06

    Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of the axoneme. Recent structural studies of the axoneme have used cryo-electron tomography to reveal new details of the interactions among some of the multitude of proteins that form the axoneme and regulate its movement. Connections among the several sets of dyneins, in particular, suggest ways in which their actions may be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding the doublet's mechanical properties that are related to the bending of the axoneme, and has also offered insight into its potential role in the mechanism of dynein activity regulation.

  2. Microtubule doublets are double-track railways for intraflagellar transport trains.

    PubMed

    Stepanek, Ludek; Pigino, Gaia

    2016-05-01

    The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components. PMID:27151870

  3. Molecular architecture of axonemal microtubule doublets revealedby cryo-electron tomography

    SciTech Connect

    Sui, Haixin; Downing, Kenneth H.

    2006-05-22

    The axoneme, which forms the core of eukaryotic flagella and cilia, is one of the largest macromolecular machines with a structure that is largely conserved from protists to mammals. Microtubule doublets are structural components of axonemes containing a number of proteins besides tubulin, and are usually found in arrays of nine doublets arranged around two singlet microtubules. Coordinated sliding of adjacent doublets, which involves a host of other proteins in the axoneme, produces periodic beating movements of the axoneme. We have obtained a 3D density map of intact microtubule doublets using cryo-electron tomography and image averaging. Our map, with a resolution of about 3 nm, provides insights into locations of particular proteins within the doublets and the structural features of the doublets that define their mechanical properties. We identify likely candidates for several of these non-tubulin components of the doublets. This work offers novel insight on how tubulin protofilaments and accessory proteins attach together to form the doublets and provides a structural basis for understanding doublet function in axonemes.

  4. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation.

    PubMed

    Ishijima, Sumio

    2016-01-01

    It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements. PMID:26863204

  5. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation

    PubMed Central

    Ishijima, Sumio

    2016-01-01

    It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements. PMID:26863204

  6. Insights into the Structure and Function of Ciliary and Flagellar Doublet Microtubules

    PubMed Central

    Linck, Richard; Fu, Xiaofeng; Lin, Jianfeng; Ouch, Christna; Schefter, Alexandra; Steffen, Walter; Warren, Peter; Nicastro, Daniela

    2014-01-01

    Cilia and flagella are conserved, motile, and sensory cell organelles involved in signal transduction and human disease. Their scaffold consists of a 9-fold array of remarkably stable doublet microtubules (DMTs), along which motor proteins transmit force for ciliary motility and intraflagellar transport. DMTs possess Ribbons of three to four hyper-stable protofilaments whose location, organization, and specialized functions have been elusive. We performed a comprehensive analysis of the distribution and structural arrangements of Ribbon proteins from sea urchin sperm flagella, using quantitative immunobiochemistry, proteomics, immuno-cryo-electron microscopy, and tomography. Isolated Ribbons contain acetylated α-tubulin, β-tubulin, conserved protein Rib45, >95% of the axonemal tektins, and >95% of the calcium-binding proteins, Rib74 and Rib85.5, whose human homologues are related to the cause of juvenile myoclonic epilepsy. DMTs contain only one type of Ribbon, corresponding to protofilaments A11-12-13-1 of the A-tubule. Rib74 and Rib85.5 are associated with the Ribbon in the lumen of the A-tubule. Ribbons contain a single ∼5-nm wide filament, composed of equimolar tektins A, B, and C, which interact with the nexin-dynein regulatory complex. A summary of findings is presented, and the functions of Ribbon proteins are discussed in terms of the assembly and stability of DMTs, ciliary motility, and other microtubule systems. PMID:24794867

  7. Kondo and Majorana doublet interactions in quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Younghyun; Liu, Dong E.; Gaidamauskas, Erikas; Paaske, Jens; Flensberg, Karsten; Lutchyn, Roman

    We study the properties of a quantum dot coupled to a normal lead and a time-reversal topological superconductor with Majorana Kramers pair at the end. We explore the phase diagram of the system as a function of Kondo and Majorana-induced coupling strengths using perturbative renormalization group study and slave-boson mean-field theory. We find that, in the presence of coupling between a quantum dot and a Majorana doublet, the system flows to a new fixed point controlled by the Majorana doublet, rather than the Kondo coupling, which is characterized by correlations between a localized spin and the fermion parity of each spin sector of the topological superconductor. We find that this fixed point is stable with respect to Gaussian fluctuations. We also investigate the effect of spin-spin interaction between a quantum dot and Majorana doublet and compare the result with a case where a normal lead is directly coupled to Majorana doublet.

  8. YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules

    PubMed Central

    Chernov, Konstantin G; Mechulam, Alain; Popova, Nadezhda V; Pastre, David; Nadezhdina, Elena S; Skabkina, Olga V; Shanina, Nina A; Vasiliev, Victor D; Tarrade, Anne; Melki, Judith; Joshi, Vandana; Baconnais, Sonia; Toma, Flavio; Ovchinnikov, Lev P; Curmi, Patrick A

    2008-01-01

    Background YB-1 is a major regulator of gene expression in eukaryotic cells. In addition to its role in transcription, YB-1 plays a key role in translation and stabilization of mRNAs. Results We show here that YB-1 interacts with tubulin and microtubules and stimulates microtubule assembly in vitro. High resolution imaging via electron and atomic force microscopy revealed that microtubules assembled in the presence of YB-1 exhibited a normal single wall ultrastructure and indicated that YB-1 most probably coats the outer microtubule wall. Furthermore, we found that YB-1 also promotes the assembly of MAPs-tubulin and subtilisin-treated tubulin. Finally, we demonstrated that tubulin interferes with RNA:YB-1 complexes. Conclusion These results suggest that YB-1 may regulate microtubule assembly in vivo and that its interaction with tubulin may contribute to the control of mRNA translation. PMID:18793384

  9. Coupling interaction of electromagnetic wave in a groove doublet configuration.

    PubMed

    Ding, Lan; Liu, Jinsong; Wang, Dong; Wang, Kejia

    2010-09-27

    Based on the waveguide mode (WGM) method, coupling interaction of electromagnetic wave in a groove doublet configuration is studied. The formulation obtained by WGM method for a single groove [Prog. Electromagn. Res. 18, 1-17 (1998)] is extended to two grooves. By exploring the total scattered field of the configuration, coupling interaction ratios are defined to describe the interaction between grooves quantitatively. Since each groove in this groove doublet configuration is regarded as the basic unit, the effects of coupling interaction on the scattered fields of each groove can be investigated respectively. Numerical results show that an oscillatory behavior of coupling interaction is damped with increasing groove spacing. The incident and scattering angle dependence of coupling interaction is symmetrical when the two grooves are the same. For the case of two subwavelength grooves, the coupling interaction is not sensitive to the incident angle and scattering angle. Although the case of two grooves is discussed for simplicity, the formulation developed in this article can be generalized to arbitrary number of grooves. Moreover, our study offers a simple alternative to investigate and design metallic gratings, compact directional antennas, couplers, and other devices especially in low frequency regime such as THz and microwave domain. PMID:20941004

  10. Molecular architecture of the Dam1 complex–microtubule interaction

    PubMed Central

    Legal, Thibault; Zou, Juan; Sochaj, Alicja; Rappsilber, Juri

    2016-01-01

    Mitosis is a highly regulated process that allows the equal distribution of the genetic material to the daughter cells. Chromosome segregation requires the formation of a bipolar mitotic spindle and assembly of a multi-protein structure termed the kinetochore to mediate attachments between condensed chromosomes and spindle microtubules. In budding yeast, a single microtubule attaches to each kinetochore, necessitating robustness and processivity of this kinetochore–microtubule attachment. The yeast kinetochore-localized Dam1 complex forms a direct interaction with the spindle microtubule. In vitro, the Dam1 complex assembles as a ring around microtubules and couples microtubule depolymerization with cargo movement. However, the subunit organization within the Dam1 complex, its higher-order oligomerization and how it interacts with microtubules remain under debate. Here, we used chemical cross-linking and mass spectrometry to define the architecture and subunit organization of the Dam1 complex. This work reveals that both the C termini of Duo1 and Dam1 subunits interact with the microtubule and are critical for microtubule binding of the Dam1 complex, placing Duo1 and Dam1 on the inside of the ring structure. Integrating this information with available structural data, we provide a coherent model for how the Dam1 complex self-assembles around microtubules. PMID:26962051

  11. Cryo-EM Studies of Microtubule Structural Intermediates and Kinetochore–Microtubule Interactions

    PubMed Central

    Nogales, Eva; Ramey, Vincent H.; Wang, Hong-Wei

    2014-01-01

    The existence of structural intermediates in the processes of microtubule assembly and disassembly, and their relationship with the nucleotide state of tubulin, have been the subject of significant study and recent controversy. The first part of this chapter describes experiments and methods designed to characterize, using cryo-electron microscopy (cryo-EM) and image analysis, the structure of stabilized tubulin assemblies that we propose mimic the growth and shortening states at microtubule ends. We further put forward the idea that these intermediates have important biological functions, especially during cellular processes where the dynamic character of microtubules is essential. One such process is the attachment of spindle microtubules to kinetochores in eukaryotic cell division. The second part of this chapter is consequently dedicated to studies of the yeast Dam1 kinetochore complex and its interaction with microtubules. This complex is essential for accurate chromosome segregation and is an important target of the Aurora B spindle check-point kinase. The Dam1 complex self-assembles in a microtubule-dependent manner into rings and spirals. The rings are able to track microtubule-depolymerizing ends against a load and in a highly processive manner, an essential property for their function in vivo. We describe the experimental in vitro protocols to produce biologically relevant self-assembled structures of Dam1 around microtubules and their structural characterization by cryo-EM. PMID:20466133

  12. Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules.

    PubMed

    Andrade, Josefa; Pearce, Sandy Timm; Zhao, Hu; Barroso, Margarida

    2004-12-01

    Previously, we have shown that p22, an EF-hand Ca2+-binding protein, interacts indirectly with microtubules in an N-myristoylation-dependent and Ca2+-independent manner. In the present study, we report that N-myristoylated p22 interacts with several microtubule-associated proteins within the 30-100 kDa range using overlay blots of microtubule pellets containing cytosolic proteins. One of those p22-binding partners, a 35-40 kDa microtubule-binding protein, has been identified by MS as GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Several lines of evidence suggest a functional relationship between GAPDH and p22. First, endogenous p22 interacts with GAPDH by immunoprecipitation. Secondly, p22 and GAPDH align along microtubule tracks in analogous punctate structures in BHK cells. Thirdly, GAPDH facilitates the p22-dependent interactions between microtubules and microsomal membranes, by increasing the ability of p22 to bind microtubules but not membranes. We have also shown a direct interaction between N-myristoylated p22 and GAPDH in vitro with a K(D) of approximately 0.5 microM. The removal of either the N-myristoyl group or the last six C-terminal amino acids abolishes the binding of p22 to GAPDH and reduces the ability of p22 to associate with microtubules. In summary, we report that GAPDH is involved in the ability of p22 to facilitate microtubule-membrane interactions by affecting the p22-microtubule, but not the p22-membrane, association. PMID:15312048

  13. The nphp-2 and arl-13 Genetic Modules Interact to Regulate Ciliogenesis and Ciliary Microtubule Patterning in C. elegans

    PubMed Central

    Warburton-Pitt, Simon R. F.; Silva, Malan; Nguyen, Ken C. Q.; Hall, David H.; Barr, Maureen M.

    2014-01-01

    Cilia are microtubule-based cellular organelles that mediate signal transduction. Cilia are organized into several structurally and functionally distinct compartments: the basal body, the transition zone (TZ), and the cilia shaft. In vertebrates, the cystoprotein Inversin localizes to a portion of the cilia shaft adjacent to the TZ, a region termed the “Inversin compartment” (InvC). The mechanisms that establish and maintain the InvC are unknown. In the roundworm C. elegans, the cilia shafts of amphid channel and phasmid sensory cilia are subdivided into two regions defined by different microtubule ultrastructure: a proximal doublet-based region adjacent to the TZ, and a distal singlet-based region. It has been suggested that C. elegans cilia also possess an InvC, similarly to mammalian primary cilia. Here we explored the biogenesis, structure, and composition of the C. elegans ciliary doublet region and InvC. We show that the InvC is conserved and distinct from the doublet region. nphp-2 (the C. elegans Inversin homolog) and the doublet region genes arl-13, klp-11, and unc-119 are redundantly required for ciliogenesis. InvC and doublet region genes can be sorted into two modules—nphp-2+klp-11 and arl-13+unc-119—which are both antagonized by the hdac-6 deacetylase. The genes of this network modulate the sizes of the NPHP-2 InvC and ARL-13 doublet region. Glutamylation, a tubulin post-translational modification, is not required for ciliary targeting of InvC and doublet region components; rather, glutamylation is modulated by nphp-2, arl-13, and unc-119. The ciliary targeting and restricted localization of NPHP-2, ARL-13, and UNC-119 does not require TZ-, doublet region, and InvC-associated genes. NPHP-2 does require its calcium binding EF hand domain for targeting to the InvC. We conclude that the C. elegans InvC is distinct from the doublet region, and that components in these two regions interact to regulate ciliogenesis via cilia placement, ciliary

  14. Modulation of Microtubule Interprotofilament Interactions by Modified Taxanes

    PubMed Central

    Matesanz, Ruth; Rodríguez-Salarichs, Javier; Pera, Benet; Canales, Ángeles; Andreu, José Manuel; Jiménez-Barbero, Jesús; Bras, Wim; Nogales, Aurora; Fang, Wei-Shuo; Díaz, José Fernando

    2011-01-01

    Microtubules assembled with paclitaxel and docetaxel differ in their numbers of protofilaments, reflecting modification of the lateral association between αβ-tubulin molecules in the microtubule wall. These modifications of microtubule structure, through a not-yet-characterized mechanism, are most likely related to the changes in tubulin-tubulin interactions responsible for microtubule stabilization by these antitumor compounds. We have used a set of modified taxanes to study the structural mechanism of microtubule stabilization by these ligands. Using small-angle x-ray scattering, we have determined how modifications in the shape and size of the taxane substituents result in changes in the interprotofilament angles and in their number. The observed effects have been explained using NMR-aided docking and molecular dynamic simulations of taxane binding at the microtubule pore and luminal sites. Modeling results indicate that modification of the size of substituents at positions C7 and C10 of the taxane core influence the conformation of three key elements in microtubule lateral interactions (the M-loop, the S3 β-strand, and the H3 helix) that modulate the contacts between adjacent protofilaments. In addition, modifications of the substituents at position C2 slightly rearrange the ligand in the binding site, modifying the interaction of the C7 substituent with the M-loop. PMID:22208196

  15. Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3

    PubMed Central

    Rodrigues-Ferreira, Sylvie; Nehlig, Anne; Bouchet, Benjamin Pierre; Morel, Marina; Leconte, Ludovic; Serre, Laurence; Arnal, Isabelle; Braguer, Diane; Savina, Ariel; Honore, Stéphane; Nahmias, Clara

    2015-01-01

    The regulation of microtubule dynamics is critical to ensure essential cell functions. End binding protein 1 (EB1) is a master regulator of microtubule dynamics that autonomously binds an extended GTP/GDP-Pi structure at growing microtubule ends and recruits regulatory proteins at this location. However, negative regulation of EB1 association with growing microtubule ends remains poorly understood. We show here that microtubule-associated tumor suppressor ATIP3 interacts with EB1 through direct binding of a non-canonical proline-rich motif. Results indicate that ATIP3 does not localize at growing microtubule ends and that in situ ATIP3-EB1 molecular complexes are mostly detected in the cytosol. We present evidence that a minimal EB1-interacting sequence of ATIP3 is both necessary and sufficient to prevent EB1 accumulation at growing microtubule ends in living cells and that EB1-interaction is involved in reducing cell polarity. By fluorescence recovery of EB1-GFP after photobleaching, we show that ATIP3 silencing accelerates EB1 turnover at microtubule ends with no modification of EB1 diffusion in the cytosol. We propose a novel mechanism by which ATIP3-EB1 interaction indirectly reduces the kinetics of EB1 exchange on its recognition site, thereby accounting for negative regulation of microtubule dynamic instability. Our findings provide a unique example of decreased EB1 turnover at growing microtubule ends by cytosolic interaction with a tumor suppressor. PMID:26498358

  16. Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3.

    PubMed

    Velot, Lauriane; Molina, Angie; Rodrigues-Ferreira, Sylvie; Nehlig, Anne; Bouchet, Benjamin Pierre; Morel, Marina; Leconte, Ludovic; Serre, Laurence; Arnal, Isabelle; Braguer, Diane; Savina, Ariel; Honore, Stéphane; Nahmias, Clara

    2015-12-22

    The regulation of microtubule dynamics is critical to ensure essential cell functions. End binding protein 1 (EB1) is a master regulator of microtubule dynamics that autonomously binds an extended GTP/GDP-Pi structure at growing microtubule ends and recruits regulatory proteins at this location. However, negative regulation of EB1 association with growing microtubule ends remains poorly understood. We show here that microtubule-associated tumor suppressor ATIP3 interacts with EB1 through direct binding of a non-canonical proline-rich motif. Results indicate that ATIP3 does not localize at growing microtubule ends and that in situ ATIP3-EB1 molecular complexes are mostly detected in the cytosol. We present evidence that a minimal EB1-interacting sequence of ATIP3 is both necessary and sufficient to prevent EB1 accumulation at growing microtubule ends in living cells and that EB1-interaction is involved in reducing cell polarity. By fluorescence recovery of EB1-GFP after photobleaching, we show that ATIP3 silencing accelerates EB1 turnover at microtubule ends with no modification of EB1 diffusion in the cytosol. We propose a novel mechanism by which ATIP3-EB1 interaction indirectly reduces the kinetics of EB1 exchange on its recognition site, thereby accounting for negative regulation of microtubule dynamic instability. Our findings provide a unique example of decreased EB1 turnover at growing microtubule ends by cytosolic interaction with a tumor suppressor. PMID:26498358

  17. Direct interaction of microtubule- and actin-based transport motors

    NASA Technical Reports Server (NTRS)

    Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.

    1999-01-01

    The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

  18. Derivative interactions and perturbative UV contributions in N Higgs doublet models

    NASA Astrophysics Data System (ADS)

    Kikuta, Yohei; Yamamoto, Yasuhiro

    2016-05-01

    We study the Higgs derivative interactions on models including arbitrary number of the Higgs doublets. These interactions are generated by two ways. One is higher order corrections of composite Higgs models, and the other is integration of heavy scalars and vectors. In the latter case, three point couplings between the Higgs doublets and these heavy states are the sources of the derivative interactions. Their representations are constrained to couple with the doublets. We explicitly calculate all derivative interactions generated by integrating out. Their degrees of freedom and conditions to impose the custodial symmetry are discussed. We also study the vector boson scattering processes with a couple of two Higgs doublet models to see experimental signals of the derivative interactions. They are differently affected by each heavy field.

  19. Quantitative Analysis of Tau-Microtubule Interaction Using FRET

    PubMed Central

    Di Maïo, Isabelle L.; Barbier, Pascale; Allegro, Diane; Brault, Cédric; Peyrot, Vincent

    2014-01-01

    The interaction between the microtubule associated protein, tau and the microtubules is investigated. A fluorescence resonance energy transfer (FRET) assay was used to determine the distance separating tau to the microtubule wall, as well as the binding parameters of the interaction. By using microtubules stabilized with Flutax-2 as donor and tau labeled with rhodamine as acceptor, a donor-to-acceptor distance of 54 ± 1 Å was found. A molecular model is proposed in which Flutax-2 is directly accessible to tau-rhodamine molecules for energy transfer. By titration, we calculated the stoichiometric dissociation constant to be equal to 1.0 ± 0.5 µM. The influence of the C-terminal tails of αβ-tubulin on the tau-microtubule interaction is presented once a procedure to form homogeneous solution of cleaved tubulin has been determined. The results indicate that the C-terminal tails of α- and β-tubulin by electrostatic effects and of recruitment seem to be involved in the binding mechanism of tau. PMID:25196605

  20. Interaction of chicken gizzard smooth muscle calponin with brain microtubules.

    PubMed

    Fujii, T; Hiromori, T; Hamamoto, M; Suzuki, T

    1997-08-01

    Calponin, a major actin-, tropomyosin-, and calmodulin-binding protein in smooth muscle, interacted with tubulin, a main constituent of microtubules, in a concentration-dependent fashion in vitro. The apparent K(d) value of calponin to tubulin was calculated to be 5.2 microM with 2 mol of calponin maximally bound per 1 mol of tubulin. At low ionic strength, tubulin bound to calponin immobilized on Sepharose 4B, and the bound protein was released at about 270 mM NaCl. Chemical cross-linking experiments showed that a 1:1 molar covalent complex of calponin and tubulin was produced. The amount of calponin bound to microtubules decreased with increasing ionic strength or Ca2+ concentration. The addition of calmodulin or S100 to the mixture of calponin and microtubule proteins caused the removal of calponin from microtubules in the presence of Ca2+, but not in the presence of EGTA. Calponin-related proteins including tropomyosin, SM22, and caldesmon had little effect on the calponin binding to microtubules, whereas MAP2 inhibited the binding. Interestingly, there was little, if any, effect of mycalolide B-treated actin on the binding of calponin to microtubules. Furthermore, only about 20% of calponin-F-actin interaction was inhibited in the presence of an excess amount of tubulin (4 mol per mol of calponin), indicating that tubulin binds to calponin at a different site from that of actin. Compared with MAP2, calponin had little effect on microtubule polymerization. PMID:9378712

  1. Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics.

    PubMed

    Fong, Ka-Wing; Hau, Shiu-Yeung; Kho, Yik-Shing; Jia, Yue; He, Lisheng; Qi, Robert Z

    2009-08-01

    Mutations in cdk5rap2 are linked to autosomal recessive primary microcephaly, and attention has been paid to its function at centrosomes. In this report, we demonstrate that CDK5RAP2 localizes to microtubules and concentrates at the distal tips in addition to centrosomal localization. CDK5RAP2 interacts directly with EB1, a prototypic member of microtubule plus-end tracking proteins, and contains the basic and Ser-rich motif responsible for EB1 binding. The EB1-binding motif is conserved in the CDK5RAP2 sequences of chimpanzee, bovine, and dog but not in those of rat and mouse, suggesting a function gained during the evolution of mammals. The mutation of the Ile/Leu-Pro dipeptide within the motif abolishes EB1 interaction and plus-end attachment. In agreement with the mutational analysis, suppression of EB1 expression inhibits microtubule tip-tracking of CDK5RAP2. We have also found that the CDK5RAP2-EB1 complex regulates microtubule dynamics and stability. CDK5RAP2 depletion by RNA interference impacts the dynamic behaviors of microtubules. The CDK5RAP2-EB1 complex induces microtubule bundling and acetylation when expressed in cell cultures and stimulates microtubule assembly and bundle formation in vitro. Collectively, these results show that CDK5RAP2 targets growing microtubule tips in association with EB1 to regulate microtubule dynamics. PMID:19553473

  2. Functional analysis of the microtubule-interacting transcriptome

    PubMed Central

    Sharp, Judith A.; Plant, Joshua J.; Ohsumi, Toshiro K.; Borowsky, Mark; Blower, Michael D.

    2011-01-01

    RNA localization is an important mechanism for achieving precise control of posttranscriptional gene expression. Previously, we demonstrated that a subset of cellular mRNAs copurify with mitotic microtubules in egg extracts of Xenopus laevis. Due to limited genomic sequence information available for X. laevis, we used RNA-seq to comprehensively identify the microtubule-interacting transcriptome of the related frog Xenopus tropicalis. We identified ∼450 mRNAs that showed significant enrichment on microtubules (MT-RNAs). In addition, we demonstrated that the MT-RNAs incenp, xrhamm, and tpx2 associate with spindle microtubules in vivo. MT-RNAs are enriched with transcripts associated with cell division, spindle formation, and chromosome function, demonstrating an overrepresentation of genes involved in mitotic regulation. To test whether uncharacterized MT-RNAs have a functional role in mitosis, we performed RNA interference and discovered that several MT-RNAs are required for normal spindle pole organization and γ-tubulin distribution. Together, these data demonstrate that microtubule association is one mechanism for compartmentalizing functionally related mRNAs within the nucleocytoplasmic space of mitotic cells and suggest that MT-RNAs are likely to contribute to spindle-localized mitotic translation. PMID:21937723

  3. Microtubule-associated protein 1B interaction with tubulin tyrosine ligase contributes to the control of microtubule tyrosination.

    PubMed

    Utreras, Elías; Jiménez-Mateos, Eva Maria; Contreras-Vallejos, Erick; Tortosa, Elena; Pérez, Mar; Rojas, Sebastián; Saragoni, Lorena; Maccioni, Ricardo B; Avila, Jesús; González-Billault, Christian

    2008-01-01

    Microtubule-associated protein 1B (MAP1B) is the first microtubule-associated protein to be expressed during nervous system development. MAP1B belongs to a large family of proteins that contribute to the stabilization and/or enhancement of microtubule polymerization. These functions are related to the control of the dynamic properties of microtubules. The C-terminal domain of the neuronal alpha-tubulin isotype is characterized by the presence of an acidic polypeptide, with the last amino acid being tyrosine. This tyrosine residue may be enzymatically removed from the protein by an unknown carboxypeptidase activity. Subsequently, the tyrosine residue is again incorporated into this tubulin by another enzyme, tubulin tyrosine ligase, to yield tyrosinated tubulin. Because neurons lacking MAP1B have a reduced proportion of tyrosinated microtubules, we analyzed the possible interaction between MAP1B and tubulin tyrosine ligase. Our results show that these proteins indeed interact and that the interaction is not affected by MAP1B phosphorylation. Additionally, neurons lacking MAP1B, when exposed to drugs that reversibly depolymerize microtubules, do not fully recover tyrosinated microtubules upon drug removal. These results suggest that MAP1B regulates tyrosination of alpha-tubulin in neuronal microtubules. This regulation may be important for general processes involved in nervous system development such as axonal guidance and neuronal migration. PMID:18075266

  4. FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas

    PubMed Central

    Yanagisawa, Haru-aki; Mathis, Garrison; Oda, Toshiyuki; Hirono, Masafumi; Richey, Elizabeth A.; Ishikawa, Hiroaki; Marshall, Wallace F.; Kikkawa, Masahide; Qin, Hongmin

    2014-01-01

    The axoneme—the conserved core of eukaryotic cilia and flagella—contains highly specialized doublet microtubules (DMTs). A long-standing question is what protein(s) compose the junctions between two tubules in DMT. Here we identify a highly conserved flagellar-associated protein (FAP), FAP20, as an inner junction (IJ) component. The flagella of Chlamydomonas FAP20 mutants have normal length but beat with an abnormal symmetrical three-dimensional pattern. In addition, the mutant axonemes are liable to disintegrate during beating, implying that interdoublet connections may be weakened. Conventional electron microscopy shows that the mutant axonemes lack the IJ, and cryo–electron tomography combined with a structural labeling method reveals that the labeled FAP20 localizes at the IJ. The mutant axonemes also lack doublet-specific beak structures, which are localized in the proximal portion of the axoneme and may be involved in planar asymmetric flagellar bending. FAP20 itself, however, may not be a beak component, because uniform localization of FAP20 along the entire length of all nine DMTs is inconsistent with the beak's localization. FAP20 is the first confirmed component of the IJ. Our data also suggest that the IJ is important for both stabilizing the axoneme and scaffolding intra–B-tubular substructures required for a planar asymmetrical waveform. PMID:24574454

  5. α- and β-Tubulin Lattice of the Axonemal Microtubule Doublet and Binding Proteins Revealed by Single Particle Cryo-Electron Microscopy and Tomography.

    PubMed

    Maheshwari, Aditi; Obbineni, Jagan Mohan; Bui, Khanh Huy; Shibata, Keitaro; Toyoshima, Yoko Y; Ishikawa, Takashi

    2015-09-01

    Microtubule doublet (MTD) is the main skeleton of cilia/flagella. Many proteins, such as dyneins and radial spokes, bind to MTD, and generate or regulate force. While the structure of the reconstituted microtubule has been solved at atomic resolution, nature of the axonemal MTD is still unclear. There are a few hypotheses of the lattice arrangement of its α- and β-tubulins, but it has not been described how dyneins and radial spokes bind to MTD. In this study, we analyzed the three-dimensional structure of Tetrahymena MTD at ∼19 Å resolution by single particle cryo-electron microscopy. To identify α- and β-tubulins, we combined image analysis of MTD with specific kinesin decoration. This work reveals that α- and β-tubulins form a B-lattice arrangement in the entire MTD with a seam at the outer junction. We revealed the unique way in which inner arm dyneins, radial spokes, and proteins inside MTD bind and bridge protofilaments. PMID:26211611

  6. Linear negative dispersion with a gain doublet via optomechanical interactions.

    PubMed

    Qin, Jiayi; Zhao, Chunnong; Ma, Yiqiu; Ju, Li; Blair, David G

    2015-05-15

    Optical cavities containing a negative dispersion medium have been proposed as a means of improving the sensitivity of laser interferometric gravitational wave detectors through the creation of white-light signal recycling cavities. Here we demonstrate that negative dispersion can be realized using an optomechanical cavity pumped by a blue detuned doublet. We used an 85-mm cavity with an intracavity silicon nitride membrane. Tunable negative dispersion is demonstrated, with a phase derivative dφ/df from -0.14  Deg·Hz(-1) to -4.2×10(-3)  Deg·Hz(-1). PMID:26393733

  7. Highly Transient Molecular Interactions Underlie the Stability of Kinetochore–Microtubule Attachment During Cell Division

    PubMed Central

    Zaytsev, Anatoly V.; Ataullakhanov, Fazly I.; Grishchuk, Ekaterina L.

    2013-01-01

    Chromosome segregation during mitosis is mediated by spindle microtubules that attach to chromosomal kinetochores with strong yet labile links. The exact molecular composition of the kinetochore–microtubule interface is not known but microtubules are thought to bind to kinetochores via the specialized microtubule-binding sites, which contain multiple microtubule-binding proteins. During prometaphase the lifetime of microtubule attachments is short but in metaphase it increases 3-fold, presumably owing to dephosphorylation of the microtubule-binding proteins that increases their affinity. Here, we use mathematical modeling to examine in quantitative and systematic manner the general relationships between the molecular properties of microtubule-binding proteins and the resulting stability of microtubule attachment to the protein-containing kinetochore site. We show that when the protein connections are stochastic, the physiological rate of microtubule turnover is achieved only if these molecular interactions are very transient, each lasting fraction of a second. This “microscopic” time is almost four orders of magnitude shorter than the characteristic time of kinetochore–microtubule attachment. Cooperativity of the microtubule-binding events further increases the disparity of these time scales. Furthermore, for all values of kinetic parameters the microtubule stability is very sensitive to the minor changes in the molecular constants. Such sensitivity of the lifetime of microtubule attachment to the kinetics and cooperativity of molecular interactions at the microtubule-binding site may hinder the accurate regulation of kinetochore–microtubule stability during mitotic progression, and it necessitates detailed experimental examination of the microtubule-binding properties of kinetochore-localized proteins. PMID:24376473

  8. Highly Transient Molecular Interactions Underlie the Stability of Kinetochore-Microtubule Attachment During Cell Division.

    PubMed

    Zaytsev, Anatoly V; Ataullakhanov, Fazly I; Grishchuk, Ekaterina L

    2013-12-13

    Chromosome segregation during mitosis is mediated by spindle microtubules that attach to chromosomal kinetochores with strong yet labile links. The exact molecular composition of the kinetochore-microtubule interface is not known but microtubules are thought to bind to kinetochores via the specialized microtubule-binding sites, which contain multiple microtubule-binding proteins. During prometaphase the lifetime of microtubule attachments is short but in metaphase it increases 3-fold, presumably owing to dephosphorylation of the microtubule-binding proteins that increases their affinity. Here, we use mathematical modeling to examine in quantitative and systematic manner the general relationships between the molecular properties of microtubule-binding proteins and the resulting stability of microtubule attachment to the protein-containing kinetochore site. We show that when the protein connections are stochastic, the physiological rate of microtubule turnover is achieved only if these molecular interactions are very transient, each lasting fraction of a second. This "microscopic" time is almost four orders of magnitude shorter than the characteristic time of kinetochore-microtubule attachment. Cooperativity of the microtubule-binding events further increases the disparity of these time scales. Furthermore, for all values of kinetic parameters the microtubule stability is very sensitive to the minor changes in the molecular constants. Such sensitivity of the lifetime of microtubule attachment to the kinetics and cooperativity of molecular interactions at the microtubule-binding site may hinder the accurate regulation of kinetochore-microtubule stability during mitotic progression, and it necessitates detailed experimental examination of the microtubule-binding properties of kinetochore-localized proteins. PMID:24376473

  9. The Interaction of Neurofilaments with the Microtubule Motor Cytoplasmic Dynein

    PubMed Central

    Wagner, Oliver I.; Ascaño, Jennifer; Tokito, Mariko; Leterrier, Jean-Francois; Janmey, Paul A.; Holzbaur, Erika L. F.

    2004-01-01

    Neurofilaments are synthesized in the cell body of neurons and transported outward along the axon via slow axonal transport. Direct observation of neurofilaments trafficking in live cells suggests that the slow outward rate of transport is due to the net effects of anterograde and retrograde microtubule motors pulling in opposition. Previous studies have suggested that cytoplasmic dynein is required for efficient neurofilament transport. In this study, we examine the interaction of neurofilaments with cytoplasmic dynein. We used fluid tapping mode atomic force microscopy to visualize single neurofilaments, microtubules, dynein/dynactin, and physical interactions between these neuronal components. AFM images suggest that neurofilaments act as cargo for dynein, associating with the base of the motor complex. Yeast two-hybrid and affinity chromatography assays confirm this hypothesis, indicating that neurofilament subunit M binds directly to dynein IC. This interaction is blocked by monoclonal antibodies directed either to NF-M or to dynein. Together these data suggest that a specific interaction between neurofilament subunit M and cytoplasmic dynein is involved in the saltatory bidirectional motility of neurofilaments undergoing axonal transport in the neuron. PMID:15342782

  10. The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells

    PubMed Central

    2005-01-01

    Background The plant peroxisomal multifunctional protein (MFP) possesses up to four enzymatic activities that are involved in catalyzing different reactions of fatty acid β-oxidation in the peroxisome matrix. In addition to these peroxisomal activities, in vitro assays revealed that rice MFP possesses microtubule- and RNA-binding activities suggesting that this protein also has important functions in the cytosol. Results We demonstrate that MFP is an authentic microtubule-binding protein, as it localized to the cortical microtubule array in vivo, in addition to its expected targeting to the peroxisome matrix. MFP does not, however, interact with the three mitotic microtubule arrays. Microtubule co-sedimentation assays of truncated versions of MFP revealed that multiple microtubule-binding domains are present on the MFP polypeptide. This indicates that these regions function together to achieve high-affinity binding of the full-length protein. Real-time imaging of a transiently expressed green fluorescent protein-MFP chimera in living plant cells illustrated that a dynamic, spatial interaction exits between peroxisomes and cortical microtubules as peroxisomes move along actin filaments or oscillate at fixed locations. Conclusion Plant MFP is associated with the cortical microtubule array, in addition to its expected localization in the peroxisome. This observation, coupled with apparent interactions that frequently occur between microtubules and peroxisomes in the cell cortex, supports the hypothesis that MFP is concentrated on microtubules in order to facilitate the regulated import of MFP into peroxisomes. PMID:16313672

  11. Importance of Coriolis interaction and pseudo-spin doublets in deformed proton emitters

    SciTech Connect

    Ferreira, Lidia S.; Costa Lopes, M.; Maglione, Enrico

    2006-04-26

    Theoretical aspects in the calculation of the half lives for proton decay from deformed nuclei lying beyond the proton drip line are discussed. The presence of pseudo-spin doublets close to the Fermi energy depends strongly on the parameterization of the single particle mean field. The calculation of the decay widths from these states, is very sensitive to the Coriolis coupling, and the pairing residual interaction cannot be ignored in these studies, for a correct interpretation of data.

  12. Anillin interacts with microtubules and is part of the astral pathway that defines cortical domains.

    PubMed

    van Oostende Triplet, Chloe; Jaramillo Garcia, Melina; Haji Bik, Husni; Beaudet, Daniel; Piekny, Alisa

    2014-09-01

    Cytokinesis occurs by the ingression of an actomyosin ring that separates the cell into two daughter cells. The mitotic spindle, comprising astral and central spindle microtubules, couples contractile ring ingression with DNA segregation. Cues from the central spindle activate RhoA, the upstream regulator of the contractile ring. However, additional cues from the astral microtubules also reinforce the localization of active RhoA. Using human cells, we show that astral and central spindle microtubules independently control the localization of contractile proteins during cytokinesis. Astral microtubules restrict the accumulation and localization of contractile proteins during mitosis, whereas the central spindle forms a discrete ring by directing RhoA activation in the equatorial plane. Anillin stabilizes the contractile ring during cytokinesis. We show that human anillin interacts with astral microtubules and that this interaction is competed by the cortical recruitment of anillin by active RhoA. Anillin restricts the localization of myosin to the equatorial cortex and that of NuMA (part of the microtubule-tethering complex that regulates spindle position) to the polar cortex. The sequestration of anillin by astral microtubules might alter the organization of cortical proteins to polarize cells for cytokinesis. PMID:24994938

  13. TPX2 Inhibits Eg5 by Interactions with Both Motor and Microtubule*

    PubMed Central

    Balchand, Sai K.; Mann, Barbara J.; Titus, Janel; Ross, Jennifer L.; Wadsworth, Patricia

    2015-01-01

    The microtubule-associated protein, TPX2, regulates the activity of the mitotic kinesin, Eg5, but the mechanism of regulation is not established. Using total internal reflection fluorescence microscopy, we observed that Eg5, in extracts of mammalian cells expressing Eg5-EGFP, moved processively toward the microtubule plus-end at an average velocity of 14 nm/s. TPX2 bound to microtubules with an apparent dissociation constant of ∼200 nm, and microtubule binding was not dependent on the C-terminal tails of tubulin. Using single molecule assays, we found that full-length TPX2 dramatically reduced Eg5 velocity, whereas truncated TPX2, which lacks the domain that is required for the interaction with Eg5, was a less effective inhibitor at the same concentration. To determine the region(s) of Eg5 that is required for interaction with TPX2, we performed microtubule gliding assays. Dimeric, but not monomeric, Eg5 was differentially inhibited by full-length and truncated TPX2, demonstrating that dimerization or residues in the neck region are important for the interaction of TPX2 with Eg5. These results show that both microtubule binding and interaction with Eg5 contribute to motor inhibition by TPX2 and demonstrate the utility of mammalian cell extracts for biophysical assays. PMID:26018074

  14. TPX2 Inhibits Eg5 by Interactions with Both Motor and Microtubule.

    PubMed

    Balchand, Sai K; Mann, Barbara J; Titus, Janel; Ross, Jennifer L; Wadsworth, Patricia

    2015-07-10

    The microtubule-associated protein, TPX2, regulates the activity of the mitotic kinesin, Eg5, but the mechanism of regulation is not established. Using total internal reflection fluorescence microscopy, we observed that Eg5, in extracts of mammalian cells expressing Eg5-EGFP, moved processively toward the microtubule plus-end at an average velocity of 14 nm/s. TPX2 bound to microtubules with an apparent dissociation constant of ∼ 200 nm, and microtubule binding was not dependent on the C-terminal tails of tubulin. Using single molecule assays, we found that full-length TPX2 dramatically reduced Eg5 velocity, whereas truncated TPX2, which lacks the domain that is required for the interaction with Eg5, was a less effective inhibitor at the same concentration. To determine the region(s) of Eg5 that is required for interaction with TPX2, we performed microtubule gliding assays. Dimeric, but not monomeric, Eg5 was differentially inhibited by full-length and truncated TPX2, demonstrating that dimerization or residues in the neck region are important for the interaction of TPX2 with Eg5. These results show that both microtubule binding and interaction with Eg5 contribute to motor inhibition by TPX2 and demonstrate the utility of mammalian cell extracts for biophysical assays. PMID:26018074

  15. Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis.

    PubMed

    Derbyshire, Paul; Ménard, Delphine; Green, Porntip; Saalbach, Gerhard; Buschmann, Henrik; Lloyd, Clive W; Pesquet, Edouard

    2015-10-01

    Plant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiation of TEs in Arabidopsis thaliana suspension cultures. Quantitative proteomic analysis of microtubule pull-downs, using ratiometric (14)N/(15)N labeling, revealed 605 proteins exhibiting differential accumulation during TE differentiation. Microtubule interacting proteins associated with membrane trafficking, protein synthesis, DNA/RNA binding, and signal transduction peaked during secondary cell wall formation, while proteins associated with stress peaked when approaching TE cell death. In particular, CELLULOSE SYNTHASE-INTERACTING PROTEIN1, already associated with primary wall synthesis, was enriched during secondary cell wall formation. RNAi knockdown of genes encoding several of the identified proteins showed that secondary wall formation depends on the coordinated presence of microtubule interacting proteins with nonoverlapping functions: cell wall thickness, cell wall homogeneity, and the pattern and cortical location of the wall are dependent on different proteins. Altogether, proteins linking microtubules to a range of metabolic compartments vary specifically during TE differentiation and regulate different aspects of wall patterning. PMID:26432860

  16. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions

    PubMed Central

    Bouchet, Benjamin P; Gough, Rosemarie E; Ammon, York-Christoph; van de Willige, Dieudonnée; Post, Harm; Jacquemet, Guillaume; Altelaar, AF Maarten; Heck, Albert JR; Goult, Benjamin T; Akhmanova, Anna

    2016-01-01

    The cross-talk between dynamic microtubules and integrin-based adhesions to the extracellular matrix plays a crucial role in cell polarity and migration. Microtubules regulate the turnover of adhesion sites, and, in turn, focal adhesions promote the cortical microtubule capture and stabilization in their vicinity, but the underlying mechanism is unknown. Here, we show that cortical microtubule stabilization sites containing CLASPs, KIF21A, LL5β and liprins are recruited to focal adhesions by the adaptor protein KANK1, which directly interacts with the major adhesion component, talin. Structural studies showed that the conserved KN domain in KANK1 binds to the talin rod domain R7. Perturbation of this interaction, including a single point mutation in talin, which disrupts KANK1 binding but not the talin function in adhesion, abrogates the association of microtubule-stabilizing complexes with focal adhesions. We propose that the talin-KANK1 interaction links the two macromolecular assemblies that control cortical attachment of actin fibers and microtubules. DOI: http://dx.doi.org/10.7554/eLife.18124.001 PMID:27410476

  17. Probing protein interactions in living mammalian cells on a microtubule bench

    PubMed Central

    Boca, Mirela; Kretov, Dmitry A.; Desforges, Bénédicte; Mephon-Gaspard, Alix; Curmi, Patrick A.; Pastré, David

    2015-01-01

    Microtubules are μm-long cylinders of about 25 nm in diameter which are present in the cytoplasm of eukaryotic cells. Here, we have developed a new method which uses these cylindrical structures as platforms to detect protein interactions in cells. The principle is simple: a protein of interest used as bait is brought to microtubules by fusing it to Tau, a microtubule-associated protein. The presence of a protein prey on microtubules then reveals an interaction between bait and prey. This method requires only a conventional optical microscope and straightforward fluorescence image analysis for detection and quantification of protein interactions. To test the reliability of this detection scheme, we used it to probe the interactions among three mRNA-binding proteins in both fixed and living cells and compared the results to those obtained by pull-down assays. We also tested whether the molecular interactions of Cx43, a membrane protein, can be investigated with this system. Altogether, the results indicate that microtubules can be used as platforms to detect protein interactions in mammalian cells, which should provide a basis for investigating pathogenic protein interactions involved in human diseases. PMID:26610591

  18. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons

    PubMed Central

    Janning, Dennis; Igaev, Maxim; Sündermann, Frederik; Brühmann, Jörg; Beutel, Oliver; Heinisch, Jürgen J.; Bakota, Lidia; Piehler, Jacob; Junge, Wolfgang; Brandt, Roland

    2014-01-01

    The microtubule-associated phosphoprotein tau regulates microtubule dynamics and is involved in neurodegenerative diseases collectively called tauopathies. It is generally believed that the vast majority of tau molecules decorate axonal microtubules, thereby stabilizing them. However, it is an open question how tau can regulate microtubule dynamics without impeding microtubule-dependent transport and how tau is also available for interactions other than those with microtubules. Here we address this apparent paradox by fast single-molecule tracking of tau in living neurons and Monte Carlo simulations of tau dynamics. We find that tau dwells on a single microtubule for an unexpectedly short time of ∼40 ms before it hops to the next. This dwell time is 100-fold shorter than previously reported by ensemble measurements. Furthermore, we observed by quantitative imaging using fluorescence decay after photoactivation recordings of photoactivatable GFP–tagged tubulin that, despite this rapid dynamics, tau is capable of regulating the tubulin–microtubule balance. This indicates that tau's dwell time on microtubules is sufficiently long to influence the lifetime of a tubulin subunit in a GTP cap. Our data imply a novel kiss-and-hop mechanism by which tau promotes neuronal microtubule assembly. The rapid kiss-and-hop interaction explains why tau, although binding to microtubules, does not interfere with axonal transport. PMID:25165145

  19. Phosphorylation controls the interaction of the connexin43 C-terminal domain with tubulin and microtubules.

    PubMed

    Saidi Brikci-Nigassa, Amal; Clement, Marie-Jeanne; Ha-Duong, Tap; Adjadj, Elisabeth; Ziani, Latifa; Pastre, David; Curmi, Patrick A; Savarin, Philippe

    2012-05-29

    Connexins are structurally related transmembrane proteins that assemble to form gap junction channels involved in the mediation of intercellular communication. It has been shown that the intracellular tail of connexin43 (Cx43) interacts with tubulin and microtubules with putative impacts on its own intracellular trafficking, its activity in channel communication, and its interference with specific growth factor signal transduction cascades. We demonstrate here that the microtubule binding of Cx43 is mainly driven by a short region of 26 amino acid residues located within the intracellular tail of Cx43. The nuclear magnetic resonance structural analysis of a peptide (K26D) corresponding to this region shows that this peptide is unstructured when free in solution and adopts a helix conformation upon binding with tubulin. In addition, the resulting K26D-tubulin molecular complex defines a new structural organization that could be shared by other microtubule partners. Interestingly, the K26D-tubulin interaction is prevented by the phosphorylation of K26D at a src kinase specific site. Altogether, the results elucidate the mechanism of the interaction of Cx43 with the microtubule cytoskeleton and propose a pathway for understanding the microtubule-dependent regulation of Cx43 gap junctional communications and the involvement of Cx43 in TGF-β signal transduction. PMID:22558917

  20. Interaction of microtubules with active principles of Xanthium strumarium.

    PubMed

    Menon, G S; Kuchroo, K; Dasgupta, D

    2001-01-01

    Indigenous variety of Xanthium strumarium (X. strumarium) was screened for its antimitotic activity using the microtubule-tubulin system isolated from mammalian tissue. A preliminary phytochemical screening of the whole extracts of the plant was carried out followed by partial purification of the whole extract of X.strumarium. The separated fractions obtained were identified and used for in vitro polymerization studies. The whole as well as partially separated chemical constituents of X. strumarium showed effective inhibition of tubulin polymerization. The results thus suggest that X. strumarium may possess antimitotic components. PMID:12002689

  1. Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules

    PubMed Central

    Gaillard, Jeremie; Ramabhadran, Vinay; Neumanne, Emmanuelle; Gurel, Pinar; Blanchoin, Laurent; Vantard, Marylin; Higgs, Henry N.

    2011-01-01

    A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin. Constructs containing FH1, FH2, and C-terminal domains of all three formins bind microtubules with high affinity (Kd < 100 nM). However, only mDia2 binds microtubules at 1:1 stoichiometry, with INF2 and mDia1 showing saturating binding at approximately 1:3 (formin dimer:tubulin dimer). INF2-FH1FH2C is a potent microtubule-bundling protein, an effect that results in a large reduction in catastrophe rate. In contrast, neither mDia1 nor mDia2 is a potent microtubule bundler. The C-termini of mDia2 and INF2 have different functions in microtubule interaction, with mDia2's C-terminus required for high-affinity binding and INF2's C-terminus required for bundling. mDia2's C-terminus directly binds microtubules with submicromolar affinity. These formins also differ in their abilities to bind actin and microtubules simultaneously. Microtubules strongly inhibit actin polymerization by mDia2, whereas they moderately inhibit mDia1 and have no effect on INF2. Conversely, actin monomers inhibit microtubule binding/bundling by INF2 but do not affect mDia1 or mDia2. These differences in interactions with microtubules and actin suggest differential function in cellular processes requiring both cytoskeletal elements. PMID:21998204

  2. Unique interweaved microtubule scaffold mediates osmosensory transduction via physical interaction with TRPV1.

    PubMed

    Prager-Khoutorsky, Masha; Khoutorsky, Arkady; Bourque, Charles W

    2014-08-20

    The electrical activity of mammalian osmosensory neurons (ONs) is increased by plasma hypertonicity to command thirst, antidiuretic hormone release, and increased sympathetic tone during dehydration. Osmosensory transduction is a mechanical process whereby decreases in cell volume cause the activation of transient receptor potential vanilloid type-1 (TRPV1) channels to induce depolarization and increase spiking activity in ONs. However, it is not known how cell shrinking is mechanically coupled to channel activation. Using superresolution imaging, we found that ONs are endowed with a uniquely interweaved scaffold of microtubules throughout their somata. Microtubules physically interact with the C terminus of TRPV1 at the cell surface and provide a pushing force that drives channels activation during shrinking. Moreover, we found that changes in the density of these interactions can bidirectionally modulate osmosensory gain. Microtubules are thus an essential component of the vital neuronal mechanotransduction apparatus that allows the brain to monitor and correct body hydration. PMID:25123313

  3. Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology

    SciTech Connect

    Aoki, Mayumi; Kanemura, Shinya; Yagyu, Kei; Tsumura, Koji

    2009-07-01

    Possible models of Yukawa interaction are discussed in the two Higgs doublet model (THDM) under the discrete symmetry imposed to avoid the flavor changing neutral current at the leading order. It is known that there are four types of such models corresponding to the possible different assignment of charges for the discrete symmetry on quarks and leptons. We first examine the decay properties of Higgs bosons in each type model, and summarize constraints on the models from current experimental data. We then shed light on the differences among these models in collider phenomenology. In particular, we mainly discuss the so-called type-II THDM and type-X THDM. The type-II THDM corresponds to the model with the same Yukawa interaction as the minimal supersymmetric standard model. On the other hand, in the type-X THDM, additional Higgs bosons can predominantly decay into leptons. This scenario may be interesting because of the motivation for a light charged Higgs boson scenario such as in the TeV-scale model of neutrinos, dark matter, and baryogenesis. We study how we can distinguish the type-X THDM from the minimal supersymmetric standard model at the Large Hadron Collider and the International Linear Collider.

  4. Serogroup-specific interaction of Neisseria meningitidis capsular polysaccharide with host cell microtubules and effects on tubulin polymerization.

    PubMed

    Talà, Adelfia; Cogli, Laura; De Stefano, Mario; Cammarota, Marcella; Spinosa, Maria Rita; Bucci, Cecilia; Alifano, Pietro

    2014-01-01

    We have previously shown that during late stages of the infectious process, serogroup B meningococci (MenB) are able to escape the phagosome of in vitro-infected human epithelial cells. They then multiply in the cytosolic environment and spread intracellularly and to surrounding cells by exploiting the microtubule cytoskeleton, as suggested by results of infections in the presence of microtubule inhibitors and evidence of nanotubes connecting neighboring cells. In this study, by using microtubule binding assays with purified microtubule asters and bundles and microtubule bundles synthesized in vitro, we demonstrate that the MenB capsule directly mediates the interaction between bacteria and microtubules. The direct interaction between the microtubules and the MenB capsular polysaccharide was confirmed by coimmunoprecipitation experiments. Unexpectedly, serogroup C meningococci (MenC), which have a capsular polysaccharide that differs from that of MenB only by its anomeric linkage, α(2→9) instead of α(2→8), were not able to interact with the microtubules, and the lack of interaction was not due to capsular polysaccharide O-acetylation that takes place in most MenC strains but not in MenB strains. Moreover, we demonstrate that the MenB capsular polysaccharide inhibits tubulin polymerization in vitro. Thus, at variance with MenC, MenB may interfere with microtubule dynamics during cell infection. PMID:24166951

  5. A direct interaction between fascin and microtubules contributes to adhesion dynamics and cell migration

    PubMed Central

    Villari, Giulia; Jayo, Asier; Zanet, Jennifer; Fitch, Briana; Serrels, Bryan; Frame, Margaret; Stramer, Brian M.; Goult, Benjamin T.; Parsons, Maddy

    2015-01-01

    ABSTRACT Fascin is an actin-binding and bundling protein that is highly upregulated in most epithelial cancers. Fascin promotes cell migration and adhesion dynamics in vitro and tumour cell metastasis in vivo. However, potential non-actin bundling roles for fascin remain unknown. Here, we show for the first time that fascin can directly interact with the microtubule cytoskeleton and that this does not depend upon fascin-actin bundling. Microtubule binding contributes to fascin-dependent control of focal adhesion dynamics and cell migration speed. We also show that fascin forms a complex with focal adhesion kinase (FAK, also known as PTK2) and Src, and that this signalling pathway lies downstream of fascin–microtubule association in the control of adhesion stability. These findings shed light on new non actin-dependent roles for fascin and might have implications for the design of therapies to target fascin in metastatic disease. PMID:26542021

  6. XTACC3-XMAP215 association reveals an asymmetric interaction promoting microtubule elongation.

    PubMed

    Mortuza, Gulnahar B; Cavazza, Tommaso; Garcia-Mayoral, Maria Flor; Hermida, Dario; Peset, Isabel; Pedrero, Juan G; Merino, Nekane; Blanco, Francisco J; Lyngsø, Jeppe; Bruix, Marta; Pedersen, Jan Skov; Vernos, Isabelle; Montoya, Guillermo

    2014-01-01

    chTOG is a conserved microtubule polymerase that catalyses the addition of tubulin dimers to promote microtubule growth. chTOG interacts with TACC3, a member of the transforming acidic coiled-coil (TACC) family. Here we analyse their association using the Xenopus homologues, XTACC3 (TACC3) and XMAP215 (chTOG), dissecting the mechanism by which their interaction promotes microtubule elongation during spindle assembly. Using SAXS, we show that the TACC domain (TD) is an elongated structure that mediates the interaction with the C terminus of XMAP215. Our data suggest that one TD and two XMAP215 molecules associate to form a four-helix coiled-coil complex. A hybrid methods approach was used to define the precise regions of the TACC heptad repeat and the XMAP215 C terminus required for assembly and functioning of the complex. We show that XTACC3 can induce the recruitment of larger amounts of XMAP215 by increasing its local concentration, thereby promoting efficient microtubule elongation during mitosis. PMID:25262927

  7. Single molecule FRET observation of kinesin-1’s head-tail interaction on microtubule

    PubMed Central

    Aoki, Takahiro; Tomishige, Michio; Ariga, Takayuki

    2013-01-01

    Kinesin-1 (conventional kinesin) is a molecular motor that transports various cargo such as endoplasmic reticulum and mitochondria in cells. Its two head domains walk along microtubule by hydrolyzing ATP, while the tail domains at the end of the long stalk bind to the cargo. When a kinesin is not carrying cargo, its motility and ATPase activity is inhibited by direct interactions between the tail and head. However, the mechanism of this tail regulation is not well understood. Here, we apply single molecule fluorescence resonance energy transfer (smFRET) to observe this interaction in stalk-truncated kinesin. We found that kinesin with two tails forms a folding conformation and dissociates from microtubules, whereas kinesin with one tail remains bound to the micro-tubule and is immobile even in the presence of ATP. We further investigated the head-tail interaction as well as head-head coordination on the microtubule at various nucleotide conditions. From these results, we propose a two-step inhibition model for kinesin motility.

  8. CEP295 interacts with microtubules and is required for centriole elongation.

    PubMed

    Chang, Ching-Wen; Hsu, Wen-Bin; Tsai, Jhih-Jie; Tang, Chieh-Ju C; Tang, Tang K

    2016-07-01

    Centriole duplication is a tightly ordered process during which procentrioles are assembled in G1-S and elongate during S and G2. Here, we show that human CEP295 (Drosophila Ana1) is not essential for initial cartwheel assembly, but is required to build distal half centrioles during S and G2. Using super-resolution and immunogold electron microscopy, we demonstrate that CEP295 is recruited to the proximal end of procentrioles in early S phase, when it is also localized at the centriolar microtubule wall that surrounds the human SAS6 cartwheel hub. Interestingly, depletion of CEP295 not only inhibits the recruitments of POC5 and POC1B to the distal half centrioles in G2, resulting in shorter centrioles, it also blocks the post-translational modification of centriolar microtubules (e.g. acetylation and glutamylation). Importantly, our results indicate that CEP295 directly interacts with microtubules, and that excess CEP295 could induce the assembly of overly long centrioles. Furthermore, exogenous expression of the N-terminal domain of CEP295 exerts a dominant-negative effect on centriole elongation. Collectively, these findings suggest that CEP295 is essential for building the distal half centrioles and for post-translational modification of centriolar microtubules. PMID:27185865

  9. CEP295 interacts with microtubules and is required for centriole elongation

    PubMed Central

    Chang, Ching-Wen; Hsu, Wen-Bin; Tsai, Jhih-Jie; Tang, Chieh-Ju C.

    2016-01-01

    ABSTRACT Centriole duplication is a tightly ordered process during which procentrioles are assembled in G1-S and elongate during S and G2. Here, we show that human CEP295 (Drosophila Ana1) is not essential for initial cartwheel assembly, but is required to build distal half centrioles during S and G2. Using super-resolution and immunogold electron microscopy, we demonstrate that CEP295 is recruited to the proximal end of procentrioles in early S phase, when it is also localized at the centriolar microtubule wall that surrounds the human SAS6 cartwheel hub. Interestingly, depletion of CEP295 not only inhibits the recruitments of POC5 and POC1B to the distal half centrioles in G2, resulting in shorter centrioles, it also blocks the post-translational modification of centriolar microtubules (e.g. acetylation and glutamylation). Importantly, our results indicate that CEP295 directly interacts with microtubules, and that excess CEP295 could induce the assembly of overly long centrioles. Furthermore, exogenous expression of the N-terminal domain of CEP295 exerts a dominant-negative effect on centriole elongation. Collectively, these findings suggest that CEP295 is essential for building the distal half centrioles and for post-translational modification of centriolar microtubules. PMID:27185865

  10. The Spindle Matrix Protein, Chromator, Is a Novel Tubulin Binding Protein That Can Interact with Both Microtubules and Free Tubulin

    PubMed Central

    Yao, Changfu; Wang, Chao; Li, Yeran; Ding, Yun; Rath, Uttama; Sengupta, Saheli; Girton, Jack; Johansen, Kristen M.; Johansen, Jørgen

    2014-01-01

    The chromodomain protein, Chromator, is localized to chromosomes during interphase; however, during cell division together with other nuclear proteins Chromator redistributes to form a macro molecular spindle matrix complex that embeds the microtubule spindle apparatus. It has been demonstrated that the CTD of Chromator is sufficient for localization to the spindle matrix and that expression of this domain alone could partially rescue Chro mutant microtubule spindle defects. Furthermore, the presence of frayed and unstable microtubule spindles during mitosis after Chromator RNAi depletion in S2 cells indicated that Chromator may interact with microtubules. In this study using a variety of biochemical assays we have tested this hypothesis and show that Chromator not only has binding activity to microtubules with a Kd of 0.23 µM but also to free tubulin. Furthermore, we have mapped the interaction with microtubules to a relatively small stretch of 139 amino acids in the carboxy-terminal region of Chromator. This sequence is likely to contain a novel microtubule binding interface since database searches did not find any sequence matches with known microtubule binding motifs. PMID:25072297

  11. Pattern formation of microtubules and motors: Inelastic interaction of polar rods

    NASA Astrophysics Data System (ADS)

    Aranson, Igor S.; Tsimring, Lev S.

    2005-05-01

    We derive a model describing spatiotemporal organization of an array of microtubules interacting via molecular motors. Starting from a stochastic model of inelastic polar rods with a generic anisotropic interaction kernel we obtain a set of equations for the local rods concentration and orientation. At large enough mean density of rods and concentration of motors, the model describes orientational instability. We demonstrate that the orientational instability leads to the formation of vortices and (for large density and/or kernel anisotropy) asters seen in recent experiments.

  12. Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis[OPEN

    PubMed Central

    Buschmann, Henrik; Lloyd, Clive W.

    2015-01-01

    Plant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiation of TEs in Arabidopsis thaliana suspension cultures. Quantitative proteomic analysis of microtubule pull-downs, using ratiometric 14N/15N labeling, revealed 605 proteins exhibiting differential accumulation during TE differentiation. Microtubule interacting proteins associated with membrane trafficking, protein synthesis, DNA/RNA binding, and signal transduction peaked during secondary cell wall formation, while proteins associated with stress peaked when approaching TE cell death. In particular, CELLULOSE SYNTHASE-INTERACTING PROTEIN1, already associated with primary wall synthesis, was enriched during secondary cell wall formation. RNAi knockdown of genes encoding several of the identified proteins showed that secondary wall formation depends on the coordinated presence of microtubule interacting proteins with nonoverlapping functions: cell wall thickness, cell wall homogeneity, and the pattern and cortical location of the wall are dependent on different proteins. Altogether, proteins linking microtubules to a range of metabolic compartments vary specifically during TE differentiation and regulate different aspects of wall patterning. PMID:26432860

  13. EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore-microtubule interactions in mitosis.

    PubMed

    Xia, Peng; Wang, Zhikai; Liu, Xing; Wu, Bing; Wang, Juncheng; Ward, Tarsha; Zhang, Liangyu; Ding, Xia; Gibbons, Gary; Shi, Yunyu; Yao, Xuebiao

    2012-10-01

    In eukaryotes, microtubules are essential for cellular plasticity and dynamics. Here we show that P300/CBP-associated factor (PCAF), a kinetochore-associated acetyltransferase, acts as a negative modulator of microtubule stability through acetylation of EB1, a protein that controls the plus ends of microtubules. PCAF acetylates EB1 on K220 and disrupts the stability of a hydrophobic cavity on the dimerized EB1 C terminus, which was previously reported to interact with plus-end tracking proteins (TIPs) containing the SxIP motif. As determined with an EB1 acetyl-K220-specific antibody, K220 acetylation is dramatically increased in mitosis and localized to the spindle microtubule plus ends. Surprisingly, persistent acetylation of EB1 delays metaphase alignment, resulting in impaired checkpoint silencing. Consequently, suppression of Mad2 overrides mitotic arrest induced by persistent EB1 acetylation. Thus, our findings identify dynamic acetylation of EB1 as a molecular mechanism to orchestrate accurate kinetochore-microtubule interactions in mitosis. These results establish a previously uncharacterized regulatory mechanism governing localization of microtubule plus-end tracking proteins and thereby the plasticity and dynamics of cells. PMID:23001180

  14. Interaction between RB protein and NuMA is required for proper alignment of spindle microtubules.

    PubMed

    Uchida, Chiharu; Hattori, Takayuki; Takahashi, Hirotaka; Yamamoto, Naoki; Kitagawa, Masatoshi; Taya, Yoichi

    2014-02-01

    Retinoblastoma protein (pRB) controls cell cycle progression and cell cycle exit through interactions with cellular proteins. Many pRB-binding proteins, which function in gene transcription or modulation of chromatin structure, harbor LXCXE motifs in their binding domain for pRB. In this study, we found that nuclear mitotic apparatus protein (NuMA), a mitotic spindle organizer, interacts with pRB through LSCEE sequences located in its C-terminal region. siRNA-mediated down-regulation of pRB caused aberrant distribution of NuMA and alignment of spindle microtubules in mitotic cells. Abnormal organization of spindle microtubules was also accompanied by misalignment of an over-expressed NuMA mutant (mut-NuMA) with a defect in pRB binding caused by an LSGEK mutation. The mut-NuMA-over-expressing cells showed lower potency for survival than wild-type NuMA (wt-NuMA)-over-expressing cells during 2 weeks of culture. Interestingly, knockdown of pRB reduced the population of wt-NuMA-over-expressing cells to the same level as mut-NuMA cells after 2 weeks. Taken together, pRB may have a novel function in regulating the mitotic function of NuMA and spindle organization, which are required for proper cell cycle progression. PMID:24350565

  15. Large-scale pattern formation in active particles suspensions: from interacting microtubules to swimming bacteria

    NASA Astrophysics Data System (ADS)

    Aranson, Igor

    2006-03-01

    We consider two biological systems of active particles exhibiting large-scale collective behavior: microtubules interacting with molecular motors and hydrodynamically entrained swimming bacteria. Starting from a generic stochastic microscopic model of inelastically colliding polar rods with an anisotropic interaction kernel, we derive set of equations for the local rods concentration and orientation. Above certain critical density of rods the model exhibits orientational instability and onset of large-scale coherence. For the microtubules and molecular motors system we demonstrate that the orientational instability leads to the formation of vortices and asters seen in recent experiments. Similar approach is applied to colonies of swimming bacteria Bacillus subtilis confined in thin fluid film. The model is formulated in term of two-dimensional equations for local density and orientation of bacteria coupled to the low Reynolds number Navier-Stokes equation for the fluid flow velocity. The collective swimming of bacteria is represented by additional source term in the Navier-Stokes equation. We demonstrate that this system exhibits formation of dynamic large-scale patterns with the typical scale determined by the density of bacteria.

  16. Phospho-regulated interaction between kinesin-6 klp9p and microtubule bundler ase1p promotes spindle elongation

    PubMed Central

    Fu, Chuanhai; Ward, Jonathan J.; Loiodice, Isabelle; Velve-Casquillas, Guilhem; Nedelec, Francois J.; Tran, Phong T.

    2010-01-01

    The spindle midzone – composed of antiparallel microtubules, microtubule-associated proteins (MAPs), and motors – is the structure responsible for microtubule organization and sliding during anaphase B. In general, MAPs and motors stabilize the midzone and motors produce sliding. We show that fission yeast kinesin-6 motor klp9p binds to the microtubule antiparallel bundler ase1p at the midzone at anaphase B onset. This interaction depends upon the phosphorylation states of klp9p and ase1p. The cyclin-dependent kinase cdc2p phosphorylates and its antagonist phosphatase clp1p dephosphorylates klp9p and ase1p to control the position and timing of klp9p-ase1p interaction. Failure of klp9p-ase1p binding leads to decreased spindle elongation velocity. The ase1p-mediated recruitment of klp9p to the midzone accelerates pole separation, as suggested by computer simulation. Our findings indicate that a phosphorylation switch controls the spatial-temporal interactions of motors and MAPs for proper anaphase B, and suggest a mechanism whereby a specific motor-MAP conformation enables efficient microtubule sliding. PMID:19686686

  17. Dissecting EB1-microtubule interactions from every direction: using single-molecule visualization and static and dynamic binding measurements

    NASA Astrophysics Data System (ADS)

    Lopez, Benjamin

    2015-03-01

    EB1 is an important microtubule associating protein (MAP) that acts as a master coordinator of protein activity at the growing plus-end of the microtubule. We can recapitulate the plus-end binding behavior of EB1 along the entire length of a static microtubule using microtubules polymerized in the presence of the nonhydrolyzable GTP analogs GMPCPP and GTP γS instead of GTP. Through the use of single-molecule TIRF imaging we find that EB1 is highly dynamic (with a sub-second characteristic binding lifetime) and continuously diffusive while bound to the microtubule. We measure the diffusion coefficient, D, through linear fitting to mean-squared displacement of individually labeled proteins, and the binding lifetime, τ, by fitting a single exponential decay to the probability distribution of trajectory lifetimes. In agreement with measurements of other diffusive MAPs, we find that D increases and τ decreases with increasing ionic strength. We also find that D is sensitive to the choice of GTP analog: EB1 proteins bound to GTP γS polymerized microtubules have a D half of that found with GMPCPP polymerized microtubules. To compare these single-molecule measurements to the bulk binding behavior of EB1, we use TIRF imaging to measure the intensity of microtubules coated with EB1-GFP as a function of EB1 concentration. We find that EB1 binding is cooperative and both the quantity of EB1 bound and the dissociation constant are sensitive to GTP analog and ionic concentration. The correlation between binding affinity and D and the cooperative nature of EB1-microtubule binding leads to a decrease in D with increasing EB1 concentration. Interestingly, we also find an increase in τ at high EB1 concentrations, consistent with attractive EB1-microtubule interactions driving the cooperativity. To further understand the nature of the cooperativity we estimate the interaction energy by measuring the association and dissociation rates (kon and koff respectively) at different

  18. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance

    PubMed Central

    Tischfield, Max A.; Baris, Hagit N.; Wu, Chen; Rudolph, Guenther; Van Maldergem, Lionel; He, Wei; Chan, Wai-Man; Andrews, Caroline; Demer, Joseph L.; Robertson, Richard L.; Mackey, David A.; Ruddle, Jonathan B.; Bird, Thomas D.; Gottlob, Irene; Pieh, Christina; Traboulsi, Elias I.; Pomeroy, Scott L.; Hunter, David G.; Soul, Janet S.; Newlin, Anna; Sabol, Louise J.; Doherty, Edward J.; de Uzcátegui, Clara E.; de Uzcátegui, Nicolas; Collins, Mary Louise Z.; Sener, Emin C.; Wabbels, Bettina; Hellebrand, Heide; Meitinger, Thomas; de Berardinis, Teresa; Magli, Adriano; Schiavi, Costantino; Pastore-Trossello, Marco; Koc, Feray; Wong, Agnes M.; Levin, Alex V.; Geraghty, Michael T.; Descartes, Maria; Flaherty, Maree; Jamieson, Robyn V.; Møller, H. U.; Meuthen, Ingo; Callen, David F.; Kerwin, Janet; Lindsay, Susan; Meindl, Alfons; Gupta, Mohan L.; Pellman, David; Engle, Elizabeth C.

    2011-01-01

    We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific β-tubulin isotype III, result in a spectrum of human nervous system disorders we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves, and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate normal TUBB3 is required for axon guidance and maintenance in mammals. PMID:20074521

  19. Interaction of a 14-3-3 protein with the plant microtubule-associated protein EDE1

    PubMed Central

    Pignocchi, Cristina; Doonan, John H.

    2011-01-01

    Background and Aims The cell cycle-regulated protein ENDOSPERM DEFECTIVE 1 (EDE1) is a novel plant microtubule-associated protein essential for plant cell division and for microtubule organization in endosperm. EDE1 is only present on microtubules at mitosis and its expression is highly cell cycle regulated both at the protein and the transcript levels. Methods To search for EDE1-interacting proteins, a yeast two-hybrid screen was used in which EDE1 was fused with GAL4 DNA binding domain and expressed in a yeast strain that was then mated with a strain carrying a cDNA library fused to the GAL4 transactivation domain. Candidate interacting proteins were identified and confirmed in vitro. Key Results 14-3-3 upsilon was isolated several times from the library screen. In in vitro tests, it also interacted with EDE1: 14-3-3 upsilon most strongly associates with EDE1 in its free form, but also weakly when EDE1 is bound to microtubules. This study shows that EDE1 is a cyclin-dependent kinase substrate but that phosphorylation is not required for interaction with 14-3-3 upsilon. Conclusions The results suggest that 14-3-3 proteins may play a role in cytoskeletal organization of plant cells. The potential role of this interaction in the dynamics of EDE1 during the cell cycle is discussed. PMID:21558460

  20. Computational Predictions of Volatile Anesthetic Interactions with the Microtubule Cytoskeleton: Implications for Side Effects of General Anesthesia

    PubMed Central

    Craddock, Travis J. A.; St. George, Marc; Freedman, Holly; Barakat, Khaled H.; Damaraju, Sambasivarao; Hameroff, Stuart; Tuszynski, Jack A.

    2012-01-01

    The cytoskeleton is essential to cell morphology, cargo trafficking, and cell division. As the neuronal cytoskeleton is extremely complex, it is no wonder that a startling number of neurodegenerative disorders (including but not limited to Alzheimer’s disease, Parkinson’s disease and Huntington’s disease) share the common feature of a dysfunctional neuronal cytoskeleton. Recently, concern has been raised about a possible link between anesthesia, post-operative cognitive dysfunction, and the exacerbation of neurodegenerative disorders. Experimental investigations suggest that anesthetics bind to and affect cytoskeletal microtubules, and that anesthesia-related cognitive dysfunction involves microtubule instability, hyper-phosphorylation of the microtubule-associated protein tau, and tau separation from microtubules. However, exact mechanisms are yet to be identified. In this paper the interaction of anesthetics with the microtubule subunit protein tubulin is investigated using computer-modeling methods. Homology modeling, molecular dynamics simulations and surface geometry techniques were used to determine putative binding sites for volatile anesthetics on tubulin. This was followed by free energy based docking calculations for halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the tubulin body, and C-terminal regions for specific tubulin isotypes. Locations of the putative binding sites, halothane binding energies and the relation to cytoskeleton function are reported in this paper. PMID:22761654

  1. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells.

    PubMed

    Zhang, Qun; Zhang, Wenhua

    2016-02-01

    Cell division and expansion require the ordered arrangement of microtubules, which are subject to spatial and temporal modifications by developmental and environmental factors. Understanding how signals translate to changes in cortical microtubule organization is of fundamental importance. A defining feature of the cortical microtubule array is its association with the plasma membrane; modules of the plasma membrane are thought to play important roles in the mediation of microtubule organization. In this review, we highlight advances in research on the regulation of cortical microtubule organization by membrane-associated and membrane-tethered proteins and lipids in response to phytohormones and stress. The transmembrane kinase receptor Rho-like guanosine triphosphatase, phospholipase D, phosphatidic acid, and phosphoinositides are discussed with a focus on their roles in microtubule organization. PMID:26687389

  2. Microtubule-Actin Cross-Linking Factor 1: Domains, Interaction Partners, and Tissue-Specific Functions.

    PubMed

    Goryunov, Dmitry; Liem, Ronald K H

    2016-01-01

    The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues. PMID:26778566

  3. The Arabidopsis TRM1–TON1 Interaction Reveals a Recruitment Network Common to Plant Cortical Microtubule Arrays and Eukaryotic Centrosomes[C][W

    PubMed Central

    Drevensek, Stéphanie; Goussot, Magali; Duroc, Yann; Christodoulidou, Anna; Steyaert, Sylvie; Schaefer, Estelle; Duvernois, Evelyne; Grandjean, Olivier; Vantard, Marylin; Bouchez, David; Pastuglia, Martine

    2012-01-01

    Land plant cells assemble microtubule arrays without a conspicuous microtubule organizing center like a centrosome. In Arabidopsis thaliana, the TONNEAU1 (TON1) proteins, which share similarity with FOP, a human centrosomal protein, are essential for microtubule organization at the cortex. We have identified a novel superfamily of 34 proteins conserved in land plants, the TON1 Recruiting Motif (TRM) proteins, which share six short conserved motifs, including a TON1-interacting motif present in all TRMs. An archetypal member of this family, TRM1, is a microtubule-associated protein that localizes to cortical microtubules and binds microtubules in vitro. Not all TRM proteins can bind microtubules, suggesting a diversity of functions for this family. In addition, we show that TRM1 interacts in vivo with TON1 and is able to target TON1 to cortical microtubules via its C-terminal TON1 interaction motif. Interestingly, three motifs of TRMs are found in CAP350, a human centrosomal protein interacting with FOP, and the C-terminal M2 motif of CAP350 is responsible for FOP recruitment at the centrosome. Moreover, we found that TON1 can interact with the human CAP350 M2 motif in yeast. Taken together, our results suggest conservation of eukaryotic centrosomal components in plant cells. PMID:22286137

  4. Effect of repulsive interactions on the rate of doublet formation of colloidal nanoparticles in the presence of convective transport.

    PubMed

    Lattuada, Marco; Morbidelli, Massimo

    2011-03-01

    In this work, we have performed a systematic investigation of the effect of electrostatic repulsive interactions on the aggregation rate of colloidal nanoparticles to from doublets in the presence of a convective transport mechanism. The aggregation rate has been computed by solving numerically the Fuchs-Smoluchowski diffusion-convection equation. Two convective transport mechanisms have been considered: extensional flow field and gravity-induced relative sedimentation. A broad range of conditions commonly encountered in the applications of colloidal dispersions has been analyzed. The relative importance of convective to diffusive contributions has been quantified by using the Peclet number Pe. The simulation results indicate that, in the presence of repulsive interactions, the evolution of the aggregation rate as a function of Pe can always be divided into three distinct regimes, no matter which convective mechanism is considered. At low Pe values the rate of aggregation is independent of convection and is dominated by repulsive interactions. At high Pe values, the rate of aggregation is dominated by convection, and independent of repulsive interactions. At intermediate Pe values, a sharp transition between these two regimes occurs. During this transition, which occurs usually over a 10-100-fold increase in Pe values, the aggregation rate can change by several orders of magnitude. The interval of Pe values where this transition occurs depends upon the nature of the convective transport mechanism, as well as on the height and characteristic lengthscale of the repulsive barrier. A simplified model has been proposed that is capable of quantitatively accounting for the simulations results. The obtained results reveal unexpected features of the effect of ionic strength and particle size on the stability of colloidal suspensions under shear or sedimentation, which have relevant consequences in industrial applications. PMID:21193203

  5. Subunit Interactions and Cooperativity in the Microtubule-severing AAA ATPase Spastin*

    PubMed Central

    Eckert, Thomas; Link, Susanne; Le, Doan Tuong-Van; Sobczak, Jean-Philippe; Gieseke, Anja; Richter, Klaus; Woehlke, Günther

    2012-01-01

    Spastin is a hexameric ring AAA ATPase that severs microtubules. To see whether the ring complex funnels the energy of multiple ATP hydrolysis events to the site of mechanical action, we investigate here the cooperativity of spastin. Several lines of evidence indicate that interactions among two subunits dominate the cooperative behavior: (i) the ATPase activity shows a sigmoidal dependence on the ATP concentration; (ii) ATPγS displays a mixed-inhibition behavior for normal ATP turnover; and (iii) inactive mutant subunits inhibit the activity of spastin in a hyperbolic dependence, characteristic for two interacting species. A quantitative model based on neighbor interactions fits mutant titration experiments well, suggesting that each subunit is mainly influenced by one of its neighbors. These observations are relevant for patients suffering from SPG4-type hereditary spastic paraplegia and explain why single amino acid exchanges lead to a dominant negative phenotype. In severing assays, wild type spastin is even more sensitive toward the presence of inactive mutants than in enzymatic assays, suggesting a weak coupling of ATPase and severing activity. PMID:22637577

  6. Interaction of Antiparallel Microtubules in the Phragmoplast Is Mediated by the Microtubule-Associated Protein MAP65-3 in Arabidopsis[W

    PubMed Central

    Ho, Chin-Min Kimmy; Hotta, Takashi; Guo, Fengli; Roberson, Robert W.; Lee, Yuh-Ru Julie; Liu, Bo

    2011-01-01

    In plant cells, microtubules (MTs) in the cytokinetic apparatus phragmoplast exhibit an antiparallel array and transport Golgi-derived vesicles toward MT plus ends located at or near the division site. By transmission electron microscopy, we observed that certain antiparallel phragmoplast MTs overlapped and were bridged by electron-dense materials in Arabidopsis thaliana. Robust MT polymerization, reported by fluorescently tagged End Binding1c (EB1c), took place in the phragmoplast midline. The engagement of antiparallel MTs in the central spindle and phragmoplast was largely abolished in mutant cells lacking the MT-associated protein, MAP65-3. We found that endogenous MAP65-3 was selectively detected on the middle segments of the central spindle MTs at late anaphase. When MTs exhibited a bipolar appearance with their plus ends placed in the middle, MAP65-3 exclusively decorated the phragmoplast midline. A bacterially expressed MAP65-3 protein was able to establish the interdigitation of MTs in vitro. MAP65-3 interacted with antiparallel microtubules before motor Kinesin-12 did during the establishment of the phragmoplast MT array. Thus, MAP65-3 selectively cross-linked interdigitating MTs (IMTs) to allow antiparallel MTs to be closely engaged in the phragmoplast. Although the presence of IMTs was not essential for vesicle trafficking, they were required for the phragmoplast-specific motors Kinesin-12 and Phragmoplast-Associated Kinesin-Related Protein2 to interact with MT plus ends. In conclusion, we suggest that the phragmoplast contains IMTs and highly dynamic noninterdigitating MTs, which work in concert to bring about cytokinesis in plant cells. PMID:21873565

  7. Interaction of antiparallel microtubules in the phragmoplast is mediated by the microtubule-associated protein MAP65-3 in Arabidopsis.

    PubMed

    Ho, Chin-Min Kimmy; Hotta, Takashi; Guo, Fengli; Roberson, Robert W; Lee, Yuh-Ru Julie; Liu, Bo

    2011-08-01

    In plant cells, microtubules (MTs) in the cytokinetic apparatus phragmoplast exhibit an antiparallel array and transport Golgi-derived vesicles toward MT plus ends located at or near the division site. By transmission electron microscopy, we observed that certain antiparallel phragmoplast MTs overlapped and were bridged by electron-dense materials in Arabidopsis thaliana. Robust MT polymerization, reported by fluorescently tagged End Binding1c (EB1c), took place in the phragmoplast midline. The engagement of antiparallel MTs in the central spindle and phragmoplast was largely abolished in mutant cells lacking the MT-associated protein, MAP65-3. We found that endogenous MAP65-3 was selectively detected on the middle segments of the central spindle MTs at late anaphase. When MTs exhibited a bipolar appearance with their plus ends placed in the middle, MAP65-3 exclusively decorated the phragmoplast midline. A bacterially expressed MAP65-3 protein was able to establish the interdigitation of MTs in vitro. MAP65-3 interacted with antiparallel microtubules before motor Kinesin-12 did during the establishment of the phragmoplast MT array. Thus, MAP65-3 selectively cross-linked interdigitating MTs (IMTs) to allow antiparallel MTs to be closely engaged in the phragmoplast. Although the presence of IMTs was not essential for vesicle trafficking, they were required for the phragmoplast-specific motors Kinesin-12 and Phragmoplast-Associated Kinesin-Related Protein2 to interact with MT plus ends. In conclusion, we suggest that the phragmoplast contains IMTs and highly dynamic noninterdigitating MTs, which work in concert to bring about cytokinesis in plant cells. PMID:21873565

  8. Valley spin-orbit interaction for the triplet and doublet 1sground states of lithium donor center in monoisotopic {sup 28}Si

    SciTech Connect

    Ezhevskii, Alexander A.; Popkov, Sergey A.; Soukhorukov, Andrey V.; Guseinov, Davud V.; Konakov, Anton A.; Abrosimov, Nikolai V.; Riemann, Helge

    2013-12-04

    Valley spin-orbit interaction for the triplet and doublet 1s-ground states of lithium donor center in monoisotopic {sup 28}Si was studied in order to determine its contribution to the electron spin relaxation rate. We observed new electron paramagnetic resonance spectra of lithium in monoisotopic silicon with g<2.000 and found the spin Hamiltonian parameters for it. Using our experimental results and taking into account spin-orbit coupling between the triplet states and the triplet and doublet states we found that the lithium donor electron spectrum and g-factors for its states strongly depend on both the internal strains in the crystal and the intervalley spin-orbit interactions.

  9. Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain.

    PubMed

    Kozielski, Frank; Riaz, Tahira; DeBonis, Salvatore; Koehler, Christian J; Kroening, Mario; Panse, Isabel; Strozynski, Margarita; Donaldson, Ian M; Thiede, Bernd

    2011-07-01

    The microtubule (MT) cytoskeleton is essential for a variety of cellular processes. MTs are finely regulated by distinct classes of MT-associated proteins (MAPs), which themselves bind to and are regulated by a large number of additional proteins. We have carried out proteome analyses of tubulin-rich and tubulin-depleted MAPs and their interacting partners isolated from bovine brain. In total, 573 proteins were identified giving us unprecedented access to brain-specific MT-associated proteins from mammalian brain. Most of the standard MAPs were identified and at least 500 proteins have been reported as being associated with MTs. We identified protein complexes with a large number of subunits such as brain-specific motor/adaptor/cargo complexes for kinesins, dynein, and dynactin, and proteins of an RNA-transporting granule. About 25% of the identified proteins were also found in the synaptic vesicle proteome. Analysis of the MS/MS data revealed many posttranslational modifications, amino acid changes, and alternative splice variants, particularly in tau, a key protein implicated in Alzheimer's disease. Bioinformatic analysis of known protein-protein interactions of the identified proteins indicated that the number of MAPs and their associated proteins is larger than previously anticipated and that our database will be a useful resource to identify novel binding partners. PMID:20567863

  10. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions

    PubMed Central

    Shahbazi, Marta N.; Megias, Diego; Epifano, Carolina; Akhmanova, Anna; Gundersen, Gregg G.; Fuchs, Elaine

    2013-01-01

    Classical cadherins and their connections with microtubules (MTs) are emerging as important determinants of cell adhesion. However, the functional relevance of such interactions and the molecular players that contribute to tissue architecture are still emerging. In this paper, we report that the MT plus end–binding protein CLASP2 localizes to adherens junctions (AJs) via direct interaction with p120-catenin (p120) in primary basal mouse keratinocytes. Reductions in the levels of p120 or CLASP2 decreased the localization of the other protein to cell–cell contacts and altered AJ dynamics and stability. These features were accompanied by decreased MT density and altered MT dynamics at intercellular junction sites. Interestingly, CLASP2 was enriched at the cortex of basal progenitor keratinocytes, in close localization to p120. Our findings suggest the existence of a new mechanism of MT targeting to AJs with potential functional implications in the maintenance of proper cell–cell adhesion in epidermal stem cells. PMID:24368809

  11. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions.

    PubMed

    Shahbazi, Marta N; Megias, Diego; Epifano, Carolina; Akhmanova, Anna; Gundersen, Gregg G; Fuchs, Elaine; Perez-Moreno, Mirna

    2013-12-23

    Classical cadherins and their connections with microtubules (MTs) are emerging as important determinants of cell adhesion. However, the functional relevance of such interactions and the molecular players that contribute to tissue architecture are still emerging. In this paper, we report that the MT plus end-binding protein CLASP2 localizes to adherens junctions (AJs) via direct interaction with p120-catenin (p120) in primary basal mouse keratinocytes. Reductions in the levels of p120 or CLASP2 decreased the localization of the other protein to cell-cell contacts and altered AJ dynamics and stability. These features were accompanied by decreased MT density and altered MT dynamics at intercellular junction sites. Interestingly, CLASP2 was enriched at the cortex of basal progenitor keratinocytes, in close localization to p120. Our findings suggest the existence of a new mechanism of MT targeting to AJs with potential functional implications in the maintenance of proper cell-cell adhesion in epidermal stem cells. PMID:24368809

  12. Kaposi's Sarcoma-Associated Herpesvirus ORF45 Interacts with Kinesin-2 Transporting Viral Capsid-Tegument Complexes along Microtubules

    PubMed Central

    Sathish, Narayanan; Zhu, Fan Xiu; Yuan, Yan

    2009-01-01

    Open reading frame (ORF) 45 of Kaposi's sarcoma-associated herpesvirus (KSHV) is a tegument protein. A genetic analysis with a null mutant suggested a possible role for this protein in the events leading to viral egress. In this study, ORF45 was found to interact with KIF3A, a kinesin-2 motor protein that transports cargoes along microtubules to cell periphery in a yeast two-hybrid screen. The association was confirmed by both co-immunoprecipitation and immunoflorescence approaches in primary effusion lymphoma cells following virus reactivation. ORF45 principally mediated the docking of entire viral capsid-tegument complexes onto the cargo-binding domain of KIF3A. Microtubules served as the major highways for transportation of these complexes as evidenced by drastically reduced viral titers upon treatment of cells with a microtubule depolymerizer, nocodazole. Confocal microscopic images further revealed close association of viral particles with microtubules. Inhibition of KIF3A–ORF45 interaction either by the use of a headless dominant negative (DN) mutant of KIF3A or through shRNA-mediated silencing of endogenous KIF3A expression noticeably decreased KSHV egress reflecting as appreciable reductions in the release of extracellular virions. Both these approaches, however, failed to impact HSV-1 egress, demonstrating the specificity of KIF3A in KSHV transportation. This study thus reports on transportation of KSHV viral complexes on microtubules by KIF3A, a kinesin motor thus far not implicated in virus transportation. All these findings shed light on the understudied but significant events in the KSHV life cycle, delineating a crucial role of a KSHV tegument protein in cellular transport of viral particles. PMID:19282970

  13. Lossless anomalous dispersion and an inversionless gain doublet via dressed interacting ground states

    SciTech Connect

    Weatherall, James Owen; Search, Christopher P.

    2010-02-15

    Transparent media exhibiting anomalous dispersion have been of considerable interest since Wang, Kuzmich, and Dogariu [Nature 406, 277 (2000)] first observed light propagate with superluminal and negative group velocities without absorption. Here, we propose an atomic model exhibiting these properties, based on a generalization of amplification without inversion in a five-level dressed interacting ground-state system. The system consists of a {Lambda} atom prepared as in standard electromagnetically induced transparency (EIT), with two additional metastable ground states coupled to the {Lambda} atom ground states by two rf-microwave fields. We consider two configurations by which population is incoherently pumped into the ground states of the atom. Under appropriate circumstances, we predict a pair of new gain lines with tunable width, separation, and height. Between these lines, absorption vanishes but dispersion is large and anomalous. The system described here is a significant improvement over other proposals in the anomalous dispersion literature in that it permits additional coherent control over the spectral properties of the anomalous region, including a possible 10{sup 4}-fold increase over the group delay observed by Wang, Kuzmich, and Dogariu.

  14. Centromere Protein (CENP)-W Interacts with Heterogeneous Nuclear Ribonucleoprotein (hnRNP) U and May Contribute to Kinetochore-Microtubule Attachment in Mitotic Cells

    PubMed Central

    Chun, Younghwa; Kim, Raehyung; Lee, Soojin

    2016-01-01

    Background Recent studies have shown that heterogeneous nuclear ribonucleoprotein U (hnRNP U), a component of the hnRNP complex, contributes to stabilize the kinetochore-microtubule interaction during mitosis. CENP-W was identified as an inner centromere component that plays crucial roles in the formation of a functional kinetochore complex. Results We report that hnRNP U interacts with CENP-W, and the interaction between hnRNP U and CENP-W mutually increased each other’s protein stability by inhibiting the proteasome-mediated degradation. Further, their co-localization was observed chiefly in the nuclear matrix region and at the microtubule-kinetochore interface during interphase and mitosis, respectively. Both microtubule-stabilizing and microtubule-destabilizing agents significantly decreased the protein stability of CENP-W. Furthermore, loss of microtubules and defects in microtubule organization were observed in CENP-W-depleted cells. Conclusion Our data imply that CENP-W plays an important role in the attachment and interaction between microtubules and kinetochore during mitosis. PMID:26881882

  15. Interactions among endoplasmic reticulum, microtubules, and retrograde movements of the cell surface.

    PubMed

    Terasaki, M; Reese, T S

    1994-01-01

    Relationships among the endoplasmic reticulum (ER), microtubules, and bead movements on the cell surface were investigated in the thin peripheral region of A6 cells, a frog kidney cell line. ER tubules were often aligned with microtubules, as shown by double-labeling with DiOC6(3) and anti-tubulin in fixed cells. In living cells stained with DiOC6(3) and observed in time lapse, there were frequent extensions, but few retractions, of ER tubules. In addition, there was a steady retrograde (towards the cell center) movement of all of the ER at approximately 0.3 microns/min. Since microtubules are often aligned with the ER, microtubules must also be moving retrogradely. By simultaneous imaging, it was found that the ER moves retrogradely at the same rate as aminated latex beads on the cell surface. This indicates that the mechanisms for ER and bead movement are closely related. Cytochalasin B stopped bead and ER movement in most of the cells, providing evidence that actin is involved in both retrograde movements. The ER retracted towards the cell center in nocodazole while both ER and microtubules retracted in taxol. Time lapse observations showed that for both drugs, the retraction of the ER is the result of retrograde movement in the absence of new ER extensions. Presumably, ER extensions do not occur in nocodazole because of the absence of microtubules, and do not occur in taxol because taxol-stabilized microtubules move retrogradely and there is no polymerization of new microtubule tracks for ER elongation. PMID:7859292

  16. Interactions between Auxin, Microtubules and XTHs Mediate Green Shade- Induced Petiole Elongation in Arabidopsis

    PubMed Central

    Sasidharan, Rashmi; Keuskamp, Diederik H.; Kooke, Rik; Voesenek, Laurentius A. C. J.; Pierik, Ronald

    2014-01-01

    Plants are highly attuned to translating environmental changes to appropriate modifications in growth. Such phenotypic plasticity is observed in dense vegetations, where shading by neighboring plants, triggers rapid unidirectional shoot growth (shade avoidance), such as petiole elongation, which is partly under the control of auxin. This growth is fuelled by cellular expansion requiring cell-wall modification by proteins such as xyloglucan endotransglucosylase/hydrolases (XTHs). Cortical microtubules (cMTs) are highly dynamic cytoskeletal structures that are also implicated in growth regulation. The objective of this study was to investigate the tripartite interaction between auxin, cMTs and XTHs in shade avoidance. Our results indicate a role for cMTs to control rapid petiole elongation in Arabidopsis during shade avoidance. Genetic and pharmacological perturbation of cMTs obliterated shade-induced growth and led to a reduction in XTH activity as well. Furthermore, the cMT disruption repressed the shade-induced expression of a specific set of XTHs. These XTHs were also regulated by the hormone auxin, an important regulator of plant developmental plasticity and also of several shade avoidance responses. Accordingly, the effect of cMT disruption on the shade enhanced XTH expression could be rescued by auxin application. Based on the results we hypothesize that cMTs can mediate petiole elongation during shade avoidance by regulating the expression of cell wall modifying proteins via control of auxin distribution. PMID:24594664

  17. Distinct Interaction Modes of the Kinesin-13 Motor Domain with the Microtubule.

    PubMed

    Chatterjee, Chandrima; Benoit, Matthieu P M H; DePaoli, Vania; Diaz-Valencia, Juan D; Asenjo, Ana B; Gerfen, Gary J; Sharp, David J; Sosa, Hernando

    2016-04-12

    Kinesins-13s are members of the kinesin superfamily of motor proteins that depolymerize microtubules (MTs) and have no motile activity. Instead of generating unidirectional movement over the MT lattice, like most other kinesins, kinesins-13s undergo one-dimensional diffusion (ODD) and induce depolymerization at the MT ends. To understand the mechanism of ODD and the origin of the distinct kinesin-13 functionality, we used ensemble and single-molecule fluorescence polarization microscopy to analyze the behavior and conformation of Drosophila melanogaster kinesin-13 KLP10A protein constructs bound to the MT lattice. We found that KLP10A interacts with the MT in two coexisting modes: one in which the motor domain binds with a specific orientation to the MT lattice and another where the motor domain is very mobile and able to undergo ODD. By comparing the orientation and dynamic behavior of mutated and deletion constructs we conclude that 1) the Kinesin-13 class specific neck domain and loop-2 help orienting the motor domain relative to the MT. 2) During ODD the KLP10A motor-domain changes orientation rapidly (rocks or tumbles). 3) The motor domain alone is capable of undergoing ODD. 4) A second tubulin binding site in the KLP10A motor domain is not critical for ODD. 5) The neck domain is not the element preventing KLP10A from binding to the MT lattice like motile kinesins. PMID:27074684

  18. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome

    PubMed Central

    Guo, Longbiao; Ho, Chin-Min Kimmy; Kong, Zhaosheng; Lee, Yuh-Ru Julie; Qian, Qian; Liu, Bo

    2009-01-01

    Background Microtubules (MTs) are assembled by heterodimers of α- and β-tubulins, which provide tracks for directional transport and frameworks for the spindle apparatus and the phragmoplast. MT nucleation and dynamics are regulated by components such as the γ-tubulin complex which are conserved among eukaryotes, and other components which are unique to plants. Following remarkable progress made in the model plant Arabidopsis thaliana toward revealing key components regulating MT activities, the completed rice (Oryza sativa) genome has prompted a survey of the MT cytoskeleton in this important crop as a model for monocots. Scope The rice genome contains three α-tubulin genes, eight β-tubulin genes and a single γ-tubulin gene. A functional γ-tubulin ring complex is expected to form in rice as genes encoding all components of the complex are present. Among proteins that interact with MTs, compared with A. thaliana, rice has more genes encoding some members such as the MAP65/Ase1p/PRC1 family, but fewer for the motor kinesins, the end-binding protein EB1 and the mitotic kinase Aurora. Although most known MT-interacting factors have apparent orthologues in rice, no orthologues of arabidopsis RIC1 and MAP18 have been identified in rice. Among all proteins surveyed here, only a few have had their functions characterized by genetic means in rice. Elucidating functions of proteins of the rice MT cytoskeleton, aided by recent technical advances made in this model monocot, will greatly advance our knowledge of how monocots employ their MTs to regulate their growth and form. PMID:19106179

  19. Solid-State and Solution NMR Studies of the CAP-Gly Domain of Mammalian Dynactin and Its Interaction with Microtubules

    SciTech Connect

    Sun, Shangjin; Siglin, Amanda; Williams, John C.; Polenova, Tatyana E.

    2009-07-29

    Microtubules (MTs) and microtubule binding proteins (MTBPs) play fundamental physiological roles including vesicle and organelle transport, cell motility, and cell division. Despite the importance of the MT/MTBP assemblies, there remains virtually no structural or dynamic information about their interaction at the atomic level due to the inherent insolubility and lack of long-range order of MTs. In this study, we present a combined magic angle spinning solid-state and solution NMR study of the MTBP CAP-Gly domain of mammalian dynactin and its interaction with paclitaxel-stabilized microtubules. We report resonance assignments and secondary structure analysis of the free CAP-Gly in solution and in the solid state by a combination of two- and three-dimensional homo- and heteronuclear correlation spectra. In solution, binding of CAP-Gly to microtubules is accompanied by the broadening of the majority of the peaks in HSQC spectra except for the residues at the termini, precluding further structural analysis of the CAP-Gly/microtubule complexes. In the solid state, DARR spectra of free CAP-Gly and its complex with microtubules display well-resolved lines, permitting residue-specific resonance assignments. Interestingly, a number of chemical shifts in the solid-state DARR spectra of the CAP-Gly/microtubule complex are perturbed compared to those of the free CAP-Gly, suggesting that conformational changes occur in the protein upon binding to the microtubules. These results indicate that CAP-Gly/microtubule assemblies are amenable to detailed structural characterization by magic angle spinning NMR spectroscopy and that solid-state NMR is a viable technique to study MT/protein interactions in general.

  20. Murine CENP-F Regulates Centrosomal Microtubule Nucleation and Interacts with Hook2 at the Centrosome

    PubMed Central

    Moynihan, Katherine L.; Pooley, Ryan; Miller, Paul M.; Kaverina, Irina

    2009-01-01

    The microtubule (MT) network is essential in a broad spectrum of cellular functions. Many studies have linked CENP-F to MT-based activities as disruption of this protein leads to major changes in MT structure and function. Still, the basis of CENP-F regulation of the MT network remains elusive. Here, our studies reveal a novel and critical localization and role for CENP-F at the centrosome, the major MT organizing center (MTOC) of the cell. Using a yeast two-hybrid screen, we identify Hook2, a linker protein that is essential for regulation of the MT network at the centrosome, as a binding partner of CENP-F. With recently developed immunochemical reagents, we confirm this interaction and reveal the novel localization of CENP-F at the centrosome. Importantly, in this first report of CENP-F−/− cells, we demonstrate that ablation of CENP-F protein function eliminates MT repolymerization after standard nocodazole treatment. This inhibition of MT regrowth is centrosome specific because MT repolymerization is readily observed from the Golgi in CENP-F−/− cells. The centrosome-specific function of CENP-F in the regulation of MT growth is confirmed by expression of truncated CENP-F containing only the Hook2-binding domain. Furthermore, analysis of partially reconstituted MTOC asters in cells that escape complete repolymerization block shows that disruption of CENP-F function impacts MT nucleation and anchoring rather than promoting catastrophe. Our study reveals a major new localization and function of CENP-F at the centrosome that is likely to impact a broad array of MT-based actions in the cell. PMID:19793914

  1. Leucine-rich repeat kinase 2 functionally interacts with microtubules and kinase-dependently modulates cell migration.

    PubMed

    Caesar, Mareike; Zach, Susanne; Carlson, Coby B; Brockmann, Kathrin; Gasser, Thomas; Gillardon, Frank

    2013-06-01

    Recent studies indicate that the Parkinson's disease-linked leucine-rich repeat kinase 2 (LRRK2) modulates cytoskeletal functions by regulating actin and tubulin dynamics, thereby affecting neurite outgrowth. By interactome analysis we demonstrate that the binding of LRRK2 to tubulins is significantly enhanced by pharmacological LRRK2 inhibition in cells. Co-incubation of LRRK2 with microtubules increased the LRRK2 GTPase activity in a cell-free assay. Destabilization of microtubules causes a rapid decrease in cellular LRRK2(S935) phosphorylation indicating a decreased LRRK2 kinase activity. Moreover, both human LRRK2(G2019S) fibroblasts and mouse LRRK2(R1441G) fibroblasts exhibit alterations in cell migration in culture. Treatment of mouse fibroblasts with the selective LRRK2 inhibitor LRRK2-IN1 reduces cell motility. These findings suggest that LRRK2 and microtubules mutually interact both in non-neuronal cells and in neurons, which might contribute to our understanding of its pathogenic effects in Parkinson's disease. PMID:23318930

  2. Hook2, a microtubule-binding protein, interacts with Par6α and controls centrosome orientation during polarized cell migration.

    PubMed

    Pallesi-Pocachard, Emilie; Bazellieres, Elsa; Viallat-Lieutaud, Annelise; Delgrossi, Marie-Hélène; Barthelemy-Requin, Magali; Le Bivic, André; Massey-Harroche, Dominique

    2016-01-01

    Polarity protein complexes function during polarized cell migration and a subset of these proteins localizes to the reoriented centrosome during this process. Despite these observations, the mechanisms behind the recruitment of these polarity complexes such as the aPKC/PAR6α complex to the centrosome are not well understood. Here we identify Hook2 as an interactor for the aPKC/PAR6α complex that functions to localize this complex at the centrosome. We first demonstrate that Hook2 is essential for the polarized Golgi re-orientation towards the migration front. Depletion of Hook2 results in a decrease of PAR6α at the centrosome during cell migration, while overexpression of Hook2 in cells induced the formation of aggresomes with the recruitment of PAR6α, aPKC and PAR3. In addition, we demonstrate that the interaction between the C-terminal domain of Hook2 and the aPKC-binding domain of PAR6α localizes PAR6α to the centrosome during cell migration. Our data suggests that Hook2, a microtubule binding protein, plays an important role in the regulation of PAR6α recruitment to the centrosome to bridge microtubules and the aPKC/PAR complex. This data reveals how some of the polarity protein complexes are recruited to the centrosome and might regulate pericentriolar and microtubule organization and potentially impact on polarized migration. PMID:27624926

  3. Behavior of T-Tubulin-Interactions at Low Concentrations of Colchicine in the Microtubule Steady State

    NASA Astrophysics Data System (ADS)

    Shojania Feizabadi, Mitra; Spillman, William B.

    2005-03-01

    Microtubules are the target for a large number of anti-mitotic agents including colchicine. Colchicine is a well studied inhibitor that is believed to act by disrupting the microtubule requirements for chromosome movement during mitosis. The mechanism of action of colchicine in vitro and at low concentration is due to kinetic stabilization of spindle microtubule dynamics. In this study we investigate the behavior of free T-tubulin concentration in the microtubule steady state and in the presence colchicine. We assume that there is an excess of GTP (guanosine tri-phosphate) available in the solution, and that the D-tubulin in the solution will exchange its unit of GDP (guanosine di-phosphate) with a unit of GTP. By numerical analysis, the concentration of T-tubulin in the steady state as a function of regeneration rate was investigated in the presence and absence of colchicine. Our results show that low concentration of colchicine in the steady state does not significantly alter the amount of free total T-tubulin concentration or the polymer mass, in good agreement with experimental observations.

  4. Novel hexapeptide interacts with tubulin and microtubules, inhibits Aβ fibrillation, and shows significant neuroprotection.

    PubMed

    Biswas, Atanu; Kurkute, Prashant; Saleem, Suraiya; Jana, Batakrishna; Mohapatra, Saswat; Mondal, Prasenjit; Adak, Anindyasundar; Ghosh, Subhajit; Saha, Abhijit; Bhunia, Debmalya; Biswas, Subhash Chandra; Ghosh, Surajit

    2015-08-19

    Herein, we report a novel hexapeptide, derived from activity dependent neuroprotective protein (ADNP), that spontaneously self-assembles to form antiparallel β-sheet structure and produces nanovesicles under physiological conditions. This peptide not only strongly binds with β-tubulin in the taxol binding site but also binds with the microtubule lattice in vitro as well as in intracellular microtubule networks. Interestingly, it shows inhibition of amyloid fibril formation upon co-incubation with Aβ peptide following an interesting mechanistic pathway and excellent neuroprotection in PC12 cells treated with anti-nerve growth factor (NGF). The potential of this hexapeptide opens up a new paradigm in design and development of novel therapeutics for AD. PMID:26147391

  5. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network

    PubMed Central

    Mital, Jeffrey; Miller, Natalie J.; Fischer, Elizabeth R.; Hackstadt, Ted

    2010-01-01

    Summary Chlamydiae are gram-negative obligate intracellular bacteria that cause diseases with significant medical and economic impact. Chlamydia trachomatis replicates within a vacuole termed an inclusion, which is extensively modified by the insertion of a number of bacterial effector proteins known as inclusion membrane proteins (Incs). Once modified, the inclusion is trafficked in a dynein-dependent manner to the microtubule organizing center (MTOC), where it associates with host centrosomes. Here we describe a novel structure on the inclusion membrane comprised of both host and bacterial proteins. Members of the Src family of kinases are recruited to the chlamydial inclusion in an active form. These kinases display a distinct, localized punctate microdomain-like staining pattern on the inclusion membrane that colocalizes with four chlamydial inclusion membrane proteins (Incs) and is enriched in cholesterol. Biochemical studies show that at least two of these Incs stably interact with one another. Furthermore, host centrosomes associate with these microdomain proteins in C. trachomatis-infected cells and in uninfected cells exogenously expressing one of the chlamydial effectors. Together, the data suggest that a specific structure on the C. trachomatis inclusion membrane may be responsible for the known interactions of chlamydiae with the microtubule network and resultant effects on centrosome stability. PMID:20331642

  6. Cytomagnetometric study of interactions between microfilaments and microtubules by measuring the energy imparted to magnetic particles within the cells

    NASA Astrophysics Data System (ADS)

    Nemoto, Iku; Kawamura, Kazuhisa

    2005-05-01

    Cytomagnetometric measurements of the energy imparted to intracellular organelles were made to study the relationship between microtubules and microfilaments. Depolymerization of microtubules by colchicine resulted in an increase in the energy suggesting that microtubules in control condition suppress the activity of microfilaments.

  7. Actin–microtubule coordination at growing microtubule ends

    PubMed Central

    López, Magdalena Preciado; Huber, Florian; Grigoriev, Ilya; Steinmetz, Michel O.; Akhmanova, Anna; Koenderink, Gijsje H.; Dogterom, Marileen

    2014-01-01

    To power dynamic processes in cells, the actin and microtubule cytoskeletons organize into complex structures. Although it is known that cytoskeletal coordination is vital for cell function, the mechanisms by which cross-linking proteins coordinate actin and microtubule activities remain poorly understood. In particular, it is unknown how the distinct mechanical properties of different actin architectures modulate the outcome of actin–microtubule interactions. To address this question, we engineered the protein TipAct, which links growing microtubule ends via end-binding proteins to actin filaments. We show that growing microtubules can be captured and guided by stiff actin bundles, leading to global actin–microtubule alignment. Conversely, growing microtubule ends can transport, stretch and bundle individual actin filaments, thereby globally defining actin filament organization. Our results provide a physical basis to understand actin–microtubule cross-talk, and reveal that a simple cross-linker can enable a mechanical feedback between actin and microtubule organization that is relevant to diverse biological contexts. PMID:25159196

  8. Structure and Dynamics of the Kinesin–Microtubule Interaction Revealed by Fluorescence Polarization Microscopy

    PubMed Central

    Sosa, Hernando; Asenjo, Ana B.; Peterman, Erwin J.G.

    2010-01-01

    Fluorescence polarization microscopy (FPM) is the analysis of the polarization of light in a fluorescent microscope in order to determine the angular orientation and rotational mobility of fluorescent molecules. Key advantages of FPM, relative to other structural analysis techniques, are that it allows the detection of conformational changes of fluorescently labeled macromolecules in real time in physiological conditions and at the single-molecule level. In this chapter we describe in detail the FPM experimental set-up and analysis methods we have used to investigate structural intermediates of the motor protein kinesin-1 associated with its walking mechanism along microtubules. We also briefly describe additional FPM methods that have been used to investigate other macromolecular complexes. PMID:20466150

  9. How to measure microtubule dynamics?

    PubMed

    Straube, Anne

    2011-01-01

    Microtubules are one of the most spectacular features in the cell: long, fairly rigid tubules that provide physical strength while at the same time serving as tracks of the intracellular transport network. In addition, they are the main constituents of the cell division machinery, and guide axonal growth and the direction of cell migration. To be able to fulfil such diverse functions, microtubules have to be arranged into suitable patterns and remodelled according to extra- and intracellular cues. Moreover, the delicate regulation of microtubule dynamics and the dynamic interactions with subcellular structures, such as kinetochores or cell adhesion sites, appear to be of crucial importance to microtubule functions. It is, therefore, important to understand microtubule dynamics and its spatiotemporal regulation at the molecular level. In this chapter, I introduce the concept of microtubule dynamics and discuss the techniques that can be employed to study microtubule dynamics in vitro and in cells, for many of which detailed protocols can be found in this volume. Microtubule dynamics is traditionally assessed by the four parameters of dynamic instability: growth and shrinkage rates, rescue and catastrophe frequencies, sometimes supplemented by pause duration. I discuss emerging issues with and alternatives to this parameter description of microtubule dynamics. PMID:21773917

  10. Ttll9-/- mice sperm flagella show shortening of doublet 7, reduction of doublet 5 polyglutamylation and a stall in beating.

    PubMed

    Konno, Alu; Ikegami, Koji; Konishi, Yoshiyuki; Yang, Hyun-Jeong; Abe, Manabu; Yamazaki, Maya; Sakimura, Kenji; Yao, Ikuko; Shiba, Kogiku; Inaba, Kazuo; Setou, Mitsutoshi

    2016-07-15

    Nine outer doublet microtubules in axonemes of flagella and cilia are heterogeneous in structure and biochemical properties. In mammalian sperm flagella, one of the factors to generate the heterogeneity is tubulin polyglutamylation, although the importance of the heterogeneous modification is unclear. Here, we show that a tubulin polyglutamylase Ttll9 deficiency (Ttll9(-/-)) causes a unique set of phenotypes related to doublet heterogeneity. Ttll9(-/-) sperm axonemes had frequent loss of a doublet and reduced polyglutamylation. Intriguingly, the doublet loss selectively occurred at the distal region of doublet 7, and reduced polyglutamylation was observed preferentially on doublet 5. Ttll9(-/-) spermatozoa showed aberrant flagellar beating, characterized by frequent stalls after anti-hook bending. This abnormal motility could be attributed to the reduction of polyglutamylation on doublet 5, which probably occurred at a position involved in the switching of bending. These results indicate that mammalian Ttll9 plays essential roles in maintaining the normal structure and beating pattern of sperm flagella by establishing normal heterogeneous polyglutamylation patterns. PMID:27257088

  11. Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions.

    PubMed

    DeTure, M; Ko, L W; Yen, S; Nacharaju, P; Easson, C; Lewis, J; van Slegtenhorst, M; Hutton, M; Yen, S H

    2000-01-17

    Frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) is a group of related disorders frequently characterized by the formation of tau inclusions in neurons and glial cells. To determine whether the formation of tau inclusions in FTDP-17 results from an alteration in the ability of mutant tau to maintain the microtubule (MT) system, we compared wild type four-repeat tau with three FTDP-17 mutants (P301L, V337M and R406W) for their ability to bind MT, promote MT assembly and bundling. According to in vitro binding and assembly assays, P301L is the only mutant that demonstrates a small, yet significant reduction, in its affinity for MT while both P301L and R406W have a small reduction in their ability to promote tubulin assembly. Based on studies of neuroblastoma and CHO cells transfected with GFP-tagged tau DNA constructs, both mutant and wild type tau transfectants were indistinguishable in the distribution pattern of tau in terms of co-localization with MT and generation of MT bundles. These results suggest that missense mutation of tau gene do not have an immediate impact on the integrity of MT system, and that exposure of affected neurons to additional insults or factors (e.g., aging) may be needed to initiate the formation of tau inclusions in FTDP-17. PMID:10627302

  12. Association of hepatitis C virus replication complexes with microtubules and actin filaments is dependent on the interaction of NS3 and NS5A.

    PubMed

    Lai, Chao-Kuen; Jeng, King-Song; Machida, Keigo; Lai, Michael M C

    2008-09-01

    The hepatitis C virus (HCV) RNA replication complex (RC), which is composed of viral nonstructural (NS) proteins and host cellular proteins, replicates the viral RNA genome in association with intracellular membranes. Two viral NS proteins, NS3 and NS5A, are essential elements of the RC. Here, by using immunoprecipitation and fluorescence resonance energy transfer assays, we demonstrated that NS3 and NS5A interact with tubulin and actin. Furthermore, immunofluorescence microscopy and electron microscopy revealed that HCV RCs were aligned along microtubules and actin filaments in both HCV replicon cells and HCV-infected cells. In addition, the movement of RCs was inhibited when microtubules or actin filaments were depolymerized by colchicine and cytochalasin B, respectively. Based on our observations, we propose that microtubules and actin filaments provide the tracks for the movement of HCV RCs to other regions in the cell, and the molecular interactions between RCs and microtubules, or RCs and actin filaments, are mediated by NS3 and NS5A. PMID:18562541

  13. The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules.

    PubMed

    King, Stephen M; Patel-King, Ramila S

    2015-03-20

    CCDC103 is an ∼29-kDa protein consisting of a central RPAP3_C domain flanked by N- and C-terminal coiled coils. Defects in CCDC103 lead to primary ciliary dyskinesia caused by the loss of outer dynein arms. This protein is present along the entire length of the ciliary axoneme and does not require other dynein or docking complex components for its integration. Unlike other known dynein assembly factors within the axoneme, CCDC103 is not solubilized by 0.6 M NaCl and requires more chaotropic conditions, such as 0.5 M KI. Alternatively, it can be extracted using 0.3% sarkosyl. CCDC103 forms stable dimers and other oligomers in solution through interactions involving the central domain. The smallest particle observed by dynamic light scattering has a hydrodynamic diameter of ∼25 nm. Furthermore, CCDC103 binds microtubules directly, forming ∼9-nm diameter particles that exhibit a 12-nm spacing on the microtubule lattice, suggesting that there may be two CCDC103 units per outer arm dynein repeat. Although the outer dynein arm docking complex is necessary to form arrays of dyneins along microtubules, it is not sufficient to set up a single array in a precise location on each axonemal doublet. We propose that CCDC103 helps generate a high-affinity site on the doublets for outer arm assembly, either through direct interactions or indirectly, perhaps by modifying the underlying microtubule lattice. PMID:25572396

  14. Martian doublet craters.

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Aoyagi, M.

    1972-01-01

    A large number of Mars craters are nearly tangential to other craters. They occur in clusters or as isolated crater doublets. Results of probability calculations and a Monte Carlo cratering simulation model show conclusively that many of the Mars craters could not have resulted from random single-body impact. The possibility that these craters are calderas is considered possible only if calderas on Mars form by mechanisms different from those on earth. However, clusters and doublets could be caused by meteoroid breakup resulting from stresses induced in the meteoroid by the gravitational field of Mars. It is concluded that, under certain conditions, doublets should be produced on Mars as a direct result of breakup of an impacting meteoroid. The impact process can yield nonrandom crater distributions that should be observed in different degrees of development on different planetary surfaces.

  15. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures.

    PubMed

    Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry

    2016-01-01

    Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA's MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. PMID:26765568

  16. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures

    PubMed Central

    Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry

    2016-01-01

    Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA’s MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. DOI: http://dx.doi.org/10.7554/eLife.12504.001 PMID:26765568

  17. Microtubule-Associated Protein 1 Light Chain 3 Interacts with and Contributes to Growth Inhibiting Effect of PML

    PubMed Central

    Hou, Jia-Kai; Fan, Li; Xu, Yi-Wei; Liu, Man-Hua; Yan, Shu-Yang; Chen, Guo-Qiang; Huang, Ying

    2014-01-01

    Previously we reported that the expression of promyelocytic leukemia (PML)-retinoic acid receptor alpha (RARα) fusion gene, which is caused by specific translocation (15;17) in acute promyelocytic leukemia, can enhance constitutive autophagic activity in leukemic and nonleukemic cells, and PML overexpression can sequestrate part of microtubule-associated protein light chain 3 (LC3) protein in PML nuclear bodies, suggesting that LC3 protein also distributes into nuclei although it is currently thought to function primarily in the cytoplasm, the site of autophagosomal formation. However, its potential significance of nucleoplasmic localizations remains greatly elusive. Here we demonstrate that PML interacts with LC3 in a cell type-independent manner as assessed by Co-IP assay and co-localization observation. Overexpressed PML significantly coprecipitates with endogenous and nuclear LC3 protein. Furthermore, a fraction of endogenous PML protein is found to be co-localized with LC3 protein under steady state condition, which is further enhanced by IFNα induction, indicating that PML up-regulation potentiates this interaction. Additionally, DsRed-PML associates with EGFP-LC3 during telophase and G1 phase but not in metaphase and anaphase. Two potential LC3-interacting region (LIR) motifs in PML are required for interaction of PML with LC3 while this association is independent of autophagic activity. Finally, we show that interaction between PML and LC3 contributes to cell growth inhibition function of PML. Considering that PML is an important tumor suppressor, we propose that nuclear portion of LC3 protein may associate with PML to control cell growth for prevention and inhibition of cancer occurrence and development. PMID:25419843

  18. Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth.

    PubMed

    Sharma, Ashwani; Aher, Amol; Dynes, Nicola J; Frey, Daniel; Katrukha, Eugene A; Jaussi, Rolf; Grigoriev, Ilya; Croisier, Marie; Kammerer, Richard A; Akhmanova, Anna; Gönczy, Pierre; Steinmetz, Michel O

    2016-05-23

    Centrioles are fundamental and evolutionarily conserved microtubule-based organelles whose assembly is characterized by microtubule growth rates that are orders of magnitude slower than those of cytoplasmic microtubules. Several centriolar proteins can interact with tubulin or microtubules, but how they ensure the exceptionally slow growth of centriolar microtubules has remained mysterious. Here, we bring together crystallographic, biophysical, and reconstitution assays to demonstrate that the human centriolar protein CPAP (SAS-4 in worms and flies) binds and "caps" microtubule plus ends by associating with a site of β-tubulin engaged in longitudinal tubulin-tubulin interactions. Strikingly, we uncover that CPAP activity dampens microtubule growth and stabilizes microtubules by inhibiting catastrophes and promoting rescues. We further establish that the capping function of CPAP is important to limit growth of centriolar microtubules in cells. Our results suggest that CPAP acts as a molecular lid that ensures slow assembly of centriolar microtubules and, thereby, contributes to organelle length control. PMID:27219064

  19. A new electronic structure method for doublet states: configuration interaction in the space of ionized 1h and 2h1p determinants.

    PubMed

    Golubeva, Anna A; Pieniazek, Piotr A; Krylov, Anna I

    2009-03-28

    An implementation of gradient and energy calculations for configuration interaction variant of equation-of-motion coupled cluster with single and double substitutions for ionization potentials (EOM-IP-CCSD) is reported. The method (termed IP-CISD) treats the ground and excited doublet electronic states of an N-electron system as ionizing excitations from a closed-shell N+1-electron reference state. The method is naturally spin adapted, variational, and size intensive. The computational scaling is N(5), in contrast with the N(6) scaling of EOM-IP-CCSD. The performance and capabilities of the new approach are demonstrated by application to the uracil cation and water and benzene dimer cations by benchmarking IP-CISD against more accurate IP-CCSD. The equilibrium geometries, especially relative differences between different ionized states, are well reproduced. The average absolute errors and the standard deviations averaged for all bond lengths in all electronic states (58 values in total) are 0.014 and 0.007 A, respectively. IP-CISD systematically underestimates intramolecular distances and overestimates intermolecular ones, because of the underlying uncorrelated Hartree-Fock reference wave function. The IP-CISD excitation energies of the cations are of a semiquantitative value only, showing maximum errors of 0.35 eV relative to EOM-IP-CCSD. Trends in properties such as dipole moments, transition dipoles, and charge distributions are well reproduced by IP-CISD. PMID:19334814

  20. Origins of inert Higgs doublets

    NASA Astrophysics Data System (ADS)

    Kephart, Thomas W.; Yuan, Tzu-Chiang

    2016-05-01

    We consider beyond the standard model embedding of inert Higgs doublet fields. We argue that inert Higgs doublets can arise naturally in grand unified theories where the necessary associated Z2 symmetry can occur automatically. Several examples are discussed.

  1. The NMDAR subunit NR3A interacts with microtubule-associated protein 1S in the brain

    PubMed Central

    Eriksson, Maria; Samuelsson, Helena; Samuelsson, Eva-Britt; Liu, Leyuan; McKeehan, Wallace L; Benedikz, Eirikur; Sundström, Erik

    2011-01-01

    When screening a brain cDNA library, we found that the N-methyl-d-aspartate receptor subunit NR3A binds to microtubule-associated protein (MAP) 1S/chromosome 19 open reading frame 5 (C19ORF5). The interaction was confirmed in vitro and in vivo, and binding of MAP1S was localized to the membrane-proximal part of the NR3A C-terminus. MAP1S belongs to the same family as MAP1A and MAP1B, and was found to be abundant in both postnatal and adult rat brain. In hippocampal neurons the distribution-pattern of MAP1S resembled that of β-tubulin III, but a fraction of the protein colocalized with synaptic markers synapsin and postsynaptic density protein 95 (PSD95), in β-tubulin III-negative filopodia-like protrusions. There was coexistance between MAP1S and NR3A immunoreactivity in neurite shafts and occasionally in filopodia-like processes. MAP1S potentially links NR3A to the cytoskeleton, and may stabilize NR3A-containing receptors at the synapse and regulate their movement between synaptic and extrasynaptic sites. PMID:17658481

  2. Micropatterning microtubules.

    PubMed

    Portran, Didier

    2014-01-01

    The following protocol describes a method to control the orientation and polarity of polymerizing microtubules (MTs). Reconstitution of specific geometries of dynamic MT networks is achieved using a ultraviolet (UV) micropatterning technique in combination with stabilized MT microseeds. The process is described in three main parts. First, the surface is passivated to avoid the non-specific absorption of proteins, using different polyethylene glycol (PEG)-based surface treatment. Second, specific adhesive surfaces (the micropatterns) are imprinted through a photomask using deep UVs. Lastly, MT microseeds are adhered to the micropatterns followed by MT polymerization. PMID:24484656

  3. The spindle pole body component Spc98p interacts with the gamma-tubulin-like Tub4p of Saccharomyces cerevisiae at the sites of microtubule attachment.

    PubMed Central

    Geissler, S; Pereira, G; Spang, A; Knop, M; Souès, S; Kilmartin, J; Schiebel, E

    1996-01-01

    Tub4p is a novel tubulin found in Saccharomyces cerevisiae. It most resembles gamma-tubulin and, like it, is localized to the yeast microtubule organizing centre, the spindle pole body (SPB). In this paper we report the identification of SPC98 as a dosage-dependent suppressor of the conditional lethal tub4-1 allele. SPC98 encodes an SPB component of 98 kDa which is identical to the previously described 90 kDa SPB protein. Strong overexpression of SPC98 is toxic, causing cells to arrest with a large bud, defective microtubule structures, undivided nucleus and replicated DNA. The toxicity of SPC98 overexpression was relieved by co-overexpression of TUB4. Further evidence for an interaction between Tub4p and Spc98p came from the synthetic toxicity of tub4-1 and spc98-1 alleles, the dosage-dependent suppression of spc98-4 by TUB4, the binding of Tub4p to Spc98p in the two-hybrid system and the co-immunoprecipitation of Tub4p and Spc98p. In addition, Spc98-1p is defective in its interaction with Tub4p in the two-hybrid system. We suggest a model in which Tub4p and Spc98p form a complex involved in microtubule organization by the SPB. Images PMID:8670895

  4. Interacting genes that affect microtubule function in Drosophila melanogaster: Two classes of mutation revert the failure to complement between hay sup nc2 and mutations in tubulin genes

    SciTech Connect

    Regan, C.L.; Fuller, M.T. )

    1990-05-01

    The recessive male sterile mutation hay{sup nc2} of Drosophila melanogaster fails to complement certain {beta}{sub 2}-tubulin and {alpha}-tubulin mutations, suggesting that the haywire product plays a role in microtubule function, perhaps as a structural component of microtubules. The genetic interaction appears to require the presence of the aberrant product encoded by hay{sup nc2}, which may act as a structural poison. Based on this observation, the authors have isolated ten new mutations with EMS that revert the failure to complement between hay{sup nc2} and B2t{sup n}. The revertants tested behaved as intragenic mutations of hay in recombination tests, and feel into two phenotypic classes, suggesting two functional domains of the hay gene product. Some revertants were hemizygous viable and less severe than hay{sup nc2} in their recessive phenotype. These mutations might revert the poison by restoring the aberrant product encoded by the hay{sup nc2} allele to more wild-type function. Most of the revertants were recessive lethal mutations, indicating that the hay gene product is essential for viability. These more extreme mutations could revert the poison by destroying the ability of the aberrant haywire{sup nc2} product to interact structurally with microtubules. Flies heterozygous for the original hay{sup nc2} allele and an extreme revertant show defects in both the structure and the function of the male meiotic spindle.

  5. Evidence for two distinct binding sites for tau on microtubules

    PubMed Central

    Makrides, Victoria; Massie, Michelle R.; Feinstein, Stuart C.; Lew, John

    2004-01-01

    The microtubule-associated protein tau regulates diverse and essential microtubule functions, from the nucleation and promotion of microtubule polymerization to the regulation of microtubule polarity and dynamics, as well as the spacing and bundling of axonal microtubules. Thermodynamic studies show that tau interacts with microtubules in the low- to mid-nanomolar range, implying moderate binding affinity. At the same time, it is well established that microtubule-bound tau does not undergo exchange with the bulk medium readily, suggesting that the tau-microtubule interaction is essentially irreversible. Given this dilemma, we investigated the mechanism of interaction between tau and microtubules in kinetic detail. Stopped-flow kinetic analysis reveals moderate binding affinity between tau and preassembled microtubules and rapid dissociation/association kinetics. In contrast, when microtubules are generated by copolymerization of tubulin and tau, a distinct population of microtubule-bound tau is observed, the binding of which seems irreversible. We propose that reversible binding occurs between tau and the surface of preassembled microtubules, whereas irreversible binding results when tau is coassembled with tubulin into a tau-microtubule copolymer. Because the latter is expected to be physiologically relevant, its characterization is of central importance. PMID:15096589

  6. Microtubule-targeting-dependent reorganization of filopodia.

    PubMed

    Schober, Joseph M; Komarova, Yulia A; Chaga, Oleg Y; Akhmanova, Anna; Borisy, Gary G

    2007-04-01

    Interaction between the microtubule system and actin cytoskeleton has emerged as a fundamental process required for spatial regulation of cell protrusion and retraction activities. In our current studies, analysis of digital fluorescence images revealed targeting of microtubules to filopodia in B16F1 melanoma cells and fibroblasts. We investigated the functional consequence of targeting on filopodia reorganization and examined mechanisms by which microtubules may be guided to, or interact with, filopodia. Live cell imaging studies show that targeting events in lamellipodia wings temporally correlated with filopodia turning toward the lamellipodium midline and with filopodia merging. Rapid uncoupling of targeting with nocodazole decreased filopodia merging events and increased filopodia density. Total internal reflection fluorescence microscopy identified microtubules near the ventral surface and upward movement of targeted filopodia. The role of adhesion sites and microtubule plus-end proteins in targeting was investigated. Correlation of adhesion sites with microtubule targeting to filopodia was not observed and depletion of microtubule plus-end proteins did not significantly alter targeting frequency. We propose that microtubules target filopodia, independent of focal adhesions and plus-end proteins, causing filopodia movement and microtubules regulate filopodia density in lamellipodia wings through filopodia merging events. PMID:17356063

  7. Late steps in cytoplasmic maturation of assembly-competent axonemal outer arm dynein in Chlamydomonas require interaction of ODA5 and ODA10 in a complex

    PubMed Central

    Dean, Anudariya B.; Mitchell, David R.

    2015-01-01

    Axonemal dyneins are multisubunit enzymes that must be preassembled in the cytoplasm, transported into cilia by intraflagellar transport, and bound to specific sites on doublet microtubules, where their activity facilitates microtubule sliding-based motility. Outer dynein arms (ODAs) require assembly factors to assist their preassembly, transport, and attachment to cargo (specific doublet A-tubule sites). In Chlamydomonas, three assembly factors—ODA5, ODA8, and ODA10—show genetic interactions and have been proposed to interact in a complex, but we recently showed that flagellar ODA8 does not copurify with ODA5 or ODA10. Here we show that ODA5 and ODA10 depend on each other for stability and coexist in a complex in both cytoplasmic and flagellar extracts. Immunofluorescence and immuno–electron microscopy reveal that ODA10 in flagella localizes strictly to a proximal region of doublet number 1, which completely lacks ODAs in Chlamydomonas. Studies of the in vitro binding of ODAs to axonemal doublets reveal a role for the ODA5/ODA10 assembly complex in cytoplasmic maturation of ODAs into a form that can bind to doublet microtubules. PMID:26310446

  8. Cellulose-Microtubule Uncoupling Proteins Prevent Lateral Displacement of Microtubules during Cellulose Synthesis in Arabidopsis.

    PubMed

    Liu, Zengyu; Schneider, Rene; Kesten, Christopher; Zhang, Yi; Somssich, Marc; Zhang, Youjun; Fernie, Alisdair R; Persson, Staffan

    2016-08-01

    Cellulose is the most abundant biopolymer on Earth and is the major contributor to plant morphogenesis. Cellulose is synthesized by plasma membrane-localized cellulose synthase complexes (CSCs). Nascent cellulose microfibrils become entangled in the cell wall, and further catalysis therefore drives the CSC forward through the membrane: a process guided by cortical microtubules via the protein CSI1/POM2. Still, it is unclear how the microtubules can withstand the forces generated by the motile CSCs to effectively direct CSC movement. Here, we identified a family of microtubule-associated proteins, the cellulose synthase-microtubule uncouplings (CMUs), that located as static puncta along cortical microtubules. Functional disruption of the CMUs caused lateral microtubule displacement and compromised microtubule-based guidance of CSC movement. CSCs that traversed the microtubules interacted with the microtubules via CSI1/POM2, which prompted the lateral microtubule displacement. Hence, we have revealed how microtubules can withstand the propulsion of the CSCs during cellulose biosynthesis and thus sustain anisotropic plant cell growth. PMID:27477947

  9. Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length.

    PubMed

    Zheng, Xiangdong; Ramani, Anand; Soni, Komal; Gottardo, Marco; Zheng, Shuangping; Ming Gooi, Li; Li, Wenjing; Feng, Shan; Mariappan, Aruljothi; Wason, Arpit; Widlund, Per; Pozniakovsky, Andrei; Poser, Ina; Deng, Haiteng; Ou, Guangshuo; Riparbelli, Maria; Giuliano, Callaini; Hyman, Anthony A; Sattler, Michael; Gopalakrishnan, Jay; Li, Haitao

    2016-01-01

    Centrioles and cilia are microtubule-based structures, whose precise formation requires controlled cytoplasmic tubulin incorporation. How cytoplasmic tubulin is recognized for centriolar/ciliary-microtubule construction remains poorly understood. Centrosomal-P4.1-associated-protein (CPAP) binds tubulin via its PN2-3 domain. Here, we show that a C-terminal loop-helix in PN2-3 targets β-tubulin at the microtubule outer surface, while an N-terminal helical motif caps microtubule's α-β surface of β-tubulin. Through this, PN2-3 forms a high-affinity complex with GTP-tubulin, crucial for defining numbers and lengths of centriolar/ciliary-microtubules. Surprisingly, two distinct mutations in PN2-3 exhibit opposite effects on centriolar/ciliary-microtubule lengths. CPAP(F375A), with strongly reduced tubulin interaction, causes shorter centrioles and cilia exhibiting doublet- instead of triplet-microtubules. CPAP(EE343RR) that unmasks the β-tubulin polymerization surface displays slightly reduced tubulin-binding affinity inducing over-elongation of newly forming centriolar/ciliary-microtubules by enhanced dynamic release of its bound tubulin. Thus CPAP regulates delivery of its bound-tubulin to define the size of microtubule-based cellular structures using a 'clutch-like' mechanism. PMID:27306797

  10. Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length

    PubMed Central

    Zheng, Xiangdong; Ramani, Anand; Soni, Komal; Gottardo, Marco; Zheng, Shuangping; Ming Gooi, Li; Li, Wenjing; Feng, Shan; Mariappan, Aruljothi; Wason, Arpit; Widlund, Per; Pozniakovsky, Andrei; Poser, Ina; Deng, Haiteng; Ou, Guangshuo; Riparbelli, Maria; Giuliano, Callaini; Hyman, Anthony A.; Sattler, Michael; Gopalakrishnan, Jay; Li, Haitao

    2016-01-01

    Centrioles and cilia are microtubule-based structures, whose precise formation requires controlled cytoplasmic tubulin incorporation. How cytoplasmic tubulin is recognized for centriolar/ciliary-microtubule construction remains poorly understood. Centrosomal-P4.1-associated-protein (CPAP) binds tubulin via its PN2-3 domain. Here, we show that a C-terminal loop-helix in PN2-3 targets β-tubulin at the microtubule outer surface, while an N-terminal helical motif caps microtubule's α-β surface of β-tubulin. Through this, PN2-3 forms a high-affinity complex with GTP-tubulin, crucial for defining numbers and lengths of centriolar/ciliary-microtubules. Surprisingly, two distinct mutations in PN2-3 exhibit opposite effects on centriolar/ciliary-microtubule lengths. CPAPF375A, with strongly reduced tubulin interaction, causes shorter centrioles and cilia exhibiting doublet- instead of triplet-microtubules. CPAPEE343RR that unmasks the β-tubulin polymerization surface displays slightly reduced tubulin-binding affinity inducing over-elongation of newly forming centriolar/ciliary-microtubules by enhanced dynamic release of its bound tubulin. Thus CPAP regulates delivery of its bound-tubulin to define the size of microtubule-based cellular structures using a ‘clutch-like' mechanism. PMID:27306797

  11. Interaction of CK1δ with γTuSC ensures proper microtubule assembly and spindle positioning

    PubMed Central

    Peng, Yutian; Moritz, Michelle; Han, Xuemei; Giddings, Thomas H.; Lyon, Andrew; Kollman, Justin; Winey, Mark; Yates, John; Agard, David A.; Drubin, David G.; Barnes, Georjana

    2015-01-01

    Casein kinase 1δ (CK1δ) family members associate with microtubule-organizing centers (MTOCs) from yeast to humans, but their mitotic roles and targets have yet to be identified. We show here that budding yeast CK1δ, Hrr25, is a γ-tubulin small complex (γTuSC) binding factor. Moreover, Hrr25's association with γTuSC depends on its kinase activity and its noncatalytic central domain. Loss of Hrr25 kinase activity resulted in assembly of unusually long cytoplasmic microtubules and defects in spindle positioning, consistent with roles in regulation of γTuSC-mediated microtubule nucleation and the Kar9 spindle-positioning pathway, respectively. Hrr25 directly phosphorylated γTuSC proteins in vivo and in vitro, and this phosphorylation promoted γTuSC integrity and activity. Because CK1δ and γTuSC are highly conserved and present at MTOCs in diverse eukaryotes, similar regulatory mechanisms are expected to apply generally in eukaryotes. PMID:25971801

  12. Microtubule dynamics and organization

    NASA Astrophysics Data System (ADS)

    Dogterom, Marileen

    2000-03-01

    Microtubules are rigid biopolymers found in all higher order cells. They are a mayor part of the cytoskeleton, the network of protein polymers that gives the cell its shape and rigidity and allows for various forms of (intra)cellular motility. The intracellular spatial organization of the microtubule network is constantly changing as the microtubules adapt to their different functions. In part, this spatial organization depends on the assembly dynamics (including microtubule nucleation) and forces generated by the microtubules themselves. To understand these mechanisms, we study the physical aspects connected with the assembly, force generation and spatial organization of microtubules in simplified model systems, in the absence of other cellular components. We measure the forces generated by individual microtubules by making them grow against a microfabricated barrier. These experiments show that a single microtubule can generate at least several picoNewton of force, comparable to what is known for motor proteins. Theoretical modeling of force-generation by multi-protofilament polymers is used to predict force-velocity relations that can be compared to experimental data. We study the self-organization of microtubules by confining them to microfabricated chambers that mimic the geometry of living cells. The distribution of microtubule nucleation sites in these chambers is controlled to study its effect on the organization of the microtubule network. We find that so-called microtubule asters position themselves in response to forces generated by dynamic microtubules. Experiments aimed at measuring the forces acting on these asters using optical trapping techniques will be described.

  13. Reconstituting the kinetochore-microtubule interface: what, why, and how

    PubMed Central

    Akiyoshi, Bungo; Biggins, Sue

    2012-01-01

    The kinetochore is the proteinaceous complex that governs the movement of duplicated chromosomes by interacting with spindle microtubules during mitosis and meiosis. Faithful chromosome segregation requires that kinetochores form robust load-bearing attachments to the tips of dynamic spindle microtubules, correct microtubule attachment errors, and delay the onset of anaphase until all chromosomes have made proper attachments. To understand how this macromolecular machine operates to segregate duplicated chromosomes with exquisite accuracy, it is critical to reconstitute and study kinetochore-microtubule interactions in vitro using defined components. Here, we review the current status of reconstitution as well as recent progress in understanding the microtubule binding functions of kinetochores in vivo. PMID:22289864

  14. Micropattern-Guided Assembly of Overlapping Pairs of Dynamic Microtubules

    PubMed Central

    Fourniol, Franck J.; Li, Tai-De; Bieling, Peter; Mullins, R. Dyche; Fletcher, Daniel A.; Surrey, Thomas

    2014-01-01

    Interactions between antiparallel microtubules are essential for the organization of spindles in dividing cells. The ability to form immobilized antiparallel microtubule pairs in vitro, combined with the ability to image them via TIRF microscopy, permits detailed biochemical characterization of microtubule cross-linking proteins and their effects on microtubule dynamics. Here, we describe methods for chemical micropatterning of microtubule seeds on glass surfaces in configurations that specifically promote the formation of antiparallel microtubule overlaps in vitro. We demonstrate that this assay is especially well suited for reconstitution of minimal midzone overlaps stabilized by the antiparallel microtubule cross-linking protein PRC1 and its binding partners. The micropatterning method is suitable for use with a broad range of proteins, and the assay is generally applicable to any microtubule cross-linking protein. PMID:24630116

  15. Statistical case for specifying tolerances of doublet lenses jointly

    NASA Astrophysics Data System (ADS)

    Kehoe, Michael

    2014-12-01

    The interactions between errors in manufacturing are examined for ten double Gauss lens specifications drawn from U.S. patents. The particular focus is on center thickness and radius tolerances of doublet lenses in these specifications and on the possibility of specifying these tolerances jointly. A procedure for rapid identification of lenses whose performance would be improved by joint tolerance specification is described. Then benefits of specifying thickness and radius tolerances of doublet lenses jointly are demonstrated using Monte Carlo analysis.

  16. The December 7, 2012 Japan Trench intraplate doublet (Mw 7.2, 7.1) and interactions between near-trench intraplate thrust and normal faulting

    NASA Astrophysics Data System (ADS)

    Lay, Thorne; Duputel, Zacharie; Ye, Lingling; Kanamori, Hiroo

    2013-07-01

    A pair of large earthquakes ruptured within the Pacific plate below the Japan Trench about 14 s apart on December 7, 2012. The doublet began with an Mw 7.2 thrust event 50-70 km deep, followed by an Mw 7.1-7.2 normal-faulting event in the range 10-30 km deep about 27 km to the south-southwest. The deep lithosphere thrust earthquake is the largest such event to be recorded seaward of the rupture zone of the great March 11, 2011 Tohoku Mw 9.0 earthquake. It follows an extensive intraplate normal-faulting aftershock sequence since 2011 extending up to 100 km east of the trench. Many small normal faulting aftershocks of the doublet occurred along a 60 km-long trench-parallel-trend beneath the inner trench slope. The complex overlapping signals produced by the doublet present challenges for routine long-period moment tensor inversion procedures, but the inadequacy of any single point-source inversion was readily evident from comparisons of different data sets and solutions using different frequency bands. We use a two double-couple inversion of W-phase signals to quantify the doublet characteristics, along with an iterative deconvolution of P-wave signals that extracts a compatible three sub-event sequence. The occurrence of a large deep compressional event near the trench several years subsequent to a great megathrust event is similar to a sequence that occurred in the central Kuril Islands between 2006 and 2009, and appears to be associated with stress changes caused by the preceding interplate thrusting and intraplate normal faulting. Recent large deep compressional events in the Philippine Trench and northern Kermadec Trench regions may be influenced by strain accumulation on adjacent locked interplate megathrusts. Regions having more pronounced curvature of the subducting plate may have unrelaxed bending stresses, facilitating occurrence of large deep thrust faulting in advance of future megathrust failures, as was observed in 1963 in the central Kuril Islands

  17. Movement of chromosomes with severed kinetochore microtubules.

    PubMed

    Forer, Arthur; Johansen, Kristen M; Johansen, Jørgen

    2015-05-01

    Experiments dating from 1966 and thereafter showed that anaphase chromosomes continued to move poleward after their kinetochore microtubules were severed by ultraviolet microbeam irradiation. These observations were initially met with scepticism as they contradicted the prevailing view that kinetochore fibre microtubules pulled chromosomes to the pole. However, recent experiments using visible light laser microbeam irradiations have corroborated these earlier experiments as anaphase chromosomes again were shown to move poleward after their kinetochore microtubules were severed. Thus, multiple independent studies using different techniques have shown that chromosomes can indeed move poleward without direct microtubule connections to the pole, with only a kinetochore 'stub' of microtubules. An issue not yet settled is: what propels the disconnected chromosome? There are two not necessarily mutually exclusive proposals in the literature: (1) chromosome movement is propelled by the kinetochore stub interacting with non-kinetochore microtubules and (2) chromosome movement is propelled by a spindle matrix acting on the stub. In this review, we summarise the data indicating that chromosomes can move with severed kinetochore microtubules and we discuss proposed mechanisms for chromosome movement with severed kinetochore microtubules. PMID:25576435

  18. Kinesin-5 is a microtubule polymerase

    PubMed Central

    Chen, Yalei; Hancock, William O

    2015-01-01

    Kinesin-5 slides antiparallel microtubules during spindle assembly, and regulates the branching of growing axons. Besides the mechanical activities enabled by its tetrameric configuration, the specific motor properties of kinesin-5 that underlie its cellular function remain unclear. Here by engineering a stable kinesin-5 dimer and reconstituting microtubule dynamics in vitro, we demonstrate that kinesin-5 promotes microtubule polymerization by increasing the growth rate and decreasing the catastrophe frequency. Strikingly, microtubules growing in the presence of kinesin-5 have curved plus ends, suggesting that the motor stabilizes growing protofilaments. Single-molecule fluorescence experiments reveal that kinesin-5 remains bound to the plus ends of static microtubules for 7 s, and tracks growing microtubule plus ends in a manner dependent on its processivity. We propose that kinesin-5 pauses at microtubule plus ends and enhances polymerization by stabilizing longitudinal tubulin–tubulin interactions, and that these activities underlie the ability kinesin-5 to slide and stabilize microtubule bundles in cells. PMID:26437877

  19. Valosin-containing protein-interacting membrane protein (VIMP) links the endoplasmic reticulum with microtubules in concert with cytoskeleton-linking membrane protein (CLIMP)-63.

    PubMed

    Noda, Chikano; Kimura, Hana; Arasaki, Kohei; Matsushita, Mitsuru; Yamamoto, Akitsugu; Wakana, Yuichi; Inoue, Hiroki; Tagaya, Mitsuo

    2014-08-29

    The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structures of the rough ER, and plays a pivotal role in the static interaction with MTs. Our previous study showed that the 42-kDa ER-residing form of syntaxin 5 (Syn5L) regulates ER structure through the interactions with both CLIMP-63 and MTs. Here, we extend our previous study and show that the valosin-containing protein/p97-interacting membrane protein (VIMP)/SelS is also a member of the family of proteins that shape the ER by interacting with MTs. Depletion of VIMP causes the spreading of the ER to the cell periphery and affects an MT-dependent process on the ER. Although VIMP can interact with CLIMP-63 and Syn5L, it does not interact with MT-binding ER proteins (such as Reep1) that shape the tubular smooth ER, suggesting that different sets of MT-binding ER proteins are used to organize different ER subdomains. PMID:25008318

  20. Microtubule-Destabilizing Agents: Structural and Mechanistic Insights from the Interaction of Colchicine and Vinblastine with Tubulin

    NASA Astrophysics Data System (ADS)

    Gigant, B.; Cormier, A.; Dorléans, A.; Ravelli, R. B. G.; Knossow, M.

    Microtubules (MTs) are dynamic structures of the eukaryotic cytoskeleton that, during cell division, form the mitotic spindle. Perturbing them leads to mitotic arrest and ultimately to cell death. Consistently, MTs and their building block, αβ tubulin, are one of the best characterized targets in anti-cancer chemotherapy. Drugs that interfere with MTs either stabilize or destabilize them. The latter class is the subject of this review. These ligands bind to the colchicine site or to the vinca domain, two distinct sites located at a distance from each other on tubulin. Nevertheless the effects of both classes of ligands share a common theme, they prevent the formation of MT specific contacts, therefore triggering their disassembly.

  1. Microtubule networks for plant cell division.

    PubMed

    de Keijzer, Jeroen; Mulder, Bela M; Janson, Marcel E

    2014-09-01

    During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants. PMID:25136380

  2. Vfa1 binds to the N-terminal microtubule-interacting and trafficking (MIT) domain of Vps4 and stimulates its ATPase activity.

    PubMed

    Vild, Cody J; Xu, Zhaohui

    2014-04-11

    The endosomal sorting complexes required for transport (ESCRT) are responsible for multivesicular body biogenesis, membrane abscission during cytokinesis, and retroviral budding. They function as transiently assembled molecular complexes on the membrane, and their disassembly requires the action of the AAA-ATPase Vps4. Vps4 is regulated by a multitude of ESCRT and ESCRT-related proteins. Binding of these proteins to Vps4 is often mediated via the microtubule-interacting and trafficking (MIT) domain of Vps4. Recently, a new Vps4-binding protein Vfa1 was identified in a yeast genetic screen, where overexpression of Vfa1 caused defects in vacuolar morphology. However, the function of Vfa1 and its role in vacuolar biology were largely unknown. Here, we provide the first detailed biochemical and biophysical study of Vps4-Vfa1 interaction. The MIT domain of Vps4 binds to the C-terminal 17 residues of Vfa1. This interaction is of high affinity and greatly stimulates the ATPase activity of Vps4. The crystal structure of the Vps4-Vfa1 complex shows that Vfa1 adopts a canonical MIT-interacting motif 2 structure that has been observed previously in other Vps4-ESCRT interactions. These findings suggest that Vfa1 is a novel positive regulator of Vps4 function. PMID:24567329

  3. Dynamic microtubules: Experimental observation and computer simulation of polar microtubule behaviour with lateral cap model mechanisms

    NASA Astrophysics Data System (ADS)

    Bayley, P. M.; Martin, S. R.; Sharma, K. K.

    1991-05-01

    Microtubule dynamic instability involves the existence, within a population of microtubules, of sub-populations of growing and shrinking microtubules which interconvert apparently at random. We consider the scope and limitation of experimental observations of individual microtubules by video enhanced dark-field microscopy. This unique experimental phenomenon has been rationalized by the presence of a ``cap'' of tubulin-GTP which can stabilize the growing state. We have modelled this process quantitatively by numerical simulation and illustrate the basic principles by computer graphics. The inherent α-β asymmetry of the microtubule lattice determines that the relationship between the addition reaction of tubulin-GTP and the related hydrolysis of a polymer tubulin-GTP is different at the two ends of the microtubule. In the single layer, Lateral Cap model for microtubule dynamic instability, a plausible mechanism has been proposed for the dynamic properties at the ``active'' (presumed β-out) end in which the tubulin-GTP which is hydrolyzed is related longitudinally to the binding site by the 13-start protofilament helix. [1,2]. We now show a similar but distinct mechanism could hold for the ``inactive'' (presumed α-out) end of the microtubule. Lateral hydrolysis rules (related to 5- or 8- start helical contacts) predict that the α-end could in fact be less dynamic and cooperative in terms of reduced amplitudes of growth and shrinking. This would make a distinctive contribution to the J(c) plot of microtubule growth versus [tubulin-GTP]. These predictions are thus amenable to experimental verification. This approach illustrates how the helical lattice symmetry of the microtubule polymer can confer unique dynamic characteristics, which derive from the heterodimeric structure and guanine nucleotide binding properties of the component protein tubulin. It also provides a basis for the interpretation of the interactions of microtubules with anti-mitotic drugs used in

  4. Microtubules, Tubulins and Associated Proteins.

    ERIC Educational Resources Information Center

    Raxworthy, Michael J.

    1988-01-01

    Reviews much of what is known about microtubules, which are biopolymers consisting predominantly of subunits of the globular protein, tubulin. Describes the functions of microtubules, their structure and assembly, microtube associated proteins, and microtubule-disrupting agents. (TW)

  5. Compressing the Inert Doublet Model

    DOE PAGESBeta

    Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; de la Puente, Alejandro

    2016-02-16

    The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. We found that this stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. In conclusion, we derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.

  6. Compressing the Inert Doublet Model

    SciTech Connect

    Blinov, Nikita; Morrissey, David E.; de la Puente, Alejandro

    2015-10-29

    The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. We found that this stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. Furthermore, we derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.

  7. Electric field generated by longitudinal axial microtubule vibration modes with high spatial resolution microtubule model

    NASA Astrophysics Data System (ADS)

    Cifra, M.; Havelka, D.; Deriu, M. A.

    2011-12-01

    Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. It recently was determined from anisotropic elastic network modeling of entire microtubules that the frequencies of microtubule longitudinal axial eigenmodes lie in the region of tens of GHz for the physiologically common microtubule lengths. We calculated electric field generated by axial longitudinal vibration modes of microtubule, which model is based on subnanometer precision of charge distribution. Due to elastoelectric nature of the vibrations, the vibration wavelength is million-fold shorter than that of the electromagnetic field in free space and the electric field around the microtubule manifests rich spatial structure with multiple minima. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of reactions via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play a role in biological self-organization.

  8. Protein phosphatase 2A is associated in an inactive state with microtubules through 2A1-specific interaction with tubulin.

    PubMed Central

    Hiraga, A; Tamura, S

    2000-01-01

    Protein phosphatase (PP) 2A1, a trimer composed of A-, B- and C-subunits in the PP2A family, has been regarded as a principal form localizing at microtubules (MT), but PP2A2, the dimer of A- and C-subunits, has not. Substantiating the claim, the present work shows that the PP2A1 but not PP2A2, both isolated from bovine extract, largely associated with the purified preparation of MT. Furthermore, PP2A1 was found to bind purifiedtubulin polymerized by taxol. The presence of MT associated proteins with purified tubulin hardly affected the binding of PP2A1 to the tubulin. In addition, PP2A1 activity towards glycogen phosphorylase, a probably unphysiological but good substrate, was similarly inhibited by MT proteins and purified tubulin, which accounts for > or =85% of MT proteins, with their IC(50) of about 0.15 mg/ml. In contrast, the inhibition of PP2A2 was about 40% with 1 mg/ml MT proteins and 20% with 0.8 mg/ml tubulin, consistent with its weak association with MT. Therefore, the association with and resultant inhibition by MT proteins of PP2A1 is largely effected by the binding of PP2A1 to tubulin molecule. Moreover, PP2A1 isolated from MT has higher affinity for polymerized MT proteins than has PP2A1 from the postmicrotubule supernatant. The MT PP2A1 has also higher sensitivity to the inhibition by tubulin and MT proteins than has the supernatant PP2A1 (IC(50): 0.1-0.2 mg/ml vs. 0.3-0.6 mg/ml), demonstrating the importance of its association with polymerized tubulin. PMID:10677363

  9. Integrators of the cytoskeleton that stabilize microtubules.

    PubMed

    Yang, Y; Bauer, C; Strasser, G; Wollman, R; Julien, J P; Fuchs, E

    1999-07-23

    Sensory neurodegeneration occurs in mice defective in BPAG1, a gene encoding cytoskeletal linker proteins capable of anchoring neuronal intermediate filaments to actin cytoskeleton. While BPAG1 null mice fail to anchor neurofilaments (NFs), BPAG1/NF null mice still degenerate in the absence of NFs. We report a novel neural splice form that lacks the actin-binding domain and instead binds and stabilizes microtubules. This interaction is functionally important; in mice and in vitro, neurons lacking BPAG1 display short, disorganized, and unstable microtubules defective in axonal transport. Ironically, BPAG1 neural isoforms represent microtubule-associated proteins that when absent lead to devastating consequences. Moreover, BPAG1 can functionally account for the extraordinary stability of axonal microtubules necessary for transport over long distances. Its isoforms interconnect all three cytoskeletal networks, a feature apparently central to neuronal survival. PMID:10428034

  10. Molecular mechanisms of kinetochore capture by spindle microtubules.

    PubMed

    Tanaka, Kozo; Mukae, Naomi; Dewar, Hilary; van Breugel, Mark; James, Euan K; Prescott, Alan R; Antony, Claude; Tanaka, Tomoyuki U

    2005-04-21

    For high-fidelity chromosome segregation, kinetochores must be properly captured by spindle microtubules, but the mechanisms underlying initial kinetochore capture have remained elusive. Here we visualized individual kinetochore-microtubule interactions in Saccharomyces cerevisiae by regulating the activity of a centromere. Kinetochores are captured by the side of microtubules extending from spindle poles, and are subsequently transported poleward along them. The microtubule extension from spindle poles requires microtubule plus-end-tracking proteins and the Ran GDP/GTP exchange factor. Distinct kinetochore components are used for kinetochore capture by microtubules and for ensuring subsequent sister kinetochore bi-orientation on the spindle. Kar3, a kinesin-14 family member, is one of the regulators that promote transport of captured kinetochores along microtubules. During such transport, kinetochores ensure that they do not slide off their associated microtubules by facilitating the conversion of microtubule dynamics from shrinkage to growth at the plus ends. This conversion is promoted by the transport of Stu2 from the captured kinetochores to the plus ends of microtubules. PMID:15846338

  11. Colchicine activates actin polymerization by microtubule depolymerization.

    PubMed

    Jung, H I; Shin, I; Park, Y M; Kang, K W; Ha, K S

    1997-06-30

    Swiss 3T3 fibroblasts were treated with the microtubule-disrupting agent colchicine to study any interaction between microtubule dynamics and actin polymerization. Colchicine increased the amount of filamentous actin (F-actin), in a dose- and time-dependent manner with a significant increase at 1 h by about 130% over control level. Confocal microscopic observation showed that colchicine increased F-actin contents by stress fiber formation without inducing membrane ruffling. Colchicine did not activate phospholipase C and phospholipase D, whereas lysophosphatidic acid did, indicating that colchicine may have a different mechanism of actin polymerization regulation from LPA. A variety of microtubule-disrupting agents stimulated actin polymerization in Swiss 3T3 and Rat-2 fibroblasts as did colchicine, but the microtubule-stabilizing agent taxol inhibited actin polymerization induced by the above microtubule-disrupting agents. In addition, colchicine-induced actin polymerization was blocked by two protein phosphatase inhibitors, okadaic acid and calyculin A. These results suggest that microtubule depolymerization activates stress fiber formation by serine/threonine dephosphorylation in fibroblasts. PMID:9264034

  12. Harnessing microtubule dynamic instability for nanostructure assembly.

    SciTech Connect

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    2004-06-01

    Intracellular molecular machines synthesize molecules, tear apart others, transport materials, transform energy into different forms, and carry out a host of other coordinated processes. Many molecular processes have been shown to work outside of cells, and the idea of harnessing these molecular machines to build nanostructures is attractive. Two examples are microtubules and motor proteins, which aid cell movement, help determine cell shape and internal structure, and transport vesicles and organelles within the cell. These molecular machines work in a stochastic, noisy fashion: microtubules switch randomly between growing and shrinking in a process known as dynamic instability; motor protein movement along microtubules is randomly interrupted by the motor proteins falling off. A common strategy in attempting to gain control over these highly dynamic, stochastic processes is to eliminate some processes (e.g., work with stabilized microtubules) in order to focus on others (interaction of microtubules with motor proteins). In this paper, we illustrate a different strategy for building nanostructures, which, rather than attempting to control or eliminate some dynamic processes, uses them to advantage in building nanostructures. Specifically, using stochastic agent-based simulations, we show how the natural dynamic instability of microtubules can be harnessed in building nanostructures, and discuss strategies for ensuring that 'unreliable' stochastic processes yield a robust outcome.

  13. Microtubule teardrop patterns

    NASA Astrophysics Data System (ADS)

    Okeyoshi, Kosuke; Kawamura, Ryuzo; Yoshida, Ryo; Osada, Yoshihito

    2015-03-01

    Several strategies for controlling microtubule patterns are developed because of the rigidity determined from the molecular structure and the geometrical structure. In contrast to the patterns in co-operation with motor proteins or associated proteins, microtubules have a huge potential for patterns via their intrinsic flexural rigidity. We discover that a microtubule teardrop pattern emerges via self-assembly under hydrodynamic flow from the parallel bundles without motor proteins. In the growth process, the bundles ultimately bend according to the critical bending curvature. Such protein pattern formation utilizing the intrinsic flexural rigidity will provide broad understandings of self-assembly of rigid rods, not only in biomolecules, but also in supramolecules.

  14. Inert scalar doublet asymmetry as origin of dark matter

    NASA Astrophysics Data System (ADS)

    Dhen, Mikaël; Hambye, Thomas

    2015-10-01

    In the inert scalar doublet framework, we analyze what would be the effect of a B -L asymmetry that could have been produced at high temperature in the thermal bath of the Universe. We show that unless the "λ5" scalar interaction is tiny, this asymmetry is automatically reprocessed in part into an inert scalar asymmetry that could be at the origin of dark matter today. Along this scenario, the inert mass scale lies in the few-TeV range, and direct detection constraints require that the inert scalar particles decay into a lighter dark matter particle which, as the inert doublet, is odd under a Z2 symmetry.

  15. EB1 regulates attachment of Ska1 with microtubules by forming extended structures on the microtubule lattice.

    PubMed

    Thomas, Geethu E; Bandopadhyay, K; Sutradhar, Sabyasachi; Renjith, M R; Singh, Puja; Gireesh, K K; Simon, Steny; Badarudeen, Binshad; Gupta, Hindol; Banerjee, Manidipa; Paul, Raja; Mitra, J; Manna, Tapas K

    2016-01-01

    Kinetochore couples chromosome movement to dynamic microtubules, a process that is fundamental to mitosis in all eukaryotes but poorly understood. In vertebrates, spindle-kinetochore-associated (Ska1-3) protein complex plays an important role in this process. However, the proteins that stabilize Ska-mediated kinetochore-microtubule attachment remain unknown. Here we show that microtubule plus-end tracking protein EB1 facilitates Ska localization on microtubules in vertebrate cells. EB1 depletion results in a significant reduction of Ska1 recruitment onto microtubules and defects in mitotic chromosome alignment, which is also reflected in computational modelling. Biochemical experiments reveal that EB1 interacts with Ska1, facilitates Ska1-microtubule attachment and together stabilizes microtubules. Structural studies reveal that EB1 either with Ska1 or Ska complex forms extended structures on microtubule lattice. Results indicate that EB1 promotes Ska association with K-fibres and facilitates kinetochore-microtubule attachment. They also implicate that in vertebrates, chromosome coupling to dynamic microtubules could be mediated through EB1-Ska extended structures. PMID:27225956

  16. EB1 regulates attachment of Ska1 with microtubules by forming extended structures on the microtubule lattice

    PubMed Central

    Thomas, Geethu E.; Bandopadhyay, K.; Sutradhar, Sabyasachi; Renjith, M. R.; Singh, Puja; Gireesh, K. K.; Simon, Steny; Badarudeen, Binshad; Gupta, Hindol; Banerjee, Manidipa; Paul, Raja; Mitra, J.; Manna, Tapas K.

    2016-01-01

    Kinetochore couples chromosome movement to dynamic microtubules, a process that is fundamental to mitosis in all eukaryotes but poorly understood. In vertebrates, spindle-kinetochore-associated (Ska1–3) protein complex plays an important role in this process. However, the proteins that stabilize Ska-mediated kinetochore-microtubule attachment remain unknown. Here we show that microtubule plus-end tracking protein EB1 facilitates Ska localization on microtubules in vertebrate cells. EB1 depletion results in a significant reduction of Ska1 recruitment onto microtubules and defects in mitotic chromosome alignment, which is also reflected in computational modelling. Biochemical experiments reveal that EB1 interacts with Ska1, facilitates Ska1-microtubule attachment and together stabilizes microtubules. Structural studies reveal that EB1 either with Ska1 or Ska complex forms extended structures on microtubule lattice. Results indicate that EB1 promotes Ska association with K-fibres and facilitates kinetochore-microtubule attachment. They also implicate that in vertebrates, chromosome coupling to dynamic microtubules could be mediated through EB1-Ska extended structures. PMID:27225956

  17. General theory for the mechanics of confined microtubule asters

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Laan, Liedewij; Dogterom, Marileen; Pavin, Nenad; Jülicher, Frank

    2014-01-01

    In cells, dynamic microtubules organize into asters or spindles to assist positioning of organelles. Two types of forces are suggested to contribute to the positioning process: (i) microtubule-growth based pushing forces; and (ii) motor protein mediated pulling forces. In this paper, we present a general theory to account for aster positioning in a confinement of arbitrary shape. The theory takes account of microtubule nucleation, growth, catastrophe, slipping, as well as interaction with cortical force generators. We calculate microtubule distributions and forces acting on microtubule organizing centers in a sphere and in an ellipsoid. Positioning mechanisms based on both pushing forces and pulling forces can be distinguished in our theory for different parameter regimes or in different geometries. In addition, we investigate positioning of microtubule asters in the case of asymmetric distribution of motors. This analysis enables us to characterize situations relevant for Caenorrhabditis elegans embryos.

  18. Microtubule-associated protein-like binding of the kinesin-1 tail to microtubules.

    PubMed

    Seeger, Mark A; Rice, Sarah E

    2010-03-12

    The kinesin-1 molecular motor contains an ATP-dependent microtubule-binding site in its N-terminal head domain and an ATP-independent microtubule-binding site in its C-terminal tail domain. Here we demonstrate that a kinesin-1 tail fragment associates with microtubules with submicromolar affinity. Binding is largely electrostatic in nature, and is facilitated by a region of basic amino acids in the tail and the acidic E-hook at the C terminus of tubulin. The tail binds to a site on tubulin that is independent of the head domain-binding site but overlaps with the binding site of the microtubule-associated protein Tau. Surprisingly, the kinesin tail domain stimulates microtubule assembly and stability in a manner similar to Tau. The biological function of this strong kinesin tail-microtubule interaction remains to be seen, but it is likely to play an important role in kinesin regulation due to the close proximity of the microtubule-binding region to the conserved regulatory and cargo-binding domains of the tail. PMID:20071331

  19. Microtubule-associated Protein-like Binding of the Kinesin-1 Tail to Microtubules*

    PubMed Central

    Seeger, Mark A.; Rice, Sarah E.

    2010-01-01

    The kinesin-1 molecular motor contains an ATP-dependent microtubule-binding site in its N-terminal head domain and an ATP-independent microtubule-binding site in its C-terminal tail domain. Here we demonstrate that a kinesin-1 tail fragment associates with microtubules with submicromolar affinity. Binding is largely electrostatic in nature, and is facilitated by a region of basic amino acids in the tail and the acidic E-hook at the C terminus of tubulin. The tail binds to a site on tubulin that is independent of the head domain-binding site but overlaps with the binding site of the microtubule-associated protein Tau. Surprisingly, the kinesin tail domain stimulates microtubule assembly and stability in a manner similar to Tau. The biological function of this strong kinesin tail-microtubule interaction remains to be seen, but it is likely to play an important role in kinesin regulation due to the close proximity of the microtubule-binding region to the conserved regulatory and cargo-binding domains of the tail. PMID:20071331

  20. Association of ebola virus matrix protein VP40 with microtubules.

    PubMed

    Ruthel, Gordon; Demmin, Gretchen L; Kallstrom, George; Javid, Melodi P; Badie, Shirin S; Will, Amy B; Nelle, Timothy; Schokman, Rowena; Nguyen, Tam L; Carra, John H; Bavari, Sina; Aman, M Javad

    2005-04-01

    Viruses exploit a variety of cellular components to complete their life cycles, and it has become increasingly clear that use of host cell microtubules is a vital part of the infection process for many viruses. A variety of viral proteins have been identified that interact with microtubules, either directly or via a microtubule-associated motor protein. Here, we report that Ebola virus associates with microtubules via the matrix protein VP40. When transfected into mammalian cells, a fraction of VP40 colocalized with microtubule bundles and VP40 coimmunoprecipitated with tubulin. The degree of colocalization and microtubule bundling in cells was markedly intensified by truncation of the C terminus to a length of 317 amino acids. Further truncation to 308 or fewer amino acids abolished the association with microtubules. Both the full-length and the 317-amino-acid truncation mutant stabilized microtubules against depolymerization with nocodazole. Direct physical interaction between purified VP40 and tubulin proteins was demonstrated in vitro. A region of moderate homology to the tubulin binding motif of the microtubule-associated protein MAP2 was identified in VP40. Deleting this region resulted in loss of microtubule stabilization against drug-induced depolymerization. The presence of VP40-associated microtubules in cells continuously treated with nocodazole suggested that VP40 promotes tubulin polymerization. Using an in vitro polymerization assay, we demonstrated that VP40 directly enhances tubulin polymerization without any cellular mediators. These results suggest that microtubules may play an important role in the Ebola virus life cycle and potentially provide a novel target for therapeutic intervention against this highly pathogenic virus. PMID:15795257

  1. Long Range Interaction Between Protein Complexes in DNA Controls Replication and Cell Cycle Progression:. the Double Helix and Microtubules Behave like Elastically Braced Strings

    NASA Astrophysics Data System (ADS)

    Matsson, L.

    2001-09-01

    A nonstationary interaction model, that controls the gross behaviour of DNA replication and cell cycle progression, is derived in terms of manydody physics in a chemically open T cell. The model predicts a long range force F(φ) = - (κ/2) φ(1 - φ /N)(2 - φ /N) between the origin recognition complexes (ORCs) bound by DNA, φ being the number of ORCs, N the threshold for initiation, and κ the compressibility modulus in the lattice of ORCs which behaves like an elastically braced string. Initiation of DNA replication is induced by a switch of sign of F, from attraction (-) and assembly in the G1 phase (0 < φ < N), to repulsion (+) and partial disassembly in the S phase (N < φ < 2N), with release of licensing factors from pre-replication complexes (pre-RCs) and prevention of re-replication. Termination of replication is due to a vanishing of F at φ = 2N, when all primed replicons have been duplicated once, and F(0) = 0 corresponds to a resting cell in absence of a driving force at φ = 0. The switch of sign of F at φ = N also explains the dynamic instability in growing microtubules (MTs), as well as the switch in the interleukin-2 (IL2) interaction with its receptor in late G1, at the R-point, after which a T cell proceeds to replication without further exposure to IL2. Shape, slope and scale of the response curves derived agree well with data from dividing T cells and polymerizing MTs, the variable length of which is due to a nonlinear dependence on initial concentrations of guanosine-triphosphate (GTP) and tubulin dimers.

  2. Association between microtubules and Golgi vesicles isolated from rat parotid glands.

    PubMed

    Coffe, G; Raymond, M N

    1990-01-01

    We report an isolation procedure of trans-Golgi vesicles (GVs) from rat parotid glands. Various organelle markers were used, particularly galactosyl transferase as a trans-Golgi marker, to test the purity of the GV fraction. A quantitative in vitro binding assay between microtubules and GVs is described. The vesicles were incubated with taxol-induced microtubules, layered between 50% and 43% sucrose cushions and subjected to centrifugation. Unlike free microtubules which were sedimented, the GV-bound microtubules co-migrated upward with GVs. Quantification of these bound microtubules was carried out by densitometric scanning of Coomassie blue-stained gels. The association between microtubules and GVs followed a saturation curve, with a plateau value of 20 micrograms of microtubule protein bound to 500 micrograms of GV fraction. The half-saturation of the GV sites was obtained with a microtubule concentration of 20 micrograms/ml. Electron microscopy of negatively stained re-floated material showed numerous microtubule-vesicle complexes. Coating of microtubules with an excess of brain microtubule-associated proteins (MAPs) abolished binding. In the absence of exogenous microtubules, we showed that the GV fraction was already interacting with a class of endogenous rat parotid microtubules. This class of colcemid and cold-stable microtubules represents 10-20% of the total tubulin content of the parotid cell. PMID:1983303

  3. Producing Conditional Mutants for Studying Plant Microtubule Function

    SciTech Connect

    Richard Cyr

    2009-09-29

    The cytoskeleton, and in particular its microtubule component, participates in several processes that directly affect growth and development in higher plants. Normal cytoskeletal function requires the precise and orderly arrangement of microtubules into several cell cycle and developmentally specific arrays. One of these, the cortical array, is notable for its role in directing the deposition of cellulose (the most prominent polymer in the biosphere). An understanding of how these arrays form, and the molecular interactions that contribute to their function, is incomplete. To gain a better understanding of how microtubules work, we have been working to characterize mutants in critical cytoskeletal genes. This characterization is being carried out at the subcellular level using vital microtubule gene constructs. In the last year of funding colleagues have discovered that gamma-tubulin complexes form along the lengths of cortical microtubules where they act to spawn new microtubules at a characteristic 40 deg angle. This finding complements nicely the finding from our lab (which was funded by the DOE) showing that microtubule encounters are angle dependent; high angles encounters results in catastrophic collisions while low angle encounters result in favorable zippering. The finding of a 40 deg spawn of new microtubules from extant microtubule, together with aforementioned rules of encounters, insures favorable co-alignment in the array. I was invited to write a New and Views essay on this topic and a PDF is attached (News and Views policy does not permit funding acknowledgments and so I was not allowed to acknowledge support from the DOE).

  4. Bundling, sliding, and pulling microtubules in cells and in silico

    PubMed Central

    Howard, Jonathon; Tolić-Nørrelykke, Iva M.

    2007-01-01

    Microtubules and other proteins self-organize into complex dynamic structures such as the mitotic spindle, which separates the chromosomes during cell division. Much is known about the individual molecular players involved in assembly and positioning of the mitotic spindle, but how they act together to generate the often unexpected behavior of the whole microtubule system is not understood. Two recent papers use a combination of experimental (imaging) and theoretical (computer simulation) methods to explore the formation of bipolar linear microtubule arrays in fission yeast and the oscillatory movement of the mitotic spindle in the nematode worm. In the simulation approach, the rules for the interactions of the components (microtubules and microtubule-associated proteins) are specified and the evolution of the system is followed, with the aim of identifying the minimal set of components that can mimic the real system. The work on fission yeast concludes that bipolar microtubule structures can arise from self-organization of microtubules through nucleators, bundlers, and sliders, without a requirement for a special microtubule-organizing center. The work on the worm embryo suggests that both the positive feedback that drives oscillations and the centering force that limits their amplitude may arise from microtubule pulling forces. The systems approach exemplified by these papers should stimulate new experiments aimed at discovering the principles of cellular organization. PMID:19404456

  5. Force-generation and dynamic instability of microtubule bundles

    PubMed Central

    Laan, Liedewij; Husson, Julien; Munteanu, E. Laura; Kerssemakers, Jacob W. J.; Dogterom, Marileen

    2008-01-01

    Individual dynamic microtubules can generate pushing or pulling forces when their growing or shrinking ends are in contact with cellular objects such as the cortex or chromosomes. These microtubules can operate in parallel bundles, for example when interacting with mitotic chromosomes. Here, we investigate the force-generating capabilities of a bundle of growing microtubules and study the effect that force has on the cooperative dynamics of such a bundle. We used an optical tweezers setup to study microtubule bundles growing against a microfabricated rigid barrier in vitro. We show that multiple microtubules can generate a pushing force that increases linearly with the number of microtubules present. In addition, the bundle can cooperatively switch to a shrinking state, due to a force-induced coupling of the dynamic instability of single microtubules. In the presence of GMPCPP, bundle catastrophes no longer occur, and high bundle forces are reached more effectively. We reproduce the observed behavior with a simple simulation of microtubule bundle dynamics that takes into account previously measured force effects on single microtubules. Using this simulation, we also show that a constant compressive force on a growing bundle leads to oscillations in bundle length that are of potential relevance for chromosome oscillations observed in living cells. PMID:18577596

  6. Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 regulates cytoskeletal organization and chemotaxis via catalytic and microtubule-specific interactions.

    PubMed Central

    Reszka, A A; Bulinski, J C; Krebs, E G; Fischer, E H

    1997-01-01

    The extracellular signal-regulated kinases (ERKs) 1 and 2 are mitogen-activated protein kinases that act as key components in a signaling cascade linking growth factor receptors to the cytoskeleton and the nucleus. ERK2 mutants have been used to alter cytoskeletal regulation in Chinese hamster ovary cells without affecting cell growth or feedback signaling. Mutation of the unique loop L6 (residues 91-95), which is in a portion of the molecule that is cryptic upon the binding of ERK2 to the microtubules (MTs), generated significant morphological alterations. Most notable phenotypes were observed after expression of a combined mutant incorporating changes to both L6 and the TEY phosphorylation lip, including a 70% increase in cell spreading. Actin stress fibers in these cells, which normally formed a single broad parallel array, were arranged in three or more orientations or in fan-like arrays. MTs, which ordinarily extend longitudinally from the centrosome, spread radially, covering a larger surface area. Single, but not the double, mutations of the Thr and Tyr residues of the TEY phosphorylation lip caused a ca. 25% increase in cell spreading, accompanied by a threefold increase in chemotactic cell migration. Mutation of Lys-52 triggered a 48% increase in cell spreading but no alteration to chemotaxis. These findings suggest that wild-type ERK2 inhibits the organization of the cytoskeleton, the spreading of the cell, and chemotactic migration. This involves control of the orientation of actin and MTs and the positioning of focal adhesions via regulatory interactions that may occur on the MTs. Images PMID:9243503

  7. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules

    PubMed Central

    Alushin, Gregory M.; Ramey, Vincent H.; Pasqualato, Sebastiano; Ball, David A.; Grigorieff, Nikolaus; Musacchio, Andrea; Nogales, Eva

    2010-01-01

    The Ndc80 complex is a key site of regulated kinetochore-microtubule attachment, but the molecular mechanism underlying its function remains unknown. Here we present a subnanometer resolution cryo-electron microscopy reconstruction of the human Ndc80 complex bound to microtubules, sufficient for precise docking of crystal structures of the component proteins. We find that Ndc80 binds the microtubule with a tubulin monomer repeat, recognizing α- and β-tubulin at both intra- and inter-dimer interfaces in a manner that is sensitive to tubulin conformation. Furthermore, Ndc80 complexes self-associate along protofilaments via interactions mediated by the amino-terminal tail of the Ndc80 protein, the site of phospho-regulation by the Aurora B kinase. Ndc80's mode of interaction with the microtubule and its oligomerization suggest a mechanism by which Aurora B could regulate the stability of load-bearing Ndc80-microtubule attachments. PMID:20944740

  8. Do prokaryotes contain microtubules?

    PubMed Central

    Bermudes, D; Hinkle, G; Margulis, L

    1994-01-01

    In eukaryotic cells, microtubules are 24-nm-diameter tubular structures composed of a class of conserved proteins called tubulin. They are involved in numerous cell functions including ciliary motility, nerve cell elongation, pigment migration, centrosome formation, and chromosome movement. Although cytoplasmic tubules and fibers have been observed in bacteria, some with diameters similar to those of eukaryotes, no homologies to eukaryotic microtubules have been established. Certain groups of bacteria including azotobacters, cyanobacteria, enteric bacteria, and spirochetes have been frequently observed to possess microtubule-like structures, and others, including archaebacteria, have been shown to be sensitive to drugs that inhibit the polymerization of microtubules. Although little biochemical or molecular biological information is available, the differences observed among these prokaryotic structures suggest that their composition generally differs among themselves as well as from that of eukaryotes. We review the distribution of cytoplasmic tubules in prokaryotes, even though, in all cases, their functions remain unknown. At least some tend to occur in cells that are large, elongate, and motile, suggesting that they may be involved in cytoskeletal functions, intracellular motility, or transport activities comparable to those performed by eukaryotic microtubules. In Escherichia coli, the FtsZ protein is associated with the formation of a ring in the division zone between the newly forming offspring cells. Like tubulin, FtsZ is a GTPase and shares with tubulin a 7-amino-acid motif, making it a promising candidate in which to seek the origin of tubulins. Images PMID:7968920

  9. Do prokaryotes contain microtubules?

    NASA Technical Reports Server (NTRS)

    Bermudes, D.; Hinkle, G.; Margulis, L.

    1994-01-01

    In eukaryotic cells, microtubules are 24-nm-diameter tubular structures composed of a class of conserved proteins called tubulin. They are involved in numerous cell functions including ciliary motility, nerve cell elongation, pigment migration, centrosome formation, and chromosome movement. Although cytoplasmic tubules and fibers have been observed in bacteria, some with diameters similar to those of eukaryotes, no homologies to eukaryotic microtubules have been established. Certain groups of bacteria including azotobacters, cyanobacteria, enteric bacteria, and spirochetes have been frequently observed to possess microtubule-like structures, and others, including archaebacteria, have been shown to be sensitive to drugs that inhibit the polymerization of microtubules. Although little biochemical or molecular biological information is available, the differences observed among these prokaryotic structures suggest that their composition generally differs among themselves as well as from that of eukaryotes. We review the distribution of cytoplasmic tubules in prokaryotes, even though, in all cases, their functions remain unknown. At least some tend to occur in cells that are large, elongate, and motile, suggesting that they may be involved in cytoskeletal functions, intracellular motility, or transport activities comparable to those performed by eukaryotic microtubules. In Escherichia coli, the FtsZ protein is associated with the formation of a ring in the division zone between the newly forming offspring cells. Like tubulin, FtsZ is a GTPase and shares with tubulin a 7-amino-acid motif, making it a promising candidate in which to seek the origin of tubulins.

  10. Mechanical model of kinesin moving on microtubule

    NASA Astrophysics Data System (ADS)

    To, Kiwing; Chou, Ya-Chang; Hsiao, Yi-Feng; Chen, Kuan-Hua

    Kinesins are biomolecules that serve as intercellular motors for carrying cellular cargos along microtubules. Although the mechanism of converting the chemical energy of ATP to mechanical work is not fully understood, the motion of a kinesin on a microtubule has been measured and two different mechanisms, namely the ``hand-over-hand'' and ``inchworm'', has been proposed. The particular shape of kinesin and microtubules suggest a possible mechanism for force generation similar to Brownian ratchet. Using a bead chain connected to two heads that are attracted to a vibrated ratchet plate as a scaled up analog of the kinesinmicrotubule system, we manage to simulate both ``handoverhand'' and ``inchworm'' motion [Chou, et. al., Physica A443, 66 (2015)]. In addition, we find that chain, which play the role of the stalk in a kinesin molecule, can also generate force by interacting with the ratchet plate [Chen, et. al. Phys. Rev. E87, 012711 (2013)].

  11. CYLD Regulates Noscapine Activity in Acute Lymphoblastic Leukemia via a Microtubule-Dependent Mechanism

    PubMed Central

    Yang, Yunfan; Ran, Jie; Sun, Lei; Sun, Xiaodong; Luo, Youguang; Yan, Bing; Tala; Liu, Min; Li, Dengwen; Zhang, Lei; Bao, Gang; Zhou, Jun

    2015-01-01

    Noscapine is an orally administrable drug used worldwide for cough suppression and has recently been demonstrated to disrupt microtubule dynamics and possess anticancer activity. However, the molecular mechanisms regulating noscapine activity remain poorly defined. Here we demonstrate that cylindromatosis (CYLD), a microtubule-associated tumor suppressor protein, modulates the activity of noscapine both in cell lines and in primary cells of acute lymphoblastic leukemia (ALL). Flow cytometry and immunofluorescence microscopy reveal that CYLD increases the ability of noscapine to induce mitotic arrest and apoptosis. Examination of cellular microtubules as well as in vitro assembled microtubules shows that CYLD enhances the effect of noscapine on microtubule polymerization. Microtubule cosedimentation and fluorescence titration assays further reveal that CYLD interacts with microtubule outer surface and promotes noscapine binding to microtubules. These findings thus demonstrate CYLD as a critical regulator of noscapine activity and have important implications for ALL treatment. PMID:25897332

  12. CYLD Regulates Noscapine Activity in Acute Lymphoblastic Leukemia via a Microtubule-Dependent Mechanism.

    PubMed

    Yang, Yunfan; Ran, Jie; Sun, Lei; Sun, Xiaodong; Luo, Youguang; Yan, Bing; Tala; Liu, Min; Li, Dengwen; Zhang, Lei; Bao, Gang; Zhou, Jun

    2015-01-01

    Noscapine is an orally administrable drug used worldwide for cough suppression and has recently been demonstrated to disrupt microtubule dynamics and possess anticancer activity. However, the molecular mechanisms regulating noscapine activity remain poorly defined. Here we demonstrate that cylindromatosis (CYLD), a microtubule-associated tumor suppressor protein, modulates the activity of noscapine both in cell lines and in primary cells of acute lymphoblastic leukemia (ALL). Flow cytometry and immunofluorescence microscopy reveal that CYLD increases the ability of noscapine to induce mitotic arrest and apoptosis. Examination of cellular microtubules as well as in vitro assembled microtubules shows that CYLD enhances the effect of noscapine on microtubule polymerization. Microtubule cosedimentation and fluorescence titration assays further reveal that CYLD interacts with microtubule outer surface and promotes noscapine binding to microtubules. These findings thus demonstrate CYLD as a critical regulator of noscapine activity and have important implications for ALL treatment. PMID:25897332

  13. Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy

    PubMed Central

    Wang, Yan; Zheng, Xiyin; Yu, Bingjie; Han, Shaojie; Guo, Jiangbo; Tang, Haiping; Yu, Alice Yunzi L; Deng, Haiteng; Hong, Yiguo; Liu, Yule

    2015-01-01

    Microtubules, the major components of cytoskeleton, are involved in various fundamental biological processes in plants. Recent studies in mammalian cells have revealed the importance of microtubule cytoskeleton in autophagy. However, little is known about the roles of microtubules in plant autophagy. Here, we found that ATG6 interacts with TUB8/β-tubulin 8 and colocalizes with microtubules in Nicotiana benthamiana. Disruption of microtubules by either silencing of tubulin genes or treatment with microtubule-depolymerizing agents in N. benthamiana reduces autophagosome formation during upregulation of nocturnal or oxidation-induced macroautophagy. Furthermore, a blockage of leaf starch degradation occurred in microtubule-disrupted cells and triggered a distinct ATG6-, ATG5- and ATG7-independent autophagic pathway termed starch excess-associated chloroplast autophagy (SEX chlorophagy) for clearance of dysfunctional chloroplasts. Our findings reveal that an intact microtubule network is important for efficient macroautophagy and leaf starch degradation. PMID:26566764

  14. The Arabidopsis SKU6/SPIRAL1 Gene Encodes a Plus End–Localized Microtubule-Interacting Protein Involved in Directional Cell ExpansionW⃞

    PubMed Central

    Sedbrook, John C.; Ehrhardt, David W.; Fisher, Sarah E.; Scheible, Wolf-Rüdiger; Somerville, Chris R.

    2004-01-01

    The sku6-1 mutant of Arabidopsis thaliana exhibits altered patterns of root and organ growth. sku6 roots, etiolated hypocotyls, and leaf petioles exhibit right-handed axial twisting, and root growth on inclined agar media is strongly right skewed. The touch-dependent sku6 root skewing phenotype is suppressed by the antimicrotubule drugs propyzamide and oryzalin, and right skewing is exacerbated by cold treatment. Cloning revealed that sku6-1 is allelic to spiral1-1 (spr1-1). However, modifiers in the Columbia (Col) and Landsberg erecta (Ler) ecotype backgrounds mask noncomplementation in sku6-1 (Col)/spr1-1 (Ler) F1 plants. The SPR1 gene encodes a plant-specific 12-kD protein that is ubiquitously expressed and belongs to a six-member gene family in Arabidopsis. An SPR1:green fluorescent protein (GFP) fusion expressed in transgenic seedlings localized to microtubules within the cortical array, preprophase band, phragmoplast, and mitotic spindle. SPR1:GFP was concentrated at the growing ends of cortical microtubules and was dependent on polymer growth state; the microtubule-related fluorescence dissipated upon polymer shortening. The protein has a repeated motif at both ends, separated by a predicted rod-like domain, suggesting that it may act as an intermolecular linker. These observations suggest that SPR1 is involved in microtubule polymerization dynamics and/or guidance, which in turn influences touch-induced directional cell expansion and axial twisting. PMID:15155883

  15. Expression of developmentally regulated plasma membrane polypeptide (DREPP2) in rice root tip and interaction with Ca(2+)/CaM complex and microtubule.

    PubMed

    Yamada, Nana; Theerawitaya, Cattarin; Kageyama, Hakuto; Cha-Um, Suriyan; Takabe, Teruhiro

    2015-11-01

    The cytoplasmic free Ca(2+) could play an important role for salt tolerance in rice root (Oryza sativa L.). Here, we compared the expression profiles of two putative developmentally regulated plasma membrane polypeptides (DREPP1 and DREPP2) in rice roots of salt-tolerant cv. Pokkali and salt-sensitive cv. IR29. The messenger RNA (mRNA) for OsDREPP1 could be detected in all parts of root and did not change upon salt stress, whereas the mRNA for OsDREPP2 was detected only in root tips. The transcript level of OsDREPP2 first disappeared upon salt stress, then recovered in Pokkali, but not recovered in IR29. The gene-encoding OsDREPP2 was cloned from cv. Pokkali and expressed in Escherichia coli, and its biochemical properties were studied. It was found that OsDREPP2 is a Ca(2+)-binding protein and binds also to calmodulin (CaM) as well as microtubules. The mutation of Trp4 and Phe16 in OsDREPP2 to Ala decreased the binding of DREPP2 to Ca(2+)/CaM complex, indicating the N-terminal basic domain is involved for the binding. The binding of OsDREPP2 to microtubules was inhibited by Ca(2+)/CaM complex, while the binding of double-mutant OsDREPP2 protein to microtubules was not inhibited by Ca(2+)/CaM complex. We propose that CaM inhibits the binding of DREPP2 to cortical microtubules, causes the inhibition of microtubule depolymerization, and enhances the cell elongation. PMID:25743039

  16. Antireflection coating for high index cemented doublets.

    PubMed

    Willey, R R

    1990-11-01

    Uncoated surfaces of high index glasses when cemented to form lens doublets have inferior antireflection properties to doublets of low index glass. This can be overcome by the application of a single layer coating of aluminum oxide prior to cementing. PMID:20577426

  17. Tensile stress stimulates microtubule outgrowth in living cells

    NASA Technical Reports Server (NTRS)

    Kaverina, Irina; Krylyshkina, Olga; Beningo, Karen; Anderson, Kurt; Wang, Yu-Li; Small, J. Victor

    2002-01-01

    Cell motility is driven by the sum of asymmetric traction forces exerted on the substrate through adhesion foci that interface with the actin cytoskeleton. Establishment of this asymmetry involves microtubules, which exert a destabilising effect on adhesion foci via targeting events. Here, we demonstrate the existence of a mechano-sensing mechanism that signals microtubule polymerisation and guidance of the microtubules towards adhesion sites under increased stress. Stress was applied either by manipulating the body of cells moving on glass with a microneedle or by stretching a flexible substrate that cells were migrating on. We propose a model for this mechano-sensing phenomenon whereby microtubule polymerisation is stimulated and guided through the interaction of a microtubule tip complex with actin filaments under tension.

  18. Molecular and Mechanical Causes of Microtubule Catastrophe and Aging.

    PubMed

    Zakharov, Pavel; Gudimchuk, Nikita; Voevodin, Vladimir; Tikhonravov, Alexander; Ataullakhanov, Fazoil I; Grishchuk, Ekaterina L

    2015-12-15

    Tubulin polymers, microtubules, can switch abruptly from the assembly to shortening. These infrequent transitions, termed "catastrophes", affect numerous cellular processes but the underlying mechanisms are elusive. We approached this complex stochastic system using advanced coarse-grained molecular dynamics modeling of tubulin-tubulin interactions. Unlike in previous simplified models of dynamic microtubules, the catastrophes in this model arise owing to fluctuations in the composition and conformation of a growing microtubule tip, most notably in the number of protofilament curls. In our model, dynamic evolution of the stochastic microtubule tip configurations over a long timescale, known as the system's "aging", gives rise to the nonexponential distribution of microtubule lifetimes, consistent with experiment. We show that aging takes place in the absence of visible changes in the microtubule wall or tip, as this complex molecular-mechanical system evolves slowly and asymptotically toward the steady-state level of the catastrophe-promoting configurations. This new, to our knowledge, theoretical basis will assist detailed mechanistic investigations of the mechanisms of action of different microtubule-binding proteins and drugs, thereby enabling accurate control over the microtubule dynamics to treat various pathologies. PMID:26682815

  19. Singlet-Doublet Dark Matter

    SciTech Connect

    Cohen, Timothy; Kearney, John; Pierce, Aaron; Tucker-Smith, David; /Williams Coll.

    2012-02-15

    In light of recent data from direct detection experiments and the Large Hadron Collider, we explore models of dark matter in which an SU(2){sub L} doublet is mixed with a Standard Model singlet. We impose a thermal history. If the new particles are fermions, this model is already constrained due to null results from XENON100. We comment on remaining regions of parameter space and assess prospects for future discovery. We do the same for the model where the new particles are scalars, which at present is less constrained. Much of the remaining parameter space for both models will be probed by the next generation of direct detection experiments. For the fermion model, DeepCore may also play an important role.

  20. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  1. Depletion force induced collective motion of microtubules driven by kinesin

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md. Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-10-01

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being

  2. Arrested coalescence of viscoelastic droplets: polydisperse doublets.

    PubMed

    Dahiya, Prerna; Caggioni, Marco; Spicer, Patrick T

    2016-07-28

    Arrested droplet coalescence produces stable anisotropic shapes and is a key mechanism for microstructure development in foods, petroleum and pharmaceutical formulations. Past work has examined the dynamic elastic arrest of coalescing monodisperse droplet doublets and developed a simple model of doublet strain as a function of physical variables. Although the work describes experimental data well, it is limited to describing same-size droplets. A new model incorporating a generalized description of doublet shape is developed to describe polydisperse doublet formation in more realistic emulsion systems. Polydisperse doublets are shown to arrest at lower strains than monodisperse doublets as a result of the smaller contribution of surface area in a given pair. Larger droplet size ratios have lower relative degrees of strain because coalescence is arrested at an earlier stage than in more monodisperse cases. Experimental observations of polydisperse doublet formation indicate that the model under-predicts arrest strains at low solid levels and small droplet sizes. The discrepancy is hypothesized to be the result of nonlinear elastic deformation at high strains.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298435

  3. Depletion force induced collective motion of microtubules driven by kinesin.

    PubMed

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-11-21

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects. PMID:26260025

  4. Doublet III Big Dee Project

    SciTech Connect

    Davis, L.G.; Luxon, J.L.

    1985-05-01

    The Doublet III tokamak is presently being reconfigured into a new larger dee-shaped plasma configuration. Experiments will begin in 1986 with a goal of high current, high beta plasma operation at moderate magnetic field. The existing toroidal field coil, Ohmic heating coil, and innermost plasma shaping coils will be retained. A new water-cooled vacuum vessel is being fabricated using a corrugated Inconel sandwich wall construction. Six new water-cooled copper poloidal field coils are also being fabricated. The resultant device along with additional power supplies will provide a capability for plasma currents of 3.5 MA for 1.5 s during the first phase of operations; the tokamak systems are designed for 5 MA operation with additional power systems. The four existing 80 keV, 3 MW neutral beam lines are being modified for optimum torus access and 0.7 s operation. These injectors will be upgraded to allow 5 s operation with new sources in 1987. The device has been designed to accommodate an additional 20 MW of ICRH and ECH power in the future. Limiters and vessel wall protection will be provided for initial operation with up to 40 MJ of input energy. Future installation of additional thermal armor will allow operation with up to 200 MJ of input energy over a 10 s period. Most of the existing diagnostics will be modified as required and reinstalled on the new vessel.

  5. Prominent Doublet Ridges on Europa

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Jupiter's satellite Europa was obtained from a range of 7364 miles (11851 km) by the Galileo spacecraft during its fourth orbit around Jupiter and its first close pass of Europa. The image spans 30 miles by 57 miles (48 km x 91 km) and shows features as small as 800 feet (240 meters) across, a resolution more than 150 times better than the best Voyager coverage of this area. The sun illuminates the scene from the right. The large circular feature in the upper left of the image could be the scar of a large meteorite impact. Clusters of small craters seen in the right of the image may mark sites where debris thrown from this impact fell back to the surface. Prominent doublet ridges over a mile (1.6 km) wide cross the plains in the right part of the image; younger ridges overlap older ones, allowing the sequence of formation to be determined. Gaps in ridges indicate areas where emplacement of new surface material has obliterated pre-existing terrain.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  6. Dark Two Higgs Doublet Model

    SciTech Connect

    Lee, Hye Sung; Sher, Marc

    2013-06-01

    We perform a detailed study of a specific Two Higgs Doublet Model (2HDM) with a U(1) gauge symmetry, instead of a typical Z{sub 2} discrete symmetry, containing a very light gauge boson Z' (GeV scale or below). The Standard Model (SM) fermions do not carry U(1) charges, but induced couplings to the Z' (called the dark Z) are generated through mixing with the SM neutral gauge bosons. Such a light Z' could explain some astrophysical anomalies as well as the muon g-2 deviation, and has been the subject of great experimental interest. We consider the scenario in which the 125 GeV SM-like Higgs (H) is the heavier scalar state, and focus on the lighter neutral state (h) as well as charged Higgs. We analyze the constraints on the model from various experiments and predict novel channels to search for these Higgs scalars at the LHC. In particular, experiments looking for lepton-jets are among potentially important searches.

  7. ATLAS diboson excesses from the stealth doublet model

    NASA Astrophysics Data System (ADS)

    Chao, Wei

    2016-02-01

    The ATLAS Collaboration has reported excesses in diboson invariant mass searches of new resonances around 2 TeV, which might be a prediction of new physics around that mass range. We interpret these results in the context of a modified stealth doublet model where the extra Higgs doublet has a Yukawa interaction with the first generation quarks, and show that the heavy CP-even Higgs boson can naturally explain the excesses in the WW and ZZ channels with a small Yukawa coupling, ξ ∼ 0.15, and a tiny mixing angle with the SM Higgs boson, α ∼ 0.05. Furthermore, the model satisfies constraints from colliders and electroweak precision measurements.

  8. New description of the doublet bands in doubly odd nuclei

    SciTech Connect

    Ganev, H. G.; Georgieva, A. I.; Brant, S.; Ventura, A.

    2009-04-15

    The experimentally observed {delta}I=1 doublet bands in some odd-odd nuclei are analyzed within the orthosymplectic extension of the interacting vector boson model (IVBM). A new, purely collective interpretation of these bands is given on the basis of the obtained boson-fermion dynamical symmetry of the model. It is illustrated by its application to three odd-odd nuclei from the A{approx}130 region, namely {sup 126}Pr, {sup 134}Pr, and {sup 132}La. The theoretical predictions for the energy levels of the doublet bands as well as E2 and M1 transition probabilities between the states of the yrast band in the last two nuclei are compared with experiment and the results of other theoretical approaches. The obtained results reveal the applicability of the orthosymplectic extension of the IVBM.

  9. Dissecting the molecular mechanism underlying the intimate relationship between cellulose microfibrils and cortical microtubules

    PubMed Central

    Lei, Lei; Li, Shundai; Bashline, Logan; Gu, Ying

    2014-01-01

    A central question in plant cell development is how the cell wall determines directional cell expansion and therefore the final shape of the cell. As the major load-bearing component of the cell wall, cellulose microfibrils are laid down transversely to the axis of elongation, thus forming a spring-like structure that reinforces the cell laterally and while favoring longitudinal expansion in most growing cells. Mounting evidence suggests that cortical microtubules organize the deposition of cellulose microfibrils, but the precise molecular mechanisms linking microtubules to cellulose organization have remained unclear until the recent discovery of cellulose synthase interactive protein 1 , a linker protein between the cortical microtubules and the cellulose biosynthesizing machinery. In this review, we will focus on the intimate relationship between cellulose microfibrils and cortical microtubules, in particular, we will discuss microtubule arrangement and cell wall architecture, the linkage between cellulose synthase complexes and microtubules, and the feedback mechanisms between cell wall and microtubules. PMID:24659994

  10. Inert doublet model and LEP II limits

    SciTech Connect

    Lundstroem, Erik; Gustafsson, Michael; Edsjoe, Joakim

    2009-02-01

    The inert doublet model is a minimal extension of the standard model introducing an additional SU(2) doublet with new scalar particles that could be produced at accelerators. While there exists no LEP II analysis dedicated for these inert scalars, the absence of a signal within searches for supersymmetric neutralinos can be used to constrain the inert doublet model. This translation however requires some care because of the different properties of the inert scalars and the neutralinos. We investigate what restrictions an existing DELPHI Collaboration study of neutralino pair production can put on the inert scalars and discuss the result in connection with dark matter. We find that although an important part of the inert doublet model parameter space can be excluded by the LEP II data, the lightest inert particle still constitutes a valid dark matter candidate.

  11. A theory of microtubule catastrophes and their regulation

    PubMed Central

    Brun, Ludovic; Rupp, Beat; Ward, Jonathan J.; Nédélec, François

    2009-01-01

    Dynamic instability, in which abrupt transitions occur between growing and shrinking states, is an intrinsic property of microtubules that is regulated by both mechanics and specialized proteins. We discuss a model of dynamic instability based on the popular idea that growth is maintained by a cap at the tip of the fiber. The loss of this cap is thought to trigger the transition from growth to shrinkage, called a catastrophe. The model includes longitudinal interactions between the terminal tubulins of each protofilament and “gating rescues” between neighboring protofilaments. These interactions allow individual protofilaments to transiently shorten during a phase of overall microtubule growth. The model reproduces the reported dependency of the catastrophe rate on tubulin concentration, the time between tubulin dilution and catastrophe, and the induction of microtubule catastrophes by walking depolymerases. The model also reproduces the comet tail distribution that is characteristic of proteins that bind to the tips of growing microtubules. PMID:19948965

  12. Microtubules Accelerate the Kinase Activity of Aurora-B by a Reduction in Dimensionality

    PubMed Central

    Noujaim, Michael; Bechstedt, Susanne; Wieczorek, Michal; Brouhard, Gary J.

    2014-01-01

    Aurora-B is the kinase subunit of the Chromosome Passenger Complex (CPC), a key regulator of mitotic progression that corrects improper kinetochore attachments and establishes the spindle midzone. Recent work has demonstrated that the CPC is a microtubule-associated protein complex and that microtubules are able to activate the CPC by contributing to Aurora-B auto-phosphorylation in trans. Aurora-B activation is thought to occur when the local concentration of Aurora-B is high, as occurs when Aurora-B is enriched at centromeres. It is not clear, however, whether distributed binding to large structures such as microtubules would increase the local concentration of Aurora-B. Here we show that microtubules accelerate the kinase activity of Aurora-B by a “reduction in dimensionality.” We find that microtubules increase the kinase activity of Aurora-B toward microtubule-associated substrates while reducing the phosphorylation levels of substrates not associated to microtubules. Using the single molecule assay for microtubule-associated proteins, we show that a minimal CPC construct binds to microtubules and diffuses in a one-dimensional (1D) random walk. The binding of Aurora-B to microtubules is salt-dependent and requires the C-terminal tails of tubulin, indicating that the interaction is electrostatic. We show that the rate of Aurora-B auto-activation is faster with increasing concentrations of microtubules. Finally, we demonstrate that microtubules lose their ability to stimulate Aurora-B when their C-terminal tails are removed by proteolysis. We propose a model in which microtubules act as scaffolds for the enzymatic activity of Aurora-B. The scaffolding activity of microtubules enables rapid Aurora-B activation and efficient phosphorylation of microtubule-associated substrates. PMID:24498282

  13. Emergent two-Higgs doublet models

    NASA Astrophysics Data System (ADS)

    Abe, Tomohiro; Omura, Yuji

    2016-08-01

    We investigate origin of three features that are often assumed in analysis of two-Higgs doublet models: (i) softly broken Z 2 symmetry, (ii) CP invariant Higgs potential, and (iii) degenerated mass spectra. We extend electroweak gauge symmetry, introducing extra gauge symmetry and extra scalars, and we show that our models effectively derive two-Higgs doublet models at low energy which naturally hold the three features. We also find that the models can solve the strong CP problem.

  14. Physical Modeling of Microtubules Network

    NASA Astrophysics Data System (ADS)

    Allain, Pierre; Kervrann, Charles

    2014-10-01

    Microtubules (MT) are highly dynamic tubulin polymers that are involved in many cellular processes such as mitosis, intracellular cell organization and vesicular transport. Nevertheless, the modeling of cytoskeleton and MT dynamics based on physical properties is difficult to achieve. Using the Euler-Bernoulli beam theory, we propose to model the rigidity of microtubules on a physical basis using forces, mass and acceleration. In addition, we link microtubules growth and shrinkage to the presence of molecules (e.g. GTP-tubulin) in the cytosol. The overall model enables linking cytosol to microtubules dynamics in a constant state space thus allowing usage of data assimilation techniques.

  15. The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement

    PubMed Central

    Tooley, John G.; Miller, Stephanie A.; Stukenberg, P. Todd

    2011-01-01

    In kinetochores, the Ndc80 complex couples the energy in a depolymerizing microtubule to perform the work of moving chromosomes. The complex directly binds microtubules using an unstructured, positively charged N-terminal tail located on Hec1/Ndc80. Hec1/Ndc80 also contains a calponin homology domain (CHD) that increases its affinity for microtubules in vitro, yet whether it is required in cells and how the tail and CHD work together are critical unanswered questions. Human kinetochores containing Hec1/Ndc80 with point mutations in the CHD fail to align chromosomes or form productive microtubule attachments. Kinetochore architecture and spindle checkpoint protein recruitment are unaffected in these mutants, and the loss of CHD function cannot be rescued by removing Aurora B sites from the tail. The interaction between the Hec1/Ndc80 CHD and a microtubule is facilitated by positively charged amino acids on two separate regions of the CHD, and both are required for kinetochores to make stable attachments to microtubules. Chromosome congression in cells also requires positive charge on the Hec1 tail to facilitate microtubule contact. In vitro binding data suggest that charge on the tail regulates attachment by directly increasing microtubule affinity as well as driving cooperative binding of the CHD. These data argue that in vertebrates there is a tripartite attachment point facilitating the interaction between Hec1/Ndc80 and microtubules. We discuss how such a complex microtubule-binding interface may facilitate the coupling of depolymerization to chromosome movement. PMID:21325630

  16. Getting a Grip on Microtubules.

    PubMed

    Schaletzky, Julia; Rape, Michael

    2016-02-25

    Posttranslational modifications control microtubule behavior, yet assigning roles to particular signals was hampered by lack of defined in vitro systems. In this issue of Cell, Valenstein and Roll-Mecak establish a biochemical platform to interrogate consequences of microtubule polyglutamylation, thereby providing important insights into the specificity and quantitative nature of cellular information transfer. PMID:26919420

  17. Anomalous Flexural Behaviors of Microtubules

    PubMed Central

    Liu, Xiaojing; Zhou, Youhe; Gao, Huajian; Wang, Jizeng

    2012-01-01

    Apparent controversies exist on whether the persistence length of microtubules depends on its contour length. This issue is particularly challenging from a theoretical point of view due to the tubular structure and strongly anisotropic material property of microtubules. Here we adopt a higher order continuum orthotropic thin shell model to study the flexural behavior of microtubules. Our model overcomes some key limitations of a recent study based on a simplified anisotropic shell model and results in a closed-form solution for the contour-length-dependent persistence length of microtubules, with predictions in excellent agreement with experimental measurements. By studying the ratio between their contour and persistence lengths, we find that microtubules with length at ∼1.5 μm show the lowest flexural rigidity, whereas those with length at ∼15 μm show the highest flexural rigidity. This finding may provide an important theoretical basis for understanding the mechanical structure of mitotic spindles during cell division. Further analysis on the buckling of microtubules indicates that the critical buckling load becomes insensitive to the tube length for relatively short microtubules, in drastic contrast to the classical Euler buckling. These rich flexural behaviors of microtubules are of profound implication for many biological functions and biomimetic molecular devices. PMID:22768935

  18. Structural basis for the association of MAP6 protein with microtubules and its regulation by calmodulin.

    PubMed

    Lefèvre, Julien; Savarin, Philippe; Gans, Pierre; Hamon, Loïc; Clément, Marie-Jeanne; David, Marie-Odile; Bosc, Christophe; Andrieux, Annie; Curmi, Patrick A

    2013-08-23

    Microtubules are highly dynamic αβ-tubulin polymers. In vitro and in living cells, microtubules are most often cold- and nocodazole-sensitive. When present, the MAP6/STOP family of proteins protects microtubules from cold- and nocodazole-induced depolymerization but the molecular and structure determinants by which these proteins stabilize microtubules remain under debate. We show here that a short protein fragment from MAP6-N, which encompasses its Mn1 and Mn2 modules (MAP6(90-177)), recapitulates the function of the full-length MAP6-N protein toward microtubules, i.e. its ability to stabilize microtubules in vitro and in cultured cells in ice-cold conditions or in the presence of nocodazole. We further show for the first time, using biochemical assays and NMR spectroscopy, that these effects result from the binding of MAP6(90-177) to microtubules with a 1:1 MAP6(90-177):tubulin heterodimer stoichiometry. NMR data demonstrate that the binding of MAP6(90-177) to microtubules involve its two Mn modules but that a single one is also able to interact with microtubules in a closely similar manner. This suggests that the Mn modules represent each a full microtubule binding domain and that MAP6 proteins may stabilize microtubules by bridging tubulin heterodimers from adjacent protofilaments or within a protofilament. Finally, we demonstrate that Ca(2+)-calmodulin competes with microtubules for MAP6(90-177) binding and that the binding mode of MAP6(90-177) to microtubules and Ca(2+)-calmodulin involves a common stretch of amino acid residues on the MAP6(90-177) side. This result accounts for the regulation of microtubule stability in cold condition by Ca(2+)-calmodulin. PMID:23831686

  19. Multiscale Polar Theory of Microtubule and Motor-Protein Assemblies

    PubMed Central

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-01-01

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specific sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. The results connect local polar structure to flow structures and defect dynamics. PMID:25679909

  20. Mechanism and Dynamics of Breakage of Fluorescent Microtubules

    PubMed Central

    Guo, Honglian; Xu, Chunhua; Liu, Chunxiang; Qu, E.; Yuan, Ming; Li, Zhaolin; Cheng, Bingying; Zhang, Daozhong

    2006-01-01

    The breakage of fluorescence-labeled microtubules under irradiation of excitation light is found in our experiments. Its mechanism is studied. The results indicate that free radicals are the main reason for the photosensitive breakage. Furthermore, the mechanical properties of the microtubules are probed with a dual-optical tweezers system. It is found that the fluorescence-labeled microtubules are much easier to extend compared with those without fluorescence. Such microtubules can be extended by 30%, and the force for breaking them up is only several piconewtons. In addition, we find that the breakup of the protofilaments is not simultaneous but step-by-step, which further confirms that the interaction between protofilaments is fairly weak. PMID:16387782

  1. Nonlinear ionic pulses along microtubules.

    PubMed

    Sekulić, D L; Satarić, B M; Tuszynski, J A; Satarić, M V

    2011-05-01

    Microtubules are cylindrically shaped cytoskeletal biopolymers that are essential for cell motility, cell division and intracellular trafficking. Here, we investigate their polyelectrolyte character that plays a very important role in ionic transport throughout the intra-cellular environment. The model we propose demonstrates an essentially nonlinear behavior of ionic currents which are guided by microtubules. These features are primarily due to the dynamics of tubulin C-terminal tails which are extended out of the surface of the microtubule cylinder. We also demonstrate that the origin of nonlinearity stems from the nonlinear capacitance of each tubulin dimer. This brings about conditions required for the creation and propagation of solitonic ionic waves along the microtubule axis. We conclude that a microtubule plays the role of a biological nonlinear transmission line for ionic currents. These currents might be of particular significance in cell division and possibly also in cognitive processes taking place in nerve cells. PMID:21604102

  2. Kinesin's light chains inhibit the head- and microtubule-binding activity of its tail.

    PubMed

    Wong, Yao Liang; Rice, Sarah E

    2010-06-29

    Kinesin-1 is a microtubule-based motor comprising two heavy chains (KHCs) and two light chains (KLCs). Motor activity is precisely regulated to avoid futile ATP consumption and to ensure proper intracellular localization of kinesin-1 and its cargoes. The KHC tail inhibits ATPase activity by interacting with the enzymatic KHC heads, and the tail also binds microtubules. Here, we present a role for the KLCs in regulating both the head- and microtubule-binding activities of the kinesin-1 tail. We show that KLCs reduce the affinity of the head-tail interaction over tenfold and concomitantly repress the tail's regulatory activity. We also show that KLCs inhibit tail-microtubule binding by a separate mechanism. Inhibition of head-tail binding requires steric and electrostatic factors. Inhibition of tail-microtubule binding is largely electrostatic, pH dependent, and mediated partly by a highly negatively charged linker region between the KHC-interacting and cargo-binding domains of the KLCs. Our data support a model wherein KLCs promote activation of kinesin-1 for cargo transport by simultaneously suppressing tail-head and tail-microtubule interactions. KLC-mediated inhibition of tail-microtubule binding may also influence diffusional movement of kinesin-1 on microtubules, and kinesin-1's role in microtubule transport/sliding. PMID:20547877

  3. Kinesin’s light chains inhibit the head- and microtubule-binding activity of its tail

    PubMed Central

    Wong, Yao Liang; Rice, Sarah E.

    2010-01-01

    Kinesin-1 is a microtubule-based motor comprising two heavy chains (KHCs) and two light chains (KLCs). Motor activity is precisely regulated to avoid futile ATP consumption and to ensure proper intracellular localization of kinesin-1 and its cargoes. The KHC tail inhibits ATPase activity by interacting with the enzymatic KHC heads, and the tail also binds microtubules. Here, we present a role for the KLCs in regulating both the head- and microtubule-binding activities of the kinesin-1 tail. We show that KLCs reduce the affinity of the head-tail interaction over tenfold and concomitantly repress the tail’s regulatory activity. We also show that KLCs inhibit tail-microtubule binding by a separate mechanism. Inhibition of head-tail binding requires steric and electrostatic factors. Inhibition of tail-microtubule binding is largely electrostatic, pH dependent, and mediated partly by a highly negatively charged linker region between the KHC-interacting and cargo-binding domains of the KLCs. Our data support a model wherein KLCs promote activation of kinesin-1 for cargo transport by simultaneously suppressing tail-head and tail-microtubule interactions. KLC-mediated inhibition of tail-microtubule binding may also influence diffusional movement of kinesin-1 on microtubules, and kinesin-1’s role in microtubule transport/sliding. PMID:20547877

  4. Radiation shielding design considerations for Doublet III

    SciTech Connect

    Engholm, B.A.

    1980-06-01

    Calculations and measurements were made of the bremsstrahlung (x-ray) doses resulting from runaway electron shots at Doublet III. The analysis considered direct, wall-scattered, and skyshine contributions. Reasonably good agreement was obtained between calculations and measurements. The x-ray dose in the control room was about 1 mR per runaway shot, while that at the north boundary was undetectable, with a calculated value of 0.05 mR per shot. These low doses attest to the adequacy of the 2 ft concrete shadow shield surrounding the Doublet III room. Exploratory shielding analyses were performed for possible neutron generation if Doublet III were operated with neutral beam injection in an aggressive D-D mode.

  5. Higgs phenomenology in the stealth doublet model

    NASA Astrophysics Data System (ADS)

    Enberg, Rikard; Rathsman, Johan; Wouda, Glenn

    2015-05-01

    We analyze a model for the Higgs sector with two scalar doublets and a Z2 symmetry that is manifest in the Yukawa sector but broken in the potential. Thus, one of the doublets breaks the electroweak symmetry and has tree-level Yukawa couplings to fermions, whereas the other doublet has no vacuum expectation value and no tree-level couplings to fermions. Since the Z2 parity is broken the two doublets can mix, which leads to a distinct and novel phenomenology. This stealth doublet model can be seen as a generalization of the inert doublet model with a broken Z2 symmetry. We outline the model and present constraints from theory, electroweak precision tests, and collider searches, including the recent observation of a Higgs boson at the LHC. The charged scalar H± and the C P -odd scalar A couple to fermions at one-loop level. We compute the decays of H± and A and in particular the one-loop decays A →f f ¯ , H±→f f¯ ' , H±→W±Z and H±→W±γ . We also describe how to calculate and renormalize such processes in our model. We find that if one of H± or A is the lightest scalar, H±→W±γ or A →b b ¯ are typically their respective dominating decay channels. Otherwise, the dominating decays of H± and A are into a scalar and a vector. Due to the absence of tree-level fermion couplings for H± and A , we consider pair production and associated production with vector bosons and scalars at the LHC. If the parameter space of the model that favors H±→W±γ is realized in Nature, we estimate that there could be a considerable amount of such events in the present LHC data.

  6. TOG Proteins Are Spatially Regulated by Rac-GSK3β to Control Interphase Microtubule Dynamics.

    PubMed

    Trogden, Kathryn P; Rogers, Stephen L

    2015-01-01

    Microtubules are regulated by a diverse set of proteins that localize to microtubule plus ends (+TIPs) where they regulate dynamic instability and mediate interactions with the cell cortex, actin filaments, and organelles. Although individual +TIPs have been studied in depth and we understand their basic contributions to microtubule dynamics, there is a growing body of evidence that these proteins exhibit cross-talk and likely function to collectively integrate microtubule behavior and upstream signaling pathways. In this study, we have identified a novel protein-protein interaction between the XMAP215 homologue in Drosophila, Mini spindles (Msps), and the CLASP homologue, Orbit. These proteins have been shown to promote and suppress microtubule dynamics, respectively. We show that microtubule dynamics are regionally controlled in cells by Rac acting to suppress GSK3β in the peripheral lamellae/lamellipodium. Phosphorylation of Orbit by GSK3β triggers a relocalization of Msps from the microtubule plus end to the lattice. Mutation of the Msps-Orbit binding site revealed that this interaction is required for regulating microtubule dynamic instability in the cell periphery. Based on our findings, we propose that Msps is a novel Rac effector that acts, in partnership with Orbit, to regionally regulate microtubule dynamics. PMID:26406596

  7. TOG Proteins Are Spatially Regulated by Rac-GSK3β to Control Interphase Microtubule Dynamics

    PubMed Central

    Trogden, Kathryn P.; Rogers, Stephen L.

    2015-01-01

    Microtubules are regulated by a diverse set of proteins that localize to microtubule plus ends (+TIPs) where they regulate dynamic instability and mediate interactions with the cell cortex, actin filaments, and organelles. Although individual +TIPs have been studied in depth and we understand their basic contributions to microtubule dynamics, there is a growing body of evidence that these proteins exhibit cross-talk and likely function to collectively integrate microtubule behavior and upstream signaling pathways. In this study, we have identified a novel protein-protein interaction between the XMAP215 homologue in Drosophila, Mini spindles (Msps), and the CLASP homologue, Orbit. These proteins have been shown to promote and suppress microtubule dynamics, respectively. We show that microtubule dynamics are regionally controlled in cells by Rac acting to suppress GSK3β in the peripheral lamellae/lamellipodium. Phosphorylation of Orbit by GSK3β triggers a relocalization of Msps from the microtubule plus end to the lattice. Mutation of the Msps-Orbit binding site revealed that this interaction is required for regulating microtubule dynamic instability in the cell periphery. Based on our findings, we propose that Msps is a novel Rac effector that acts, in partnership with Orbit, to regionally regulate microtubule dynamics. PMID:26406596

  8. The Non-Catalytic Domains of Drosophila Katanin Regulate Its Abundance and Microtubule-Disassembly Activity

    PubMed Central

    Grode, Kyle D.; Rogers, Stephen L.

    2015-01-01

    Microtubule severing is a biochemical reaction that generates an internal break in a microtubule and regulation of microtubule severing is critical for cellular processes such as ciliogenesis, morphogenesis, and meiosis and mitosis. Katanin is a conserved heterodimeric ATPase that severs and disassembles microtubules, but the molecular determinants for regulation of microtubule severing by katanin remain poorly defined. Here we show that the non-catalytic domains of Drosophila katanin regulate its abundance and activity in living cells. Our data indicate that the microtubule-interacting and trafficking (MIT) domain and adjacent linker region of the Drosophila katanin catalytic subunit Kat60 cooperate to regulate microtubule severing in two distinct ways. First, the MIT domain and linker region of Kat60 decrease its abundance by enhancing its proteasome-dependent degradation. The Drosophila katanin regulatory subunit Kat80, which is required to stabilize Kat60 in cells, conversely reduces the proteasome-dependent degradation of Kat60. Second, the MIT domain and linker region of Kat60 augment its microtubule-disassembly activity by enhancing its association with microtubules. On the basis of our data, we propose that the non-catalytic domains of Drosophila katanin serve as the principal sites of integration of regulatory inputs, thereby controlling its ability to sever and disassemble microtubules. PMID:25886649

  9. TPX2 phosphorylation maintains metaphase spindle length by regulating microtubule flux

    PubMed Central

    Fu, Jingyan; Bian, Minglei; Xin, Guangwei; Deng, Zhaoxuan; Luo, Jia; Guo, Xiao; Chen, Hao; Wang, Yao; Jiang, Qing

    2015-01-01

    A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles, along with other regulators of microtubule dynamics. How microtubule polymerization and depolymerization are coordinated remains unclear. Here we show that TPX2, a microtubule-bundling protein and activator of Aurora A, plays an important role. TPX2 was phosphorylated by Aurora A during mitosis. Its phospho-null mutant caused short metaphase spindles coupled with low microtubule flux rate. Interestingly, phosphorylation of TPX2 regulated its interaction with CLASP1 but not Kif2a. The effect of its mutant in shortening the spindle could be rescued by codepletion of CLASP1 and Kif2a that abolished microtubule flux. Together we propose that Aurora A–dependent TPX2 phosphorylation controls mitotic spindle length through regulating microtubule flux. PMID:26240182

  10. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  11. Dirac neutrinos from a second Higgs doublet

    NASA Astrophysics Data System (ADS)

    Davidson, Shainen M.; Logan, Heather E.

    2009-11-01

    We propose a minimal extension of the standard model in which neutrinos are Dirac particles and their tiny masses are explained without requiring tiny Yukawa couplings. A second Higgs doublet with a tiny vacuum expectation value provides neutrino masses while simultaneously improving the naturalness of the model by allowing a heavier standard-model-like Higgs boson consistent with electroweak precision data. The model predicts a μ→eγ rate potentially detectable in the current round of experiments, as well as distinctive signatures in the production and decay of the charged Higgs H+ of the second doublet which can be tested at future colliders. Neutrinoless double beta decay is absent.

  12. Is the pentaquark doublet a hadronic molecule?

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Morozov, A.

    2015-09-01

    A recently announced discovery by LHCb of a doublet of overlapping pentaquark resonances poses a question of what can be the origin of this doublet structure. We attract attention to the fact that such degeneracy could naturally arise if constituent "baryon" and "meson" were in the colored, rather than colorless states. This is an appealing possibility, also because in such a case the pentaquark state would be no less "elementary" than the other hadrons, and would provide a chance for essentially new non-Abelian chemistry.

  13. A coarse-grained model of microtubule self-assembly

    NASA Astrophysics Data System (ADS)

    Regmi, Chola; Cheng, Shengfeng

    Microtubules play critical roles in cell structures and functions. They also serve as a model system to stimulate the next-generation smart, dynamic materials. A deep understanding of their self-assembly process and biomechanical properties will not only help elucidate how microtubules perform biological functions, but also lead to exciting insight on how microtubule dynamics can be altered or even controlled for specific purposes such as suppressing the division of cancer cells. Combining all-atom molecular dynamics (MD) simulations and the essential dynamics coarse-graining method, we construct a coarse-grained (CG) model of the tubulin protein, which is the building block of microtubules. In the CG model a tubulin dimer is represented as an elastic network of CG sites, the locations of which are determined by examining the protein dynamics of the tubulin and identifying the essential dynamic domains. Atomistic MD modeling is employed to directly compute the tubulin bond energies in the surface lattice of a microtubule, which are used to parameterize the interactions between CG building blocks. The CG model is then used to study the self-assembly pathways, kinetics, dynamics, and nanomechanics of microtubules.

  14. Modulation of host microtubule dynamics by pathogenic bacteria

    PubMed Central

    Radhakrishnan, Girish K.; Splitter, Gary A.

    2013-01-01

    The eukaryotic cytoskeleton is a vulnerable target of many microbial pathogens during the course of infection. Rearrangements of host cytoskeleton benefit microbes in various stages of their infection cycle such as invasion, motility, and persistence. Bacterial pathogens deliver a number of effector proteins into host cells for modulating the dynamics of actin and microtubule cytoskeleton. Alteration of the actin cytoskeleton is generally achieved by bacterial effectors that target the small GTPases of the host. Modulation of microtubule dynamics involves direct interaction of effector proteins with the subunits of microtubules or recruiting cellular proteins that affect microtubule dynamics. This review will discuss effector proteins from animal and human bacterial pathogens that either destabilize or stabilize host micro-tubules to advance the infectious process. A compilation of these research findings will provide an overview of known and unknown strategies used by various bacterial effectors to modulate the host microtubule dynamics. The present review will undoubtedly help direct future research to determine the mechanisms of action of many bacterial effector proteins and contribute to understanding the survival strategies of diverse adherent and invasive bacterial pathogens. PMID:23585820

  15. Microtubule acetylation promotes kinesin-1 binding and transport.

    PubMed

    Reed, Nathan A; Cai, Dawen; Blasius, T Lynne; Jih, Gloria T; Meyhofer, Edgar; Gaertig, Jacek; Verhey, Kristen J

    2006-11-01

    Long-distance intracellular delivery is driven by kinesin and dynein motor proteins that ferry cargoes along microtubule tracks . Current models postulate that directional trafficking is governed by known biophysical properties of these motors-kinesins generally move to the plus ends of microtubules in the cell periphery, whereas cytoplasmic dynein moves to the minus ends in the cell center. However, these models are insufficient to explain how polarized protein trafficking to subcellular domains is accomplished. We show that the kinesin-1 cargo protein JNK-interacting protein 1 (JIP1) is localized to only a subset of neurites in cultured neuronal cells. The mechanism of polarized trafficking appears to involve the preferential recognition of microtubules containing specific posttranslational modifications (PTMs) by the kinesin-1 motor domain. Using a genetic approach to eliminate specific PTMs, we show that the loss of a single modification, alpha-tubulin acetylation at Lys-40, influences the binding and motility of kinesin-1 in vitro. In addition, pharmacological treatments that increase microtubule acetylation cause a redirection of kinesin-1 transport of JIP1 to nearly all neurite tips in vivo. These results suggest that microtubule PTMs are important markers of distinct microtubule populations and that they act to control motor-protein trafficking. PMID:17084703

  16. Self-assembly of microtubules and motors

    NASA Astrophysics Data System (ADS)

    Aranson, Igor; Tsimring, Lev

    2005-03-01

    We derive a model describing spatio-temporal assembly of an array of microtubules interacting via molecular motors. Starting from a stochastic model of inelastic polar rods with a generic anisotropic interaction kernel we obtain a set of equations for the local rods concentration and orientation. At large enough mean density of rods and concentration of motors, the model describes orientational instability. We demonstrate that the orientational instability leads to the formation of vortices and (for large density and/or kernel anisotropy) asters seen in recent experiments.

  17. Self-organization of microtubules and motors.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.; Materials Science Division; Univ. of California at San Diego

    2006-01-01

    Here we introduce a model for spatio-temporal self-organization of an ensemble of microtubules interacting via molecular motors. Starting from a generic stochastic model of inelastic polar rods with an anisotropic interaction kernel we derive a set of equations for the local rods concentration and orientation. At large enough mean density of rods and concentration of motors, the model describes orientational instability. We demonstrate that the orientational instability leads to the formation of vortices and (for large density and/or kernel anisotropy) asters seen in recent experiments. The corresponding phase diagram of vortexasters transitions is in qualitative agreement with experiment.

  18. CYLD - a deubiquitylase that acts to fine-tune microtubule properties and functions.

    PubMed

    Yang, Yunfan; Zhou, Jun

    2016-06-15

    Microtubules are dynamic structures that are crucially involved in a variety of cellular activities. The dynamic properties and functions of microtubules are regulated by various factors, such as tubulin isotype composition and microtubule-binding proteins. Initially identified as a deubiquitylase with tumor-suppressing functions, the protein cylindromatosis (CYLD) has recently been revealed to interact with microtubules, modulate microtubule dynamics, and participate in the regulation of cell migration, cell cycle progression, chemotherapeutic drug sensitivity and ciliogenesis. These findings have greatly enriched our understanding of the roles of CYLD in physiological and pathological conditions. Here, we focus on recent literature that shows how CYLD impacts on microtubule properties and functions in various biological processes, and discuss the challenges we face when interpreting results obtained from different experimental systems. PMID:27173491

  19. Direct Microtubule-Binding by Myosin-10 Orients Centrosomes toward Retraction Fibers and Subcortical Actin Clouds.

    PubMed

    Kwon, Mijung; Bagonis, Maria; Danuser, Gaudenz; Pellman, David

    2015-08-10

    Positioning of centrosomes is vital for cell division and development. In metazoan cells, spindle positioning is controlled by a dynamic pool of subcortical actin that organizes in response to the position of retraction fibers. These actin "clouds" are proposed to generate pulling forces on centrosomes and mediate spindle orientation. However, the motors that pull astral microtubules toward these actin structures are not known. Here, we report that the unconventional myosin, Myo10, couples actin-dependent forces from retraction fibers and subcortical actin clouds to centrosomes. Myo10-mediated centrosome positioning requires its direct microtubule binding. Computational image analysis of large microtubule populations reveals a direct effect of Myo10 on microtubule dynamics and microtubule-cortex interactions. Myo10's role in centrosome positioning is distinct from, but overlaps with, that of dynein. Thus, Myo10 plays a key role in integrating the actin and microtubule cytoskeletons to position centrosomes and mitotic spindles. PMID:26235048

  20. Spastin's microtubule-binding properties and comparison to katanin.

    PubMed

    Eckert, Thomas; Le, Doan Tuong-Van; Link, Susanne; Friedmann, Lena; Woehlke, Günther

    2012-01-01

    Spastin and katanin are ring-shaped hexameric AAA ATPases that sever microtubules, and thus crucially depend on a physical interaction with microtubules. For the first time, we report here the microtubule binding properties of spastin at the single-molecule level, and compare them to katanin. Microscopic fluorescence assays showed that human spastin bound to microtubules by ionic interactions, and diffused along microtubules with a diffusion coefficient comparable to katanin. The microscopic measurement of landing and dissociation rates demonstrated the ionic character of the interaction, which could be mapped to a patch of three lysine residues outside of the catalytic domain of human spastin. This motif is not conserved in Drosophila spastin or katanin, which also bound by non-catalytic parts of the protein. The binding affinities of spastin and katanin were nucleotide-sensitive, with the lowest affinities under ADP,, the highest under ATP-γS conditions. These changes correlated with the formation of higher oligomeric states, as shown in biochemical experiments and electron microscopic images. Vice versa, the artificial dimerization of human spastin by addition of a coiled coil led to a constitutively active enzyme. These observations suggest that dimer formation is a crucial step in the formation of the active complex, and thus the severing process by spastin. PMID:23272056

  1. Persistence Length of Stable Microtubules

    NASA Astrophysics Data System (ADS)

    Hawkins, Taviare; Mirigian, Matthew; Yasar, M. Selcuk; Ross, Jennifer

    2011-03-01

    Microtubules are a vital component of the cytoskeleton. As the most rigid of the cytoskeleton filaments, they give shape and support to the cell. They are also essential for intracellular traffic by providing the roadways onto which organelles are transported, and they are required to reorganize during cellular division. To perform its function in the cell, the microtubule must be rigid yet dynamic. We are interested in how the mechanical properties of stable microtubules change over time. Some ``stable'' microtubules of the cell are recycled after days, such as in the axons of neurons or the cilia and flagella. We measured the persistence length of freely fluctuating taxol-stabilized microtubules over the span of a week and analyzed them via Fourier decomposition. As measured on a daily basis, the persistence length is independent of the contour length. Although measured over the span of the week, the accuracy of the measurement and the persistence length varies. We also studied how fluorescently-labeling the microtubule affects the persistence length and observed that a higher labeling ratio corresponded to greater flexibility. National Science Foundation Grant No: 0928540 to JLR.

  2. A STRIPAK component Strip regulates neuronal morphogenesis by affecting microtubule stability

    PubMed Central

    Sakuma, Chisako; Okumura, Misako; Umehara, Tomoki; Miura, Masayuki; Chihara, Takahiro

    2015-01-01

    During neural development, regulation of microtubule stability is essential for proper morphogenesis of neurons. Recently, the striatin-interacting phosphatase and kinase (STRIPAK) complex was revealed to be involved in diverse cellular processes. However, there is little evidence that STRIPAK components regulate microtubule dynamics, especially in vivo. Here, we show that one of the core STRIPAK components, Strip, is required for microtubule organization during neuronal morphogenesis. Knockdown of Strip causes a decrease in the level of acetylated α-tubulin in Drosophila S2 cells, suggesting that Strip influences the stability of microtubules. We also found that Strip physically and genetically interacts with tubulin folding cofactor D (TBCD), an essential regulator of α- and β-tubulin heterodimers. Furthermore, we demonstrate the genetic interaction between strip and Down syndrome cell adhesion molecule (Dscam), a cell surface molecule that is known to work with TBCD. Thus, we propose that Strip regulates neuronal morphogenesis by affecting microtubule stability. PMID:26644129

  3. Impact of C24:0 on actin-microtubule interaction in human neuronal SK-N-BE cells: evaluation by FRET confocal spectral imaging microscopy after dual staining with rhodamine-phalloidin and tubulin tracker green

    PubMed Central

    Zarrouk, Amira; Nury, Thomas; Dauphin, Aurélien; Frère, Perrine; Riedinger, Jean-Marc; Bachelet, Claude-Marie; Frouin, Frédérique; Moreau, Thibault; Hammami, Mohamed; Kahn, Edmond; Lizard, Gérard

    2015-01-01

    Summary Disorganization of the cytoskeleton of neurons has major consequences on the transport of neuro-transmitters via the microtubule network. The interaction of cytoskeleton proteins (actin and tubulin) was studied in neuronal SK-N-BE cells treated with tetracosanoic acid (C24:0), which is cytotoxic and increased in Alzheimer’s disease patients. When SK-N-BE cells were treated with C24:0, mitochondrial dysfunctions and a non-apoptotic mode of cell death were observed. Fluorescence microscopy revealed shrunken cells with perinuclear condensation of actin and tubulin. After staining with rhodamine-phalloidin and with an antibody raised against α-/β-tubulin, modifications of F-actin and α-/β-tubulin levels were detected by flow cytometry. Lower levels of α-tubulin were found by Western blotting. In C24:0-treated cells, spectral analysis and fluorescence recovery after photo-bleaching (FRAP) measured by confocal microscopy proved the existence of fluorescence resonance energy transfer (FRET) when actin and tubulin were stained with tubulin tracker and rhodamine-phalloidin demonstrating actin and tubulin co-localization/interaction. In control cells, no FRET was observed. Our data demonstrate quantitative changes in actin and tubulin, and modified interactions between actin and tubulin in SK-N-BE cells treated with C24:0. They also show that FRET confocal imaging microscopy is an interesting method for specifying the impact of cytotoxic compounds on cytoskeleton proteins. PMID:26214025

  4. Anti-Microtubule Drugs.

    PubMed

    Florian, Stefan; Mitchison, Timothy J

    2016-01-01

    Small molecule drugs that target microtubules (MTs), many of them natural products, have long been important tools in the MT field. Indeed, tubulin (Tb) was discovered, in part, as the protein binding partner of colchicine. Several anti-MT drug classes also have important medical uses, notably colchicine, which is used to treat gout, familial Mediterranean fever (FMF), and pericarditis, and the vinca alkaloids and taxanes, which are used to treat cancer. Anti-MT drugs have in common that they bind specifically to Tb in the dimer, MT or some other form. However, their effects on polymerization dynamics and on the human body differ markedly. Here we briefly review the most-studied molecules, and comment on their uses in basic research and medicine. Our focus is on practical applications of different anti-MT drugs in the laboratory, and key points that users should be aware of when designing experiments. We also touch on interesting unsolved problems, particularly in the area of medical applications. In our opinion, the mechanism by which any MT drug cures or treats any disease is still unsolved, despite decades of research. Solving this problem for particular drug-disease combinations might open new uses for old drugs, or provide insights into novel routes for treatment. PMID:27193863

  5. Microtubules in Plants

    PubMed Central

    Hashimoto, Takashi

    2015-01-01

    Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized. PMID:26019693

  6. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.

    PubMed

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2016-06-01

    Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. PMID:27012601

  7. CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo

    PubMed Central

    Espiritu, Eugenel B.; Krueger, Lori E.; Ye, Anna; Rose, Lesilee S.

    2012-01-01

    Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2. PMID:22613359

  8. Push or Pull? -- Cryo-Electron Microscopy of Microtubule's Dynamic Instability and Its Roles in the Kinetochore

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Wei

    2009-03-01

    Microtubule is a biopolymer made up of alpha-beta-tubulin heterodimers. The tubulin dimers assemble head-to-tail as protofilaments and about 13 protofilaments interact laterally to form a hollow cylindrical structure which is the microtubule. As the major cytoskeleton in all eukaryotic cells, microtubules have the intrinsic property to switch stochastically between growth and shrinkage phases, a phenomenon termed as their dynamic instability. Microtubule's dynamic instability is closely related to the types of nucleotide (GTP or GDP) that binds to the beta-tubulin. We have biochemically trapped two types of assembly states of tubulin with GTP or GDP bound representing the polymerizing and depolymerizing ends of microtubules respectively. Using cryo-electron microscopy, we have elucidated the structures of these intermediate assemblies, showing that tubulin protofilaments demonstrate various curvatures and form different types of lateral interactions depending on the nucleotide states of tubulin and the temperature. Our work indicates that during the microtubule's dynamic cycle, tubulin undergoes various assembly states. These states, different from the straight microtubule, lend the highly dynamic and complicated behavior of microtubules. Our study of microtubule's interaction with certain kinetochore complexes suggests that the intermediate assemblies are responsible for specific mechanical forces that are required during the mitosis or meiosis. Our discoveries strongly suggest that a microtubule is a molecular machine rather than a simple cellular scaffold.

  9. Direct interaction and functional coupling between human 5-HT6 receptor and the light chain 1 subunit of the microtubule-associated protein 1B (MAP1B-LC1).

    PubMed

    Kim, Soon-Hee; Kim, Dong Hyuk; Lee, Kang Ho; Im, Sun-Kyoung; Hur, Eun-Mi; Chung, Kwang Chul; Rhim, Hyewhon

    2014-01-01

    Serotonin (5-HT) receptors of type 6 (5-HT6R) play important roles in mood, psychosis, and eating disorders. Recently, a growing number of studies support the use of 5-HT6R-targeting compounds as promising drug candidates for treating cognitive dysfunction associated with Alzheimer's disease. However, the mechanistic linkage between 5-HT6R and such functions remains poorly understood. By using yeast two-hybrid, GST pull-down, and co-immunoprecipitation assays, here we show that human 5-HT6R interacts with the light chain 1 (LC1) subunit of MAP1B protein (MAP1B-LC1), a classical microtubule-associated protein highly expressed in the brain. Functionally, we have found that expression of MAP1B-LC1 regulates serotonin signaling in a receptor subtype-specific manner, specifically controlling the activities of 5-HT6R, but not those of 5-HT4R and 5-HT7R. In addition, we have demonstrated that MAP1B-LC1 increases the surface expression of 5-HT6R and decreases its endocytosis, suggesting that MAP1B-LC1 is involved in the desensitization and trafficking of 5-HT6R via a direct interaction. Together, we suggest that signal transduction pathways downstream of 5-HT6R are regulated by MAP1B, which might play a role in 5-HT6R-mediated signaling in the brain. PMID:24614691

  10. Direct Interaction and Functional Coupling between Human 5-HT6 Receptor and the Light Chain 1 Subunit of the Microtubule-Associated Protein 1B (MAP1B-LC1)

    PubMed Central

    Kim, Soon-Hee; Kim, Dong Hyuk; Lee, Kang Ho; Im, Sun-Kyoung; Hur, Eun-Mi; Chung, Kwang Chul; Rhim, Hyewhon

    2014-01-01

    Serotonin (5-HT) receptors of type 6 (5-HT6R) play important roles in mood, psychosis, and eating disorders. Recently, a growing number of studies support the use of 5-HT6R-targeting compounds as promising drug candidates for treating cognitive dysfunction associated with Alzheimer’s disease. However, the mechanistic linkage between 5-HT6R and such functions remains poorly understood. By using yeast two-hybrid, GST pull-down, and co-immunoprecipitation assays, here we show that human 5-HT6R interacts with the light chain 1 (LC1) subunit of MAP1B protein (MAP1B-LC1), a classical microtubule-associated protein highly expressed in the brain. Functionally, we have found that expression of MAP1B-LC1 regulates serotonin signaling in a receptor subtype-specific manner, specifically controlling the activities of 5-HT6R, but not those of 5-HT4R and 5-HT7R. In addition, we have demonstrated that MAP1B-LC1 increases the surface expression of 5-HT6R and decreases its endocytosis, suggesting that MAP1B-LC1 is involved in the desensitization and trafficking of 5-HT6R via a direct interaction. Together, we suggest that signal transduction pathways downstream of 5-HT6R are regulated by MAP1B, which might play a role in 5-HT6R-mediated signaling in the brain. PMID:24614691

  11. Cep169, a Novel Microtubule Plus-End-Tracking Centrosomal Protein, Binds to CDK5RAP2 and Regulates Microtubule Stability

    PubMed Central

    Mori, Yusuke; Inoue, Yoko; Tanaka, Sayori; Doda, Satoka; Yamanaka, Shota; Fukuchi, Hiroki; Terada, Yasuhiko

    2015-01-01

    The centrosomal protein, CDK5RAP2, is a microcephaly protein that regulates centrosomal maturation by recruitment of a γ-tubulin ring complex (γ-TuRC) onto centrosomes. In this report, we identified a novel human centrosomal protein, Cep169, as a binding partner of CDK5RAP2, a member of microtubule plus-end-tracking proteins (+TIPs). Cep169 interacts directly with CDK5RAP2 through CM1, an evolutionarily conserved domain, and colocalizes at the pericentriolar matrix (PCM) around centrioles with CDK5RAP2. In addition, Cep169 interacts with EB1 through SxIP-motif responsible for EB1 binding, and colocalizes with CDK5RAP2 at the microtubule plus-end. EB1-binding–deficient Cep169 abolishes EB1 interaction and microtubule plus-end attachment, indicating Cep169 as a novel member of +TIPs. We further show that ectopic expression of either Cep169 or CDK5RAP2 induces microtubule bundling and acetylation in U2OS cells, and depletion of Cep169 induces microtubule depolymerization in HeLa cells, although Cep169 is not required for assembly of γ-tubulin onto centrosome by CDK5RAP2. These results show that Cep169 targets microtubule tips and regulates stability of microtubules with CDK5RAP2. PMID:26485573

  12. Cep169, a Novel Microtubule Plus-End-Tracking Centrosomal Protein, Binds to CDK5RAP2 and Regulates Microtubule Stability.

    PubMed

    Mori, Yusuke; Inoue, Yoko; Tanaka, Sayori; Doda, Satoka; Yamanaka, Shota; Fukuchi, Hiroki; Terada, Yasuhiko

    2015-01-01

    The centrosomal protein, CDK5RAP2, is a microcephaly protein that regulates centrosomal maturation by recruitment of a γ-tubulin ring complex (γ-TuRC) onto centrosomes. In this report, we identified a novel human centrosomal protein, Cep169, as a binding partner of CDK5RAP2, a member of microtubule plus-end-tracking proteins (+TIPs). Cep169 interacts directly with CDK5RAP2 through CM1, an evolutionarily conserved domain, and colocalizes at the pericentriolar matrix (PCM) around centrioles with CDK5RAP2. In addition, Cep169 interacts with EB1 through SxIP-motif responsible for EB1 binding, and colocalizes with CDK5RAP2 at the microtubule plus-end. EB1-binding-deficient Cep169 abolishes EB1 interaction and microtubule plus-end attachment, indicating Cep169 as a novel member of +TIPs. We further show that ectopic expression of either Cep169 or CDK5RAP2 induces microtubule bundling and acetylation in U2OS cells, and depletion of Cep169 induces microtubule depolymerization in HeLa cells, although Cep169 is not required for assembly of γ-tubulin onto centrosome by CDK5RAP2. These results show that Cep169 targets microtubule tips and regulates stability of microtubules with CDK5RAP2. PMID:26485573

  13. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module

    PubMed Central

    Roostalu, Johanna; Cade, Nicholas I.; Surrey, Thomas

    2016-01-01

    Spindle assembly and function require precise control of microtubule nucleation and dynamics. The chromatin-driven spindle assembly pathway exerts such control locally in the vicinity of chromosomes. One of the key targets of this pathway is TPX2. The molecular mechanism of how TPX2 stimulates microtubule nucleation is not understood. Using microscopy-based dynamic in vitro reconstitution assays with purified proteins, we find that human TPX2 directly stabilises growing microtubule ends and stimulates microtubule nucleation by stabilising early microtubule nucleation intermediates. Human microtubule polymerase chTOG (XMAP215/Msps/Stu2p/Dis1/Alp14 homolog) only weakly promotes nucleation, but acts synergistically with TPX2. Hence, a combination of distinct and complementary activities is sufficient for efficient microtubule formation in vitro. Importins control the efficiency of the microtubule nucleation by selectively blocking TPX2’s interaction with microtubule nucleation intermediates. This in vitro reconstitution reveals the molecular mechanism of regulated microtubule formation by a minimal nucleation module essential for chromatin-dependent microtubule nucleation in cells. PMID:26414402

  14. Simulation studies of self-organization of microtubules and molecular motors.

    SciTech Connect

    Jian, Z.; Karpeev, D.; Aranson, I. S.; Bates, P. W.; Michigan State Univ.

    2008-05-01

    We perform Monte Carlo type simulation studies of self-organization of microtubules interacting with molecular motors. We model microtubules as stiff polar rods of equal length exhibiting anisotropic diffusion in the plane. The molecular motors are implicitly introduced by specifying certain probabilistic collision rules resulting in realignment of the rods. This approximation of the complicated microtubule-motor interaction by a simple instant collision allows us to bypass the 'computational bottlenecks' associated with the details of the diffusion and the dynamics of motors and the reorientation of microtubules. Consequently, we are able to perform simulations of large ensembles of microtubules and motors on a very large time scale. This simple model reproduces all important phenomenology observed in in vitro experiments: Formation of vortices for low motor density and raylike asters and bundles for higher motor density.

  15. Simulation studies of self-organization of microtubules and molecular motors

    NASA Astrophysics Data System (ADS)

    Jia, Zhiyuan; Karpeev, Dmitry; Aranson, Igor S.; Bates, Peter W.

    2008-05-01

    We perform Monte Carlo type simulation studies of self-organization of microtubules interacting with molecular motors. We model microtubules as stiff polar rods of equal length exhibiting anisotropic diffusion in the plane. The molecular motors are implicitly introduced by specifying certain probabilistic collision rules resulting in realignment of the rods. This approximation of the complicated microtubule-motor interaction by a simple instant collision allows us to bypass the “computational bottlenecks” associated with the details of the diffusion and the dynamics of motors and the reorientation of microtubules. Consequently, we are able to perform simulations of large ensembles of microtubules and motors on a very large time scale. This simple model reproduces all important phenomenology observed in in vitro experiments: Formation of vortices for low motor density and raylike asters and bundles for higher motor density.

  16. Doublet III beamline: as-built

    SciTech Connect

    Harder, C.R.; Holland, M.M.; Parker, J.W.; Gunn, J.; Resnick, L.

    1980-03-01

    In order to fully exploit Doublet III capabilities and to study new plasma physics regimes, a Neutral Beam Injector System has been constructed. Initially, a two beamline system will supply 7 MW of heat to the plasma. The system is currently being expanded to inject approx. 20 MW of power (6 beamlines). Each beamline is equipped with two Lawrence Berkeley Laboratory type rectangular ion sources with 10 cm x 40 cm extraction grids. These sources will accelerate hydrogen ions to 80 keV, with extracted beam currents in excess of 80 A per source expected. The first completed source is currently being tested and conditioned on the High Voltage Test Stand at Lawrence Livermore Laboratory. This paper pictorially reviews the as-built Doublet III neutral beamline with emphasis on component relation and configuration relative to spatial and source imposed design constraints.

  17. Multifunctional Microtubule-Associated Proteins in Plants

    PubMed Central

    Krtková, Jana; Benáková, Martina; Schwarzerová, Kateřina

    2016-01-01

    Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes. PMID:27148302

  18. Spatial organization of the Ran pathway by microtubules in mitosis

    PubMed Central

    Oh, Doogie; Yu, Che-Hang; Needleman, Daniel J.

    2016-01-01

    Concentration gradients of soluble proteins are believed to be responsible for control of morphogenesis of subcellular systems, but the mechanisms that generate the spatial organization of these subcellular gradients remain poorly understood. Here, we use a newly developed multipoint fluorescence fluctuation spectroscopy technique to study the ras-related nuclear protein (Ran) pathway, which forms soluble gradients around chromosomes in mitosis and is thought to spatially regulate microtubule behaviors during spindle assembly. We found that the distribution of components of the Ran pathway that influence microtubule behaviors is determined by their interactions with microtubules, resulting in microtubule nucleators being localized by the microtubules whose formation they stimulate. Modeling and perturbation experiments show that this feedback makes the length of the spindle insensitive to the length scale of the Ran gradient, allows the spindle to assemble outside the peak of the Ran gradient, and explains the scaling of the spindle with cell size. Such feedback between soluble signaling pathways and the mechanics of the cytoskeleton may be a general feature of subcellular organization. PMID:27439876

  19. A genetic analysis of microtubule assembly and function in yeast

    SciTech Connect

    Solomon, F.; Guenette, S.; Kirkpatrick, D.; Praitis, V.; Weinstein, B.; Archer, J.

    1993-12-31

    The major goal of our laboratory`s research is to understand how cells organize their cytoskeletons to produce motility: specific patterns of shape change, intracellular motility and locomotion. We focus primarily on microtubules. We appreciate that results from several laboratories including our own, suggest that microtubule function is expressed in part through interactions with other elements of the cytoskeleton and other cellular compartments, such as the plasma membrane. However, focusing on microtubules represents a justifiable reduction, since a wide variety of drug interference and localization experiments support the notion that intact microtubules are essential for each of these motile phenomena. The primary problem facing this field is understanding how microtubule structure and function is regulated in vivo. Although there are a variety of excellent experimental systems which permit detailed analyses of behavior in vitro, the extrapolation of these results to the situation in the cytoplasm is problematic. These efforts have been boosted significantly in the last several years by two advances: first, traditionally excellent genetic organisms, such as the yeasts, have been enlisted in the study of motility; second, molecular biology has enabled {open_quotes}pseudo-genetic{close_quotes} approaches in animal cells which display the most interesting of motile phenomena. Our laboratory is involved in both of these efforts. In the present report, we will summarize our present approaches using yeast.

  20. Tubulin tyrosine nitration regulates microtubule organization in plant cells

    PubMed Central

    Blume, Yaroslav B.; Krasylenko, Yuliya A.; Demchuk, Oleh M.; Yemets, Alla I.

    2013-01-01

    During last years, selective tyrosine nitration of plant proteins gains importance as well-recognized pathway of direct nitric oxide (NO) signal transduction. Plant microtubules are one of the intracellular signaling targets for NO, however, the molecular mechanisms of NO signal transduction with the involvement of cytoskeletal proteins remain to be elucidated. Since biochemical evidence of plant α-tubulin tyrosine nitration has been obtained recently, potential role of this posttranslational modification in regulation of microtubules organization in plant cell is estimated in current paper. It was shown that 3-nitrotyrosine (3-NO2-Tyr) induced partially reversible Arabidopsis primary root growth inhibition, alterations of root hairs morphology and organization of microtubules in root cells. It was also revealed that 3-NO2-Tyr intensively decorates such highly dynamic microtubular arrays as preprophase bands, mitotic spindles and phragmoplasts of Nicotiana tabacum Bright Yellow-2 (BY-2) cells under physiological conditions. Moreover, 3D models of the mitotic kinesin-8 complexes with the tail of detyrosinated, tyrosinated and tyrosine nitrated α-tubulin (on C-terminal Tyr 450 residue) from Arabidopsis were reconstructed in silico to investigate the potential influence of tubulin nitrotyrosination on the molecular dynamics of α-tubulin and kinesin-8 interaction. Generally, presented data suggest that plant α-tubulin tyrosine nitration can be considered as its common posttranslational modification, the direct mechanism of NO signal transduction with the participation of microtubules under physiological conditions and one of the hallmarks of the increased microtubule dynamics. PMID:24421781

  1. Self-organized pattern formation in motor-microtubule mixtures

    NASA Astrophysics Data System (ADS)

    Sankararaman, Sumithra; Menon, Gautam I.; Sunil Kumar, P. B.

    2004-09-01

    We model the stable self-organized patterns obtained in the nonequilibrium steady states of mixtures of molecular motors and microtubules. In experiments [Nédélec , Nature (London) 389, 305 (1997); Surrey , Science 292, 1167 (2001)] performed in a quasi-two-dimensional geometry, microtubules are oriented by complexes of motor proteins. This interaction yields a variety of patterns, including arrangements of asters, vortices, and disordered configurations. We model this system via a two-dimensional vector field describing the local coarse-grained microtubule orientation and two scalar density fields associated to molecular motors. These scalar fields describe motors which either attach to and move along microtubules or diffuse freely within the solvent. Transitions between single aster, spiral, and vortex states are obtained as a consequence of confinement, as parameters in our model are varied. For systems in which the effects of confinement can be neglected, we present a map of nonequilibrium steady states, which includes arrangements of asters and vortices separately as well as aster-vortex mixtures and fully disordered states. We calculate the steady state distribution of bound and free motors in aster and vortex configurations of microtubules and compare these to our simulation results, providing qualitative arguments for the stability of different patterns in various regimes of parameter space. We study the role of crowding or “saturation” effects on the density profiles of motors in asters, discussing the role of such effects in stabilizing single asters. We also comment on the implications of our results for experiments.

  2. Spatial organization of the Ran pathway by microtubules in mitosis.

    PubMed

    Oh, Doogie; Yu, Che-Hang; Needleman, Daniel J

    2016-08-01

    Concentration gradients of soluble proteins are believed to be responsible for control of morphogenesis of subcellular systems, but the mechanisms that generate the spatial organization of these subcellular gradients remain poorly understood. Here, we use a newly developed multipoint fluorescence fluctuation spectroscopy technique to study the ras-related nuclear protein (Ran) pathway, which forms soluble gradients around chromosomes in mitosis and is thought to spatially regulate microtubule behaviors during spindle assembly. We found that the distribution of components of the Ran pathway that influence microtubule behaviors is determined by their interactions with microtubules, resulting in microtubule nucleators being localized by the microtubules whose formation they stimulate. Modeling and perturbation experiments show that this feedback makes the length of the spindle insensitive to the length scale of the Ran gradient, allows the spindle to assemble outside the peak of the Ran gradient, and explains the scaling of the spindle with cell size. Such feedback between soluble signaling pathways and the mechanics of the cytoskeleton may be a general feature of subcellular organization. PMID:27439876

  3. Astral microtubules physically redistribute cortical actin filaments to the incipient contractile ring.

    PubMed

    Tseng, Kuo-Fu; Foss, Margit; Zhang, Dahong

    2012-11-01

    Prior to cell cleavage, cytokinetic proteins are recruited into the nascent actomyosin contractile ring, paving the way for formation of a functional cleavage furrow. Interactions between spindle microtubules and the cell cortex may play a critical role in this recruitment, since microtubules have been shown to affect distribution and activation of cytokinetic proteins within the cortex. However, direct evidence for physical interaction between microtubules and the cortex has been lacking. Here, we probed the physical connection between astral microtubules and cortical actin filaments, by micromanipulating the fluorescently tagged cytoskeleton in living spermatocytes of the grasshopper Melanoplus femurrubrum. When microtubules were tugged with a microneedle, they in turn pulled on cortical actin filaments, interrupting the filaments' journey toward the equator. Further displacement of the actin dragged the cell membrane inward, demonstrating that the cortical actin network physically linked spindle microtubules to the cell membrane. Regional disruption of the connection by breaking spindle microtubules prevented actin accumulation in a segment of the ring, which locally inhibited furrowing. We propose a model in which dynamic astral microtubules physically redistribute cortical actin into the incipient contractile ring. PMID:23027710

  4. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase

    PubMed Central

    Ayaz, Pelin; Munyoki, Sarah; Geyer, Elisabeth A; Piedra, Felipe-Andrés; Vu, Emily S; Bromberg, Raquel; Otwinowski, Zbyszek; Grishin, Nick V; Brautigam, Chad A; Rice, Luke M

    2014-01-01

    Stu2p/XMAP215 proteins are essential microtubule polymerases that use multiple αβ-tubulin-interacting TOG domains to bind microtubule plus ends and catalyze fast microtubule growth. We report here the structure of the TOG2 domain from Stu2p bound to yeast αβ-tubulin. Like TOG1, TOG2 binds selectively to a fully ‘curved’ conformation of αβ-tubulin, incompatible with a microtubule lattice. We also show that TOG1-TOG2 binds non-cooperatively to two αβ-tubulins. Preferential interactions between TOGs and fully curved αβ-tubulin that cannot exist elsewhere in the microtubule explain how these polymerases localize to the extreme microtubule end. We propose that these polymerases promote elongation because their linked TOG domains concentrate unpolymerized αβ-tubulin near curved subunits already bound at the microtubule end. This tethering model can explain catalyst-like behavior and also predicts that the polymerase action changes the configuration of the microtubule end. DOI: http://dx.doi.org/10.7554/eLife.03069.001 PMID:25097237

  5. Disruption of cytoplasmic microtubules by ultraviolet radiation

    SciTech Connect

    Zamansky, G.B.; Perrino, B.A.; Chou, I.N. )

    1991-07-01

    Ultraviolet (UV) irradiation of cultured human skin fibroblasts causes the disassembly of their microtubules. Using indirect immunofluorescence microscopy, we have now investigated whether damage to the microtubule precursor pool may contribute to the disruption of microtubules. Exposure to polychromatic UV radiation inhibits the reassembly of microtubules during cellular recovery from cold treatment. In addition, the ability of taxol to promote microtubule polymerization and bundling is inhibited in UV-irradiated cells. However, UV irradiation of taxol-pretreated cells or in situ detergent-extracted microtubules fails to disrupt the microtubule network. These data suggest that damage to dimeric tubulin, or another soluble factor(s) required for polymerization, contributes to the disassembly of microtubules in UV-irradiated human skin fibroblasts.

  6. How Dynein Moves Along Microtubules.

    PubMed

    Bhabha, Gira; Johnson, Graham T; Schroeder, Courtney M; Vale, Ronald D

    2016-01-01

    Cytoplasmic dynein, a member of the AAA (ATPases Associated with diverse cellular Activities) family of proteins, drives the processive movement of numerous intracellular cargos towards the minus end of microtubules. Here, we summarize the structural and motile properties of dynein and highlight features that distinguish this motor from kinesin-1 and myosin V, two well-studied transport motors. Integrating information from recent crystal and cryoelectron microscopy structures, as well as high-resolution single-molecule studies, we also discuss models for how dynein biases its movement in one direction along a microtubule track, and present a movie that illustrates these principles. PMID:26678005

  7. Microtubule Severing Stymied by Free Tubulin

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer; Bailey, Megan

    2015-03-01

    Proper organization of the microtubule cytoskeletal network is required to perform many necessary cellular functions including mitosis, cell development, and cell motility. Network organization is achieved through filament remodeling by microtubule-associated proteins (MAPs) that control microtubule dynamics. MAPs that stabilize are relatively well understood, while less is known about destabilizing MAPs, such as severing enzymes. Katanin, the first-discovered microtubule-severing enzyme, is a AAA + enzyme that oligomerizes into hexamers and uses ATP hydrolysis to sever microtubules. Using quantitative fluorescence imaging on reconstituted microtubule severing assays in vitro we investigate how katanin can regulate microtubule dynamics. Interestingly, we find microtubule dynamics inhibits katanin severing activity; dynamic microtubules are not severed. Using systematic experiments introducing free tubulin into the assays we find that free tubulin can compete for microtubule filaments for the katanin proteins. Our work indicates that katanin could function best on stabile microtubules or stabile regions of microtubules in cells in regions where free tubulin is sequesters, low, or depleted.

  8. The kinesin-13 KLP10A motor regulates oocyte spindle length and affects EB1 binding without altering microtubule growth rates.

    PubMed

    Do, Kevin K; Hoàng, Kim Liên; Endow, Sharyn A

    2014-01-01

    Kinesin-13 motors are unusual in that they do not walk along microtubules, but instead diffuse to the ends, where they remove tubulin dimers, regulating microtubule dynamics. Here we show that Drosophila kinesin-13 klp10A regulates oocyte meiosis I spindle length and is haplo-insufficient - KLP10A, reduced by RNAi or a loss-of-function P element insertion mutant, results in elongated and mispositioned oocyte spindles, and abnormal cortical microtubule asters and aggregates. KLP10A knockdown by RNAi does not significantly affect microtubule growth rates in oocyte spindles, but, unexpectedly, EB1 binding and unbinding are slowed, suggesting a previously unobserved role for kinesin-13 in mediating EB1 binding interactions with microtubules. Kinesin-13 may regulate spindle length both by disassembling subunits from microtubule ends and facilitating EB1 binding to plus ends. We also observe an increased number of paused microtubules in klp10A RNAi knockdown spindles, consistent with a reduced frequency of microtubule catastrophes. Overall, our findings indicate that reduced kinesin-13 decreases microtubule disassembly rates and affects EB1 interactions with microtubules, rather than altering microtubule growth rates, causing spindles to elongate and abnormal cortical microtubule asters and aggregates to form. PMID:24907370

  9. Recent progress with microtubule stabilizers: new compounds, binding modes and cellular activities

    PubMed Central

    Rohena, Cristina C.

    2014-01-01

    Nature has yielded numerous classes of chemically distinct microtubule stabilizers. Several of these, including paclitaxel (Taxol) and docetaxel (Taxotere), are important drugs used in the treatment of cancer. New microtubule stabilizers and novel formulations of these agents continue to provide advances in cancer therapy. In this review we cover recent progress from late 2008 to August 2013 in the chemistry and biology of these diverse microtubule stabilizers focusing on the wide range of organisms that produce these compounds, their mechanisms of inhibiting microtubule-dependent processes, mechanisms of drug resistance, and their interactions with tubulin including their distinct binding sites and modes. A new potential role for microtubule stabilizers in neurodegenerative diseases is reviewed. PMID:24481420

  10. Influence of dense quantum plasmas on fine-structure splitting of Lyman doublets of hydrogenic systems

    SciTech Connect

    De, Madhab Ray, Debasis

    2015-05-15

    Relativistic calculations are performed to study the effects of oscillatory quantum plasma screening on the fine-structure splitting between the components of Lyman-α and β line doublets of atomic hydrogen and hydrgen-like argon ion within dense quantum plasmas, where the effective two-body (electron–nucleus) interaction is modeled by the Shukla–Eliasson oscillatory exponential cosine screened-Coulomb potential. The numerical solutions of the radial Dirac equation for the quantum plasma-embedded atomic systems reveal that the oscillatory quantum screening effect suppresses the doublet (energy) splitting substantially and the suppression becomes more prominent at large quantum wave number k{sub q}. In the absence of the oscillatory cosine screening term, much larger amount of suppression is noticed at larger values of k{sub q}, and the corresponding results represent the screening effect of an exponential screened-Coulomb two-body interaction. The Z{sup 4} scaling of the Lyman doublet splitting in low-Z hydrogen isoelectronic series of ions in free space is violated in dense quantum plasma environments. The relativistic data for the doublet splitting in the zero screening (k{sub q} = 0) case are in very good agreement with the NIST reference data, with slight discrepancies (∼0.2%) arising from the neglect of the quantum electrodynamic effects.

  11. Cortical microtubule labeling: insight of AFH14 in non-dividing cells.

    PubMed

    Cai, Chao; Li, Yanhua; Shen, Yuan; Ren, Haiyun

    2010-12-01

    We recently reported that AFH14 participated in microtubule and actin filament interaction in cell division, and the AFH14 (FH1FH2) was important to the directly binding activity of microtubules and microfilaments. To preliminarily understand the function and localization of AFH14 in non-dividing cells, we overexpressed FH1FH2-RFP in onion epidermal cells, and found a fluorescence labeled filamentous network. The result of double labeling with different cytoskeleton reporter proteins indicated that FH1FH2-RFP co-localized with cortical microtubules. Treatment of cells expressing FH1FH2-RFP with cytoskeleton disrupting drugs confirms that FH1FH2-RFP binds to microtubules. Moreover, the binding of FH1FH2-RFP to microtubules were revealed to be dynamic by fluorescence recovery after photobleaching (FRAP) experiment. Time-lapse confocal microscopy showed that FH1FH2-RFP could display a dynamics similar to the microtubule dynamic instability. These data suggest that FH1FH2 domain may lead AFH14 function on cortical microtubules in non-dividing cells, and FH1FH2-RFP may be utilized as a microtubule reporter protein in living onion epidermal cells. PMID:21139436

  12. Termination of Protofilament Elongation by Eribulin Induces Lattice Defects that Promote Microtubule Catastrophes.

    PubMed

    Doodhi, Harinath; Prota, Andrea E; Rodríguez-García, Ruddi; Xiao, Hui; Custar, Daniel W; Bargsten, Katja; Katrukha, Eugene A; Hilbert, Manuel; Hua, Shasha; Jiang, Kai; Grigoriev, Ilya; Yang, Chia-Ping H; Cox, David; Horwitz, Susan Band; Kapitein, Lukas C; Akhmanova, Anna; Steinmetz, Michel O

    2016-07-11

    Microtubules are dynamic polymers built of tubulin dimers that attach in a head-to-tail fashion to form protofilaments, which further associate laterally to form a tube. Asynchronous elongation of individual protofilaments can potentially lead to an altered microtubule-end structure that promotes sudden depolymerization, termed catastrophe [1-4]. However, how the dynamics of individual protofilaments relates to overall growth persistence has remained unclear. Here, we used the microtubule targeting anti-cancer drug Eribulin [5-7] to explore the consequences of stalled protofilament elongation on microtubule growth. Using X-ray crystallography, we first revealed that Eribulin binds to a site on β-tubulin that is required for protofilament plus-end elongation. Based on the structural information, we engineered a fluorescent Eribulin molecule. We demonstrate that single Eribulin molecules specifically interact with microtubule plus ends and are sufficient to either trigger a catastrophe or induce slow and erratic microtubule growth in the presence of EB3. Interestingly, we found that Eribulin increases the frequency of EB3 comet "splitting," transient events where a slow and erratically progressing comet is followed by a faster comet. This observation possibly reflects the "healing" of a microtubule lattice. Because EB3 comet splitting was also observed in control microtubules in the absence of any drugs, we propose that Eribulin amplifies a natural pathway toward catastrophe by promoting the arrest of protofilament elongation. PMID:27321995

  13. How the kinetochore couples microtubule force and centromere stretch to move chromosomes.

    PubMed

    Suzuki, Aussie; Badger, Benjamin L; Haase, Julian; Ohashi, Tomoo; Erickson, Harold P; Salmon, Edward D; Bloom, Kerry

    2016-04-01

    The Ndc80 complex (Ndc80, Nuf2, Spc24 and Spc25) is a highly conserved kinetochore protein essential for end-on anchorage to spindle microtubule plus ends and for force generation coupled to plus-end polymerization and depolymerization. Spc24/Spc25 at one end of the Ndc80 complex binds the kinetochore. The N-terminal tail and CH domains of Ndc80 bind microtubules, and an internal domain binds microtubule-associated proteins (MAPs) such as the Dam1 complex. To determine how the microtubule- and MAP-binding domains of Ndc80 contribute to force production at the kinetochore in budding yeast, we have inserted a FRET tension sensor into the Ndc80 protein about halfway between its microtubule-binding and internal loop domains. The data support a mechanical model of force generation at metaphase where the position of the kinetochore relative to the microtubule plus end reflects the relative strengths of microtubule depolymerization, centromere stretch and microtubule-binding interactions with the Ndc80 and Dam1 complexes. PMID:26974660

  14. Regulation of actin assembly by microtubules in fission yeast cell polarity.

    PubMed

    Chang, Fred; Feierbach, Becket; Martin, Sophie

    2005-01-01

    It has been speculated that microtubule plus ends function to regulate the actin cytoskeleton in processes such as cytokinesis, cell polarization and cell migration. In the fission yeast Schizosaccharomyces pombe, interphase microtubules regulate cell polarity through proteins such as tea1p, a kelch repeat protein, and for3p, a formin that nucleates actin cable assembly at cell tips. Here, we review recent progress on understanding tea1p regulation and function. Microtubules may govern the localization of tea1p by transporting it on the plus ends of microtubules and depositing it directly onto the cell tip when the microtubule catastrophes. The interaction of tea1p with the CLIP170 protein tip1p is responsible for its localization at growing microtubule plus ends. Tea1p may regulate cell polarity by associating with large 'polarisome' complexes that include for3p. For3p is present at both cell tips, but is not on the microtubules. Tea1p is needed to localize the formin to establish polarized cell growth at cell tips that have not grown previously. These studies begin to elucidate a molecular pathway for how microtubules contribute to the proper spatial regulation of actin assembly and polarized cell growth. PMID:16355535

  15. The Spontaneous Alignment of Microtubules in Vitro.

    NASA Astrophysics Data System (ADS)

    Hitt, Anne Louise

    Microtubules assembled at 37^circ C in vitro from tubulin, with or without microtubule associated proteins (MAPs), spontaneously form macroscopic domains of intense birefringence. Because the intrinsic birefringence of microtubules is small, the observed effect must be due to form birefringence, caused by a mutually parallel disposition of microtubules. The observed birefringence cannot be accounted for by multiple light scattering. Birefringence and microtubule polymerization are observed to be temporally coupled. The development of multiple macroscopic birefringent domains is mirrored by the formation of large domains which scatter light strongly. Because these solutions are not homogeneous, Beer's law may not apply. These turbid domains may account for the turbidity overshoot observed by several laboratories. Electron micrographs of sections of gluteraldehyde -fixed microtubule solutions which exhibited birefringence before and after fixation displayed a directionality. This confirms that microtubules in solution are aligned with respect to each other. Centrifugation of birefringent microtubule solutions yields an isotropic supernatant and an intensely birefringent pellet, suggesting that the birefringent domains are dense and sediment intact. If MAPs are present, the birefringent domains can be observed in dilute solution after more than 20 hours at 37^circ C. Polymerization conditions which result in oscillations in microtubule assembly due to dynamic instability also result in oscillations in microtubule alignment. These observations, taken together, indicate that microtubule solutions become nematic liquid crystals exhibiting a polydomain schlieren texture upon polymerization in vitro. These domains appear to be stable, dense constructs of microtubules, which are liquid-crystalline in character. Assembly of microtubules initially results in the formation of many small microtubules; with time, however, fewer but longer microtubules are observed. Recently, two

  16. A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases

    PubMed Central

    Xue, Chuan; Shtylla, Blerta; Brown, Anthony

    2015-01-01

    The organization of the axonal cytoskeleton is a key determinant of the normal function of an axon, which is a long thin projection of a neuron. Under normal conditions two axonal cytoskeletal polymers, microtubules and neurofilaments, align longitudinally in axons and are interspersed in axonal cross-sections. However, in many neurotoxic and neurodegenerative disorders, microtubules and neurofilaments segregate apart from each other, with microtubules and membranous organelles clustered centrally and neurofilaments displaced to the periphery. This striking segregation precedes the abnormal and excessive neurofilament accumulation in these diseases, which in turn leads to focal axonal swellings. While neurofilament accumulation suggests an impairment of neurofilament transport along axons, the underlying mechanism of their segregation from microtubules remains poorly understood for over 30 years. To address this question, we developed a stochastic multiscale model for the cross-sectional distribution of microtubules and neurofilaments in axons. The model describes microtubules, neurofilaments and organelles as interacting particles in a 2D cross-section, and is built upon molecular processes that occur on a time scale of seconds or shorter. It incorporates the longitudinal transport of neurofilaments and organelles through this domain by allowing stochastic arrival and departure of these cargoes, and integrates the dynamic interactions of these cargoes with microtubules mediated by molecular motors. Simulations of the model demonstrate that organelles can pull nearby microtubules together, and in the absence of neurofilament transport, this mechanism gradually segregates microtubules from neurofilaments on a time scale of hours, similar to that observed in toxic neuropathies. This suggests that the microtubule-neurofilament segregation can be a consequence of the selective impairment of neurofilament transport. The model generates the experimentally testable

  17. The sulfur doublet in galactic H-II regions

    NASA Technical Reports Server (NTRS)

    Mccracken, C. W.

    1973-01-01

    Spectrographic scans for sulfur doublet intensity in the Orion nebula show that electron density decreases from about 15,000 down to about 1500 electrons per cubic centimeter within a few minutes of arc in both directions from the maximum. There appears to be small-scale structure in the electron density, with variations by a factor of two very common. Satisfactory agreement is obtained for electron density values derived from the oxygen doublet as well as from the sulfur doublet.

  18. Doublet-singlet model and unitarity

    NASA Astrophysics Data System (ADS)

    Cynolter, G.; Kovács, J.; Lendvai, E.

    2016-12-01

    We study the renormalizable singlet-doublet fermionic extension of the Standard Model (SM). In this model, the new vector-like fermions couple to the gauge bosons and to the Higgs via new Yukawa couplings that allow for nontrivial mixing in the new sector, providing a stable, neutral dark matter candidate. Approximate analytic formulae are given for the mass spectrum around the blind spots, where the dark matter candidate coupling to h or Z vanishes. We calculate the two particle scattering amplitudes in the model, impose the perturbative unitarity constraints and establish bounds on the Yukawa couplings.

  19. Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis.

    PubMed

    Nashchekin, Dmitry; Fernandes, Artur Ribeiro; St Johnston, Daniel

    2016-07-11

    Noncentrosomal microtubules play an important role in polarizing differentiated cells, but little is known about how these microtubules are organized. Here we identify the spectraplakin, Short stop (Shot), as the cortical anchor for noncentrosomal microtubule organizing centers (ncMTOCs) in the Drosophila oocyte. Shot interacts with the cortex through its actin-binding domain and recruits the microtubule minus-end-binding protein, Patronin, to form cortical ncMTOCs. Shot/Patronin foci do not co-localize with γ-tubulin, suggesting that they do not nucleate new microtubules. Instead, they capture and stabilize existing microtubule minus ends, which then template new microtubule growth. Shot/Patronin foci are excluded from the oocyte posterior by the Par-1 polarity kinase to generate the polarized microtubule network that localizes axis determinants. Both proteins also accumulate apically in epithelial cells, where they are required for the formation of apical-basal microtubule arrays. Thus, Shot/Patronin ncMTOCs may provide a general mechanism for organizing noncentrosomal microtubules in differentiated cells. PMID:27404359

  20. Multiple chiral doublet bands of identical configuration in 103Rh.

    PubMed

    Kuti, I; Chen, Q B; Timár, J; Sohler, D; Zhang, S Q; Zhang, Z H; Zhao, P W; Meng, J; Starosta, K; Koike, T; Paul, E S; Fossan, D B; Vaman, C

    2014-07-18

    Three sets of chiral doublet band structures have been identified in the ^{103}Rh nucleus. The properties of the observed chiral doublet bands are in good agreement with theoretical results obtained using constrained covariant density functional theory and particle rotor model calculations. Two of them belong to an identical configuration and provide the first experimental evidence for a novel type of multiple chiral doublets, where an "excited" chiral doublet of a configuration is seen together with the "yrast" one. This observation shows that the chiral geometry in nuclei can be robust against the increase of the intrinsic excitation energy. PMID:25083635

  1. Microtubule and Actin Interplay Drive Intracellular c-Src Trafficking.

    PubMed

    Arnette, Christopher; Frye, Keyada; Kaverina, Irina

    2016-01-01

    The proto-oncogene c-Src is involved in a variety of signaling processes. Therefore, c-Src spatiotemporal localization is critical for interaction with downstream targets. However, the mechanisms regulating this localization have remained elusive. Previous studies have shown that c-Src trafficking is a microtubule-dependent process that facilitates c-Src turnover in neuronal growth cones. As such, microtubule depolymerization lead to the inhibition of c-Src recycling. Alternatively, c-Src trafficking was also shown to be regulated by RhoB-dependent actin polymerization. Our results show that c-Src vesicles primarily exhibit microtubule-dependent trafficking; however, microtubule depolymerization does not inhibit vesicle movement. Instead, vesicular movement becomes both faster and less directional. This movement was associated with actin polymerization directly at c-Src vesicle membranes. Interestingly, it has been shown previously that c-Src delivery is an actin polymerization-dependent process that relies on small GTPase RhoB at c-Src vesicles. In agreement with this finding, microtubule depolymerization induced significant activation of RhoB, together with actin comet tail formation. These effects occurred downstream of GTP-exchange factor, GEF-H1, which was released from depolymerizing MTs. Accordingly, GEF-H1 activity was necessary for actin comet tail formation at the Src vesicles. Our results indicate that regulation of c-Src trafficking requires both microtubules and actin polymerization, and that GEF-H1 coordinates c-Src trafficking, acting as a molecular switch between these two mechanisms. PMID:26866809

  2. Microtubule and Actin Interplay Drive Intracellular c-Src Trafficking

    PubMed Central

    Arnette, Christopher; Frye, Keyada; Kaverina, Irina

    2016-01-01

    The proto-oncogene c-Src is involved in a variety of signaling processes. Therefore, c-Src spatiotemporal localization is critical for interaction with downstream targets. However, the mechanisms regulating this localization have remained elusive. Previous studies have shown that c-Src trafficking is a microtubule-dependent process that facilitates c-Src turnover in neuronal growth cones. As such, microtubule depolymerization lead to the inhibition of c-Src recycling. Alternatively, c-Src trafficking was also shown to be regulated by RhoB-dependent actin polymerization. Our results show that c-Src vesicles primarily exhibit microtubule-dependent trafficking; however, microtubule depolymerization does not inhibit vesicle movement. Instead, vesicular movement becomes both faster and less directional. This movement was associated with actin polymerization directly at c-Src vesicle membranes. Interestingly, it has been shown previously that c-Src delivery is an actin polymerization-dependent process that relies on small GTPase RhoB at c-Src vesicles. In agreement with this finding, microtubule depolymerization induced significant activation of RhoB, together with actin comet tail formation. These effects occurred downstream of GTP-exchange factor, GEF-H1, which was released from depolymerizing MTs. Accordingly, GEF-H1 activity was necessary for actin comet tail formation at the Src vesicles. Our results indicate that regulation of c-Src trafficking requires both microtubules and actin polymerization, and that GEF-H1 coordinates c-Src trafficking, acting as a molecular switch between these two mechanisms. PMID:26866809

  3. Detailed Per-residue Energetic Analysis Explains the Driving Force for Microtubule Disassembly

    PubMed Central

    Ayoub, Ahmed T.; Klobukowski, Mariusz; Tuszynski, Jack A.

    2015-01-01

    Microtubules are long filamentous hollow cylinders whose surfaces form lattice structures of αβ-tubulin heterodimers. They perform multiple physiological roles in eukaryotic cells and are targets for therapeutic interventions. In our study, we carried out all-atom molecular dynamics simulations for arbitrarily long microtubules that have either GDP or GTP molecules in the E-site of β-tubulin. A detailed energy balance of the MM/GBSA inter-dimer interaction energy per residue contributing to the overall lateral and longitudinal structural stability was performed. The obtained results identified the key residues and tubulin domains according to their energetic contributions. They also identified the molecular forces that drive microtubule disassembly. At the tip of the plus end of the microtubule, the uneven distribution of longitudinal interaction energies within a protofilament generates a torque that bends tubulin outwardly with respect to the cylinder's axis causing disassembly. In the presence of GTP, this torque is opposed by lateral interactions that prevent outward curling, thus stabilizing the whole microtubule. Once GTP hydrolysis reaches the tip of the microtubule (lateral cap), lateral interactions become much weaker, allowing tubulin dimers to bend outwards, causing disassembly. The role of magnesium in the process of outward curling has also been demonstrated. This study also showed that the microtubule seam is the most energetically labile inter-dimer interface and could serve as a trigger point for disassembly. Based on a detailed balance of the energetic contributions per amino acid residue in the microtubule, numerous other analyses could be performed to give additional insights into the properties of microtubule dynamic instability. PMID:26030285

  4. Neutrino signature of Inert Doublet Dark Matter

    NASA Astrophysics Data System (ADS)

    Andreas, Sarah

    2010-06-01

    In the framework of the Inert Doublet Model and extensions, the signature of neutrinos from dark matter annihilation in the Earth, the Sun and at the Galactic centre is presented. The model contains an extra Higgs doublet, a neutral component of which is chosen as dark matter candidate. There are three distinct mass ranges for which consistency both with WMAP abundance and direct searches can be obtained: a low (4-8 GeV), a middle (60-70 GeV) and a high (500-1500 GeV) WIMP mass range. The first case is of interest as we showed that the model can at the same time give the correct WMAP abundance and account for the positive DAMA results without contradicting other direct searches. We present how capture in the Sun can further constrain this scenario using Super-Kamiokande data. Indirect detection through neutrinos is challenging for the middle and high mass ranges. For the former, the presence of the so-called `iron resonance' gives rise to larger neutrino fluxes for WIMP masses around 60-70 GeV since capture by the Earth is enhanced. The addition of light right-handed Majo-rana neutrinos to the particle content of the model further increases the signal since it opens a direct annihilation channel into mono-energetic neutrinos. Neutrinos from the Galactic centre might be detected for heavy WIMPs if the dark matter density at the Galactic centre is substantially boosted.

  5. Chiral geometry in multiple chiral doublet bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  6. Neutrinos from Inert Doublet dark matter

    SciTech Connect

    Andreas, Sarah; Tytgat, Michel H.G.; Swillens, Quentin E-mail: mtytgat@ulb.ac.be

    2009-04-15

    We investigate the signatures of neutrinos produced in the annihilation of WIMP dark matter in the Earth, the Sun and at the Galactic centre within the framework of the Inert Doublet Model and extensions. We consider a dark matter candidate, that we take to be one of the neutral components of an extra Higgs doublet, in three distinct mass ranges, which have all been shown previously to be consistent with both WMAP abundance and direct detection experiments exclusion limits. Specifically, we consider a light WIMP with mass between 4 and 8 GeV (low), a WIMP with mass around 60-70 GeV (middle) and a heavy WIMP with mass above 500 GeV (high). In the first case, we show that capture in the Sun may be constrained using Super-Kamiokande data. In the last two cases, we argue that indirect detection through neutrinos is challenging but not altogether excluded. For middle masses, we try to make the most benefit of the proximity of the so-called 'iron resonance' that might enhance the capture of the dark matter candidate by the Earth. The signal from the Earth is further enhanced if light right-handed Majorana neutrinos are introduced, in which case the scalar dark matter candidate may annihilate into pairs of mono-energetic neutrinos. In the case of high masses, detection of neutrinos from the Galactic centre might be possible, provided the dark matter abundance is substantially boosted.

  7. Elve Doublets: The Ionospheric Fingerprints of Compact Intracloud Discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Marshall, R. A.; Pasko, V. P.

    2015-12-01

    Compact intracloud discharges (CIDs) persist to date as one of the most mysterious lightning manifestations. CIDs are known to be the strongest natural sources of radio-frequency radiation on Earth. At VHF frequencies, approximately above 30 MHz, their emitted power is ten times stronger than that of other lightning processes. The well-known strength of CIDs in VHF contrasts with the lack of substantial optical measurements. CID's VLF/LF electric field change waveforms resemble one full cycle of a distorted sine function, with the first half-cycle being (a few times) larger-amplitude and shorter-duration than the second. For this reason CIDs have been dubbed narrow bipolar events (NBEs). NBE waveshapes are strikingly similar to the largest initial breakdown pulses (IBPs) that occur during the earlier stages of a conventional lightning flash, called classic IBPs. The similarity between classic IBP and NBE far-field waveforms, combined with the fact that positive-polarity NBEs frequently appear as the first event in an otherwise regular positive intracloud discharge, may be indicative that the source of these two E-field pulse types share the same physical mechanism inside thunderclouds [da Silva and Pasko, JGR, 120, 4989-5009, 2015]. In this presentation, we introduce a novel way to investigate CIDs. We show evidence that CIDs can produce an unique ionospheric signature, named "elve doublets". These signatures are characterized by a pair of elves separated in time by 80-160 microseconds. Our analysis combines fast photometric elve data, equivalent-transmission-line models to describe the dynamics of CID source currents, and FDTD modeling of electromagnetic wave propagation in the Earth-ionosphere waveguide accounting for its nonlinear interaction with the lower ionosphere [Marshall et al., GRL, 42, 2015, doi:10.1002/2015GL064862]. We show that typical (negative-polarity) CID altitudes, between 14-22 km, explain the time delay observed in elve doublets, where the

  8. Advances in the Design of the SuperB Final Doublet

    SciTech Connect

    Paoloni, E.; Carmignani, N.; Pilo, F.; Bettoni, S.; Fabbricatore, P.; Farinon, S.; Musenich, R.; Bosi, F.; Biagini, M.E.; Raimondi, P.; Sullivan, M.; /SLAC

    2012-04-26

    SuperB is an asymmetric energy e{sup +}e{sup -} collider operating at the {Upsilon}(4S) peak with a design peak luminosity of 10{sup 36} Hz/cm{sup 2} to be built in Italy in the very near future. The design luminosity is almost a factor hundred higher than that of the present generation comparable facilities. To get the design luminosity a novel collision scheme, the so called 'large Piwinski angle with crab waist', has been designed. The scheme requires a short focus final doublet to reduce the vertical beta function down to {beta}*{sub y} = 0.2mm at the interaction point (IP). The final doublet will be composed by a set of permanent and superconducting (SC) quadrupoles. The SC quadrupole doublets QD0/QF1 will be placed as close to the IP as possible. This layout is critical because the space available for the doublets is very small. An advanced design of the quadrupole has been developed, based on the so-called helical coil concept. The paper discusses the design concept, the construction and the results of test of a model of the superconducting quadrupole based on NbTi technology. Future developments are also presented.

  9. Coherent quadrupole-octupole modes and split parity-doublet spectra in odd-A nuclei

    SciTech Connect

    Minkov, N.; Drenska, S.; Yotov, P.; Lalkovski, S.; Bonatsos, D.; Scheid, W.

    2007-09-15

    A collective model describing coherent quadrupole-octupole oscillations and rotations with a Coriolis coupling between the even-even core and the unpaired nucleon is applied to odd nuclei. The particle-core coupling provides a parity-doublet structure of the spectrum, whereas the quadrupole-octupole motion leads to a splitting of the doublet energy levels. The formalism successfully reproduces the split parity-doublet spectra and the attendant B(E1) and B(E2) transition probabilities in a wide range of odd-A nuclei. It provides estimations for the influence of the Coriolis interaction on the collective motion and subsequently for the value of angular momentum projection K on which the spectrum is built. The analysis of the energy splitting and B(E1) transition probabilities between opposite parity counterparts suggests degenerate doublet structures at high angular momenta. The study provides information about the evolution of quadrupole-octupole collectivity in odd-mass nuclei.

  10. Mechanism for the catastrophe-promoting activity of the microtubule destabilizer Op18/stathmin

    PubMed Central

    Gupta, Kamlesh K.; Li, Chunlei; Duan, Aranda; Alberico, Emily O.; Kim, Oleg V.; Alber, Mark S.; Goodson, Holly V.

    2013-01-01

    Regulation of microtubule dynamic instability is crucial for cellular processes, ranging from mitosis to membrane transport. Stathmin (also known as oncoprotein 18/Op18) is a prominent microtubule destabilizer that acts preferentially on microtubule minus ends. Stathmin has been studied intensively because of its association with multiple types of cancer, but its mechanism of action remains controversial. Two models have been proposed. One model is that stathmin promotes microtubule catastrophe indirectly, and does so by sequestering tubulin; the other holds that stathmin alters microtubule dynamics by directly destabilizing growing microtubules. Stathmin’s sequestration activity is well established, but the mechanism of any direct action is mysterious because stathmin binds to microtubules very weakly. To address these issues, we have studied interactions between stathmin and varied tubulin polymers. We show that stathmin binds tightly to Dolastatin-10 tubulin rings, which mimic curved tubulin protofilaments, and that stathmin depolymerizes stabilized protofilament-rich polymers. These observations lead us to propose that stathmin promotes catastrophe by binding to and acting upon protofilaments exposed at the tips of growing microtubules. Moreover, we suggest that stathmin's minus-end preference results from interactions between stathmin's N terminus and the surface of α-tubulin that is exposed only at the minus end. Using computational modeling of microtubule dynamics, we show that these mechanisms could account for stathmin's observed activities in vitro, but that both the direct and sequestering activities are likely to be relevant in a cellular context. Taken together, our results suggest that stathmin can promote catastrophe by direct action on protofilament structure and interactions. PMID:24284166