Sample records for microvillar proteins forskolin

  1. A new role for the architecture of microvillar actin bundles in apical retention of membrane proteins.

    PubMed

    Revenu, Céline; Ubelmann, Florent; Hurbain, Ilse; El-Marjou, Fatima; Dingli, Florent; Loew, Damarys; Delacour, Delphine; Gilet, Jules; Brot-Laroche, Edith; Rivero, Francisco; Louvard, Daniel; Robine, Sylvie

    2012-01-01

    Actin-bundling proteins are identified as key players in the morphogenesis of thin membrane protrusions. Until now, functional redundancy among the actin-bundling proteins villin, espin, and plastin-1 has prevented definitive conclusions regarding their role in intestinal microvilli. We report that triple knockout mice lacking these microvillar actin-bundling proteins suffer from growth delay but surprisingly still develop microvilli. However, the microvillar actin filaments are sparse and lack the characteristic organization of bundles. This correlates with a highly inefficient apical retention of enzymes and transporters that accumulate in subapical endocytic compartments. Myosin-1a, a motor involved in the anchorage of membrane proteins in microvilli, is also mislocalized. These findings illustrate, in vivo, a precise role for local actin filament architecture in the stabilization of apical cargoes into microvilli. Hence, the function of actin-bundling proteins is not to enable microvillar protrusion, as has been assumed, but to confer the appropriate actin organization for the apical retention of proteins essential for normal intestinal physiology.

  2. Role of protein kinase C in light adaptation of molluscan microvillar photoreceptors

    PubMed Central

    Piccoli, Giuseppe; del Pilar Gomez, Maria; Nasi, Enrico

    2002-01-01

    The mechanisms by which Ca2+ regulates light adaptation in microvillar photoreceptors remain poorly understood. Protein kinase C (PKC) is a likely candidate, both because some sub-types are activated by Ca2+ and because of its association with the macromolecular ‘light-transduction complex’ in Drosophila. We investigated the possible role of PKC in the modulation of the light response in molluscan photoreceptors. Western blot analysis with isoform-specific antibodies revealed the presence of PKCα in retinal homogenates. Immunocytochemistry in isolated cell preparations confirmed PKCα localization in microvillar photoreceptors, preferentially confined to the light-sensing lobe. Light stimulation induced translocation of PKCα immunofluorescence to the photosensitive membrane, an effect that provides independent evidence for PKC activation by illumination; a similar outcome was observed after incubation with the phorbol ester PMA. Several chemically distinct activators of PKC, such as phorbol-12-myristate-13-acetate (PMA), (-)indolactam V and 1,2,-dioctanoyl-sn-glycerol (DOG) inhibited the light response of voltage-clamped microvillar photoreceptors, but were ineffective in ciliary photoreceptors, in which light does not activate the Gq/PLC cascade, nor elevates intracellular Ca2+. Pharmacological inhibition of PKC antagonized the desensitization produced by adapting lights and also caused a small, but consistent enhancement of basal sensitivity. These results strongly support the involvement of PKC activation in the light-dependent regulation of response sensitivity. However, unlike adapting background light or elevation of [Ca2+]i, PKC activators did not speed up the photoresponse, nor did PKC inhibitors antagonize the accelerating effects of background adaptation, suggesting that modulation of photoresponse time course may involve a separate Ca2+-dependent signal. PMID:12205183

  3. Regulation of protein expression and function of octn2 in forskolin-induced syncytialization in BeWo Cells.

    PubMed

    Huang, F-D; Kung, F-L; Tseng, Y-C; Chen, M-R; Chan, H-S; Lin, C-J

    2009-02-01

    Placental OCTN2 is a high-affinity carnitine transporter that can interact with a number of therapeutic agents. The process of syncytialization is associated with the expression of a variety of genes. However, the association between syncytialization and OCTN2 expression is not yet clear. Given that forskolin induces BeWo cells to undergo biochemical and morphological differentiation, the purpose of the present study was to investigate whether the function and expression of OCTN2 are influenced by forskolin treatment during syncytialization. The forskolin-induced differentiation of BeWo cells was validated by secretion of beta-human chorionic gonadotropin (beta-hCG) and syncytin expression. Cellular localization of OCTN2 was analyzed by confocal microscopy. Expression of OCTN2 and the modular proteins PDZK1, PDZK2, NHERF1 and NHERF2 was analyzed by Western blotting and carnitine uptake by BeWo cells was estimated and the kinetic properties of uptake measured. The results showed that forskolin treatment increased beta-hCG secretion and syncytin expression, suggesting induction of syncytialization. Confocal images of BeWo cells showed the localization of OCTN2 in the brush-border membrane. OCTN2 protein expression was upregulated in isolated brush-border membranes by long-term forskolin treatment, but the V(m) for carnitine uptake was unchanged, although the K(m) increased. PDZK1, NHERF1 and NHERF2 protein expression in the brush-border membrane was downregulated by forskolin treatment, whereas PDZK2 levels remained unchanged. In conclusion, protein expression and function of OCTN2 in BeWo cells can be regulated by forskolin treatment. While the presence of forskolin results in an increase in OCTN2 protein expression, the increase in uptake capacity may be compensated by the decreased expression of PDZK1, NHERF1 or NHERF2.

  4. Binding of (/sup 3/H)forskolin to solubilized preparations of adenylate cyclase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.A.; Seamon, K.B.

    1988-01-01

    The binding of (/sup 3/H)forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating (/sup 3/H)forskolin bound to protein from free (/sup 3/H)forskolin by rapid filtration. The K/sub d/ for (/sup 3/H)forskolin binding to solubilized proteins was 14 nM which was similar to that for (/sup 3/H)forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for (/sup 3/H)forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. (/sup 3/H)forskolin bound to proteins solubilized from membranes with a Bmaxmore » of 38 fmolmg protein which increased to 94 fmolmg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on (/sup 3/H)forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmolmgmin which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmolmgmin which was not stimulated by GppNHp or forskolin« less

  5. Deacetylation of forskolin catalyzed by bovine brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selfe, S.; Storm, D.R.

    1985-11-27

    Radiolabeled forskolin, 7-(/sup 3/H-acetyl)-forskolin, was synthesized to explore interactions between forskolin and bovine brain membrane preparations. The radiolabeled derivative was chemically characterized, and found to be indistinquishable from unlabeled forskolin in its ability to stimulate bovine brain adenylate cyclase. Preliminary binding data demonstrated that binding of 7-(/sup 3/H-acetyl)-forskolin to membranes was concentration dependent. However, competition binding studies using a constant concentration of 7-(/sup 3/H-acetyl)-forskolin with increasing levels of unlabeled forskolin showed enhanced binding of the labeled derivative. This suggested that 7-(/sup 3/H-acetyl)-forskolin was degraded by membranes and protected by native forskolin. Incubation of forskolin with membranes and analysis of themore » products by thin layer chromatography and mass spectroscopy showed the formation of 7-desacetylforskolin. The deacetylation of forskolin was monitored by quantitating the release of (/sup 3/H)acetate from 7-(/sup 3/H-acetyl)-forskolin. The reaction was linear with time and protein concentration. These data illustrate that forskolin can be degraded by membranes and indicate that ligand binding studies using labeled forskolin and membrane preparations should be cautiously interpreted.« less

  6. Microvillar Ca++ signaling: a new view of an old problem.

    PubMed

    Lange, K

    1999-07-01

    Proceeding from the recent finding that the main components of the Ca++ signal pathway are located in small membrane protrusions on the surface of differentiated cells, called microvilli, a novel concept of cellular Ca++ signaling was developed. The main features of this concept can be summarized as follows: Microvilli are formed on the cell surface of differentiating or resting cells from exocytic membrane domains, growing out from the cell surface by elongation of an internal bundle of actin filaments. The microvillar tip membranes contain all functional important proteins synthesized such as ion channels and transporters for energy-providing substrates and structural components, which are, in rapidly growing undifferentiated cells, distributed over the whole cell surface by lateral diffusion. The microvillar shaft structure, a bundle of actin filaments, forms a dense cytoskeletal matrix tightly covered by the microvillar lipid membrane and represents an effective diffusion barrier separating the microvillar tip compartment (entrance compartment) from the cytoplasm. This diffusion barrier prevents the passage of low molecular components such as Ca++ glucose and other relevant substrates from the entrance compartment into the cytoplasm. The effectiveness of the actin-based diffusion barrier is modulated by various signal pathways and effectors, most importantly, by the actin-depolymerizing/reorganizing activity of the phospholipase C (PLC)-coupled Ca++ signaling. Moreover, the microvillar bundle of actin filaments plays a dual role in Ca++ signaling. It combines the function of a diffusion barrier, preventing Ca++ influx into the resting cell, with that of a high-affinity, ATP-dependent, and IP3-sensitive Ca++ store. Activation of Ca++ signaling via PLC-coupled receptors simultaneously empties Ca++ stores and activates the influx of external Ca++. The presented concept of Ca++ signaling is compatible with all established data on Ca++ signaling. Properties of Ca

  7. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, L.T.; Nie, Z.M.; Mende, T.J.

    1989-01-01

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking (125I)PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography followingmore » SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by (125I)PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that (a) no other AC-regulatory proteins are known to be of this size, (b) the catalytic unit of bovine brain enzyme is in the same range and (c) this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase.« less

  8. Binding of (/sup 3/H)Forskolin to rat brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seamon, K.B.; Vaillancourt, R.; Edwards, M.

    1984-08-01

    (12-/sup 3/H)Forskolin (27 Ci/mmol) has been used to study binding sites in rat brain tissue by using both centrifugation and filtration assays. The binding isotherm measured in the presence of 5 mM MgCl/sub 2/ by using the centrifugation assay is described best by a two-site model: K/sub d1/ = 15 nM, B/sub max/sub 1// (maximal binding) = 270 fmol/mg of protein; K/sub d2/ = 1.1 ..mu..M; B/sub max/sub 2// = 4.2 pmol/mg of protein. Only the high-affinity binding sites are detected when the binding is determined by using a filtration assay; K/sub d/ = 26 nM, B/sub max/ = 400more » fmol/mg of protein. Analogs of forskolin that do not activate adenylate cyclase (EC 4.6.1.1) do not compete effectively for (/sup 3/H)forskolin binding sites. Analogs of forskolin that are less potent than forskolin in activating adenylate cyclase are also less potent in competing for forskolin binding sites. The presence of 5 mM MgCl/sub 2/ or MnCl/sub 2/ was found to enhance binding. In the presence of 1 mM EDTA the amount of high-affinity binding is reduced to 110 fmol/mg of protein with no change in K/sub d/. There is no effect of CaCl/sub 2/ (20 mM) or NaCl (100 mM) on the binding. No high-affinity binding can be detected in membranes from ram sperm, which contains an adenylate cyclase that is not activated by forskolin. It is proposed that the high-affinity binding sites for forskolin are associated with the activated complex of catalytic subunit and stimulatory guanine nucleotide binding protein. 23 references, 5 figures, 2 tables.« less

  9. Interaction of forskolin with the P-glycoprotein multidrug transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming s, D.I.; Seamon, K.B.; Speicher, L.A.

    1991-08-27

    Forskolin and 1,9-dideoxyforskolin, an analogue that does not activate adenylyl cyclase, were tested for their ability to enhance the cytotoxic effects of adriamycin in human ovarian carcinoma cells, SKOV3, which are sensitive to adriamycin and express low levels of P-glycoprotein, and a variant cell line, SKVLB, which overexpresses the P-glycoprotein and has the multidrug reing ance (MDR) phenotype. Forskolin and 1,9-dideoxyforskolin both increased the cytotoxic effects of adriamycin in SKVLB cells, yet had no effect on SKOV3 cells. Two photoactive derivatives of forskolin have been synthesized, 7-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, and 6-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, which exhibit specificity for labelingmore » the glucose transporter and aing lyl cyclase, respectively. Both photolabels identified a 140-kDa protein in membranes from SKVLB cells whose labeling was inhibited by forskolin and 1,9-dideoxyforskolin. The data are consistent with forskolin binding to the P-glycoprotein analogous to that of other chemosensitizing drugs that have been shown to partially reverse MDR. The ability of forskolin photolabels to specifically label the transporter, the adenylyl cyclase, and the P-glycoprotein suggests that these proteins may share a common biing g domain for forskolin analogues.« less

  10. Metabolism of aspartame by human and pig intestinal microvillar peptidases.

    PubMed Central

    Hooper, N M; Hesp, R J; Tieku, S

    1994-01-01

    The artificial sweetener aspartame (N-L-alpha-aspartyl-L-phenyl-alanine-1-methyl ester; Nutrasweet), its decomposition product alpha Asp-Phe and the related peptide alpha Asp-PheNH2 were rapidly hydrolysed by microvillar membranes prepared from human duodenum, jejunum and ileum, and from pig duodenum and kidney. The metabolism of aspartame by the human and pig intestinal microvillar membrane preparations was inhibited significantly (> 78%) by amastatin or 1,10-phenanthroline, and partially (> 38%) by actinonin or bestatin, and was activated 2.9-4.5-fold by CaCl2. The inhibition by amastatin and 1,10-phenanthroline, and the activation by CaCl2 are characteristic of the cell-surface ectoenzyme aminopeptidase A (EC 3.4.11.7) and a purified preparation of this enzyme hydrolysed aspartame with a Km of 0.25 mM and a Vmax of 126 mumol/min per mg. A purified preparation of aminopeptidase W (EC 3.4.11.16) also hydrolysed aspartame but with a Km of 4.96 mM and a Vmax of 110 mumol/min per mg. However, rentiapril, an inhibitor of aminopeptidase W, caused only slight inhibition (maximally 19%) of the hydrolysis of aspartame by the microvillar membrane preparations. Similar patterns of inhibition and kinetic parameters were observed for alpha Asp-Phe and alpha Asp-PheNH2. Two other decomposition products of aspartame, beta Asp-PheMe and cyclo-Asp-Phe, were essentially resistant to hydrolysis by both the human and pig intestinal microvillar membrane preparations and the purified preparations of aminopeptidases A and W. Although the relatively selective inhibitor of aminopeptidase N (EC 3.4.11.2), actinonin, partially inhibited the metabolism of aspartame, alpha Asp-Phe and alpha Asp-PheNH2 by the human and pig intestinal microvillar membrane preparations, these peptides were not hydrolysed by a purified preparation of aminopeptidase N. Membrane dipeptidase (EC 3.4.13.19) only hydrolysed the unblocked dipeptide, alpha Asp-Phe, but the selective inhibitor of this enzyme, cilastatin

  11. Forskolin: upcoming antiglaucoma molecule.

    PubMed

    Wagh, V D; Patil, P N; Surana, S J; Wagh, K V

    2012-01-01

    Forskolin is the first pharmaceutical drug and product derived from a plant to be approved in India by the DCGI in 2006. Forskolin (7beta-acetoxy-8, 13-epoxy-1a, 6β, 9a-trihydroxy-labd-14-en-11-one) is a diterpenoid isolated from plant Coleus forskohlii (Lamiaceae). It is a lipid-soluble compound that can penetrate cell membranes and stimulates the enzyme adenylate cyclase which, in turn, stimulates ciliary epithelium to activate cyclic adenosine monophosphate, which decreases intraocular pressure (IOP) by reducing aqueous humor inflow. The topical application of forskolin is capable of reducing IOP in rabbits, monkeys, and humans. In its drug interactions, forskolin may act synergistically with epinephrine, ephedrine and pseudoephedrine. Whereas the effects of anti-clotting medications like warfarin, clopidogre, aspirin, anoxaparin, etc., may be enhanced by forskolin. Forskolin is contraindicated in the medications for people with ulcers as forskolin may increase acid level. Forskolin has a very good shelf-life of five years. Recently, its Ophthalmic inserts and in situ gels for sustained and delayed-release drug delivery systems were tested in New Zealand Albino Rabbits for its antiglaucoma efficacy. This drug review explains Forskolin as a drug, its antiglaucoma potential and recent findings of forskolin as an antiglaucoma agent. The literature search method used for this review was different databases and search engines like PubMed, International Pharmaceutical Abstracts, Google, Medicinal and Aromatic Plants (MAPA).

  12. Evidence that forskolin binds to the glucose transporter of human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavis, V.R.; Lee, D.P.; Shenolikar, S.

    1987-10-25

    Binding of (4-/sup 3/H)cytochalasin B and (12-/sup 3/H)forskolin to human erythrocyte membranes was measured by a centrifugation method. Glucose-displaceable binding of cytochalasin B was saturable, with KD = 0.11 microM, and maximum binding approximately 550 pmol/mg of protein. Forskolin inhibited the glucose-displaceable binding of cytochalasin B in an apparently competitive manner, with K1 = 3 microM. Glucose-displaceable binding of (12-/sup 3/H)forskolin was also saturable, with KD = 2.6 microM and maximum binding approximately equal to 400 pmol/mg of protein. The following compounds inhibited binding of (12-/sup 3/H)forskolin and (4-/sup 3/H)cytochalasin B equivalently, with relative potencies parallel to their reported affinitiesmore » for the glucose transport system: cytochalasins A and D, dihydrocytochalasin B, L-rhamnose, L-glucose, D-galactose, D-mannose, D-glucose, 2-deoxy-D-glucose, 3-O-methyl-D-glucose, phloretin, and phlorizin. A water-soluble derivative of forskolin, 7-hemisuccinyl-7-desacetylforskolin, displaced equivalent amounts of (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin. Rabbit erythrocyte membranes, which are deficient in glucose transporter, did not bind either (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin in a glucose-displaceable manner. These results indicate that forskolin, in concentrations routinely employed for stimulation of adenylate cyclase, binds to the glucose transporter. Endogenous ligands with similar specificities could be important modulators of cellular metabolism.« less

  13. Binding of (/sup 3/H)forskolin to platelet membranes and solubilized proteins from bovine brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.A.; Seamon, K.B.

    1986-05-01

    (/sup 3/H)Forskolin ((/sup 3/H)FSK) bound to platelet membranes with a Kd of 20 nM and a Bmax of 125 fmol/mg protein. The Bmax was increased to 400 fmol/mg protein in the presence of GppNHp (or NaF) and MgCl/sub 2/ with no change in Kd. PGE/sub 1/ decreased the EC50 of GppNHp to increase the Bmax for (/sup 3/H)FSK binding from 600 nM to 35 nM. In contrast, PGE/sub 1/ had no effect on the EC50 of NaF to increase (/sup 3/H)FSK binding. (/sup 3/H)FSK binding increased slowly over 60 min when forskolin and GppNHp were added to membranes simultaneously atmore » 20/sup 0/C. Preincubation of membranes with GppNHp at 20/sup 5/C also caused a linear increase in adenylate cyclase specific activity over 60 minutes. (/sup 3/H)FSK bound to solubilized protein from bovine brain membrane with a Kd of 22 nM. GppNHp increased the number of binding sites in solubilized proteins only if membranes were not preincubated with GppNHp prior to solubilization. In conclusion the number of binding sites for (/sup 3/H)FSK is increased by agents that activate adenylate cyclase through the Ns protein. These sites appear to be associated with an activated complex of the Ns protein and adenylate cyclase.« less

  14. Phospholemman does not participate in forskolin-induced swine carotid artery relaxation.

    PubMed

    Meeks, M K; Han, S; Tucker, A L; Rembold, C M

    2008-01-01

    Phosphorylation of phospholemman (PLM) on ser68 has been proposed to at least partially mediate cyclic AMP (cAMP) mediated relaxation of arterial smooth muscle. We evaluated the time course of the phosphorylation of phospholemman (PLM) on ser68, myosin regulatory light chains (MRLC) on ser19, and heat shock protein 20 (HSP20) on ser16 during a transient forskolin-induced relaxation of histamine-stimulated swine carotid artery. We also evaluated the dose response for forskolin- and nitroglycerin-induced relaxation in phenylephrine-stimulated PLM-/- and PLM+/+ mice. The time course for changes in ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation was appropriate to explain the forskolin-induced relaxation and the recontraction observed upon washout of forskolin. However, the time course for changes in ser68 PLM phosphorylation was too slow to explain forskolin-induced changes in force. There was no difference in the phenylephrine contractile dose response or in forskolin-induced relaxation dose response observed in PLM-/- and PLM+/+ aortae. In aortae precontracted with phenylephrine, nitroglycerin induced a slightly, but significantly greater relaxation in PLM-/- compared to PLM+/+ aortae. These data are consistent with the hypothesis that ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation are involved in forskolin-induced relaxation. Our data suggest that PLM phosphorylation is not significantly involved in forskolin-induced arterial relaxation.

  15. Recruitment of endosomal signaling mediates the forskolin modulation of guinea pig cardiac neuron excitability.

    PubMed

    Hardwick, Jean C; Clason, Todd A; Tompkins, John D; Girard, Beatrice M; Baran, Caitlin N; Merriam, Laura A; May, Victor; Parsons, Rodney L

    2017-08-01

    Forskolin, a selective activator of adenylyl cyclase (AC), commonly is used to establish actions of G protein-coupled receptors (GPCRs) that are initiated primarily through activation of AC/cAMP signaling pathways. In the present study, forskolin was used to evaluate the potential role of AC/cAMP, which is a major signaling mechanism for the pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor, in the regulation of guinea pig cardiac neuronal excitability. Forskolin (5-10 µM) increases excitability in ~60% of the cardiac neurons. The forskolin-mediated increase in excitability was considered related to cAMP regulation of a cyclic nucleotide gated channel or via protein kinase A (PKA)/ERK signaling, mechanisms that have been linked to PAC1 receptor activation. However, unlike PACAP mechanisms, forskolin enhancement of excitability was not significantly reduced by treatment with cesium to block currents through hyperpolarization-activated nonselective cation channels ( I h ) or by treatment with PD98059 to block MEK/ERK signaling. In contrast, treatment with the clathrin inhibitor Pitstop2 or the dynamin inhibitor dynasore eliminated the forskolin-induced increase in excitability; treatments with the inactive Pitstop analog or PP2 treatment to inhibit Src-mediated endocytosis mechanisms were ineffective. The PKA inhibitor KT5702 significantly suppressed the forskolin-induced change in excitability; further, KT5702 and Pitstop2 reduced the forskolin-stimulated MEK/ERK activation in cardiac neurons. Collectively, the present results suggest that forskolin activation of AC/cAMP/PKA signaling leads to the recruitment of clathrin/dynamin-dependent endosomal transduction cascades, including MEK/ERK signaling, and that endosomal signaling is the critical mechanism underlying the forskolin-induced increase in cardiac neuron excitability. Copyright © 2017 the American Physiological Society.

  16. /sup 3/H)forskolin. Direct photoaffinity labeling of the erythrocyte D-glucose transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanahan, M.F.; Morris, D.P.; Edwards, B.M.

    1987-05-05

    Irradiation of erythrocyte ghosts in the presence of (/sup 3/H)forskolin resulted in a concentration-dependent, covalent incorporation of radiolabel into several of the major membrane protein bands. Most of the incorporation occurred in four regions of the gel. Peak 1 (216 kDa) was a sharp peak near the top of the gel in the region corresponding to spectrin. Peak 2 appeared to be associated with band 3 (89 kDa), while a third peak occurred around the position of band 4.2 (76 kDa). The fourth region of labeling was a broad area between 43-75 kDa which corresponds to the region of themore » glucose transporter. Forskolin labeling of this region was inhibited by cytochalasin B and D-glucose, but not L-glucose. Extraction of extrinsic membrane proteins resulted in a loss of radiolabeled protein from the 216- and 76-kDa regions. Treatment of membranes labeled with either cytochalasin B or forskolin with endo-beta-galactosidase resulted in identical shifts of the 43 to 75-kDa peaks to 42 kDa. Similarly, trypsinization of membranes photolabeled with either cytochalasin B or forskolin resulted in the generation of a 17-kDa radiolabeled fragment in both cases. Photoincorporation of (/sup 3/H)cytochalasin B into the glucose transporter was blocked in a concentration-dependent manner by unlabeled forskolin.« less

  17. Microvillar cell surface as a natural defense system against xenobiotics: a new interpretation of multidrug resistance.

    PubMed

    Lange, K; Gartzke, J

    2001-08-01

    The phenomenon of multidrug resistance (MDR) is reinterpreted on the basis of the recently proposed concept of microvillar signaling. According to this notion, substrate and ion fluxes across the surface of differentiated cells occur via transporters and ion channels that reside in membrane domains at the tips of microvilli (MV). The flux rates are regulated by the actin-based cytoskeletal core structure of MV, acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. The expression of this diffusion barrier system is a novel aspect of cell differentiation and represents a functional component of the natural defense system of epithelial cells against environmental hazardous ions and lipophilic compounds. Because of the specific organization of epithelial Ca(2+) signaling and the secretion, lipophilic compounds associated with the plasma membrane are transferred from the basal to the apical cell surface by a lipid flow mechanism. Drug release from the apical pole occurs by either direct secretion from the cell surface or metabolization by the microvillar cytochrome P-450 system and efflux of the metabolites and conjugation products through the large multifunctional anion channels localized in apical MV. The natural microvillar defense system also provides a mechanistic basis of acquired MDR in tumor cells. The microvillar surface organization is lost in rapidly growing cells such as tumor or embryonic cells but is restored during exposure of tumor cells to cytotoxins by induction of a prolonged G(0)/G(1) resting phase.

  18. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Pinto, Cibele; Papa, Dan; Hübner, Melanie; Mou, Tung-Chung; Lushington, Gerald H; Seifert, Roland

    2008-04-01

    Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.

  19. [Forskolin inhibits spontaneous contraction of gastric antral smooth muscle in rats].

    PubMed

    Jiang, Jing-Zhi; Sun, Qian; Xu, Dong-Yuan; Zhang, Mo-Han; Piao, Li-Hua; Cai, Ying-Lan; Jin, Zheng

    2013-04-25

    The aim of the present study was to investigate the effects of cyclic adenosine monophosphate (cAMP) on rat gastric antral circular smooth muscle function. Forskolin, a direct activator of adenylyl cyclase (AC), was used to observe the influences of cAMP. Multi-channel physiological recorder was used to record spontaneous contraction activity of gastric antral circular muscle from Wistar rats. And ELISA method was used to detect the change of cAMP production in perfusate. The results showed that forskolin concentration-dependently suppressed the amplitude and frequency of the spontaneous contraction of the gastric antral muscle, and lowered the baseline of contraction movement significantly. Forskolin concentration-dependently increased the production of cAMP in the perfusate, which showed a significant negative correlation with the contraction amplitude of gastric antral ring muscle. The inhibitory effect of forskolin on spontaneous contraction activity of rat gastric antral circular muscle could be blocked by cAMP-dependent protein kinase (PKA) inhibitor H-89. These results suggest forskolin increases cAMP production and then activates PKA pathway, resulting in the inhibition of the spontaneous contraction activity of rat gastric antral circular smooth muscle.

  20. Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.I.; Robbins, J.D.; Ruoho, A.E.

    1991-07-15

    Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of (3H)forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited (3H)forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP {gamma} S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolinmore » but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP {gamma} S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.« less

  1. Forskolin-mediated BeWo cell fusion involves down-regulation of miR-92a-1-5p that targets dysferlin and protein kinase cAMP-activated catalytic subunit alpha.

    PubMed

    Dubey, Richa; Malhotra, Sudha S; Gupta, Satish K

    2018-06-01

    To study the role of miRNA(s) during trophoblastic BeWo cell fusion. Changes in miRNA(s) profile of BeWo cells treated with forskolin were analyzed using Affymetrix miRNA microarray platform. Down-regulated miRNA, miR-92a-1-5p, was overexpressed in BeWo cells followed by forskolin treatment to understand its relevance in the process of BeWo cell fusion by desmoplakin I+II staining and hCG secretion by ELISA. Predicted targets of miR-92a-1-5p were also confirmed by qRT-PCR/Western blotting. The miRNA profiling of BeWo cells after forskolin (25 μmol/L) treatment identified miR-92a-1-5p as the most significantly down-regulated miRNA both at 24 and 48 hours time points. Overexpression of miR-92a-1-5p in these cells led to a significant decrease in forskolin-mediated cell fusion and hCG secretion. miRNA target prediction software, TargetScan, revealed dysferlin (DYSF) and protein kinase cAMP-activated catalytic subunit alpha (PRKACA), as target genes of miR-92a-1-5p. Overexpression of miR-92a-1-5p in BeWo cells showed reduction in forskolin-induced transcripts for DYSF and PRKACA. Further, reduction in DYSF (~2.6-fold) at protein level and PRKACA-encoded protein kinase A catalytic subunit alpha (PKAC-α; ~1.6-fold) were also observed. These observations suggest that miR-92a-1-5p regulates forskolin-mediated BeWo cell fusion and hCG secretion by regulating PKA signaling pathway and dysferlin expression. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Photoaffinity labeling of the human erythrocyte glucose transporter with /sup 4/H-labelled forskolin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanahan, M.F.; Edwards, B.M.; Morris, D.P.

    1986-05-01

    Forskolin, a potent activator of adenylate cyclase, is also known to inhibit glucose transport in a number of cells. The authors have investigated photoincorporation of (/sup 3/H)forskolin into erythrocyte membrane proteins using a technique they previously developed for photolabeling the erythrocyte glucose transporter with cytochalasin B (CB). A 30-40s irradiation of erythrocyte ghosts in the presence of (/sup 3/H)forskolin resulted in a concentration-dependent, covalent incorporation of radiolabel into all of the major membrane protein bands. However, most of the incorporation occurred in only three regions of the gel. Peak 1 was a sharp peak near the top of the gelmore » in the region corresponding to spectrin, peak 2 appeared to be associated with band 3 (approx. 90kDa), and the third region labeled was between 41-60 kDa which corresponds to the region of the glucose transporter. This region appeared to contain several overlapping peaks with the largest incorporation of label occurring around 45 kDa in the area of red cell actin. When photolabeling was performed in the presence of 400 ..mu..M cytochalasin B (8.0 ..mu..M forskolin) the labeling in the 41-60 kDa region was totally inhibited while labeling of the 90 kDa peak was partially blocked. CB had no effect on the photolabeling of peak 1 by forskolin.« less

  3. Forskolin: genotoxicity assessment in Allium cepa.

    PubMed

    Mohammed, Khalid Pasha; Aarey, Archana; Tamkeen, Shayesta; Jahan, Parveen

    2015-01-01

    Forskolin, a diterpene, 7β-acetoxy-8,13-epoxy-1α,6β,9α-trihydroxy-labd-14-en-11-one (C22H34O7) isolated from Coleus forskohlii, exerts multiple physiological effects by stimulating the enzyme adenylate cyclase and increasing cyclic adenosine monophosphate (cAMP) concentrations. Forskolin is used in the treatment of hypertension, congestive heart failure, eczema, and other diseases. A cytogenetic assay was performed in Allium cepa to assess possible genotoxic effects of forskolin. Forskolin was tested at concentrations 5-100 μM for exposure periods of 24 or 48 h. Treated samples showed significant reductions in mitotic index (p < 0.05) and increases in the frequency of chromosome aberrations (p < 0.01) at both exposure times. The treated meristems showed chromosome aberrations including sticky metaphases, sticky anaphases, laggard, anaphase bridges, micronuclei, polyploidy, fragments, breaks, and C-mitosis. Forskolin may cause genotoxic effects and further toxicological evaluations should be conducted to ensure its safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation.

    PubMed

    Cao, Wenguang; Razanau, Aleh; Feng, Dairong; Lobo, Vincent G; Xie, Jiuyong

    2012-09-01

    The molecular basis of cell signal-regulated alternative splicing at the 3' splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3' splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3' splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3' splice site usage.

  5. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM.

    PubMed

    Follin-Arbelet, Virginie; Misund, Kristine; Naderi, Elin Hallan; Ugland, Hege; Sundan, Anders; Blomhoff, Heidi Kiil

    2015-08-26

    We have previously demonstrated that activation of the cyclic adenosine monophosphate (cAMP) pathway kills multiple myeloma (MM) cells both in vitro and in vivo. In the present study we have investigated the potential of enhancing the killing of MM cell lines and primary MM cells by combining the cAMP-elevating compound forskolin with the commonly used MM therapeutic drugs melphalan, cyclophosphamide, doxorubicin, bortezomib and dexamethasone. We observed that forskolin potentiated the killing induced by all the tested agents as compared to treatment with the single agents alone. In particular, forskolin had a synergistic effect on the dexamethasone-responsive cell lines H929 and OM-2. By knocking down the proapoptotic BCL-2 family member BIM, we proved this protein to be involved in the synergistic induction of apoptosis by dexamethasone and forskolin. The ability of forskolin to maintain the killing of MM cells even at lower concentrations of the conventional agents suggests that forskolin may be used to diminish treatment-associated side effects. Our findings support a potential role of forskolin in combination with current conventional agents in the treatment of MM.

  6. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM

    PubMed Central

    Follin-Arbelet, Virginie; Misund, Kristine; Hallan Naderi, Elin; Ugland, Hege; Sundan, Anders; Kiil Blomhoff, Heidi

    2015-01-01

    We have previously demonstrated that activation of the cyclic adenosine monophosphate (cAMP) pathway kills multiple myeloma (MM) cells both in vitro and in vivo. In the present study we have investigated the potential of enhancing the killing of MM cell lines and primary MM cells by combining the cAMP-elevating compound forskolin with the commonly used MM therapeutic drugs melphalan, cyclophosphamide, doxorubicin, bortezomib and dexamethasone. We observed that forskolin potentiated the killing induced by all the tested agents as compared to treatment with the single agents alone. In particular, forskolin had a synergistic effect on the dexamethasone-responsive cell lines H929 and OM-2. By knocking down the proapoptotic BCL-2 family member BIM, we proved this protein to be involved in the synergistic induction of apoptosis by dexamethasone and forskolin. The ability of forskolin to maintain the killing of MM cells even at lower concentrations of the conventional agents suggests that forskolin may be used to diminish treatment-associated side effects. Our findings support a potential role of forskolin in combination with current conventional agents in the treatment of MM. PMID:26306624

  7. Characterization of brush borders purified in iso-osmotic medium and microvillar membranes subfractionated from mouse small intestine.

    PubMed Central

    Fujita, M; Ohta, H; Uezato, T

    1981-01-01

    Brush borders free of nuclei were isolated by repeated homogenization and centrifugation in iso-osmotic medium. They showed typical morphology under electron microscopy. The mean recovery and enrichment of alkaline phosphatase activity in the brush-border fraction were 50% and 17.5-fold respectively. gamma-Glutamyl transpeptidase showed a close parallelism with alkaline phosphatase and sucrase in subcellular distribution. Microvillar membranes were purified from isolated brush borders; they showed a further enrichment for alkaline phosphatase and were composed of homogeneous vesicles. Both brush-border and microvillar-membrane preparations were analysed for contamination by basolateral and endoplasmic-reticular membranes. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the microvillar-membrane preparation in six different systems revealed approx. 40 components in the mol.wt. range 15 000-232 000. They were grouped into seven major classes on the basis of molecular weight and electrophoretic patterns. Images PLATE 1 PLATE 2 PMID:7317008

  8. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    PubMed

    Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  9. Simultaneous Quantification of Forskolin and Iso-Forskolin in Coleus forskohlii (Wild.) Briq. and Identification of Elite Chemotype, Collected from Eastern Ghats (India).

    PubMed

    Shukla, Pushpendra Kumar; Misra, Ankita; Kumar, Manish; Jaichand; Singh, Kuldeep; Akhtar, Juber; Srivastava, Sharad; Agrawal, Pawan K; Singh Rawat, Ajay K

    2018-01-01

    Coleus forskohlii is a well-known industrially important medicinal plant, for its high forskolin content. A simple, selective, and sensitive high-performance thin layer chromatography (HPTLC) method was developed and validated for simultaneous quantification of forskolin and iso-forskolin in C. forskohlii germplasm collected from the Eastern Ghats, India. Chromatographic separation of the targeted marker(s) was obtained on precoated silica plates using toluene: ethyl acetate: methanol (90:30:0.5, v/v/v) as the mobile phase. Densitometric quantification of forskolin and iso-forskolin was carried out at 545 nm. Forskolin and iso-forskolin were identified by comparing the ultraviolet spectra of standard and sample track at R f of 0.64 ± 0.02 and 0.36 ± 0.01, after derivatization with anisaldehyde sulfuric acid reagent. The linearity of both the analytes was obtained in the range of 300-1200 ng/spot with the regression coefficient ( R 2 ) of 0.991 and 0.986. Recovery of analyte (s) at three levels, namely, 100, 150, and 200 ng/spot was found to be 100.46% ± 0.29%, 99.64% ± 0.33%, 100.02% ± 0.76% and 99.76% ± 0.62%, 99.56% ± 0.35%, 100.02% ± 0.22%, respectively, for forskolin and iso-forskolin. The content of forskolin and iso-forskolin varies from 0.046% to 0.187% and 0.002% to 0.077%, respectively (dry weight basis), the maximum content of both the markers was found in NBC-31, from Thakurwada, Maharashtra. The developed HPTLC method was linear, accurate, and reliable as per the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines. The study aids in the identification of elite chemotype for commercial prospection of industrially viable medicinal crop. 12 Samples are collected from different locations of the eastern ghat regionsQuantification of two major marker forskolin and iso forskolinThe maximum content of both the markers was found in NBC -31, from Thakurwada, Maharashtra

  10. Simultaneous Quantification of Forskolin and Iso-Forskolin in Coleus forskohlii (Wild.) Briq. and Identification of Elite Chemotype, Collected from Eastern Ghats (India)

    PubMed Central

    Shukla, Pushpendra Kumar; Misra, Ankita; Kumar, Manish; Jaichand; Singh, Kuldeep; Akhtar, Juber; Srivastava, Sharad; Agrawal, Pawan K; Singh Rawat, Ajay K

    2017-01-01

    Background: Coleus forskohlii is a well-known industrially important medicinal plant, for its high forskolin content. Objective: A simple, selective, and sensitive high-performance thin layer chromatography (HPTLC) method was developed and validated for simultaneous quantification of forskolin and iso-forskolin in C. forskohlii germplasm collected from the Eastern Ghats, India. Materials and Methods: Chromatographic separation of the targeted marker(s) was obtained on precoated silica plates using toluene: ethyl acetate: methanol (90:30:0.5, v/v/v) as the mobile phase. Results: Densitometric quantification of forskolin and iso-forskolin was carried out at 545 nm. Forskolin and iso-forskolin were identified by comparing the ultraviolet spectra of standard and sample track at Rf of 0.64 ± 0.02 and 0.36 ± 0.01, after derivatization with anisaldehyde sulfuric acid reagent. The linearity of both the analytes was obtained in the range of 300–1200 ng/spot with the regression coefficient (R2) of 0.991 and 0.986. Recovery of analyte (s) at three levels, namely, 100, 150, and 200 ng/spot was found to be 100.46% ± 0.29%, 99.64% ± 0.33%, 100.02% ± 0.76% and 99.76% ± 0.62%, 99.56% ± 0.35%, 100.02% ± 0.22%, respectively, for forskolin and iso-forskolin. The content of forskolin and iso-forskolin varies from 0.046% to 0.187% and 0.002% to 0.077%, respectively (dry weight basis), the maximum content of both the markers was found in NBC-31, from Thakurwada, Maharashtra. Conclusion: The developed HPTLC method was linear, accurate, and reliable as per the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines. The study aids in the identification of elite chemotype for commercial prospection of industrially viable medicinal crop. SUMMARY 12 Samples are collected from different locations of the eastern ghat regionsQuantification of two major marker forskolin and iso forskolinThe maximum content of both

  11. Forskolin enhances in vivo bone formation by human mesenchymal stromal cells.

    PubMed

    Doorn, Joyce; Siddappa, Ramakrishnaiah; van Blitterswijk, Clemens A; de Boer, Jan

    2012-03-01

    Activation of the protein kinase A (PKA) pathway with dibutyryl cyclic adenosine monophosphate (db-cAMP) was recently shown to enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs) in vitro and bone formation in vivo. The major drawback of this compound is its inhibitory effect on proliferation of hMSCs. Therefore, we investigated whether fine-tuning of the dose and timing of PKA activation could enhance bone formation even further, with minimum effects on proliferation. To test this, we selected two different PKA activators (8-bromo-cAMP (8-br-cAMP) and forskolin) and compared their effects on proliferation and osteogenic differentiation with those of db-cAMP. We found that all three compounds induced alkaline phosphatase levels, bone-specific target genes, and secretion of insulin-like growth factor-1, although 8-br-cAMP induced adipogenic differentiation in long-term cultures and was thus considered unsuitable for further in vivo testing. All three compounds inhibited proliferation of hMSCs in a dose-dependent manner, with forskolin inhibiting proliferation most. The effect of forskolin on in vivo bone formation was tested by pretreating hMSCs before implantation, and we observed greater amounts of bone using forskolin than db-cAMP. Our data show forskolin to be a novel agent that can be used to increase bone formation and also suggests a role for PKA in the delicate balance between adipogenic and osteogenic differentiation.

  12. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation

    PubMed Central

    Cao, Wenguang; Razanau, Aleh; Feng, Dairong; Lobo, Vincent G.; Xie, Jiuyong

    2012-01-01

    The molecular basis of cell signal-regulated alternative splicing at the 3′ splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3′ splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3′ splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3′ splice site usage. PMID:22684629

  13. Forskolin Suppresses Delayed-Rectifier K+ Currents and Enhances Spike Frequency-Dependent Adaptation of Sympathetic Neurons

    PubMed Central

    Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels. PMID:25962132

  14. Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, K.; Anthony, D.T.; Rubin, L.L.

    1987-09-01

    The nicotinic acetylcholine receptor (Ac-ChoR) from rat myotubes prelabeled in culture with (/sup 32/P)orthophosphate was isolated by acetylcholine affinity chromatography followed by immunoaffinity chromatography. Under basal conditions, the nicotinic AcChoR was shown to be phosphorylated in situ on the ..beta.. and delta subunits. Regulation of AcChoR phosphorylation by cAMP-dependent protein kinase was explored by the addition of forskolin or cAMP analogues to prelabeled cell cultures. Forskolin, an activator of adenylate cyclase, stimulated the phosphorylation of the delta subunit 20-fold over basal phosphorylation and induced phosphorylation of the ..cap alpha.. subunit. The effect of forskolin was dose dependent with a half-maximalmore » response at 8 ..mu..M in the presence of 35 ..mu..M Ro 20-1724, a phosphodiesterase inhibitor. Stimulation of delta subunit phosphorylation was almost maximal within 5 min, whereas stimulation of ..cap alpha.. subunit phosphorylation was not maximal until 45 min after forskolin treatment. Stimulation of AcChoR phosphorylation by 8-benzylthioadenosine 3',5'-cyclic monophosphate was identical to that obtained by forskolin. Two-dimensional thermolytic phosphopeptide maps of the delta subunit revealed a single major phosphopeptide. These results correlate closely with the observed effects of forskolin on AcChoR desensitization in muscle and suggest that cAMP-dependent phosphorylation of the delta subunit increases the rate of AcChoR desensitization in rat myotubes.« less

  15. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii.

    PubMed

    Pateraki, Irini; Andersen-Ranberg, Johan; Jensen, Niels Bjerg; Wubshet, Sileshi Gizachew; Heskes, Allison Maree; Forman, Victor; Hallström, Björn; Hamberger, Britta; Motawia, Mohammed Saddik; Olsen, Carl Erik; Staerk, Dan; Hansen, Jørgen; Møller, Birger Lindberg; Hamberger, Björn

    2017-03-14

    Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii , in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13 R -manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13 R -manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana . The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L.

  16. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii

    PubMed Central

    Pateraki, Irini; Andersen-Ranberg, Johan; Jensen, Niels Bjerg; Wubshet, Sileshi Gizachew; Heskes, Allison Maree; Forman, Victor; Hallström, Björn; Hamberger, Britta; Motawia, Mohammed Saddik; Olsen, Carl Erik; Staerk, Dan; Hansen, Jørgen; Møller, Birger Lindberg; Hamberger, Björn

    2017-01-01

    Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii, in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13R-manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13R-manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana. The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L. DOI: http://dx.doi.org/10.7554/eLife.23001.001 PMID:28290983

  17. Differential calcium dependence in basal and forskolin-potentiated spontaneous transmitter release in basolateral amygdala neurons.

    PubMed

    Miura, Yuki; Naka, Masamitsu; Matsuki, Norio; Nomura, Hiroshi

    2012-10-31

    Action potential-independent transmitter release, or spontaneous release, is postulated to produce multiple postsynaptic effects (e.g., maintenance of dendritic spines and suppression of local dendritic protein synthesis). Potentiation of spontaneous release may contribute to the precise modulation of synaptic function. However, the expression mechanism underlying potentiated spontaneous release remains unclear. In this study, we investigated the involvement of extracellular and intracellular calcium in basal and potentiated spontaneous release. Miniature excitatory postsynaptic currents (mEPSCs) of the basolateral amygdala neurons in acute brain slices were recorded. Forskolin, an adenylate cyclase activator, increased mEPSC frequency, and the increase lasted at least 25 min after washout. Removal of the extracellular calcium decreased mEPSC frequency in both naïve and forskolin-treated slices. On the other hand, chelation of intracellular calcium by BAPTA-AM decreased mEPSC frequency in naïve, but not in forskolin-treated slices. A blockade of the calcium-sensing receptor (CaSR) resulted in an increase in mEPSC frequency in forskolin-treated, but not in naïve slices. These findings indicate that forskolin-induced potentiation is accompanied by changes in the mechanisms underlying Ca(2+)-dependent spontaneous release. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Intestinal permeability of forskolin by in situ single pass perfusion in rats.

    PubMed

    Liu, Zhen-Jun; Jiang, Dong-bo; Tian, Lu-Lu; Yin, Jia-Jun; Huang, Jian-Ming; Weng, Wei-Yu

    2012-05-01

    The intestinal permeability of forskolin was investigated using a single pass intestinal perfusion (SPIP) technique in rats. SPIP was performed in different intestinal segments (duodenum, jejunum, ileum, and colon) with three concentrations of forskolin (11.90, 29.75, and 59.90 µg/mL). The investigations of adsorption and stability were performed to ensure that the disappearance of forskolin from the perfusate was due to intestinal absorption. The results of the SPIP study indicated that forskolin could be absorbed in all segments of the intestine. The effective permeability (P (eff)) of forskolin was in the range of drugs with high intestinal permeability. The P (eff) was highest in the duodenum as compared to other intestinal segments. The decreases of P (eff) in the duodenum and ileum at the highest forskolin concentration suggested a saturable transport process. The addition of verapamil, a P-glycoprotein inhibitor, significantly enhanced the permeability of forskolin across the rat jejunum. The absorbed fraction of dissolved forskolin after oral administration in humans was estimated to be 100 % calculated from rat P (eff). In conclusion, dissolved forskolin can be absorbed readily in the intestine. The low aqueous solubility of forskolin might be a crucial factor for its poor oral bioavailability. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Transcriptional and post-transcriptional down-regulation of cyclin D1 contributes to C6 glioma cell differentiation induced by forskolin.

    PubMed

    He, Songmin; Zhu, Wenbo; Zhou, Yuxi; Huang, Yijun; Ou, Yanqiu; Li, Yan; Yan, Guangmei

    2011-09-01

    Malignant gliomas are the most common and lethal intracranial tumors, and differentiation therapy shows great potential to be a promising candidate for their treatment. Here, we have elaborated that a PKA activator, forskolin, represses cell growth via cell cycle arrest in the G0/G1 phase and induces cell differentiation characteristic with elongated processes and restoration of GFAP expression. In mechanisms, we verified that forskolin significantly diminishes the mRNA and protein level of a key cell cycle regulator cyclin D1, and maintenance of low cyclin D1 expression level was required for forskolin-induced proliferation inhibition and differentiation by gain and loss of function approaches. In addition, that forskolin down-regulated the cyclin D1 by proteolytic (post-transcriptional) mechanisms was dependent on GSK-3β activation at Ser9. The pro-differentiation activity of forskolin and related molecular mechanisms imply that forskolin can be developed into a candidate for the future in differentiation therapy of glioma, and cyclin D1 is a promising target for pro-differentiation strategy. Copyright © 2011 Wiley-Liss, Inc.

  20. Forskolin induces myosin light chain dephosphorylation in bovine trabecular meshwork cells.

    PubMed

    Ramachandran, Charanya; Satpathy, Minati; Mehta, Dolly; Srinivas, Sangly P

    2008-02-01

    Enhanced contractility of the actin cytoskeleton in trabecular meshwork (TM) cells is implicated in increased resistance to aqueous humor outflow. In this study, we have investigated effects of forskolin, which is known to elevate cAMP and also enhance aqueous humor outflow, on myosin light chain (MLC) phosphorylation, a biochemical marker of actin contractility. Experiments were performed using cultured bovine TM cells. Phosphorylated MLC (pMLC), expressed as the % of untreated cells, was assessed by urea-glycerol gel electrophoresis and Western blotting. RhoA activity was determined by affinity precipitation of RhoA-GTP to RhoA binding domain of an effector of RhoA. Intracellular cAMP levels were measured by ELISA. Exposure to LPA (lysophosphatidic acid) led to increased MLC phosphorylation (LPA: pMLC=133%) and activation of RhoA. These responses of LPA were suppressed by co-treatment with forskolin (LPA+forskolin: pMLC=88%). Similarly, ET-1 and nocodazole-induced MLC phosphorylation (ET-1: pMLC=145%; nocodazole: pMLC=145%) as well as RhoA activation were suppressed by co-treatment with forskolin (ET-1+forskolin: pMLC=99%; nocodazole+forskolin: pMLC=107%). Exposure to forskolin alone led to MLC dephosphorylation (pMLC=68%). Forskolin alone led to a 4-fold increase in cAMP levels. This increase was not affected when co-treated with LPA or ET-1. Forskolin prevents MLC phosphorylation induced by LPA, ET-1, and nocodazole through inhibition of RhoA-Rho kinase axis. MLC dephosphorylation and consequent relaxation of actin cytoskeleton in TM cells presumably underlies the increased outflow facility reported in response to forskolin.

  1. Forskolin modifies retinal vascular development in Mrp4-knockout mice.

    PubMed

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D; Negi, Akira

    2012-12-07

    Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. The retinal vascular phenotype of Mrp4(-/-) mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. The Mrp4(-/-) mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4(-/-) mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4(-/-) mice showed an increased number of Ki67-positive and cleaved caspase 3-positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4(-/-) mice showed a significant increase in the unvascularized retinal area. Mrp4(-/-) mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level.

  2. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-05-01

    Forskolin labelled with (/sup 3/H) bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg/sup 2 +/ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no furthermore » increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins.« less

  3. Adenylyl cyclase 3/adenylyl cyclase-associated protein 1 (CAP1) complex mediates the anti-migratory effect of forskolin in pancreatic cancer cells.

    PubMed

    Quinn, Sierra N; Graves, Sarai H; Dains-McGahee, Clayton; Friedman, Emilee M; Hassan, Humma; Witkowski, Piotr; Sabbatini, Maria E

    2017-04-01

    Pancreatic cancer is one of the most lethal human malignancies. A better understanding of the intracellular mechanism of migration and invasion is urgently needed to develop treatment that will suppress metastases and improve overall survival. Cyclic adenosine monophosphate (cyclic AMP) is a second messenger that has shown to regulate migration and invasion of pancreatic cancer cells. The rise of cyclic AMP suppressed migration and invasion of pancreatic ductal adenocarcinoma cells. Cyclic AMP is formed from cytosolic ATP by the enzyme adenylyl cyclase (AC). There are ten isoforms of ACs; nine are anchored in the plasma membrane and one is soluble. What remains unknown is the extent to which the expression of transmembrane AC isoforms is both modified in pancreatic cancer and mediates the inhibitory effect of forskolin on cell motility. Using real-time PCR analysis, ADCY3 was found to be highly expressed in pancreatic tumor tissues, resulting in a constitutive increase in cyclic AMP levels. On the other hand, ADCY2 was down-regulated. Migration, invasion, and filopodia formation in two different pancreatic adenocarcinoma cell lines, HPAC and PANC-1 deficient in AC1 or AC3, were studied. We found that AC3, upon stimulation with forskolin, enhanced cyclic AMP levels and inhibited cell migration and invasion. Unlikely to be due to a cytotoxic effect, the inhibitory effects of forskolin involved the quick formation of AC3/adenylyl cyclase-associated protein 1 (CAP1)/G-actin complex, which inhibited filopodia formation and cell motility. Using Western blotting analysis, forskolin, through AC3 activation, caused phosphorylation of CREB, but not ERK. The effect of CREB phosphorylation is likely to be associated with long-term signaling changes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons.

    PubMed

    Jensen, P; Ducray, A D; Widmer, H R; Meyer, M

    2015-12-03

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be

  5. Tyrosine hydroxylase is activated and phosphorylated at different sites in rat pheochromocytoma PC 12 cells treated with phorbol ester and forskolin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachikawa, E.; Tank, A.W.; Weiner, D.H.

    1986-03-01

    The effects of phorbol ester (4..beta..-phorbol, 12..beta..-myristate, 13..cap alpha..-acetate; TPA), an activator of Ca/sup + +//phospholipid-dependent protein kinase (PK-C), and forskolin, which stimulates adenylate cyclase and cyclic AMP-dependent protein kinase (cAMP-PK), on the activation and phosphorylation of tyrosine hydroxylase (TH) in rat pheochromocytoma (PC 12) cells were examined. Incubation of the cells with TPA (0.01-1 ..mu..M) or forskolin (0.01-0.1 ..mu..M) produces increases in activation and phosphorylation of TH in a concentration-dependent manner. The stimulatory effects of TPA are dependent on extracellular Ca/sup + +/ and are inhibited by pretreatment of the cells with trifluoperazine (TFP). The effects of forskolin aremore » independent of Ca/sup + +/ and are not inhibited by TFP. In cells treated with forskolin, the time course of the increase in cAMP correlates with the increases in TH activity and phosphorylation. cAMP levels do not increase in cells treated with TPA. There is an increase in the phosphorylation of only one tryptic phosphopeptide derived from TH in cells treated with either forskolin or TPA. The peptide phosphorylated in TPA-treated cells exhibits different elution characteristics on HPLC from that in forskolin-treated cells. The authors conclude that TH in PC 12 cells is phosphorylated on different sites by cAMP-PK and PK-C. Phosphorylation of either of these sites is associated with enzyme activation.« less

  6. Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury

    PubMed Central

    Adornetto, Annagrazia; Cavaliere, Federica; Varano, Giuseppe Pasquale; Rusciano, Dario; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Nucci, Carlo

    2015-01-01

    Purpose Retinal ganglion cell (RGC) death is the final event leading to visual impairment in glaucoma; therefore, identification of neuroprotective strategies able to slow down or prevent the process is one of the main challenges for glaucoma research. The purpose of this study was to evaluate the neuroprotective potential of RGC death induced by the in vivo transient increase in intraocular pressure (IOP) of a combined treatment with forskolin, homotaurine, and L-carnosine. Forskolin (7beta-acetoxy-8, 13-epoxy-1a, 6β, 9a-trihydroxy-labd-14-en-11-one) is an activator of adenylate cyclase that decreases IOP by reducing aqueous humor production and functions as a neuroprotector due to its neurotrophin-stimulating activity. Homotaurine is a natural aminosulfonate compound endowed with neuromodulatory effects, while the dipeptide L-carnosine is known for its antioxidant properties. Methods Retinal ischemia was induced in the right eye of adult male Wistar rats by acutely increasing the IOP. Forskolin, homotaurine, and L-carnosine were intravitreally injected and RGC survival evaluated following retrograde labeling with FluoroGold. Total and phosphorylated Akt and glycogen synthase kinase-3β (GSK-3β) protein levels, as well as calpain activity, were analyzed with western blot. Protein kinase A (PKA) was inhibited by intravitreal injection of H89. Results A synergic neuroprotective effect on RGC survival was observed following the combined treatment with forskolin, homotaurine, and L-carnosine compared to forskolin alone. The observed neuroprotection was associated with reduced calpain activity, upregulation of phosphoinositide 3-kinase (PI3K)/Akt pathway, and inhibition of GSK-3β but was independent from PKA activation and distinct from the hypotensive effects of forskolin. Conclusions A multidrug/multitarget approach, by interfering with several pathways involved in RGC degeneration, may be promising to achieve glaucoma neuroprotection. PMID:26167113

  7. Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury.

    PubMed

    Russo, Rossella; Adornetto, Annagrazia; Cavaliere, Federica; Varano, Giuseppe Pasquale; Rusciano, Dario; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Nucci, Carlo

    2015-01-01

    Retinal ganglion cell (RGC) death is the final event leading to visual impairment in glaucoma; therefore, identification of neuroprotective strategies able to slow down or prevent the process is one of the main challenges for glaucoma research. The purpose of this study was to evaluate the neuroprotective potential of RGC death induced by the in vivo transient increase in intraocular pressure (IOP) of a combined treatment with forskolin, homotaurine, and L-carnosine. Forskolin (7beta-acetoxy-8, 13-epoxy-1a, 6β, 9a-trihydroxy-labd-14-en-11-one) is an activator of adenylate cyclase that decreases IOP by reducing aqueous humor production and functions as a neuroprotector due to its neurotrophin-stimulating activity. Homotaurine is a natural aminosulfonate compound endowed with neuromodulatory effects, while the dipeptide L-carnosine is known for its antioxidant properties. Retinal ischemia was induced in the right eye of adult male Wistar rats by acutely increasing the IOP. Forskolin, homotaurine, and L-carnosine were intravitreally injected and RGC survival evaluated following retrograde labeling with FluoroGold. Total and phosphorylated Akt and glycogen synthase kinase-3β (GSK-3β) protein levels, as well as calpain activity, were analyzed with western blot. Protein kinase A (PKA) was inhibited by intravitreal injection of H89. A synergic neuroprotective effect on RGC survival was observed following the combined treatment with forskolin, homotaurine, and L-carnosine compared to forskolin alone. The observed neuroprotection was associated with reduced calpain activity, upregulation of phosphoinositide 3-kinase (PI3K)/Akt pathway, and inhibition of GSK-3β but was independent from PKA activation and distinct from the hypotensive effects of forskolin. A multidrug/multitarget approach, by interfering with several pathways involved in RGC degeneration, may be promising to achieve glaucoma neuroprotection.

  8. Forskolin Modifies Retinal Vascular Development in Mrp4-Knockout Mice

    PubMed Central

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D.; Negi, Akira

    2012-01-01

    Purpose. Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. Methods. The retinal vascular phenotype of Mrp4−/− mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. Results. The Mrp4−/− mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4−/− mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4−/− mice showed an increased number of Ki67-positive and cleaved caspase 3–positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4−/− mice showed a significant increase in the unvascularized retinal area. Conclusions. Mrp4−/− mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level. PMID:23154460

  9. Protective Effects of Forskolin on Behavioral Deficits and Neuropathological Changes in a Mouse Model of Cerebral Amyloidosis

    PubMed Central

    Zug, Caroline; Schluesener, Hermann J.; Zhang, Zhi-Yuan

    2016-01-01

    The production of amyloid-β peptides in the brains of patients with Alzheimer disease (AD) may contribute to memory loss and impairments in social behavior. Here, an efficient adenylate cyclase activator, forskolin, was orally administered by gavage (100 mg/kg body weight) to 5-month-old transgenic APP/PS1 mice, which serve as an animal model of cerebral amyloidosis. Analyses of nest construction, sociability, and immunohistochemical features were used to determine the effects of forskolin treatment. After a relatively short term of treatment (10 days), forskolin-treated transgenic mice showed restored nest construction ability (p < 0.05) and their sociability (p < 0.01). There was a reduction of Aβ plaque deposition in the cortex and in the hippocampus. Furthermore, expression of transforming growth factor β, glial fibrillary acidic protein, and Iba-1 in the cortex was reduced in the forskolin-treated group, suggesting regulation of the inflammatory response mediated by activated microglia and astrocytes in the brains of the APP/PS1 mice (p < 0.01). Taken together, these findings suggest that forskolin shows neuroprotective effects in APP/PS1 Tg mice and may be a promising drug in the treatment of patients with AD. PMID:27251043

  10. Protective Effects of Forskolin on Behavioral Deficits and Neuropathological Changes in a Mouse Model of Cerebral Amyloidosis.

    PubMed

    Owona, Brice Ayissi; Zug, Caroline; Schluesener, Hermann J; Zhang, Zhi-Yuan

    2016-07-01

    The production of amyloid-β peptides in the brains of patients with Alzheimer disease (AD) may contribute to memory loss and impairments in social behavior. Here, an efficient adenylate cyclase activator, forskolin, was orally administered by gavage (100 mg/kg body weight) to 5-month-old transgenic APP/PS1 mice, which serve as an animal model of cerebral amyloidosis. Analyses of nest construction, sociability, and immunohistochemical features were used to determine the effects of forskolin treatment. After a relatively short term of treatment (10 days), forskolin-treated transgenic mice showed restored nest construction ability (p < 0.05) and their sociability (p < 0.01). There was a reduction of Aβ plaque deposition in the cortex and in the hippocampus. Furthermore, expression of transforming growth factor β, glial fibrillary acidic protein, and Iba-1 in the cortex was reduced in the forskolin-treated group, suggesting regulation of the inflammatory response mediated by activated microglia and astrocytes in the brains of the APP/PS1 mice (p < 0.01). Taken together, these findings suggest that forskolin shows neuroprotective effects in APP/PS1 Tg mice and may be a promising drug in the treatment of patients with AD. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  11. In vitro embryos production after oocytes treatment with forskolin.

    PubMed

    Paschoal, Daniela Martins; Maziero, Rosiára Rosária Dias; Sudano, Mateus José; Guastali, Midyan Daroz; Vergara, Luis Eduardo; Crocomo, Letícia Ferrari; Lima-Neto, João Ferreira de; Magalhães, Luis Carlos Oña; Monteiro, Bianca Andriolo; Rascado, Tatiana da Silva; Martins, Alício; Leal, Claudia Lima Verde; Landim-Alvarenga, Fernanda da Cruz

    2016-04-01

    The inhibition of nuclear maturation allows time for the oocyte to accumulate molecules that are important for embryonic development. Thus, the objective of this work was to evaluate the effect of blocking oocyte meiosis with the addition of forskolin, an efficient inhibitor of nuclear maturation, in in vitro maturation (IVM) medium. Forskolin was added to the IVM medium for 6 h at concentrations of 0.1 mM, 0.05 mM or 0.025 mM, then the oocytes were allowed to mature in drug-free medium for 18 h. The oocytes were assessed for the stage of nuclear maturation, the activity and distribution of mitochondria, oocyte ultrastructure, the number of viable cells and the apoptosis rate. After forskolin treatment, the oocytes were fertilized in vitro and cultured for 7 days. On day 7, the blastocyst rate, the ultrastructure, the number of intact cells and the apoptosis rate of the blastocysts were measured. No differences were observed for the stage of nuclear maturation of the oocyte, the mitochondrial activity and distribution, the blastocyst rate or total number of intact cells. However, a higher rate of apoptosis was observed in the blastocysts produced from oocytes blocked for 6 h with the higher concentration of forskolin (P < 0.05). We conclude that all the experimental groups reached the MII stage after the addition of forskolin and that the highest concentration of forskolin caused cellular degeneration without harming embryo production on the 7th day.

  12. Regulation of forskolin-induced cAMP production by cytochrome P450 epoxygenase metabolites of arachidonic acid in HEK293 cells.

    PubMed

    Abukhashim, Mohamed; Wiebe, Glenis J; Seubert, John M

    2011-10-01

    Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs), which in turn are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). EETs are known to modulate a number of vascular and renal functions, but the exact signaling mechanism(s) of these EET-mediated effects remains unknown. The purpose of this study is to investigate the role of EETs and DHETs in regulating cyclic adenosine monophosphate (cAMP) production via adenylyl cyclase in a human embryonic kidney cell line (HEK293). HEK293 cells were treated with vehicle, forskolin, epinephrine, 11,12-EET, 11,12-DHET, as well as potential pathway and G-protein inhibitors to assess changes in cAMP production. Co-administering 11,12-EET with forskolin effectively eliminated the increased cAMP levels observed in cells treated with forskolin alone. The inhibitory effect of EETs on forskolin-mediated cAMP production was abolished when cells were treated with a sEH inhibitor (tAUCB). 11,12-DHET also negated the effects of forskolin, suggesting that the inhibitory effect observed in EET-treated cells could be attributed to the downstream metabolites, DHETs. In contrast, inhibition of phosphodiesterase IV (PDE4) with rolipram eliminated the effects of EETs or DHETs, and inhibition of Gαi with pertussis toxin also resulted in enhanced cAMP production. Our data suggest that DHETs regulate cAMP production via PDE4 and Gαi protein. Moreover, they provide novel evidence as to how EET-mediated signaling may alter G-protein coupling in HEK293 cells. © Springer Science+Business Media B.V. 2011

  13. Role of Cyclic Nucleotide-Dependent Actin Cytoskeletal Dynamics: [Ca2+]i and Force Suppression in Forskolin-Pretreated Porcine Coronary Arteries

    PubMed Central

    Hocking, Kyle M.; Baudenbacher, Franz J.; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca2+]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca2+]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm. PMID:23593369

  14. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+)](i) and force suppression in forskolin-pretreated porcine coronary arteries.

    PubMed

    Hocking, Kyle M; Baudenbacher, Franz J; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+)]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+)]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.

  15. Transdermal delivery of forskolin from emulsions differing in droplet size.

    PubMed

    Sikora, Elżbieta; Llinas, Meritxell; Garcia-Celma, Maria Jose; Escribano, Elvira; Solans, Conxita

    2015-02-01

    The skin permeation of forskolin, a diterpene isolated from Coleus forsholii, was studied using oil in water (O/W) emulsions as delivery formulations and also an oil solution for comparative purposes. Two forskolin-loaded emulsions of water/Brij 72:Symperonic A7/Miglyol 812:Isohexadecane, at 0.075 wt% forskolin concentration were prepared with the same composition and only differing in droplet size (0.38 μm and 10 μm). The emulsions showed high kinetic stability at 25 °C. In vitro study of forskolin penetration through human skin was carried out using the MicroettePlus(®) system. The concentration of the active in the receptor solution (i.e. ethanol/phosphate buffer 40/60, v/v) was analyzed by high performance liquid chromatography with UV detection. The obtained results showed that forskolin permeation from the emulsions and the oil solution, through human skin, was very high (up to 72.10%), and no effect of droplet size was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Escitalopram Ameliorates Forskolin-Induced Tau Hyperphosphorylation in HEK239/tau441 Cells.

    PubMed

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Zhou, Qi-Da; Xu, Lin; Zhang, Zhi-Jun

    2015-06-01

    To investigate the effect of escitalopram (a widely used and highly efficacious antidepressant from the SSRI class) on tau hyperphosphorylation, HEK293/tau441 cells were pretreated with 4 μM of forskolin for 2 h. Then we treated the cells with different doses of escitalopram (0, 5, 10, 20, 40, 80 μM) for 22 h. We measured the phosphorylation level of tau by Western blotting. It was shown that escitalopram could protect tau from hyperphosphorylation induced by pharmacological activation of protein kinase A (PKA) at a dose of 20, 40, and 80 μM in vitro. Interestingly, the same dose of escitalopram could also increase the level of serine-9-phosphorylated GSK-3β (inactive form) and the phosphorylation level of Akt at Ser473 (active form) with no significant change in the level of total GSK-3β and Akt. Unexpectedly, 5-hydroxytryptamine 1A receptor (5-HT1A) agonist 8-OH-DPAT did not decrease forskolin-induced tau hyperphosphorylation. Our results suggest that escitalopram can ameliorate forskolin-induced tau hyperphosphorylation, which is not through the typical 5-HT1A pathway, and Akt/GSK-3β signaling pathway is involved. These findings may support an effective role of antidepressants in the prevention of dementia associated with depression in patients.

  17. Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling.

    PubMed

    Namkoong, Seung; Kim, Chun-Ki; Cho, Young-Lai; Kim, Ji-Hee; Lee, Hansoo; Ha, Kwon-Soo; Choe, Jongseon; Kim, Pyeung-Hyeun; Won, Moo-Ho; Kwon, Young-Geun; Shim, Eun Bo; Kim, Young-Myeong

    2009-06-01

    Forskolin, a potent activator of adenylyl cyclases, has been implicated in modulating angiogenesis, but the underlying mechanism has not been clearly elucidated. We investigated the signal mechanism by which forskolin regulates angiogenesis. Forskolin stimulated angiogenesis of human endothelial cells and in vivo neovascularization, which was accompanied by phosphorylation of CREB, ERK, Akt, and endothelial nitric oxide synthase (eNOS) as well as NO production and VEGF expression. Forskolin-induced CREB phosphorylation, VEGF promoter activity, and VEGF expression were blocked by the PKA inhibitor PKI.Moreover, phosphorylation of ERK by forskolin was inhibited by the MEK inhibitor PD98059, but not PKI. The forskolin-induced Akt/eNOS/NO pathway was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, but not significantly suppressed by PKI. These inhibitors and a NOS inhibitor partially inhibited forskolin-induced angiogenesis. The exchange protein directly activated by cAMP (Epac) activator, 8CPT-2Me-cAMP, promoted the Akt/eNOS/NO pathway and ERK phosphorylation,but did not induce CREB phosphorylation and VEGF expression. The angiogenic effect of the Epac activator was diminished by the inhibition of PI3K and MEK, but not by the PKA inhibitor. Small interfering RNA-mediated knockdown of Epac1 suppressed forskolin-induced angiogenesis and phosphorylation of ERK, Akt, and eNOS, but not CREB phosphorylation and VEGF expression. These results suggest that forskolin stimulates angiogenesis through coordinated cross-talk between two distinct pathways, PKA-dependent VEGF expression and Epac-dependent ERKactivation and PI3K/Akt/eNOS/NO signaling.

  18. Prolonged treatment of fair-skinned mice with topical forskolin causes persistent tanning and UV protection.

    PubMed

    Spry, Malinda L; Vanover, Jillian C; Scott, Timothy; Abona-Ama, Osama; Wakamatsu, Kazumasa; Ito, Shosuke; D'Orazio, John A

    2009-04-01

    We previously reported that topical application of forskolin to the skin of fair-skinned MC1R-defective mice with epidermal melanocytes resulted in accumulation of eumelanin in the epidermis and was highly protective against UV-mediated cutaneous injury. In this report, we describe the long-term effects of chronic topical forskolin treatment in this animal model. Forskolin-induced eumelanin production persisted through 3 months of daily applications, and forskolin-induced eumelanin remained protective against UV damage as assessed by minimal erythematous dose (MED). No obvious toxic changes were noted in the skin or overall health of animals exposed to prolonged forskolin therapy. Body weights were maintained throughout the course of topical forskolin application. Topical application of forskolin was associated with an increase in the number of melanocytes in the epidermis and thickening of the epidermis due, at least in part, to an accumulation of nucleated keratinocytes. Together, these data suggest in this animal model, short-term topical regular application of forskolin promotes eumelanin induction and that over time, topical forskolin treatment is associated with persistent melanization, epidermal cell accumulation, and skin thickening.

  19. Beta-Adrenergic Receptor Population is Up-Regulated in Chicken Skeletal Muscle Cells Treated with Forskolin

    NASA Technical Reports Server (NTRS)

    Bridge, K. Y.; Young, R. B.; Vaughn, J. R.

    1998-01-01

    Skeletal muscle hypertrophy is promoted by in vivo administration of beta-adrenergic receptor (betaAR) agonists. These compounds presumably exert their physiological action through the betaAR, and alterations in the population of betaAR could potentially change the ability of the cell to respond to the betaAR agonists. Since the intracellular chemical signal generated by the betaAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of functional betaAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 microM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the betaAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 microM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in betaAR population, with a maximum increase of approximately 50% at 10 microM. This increase in PAR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of betaAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc

  20. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-11-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did notmore » alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.« less

  1. Nano-emulsions as vehicles for topical delivery of forskolin.

    PubMed

    Miastkowska, Małgorzata; Sikora, Elżbieta; Lasoń, Elwira; Garcia-Celma, Maria Jose; Escribano-Ferrer, Elvira; Solans, Conxita; Llinas, Meritxell

    2017-01-01

    Two O/W forskolin-loaded nano-emulsions (0.075% wt.) based on medium chain triglycerides (MCT) and stabilized by a nonionic surfactant (Polysorbate 80 or Polysorbate 40) were studied as forskolin delivery systems. The nano-emulsions were prepared by the PIC method. The mean droplet size of the nano-emulsions with Polysorbate 80 and Polysorbate 40 with oil/surfactant (O/S) ratios of 20/80 and 80% water concentration, measured by Dynamic Light Scattering (DLS), was of 118 nm and 111 nm, respectively. Stability of the formulations, as assessed by light backscattering for 24 h, showed that both nano-emulsions were stable at 25°C. Studies of forskolin in vitro skin permeation from the nano-emulsions and from a triglyceride solution were carried out at 32°C, using Franz-type diffusion cells. A mixture of PBS/ethanol (60/40 v/v) was used as a receptor solution. The highest flux and permeability coefficient was obtained for the system stabilized with Polysorbate 80 (6.91±0.75 µg · cm -2 ·h -1 and 9.21 · 10 -3 ±1.00 · 10 -3 cm · h -1 , respectively) but no significant differences were observed with the flux and permeability coefficient value of forskolin dissolved in oil. The obtained results showed that the nano-emulsions developed in this study could be used as effective carriers for topical administration of forskolin.

  2. Forskolin and protein kinase inhibitors differentially affect hair cell potassium currents and transmitter release at the cytoneural junction in the isolated frog labyrinth.

    PubMed

    Rossi, Maria Lisa; Rubbini, Gemma; Martini, Marta; Canella, Rita; Fesce, Riccardo

    2017-08-15

    The post-transductional elaboration of sensory input at the frog semicircular canal has been studied by correlating the effects of drugs that interfere with phosphorylation processes on: (i) potassium conductances in isolated hair cell and (ii) transmitter release at the cytoneural junction in the intact labyrinth. At hair cells, delayed potassium currents (IKD) undergo voltage- and time-dependent inactivation; inactivation removal requires ATP, is sensitive to kinase blockade, but is unaffected by exogenous application of cyclic nucleotides. We report here that forskolin, an activator of endogenous adenylyl cyclase, enhances IKD inactivation removal in isolated hair cells, but produces an overall decrease in IKD amplitude consistent with the direct blocking action of the drug on several families of K channels. In the intact labyrinth, forskolin enhances transmitter release, consistent with such depression of K conductances. Kinase blockers - H-89 and KT5823 - have been shown to reduce IKD inactivation removal and IKD amplitude at isolated hair cells. In the labyrinth, the effects of these drugs on junctional activity are quite variable, with predominant inhibition of transmitter release, rather than the enhancement expected from the impairment of K currents. The overall action of forskolin and kinase inhibitors on K conductances is similar (depression), but they have opposite effects on transmitter release: this indicates that some intermediate steps between the bioelectric control of hair cell membrane potential and transmitter release are affected in opposite ways and therefore are presumably regulated by protein phosphorylation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts.

    PubMed

    Zhang, Xuemei; Li, Fangping; Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.

  4. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts

    PubMed Central

    Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells. PMID:25902045

  5. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-05-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the (/sup 3/H)-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mgmore » protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the (/sup 3/H)DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the ..beta..-adrenergic receptor in rat heart.« less

  6. Induction of dopaminergic neurons from human Wharton's jelly mesenchymal stem cell by forskolin.

    PubMed

    Paldino, Emanuela; Cenciarelli, Carlo; Giampaolo, Adele; Milazzo, Luisa; Pescatori, Mario; Hassan, Hamisa Jane; Casalbore, Patrizia

    2014-02-01

    The purpose of this study was to investigate the Wharton's jelly mesenchymal stem cells differentiation ability toward neuronal fate. Human Wharton's jelly mesenchymal stem cells (hWJMSC) have been isolated from human umbilical cord of full-term births and characterized by flow cytometry analysis for their stem mesenchymal properties through specific surface markers expression (CD73, CD90, and CD105). hWJMSC mesodermal lineage differentiation ability and karyotype analysis were assessed. The trans-differentiation of hWJMSC into neural lineage was investigated in presence of forskolin, an agent known to increase the intracellular levels of cAMP. A molecular profile of differentiated hWJMSC was performed by microarray technology which revealed 1,532 statistically significant modulated genes respect to control cells. Most of these genes are mainly involved in functional neuronal signaling pathways and part of them are specifically required for the neuronal dopaminergic induction. The acquisition of the dopaminergic phenotype was evaluated via immunocytochemistry and Western blot analysis revealed the significant induction of Nurr1, NeuroD1, and TH proteins expression in forskolin-induced hWJMSC. Moreover, the treatment with forskolin promoted, in hWJMSC, a strong upregulation of the neurotrophin Trk receptors related to the high release of brain-derived neurotrophic factor. Taken together these findings show that hWJMSC may be represent an optimal therapeutic strategy for neurological diseases. © 2013 Wiley Periodicals, Inc.

  7. Zinc-mediated attenuation of hippocampal mossy fiber long-term potentiation induced by forskolin.

    PubMed

    Ando, Masaki; Oku, Naoto; Takeda, Atsushi

    2010-11-01

    The rise in presynaptic calcium induced by high-frequency stimulation activates the calcium-calmodulin-sensitive adenylyl cyclase (AC) 1 followed by the induction of long-term potentiation (LTP) at the hippocampal mossy fiber-CA3 synapse. Zinc is released with glutamate from mossy fiber terminals. However, the role of the zinc in mossy fiber LTP is controversial. In the present study, the mechanism of zinc-mediated attenuation of mossy fiber LTP was examined in that induced by forskolin, an AC activator. Mossy fiber LTP induced by tetanic stimulation (100 Hz for 1 s) was attenuated in the presence of 5 microM ZnCl(2), whereas that induced by forskolin under test stimulation (0.1 Hz) was not attenuated. Forskolin-induced mossy fiber LTP was attenuated by perfusion with 100 microM ZnCl(2) prior to the induction. However, the zinc (100 microM) pre-perfusion did not attenuate mossy fiber LTP induced by Sp-cAMPS, an activator of protein kinase A, under test stimulation. Zinc is necessary to be taken up into mossy fiber boutons for effectively inhibiting AC activity. In hippocampal slices labeled with ZnAF-2 DA, a membrane-permeable zinc indicator, intracellular ZnAF-2 signal was increased during tetanic stimulation in the presence of 5 microM ZnCl(2), but not under test stimulation. Intracellular ZnAF-2 signal was increased under test stimulation in the presence of 100 microM ZnCl(2). These results suggest that zinc taken up into mossy fibers attenuates forskolin-induced mossy fiber LTP via inhibition of AC activity. The significance of endogenous zinc uptake by mossy fibers is discussed focused on tetanus-induced mossy fiber LTP. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Forskolin and rutin prevent intraocular pressure spikes after Nd:YAG laser iridotomy.

    PubMed

    Nebbioso, M; Belcaro, G; Librando, A; Rusciano, D; Steigerwalt, R D; Pescosolido, N

    2012-12-01

    the purpose of this research was to evaluate whether an oral treatment with an association of forskolin and rutin can blunt the intraocular pressure (IOP) spikes and avoid the damage that may occur after laser iridotomy. Ten patients underwent bilateral Neodymium:YAG (Nd:YAG) laser iridotomy (Visulas YAG III Laser, Zeiss), for the prevention of primary closed-angle glaucoma. IOP was measured in subjects before and after 7 days of pretreatment with placebo or forskolin and rutin by Goldman applanation tonometry. The IOP was measured before surgery and after surgery at 30-60-120 minutes, and 4-7 days. Analysis of variance indicated a significant increase of the postoperative values in patients receiving treatment with placebo (p < 0.001), but not in those who received treatment with the forskolin and rutin association. T test analysis confirmed that IOP still remained significantly elevated 7 days after laser intervention in placebo treated patients, whereas it stayed within normal values in forskolin/rutin treated patients. Forskolin and rutin can blunt the increase of IOP that occurs after Nd-YAG laser iridotomy. This can avoid serious risk to the optic nerve of the patients under laser treatment for iridotomy.

  9. Characterization of mammalian glucose transport proteins using photoaffinity labeling techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadzinski, B.E.

    1989-01-01

    A carrier-free radioiodinated phenylazide derivative of forskolin, 3-iodo-4-azidophenethylamido-7-O-succinyl-deacetyl-forskolin (({sup 125}I)IAPS-forskolin), has been shown to be a highly selective photoaffinity probe for the human erythrocyte glucose transported and the glucose transport proteins found in several mammalian tissues and cultured cells where the glucose transport protein is present at a low concentration. The photoincorporation of ({sup 125}I)IAPS-forskolin into these glucose transporters was blocked by D- (but not L-) glucose, cytochalasin B, and forskolin. In addition to labeling the mammalian glucose transport proteins, ({sup 125}I)IAPS-forskolin also labeled the L-arabinose transporter from E. coli. In muscle and adipose tissues, glucose transport is markedly increasedmore » in response to insulin. ({sup 125}I)IAPS-forskolin was shown to selectivity tag the glucose transporter in membranes derived from these cells. In addition, the covalent derivatization of the transport protein in subcellular fractions of the adipocyte has provided a means to study the hormonal regulation of glucose transport. ({sup 125}I)IAPS-forskolin has also been used to label the purified human erythrocyte glucose transporter. The site of insertion has therefore been localized by analysis of the radiolabeled peptides which were produced following chemical and proteolytic digestion of the labeled transport protein.« less

  10. Pleiotropic actions of forskolin result in phosphatidylserine exposure in primary trophoblasts.

    PubMed

    Riddell, Meghan R; Winkler-Lowen, Bonnie; Jiang, Yanyan; Davidge, Sandra T; Guilbert, Larry J

    2013-01-01

    Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly

  11. Effect of chronic administration of forskolin on glycemia and oxidative stress in rats with and without experimental diabetes.

    PubMed

    Ríos-Silva, Mónica; Trujillo, Xóchitl; Trujillo-Hernández, Benjamín; Sánchez-Pastor, Enrique; Urzúa, Zorayda; Mancilla, Evelyn; Huerta, Miguel

    2014-01-01

    Forskolin is a diterpene derived from the plant Coleus forskohlii. Forskolin activates adenylate cyclase, which increases intracellular cAMP levels. The antioxidant and antiinflammatory action of forskolin is due to inhibition of macrophage activation with a subsequent reduction in thromboxane B2 and superoxide levels. These characteristics have made forskolin an effective medication for heart disease, hypertension, diabetes, and asthma. Here, we evaluated the effects of chronic forskolin administration on blood glucose and oxidative stress in 19 male Wistar rats with streptozotocin-induced diabetes compared to 8 healthy male Wistar rats. Rats were treated with forskolin, delivered daily for 8 weeks. Glucose was assessed by measuring fasting blood glucose in diabetic rats and with an oral glucose tolerance test (OGTT) in healthy rats. Oxidative stress was assessed by measuring 8-hydroxydeoxyguanosine (8‑OHdG) in 24-h urine samples. In diabetic rats, without forskolin, fasting blood glucose was significantly higher at the end than at the beginning of the experiment (8 weeks). In both healthy and diabetic rats, forskolin treatment lowered the fasting glucose at the end of the experiment but no effect was found on oral glucose tolerance. The 8-OHdG levels tended to be less elevated in forskolin-treated than in untreated group. Our results showed that chronic administration of forskolin decreased fasting blood glucose levels; however, the reductions of 8-OHdG were not statistically significant.

  12. Forskolin compared with beclomethasone for prevention of asthma attacks: a single-blind clinical trial.

    PubMed

    Huerta, M; Urzúa, Z; Trujillo, X; González-Sánchez, R; Trujillo-Hernández, B

    2010-01-01

    This single-blind study compared the efficacy of oral forskolin versus inhaled beclomethasone for mild or moderately persistent adult asthma. Patients were randomly assigned to receive forskolin (one 10-mg capsule orally per day; n = 30) or beclomethasone (two 50 microg inhalations every 12 h; n = 30) for 2 months. No statistically significant improvement occurred in any lung function parameter in the forskolin-treated patients. Subjects in the beclomethasone-treated group presented a slight but statistically significant improvement in percentage forced expiratory volume in 1 s (FEV(1)), percentage forced expiratory flow in the middle (25 - 75%) expiratory phase (FEF(25 - 75%)) and percentage forced vital capacity (FVC) after 2 months of treatment, though the improvement in absolute values for FEV(1), FEF(25 - 75%), FVC and FEV(1):FVC did not reach statistical significance. There was no statistically significant difference between the forskolin and beclomethasone treatment groups for any lung function parameter at baseline or after treatment. None of the beclomethasone-treated patients had an asthma attack and one forskolin-treated patient had a mild asthma attack during the 2-month study period. More studies are needed in adult asthma patients to confirm whether forskolin may be a useful preventive treatment for mild or moderately persistent adult asthma.

  13. Effect of Chronic Administration of Forskolin on Glycemia and Oxidative Stress in Rats with and without Experimental Diabetes

    PubMed Central

    Ríos-Silva, Mónica; Trujillo, Xóchitl; Trujillo-Hernández, Benjamín; Sánchez-Pastor, Enrique; Urzúa, Zorayda; Mancilla, Evelyn; Huerta, Miguel

    2014-01-01

    Forskolin is a diterpene derived from the plant Coleus forskohlii. Forskolin activates adenylate cyclase, which increases intracellular cAMP levels. The antioxidant and antiinflammatory action of forskolin is due to inhibition of macrophage activation with a subsequent reduction in thromboxane B2 and superoxide levels. These characteristics have made forskolin an effective medication for heart disease, hypertension, diabetes, and asthma. Here, we evaluated the effects of chronic forskolin administration on blood glucose and oxidative stress in 19 male Wistar rats with streptozotocin-induced diabetes compared to 8 healthy male Wistar rats. Rats were treated with forskolin, delivered daily for 8 weeks. Glucose was assessed by measuring fasting blood glucose in diabetic rats and with an oral glucose tolerance test (OGTT) in healthy rats. Oxidative stress was assessed by measuring 8-hydroxydeoxyguanosine (8‑OHdG) in 24-h urine samples. In diabetic rats, without forskolin, fasting blood glucose was significantly higher at the end than at the beginning of the experiment (8 weeks). In both healthy and diabetic rats, forskolin treatment lowered the fasting glucose at the end of the experiment but no effect was found on oral glucose tolerance. The 8-OHdG levels tended to be less elevated in forskolin-treated than in untreated group. Our results showed that chronic administration of forskolin decreased fasting blood glucose levels; however, the reductions of 8-OHdG were not statistically significant. PMID:24688307

  14. Pleiotropic Actions of Forskolin Result in Phosphatidylserine Exposure in Primary Trophoblasts

    PubMed Central

    Riddell, Meghan R.; Winkler-Lowen, Bonnie; Jiang, Yanyan; Davidge, Sandra T.; Guilbert, Larry J.

    2013-01-01

    Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly

  15. Role of endolymphatic anion transport in forskolin-induced Cl- activity increase of scala media.

    PubMed

    Kitano, I; Mori, N; Matsunaga, T

    1995-03-01

    To determine the role of anion transport in the forskolin-induced Cl- increase of scala media (SM), effects of forskolin on the EP (endocochlear potential) and Cl- activity (ACl) in SM were examined with double-barrelled Cl(-)-selective microelectrodes. The experiments were carried out on guinea pig cochleae, using a few anion transport inhibitors: IAA-94 for a Cl- channel blocker, bumetanide (BU) for an Na+/K+/2Cl- cotransport blocker, and SITS and DIDS for Cl-/HCO3- exchange blockers. The application of forskolin (200 microM) into scala vestibuli (SV) caused a 20 mEq increase of endolymphatic ACl and a 15 mV elevation of EP, and IAA-94 with forskolin completely abolished these responses. Although each application of BU, SITS or DIDS did not completely suppress EP elevation, the concurrent application of these inhibitors completely suppressed EP with endolymphatic ACl increase. The results indicate the involvement of Cl- channels, Na+/K+/2Cl- cotransport and Cl-/HCO3- exchange in forskolin-induced increase of ACl and EP. The role of adenylate cyclase activation and Cl- transport in endolymph homeostasis was discussed.

  16. Forskolin, a hedgehog signalling inhibitor, attenuates carbon tetrachloride-induced liver fibrosis in rats.

    PubMed

    El-Agroudy, Nermeen N; El-Naga, Reem N; El-Razeq, Rania Abd; El-Demerdash, Ebtehal

    2016-11-01

    Liver fibrosis is one of the leading causes of morbidity and mortality worldwide with very limited therapeutic options. Given the pivotal role of activated hepatic stellate cells in liver fibrosis, attention has been directed towards the signalling pathways underlying their activation and fibrogenic functions. Recently, the hedgehog (Hh) signalling pathway has been identified as a potentially important therapeutic target in liver fibrosis. The present study was designed to explore the antifibrotic effects of the potent Hh signalling inhibitor, forskolin, and the possible molecular mechanisms underlying these effects. Male Sprague-Dawley rats were treated with either CCl 4 and/or forskolin for 6 consecutive weeks. Serum hepatotoxicity markers were determined, and histopathological evaluation was performed. Hepatic fibrosis was assessed by measuring α-SMA expression and collagen deposition by Masson's trichrome staining and hydroxyproline content. The effects of forskolin on oxidative stress markers (GSH, GPx, lipid peroxides), inflammatory markers (NF-κB, TNF-α, COX-2, IL-1β), TGF-β1 and Hh signalling markers (Ptch-1, Smo, Gli-2) were also assessed. Hepatic fibrosis induced by CCl 4 was significantly reduced by forskolin, as indicated by decreased α-SMA expression and collagen deposition. Forskolin co-treatment significantly attenuated oxidative stress and inflammation, reduced TGF-β1 levels and down-regulated mRNA expression of Ptch-1, Smo and Gli-2 through cAMP-dependent PKA activation. In our model, forskolin exerted promising antifibrotic effects which could be partly attributed to its antioxidant and anti-inflammatory effects, as well as to its inhibition of Hh signalling, mediated by cAMP-dependent activation of PKA. © 2016 The British Pharmacological Society.

  17. Forskolin, a hedgehog signalling inhibitor, attenuates carbon tetrachloride‐induced liver fibrosis in rats

    PubMed Central

    El‐Agroudy, Nermeen N; El‐Naga, Reem N; El‐Razeq, Rania Abd

    2016-01-01

    Background and Purpose Liver fibrosis is one of the leading causes of morbidity and mortality worldwide with very limited therapeutic options. Given the pivotal role of activated hepatic stellate cells in liver fibrosis, attention has been directed towards the signalling pathways underlying their activation and fibrogenic functions. Recently, the hedgehog (Hh) signalling pathway has been identified as a potentially important therapeutic target in liver fibrosis. The present study was designed to explore the antifibrotic effects of the potent Hh signalling inhibitor, forskolin, and the possible molecular mechanisms underlying these effects. Experimental Approach Male Sprague‐Dawley rats were treated with either CCl4 and/or forskolin for 6 consecutive weeks. Serum hepatotoxicity markers were determined, and histopathological evaluation was performed. Hepatic fibrosis was assessed by measuring α‐SMA expression and collagen deposition by Masson's trichrome staining and hydroxyproline content. The effects of forskolin on oxidative stress markers (GSH, GPx, lipid peroxides), inflammatory markers (NF‐κB, TNF‐α, COX‐2, IL‐1β), TGF‐β1 and Hh signalling markers (Ptch‐1, Smo, Gli‐2) were also assessed. Key Results Hepatic fibrosis induced by CCl4 was significantly reduced by forskolin, as indicated by decreased α‐SMA expression and collagen deposition. Forskolin co‐treatment significantly attenuated oxidative stress and inflammation, reduced TGF‐β1 levels and down‐regulated mRNA expression of Ptch‐1, Smo and Gli‐2 through cAMP‐dependent PKA activation. Conclusion and Implications In our model, forskolin exerted promising antifibrotic effects which could be partly attributed to its antioxidant and anti‐inflammatory effects, as well as to its inhibition of Hh signalling, mediated by cAMP–dependent activation of PKA. PMID:27590029

  18. Positive effects of Forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes.

    PubMed

    Fu, Xiang-Wei; Wu, Guo-Quan; Li, Jun-Jie; Hou, Yun-Peng; Zhou, Guang-Bin; Lun-Suo; Wang, Yan-Ping; Zhu, Shi-En

    2011-01-15

    In order to examine its effect on oocyte lipid content and cryosurvival, Forskolin was added to the medium for in vitro maturation of porcine oocytes. Treatments were control (IVM without Forskolin during the 42 h incubation period), addition of 10 μM Forskolin for the entire 42 h (0-42) and addition of 10 μM Forskolin between 24 and 42 h only (24-42). In Experiment 1, treatments did not differ significantly in cleavage rate, but the blastocyst formation rate was lower in the 0-42 group than for control and 24-42 group oocytes (17, 32 and 40%, respectively; P < 0.05). It was shown in Experiment 2 that Forskolin treatment from 0-42 h and from 24-42 h significantly reduced lipid content of oocytes compared to that of control cells (65 and 99 vs. 140 μm(2) intensity of fluorescence, respectively; P < 0.05). In Experiment 3, the percentage of oocyte survival after cryopreservation and thawing was significantly higher in both Forskolin treatment groups than in control oocytes (72% for 0-42, 65% for 24-42 and 52% for control; P < 0.05). However, Forskolin treatment did not increase cleavage rates of vitrified in vitro matured porcine oocytes (Control group 28%, 0-42 h group 0%, 24-42 h group 26.67%). Addition of Forskolin affected the nuclear maturation of porcine oocytes. The percentage of PBE (polar body extrusion) were significantly reduced in the 0-42 h group (0-42 h group 42.00 ± 2.08 vs. Control group 79.70 ± 2.82 and 24-42 h group 70.60 ± 2.83; P < 0.05). The 24-42 h group showed similar nuclear status to that of the Control group. We propose that delipation engendered by incubation with 10 μM Forskolin during 24-42 hours of maturation increased cryosurvival of in vitro-maturated porcine oocytes and that attendant chemical lipolysis did not impair their further development as it may have done in oocytes incubated with Forskolin for the full 42 h. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Effects of cilostamide and forskolin on the meiotic resumption and embryonic development of immature human oocytes.

    PubMed

    Shu, Yi-min; Zeng, Hai-tao; Ren, Zi; Zhuang, Guang-lun; Liang, Xiao-Yan; Shen, Hong-wei; Yao, Shu-zhong; Ke, Pei-qi; Wang, Ning-ning

    2008-03-01

    In an attempt to allow for acquisition of oocyte cytoplasmic maturation, PDE3 specific inhibitor, cilostamide and adenylate cyclase activator, forskolin were used to extend pre-maturation culture of immature human oocytes. Cumulus-oocyte complexes retrieved from unstimulated ovaries were continuously cultured under 20 microM cilostamide or 50 microM forskolin, alone or in combination for 6, 12, 24 or 48 h, respectively. Levels of intercellular gap junction communication (GJC) and maturational status were examined at these designated time points. Metaphase II oocytes obtained following 54 h biphasic culture (with meiotic inhibitors from 0 to 24 h, no meiotic inhibitors from 24 to 54 h) were subject to intracytoplasmic sperm injection and embryos were cultured for five more days. Both cilostamide and forskolin delayed spontaneous meiotic progression after continuous culture with immature human oocytes. Combined treatment of cilostamide and forskolin significantly lowered the rates of germinal vesicle breakdown (GVBD) at 6, 12, 24 or 48 h after meiotic inhibitory culture, when compared with the control (all P < 0.05). A delay of 6 h for the loss of GJC was also observed under the combined treatment of cilostamide and forskolin. The fertilization rate was significantly higher under the combined treatment of cilostamide and forskolin than that of the control. Although the rates of oocyte maturation and embryo cleavage were similar among groups, there was a slight but non-significant increase in blastocyst formation rate with the treatment of cilostamide and forskolin. Combined treatment of cilostamide and forskolin positively influences oocyte developmental competence by exhibiting a synergistic effect on the prevention of GJC loss and resumption of meiosis.

  20. Dissecting the determinants of light sensitivity in amphioxus microvillar photoreceptors: possible evolutionary implications for melanopsin signaling.

    PubMed

    Ferrer, Camilo; Malagón, Gerardo; Gomez, María Del Pilar; Nasi, Enrico

    2012-12-12

    Melanopsin, a photopigment related to the rhodopsin of microvillar photoreceptors of invertebrates, evolved in vertebrates to subserve nonvisual light-sensing functions, such as the pupillary reflex and entrainment of circadian rhythms. However, vertebrate circadian receptors display no hint of a microvillar specialization and show an extremely low light sensitivity and sluggish kinetics. Recently in amphioxus, the most basal chordate, melanopsin-expressing photoreceptors were characterized; these cells share salient properties with both rhabdomeric photoreceptors of invertebrates and circadian receptors of vertebrates. We used electrophysiology to dissect the gain of the light-transduction process in amphioxus and examine key features that help outline the evolutionary transition toward a sensor optimized to report mean ambient illumination rather than mediating spatial vision. By comparing the size of current fluctuations attributable to single photon melanopsin isomerizations with the size of single-channels activated by light, we concluded that the gain of the transduction cascade is lower than in rhabdomeric receptors. In contrast, the expression level of melanopsin (gauged by measuring charge displacements during photo-induced melanopsin isomerization) is comparable with that of canonical visual receptors. A modest amplification in melanopsin-using receptors is therefore apparent in early chordates; the decrease in photopigment expression-and loss of the anatomical correlates-observed in vertebrates subsequently enabled them to attain the low photosensitivity tailored to the role of circadian receptors.

  1. Hedgehog signal inhibitor forskolin suppresses cell proliferation and tumor growth of human rhabdomyosarcoma xenograft.

    PubMed

    Yamanaka, Hiroaki; Oue, Takaharu; Uehara, Shuichiro; Fukuzawa, Masahiro

    2011-02-01

    We have previously reported that the Hedgehog (Hh) signaling pathway is activated in pediatric malignancies. In this study, we examined the effect of the Hh signal inhibitor forskolin on the growth of rhabdomyosarcoma (RMS) in vivo and in vitro and thereby elucidated the possibility of considering Hh signaling pathway as a therapeutic target for RMS. We evaluated the messenger RNA expressions of Hh signal mediators in 3 human RMS cell lines using reverse transcriptase-polymerase chain reaction method. The effect of forskolin on the tumor cell proliferation was investigated using WST-1 assay (Dojindo Co, Kumamoto, Japan). We inoculated 10(7) tumor cells into the back of nude mice to create RMS xenograft tumor models. Forskolin was subcutaneously administered in the region around the tumor, and the effect on the tumor growth was evaluated. The messenger RNA expression of glioma-associated oncogene homolog 1, the marker of Hh signaling activation, was expressed at various levels in RMS cell lines. The proliferation of RMS cells was inhibited in a dose-dependent fashion by forskolin. Similarly, in the xenograft model, tumor growth was also significantly reduced by forskolin treatment. Our findings suggest that the Hh signaling pathway plays an important role in the tumorigenesis of RMS and that this pathway can be considered to be a potential molecular target of new treatment strategies for RMS. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Production of the forskolin precursor 11β-hydroxy-manoyl oxide in yeast using surrogate enzymatic activities.

    PubMed

    Ignea, Codruta; Ioannou, Efstathia; Georgantea, Panagiota; Trikka, Fotini A; Athanasakoglou, Anastasia; Loupassaki, Sofia; Roussis, Vassilios; Makris, Antonios M; Kampranis, Sotirios C

    2016-02-26

    Several plant diterpenes have important biological properties. Among them, forskolin is a complex labdane-type diterpene whose biological activity stems from its ability to activate adenylyl cyclase and to elevate intracellular cAMP levels. As such, it is used in the control of blood pressure, in the protection from congestive heart failure, and in weight-loss supplements. Chemical synthesis of forskolin is challenging, and production of forskolin in engineered microbes could provide a sustainable source. To this end, we set out to establish a platform for the production of forskolin and related epoxy-labdanes in yeast. Since the forskolin biosynthetic pathway has only been partially elucidated, and enzymes involved in terpene biosynthesis frequently exhibit relaxed substrate specificity, we explored the possibility of reconstructing missing steps of this pathway employing surrogate enzymes. Using CYP76AH24, a Salvia pomifera cytochrome P450 responsible for the oxidation of C-12 and C-11 of the abietane skeleton en route to carnosic acid, we were able to produce the forskolin precursor 11β-hydroxy-manoyl oxide in yeast. To improve 11β-hydroxy-manoyl oxide production, we undertook a chassis engineering effort involving the combination of three heterozygous yeast gene deletions (mct1/MCT1, whi2/WHI2, gdh1/GDH1) and obtained a 9.5-fold increase in 11β-hydroxy-manoyl oxide titers, reaching 21.2 mg L(-1). In this study, we identify a surrogate enzyme for the specific and efficient hydroxylation of manoyl oxide at position C-11β and establish a platform that will facilitate the synthesis of a broad range of tricyclic (8,13)-epoxy-labdanes in yeast. This platform forms a basis for the heterologous production of forskolin and will facilitate the elucidation of subsequent steps of forskolin biosynthesis. In addition, this study highlights the usefulness of using surrogate enzymes for the production of intermediates of complex biosynthetic pathways. The combination of

  3. Long-term forskolin stimulation induces AMPK activation and thereby enhances tight junction formation in human placental trophoblast BeWo cells.

    PubMed

    Egawa, M; Kamata, H; Kushiyama, A; Sakoda, H; Fujishiro, M; Horike, N; Yoneda, M; Nakatsu, Y; Ying, Guo; Jun, Zhang; Tsuchiya, Y; Takata, K; Kurihara, H; Asano, T

    2008-12-01

    BeWo cells, derived from human choriocarcinoma, have been known to respond to forskolin or cAMP analogues by differentiating into multinucleated cells- like syncytiotrophoblasts on the surfaces of chorionic villi of the human placenta. In this study, we demonstrated that long-term treatment with forskolin enhances the tight junction (TJ) formation in human placental BeWo cells. Interestingly, AMPK activation and phosphorylation of acetyl-CoA carboxylase (ACC), a molecule downstream from AMPK, were induced by long-term incubation (>12h) with forskolin, despite not being induced by acute stimulation with forskolin. In addition, co-incubation with an AMPK inhibitor, compound C, as well as overexpression of an AMPK dominant negative mutant inhibited forskolin-induced TJ formation. Thus, although the molecular mechanism underlying AMPK activation via the forskolin stimulation is unclear, the TJ formation induced by forskolin is likely to be mediated by the AMPK pathway. Taking into consideration that TJs are present in the normal human placenta, this mechanism may be important for forming the placental barrier system between the fetal and maternal circulations.

  4. Characterization of (/sup 3/H)forskolin binding sites in the iris-ciliary body of the albino rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, M.E.; Mallorga, P.; Pettibone, D.J.

    1988-01-01

    (/sup 3/H)forskolin binding sites were identified using membranes prepared from the iris-ciliary body of adult, albino rabbits. Scatchard analysis of saturation binding experiments demonstrated that (/sup 3/H)forskolin bound to a single population of high affinity sites. The K/sub d/ and B/sub max/ values were 8.7 +- 0.9 nM and 119.0 +- 30.9 fmolmg prot. using membranes prepared from frozen tissue and 17.0 +- 6.2 nM and 184.4 +- 47.2 fmolmg prot. using fresh tissue. The binding of (/sup 3/H)forskolin was magnesium-dependent. The B/sub max/ was enhanced by sodium fluoride and Gpp(NH)p, a nonhydrolyzable guanine nucleotide analog. Forskolin was the mostmore » potent inhibitor of (/sup 3/H)forskolin binding; two commercially-available analogs were weaker inhibitors. In an adenylate cyclase assay, there was the same rank order of potency to enhance enzyme activity. Based upon binding affinities, magnesium-dependence, sensitivity to sodium fluoride and Gpp(NH)p, rank order of potencies of analogs and correlation of binding with adenylate cyclase activity, these studies suggest that the (/sup 3/H)forskolin binding site in the iris-ciliary body is similar to the binding site in other tissues« less

  5. Effect of leukemia inhibitory factor and forskolin on establishment of rat embryonic stem cell lines.

    PubMed

    Hirabayashi, Masumi; Goto, Teppei; Tamura, Chihiro; Sanbo, Makoto; Hara, Hiromasa; Hochi, Shinichi

    2014-03-07

    This study was designed to investigate whether supplementation of 2i medium with leukemia inhibitory factor (LIF) and/or forskolin would support establishment of germline-competent rat embryonic stem (ES) cell lines. Due to the higher likelihood of outgrowth rates, supplementation of forskolin with or without LIF contributed to the higher establishment efficiency of ES cell lines in the WDB strain. Germline transmission competency of the chimeric rats was not influenced by the profile of ES cell lines until their establishment. When the LIF/forskolin-supplemented 2i medium was used, the rat strain used as the blastocyst donor, such as the WI strain, was a possible factor negatively influencing the establishment efficiency of ES cell lines. Once ES cell lines were established, all lines were found to be germline-competent by a progeny test in chimeric rats. In conclusion, both LIF and forskolin are not essential but can play a beneficial role in the establishment of "genuine" rat ES cell lines.

  6. Membrane-associated actin from the microvillar membranes of ascites tumor cells

    PubMed Central

    1982-01-01

    A membrane fraction (MF2) has been purified from isolated microvilli of the MAT-C1 subline of the 13762 rat mammary ascites adenocarcinoma under conditions which cause F-actin depolymerization. This membrane preparation contains actin as a major component, although no filamentous structures are observed by transmission electron microscopy. Membranes were extracted with a Triton X-100-containing actin-stabilizing buffer (S buffer) or actin-destabilizing buffer (D buffer). In D buffer greater than 90% of metabolically labeled protein and glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. When S buffer extracts of MF2 were fractionated by either gel filtration on Sepharose 6 B or rate-zonal sucrose density gradient centrifugation, most of the actin was found to be intermediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. Extraction and gel filtration of intact microvilli in S buffer also showed the presence of the intermediate form of actin, indicating that it did not arise during membrane preparation. When [35S]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the intermediate form of actin did not result from an association of G-actin molecules during extraction or chromatography. The results of this study suggest that the microvillar membrane fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G-actin. PMID:6890066

  7. Membrane-associated actin from the microvillar membranes of ascites tumor cells.

    PubMed

    Carraway, K L; Cerra, R F; Jung, G; Carraway, C A

    1982-09-01

    A membrane fraction (MF2) has been purified from isolated microvilli of the MAT-C1 subline of the 13762 rat mammary ascites adenocarcinoma under conditions which cause F-actin depolymerization. This membrane preparation contains actin as a major component, although no filamentous structures are observed by transmission electron microscopy. Membranes were extracted with a Triton X-100-containing actin-stabilizing buffer (S buffer) or actin-destabilizing buffer (D buffer). In D buffer greater than 90% of metabolically labeled protein and glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. When S buffer extracts of MF2 were fractionated by either gel filtration on Sepharose 6 B or rate-zonal sucrose density gradient centrifugation, most of the actin was found to be intermediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. Extraction and gel filtration of intact microvilli in S buffer also showed the presence of the intermediate form of actin, indicating that it did not arise during membrane preparation. When [35S]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the intermediate form of actin did not result from an association of G-actin molecules during extraction or chromatography. The results of this study suggest that the microvillar membrane fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G-actin.

  8. Photoaffinity labelling of MSH receptors on Anolis melanophores: effects of catecholamines, calcium and forskolin.

    PubMed

    Eberle, A N; Girard, J

    1985-01-01

    Photoaffinity labelling of MSH receptors on Anolis melanophores was used as a tool for studying the effects of catecholamines, calcium and forskolin on hormone-receptor interaction and receptor-adenylate cyclase coupling. Covalent attachment of photoreactive alpha-MSH to its receptor was suppressed in calcium-free buffer but was hardly influenced by catecholamines or forskolin. The longlasting signal generated by the covalent MSH-receptor complex was readily and reversibly abolished by adrenaline, noradrenaline, dopamine or clonidine or by the absence of calcium. The suppression of pigment dispersion by catecholamines was blocked by the simultaneous presence of yohimbine but not prazosin, indicating that the catecholamines antagonize the alpha-MSH signal by inhibitory action on the adenylate cyclase system through an alpha-2 receptor. Forskolin, which stimulates melanophores by direct action on the catalytic unit of the adenylate cyclase and at about the same speed as alpha-MSH, produced a slower and weaker response in the presence of noradrenaline. If MSH receptors were covalently labelled and then exposed to noradrenaline, the characteristics of the forskolin-induced response were identical to those of unlabelled cells that had not been exposed to noradrenaline. This may point to a partial restoration of receptor-adenylate cyclase coupling by forskolin. The results show that the longlasting stimulation of Anolis melanophores by photoaffinity labelling proceeds via a permanently stimulated adenylate-cyclase system whose coupling to the receptor depends on calcium and is abolished by alpha-2 receptor agonists. Calcium is also essential for hormone-receptor binding.

  9. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells.

    PubMed

    Procino, Giuseppe; Carmosino, Monica; Tamma, Grazia; Gouraud, Sabine; Laera, Antonia; Riccardi, Daniela; Svelto, Maria; Valenti, Giovanna

    2004-12-01

    Urinary concentrating defects and polyuria are the most important renal manifestations of hypercalcemia and the resulting hypercalciuria. In this study, we tested the hypothesis that hypercalciuria-associated polyuria in kidney collecting duct occurs through an impairment of the vasopressin-dependent aquaporin 2 (AQP2) water channel targeting to the apical membrane possibly involving calcium-sensing receptor (CaR) signaling. AQP2-transfected collecting duct CD8 cells were used as experimental model. Quantitation of cell surface AQP2 immunoreactivity was performed using an antibody recognizing the extracellular AQP2 C loop. Intracellular cyclic adenosine monophosphate (cAMP) accumulation was measured in CD8 cells using a cAMP enzyme immunoassay kit. To study the translocation of protein kinase C (PKC), membranes or cytosol fractions from CD8 cells were subjected to Western blotting using anti-PKC isozymes antibodies. The amount of F-actin was determined by spectrofluorometric techniques. Intracellular calcium measurements were performed by spectrofluorometric analysis with Fura-2/AM. We demonstrated that extracellular calcium (Ca2+ o) (5 mmol/L) strongly inhibited forskolin-stimulated increase in AQP2 expression in the apical plasma membrane. At least three intracellular pathways activated by extracellular calcium were found to contribute to this effect. Firstly, the increase in cAMP levels in response to forskolin stimulation was drastically reduced in cells pretreated with Ca2+ o compared to untreated cells. Second, Ca2+ o activated PKC, known to counteract vasopressin response. Third, quantification of F-actin demonstrated that Ca2+ o caused a nearly twofold increase in F-actin content compared with basal conditions. All these effects were mimicked by a nonmembrane permeable agonist of the extracellular CaR, Gd3+. Together, these data demonstrate that extracellular calcium, possibly acting through the endogenous CaR, antagonizes forskolin-induced AQP2

  10. Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon

    PubMed Central

    McNamara, Brian; Winter, Desmond C; Cuffe, John E; O'Sullivan, Gerald C; Harvey, Brian J

    1999-01-01

    In this study we investigated the role of basolateral potassium transport in maintaining cAMP-activated chloride secretion in human colonic epithelium. Ion transport was quantified in isolated human colonic epithelium using the short-circuit current technique. Basolateral potassium transport was studied using nystatin permeabilization. Intracellular calcium measurements were obtained from isolated human colonic crypts using fura-2 spectrofluorescence imaging. In intact isolated colonic strips, forskolin and prostaglandin E2 (PGE2) activated an inward transmembrane current (ISC) consistent with anion secretion (for forskolin ΔISC = 63.8 ± 6.2 μA cm−2, n = 6; for PGE2 ΔISC = 34.3 ± 5.2 μA cm−2, n = 6). This current was inhibited in chloride-free Krebs solution or by inhibiting basolateral chloride uptake with bumetanide and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). The forskolin- and PGE2-induced chloride secretion was inhibited by basolateral exposure to barium (5 mM), tetrapentylammonium (10 μM) and tetraethylammonium (10 mM). The transepithelial current produced under an apical to serosal K+ gradient in nystatin-perforated colon is generated at the basolateral membrane by K+ transport. Forskolin failed to activate this current under conditions of high or low calcium and failed to increase the levels of intracellular calcium in isolated crypts In conclusion, we propose that potassium recycling through basolateral K+ channels is essential for cAMP-activated chloride secretion. PMID:10432355

  11. Hyperphosphorylation of PP2A in colorectal cancer and the potential therapeutic value showed by its forskolin-induced dephosphorylation and activation.

    PubMed

    Cristóbal, Ion; Rincón, Raúl; Manso, Rebeca; Madoz-Gúrpide, Juan; Caramés, Cristina; del Puerto-Nevado, Laura; Rojo, Federico; García-Foncillas, Jesús

    2014-09-01

    The tumor suppressor protein phosphatase 2A (PP2A) is frequently inactivated in human cancer and phosphorylation of its catalytic subunit (p-PP2A-C) at tyrosine-307 (Y307) has been described to inhibit this phosphatase. However, its molecular and clinical relevance in colorectal cancer (CRC) remains unclear. p-PP2A-C Y307 was determined by immunoblotting in 7 CRC cell lines and 35 CRC patients. CRC cells were treated with the PP2A activator forskolin alone or combined with the PP2A inhibitor okadaic acid, 5-fluorouracil and oxaliplatin. We examined cell growth, colonosphere formation, caspase activity and AKT and ERK activation. PP2A-C was found hyperphosphorylated in CRC cell lines. Forskolin dephosphorylated and activated PP2A, impairing proliferation and colonosphere formation, and inducing activation of caspase 3/7 and changes in AKT and ERK phosphorylation. Moreover, forskolin showed additive effects with 5-fluorouracil and oxaliplatin treatments. Analysis of p-PP2A-C Y307 in primary tumors confirmed the presence of this alteration in a subgroup of CRC patients. Our data show that PP2A-C hyperphosphorylation is a frequent event that contributes to PP2A inhibition in CRC. Antitumoral effects of forskolin-mediated PP2A activation suggest that the analysis of p-PP2A-C Y307 status could be used to identify a subgroup of patients who would benefit from treatments based on PP2A activators. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Raju, Gajula; Ram Reddy, A.

    2016-02-01

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.

  13. Fat area and lipid droplet morphology of porcine oocytes during in vitro maturation with trans-10, cis-12 conjugated linoleic acid and forskolin.

    PubMed

    Prates, E G; Marques, C C; Baptista, M C; Vasques, M I; Carolino, N; Horta, A E M; Charneca, R; Nunes, J T; Pereira, R M

    2013-04-01

    Lipid droplets (LD) in porcine oocytes form a dark mass reaching almost all cytoplasm. Herein we investigated changes in fat areas, cytoplasmic tone and LD morphology during in vitro maturation (IVM) of porcine oocytes cultured with 100 μM trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) or 10 μM forskolin at different time periods. Four groups were constituted: control, excipient, t10,c12 CLA and forskolin, with drugs being supplemented during 44 to 48 h and the initial 22 to 24 h in Experiments 1 and 2, respectively. In Experiment 3, forskolin was supplemented for the first 2 h. Matured oocytes were inseminated with frozen-thawed boar semen and cleavage rate recorded. Before and during IVM, samples of oocytes were evaluated for LD, total and fat areas and fat gray value or for meiotic progression. Results showed that forskolin supplementation during 44 to 48 h or 22 to 24 h inhibits oocyte maturation (exp. 1: forskolin = 5.1 ± 8.0%, control = 72.6 ± 5.0%; exp. 2: forskolin = 24.3 ± 7.4%, control = 71.6 ± 5.6%) and cleavage (exp. 1: forskolin = 0.0 ± 0.0%, control = 55.4 ± 4.1%; exp. 2: forskolin = 8.3 ± 3.3%, control = 54.5 ± 3.0%). Forskolin also reduced oocyte and fat areas. In Experiment 3, forskolin negative effect on oocyte maturation and cleavage disappeared, although minor (P ⩽ 0.03) LD and oocyte fat areas were identified at 22 to 24 h of IVM. Oocytes supplemented with t10,c12 CLA during 44 to 48 h presented a lighter (P ⩽ 0.04) colour tone cytoplasm than those of control and forskolin. In conclusion, t10,c12 CLA and forskolin were capable of modifying the distribution and morphology of cytoplasmic LD during porcine oocyte maturation, thus reducing its lipid content in a time-dependent manner.

  14. Carbachol inhibits basal and forskolin-evoked adult rat striatal acetylcholine release.

    PubMed

    Login, I S

    1997-05-27

    Acutely dissociated adult rat striatal cholinergic neurons labeled with [3H]choline were used in a perifusion system to study muscarinic regulation of basal and forskolin-stimulated fractional [3H]acetylcholine ([3H]-ACh) efflux in the absence of synaptic modulation. Carbachol inhibited basal (40% maximal inhibition; IC50 approximately 0.7 microM) and forskolin-evoked release (75% inhibition; IC50 approximately 0.05 microM) in a concentration-dependent manner, and both carbachol actions were abolished with atropine. Thus, activation of striatal muscarinic cholinergic autoreceptors potently inhibits basal and adenylate cyclase-stimulated ACh release. Tonic inhibitory control of cholinergic activity by functional striatal circuitry apparently prevents detection of these important physiological interactions in slices or in situ.

  15. Effects of Forskolin on Kupffer Cell Production of Interleukin-10 and Tumor Necrosis Factor Alpha Differ from Those of Endogenous Adenylyl Cyclase Activators: Possible Role for Adenylyl Cyclase 9

    PubMed Central

    Dahle, Maria K.; Myhre, Anders E.; Aasen, Ansgar O.; Wang, Jacob E.

    2005-01-01

    Proinflammatory cytokines like tumor necrosis factor alpha (TNF-α) that are released from Kupffer cells may trigger liver inflammation and damage. Hence, endogenous mechanisms for limiting TNF-α expression are crucial for avoiding the development of sepsis. Such mechanisms include the anti-inflammatory actions of interleukin-10 (IL-10) as well as signaling induced by the intracellular second messenger cyclic AMP (cAMP). Kupffer cells express several receptors that activate cAMP synthesis, including E-prostanoid receptors and β-adrenergic receptors. The expression and role of specific adenylyl cyclases in the inhibition of Kupffer cell activation have so far not been subject to study. Pretreatment of rat Kupffer cell cultures with cAMP analogues [8-(4-chlorophenyl)-thio-cAMP], adenylyl cyclase activator (forskolin), or ligands for G-coupled receptors (isoproterenol or prostaglandin E2) 30 min before the addition of lipopolysaccharide (LPS) (1 μg/ml) caused attenuated TNF-α levels in culture medium (forskolin/isoproterenol, P ≤ 0.05; prostaglandin E2, P ≤ 0.01). Forskolin also reduced IL-10 mRNA and protein (P ≤ 0.05), which was not observed with the other cAMP-inducing agents. Furthermore, we found that rat Kupffer cells express high levels of the forskolin-insensitive adenylyl cyclase 9 compared to whole liver and that this expression is down-regulated by LPS (P ≤ 0.05). We conclude that regulation of TNF-α and IL-10 in Kupffer cells depends on the mechanism by which cAMP is elevated. Forskolin and prostaglandin E2 differ in their effects, which suggests a possible role of forskolin-insensitive adenylyl cyclases like adenylyl cyclase 9. PMID:16239525

  16. D2 dopamine receptor activation inhibits basal and forskolin-evoked acetylcholine release from dissociated striatal cholinergic interneurons.

    PubMed

    Login, I S

    1997-02-21

    We tested whether D2 ligands inhibit basal and forskolin-stimulated [3H]ACh release from dissociated striata, as opposed to striatal slices. Quinpirole inhibited both basal (40% maximal inhibition; IC50 approximately 50 nM) and 10 microM forskolin-stimulated release (80% inhibition; IC50 approximately 25 nM quinpirole) and both actions were blocked by a D2 antagonist. Vesamicol prevented the quinpirole and forskolin actions. The ability of D2 agonists to inhibit basal and cyclase-stimulated acetylcholine release emanating from vesamicol-sensitive vesicles appears to be tonically suppressed by inhibitory elements within striatal circuitry.

  17. Inhibitors of protein phosphorylation including the retinoblastoma protein induce germination of Candida albicans.

    PubMed

    Cho, T; Hamatake, H; Hagihara, Y; Kaminishi, H

    2000-02-01

    It has been previously shown that the induction of germination in Candida albicans occurs following its cessation of growth as a yeast. Similarly, mammalian cells undergo a differentiation process that is preceded by a growth cessation associated with a hypophosphorylation of proteins of the retinoblastoma gene family. It is postulated that a similar type of mechanism may be operative in C. albicans and protein phosphorylation inhibitors: forskolin (stimulates cyclic adenosine monophosphate production), okadaic acid (phosphatase inhibitor) and D-erythro-sphingosine (retinoblastoma protein phosphorylation inhibitor) have been used to further strengthen this hypothesis. Okadaic acid (1-1000 nM) and D-erythro-sphingosine (100 microM) significantly inhibited the growth of yeast cells of C. albicans. D-Erythro-sphingosine at 1000 microM was candidicidal. Forskolin did not significantly affect growth. Exponentially grown C. albicans pretreated with forskolin (10 microM), okadaic acid (1000 nM) or D-erythro-sphingosine (100 microM) readily germinated. In comparison, when these inhibitors were incorporated in the same medium, germination of exponentially grown cells did not occur. These results suggest that protein dephosphorylation may be necessary at an early stage of the yeast-hyphae transition in C. albicans.

  18. Cell apoptosis and lipid content of in vitro-produced, vitrified bovine embryos treated with forskolin.

    PubMed

    Paschoal, Daniela Martins; Sudano, Mateus José; Schwarz, Kátia Regina Lancellotti; Maziero, Rosiára Rosário Dias; Guastali, Midyan Daroz; Crocomo, Letícia Ferrari; Magalhães, Luis Carlos Oña; Martins, Alício; Leal, Claudia Lima Verde; Landim-Alvarenga, Fernanda da Cruz

    2017-01-01

    The presence of fetal calf serum in culture medium influences embryo quality, causing a reduction in postcryopreservation survival. Forskolin has been used to induce lipolysis and increase cryotolerance, functioning as an activator of adenylate cyclase and elevating cAMP levels. In the present experiment, bovine zygotes were cultured in synthetic oviduct fluid with amino acid plus 2.5% fetal calf serum for 6 days, when forskolin was added in three concentrations: 2.5, 5, and 10 μM. Treatment with forskolin lasted for 24 hours. Blastocyst formation rate, quantification of lipid granules, total cell numbers, and apoptosis rate were evaluated. In a second assessment, embryos were vitrified, and warming, re-expansion rate, total cell numbers, and apoptosis rate were also evaluated. There was no difference due to forskolin in blastocyst formation or re-expansion rates after vitrification. However, lipid measurements were lower (control: 136.8 and F 2.5 μM: 128.5; P < 0.05), and number of cells per embryo higher (control: 140.1 and F 2.5 μM: 173.5; P < 0.05) than controls for 2.5 μM forskolin but not for higher forskolin concentrations. The number of intact cells per embryo was higher, and the rate of apoptosis was lower in fresh than in vitrified embryos (number of cells of warmed embryos, control: 104.1, F 2.5 μM: 101.3, F 5 μM: 115.4, F 10 μM: 95.1; apoptotic of fresh cells, control: 12.1%, F 2.5 μM: 16.7%, F 5 μM: 11.1%, F 10 μM: 14.2%; and apoptotic warmed embryos, control: 22.3%, F 2.5 μM: 37.3%, F 5 μM: 33.2%, F 10 μM: 30.3%; P < 0.05). It was concluded that forskolin is an effective lipolytic agent even at low concentrations, leading to formation of blastocysts with a comparatively larger number of cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy.

    PubMed

    Raju, Gajula; Ram Reddy, A

    2016-02-05

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state. Copyright © 2015. Published by Elsevier B.V.

  20. Cilostamide and forskolin treatment during pre-IVM improves preimplantation development of cloned embryos by influencing meiotic progression and gap junction communication in pigs.

    PubMed

    Park, Bola; Lee, Hanna; Lee, Yongjin; Elahi, Fazle; Lee, Joohyeong; Lee, Seung Tae; Park, Choon-Keun; Hyun, Sang-Hwan; Lee, Eunsong

    2016-08-01

    This study was conducted to evaluate the effects of treatment with the cAMP modulators cilostamide and/or forskolin during pre-IVM culture on meiotic progression, gap junction communication, intraoocyte cAMP level and glutathione content, embryonic development after parthenogenesis, and somatic cell nuclear transfer in pigs. Cumulus-oocyte complexes were cultured for 24 hours in unsupplemented medium or media containing 20 μM cilostamide and/or 50 μM forskolin. After pre-IVM, oocytes were cultured for 41 to 44 hours in a standard IVM medium to induce oocyte maturation. When the nuclear status of oocytes was examined after pre-IVM for 24 hours, a higher (P < 0.01) proportion of oocytes treated with forskolin (85.5%) and cilostamide + forskolin (92.6%) remained at the germinal vesicle stage compared with untreated (20.6%) and cilostamide-treated oocytes (54.7%). cAMP level in pre-IVM oocytes was significantly increased by combined treatment with cilostamide + forskolin (21.38 fmol/oocyte) relative to the no pre-IVM control, no treatment, cilostamide, and forskolin groups (2.85, 1.88, 1.74, and 8.95 fmol/oocyte, respectively). Forskolin with or without cilostamide significantly maintained open-gap junction communication relative to no treatment. Blastocyst formation in parthenogenesis was significantly (P < 0.01) improved by forskolin (65.3%) relative to other treatments (28.3% to 48.1%). Supplementation of pre-IVM with dibutyryl cAMP showed similar blastocyst formation as forskolin treatment (61.1% and 61.0%, respectively). In somatic cell nuclear transfer, simultaneous treatment with cilostamide + forskolin significantly (P < 0.05) increased embryonic development to the blastocyst stage (42.9%) relative to the no pre-IVM, control, and cilostamide groups (32.3, 28.6, and 32.8%, respectively). The glutathione contents in pre-IVM oocytes were increased by no treatment, forskolin, and cilostamide + forskolin (1.38, 1.39, and 1.27 pixels

  1. Differential effect of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) on (/sup 3/H)SCH23390 and (/sup numberH/)forskolin binding in rat striatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Wachendorf, T.J.; Sanberg, P.R.

    1989-01-01

    The binding of (/sup 3/H)forskolin to a homogeneous population of binding sites in rat striatum was enhanced by NaF, guanine nucleotides and MgCl/sub 2/. These effects of NaF and guanylylimidodiphosphate (Gpp(NH)p) were synergistic with MgCl/sub 2/, but NaF and Gpp(NH)p together elicited no greater enhancement of (/sup 3/H)forskolin binding. These data suggest that (/sup 3/H)forskolin may label a site which is modulated by the guanine nucleotide regulatory subunit which mediates the stimulation of adenylate cyclase (N/sub S/). The D/sub 1/ dopamine receptor is known to stimulate adenylate cyclase via N/sub S/. In rat striatum, the B/sub max/ of (/sup 3/H)forskolinmore » binding sites in the presence of MgCl/sub 2/ and NaF was approximately two fold greater than the B/sub max/ of (/sup 3/H)SCH23390-labeled D/sub 1/ dopamine receptors. Incubation of striatal homogenates with the protein modifying reagent EEDQ elicited a concentration-dependent decrease in the binding of both (/sup 3/H)SCH23390 and (/sup 3/H)forskolin, although EEDQ was approximately 14 fold more potent at inactivating the D/sub 1/ dopamine receptor. Following in vivo administration of EEDQ there was no significant effect on (/sup 3/H)forskolin binding sites using a dose of EEDQ that irreversibly inactivated greater than 90% of D/sub 1/ dopamine receptors. These data suggest that EEDQ is a suitable tool for investigating changes in the stoichiometry of receptors and their second messenger systems.« less

  2. Forskolin-induced differentiation of BeWo cells stimulates increased tumor growth in the chorioallantoic membrane (CAM) of the turkey (Meleagris gallopavo) egg.

    PubMed

    Schneider, Ralf; Borges, Marcus; Kadyrov, Mamed

    2011-05-01

    Invasiveness of BeWo cells has been assessed in a variety of assay systems including matrigel and mouse. At the same time BeWo cells are mostly used as model system for trophoblast fusion. Here we aimed to test the properties of BeWo cells in a combined approach. We forced BeWo cells to differentiate by culturing the cells in the presence of forskolin and then used these cells for invasion assays on the chorioallantoic membrane (CAM) of the turkey. The chorioallantoic membranes of turkey eggs were incubated with medium containing forskolin, BeWo cells cultured in medium alone, BeWo cells cultured in forskolin and washed, and BeWo cells cultured in forskolin and used directly for application. Suspensions were applied onto ten CAM per condition. For local tumor formation eggs were checked for tumor development every 24h macroscopically for up to 12 days and immunohistochemistry for cytokeratin 18 and Ki-67 were used for further analysis. Forskolin alone did not have any deleterious effect on the CAM. When the CAM was incubated with BeWo cells cultured in medium 40% of the eggs developed a macroscopically visible tumor. BeWo cells stimulated with forskolin and washed induced tumor growth in 50% of the eggs, while forskolin stimulated BeWo cells applied directly onto the CAM induced tumor growth in 70% of the eggs. Forced differentiation of BeWo cells by forskolin may lead to syncytial fusion in a plastic culture dish. Under the conditions used here, i.e. in direct contact to a living tissue, forskolin-induced differentiation of BeWo cells leads to an increase in tumor formation in the CAM. Thus BeWo cells may use signaling pathways to decide for both differentiation pathways similar to primary trophoblast depending on the environment. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. The Natural cAMP Elevating Compound Forskolin in Cancer Therapy: Is It Time?

    PubMed

    Sapio, Luigi; Gallo, Monica; Illiano, Michela; Chiosi, Emilio; Naviglio, Daniele; Spina, Annamaria; Naviglio, Silvio

    2017-05-01

    Cancer is a major public health problem and the second leading cause of mortality around the world. Although continuous advances in the science of oncology and cancer research are now leading to improved outcomes for many cancer patients, novel cancer treatment options are strongly demanded. Naturally occurring compounds from a variety of vegetables, fruits, and medicinal plants have been shown to exhibit various anticancer properties in a number of in vitro and in vivo studies and represent an attractive research area for the development of new therapeutic strategies to fight cancer. Forskolin is a diterpene produced by the roots of the Indian plant Coleus forskohlii. The natural compound forskolin has been used for centuries in traditional medicine and its safety has also been documented in conventional modern medicine. Forskolin directly activates the adenylate cyclase enzyme, that generates cAMP from ATP, thus, raising intracellular cAMP levels. Notably, cAMP signaling, through the PKA-dependent and/or -independent pathways, is very relevant to cancer and its targeting has shown a number of antitumor effects, including the induction of mesenchymal-to-epithelial transition, inhibition of cell growth and migration and enhancement of sensitivity to conventional antitumor drugs in cancer cells. Here, we describe some features of cAMP signaling that are relevant to cancer biology and address the state of the art concerning the natural cAMP elevating compound forskolin and its perspectives as an effective anticancer agent. J. Cell. Physiol. 232: 922-927, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. CREB trans-activation of disruptor of telomeric silencing-1 mediates forskolin inhibition of CTGF transcription in mesangial cells.

    PubMed

    Yu, Zhiyuan; Kong, Qun; Kone, Bruce C

    2010-03-01

    Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.

  5. cap alpha. /sub 2/-Adrenergic receptor-mediated sensitization of forskolin-stimulated cyclic AMP production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Toews, M.L.; Turner, J.T.

    1987-03-01

    Preincubation of HT29 human colonic adenocarcinoma cells with ..cap alpha../sub 2/-adrenergic agonists resulted in a 10- to 20-fold increase in forskolin-stimulated cyclic AMP production as compared to cells preincubated without agonist. Similar results were obtained using either a (/sup 3/H)adenine prelabeling assay or a cyclic AMP radioimmunoassay to measure cyclic AMP levels. This phenomenon, which is termed sensitization, is ..cap alpha../sub 2/-adrenergic receptor-mediated and rapid in onset and reversal. Yohimbine, an ..cap alpha../sub 2/-adrenergic receptor-selective antagonist, blocked norepinephrine-induced sensitization, whereas prazosin (..cap alpha../sub 1/-adrenergic) and sotalol (..beta..-adrenergic) did not. The time for half-maximal sensitization was 5 min and the half-timemore » for reversal was 10 min. Only a 2-fold sensitization of cyclic AMP production stimulated by vasoactive intestinal peptide was observed, indicating that sensitization is relatively selective for forskolin. Sensitization reflects an increased production of cyclic AMP and not a decreased degradation of cyclic AMP, since incubation with a phosphodiesterase inhibitor and forskolin did not mimic sensitization. Increasing the levels of cyclic AMP during the preincubation had no effect on sensitization, indicating that sensitization is not caused by decreased cyclic AMP levels during the preincubation. This rapid and dramatic sensitization of forskolin-stimulated cyclic AMP production is a previously unreported effect that can be added to the growing list of ..cap alpha../sub 2/-adrenergic responses that are not mediated by a decrease in cyclic AMP.« less

  6. Forskolin-stimulated vasopressin and oxytocin release from the rat hypothalamo-neurohypophysial system in vitro is inhibited by melatonin.

    PubMed

    Roszczyk, Magdalena; Juszczak, Marlena

    2014-01-01

    Previous in vivo and in vitro studies have shown that melatonin changes vasopressin (AVP) and oxytocin (OT) secretion from the rat neurohypophysis. Additionally, melatonin is known to inhibit the forskolin-induced (forskolin is a strong adenylyl cyclase - AC activator) increase in cAMP accumulation in the rat pituitary. To determine whether the possible response of vasopressinergic and/or oxytocinergic neurones to melatonin could be mediated through a cAMP-dependent mechanism, the effect of different concentrations of melatonin (i.e. 10-11, 10-9, 10-7, 10-5 and 10-3 M) on forskolin-stimulated AVP and OT release from the rat hypothalamo-neurohypophysial (H-NH) system was studied in vitro. Male rats served as donors of the H-NH explants, which were placed in 1 mLof normal Krebs-Ringer fluid (nKRF), heated to 37oC and constantly gassed with carbogen (95% O2 and 5% CO2). The H-NH explants were incubated successively in nKRF {fluid B1} and incubation fluid as B1 enriched with an appropriate concentration of melatonin, i.e. 10-11 - 10-3 M and/or forskolin (at a concentration of 10-5 M) or their vehicles (0.1% ethanol or DMSO) {fluid B2}. After 20 min incubation in fluid B1 and next B2, the media were collected and immediately frozen before AVP and OT estimation by the RIA. The AVP and OT secretion was determined by using B2/B1 ratio for each H-NH explant. We have demonstrated that the highly effective AC activator - forskolin significantly stimulated both AVP and OT release from isolated rat H-NH system. Such an effect of forskolin was reduced by melatonin at concentrations of 10-9, 10-7 and 10-5 M. The strongest effect was exerted by this hormone at a concentration of 10-7 M, which inhibited not only forskolin-stimulated, but also basal, AVP and OT release. On the contrary, the highest studied concentration (i.e. 10-3 M) of melatonin stimulated both AVP and OT basal release, but when forskolin was present in the medium melatonin at such a concentration remained inactive

  7. 2-Arachidonoyl glycerol sensitizes the pars distalis and enhances forskolin-stimulated prolactin secretion in Syrian hamsters.

    PubMed

    Yasuo, Shinobu; Fischer, Claudia; Bojunga, Joerg; Iigo, Masayuki; Korf, Horst-Werner

    2014-04-01

    2-Arachidonoyl glycerol (2-AG) is a major endocannabinoid and an important regulator of neuroendocrine system. In Syrian hamster and human, we found that 2-AG is synthesized in the hypophysial pars tuberalis (PT), an interface between photoperiodic melatonin signals and neuroendocrine output pathways. The target of 2-AG produced in the PT is likely to be the pars distalis (PD). Here we demonstrate that 2-AG in combination with forskolin stimulated prolactin secretion from PD organ cultures of Syrian hamsters, whereas incubation with 2-AG alone had no effect. Forskolin-induced prolactin secretion was also significantly enhanced when cultured PD tissue was preincubated with 2-AG. The stimulatory effects of 2-AG on prolactin secretion were blocked by AM251, a selective CB1 antagonist, and were still observed in the presence of quinpirole, a D2-class dopamine receptor agonist. 2-AG also enhanced prolactin secretion in the presence of adenosine, while it had little effect when applied together with adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Moreover, the effect of forskolin was mimicked by adenosine in a dose-dependent manner. In conclusion, our data suggest that 2-AG sensitizes the PD tissue to potentiate the stimulating effects of forskolin and adenosine on prolactin secretion and thus provide novel insight into the mode of action of 2-AG in the PD.

  8. Metabolism of neuropeptides. Hydrolysis of the angiotensins, bradykinin, substance P and oxytocin by pig kidney microvillar membranes.

    PubMed Central

    Stephenson, S L; Kenny, A J

    1987-01-01

    Microvillar membranes derived from the brush border of the renal proximal tubule are very rich in peptidases. Pig kidney microvilli contain endopeptidase-24.11 associated with a battery of exopeptidases. The manner by which some neuropeptides are degraded by the combined attack of the peptidases of this membrane has been investigated. The contribution of individual peptidases was assessed by including inhibitors (phosphoramidon, captopril, amastatin and di-isopropyl fluorophosphate) with the membrane fraction when incubated with the peptides. Substance P, bradykinin and angiotensins I, II and III and insulin B-chain were rapidly hydrolysed by kidney microvilli. Oxytocin was hydrolysed much more slowly, but no products were detected from [Arg8]vasopressin or insulin under the conditions used for other peptides. The peptide bonds hydrolysed were identified and the contributions of the different peptidases were quantified. For each of the susceptible peptides, the main contribution came from endopeptidase-24.11 (inhibited by phosphoramidon). Peptidyl dipeptidase A (angiotensin-I-converting enzyme) was of less importance, even in respect of angiotensin I and bradykinin. When [2,3-Pro3,4-3H]bradykinin was also investigated at a lower concentration (20 nM), the conclusions in regard to the contributions of the two peptidases were unchanged. The possibility that endopeptidase-24.11 might attack within the six-residue disulphide-bridged rings of oxytocin and vasopressin was examined by dansyl(5-dimethylaminonaphthalene-1-sulphonyl)ation and by reduction and carboxymethylation of the products after incubation. Additional peptides were only observed after prolonged incubation, consistent with hydrolysis at the Tyr2-Ile3 and Tyr2-Phe3 bonds respectively. These results show that a range of neuropeptides are efficiently degraded by microvillar membranes and that endopeptidase-24.11 plays a key role in this process. PMID:2436610

  9. Immune-regulatory transcriptional responses in multiple organs of Atlantic salmon after tributyltin exposure, alone or in combination with forskolin.

    PubMed

    Pavlikova, Nela; Arukwe, Augustine

    2011-01-01

    Tributyltin (TBT) is a widespread marine pollutant that influences physiological conditions of fish and other aquatic organisms. In addition to effects on reproduction, the immune system has been proposed as a possible target for TBT effects. In the present study, the effects of TBT exposure were examined on the expression of genes involved in immune system compentence in liver and head kidney of Atlantic salmon, in the presence and absence of a second-messenger activator (forskolin). Juvenile salmon were force-fed a diet containing TBT (0-solvent control, 0.1, 1, or 10 mg/kg fish) for 72 h. Consequently, fish from the control group and 10-mg/kg TBT group were exposed to the adenylate cyclase (AC) activator forskolin (200 μg/L) for 2 or 4 h. Forskolin was selected for this study because it is known to exhibit potent immune system enhancement by activating macrophages and lymphocytes. After sacrifice, liver and head kidney were sampled and transcript changes for interleukin (IL)-1β, IL-10, transforming growth factor (TGF) β, interferon (INF) α, INFγ, tumor necrosis factor (TNF) α, Mx3, and insulin-like growth factor (IGF)-1 were determined in both tissues by quantitative polymerase chain reaction (qPCR) using gene-specific primers. TBT, when given alone and also in combination with forskolin, decreased IL-1β, TNFα, IFNγ, IFNα, Mx3, and IGF-1 gene expression. In contrast, IL-10 and TGFβ transcripts were increased after TBT exposure alone and also in combination with forskolin. Generally, these effects were largely dependent on TBT dose and time of exposure when given in combination with forskolin. Overall, our findings suggest a possible immunomodulatory effect of TBT, possibly involving cAMP activation.

  10. Forskolin promotes the development of ethanol tolerance in 6-hydroxydopamine-treated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szabo, G.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    Partial depletion of brain norepinephrine by 6-hydroxydopamine prevents the development of functional tolerance to ethanol in mice. This blockade of tolerance development was overcome by daily intracerebroventricular injections of forskolin. These results suggest that interaction of norepinephrine with post-synaptic ..beta..-adrenergic receptors, and activation of adenylate cyclase, is important for the development of ethanol tolerance. Interaction of norepinephrine with ..cap alpha../sub 1/-adrenergic receptors may be less crucial, since treatment with a phorbol ester activator of protein kinase C did not restore the development of tolerance in mice treated with 6-hydroxydopamine. The importance of the ..beta..-adrenergic receptor-coupled adenylate cyclase system for developmentmore » of ethanol tolerance, in addition to its previously-reported role in long-term potentiation, suggests that this system may influence neuroadaptive processes in general. 26 references, 2 figures.« less

  11. cAMP and forskolin decrease gamma-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes.

    PubMed Central

    Heuschneider, G; Schwartz, R D

    1989-01-01

    The effects of the cyclic nucleotide cAMP on gamma-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36Cl- uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner (IC50 = 1.3 mM). The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the gamma-aminobutyric acid-gated Cl- channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36Cl- uptake and generated cAMP with similar potencies (IC50 = 14.3 microM; EC50 = 6.2 microM, respectively). Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl- channel directly. Indeed, forskolin inhibition of muscimol-induced 36Cl- uptake was extremely rapid (within 5 sec), preceding the accumulation of sufficient levels of cAMP. After 5 min, a slower phase of inhibition was seen, similar to the time course for cAMP accumulation. The data suggest that gamma-aminobutyric acid (GABAA) receptor function in brain can be regulated by cAMP-dependent phosphorylation. PMID:2468163

  12. Heterogeneity of murine adherent interleukin-2-activated killer cells. Differential effect of prostaglandin E2 and forskolin.

    PubMed

    Vaillier, D; Daculsi, R; Gualde, N

    1995-01-01

    We have studied the relationship between cytotoxic activity, size and granularity of murine interleukin-2-activated adherent killer cells issued from spleen cells cultured with high levels of IL-2. The effects of prostaglandin E2 (PGE2) and forskolin upon these cells were assessed. All adherent spleen cells obtained after 5 days of culture were large granular lymphocytes but presented a heterogeneity in size and granularity. After fractionation on a discontinuous-density Percoll gradient, four cellular subpopulations were isolated. Fluorescence-activated cell sorting analysis showed that cells of the lightest fraction (F1) were the largest, while the cells found in the heaviest fraction (F4) were much more granular than the cells collected in the two intermediate fractions (F2 and F3). The serine esterases level was higher in F4 than in unfractionated cells and diminished to about 40% in cells of fractions F2 and F3, which expressed a cytotoxic activity against YAC-1 cells higher than that in unfractionated cells or in F1 or F4, which presented the lowest cytotoxic activity. When AK cells were cultured for 48 h in the presence of either PGE2 or forskolin, which induce an intracellular increase of cAMP, we observed that PGE2 (1 microM) inhibited the cytotoxic activity, but surprisingly forskolin (2 microM) exerted a stimulating effect on the induction of cytotoxic activity. After fractionation on a discontinuous Percoll gradient we observed the same cellular distribution among PGE2 or forskolin-treated or -untreated cells, but PGE2 induced an increase of size and granularity. This effect of PGE2 was more potent on the cells collected in F4. However this variation of granularity was not associated with any variation in the serine esterase level. The cytotoxic activity of PGE2- or forskolin-treated cells did not present any significant variation relative to the control for cells collected in F2 and F3; on the other hand, forskolin-treated cells collected in F4 showed

  13. Involvement of the anion exchanger SLC26A6 in prostaglandin E2- but not forskolin-stimulated duodenal HCO3- secretion.

    PubMed

    Tuo, Biguang; Riederer, Brigitte; Wang, Zhaohui; Colledge, William H; Soleimani, Manoocher; Seidler, Ursula

    2006-02-01

    SLC26A6 is a recently identified apical Cl(-)/HCO(3)(-) exchanger with strong expression in murine duodenum. The present study was designed to examine the role of SLC26A6 in prostaglandin E(2) (PGE(2))-, forskolin-, and carbachol-induced duodenal HCO(3)(-) secretion. Murine duodenal mucosal HCO(3)(-) secretion was examined in vitro in Ussing chambers and mucosal SLC26A6 expression levels were analyzed by semiquantitative reverse-transcription polymerase chain reaction. Basal HCO(3)(-) secretion was diminished by 20%, PGE(2)-stimulated HCO(3)(-) secretory response by 59%, and carbachol-stimulated response was reduced by 35% in SLC26A6-/- compared with +/+ duodenal mucosa, whereas the forskolin-stimulated HCO(3)(-) secretory response was not different. In Cl(-)-free solutions, PGE(2)- and carbachol-stimulated HCO(3)(-) secretion was reduced by 81% and 44%, respectively, whereas forskolin-stimulated HCO(3)(-) secretion was not altered significantly. PGE(2) and carbachol, but not forskolin, were able to elicit a Cl(-)-dependent HCO(3)(-) secretory response in the absence of short-circuit current changes in cystic fibrosis transmembrane conductance regulator knockout mice. In murine duodenum, PGE(2)-mediated HCO(3)(-) secretion is strongly SLC26A6 dependent and cystic fibrosis transmembrane conductance regulator independent, whereas forskolin-stimulated HCO(3)(-) secretion is completely SLC26A6 independent and cystic fibrosis transmembrane conductance regulator dependent. Carbachol-induced secretion is less pronounced, but occurs via both transport pathways. This suggests that PGE(2) and forskolin activate distinct HCO(3)(-) transport pathways in the murine duodenum.

  14. Cryosurvival and pregnancy rates after exposure of IVF-derived Bos indicus embryos to forskolin before vitrification.

    PubMed

    Sanches, B V; Marinho, L S R; Filho, B D O; Pontes, J H F; Basso, A C; Meirinhos, M L G; Silva-Santos, K C; Ferreira, C R; Seneda, M M

    2013-09-01

    In vitro-produced (IVP) bovine embryos are more sensitive to cryopreservation than their in vivo counterparts due to their higher lipid concentrations, whereas Bos indicus IVP embryos are even more sensitive than Bos taurus IVP embryos. To examine the effects of a lipolytic agent, before vitrification of Bos indicus IVP embryos, on embryo survival, viability, and pregnancy rates, two experiments were conducted. In experiment 1, Bos indicus (Nelore) embryos were produced from abattoir-derived ovaries and allocated into two groups. In the treatment group, 10 μM of forskolin was added to the in vitro culture medium on Day 5 and incubated for 48 hours. On Day 7 of culture, IVP-expanded blastocysts from both the control (n = 101) and treatment (n = 112) groups were vitrified with ethylene glycol and DMSO via the Cryotop procedure. Although there was no significant difference between the rates of blastocoel reexpansion and hatching of the embryos exposed to forskolin (87.5% and 70.5%, respectively) compared with the control embryos (79.2% and 63.3%, respectively), the numerically superior rates of the embryos exposed to forskolin led to another experiment. In experiment 2, blastocysts produced from the ovum pick up were exposed or not exposed to the lipolytic agent and vitrified as in experiment 1. Embryos treated with forskolin had higher pregnancy rates than the control group (48.8% vs. 18.5%). In view of these results, 1908 Bos indicus embryos were produced from ovum pick up, exposed to the lipolytic agent, and blastocysts were transferred to recipients, and the pregnancy rates of the embryos of various breeds were compared. The mean pregnancy rate obtained was 43.2%. All data were analyzed by chi-square or by binary logistic regression (P ≤ 0.05). In conclusion, treatment with forskolin before vitrification improved cryotolerance of Bos indicus IVP embryos, resulting in good post-transfer pregnancy rates. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Forskolin improves the cryosurvival of in vivo-derived porcine embryos at very early stages using two vitrification methods.

    PubMed

    Gomis, J; Cuello, C; Sanchez-Osorio, J; Gil, M A; Parrilla, I; Angel, M A; Vazquez, J M; Roca, J; Martinez, E A

    2013-04-01

    This study was aimed to determine the effect of forskolin on the viability of in vivo-derived porcine embryos vitrified by the superfine open pulled straw (SOPS) or solid surface vitrification (SSV) methods at the 2-cell, 4-cell, and blastocyst stages. Zygotes, 2- to 4-cell embryos, and morulae were obtained from superovulated sows. After collection, embryos were cultured for 24h with 0 or 10 μM forskolin and then vitrified using the SOPS and SSV method, or not vitrified (fresh controls). Fresh and vitrified-warmed 2-cells, 4-cells, and blastocysts were cultured for additional 96 h, 72 h and 24 h, respectively. At the end of the culture, embryos were evaluated for progression to the blastocyst stage and total cell number. The vitrification method did not affect any of the parameters evaluated for any embryo stage. Forskolin increased (P<0.01) the blastocyst formation and the final developmental stage of vitrified 2- and 4-cell embryos. However, these embryos exhibited lower (P<0.003) blastocyst formation rates than their fresh counterparts. The total cell number and hatching rate were similar in both groups (vitrified and fresh) of 2- and 4-cell embryos. Vitrified blastocysts exhibited viabilities, final developmental stages, hatching rates, and total cell numbers that were similar to those of their fresh counterparts, regardless of the addition of forskolin. In conclusion, the SOPS and SSV methods are suitable for the cryopreservation of in vivo-derived 2- to 4-cell porcine embryos. Pre-treatment with forskolin for 24h before vitrification improves the cryotolerance of 2- and 4-cell porcine embryos. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Heavy isotope labeling study of the turnover of forskolin-stimulated adenylate cyclase in BC/sup 3/H1 cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhelal, R.; Bockaert, J.; Mermet-Bouvier, R.

    1987-06-25

    We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC/sup 3/H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, /sup 3/H, /sup 13/C, /sup 15/N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher massmore » (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme. Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control. After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value.« less

  17. The effects of forskolin and rolipram on cAMP, cGMP and free fatty acid levels in diet induced obesity.

    PubMed

    Doseyici, S; Mehmetoglu, I; Toker, A; Yerlikaya, F H; Erbay, E

    2014-07-01

    Obesity is a major health problem. We investigated the effects of forskolin and rolipram in the diet of animals in which obesity had been induced. We used 50 female albino Wistar rats that were assigned randomly into five groups as follows: group 1, control; group 2, high fat diet; group 3, high fat diet + forskolin; group 4, high fat diet + rolipram; and group 5, high fat diet + rolipram + forskolin. The rats were fed for 10 weeks and rolipram and forskolin were administered during last two weeks. The animals were sacrificed and blood samples were obtained. Serum cAMP, cGMP and free fatty acids (FFA) levels were measured using ELISA assays. We also measured weight gain during the 10 week period. cAMP and FFA levels of groups 3, 4 and 5 were significantly higher than those of groups 1 and 2. We found no significant differences in serum cGMP levels among the groups. The weight gain in groups 3, 4 and 5 was significantly less than for group 2. We also found that the weight gain in group 5 was significantly less than in groups 3 and 4. We found that both forskolin and rolipram stimulated lipolysis and inhibited body weight increase by increasing cAMP levels. Also, combination therapy using the two agents may be more effective in preventing diet induced obesity than either agent alone. We found also that these agents did not effect cellular cGMP levels in diet induced obesity.

  18. cAMP and forskolin decrease. gamma. -aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuschneider, G.; Schwartz, R.D.

    1989-04-01

    The effects of the cyclic nucleotide cAMP on {gamma}-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N{sup 6}, O{sup 2{prime}}-dibutyryladenosine 3{prime},5{prime}-cyclic monophosphate inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3{prime},5{prime}-cyclic monophosphate, 8-bromoadenosine 3{prime},5{prime}-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the {gamma}-aminobutyric acid-gated Cl{sup {minus}} channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, inmore » the intact synaptoneurosomes, forskolin inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl{sup {minus}} channel directly. The data suggest that {gamma}-aminobutyric acid (GABA{sub A}) receptor function in brain can be regulated by cAMP-dependent phosphorylation.« less

  19. Loss of PDZ-adaptor protein NHERF2 affects membrane localization and cGMP- and [Ca2+]- but not cAMP-dependent regulation of Na+/H+ exchanger 3 in murine intestine

    PubMed Central

    Chen, Mingmin; Sultan, Ayesha; Cinar, Ayhan; Yeruva, Sunil; Riederer, Brigitte; Singh, Anurag Kumar; Li, Junhua; Bonhagen, Janina; Chen, Gang; Yun, Chris; Donowitz, Mark; Hogema, Boris; deJonge, Hugo; Seidler, Ursula

    2010-01-01

    Trafficking and regulation of the epithelial brush border membrane (BBM) Na+/H+ exchanger 3 (NHE3) in the intestine involves interaction with four different members of the NHERF family in a signal-dependent and possibly segment-specific fashion. The aim of this research was to study the role of NHERF2 (E3KARP) in intestinal NHE3 BBM localization and second messenger-mediated and receptor-mediated inhibition of NHE3. Immunolocalization of NHE3 in WT mice revealed predominant microvillar localization in jejunum and colon, a mixed distribution in the proximal ileum but localization near the terminal web in the distal ileum. The terminal web localization of NHE3 in the distal ileum correlated with reduced acid-activated NHE3 activity (fluorometrically assessed). NHERF2 ablation resulted in a shift of NHE3 to the microvilli and higher basal fluid absorption rates in the ileum, but no change in overall NHE3 protein or mRNA expression. Forskolin-induced NHE3 inhibition was preserved in the absence of NHERF2, whereas Ca2+ ionophore- or carbachol-mediated inhibition was abolished. Likewise, Escherichia coli heat stable enterotoxin peptide (STp) lost its inhibitory effect on intestinal NHE3. It is concluded that in native murine intestine, the NHE3 adaptor protein NHERF2 plays important roles in tethering NHE3 to a position near the terminal web and in second messenger inhibition of NHE3 in a signal- and segment-specific fashion, and is therefore an important regulator of intestinal fluid transport. PMID:20962002

  20. Evening primrose oil or forskolin ameliorates celecoxib-enhanced upregulation of tissue factor expression in mice subjected to lipopolysaccharide-induced endotoxemia.

    PubMed

    Mosaad, Sarah M; Zaitone, Sawsan A; Ahmed, Amal A M; Abo-Elmatty, Dina M; El-Baz, Amani A; Moustafa, Yasser M

    2017-05-01

    Celecoxib, a selective cyclooxygenase-2 inhibitor, produces thrombotic events in patients predisposed to cardiovascular risk factors. One theory reported an increase in endothelial expression of tissue factor (TF) as a predisposing factor. This work explored the effect of evening primrose oil (EPO), a source of prostaglandin E1, and forskolin (a cyclic adenosine monophosphate stimulator) against the prothrombotic effect of celecoxib in mice. Lipopolysaccharide mouse model of endotoxemia was used to induce an upregulation of TF activity. Male mice received celecoxib (25 mg/kg), celecoxib plus EPO, or celecoxib plus forskolin for 4 weeks and then subjected to a prothrombotic challenge in the form of an intraperitoneal injection of lipopolysaccharide. Results showed an increase in plasma TF activity, endothelial TF expression, and thrombin-antithrombin (TAT) but lower antithrombin III (ATIII) level in mice that received celecoxib in comparison to those that received the vehicle. Adding EPO or forskolin to celecoxib regimen significantly decreased the prothrombotic effect of celecoxib. A positive correlation (r = 0.8501) was found between TF activity and TAT. Co-administration of EPO or forskolin decreased the activity of TF and mitigated the prothrombotic effect of celecoxib. Therefore, these combinations may have the utility to abrogate the prothrombotic adverse effect of celecoxib in clinical setting.

  1. Effects of cilostamide and/or forskolin on the meiotic resumption and development competence of growing ovine oocytes selected by brilliant cresyl blue staining.

    PubMed

    Azari-Dolatabad, Nima; Rahmani, H R; Hajian, M; Ostadhosseini, S; Hosseini, S M; Nasr-Esfahani, M H

    2016-05-01

    The relevance of low developmental competence of in vitro-matured oocyte to the incomplete/delayed cytoplasmic maturation, and the heterogeneity of retrieved oocytes is well established in several species. A short phase of prematuration culture was used to allow better oocyte cytoplasmic maturation. The preselection of growing and fully grown oocytes has been proposed to improve developmental competency. This study investigated the effects of phosphodiesterase type 3-specific inhibitor, cilostamide, and adenylate cyclase activator, forskolin, on the resumption of meiosis and developmental competence of growing ovine oocytes selected by brilliant cresyl blue (BCB) staining. Results indicate that cilostamide, forskolin, and their combination significantly (P < 0.05) increased the percentage of growing (BCB-) oocytes maintained at the germinal vesicle stage. However, only forskolin significantly (P < 0.05) increased the yield and quality of blastocysts derived from BCB- oocytes compared with non-BCB-treated oocytes. We conclude that a short prematuration culture with forskolin may improve the in vitro developmental competency of growing oocytes in ovine. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitorymore » hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.« less

  3. A forskolin derivative, colforsin daropate hydrochloride, inhibits rat mesangial cell mitogenesis via the cyclic AMP pathway.

    PubMed

    Ogata, Junichi; Minami, Kouichiro; Segawa, Kayoko; Yamamoto, Chieko; Kim, Sung-Teh; Shigematsu, Akio

    2003-11-01

    A forskolin derivative, colforsin daropate hydrochloride (CDH), has been introduced as an inotropic agent that acts directly on adenylate cyclase to increase intracellular cyclic AMP (cAMP) levels and ventricular contractility, resulting in positive inotropic activity. We investigated the effects of CDH on rat mesangial cell (MC) proliferation. CDH (10(-7)-10(-5) mol/l) inhibited [(3)H]thymidine incorporation into cultured rat MCs in a concentration-dependent manner. CDH (10(-7)-10(-5) mol/l) also decreased cell numbers in a similar manner, and stimulated cAMP accumulation in MCs in a concentration-dependent manner. A protein kinase A inhibitor, H-89, abolished the inhibitory effects of CDH on MC mitogenesis. These findings suggest that CDH would inhibit the proliferation of rat MCs via the cAMP pathway. Copyright 2003 S. Karger AG, Basel

  4. Isoproterenol-stimulated labelling of particulate proteins by using [adenylate-32P]NAD+ independent on a cAMP-dependent protein kinase in parotid acinar cells.

    PubMed

    Sugiya, H; Hara-Yokoyama, M; Furuyama, S

    1992-03-30

    When saponin-permeabilized rat parotid acinar cells were incubated with [adenylate-32P]NAD+, labelling of proteins (33, 27 and 23 kDa) in particulate fractions of the cells was stimulated by isoproterenol. The effect of isoproterenol was completely blocked by a beta-antagonist. Both forskolin or cAMP mimicked the effect of isoproterenol on the labelling. However, an inhibitor of cAMPdPK failed to induce complete inhibition of the effects of isoproterenol, forskolin and cAMP. When the labelled proteins were treated with snake venom phosphodiesterase, neither [32P]5'-AMP nor [32P]phosphoribosyladenosine was released. These results suggest that covalent modification of proteins with NAD+, which is distinct from ADP-ribosylation and cAMPdPK-dependent phosphorylation, is coupled to beta-receptor-cAMP signalling system in rat parotid acinar cells.

  5. Effect of MEM vitamins and forskolin on embryo development and vitrification tolerance of in vitro-produced pig embryos.

    PubMed

    Cuello, C; Gomis, J; Almiñana, C; Maside, C; Sanchez-Osorio, J; Gil, M A; Sánchez, A; Parrilla, I; Vazquez, J M; Roca, J; Martinez, E A

    2013-01-30

    The aims of this study were (1) to determine the effect of in vitro maturation (IVM) medium supplementation with MEM vitamins on in vitro embryo development and sensitivity to vitrification of Day 6 blastocysts and (2) to evaluate whether the addition of forskolin to in vitro culture (IVC) medium enhances blastocyst survival following Super Open Pulled Straw (SOPS) vitrification. Cumulus-oocyte complexes (COCs; n=4000) were matured with 0.0% or 0.05% (v/v) MEM vitamins. After 44h of IVM, the oocytes were in vitro fertilized, and presumptive zygotes were cultured. At Day 5 of IVC, embryos from both experimental groups were cultured for 24h with 0 or 10μM forskolin, achieving a 2×2 factorial design. The blastocyst formation rate was assessed on Day 6, and subsets of samples from the four experimental groups were vitrified (n=469) or kept fresh (n=546). Fresh and vitrified-warmed blastocysts were cultured for 24h prior to embryo survival and total blastocyst cell number assessment. The MEM vitamins increased (P<0.001) the blastocyst formation rate at Day 6, but they did not affect embryo survival after vitrification. In contrast, the addition of forskolin to the culture medium enhanced (P<0.05) the blastocyst vitrification tolerance. The total blastocyst cell number was similar among the groups. In conclusion, supplementation with 0.05% MEM vitamins improved the blastocyst formation rate, and the addition of 10μM forskolin to the culture medium increased survival in Day 6 in vitro-produced blastocysts after SOPS vitrification. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Different rate-limiting activities of intracellular pH regulators for HCO3- secretion stimulated by forskolin and carbachol in rat parotid intralobular ducts.

    PubMed

    Ueno, Kaori; Hirono, Chikara; Kitagawa, Michinori; Shiba, Yoshiki; Sugita, Makoto

    2016-11-01

    Intracellular pH (pH i ) regulation fundamentally participates in maintaining HCO 3 - release from HCO 3 - -secreting epithelia. We used parotid intralobular ducts loaded with BCECF to investigate the contributions of a carbonic anhydrase (CA), anion channels and a Na + -H + exchanger (NHE) to pH i regulation for HCO 3 - secretion by cAMP and Ca 2+ signals. Resting pH i was dispersed between 7.4 and 7.9. Forskolin consistently decreased pH i showing the dominance of pH i -lowering activities, but carbachol gathered pH i around 7.6. CA inhibition suppressed the forskolin-induced decrease in pH i , while it allowed carbachol to consistently increase pH i by revealing that carbachol prominently activated NHE via Ca 2+ -calmodulin. Under NHE inhibition, forskolin and carbachol induced the remarkable decreases in pH i , which were slowed predominantly by CA inhibition and by CA or anion channel inhibition, respectively. Our results suggest that forskolin and carbachol primarily activate the pH i -lowering CA and pH i -raising NHE, respectively, to regulate pH i for HCO 3 - secretion.

  7. Microbial Synthesis of the Forskolin Precursor Manoyl Oxide in an Enantiomerically Pure Form.

    PubMed

    Nielsen, Morten T; Ranberg, Johan Andersen; Christensen, Ulla; Christensen, Hanne Bjerre; Harrison, Scott J; Olsen, Carl Erik; Hamberger, Björn; Møller, Birger Lindberg; Nørholm, Morten H H

    2014-12-01

    Forskolin is a promising medicinal compound belonging to a plethora of specialized plant metabolites that constitute a rich source of bioactive high-value compounds. A major obstacle for exploitation of plant metabolites is that they often are produced in small amounts and in plants difficult to cultivate. This may result in insufficient and unreliable supply leading to fluctuating and high sales prices. Hence, substantial efforts and resources have been invested in developing sustainable and reliable supply routes based on microbial cell factories. Here, we report microbial synthesis of (13R)-manoyl oxide, a proposed intermediate in the biosynthesis of forskolin and other medically important labdane-type terpenoids. Process optimization enabled synthesis of enantiomerically pure (13R)-manoyl oxide as the sole metabolite, providing a pure compound in just two steps with a yield of 10 mg/liter. The work presented here demonstrates the value of a standardized bioengineering pipeline and the large potential of microbial cell factories as sources for sustainable synthesis of complex biochemicals. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Derivativation of the human erythrocyte glucose transporter using a novel forskolin photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadzinski, B.; Shanahan, M.; Ruoho, A.

    1987-05-01

    An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-0-succinyldeacetyl-forskolin (IAPS-Fsk), has been synthesized, purified, and characterized. The K/sub i/ for inhibition of 3-0-methylglucose transport by TAPS-Fsk in human erythrocytes was found to be 0.1 uM. The carrier-free radioiodinated label has been shown to be a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes with 1-10 nM (I-125)IAPS-Fsk and analysis by SDS-PAGE showed specific derivatization of a broad band with an apparent molecular weight of 40-70 kDa. Photoincorporation using 2 nM (I-125)IAPS-Fsk was protected with D-glucose, cytochalasin B, and forskolin. No protection was observed withmore » L-glucose. Endo-B-galactosidase digestion and trypsinization of (I-125)IAPS-Fsk labelled erythrocytes reduced the specifically radiolabelled transporter to 40 kDa and 18 kDa respectively. (I-125)-IAPS-Fsk will be used to study the structural aspects of the glucose transporter.« less

  9. Oral administration of an association of forskolin, rutin and vitamins B1 and B2 potentiates the hypotonising effects of pharmacological treatments in POAG patients.

    PubMed

    Pescosolido, N; Librando, A

    2010-01-01

    Control of intraocular pressure is still the main strategy to treat glaucoma patients. Forskolin has already shown an ability to control intraocular pressure after topic administration, whereas rutin is known to improve ocular blood fl ow. Therefore, aim of this pilot study has been to observe whether administration of an association of oral forskolin and rutin to POAG patients under different regimens of medical therapy may contribute to their effects, further decreasing IOP values. Forskolin (a natural compound present in the crude extract of the plant Coleus Forskohlii) and rutin are the main ingredients of a food supplement commercially available in Italy. In an open label pilot study, 16 patients with POAG under treatment with different topical drugs and with stable IOP were given additional treatment with the food supplement for 40 days, and their IOP values measured at enrolment, at the end of treatment and 40 days after treatment interruption. Further addition of forskolin and rutin to topical association treatments resulted in a further decrease of IOP by roughly 20% of the initial value. The effect was reversible upon suspension of the treatment. These data show for the fi rst time that forskolin and rutin given through the oral route appear to reach the ocular district, where they can act in synergy with topical pharmacological treatments, and contribute to the control of intraocular pressure.

  10. Modulation of PC12 cell viability by forskolin-induced cyclic AMP levels through ERK and JNK pathways: an implication for L-DOPA-induced cytotoxicity in nigrostriatal dopamine neurons.

    PubMed

    Park, Keun Hong; Park, Hyun Jin; Shin, Keon Sung; Choi, Hyun Sook; Kai, Masaaki; Lee, Myung Koo

    2012-07-01

    The intracellular levels of cyclic AMP (cAMP) increase in response to cytotoxic concentrations of L-DOPA in PC12 cells, and forskolin that induces intracellular cAMP levels either protects PC12 cells from L-DOPA-induced cytotoxicity or enhances cytotoxicity in a concentration-dependent manner. This study investigated the effects of cAMP induced by forskolin on cell viability of PC12 cells, relevant to L-DOPA-induced cytotoxicity in Parkinson's disease therapy. The low levels of forskolin (0.01 and 0.1 μM)-induced cAMP increased dopamine biosynthesis and tyrosine hydroxylase (TH) phosphorylation, and induced transient phosphorylation of ERK1/2 within 1 h. However, at the high levels of forskolin (1.0 and 10 μM)-induced cAMP, dopamine biosynthesis and TH phosphorylation did not increase, but rapid differentiation in neurite-like formation was observed with a steady state. The high levels of forskolin-induced cAMP also induced sustained increase in ERK1/2 phosphorylation within 0.25-6 h and then led to apoptosis, which was apparently mediated by JNK1/2 and caspase-3 activation. Multiple treatment of PC12 cells with nontoxic L-DOPA (20 μM) for 4-6 days induced neurite-like formation and decreased intracellular dopamine levels by reducing TH phosphorylation. These results suggest that the low levels of forskolin-induced cAMP increased dopamine biosynthesis in cell survival via transient ERK1/2 phosphorylation. In contrast, the high levels of forskolin-induced cAMP induced differentiation via sustained ERK1/2 phosphorylation and then led to apoptosis. Taken together, the intracellular levels of cAMP play a dual role in cell survival and death through the ERK1/2 and JNK1/2 pathways in PC12 cells.

  11. Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in specialized root cork cells in Coleus forskohlii.

    PubMed

    Pateraki, Irini; Andersen-Ranberg, Johan; Hamberger, Britta; Heskes, Allison Maree; Martens, Helle Juel; Zerbe, Philipp; Bach, Søren Spanner; Møller, Birger Lindberg; Bohlmann, Jörg; Hamberger, Björn

    2014-03-01

    Forskolin, a complex labdane diterpenoid found in the root of Coleus forskohlii (Lamiaceae), has received attention for its broad range of pharmacological activities, yet the biosynthesis has not been elucidated. We detected forskolin in the root cork of C. forskohlii in a specialized cell type containing characteristic structures with histochemical properties consistent with oil bodies. Organelle purification and chemical analysis confirmed the localization of forskolin and of its simplest diterpene precursor backbone, (13R) manoyl oxide, to the oil bodies. The labdane diterpene backbone is typically synthesized by two successive reactions catalyzed by two distinct classes of diterpene synthases. We have recently described the identification of a small gene family of diterpene synthase candidates (CfTPSs) in C. forskohlii. Here, we report the functional characterization of four CfTPSs using in vitro and in planta assays. CfTPS2, which synthesizes the intermediate copal-8-ol diphosphate, in combination with CfTPS3 resulted in the stereospecific formation of (13R) manoyl oxide, while the combination of CfTPS1 and CfTPS3 or CfTPS4 led to formation of miltiradiene, precursor of abietane diterpenoids in C. forskohlii. Expression profiling and phylogenetic analysis of the CfTPS family further support the functional diversification and distinct roles of the individual diterpene synthases and the involvement of CfTPS1 to CfTPS4 in specialized metabolism and of CfTPS14 and CfTPS15 in general metabolism. Our findings pave the way toward the discovery of the remaining components of the pathway to forskolin, likely localized in this specialized cell type, and support a role of oil bodies as storage organelles for lipophilic bioactive metabolites.

  12. Labdane-type diterpenoids from hairy root cultures of Coleus forskohlii, possible intermediates in the biosynthesis of forskolin.

    PubMed

    Asada, Yoshihisa; Li, Wei; Terada, Tomohiro; Kuang, Xinzhu; Li, Qin; Yoshikawa, Takafumi; Hamaguchi, Shogo; Namekata, Iyuki; Tanaka, Hikaru; Koike, Kazuo

    2012-07-01

    Significant attention has been devoted to studying hairy root cultures as a promising strategy for production of various valuable secondary metabolites. These offer many advantages, such as high growth rate, genetic stability and being hormone-free. In this study, a detailed phytochemical investigation of the secondary metabolites of Coleus forskohlii hairy root cultures was undertaken and which resulted in the isolation of 22 compounds, including four forskolin derivatives and a monoterpene. Their structures were elucidated by extensive spectroscopic analyses. These compounds could be classified into four groups viz.: labdane-type diterpenes, monoterpenes, triterpenes and phenylpropanoid dimers. Apart from one compound, all labdane type diterpenes are oxygenated at C-11 as in forskolin and a scheme showing their biosynthetic relationships is proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugio, K.; Daly, J.W.

    1984-01-09

    The effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin were investigated using (/sup 125/I) bovine serum albumin (/sup 125/I-BSA). Forskolin, forskolin 7-ethyl carbonate and 7-desacetylforskolin, which are potent activators of adenylate cyclase, greatly potentiated the bradykinin-induced plasma exudation and inhibited the prostaglandin E/sub 1/-induced response. The phosphodiesterase inhibitors, ZK 627ll, dipyridamole, HL 725, and 3-isobutyl-1-methylxanthine potentiated the bradykinin-induced plasma exudation and inhibited and prostaglandin E/sub 1/-induced response. 8-Bromo cyclic AMP in the doses of 0.01 to 1 ..mu..g potentiated the bradykinin-induced plasma exudation, but hadmore » no effect at doses of 10 and 100 ..mu..g. 8-bromo cyclic AMP at all doses significantly inhibited the prostaglandin E/sub 1/-induced response. The results suggest that the effects of forskolin and its analogs on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin derive from activation of cyclic AMP-generating systems.« less

  14. Differential activation of the HCO3− conductance through the cystic fibrosis transmembrane conductance regulator anion channel by genistein and forskolin in murine duodenum

    PubMed Central

    Tuo, Biguang; Wen, Guorong; Seidler, Ursula

    2009-01-01

    Background and purpose: Many cystic fibrosis (CF)-associated mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels affect CFTR-activated HCO3− transport more than Cl− transport. Targeting the CFTR HCO3− conductance, if possible, may therefore be of major therapeutic benefit. In the present study, we examined the effects of genistein and forskolin on duodenal mucosal HCO3− and Cl− secretion. Experimental approach: Murine duodenal mucosal HCO3− and Cl− secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (Isc) techniques. Key results: Genistein markedly stimulated duodenal HCO3− secretion and Isc in a dose-dependent manner in CFTR wild-type mice, but not in CFTR null mice. CFTRinh-172, a highly specific CFTR inhibitor, inhibited genistein-stimulated duodenal HCO3− secretion and Isc in wild-type mice. Genistein induced 59% net HCO3− increase and 123% net Isc increase over basal value, whereas forskolin, an activator of adenylate cyclase, induced 94% net HCO3− increase and 507% net Isc increase, indicating that, compared with forskolin, genistein induced a relatively high HCO3−/Isc ratio. Further data showed that CFTR HCO3−/Cl− conductance ratio was 1.05 after genistein stimulation, whereas after forskolin stimulation, the CFTR HCO3−/Cl− conductance ratio was 0.27. Conclusions and implications: Genistein stimulates duodenal HCO3− and Cl− secretion through CFTR, and has a relatively high selectivity for the CFTR HCO3− conductance, compared with forskolin. This may indicate the feasibility of selective targeting of the HCO3− conductance of the CFTR channels. PMID:19788494

  15. Fatty acid composition of porcine cumulus oocyte complexes (COC) during maturation: effect of the lipid modulators trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) and forskolin.

    PubMed

    Prates, E G; Alves, S P; Marques, C C; Baptista, M C; Horta, A E M; Bessa, R J B; Pereira, R M

    2013-05-01

    The effect of maturation and of two lipid modulators supplementation along in vitro maturation (IVM) on fatty acid (FA) and dimethylacetal (DMA) composition of porcine cumulus oocyte complexes (COC) were studied. Abattoir-derived immature COC were analyzed for FA and DMA or submitted to IVM as follows: control group; t10,c12 CLA group, t10,c12 CLA supplementation for 44 h; Forskolin group, forskolin supplementation during the initial 2 h; t10,c12 CLA + forskolin group, t10,c12 CLA for 44 h and forskolin for just 2h. Each experimental group had five replicates. FA analysis of oocytes, cumulus cells (CC), follicular fluid, and culture media were performed by gas-liquid chromatography. Oocytes and their CC had different FA composition. Oocytes were richer in saturated FA (SFA) preferentially maintaining their FA profile during maturation. Mature CC had the highest polyunsaturated FA (PUFA) content. Five individual and total SFA, and monounsaturated FA (MUFA), notably oleic acid (c9-18:1), percentages were lower (P ≤ 0.023) in mature than in immature CC. t10,c12 CLA was accumulated by COC from t10,c12 CLA and t10,c12 CLA + forskolin groups, mostly in CC where MUFA and an eicosatrienoic isomer decreased (P ≤ 0.043). Nevertheless, PUFA or FA and DMA total content were not affected. Arachidonic acid was reduced in t10,c12 CLA + forskolin CC and hexadecanal-DMA-16:0 in t10,c12 CLA CC. Forskolin alone increased (P ≤ 0.043) c9-18:1 in oocytes. In conclusion, maturation process clearly changed porcine COC FA and DMA profiles, mostly of CC, also more susceptible to modifications induced by t10,c12 CLA. This possibility of manipulating COC lipid composition during IVM could be used to improve oocyte quality/cryopreservation efficiency.

  16. The cAMP signaling system inhibits the repair of γ-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells.

    PubMed

    Cho, Eun-Ah; Juhnn, Yong-Sung

    2012-06-01

    Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on γ-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (GαsQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of GαsQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after γ-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2'-O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2'-O-Me-cAMP and restored XRCC1 protein level following γ-ray irradiation. From these results, we conclude that the cAMP signaling system inhibits the repair of γ-ray-induced DNA damage by promoting the ubiquitin-proteasome dependent degradation of XRCC1 in an Epac-dependent pathway in lung cancer cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Synthesis of novel forskolin isoxazole derivatives with potent anti-cancer activity against breast cancer cell lines.

    PubMed

    Burra, Srinivas; Voora, Vani; Rao, Ch Prasad; Vijay Kumar, P; Kancha, Rama Krishna; David Krupadanam, G L

    2017-09-15

    Forskolin C 1 -isoxazole derivatives (3,5-regioisomers) (11a-e, 14, 15a-h and 15, 16a-g) were synthesized regioselectively by adopting 1,3-dipolar cycloadditions. These derivatives were tested using estrogen receptor positive breast cancer cell lines MCF-7 and BT-474. Majority of the compounds exhibited activity against the p53-positive MCF-7 breast cancer cells but not against the p53-negative BT-474 breast cancer cells. Among forskolin derivatives, compounds 11a, 11c, 14a, 14f, 14g, 14h, 15b, 16g and 17b exhibited higher anti-cancer activity against MCF-7 cell line with an IC 50 ≤1µM. The derivative 14f exhibited highest activity in both p53-positive (MCF-7) and p53-negative (BT-474) breast cancer cell lines with an IC 50 of 0.5µM. Copyright © 2017. Published by Elsevier Ltd.

  18. Differential Activation of Enkephalin, Galanin, Somatostatin, NPY, and VIP Neuropeptide Production by Stimulators of Protein Kinases A and C in Neuroendocrine Chromaffin Cells

    PubMed Central

    Hook, Vivian; Toneff, Thomas; Baylon, Sheley; Sei, Catherine

    2009-01-01

    Neuropeptides function as peptide neurotransmitters and hormones to mediate cell-cell communication. The goal of this study was to understand how different neuropeptides may be similarly or differentially regulated by protein kinase A (PKA) and protein kinase C (PKC) intracellular signaling mechanisms. Therefore, this study compared the differential effects of treating neuroendocrine chromaffin cells with stimulators of PKA and PKC on the production of the neuropeptides (Met)enkephalin, galanin, somatostatin, NPY, and VIP. Significantly, selective increases in production of these neuropeptides was observed by forskolin or PMA (phorbol myristate acetate) which stimulate PKA and PKC mechanisms, respectively. (Met)enkephalin production was stimulated by up to 2-fold by forskolin treatment, but not by PMA. In contrast, PMA treatment (but not forskolin) resulted in a 2-fold increase in production of galanin and somatostatin, and a 3-fold increase in NPY production. Notably, VIP production was highly stimulated by forskolin and PMA, with increases of 3-fold and 10–15-fold, respectively. Differences in elevated neuropeptides occurred in cell extracts compared to secretion media, which consisted of (i) increased NPY primarily in cell extracts, (ii) increased (Met)enkephalin and somatostatin in secretion media (not cell extracts), and (iii) increased galanin and VIP in both cell extracts and secretion media. Involvement of PKA or PKC for forskolin or PMA regulation of neuropeptide biosynthesis, respectively, was confirmed with direct inhibitors of PKA and PKC. The selective activation of neuropeptide production by forskolin and PMA demonstrates that PKA and PKC pathways are involved in the differential regulation of neuropeptide production. PMID:18619673

  19. Forskolin stimulation promotes urea transporter UT-A1 ubiquitination, endocytosis, and degradation in MDCK cells

    PubMed Central

    Su, Hua; Carter, Conner B.; Laur, Oskar; Sands, Jeff M.

    2012-01-01

    The adenylyl cyclase stimulator forskolin (FSK) stimulates UT-A1 phosphorylation, membrane trafficking, and urea transport activity. Here, we found that FSK stimulation induces UT-A1 ubiquitination in UT-A1 Madin-Darby canine kidney (MDCK) cells. This suggests that phosphorylation by FSK also triggers the protein degradation machinery for UT-A1. UT-A1-MDCK cells were treated with 100 μg/ml cycloheximide to inhibit protein synthesis, with or without 10 μM FSK. Total UT-A1 protein abundance was significantly reduced after FSK treatment, concomitantly ubiquitinated UT-A1 was increased. We then specifically investigated the effect of FSK on UT-A1 expressed on the cell plasma membrane. FSK treatment accelerated UT-A1 removal from the cell plasma membrane by increasing UT-A1 endocytosis as judged by biotinylation/MesNa treatment and confocal microscopy. We further found that inhibition of the clathrin-mediated endocytic pathway, but not the caveolin-mediated endocytic pathway, significantly blocks FSK-stimulated UT-A1 endocytosis. The PKA inhibitor H89 and the proteasome inhibitors MG132 and lactacystin reduced FSK-induced membrane UT-A1 reduction. Our study shows that FSK activates the UT-A1 urea transporter and the activation/phosphorylation subsequently triggers the downregulation of UT-A1, which represents an important mechanism for the cell to return to the basal conditions after vasopressin stimulation. PMID:22914781

  20. Functional Mapping of Protein Kinase A Reveals Its Importance in Adult Schistosoma mansoni Motor Activity

    PubMed Central

    de Saram, Paulu S. R.; Ressurreição, Margarida; Davies, Angela J.; Rollinson, David; Emery, Aidan M.; Walker, Anthony J.

    2013-01-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and ‘smart’ anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology

  1. Effect of Increased Cyclic AMP Concentration on Muscle Protein Synthesis and Beta-Adrenergic Receptor Expression in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Vaughn, J. R.; Bridge, K. Y.; Smith, C. K.

    1998-01-01

    Analogies of epinephrine are known to cause hypertrophy of skeletal muscle when fed to animals. These compounds presumably exert their physiological action through interaction with the P-adrenergic receptor. Since the intracellular signal generated by the Beta-adrenergic receptor is cyclic AMP (cAMP), experiments were initiated in cell culture to determine if artificial elevation of cAMP by treatment with forskolin would alter muscle protein metabolism and P-adrenergic receptor expression. Chicken skeletal muscle cells after 7 days in culture were treated with 0.2-30 micrometers forskolin for a total of three days. At the end of the treatment period, both the concentration of cAMP and the quantity of myosin heavy chain (MHC) were measured. Concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. In contrast, the quantity of MHC was increased approximately 50% above control cells at 0.2 micrometers forskolin, but exhibited a gradual decline at higher levels of forskolin so that the quantity of MHC in cells treated with 30 micrometers forskolin was not significantly different from controls. Curiously, the intracellular concentration of cAMP which elicited the maximum increase in the quantity of MHC was only 40% higher than cAMP concentration in control cells.

  2. Manoyl Oxide (13R), the Biosynthetic Precursor of Forskolin, Is Synthesized in Specialized Root Cork Cells in Coleus forskohlii1[W][OPEN

    PubMed Central

    Pateraki, Irini; Andersen-Ranberg, Johan; Hamberger, Britta; Heskes, Allison Maree; Martens, Helle Juel; Zerbe, Philipp; Bach, Søren Spanner; Møller, Birger Lindberg; Bohlmann, Jörg; Hamberger, Björn

    2014-01-01

    Forskolin, a complex labdane diterpenoid found in the root of Coleus forskohlii (Lamiaceae), has received attention for its broad range of pharmacological activities, yet the biosynthesis has not been elucidated. We detected forskolin in the root cork of C. forskohlii in a specialized cell type containing characteristic structures with histochemical properties consistent with oil bodies. Organelle purification and chemical analysis confirmed the localization of forskolin and of its simplest diterpene precursor backbone, (13R) manoyl oxide, to the oil bodies. The labdane diterpene backbone is typically synthesized by two successive reactions catalyzed by two distinct classes of diterpene synthases. We have recently described the identification of a small gene family of diterpene synthase candidates (CfTPSs) in C. forskohlii. Here, we report the functional characterization of four CfTPSs using in vitro and in planta assays. CfTPS2, which synthesizes the intermediate copal-8-ol diphosphate, in combination with CfTPS3 resulted in the stereospecific formation of (13R) manoyl oxide, while the combination of CfTPS1 and CfTPS3 or CfTPS4 led to formation of miltiradiene, precursor of abietane diterpenoids in C. forskohlii. Expression profiling and phylogenetic analysis of the CfTPS family further support the functional diversification and distinct roles of the individual diterpene synthases and the involvement of CfTPS1 to CfTPS4 in specialized metabolism and of CfTPS14 and CfTPS15 in general metabolism. Our findings pave the way toward the discovery of the remaining components of the pathway to forskolin, likely localized in this specialized cell type, and support a role of oil bodies as storage organelles for lipophilic bioactive metabolites. PMID:24481136

  3. Disruption of Testis Cords by Cyclopamine or Forskolin Reveals Independent Cellular Pathways in Testis Organogenesis

    PubMed Central

    Yao, Humphrey Hung-Chang; Capel, Blanche

    2014-01-01

    Most studies to date indicate that the formation of testis cords is critical for proper Sertoli cell differentiation, inhibition of germ cell meiosis, and regulation of Leydig cell differentiation. However, the connections between these events are poorly understood. The objective of this study was to dissect the molecular and cellular relationships between these events in testis formation. We took advantage of the different effects of two hedgehog signaling inhibitors, cyclopamine and forskolin, on gonad explant cultures. Both hedgehog inhibitors phenocopied the disruptive effect of Dhh−/− on formation of testis cords without influencing Sertoli cell differentiation. However, they exhibited different effects on other cellular events during testis development. Treatment with cyclopamine did not affect inhibition of germ cell meiosis and mesonephric cell migration but caused defects in Leydig cell differentiation. In contrast, forskolin treatment induced germ cell meiosis, inhibited mesonephric cell migration, and had no effect on Leydig cell differentiation. By carefully contrasting the different effects of these two hedgehog inhibitors, we demonstrate that although formation of testis cords and development of other cell types normally take place in a tightly regulated sequence, each of these events can occur independent of the others. PMID:12051821

  4. Forskolin-free cAMP assay for Gi-coupled receptors.

    PubMed

    Gilissen, Julie; Geubelle, Pierre; Dupuis, Nadine; Laschet, Céline; Pirotte, Bernard; Hanson, Julien

    2015-12-01

    G protein-coupled receptors (GPCRs) represent the most successful receptor family for treating human diseases. Many are poorly characterized with few ligands reported or remain completely orphans. Therefore, there is a growing need for screening-compatible and sensitive assays. Measurement of intracellular cyclic AMP (cAMP) levels is a validated strategy for measuring GPCRs activation. However, agonist ligands for Gi-coupled receptors are difficult to track because inducers such as forskolin (FSK) must be used and are sources of variations and errors. We developed a method based on the GloSensor system, a kinetic assay that consists in a luciferase fused with cAMP binding domain. As a proof of concept, we selected the succinate receptor 1 (SUCNR1 or GPR91) which could be an attractive drug target. It has never been validated as such because very few ligands have been described. Following analyses of SUCNR1 signaling pathways, we show that the GloSensor system allows real time, FSK-free detection of an agonist effect. This FSK-free agonist signal was confirmed on other Gi-coupled receptors such as CXCR4. In a test screening on SUCNR1, we compared the results obtained with a FSK vs FSK-free protocol and were able to identify agonists with both methods but with fewer false positives when measuring the basal levels. In this report, we validate a cAMP-inducer free method for the detection of Gi-coupled receptors agonists compatible with high-throughput screening. This method will facilitate the study and screening of Gi-coupled receptors for active ligands. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oilmore » than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.« less

  6. Forskolin and derivatives as tools for studying the role of cAMP.

    PubMed

    Alasbahi, R H; Melzig, M F

    2012-01-01

    Forskolin (7beta-acetoxy-1alpha,6beta,9alpha-trihydroxy-8,13-epoxy-labd-14-en-11-one) is the first main labdane diterpenoid isolated from the roots of the Indian Plectranthus barbatus ANDREWS and one of the most extensively studied constituents of this plant. The unique character of forskolin as a general direct, rapid and reversible activator of adenylyl cyclase not only underlies its wide range of pharmacological effects but also renders it as a valuable tool in the study of the role of cAMP. The purpose of this review is to provide data presenting the utility of forskolin--as a cAMP activator--for studying the function of cAMP from different biological viewpoints as follows: 1) Investigation on the role of cAMP in various cellular processes in different organs such as gastrointestinal tract, respiratory tract, reproductive organs, endocrine system, urinary system, olfactory system, nervous system, platelet aggregating system, skin, bones, eyes, and smooth muscles. 2) Studies on the role of cAMP activation and inhibition to understand the pathogenesis (e.g. thyroid autoimmune disorders, leukocyte signal transduction defect in depression, acute malaria infection, secretory dysfunction in inflammatory diseases) as well as its possibly beneficial role for curing diseases such as the regulation of coronary microvascular NO production after heart failure, the attenuation of the development or progression of fibrosis in the heart and lungs, the augmentation of myo-protective effects of ischemic preconditioning especially in the failing hearts after myocardial infarction, the stimulation of the regeneration of injured retinal ganglion cells, the curing of glaucoma and inflammatory diseases, the reducing of cyst formation early in the polycystic kidney disease, and the management of autoimmune disorders by enhancing Fas-mediated apoptosis. 3) Studies on the role of cAMP in the mechanism of actions of a number of drugs and substances such as the effect of the

  7. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP)

    PubMed Central

    Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661

  8. Escitalopram Ameliorates Tau Hyperphosphorylation and Spatial Memory Deficits Induced by Protein Kinase A Activation in Sprague Dawley Rats.

    PubMed

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Xu, Lin; Zhang, Zhi-Jun

    2015-01-01

    Here, we investigated the effect of escitalopram pretreatment on protein kinase A (PKA)-induced tau hyperphosphorylation and spatial memory deficits in rats using western blot and behavioral tests, respectively. We demonstrated that escitalopram effectively ameliorated tau hyperphosphorylation and the spatial memory deficits induced by PKA activation. We measured the total and activity-dependent Ser9-phosphorylated levels of glycogen synthase kinase (GSK)-3β in hippocampal extracts. No significant change in the total level of GSK-3β was observed between the different groups. However, compared with forskolin injection alone, pretreatment with escitalopram increased the level of Ser9-phosphorylated GSK-3β. We also demonstrated that escitalopram increased Akt phosphorylation at Ser473 (the active form of Akt). Furthermore, we identified other important kinases and phosphatases, such as protein phosphatase 2A, extracellular signal-regulated kinases 1 and 2, and MAP kinase kinase-1/2, that have previously been reported to play a crucial role in tau phosphorylation; however, we did not detect any significant change in the activation of these kinases or phosphatases in our study. We unexpectedly demonstrated that forskolin caused anxiety-like behavior in rats, and pretreatment with escitalopram did not significantly ameliorate the anxiety-like behavior induced by forskolin. These data provide the first evidence that escitalopram ameliorates forskolin-induced tau hyperphosphorylation and spatial memory impairment in rats; these effects do not occur via the anti-anxiety activity of escitalopram but may involve the Akt/GSK-3β signaling pathway.

  9. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Eun-Ah; Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNAmore » repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma

  10. Intravenous colforsin daropate, a water-soluble forskolin derivative, prevents thiamylal-fentanyl-induced bronchoconstriction in humans.

    PubMed

    Wajima, Zen'ichiro; Yoshikawa, Tatsusuke; Ogura, Akira; Imanaga, Kazuyuki; Shiga, Toshiya; Inoue, Tetsuo; Ogawa, Ryo

    2002-04-01

    Forskolin, a direct activator of adenylate cyclase, can relax airway smooth muscle, similar to other agents that increase intracellular cyclic adenine monophosphate. However, the potential usefulness of forskolin in treating bronchospasm is limited by its poor water solubility. Colforsin daropate is a novel and potent water-soluble forskolin derivative. No clinical data have been published on the bronchorelaxant effects of this drug. The aim of this study was to investigate whether intravenous colforsin daropate prevents thiamylal-fentanyl-induced bronchoconstriction. Double-blind, prospective, placebo-controlled randomized study. University teaching hospital. Thirty-six patients were allocated randomly to two groups: the control group (n = 18) and colforsin daropate group (n = 18). Intravenous administration of colforsin daropate or placebo (normal saline). Anesthesia was induced with thiamylal 5 mg/kg and vecuronium 0.3 mg/kg. A 15 mg x kg(-1) x hr(-1) continuous infusion of thiamylal followed anesthetic induction. Controlled ventilation was maintained, delivering 50% nitrous oxide in oxygen. Twenty minutes after the induction of anesthesia, the control group patients started to receive 7.5 mL/hr continuous infusion of normal saline, and the colforsin daropate group patients started to receive 0.75 microg x kg(-1) x min(-1) (7.5 mL/hr) continuous infusion of colforsin daropate for 60 min. After that, both groups received fentanyl 5 microg/kg. Systolic and diastolic arterial pressure, heart rate, mean airway resistance (Rawm), expiratory airway resistance (Rawe), and dynamic lung compliance (Cdyn) were measured at the baseline, just before the administration of fentanyl (T30), at three consecutive 6-min intervals after fentanyl injection (T36, T42, and T48) and 30 min after fentanyl injection (T60). At baseline, both groups had comparable Rawm, Rawe, and Cdyn values. In the control group, Rawm increased significantly at T36-60 compared with the baseline, Rawe

  11. Forskolin effect on the cryosurvival of in vitro-produced bovine embryos in the presence or absence of fetal calf serum.

    PubMed

    Paschoal, Daniela Martins; Sudano, Mateus José; Guastali, Midyan Daroz; Dias Maziero, Rosiára Rosária; Crocomo, Letícia Ferrari; Oña Magalhães, Luis Carlos; da Silva Rascado, Tatiana; Martins, Alicio; da Cruz Landim-Alvarenga, Fernanda

    2014-05-01

    The objective of this study was to assess the viability and cryotolerance of zebu embryos produced in vitro with or without the addition of fetal calf serum (FCS) and forskolin (F). Embryos produced in vivo were used as a control. Presumptive zygotes were cultured in modified synthetic oviductal fluid supplemented with amino acids (SOFaa), bovine serum albumin (BSA) and with (2.5%) or without (0%) FCS. On day 6 of growth, the embryos from each group were divided into treatments with or without 10 μM F to induce embryonic lipolysis, comprising a total of four experimental groups: 2.5% FCS, 0% FCS, 2.5% + F and 0% + F. For vitrification, embryos were exposed to vitrification solution 1 (5 M EG (ethylene glycol)) for 3 min and then transferred to vitrification solution 2 (7 M EG, 0.5 M galactose solution and 18% (w/v) Ficoll 70) before being introduced to liquid nitrogen. The presence of FCS in the culture medium resulted in the production of embryos with a similar rate of damaged cells compared with in vivo-produced embryos. After vitrification, the 2.5% FCS group had a significantly higher rate of damaged cells when compared with the other groups (P < 0.05). The results of this experiment indicated that the omission of FCS and the addition of forskolin do not have deleterious effect on embryo production rates. In addition, embryos produced in the presence of FCS had greater sensitivity to cryopreservation, but this effect was reversed when forskolin was added to the medium, which improved embryo survival without affecting embryo development and quality after vitrification.

  12. Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280).

    PubMed

    Li, Ming; Li, Chuanyu; Weingarten, Paul; Bunzow, James R; Grandy, David K; Zhou, Qun Yong

    2002-03-01

    Proteins that bind to G protein-coupled receptors have been identified as regulators of receptor localization and signaling. In our previous studies, a cytoskeletal protein, actin-binding protein 280 (ABP-280), was found to associate with the third cytoplasmic loop of dopamine D(2) receptors. In this study, we demonstrate that ABP-280 also interacts with dopamine D(3) receptors, but not with D(4) receptors. Similar to the dopamine D(2) receptor, the D(3)/ABP-280 association is of signaling importance. In human melanoma M2 cells lacking ABP-280, D(3) receptors were unable to inhibit forskolin-stimulated cyclic AMP (cAMP) production significantly. D(4) receptors, however, exhibited a similar degree of inhibition of forskolin-stimulated cAMP production in ABP-280-deficient M2 cells and ABP-280-replent M2 subclones (A7 cells). Further experiments revealed that the D(3)/ABP-280 interaction was critically dependent upon a 36 amino acid carboxyl domain of the D(3) receptor third loop, which is conserved in the D(2) receptor but not in the D(4) receptor. Our results demonstrate a subtype-specific regulation of dopamine D(2)-family receptor signaling by the cytoskeletal protein ABP-280.

  13. Modulation of acute steroidogenesis, peroxisome proliferator-activated receptors and CYP3A/PXR in salmon interrenal tissues by tributyltin and the second messenger activator, forskolin.

    PubMed

    Pavlikova, Nela; Kortner, Trond M; Arukwe, Augustine

    2010-04-29

    There are uncertainties regarding the role of sex steroids in sexual development and reproduction of gastropods, leading to the recent doubts as to whether organotin compounds do inhibit steroidogenic enzymes in these species. These doubts have led us to suspect that organotin compounds may affect other target molecules, particularly signal transduction molecules or secondary mediators of steroid hormone and lipid synthesis/metabolism. Therefore, we have studied the effects of TBT exposure through food on acute steroidogenesis, PPARs and CYP3A responses in the presence and absence of a cyclic AMP (cAMP) activator, forskolin. Two experiments were performed. Firstly, juvenile salmon were force-fed once with diet containing TBT doses (0.1, 1 and 10mg/kg fish) dissolved in ethanol and sampled after 72h. Secondly, fish exposed to solvent control and 10mg/kg TBT for 72h were transferred to new tanks and exposed to waterborne forskolin (200microg/L) for 2 and 4h. Our data show that juvenile salmon force-fed TBT showed modulations of multiple biological responses in interrenal tissues that include, steroidogenesis (cAMP/PKA activities; StAR and P450scc mRNA, and plasma cortisol), and mRNA for peroxisome proliferator-activated receptor (PPAR) isoforms (alpha, beta, gamma), acyl-CoA oxidase-1 (ACOX1) and CYP3A/PXR (pregnan X receptor). In addition, forskolin produced differential effects on these responses both singly and also in combination with TBT. Overall, combined forskolin and TBT exposure produced higher effects compared with TBT exposure alone, for most of the responses (cortisol, PPARbeta, ACOX1 and CYP3A). Interestingly, forskolin produced PPAR isoform-specific effects when given singly or in combination with TBT. Several TBT mediated toxicity in fish that includes thymus reduction, decrease in numbers of lymphocytes, inhibition of gonad development and masculinization, including the imposex phenomenon have been reported. When these effects are considered with the

  14. New procedure for epidermal cell isolation using kiwi fruit actinidin, and improved culture of melanocytes in the presence of leukaemia inhibitory factor and forskolin.

    PubMed

    Yarani, Reza; Mansouri, Kamran; Mohammadi-Motlagh, Hamid Reza; Bakhtiari, Mitra; Mostafaie, Ali

    2013-06-01

    Conventional isolation of epidermis from the dermis and disruption of epidermal sheets to liberate the cells, are performed using proteolytic enzymes such as thermolysin or collagenase. Selective population expansion of melanocytes is achieved by suppressing proliferation of keratinocytes and fibroblasts in epidermal cell suspensions, using phorbol esters and cholera toxin. Here, we introduce a new procedure for isolation of epidermal cells, using proteolytic activity of kiwi fruit actinidin, and also an improved growth medium for melanocytes in the presence of leukaemia inhibitory factor (LIF) and forskolin. Dermo-epidermal separation and epidermal sheet cell dispersion were performed using actinidin compared to conventional proteases including collagenase, thermolysin or trypsin. Thereafter, melanocyte culture was performed in two common media and one modified medium to discover optimization for these cells. We found that dermo-epidermal separation and epidermal sheet cell dispersion using kiwi fruit actinidin were considerably better than previously used methods, both from the aspect of less fibroblast and keratinocyte contamination, and of more viable native cells. Also, melanocytes proliferated better in phorbol ester- and cholera toxin-free proliferation medium supplemented with LIF and forskolin. Less contamination and higher numbers of viable cells were actinidin preferential for separation of epidermis and isolation of epidermal cells. Supplementation of LIF and forskolin to new medium increased proliferation potential of melanocytes in comparison to exogenous mitogens. © 2013 Blackwell Publishing Ltd.

  15. Oral administration of forskolin and rutin contributes to intraocular pressure control in primary open angle glaucoma patients under maximum tolerated medical therapy.

    PubMed

    Vetrugno, Michele; Uva, Maurizio G; Russo, Vincenzo; Iester, Michele; Ciancaglini, Marco; Brusini, Paolo; Centofanti, Marco; Rossetti, Luca M

    2012-10-01

    Tight control of intraocular pressure (IOP) is still the only therapeutic approach available for the treatment of primary open angle glaucoma (POAG). However, some patients do not respond adequately to hypotonising drugs, and despite multiple drug combinations they cannot reach their target IOP. Forskolin is a natural compound that has already shown efficacy in IOP reduction following topical application. The aim of this study was to evaluate the effects on the IOP of a food supplement containing forskolin and rutin when administered to POAG patients under maximum tolerated medical therapy (MTMT) and on a waiting list for filtrating surgery to further decrease their IOP. The design of the study was open and case-controlled. Ninety-seven (52 in the treatment group, and 45 in the reference group) patients were enrolled in 8 different glaucoma centers in Italy, all under MTMT and with IOP enrollment values above their target pressure. During the 30 days before surgery, patients in the treatment group were prescribed 2 tablets per day of a food supplement containing rutin and forskolin in addition to their usual topical drug treatment. Their IOP values were measured at 3 time points during the day, at enrollment and once a week until surgery. Control patients continued only with their normal topical therapy. All patients in the treatment group, independently of the combination drug therapy that they were taking, showed a further 10% decrease (P<0.01) of their IOP, starting from 1 week after introduction of the oral supplement and lasting until the last evaluation before surgery. This decrease was more evident (15% of the enrollment value; P<0.01) in those subjects with high (IOP≥21 mmHg) enrollment values rather than in those with low (IOP<21) enrollment values (9%; P<0.01). On the contrary, IOP values in the control group remained stable from the beginning to the end of the observation period, independently of their enrollment values. Forskolin and rutin given as

  16. Expression of aquaporin 1 and 5 and their regulation by ovarian hormones, arachidonic acid, forskolin and cAMP during implantation in pigs.

    PubMed

    Skowronska, A; Mlotkowska, P; Majewski, M; Nielsen, S; Skowronski, M T

    2016-11-08

    Aquaporin proteins (AQPs) are a family of channels expressed in numerous mammalian tissues, where they play a fundamental role in regulating water transport across cell membranes. Based on reports that AQPs are present in the reproductive system and participate in reproductive processes, our aim was to investigate the effect of progesterone (P(4)), estradiol (E(2)), oxytocin (OT), arachidonic acid (AA), forskolin (FSK) and cyclic adenosine monophosphate (cAMP) on AQP1 and AQP5 expression at mRNA and protein levels in porcine uterine explants from Days 14-16 of gestation in order to determine if they play a role in implantation period in pigs. Quantitative real time PCR and Western-blot analysis revealed that the uterine explants treated with FSK and cAMP produce delayed, but long-term effects on AQP1 abundance (24 h) while AQP5 had a rapid and sustained response to FSK and cAMP in protein content (3 and 24 h). AA increases gene and protein content of AQP1 after longer exposition whereas AQP5 increases after 3 h only at the protein level. Both AQPs potentially remains under control of steroid hormones. OT has been shown to increase AQP1, and decrease AQP5 mRNA, without visible changes in protein content. P(4), E(2), AA, FSK and cAMP caused the appearance of AQP5 expression in the basolateral plasma membrane of the epithelial cells. The staining represents most likely AQP5 functioning mechanism for both absorption and reabsorption across the glandular epithelium.

  17. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.

    PubMed

    Martin, Adam L; Steurer, Michael A; Aronstam, Robert S

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention.

  18. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors

    PubMed Central

    Martin, Adam L.; Steurer, Michael A.; Aronstam, Robert S.

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention. PMID:26384023

  19. Difference in expression between AQP1 and AQP5 in porcine endometrium and myometrium in response to steroid hormones, oxytocin, arachidonic acid, forskolin and cAMP during the mid-luteal phase of the estrous cycle and luteolysis.

    PubMed

    Skowronska, Agnieszka; Mlotkowska, Patrycja; Nielsen, Soren; Skowronski, Mariusz T

    2015-12-01

    Recently, we demonstrated in vitro that AQP1 and AQP5 in the porcine uterus are regulated by steroid hormones (P4, E2), arachidonic acid (AA), forskolin (FSK) and cAMP during the estrous cycle. However, the potential of the porcine separated uterine tissues, the endometrium and myometrium, to express these AQPs remains unknown. Thus, in this study, the responses of AQP1 and AQP5 to P4, E2 oxytocin (OT), AA, FSK and cAMP in the porcine endometrium and myometrium were examined during the mid-luteal phase of the estrous cycle and luteolysis. Real-time PCR and western blot analysis. Progesterone up-regulated the expression of AQP1/AQP5 mRNAs and proteins in the endometrium and myometrium, especially during luteolysis. Similarly, E2 also stimulated the expression of both AQPs, but only in the endometrium. AA led to the upregulation of AQP1/AQP5 in the endometrium during luteolysis. In turn, OT increased the expression of AQP1/AQP5 mRNAs and proteins in the myometrium during mid-luteal phase. Moreover, a stimulatory effect of forskolin and cAMP on the expression of AQP1/AQP5 mRNAs and proteins in the endometrium and myometrium dominated during luteolysis, but during the mid-luteal phase their influence on the expression of these AQPs was differentiated depending on the type of tissue and the incubation duration. These results seem to indicate that uterine tissues; endometrium and myometrium, exhibit their own AQP expression profiles in response to examined factors. Moreover, the responses of AQP1/AQP5 at mRNA and protein levels to the studied factors in the endometrium and myometrium are more pronounced during luteolysis. This suggests that the above effects of the studied factors are connected with morphological and physiological changes taking place in the pig uterus during the estrous cycle.

  20. Production and assay of forskolin antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, L.T.; Ho, R.J.

    1986-05-01

    Forskolin (Fo), a cardiovascular active diterpene of plant origin, has been widely used as a research tool in regulation of the catalytic activity of adenylate cyclase (AC). A linear relationship of Fo binding to plasma membrane with activation of AC has been reported. The present abstract describes the production and assay of Fo antibodies (AB). 7-0-Hemisuccinyl-7-deacetyl Fo, coupled to either human serum albumin or goat IgG, was injected into goats to elicit AB to Fo haptan. AB to Fo in antiserum or an isolated IgG fraction was tested by two assay methods, a radioimmunoassay using /sup 3/H-Fo as a tracermore » and a colorimetric enzyme-linked immunosorbent assay (ELISA) using horse radish peroxidase-rabbit anti goat IgG as indicator. The titers for Fo antiserum were 4000-10,000. In the defined assay condition, approximately 20-25% of the added /sup 3/H-Fo was found to bind to AB. The bound radioactivity was displaced by Fo-HSA or Fo-goat IgG or free unlabelled Fo ranging from 0.5-50 pmol/tube, or 5-500 nM. The IC/sub 50/ was approximately 8-10 pmol/tube or 80-100 nM. The binding of HRP-rabbit anti goat IgG in the ELISA was inhibited by proper Fo conjugate. The development of methods for production and assay for Fo AB may be useful in the study of mechanism of activation of AC by Fo and Fo-like compound.« less

  1. Identification of the glucose transporter in mammalian cell membranes using an /sup 125/(I)-forskolin photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruoho, A.; Wadzinski, B.; Shanahan, M.

    1987-05-01

    The glucose transporter has been identified in a variety of mammlian cell membranes using a carrier-free photoactivatable radioiodinated derivative of forskolin, 3-iodo-4-azidophenethylamido-7-0-succinyldeacetyl-forskolin, (I-125)IAPS-Fsk, at 1-10 nM. The membranes which have been photolabeled with (I-125)IAPS-Fsk are: rat cardiac sarcolemmal membranes, rat cortex and cerebellum synaptic membranes, human placental membranes, and wild type S49 lymphoma cell membranes. The glucose transporter in rat cardiac sarcolemmal membranes and rat cortex and cerebellum synaptic membranes was determined to be 45 kDa by SDS-PAGE. Photolysis of human placental membranes and S49 lymphoma membranes with (I-125)IAPS-Fsk followed by SDS-PAGE indicated specific derivatization of a broad band (45-55more » kDa) in placental membranes and a narrower band (45 kDa) in the S49 lymphoma membranes. Digestion of the (I-125)IPAS-Fsk labelled placental and S49 lymphoma membranes with endo-B-galactosidase showed a reduction in the apparent molecular weight of the radiolabelled band to 40 kDa. Trypsinization of labelled placental and lymphoma membranes produced an 18 kDa radiolabelled proteolytic fragment. (I-125)IAPS-Fsk is a highly effective probe for identifying low levels of glucose transporters in mammalian tissues.« less

  2. CFTR is restricted to a small population of high expresser cells that provide a forskolin-sensitive transepithelial Cl- conductance in the proximal colon of the possum, Trichosurus vulpecula.

    PubMed

    Fan, Shujun; Harfoot, Natalie; Bartolo, Ray C; Butt, A Grant

    2012-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is central to anion secretion in both the possum and eutherian small intestine. Here, we investigated its role in the possum proximal colon, which has novel transport properties compared with the eutherian proximal colon. Despite considerable CFTR expression, high doses of the CFTR activator forskolin (EC(50)≈10 μmol l(-1)) were required for a modest, CFTR-dependent increase in short-circuit current (I(sc)) in the proximal colon. Presumably, this is because CFTR is restricted to the apical membrane of a small population of CFTR high expresser (CHE) cells in the surface and upper crypt epithelium. Furthermore, although the forskolin-stimulated I(sc) was dependent on serosal Na(+), Cl(-) and HCO(3)(-), consistent with anion secretion, inhibition of the basolateral Na-K-2Cl(-) (NKCC1) or Na-HCO(3) (pNBCe1) cotransporters did not prevent it. Therefore, although NKCC1 and pNBCe1 are expressed in the colonic epithelium they do not appear to be expressed in CHE cells. At low doses (IC(50)≈1 μmol l(-1)), forskolin also decreased the transepithelial conductance (G(T)) of the colon through inhibition of a 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid-sensitive anion conductance in the basolateral membrane of the CHE cells. This conductance is arranged in series with CFTR in the CHE cells and, therefore, the CHE cells provide a transepithelial Cl(-) conductance for passive Cl(-) absorption across the epithelium. Inhibition of the basolateral Cl(-) conductance of the CHE cells by forskolin will inhibit Na(+) absorption by restricting the movement of its counter-ion Cl(-), assisting in the conversion of the tissue from an absorptive to a secretory state.

  3. Characterization of the homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase.

    PubMed

    Dix, C J; Habberfield, A D; Cooke, B A

    1984-06-15

    The homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase induced by lutropin (LH) was characterized with the aid of forskolin and cholera toxin. Forskolin stimulated cyclic AMP production in a dose-dependent manner, with linear kinetics up to 2h. Forskolin also potentiated the action of LH on cyclic AMP production, but was only additive with cholera toxin. Preincubation of rat Leydig tumour cells with LH (1.0 micrograms/ml) for 1 h produced a desensitization of the subsequent LH (1.0 micrograms/ml)-stimulated cyclic AMP production, whereas the responses to cholera toxin (5.0 micrograms/ml), forskolin (100 microM), LH plus forskolin or cholera toxin plus forskolin were unaltered. In contrast, preincubation with LH for 20h produced a desensitization to all the stimuli tested. When rat Leydig tumour cells were preincubated for 1h with forskolin or dibutyryl cyclic AMP, the only subsequent response that was significantly altered was that to LH plus forskolin after preincubation with forskolin. However, preincubation for 20h with forskolin or dibutyryl cyclic AMP induced a desensitization to all stimuli subsequently tested. LH produced a rapid (0-1h) homologous desensitization, which was followed by a slower (2-8h)-onset heterologous desensitization. Forskolin and dibutyryl cyclic AMP were only able to induce heterologous desensitization. The rate of desensitization induced by either forskolin or dibutyryl cyclic AMP was similar to the rate of heterologous desensitization induced by LH. These results demonstrate that in purified rat Leydig tumour cells LH produces an initial homologous desensitization of adenylate cyclase that involves a cyclic AMP-independent lesion at or proximal to the guanine nucleotide regulatory protein (G-protein). This is followed by heterologous desensitization, which can also be induced by forskolin or dibutyryl cyclic AMP, thus indicating that LH-induced heterologous desensitization of rat Leydig

  4. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-15

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and themore » lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.« less

  5. Forskolin-induced Swelling in Intestinal Organoids: An In Vitro Assay for Assessing Drug Response in Cystic Fibrosis Patients.

    PubMed

    Boj, Sylvia F; Vonk, Annelotte M; Statia, Marvin; Su, Jinyi; Vries, Robert R G; Beekman, Jeffrey M; Clevers, Hans

    2017-02-11

    Recently-developed cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs correct surface expression and/or function of the mutant CFTR channel in subjects with cystic fibrosis (CF). Identification of subjects that may benefit from these drugs is challenging because of the extensive heterogeneity of CFTR mutations, as well as other unknown factors that contribute to individual drug efficacy. Here, we describe a simple and relatively rapid assay for measuring individual CFTR function and response to CFTR modulators in vitro. Three dimensional (3D) epithelial organoids are grown from rectal biopsies in standard organoid medium. Once established, the organoids can be bio-banked for future analysis. For the assay, 30-80 organoids are seeded in 96-well plates in basement membrane matrix and are then exposed to drugs. One day later, the organoids are stained with calcein green, and forskolin-induced swelling is monitored by confocal live cell microscopy at 37 °C. Forskolin-induced swelling is fully CFTR-dependent and is sufficiently sensitive and precise to allow for discrimination between the drug responses of individuals with different and even identical CFTR mutations. In vitro swell responses correlate with the clinical response to therapy. This assay provides a cost-effective approach for the identification of drug-responsive individuals, independent of their CFTR mutations. It may also be instrumental in the development of future CFTR modulators.

  6. Measurement of Basal and Forskolin-stimulated Lipolysis in Inguinal Adipose Fat Pads.

    PubMed

    Baskaran, Padmamalini; Thyagarajan, Baskaran

    2017-07-21

    Lipolysis is a process by which the lipid stored as triglycerides in adipose tissues are hydrolyzed into glycerol and fatty acids. This article describes the method for the measurement of basal and forskolin (FSK)-stimulated lipolysis in the inguinal fat pads isolated from wild type mice fed either normal chow diet (NCD), high fat diet (HFD) or a high fat diet containing 0.01% of capsaicin (CAP; transient receptor potential vanilloid subfamily 1 (TRPV1) agonist) for 32 weeks. The method described here for performing ex vivo lipolysis is adopted from Schweiger et al. 1 We present a detailed protocol for measuring glycerol levels by UV-Visible (UV/VIS) spectrophotometry. The method described here can be used to successfully isolate inguinal fat pads for lipolysis measurements to obtain consistent results. The protocol described for inguinal fat pads can readily be extended to measure lipolysis in other tissues.

  7. Effect of the dB-c-AMP and forskolin on /sup 45/Ca influx, net Ca uptake and tension on rabbit aortic smooth muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-03-01

    The effect of dibutiryl-adenosine-3',5'-cyclic-monophosphate (dB-c-AMP) and forskolin on aortic tension and /sup 45/Ca influx were measured. dB-c-AMP reduced both the rate of force development and the maximal tension achieved in solutions containing various K/sup +/ concentrations. Stimulated /sup 45/Ca influx was also reduced however to a lesser extent than was the tension. Forskolin showed more marked effects of a similar nature. Thus, both these agents which increase intracellular c-AMP caused a rightward shift in the curve expressing force(ordinate) as a function of Ca influx (abscissa). Consequently, they found that dB-c-AMP stimulated more net Ca to be taken up by themore » sarcoplasmic reticulum(SR) at the same influx rate. The conclusion that c-AMP produced these effects by stimulating Ca uptake into the superficial SR was supported by the finding that dB-c-AMP increased the amount of Ca taken up into a caffeine releasable fraction.« less

  8. Gene Expression Analysis of Forskolin Treated Basilar Papillae Identifies MicroRNA181a as a Mediator of Proliferation

    PubMed Central

    Frucht, Corey S.; Uduman, Mohamed; Duke, Jamie L.; Kleinstein, Steven H.; Santos-Sacchi, Joseph; Navaratnam, Dhasakumar S.

    2010-01-01

    Background Auditory hair cells spontaneously regenerate following injury in birds but not mammals. A better understanding of the molecular events underlying hair cell regeneration in birds may allow for identification and eventually manipulation of relevant pathways in mammals to stimulate regeneration and restore hearing in deaf patients. Methodology/Principal Findings Gene expression was profiled in forskolin treated (i.e., proliferating) and quiescent control auditory epithelia of post-hatch chicks using an Affymetrix whole-genome chicken array after 24 (n = 6), 48 (n = 6), and 72 (n = 12) hours in culture. In the forskolin-treated epithelia there was significant (p<0.05; >two-fold change) upregulation of many genes thought to be relevant to cell cycle control and inner ear development. Gene set enrichment analysis was performed on the data and identified myriad microRNAs that are likely to be upregulated in the regenerating tissue, including microRNA181a (miR181a), which is known to mediate proliferation in other systems. Functional experiments showed that miR181a overexpression is sufficient to stimulate proliferation within the basilar papilla, as assayed by BrdU incorporation. Further, some of the newly produced cells express the early hair cell marker myosin VI, suggesting that miR181a transfection can result in the production of new hair cells. Conclusions/Significance These studies have identified a single microRNA, miR181a, that can cause proliferation in the chicken auditory epithelium with production of new hair cells. PMID:20634979

  9. Convergence of Ca2+-desensitizing mechanisms activated by forskolin and phenylephrine pretreatment, but not 8-bromo-cGMP.

    PubMed

    Porter, Melissa; Evans, Melissa C; Miner, Amy S; Berg, Krystina M; Ward, Kevin R; Ratz, Paul H

    2006-06-01

    Contractile stimuli can sensitize myosin to Ca2+ by activating RhoA kinase (ROK) and PKC that inhibit myosin light chain phosphatase (MLCP) activity. Relaxant stimuli, acting through PKA and PKG (cyclic nucleotide-dependent protein kinases), and pretreatment with contractile agents such as phenylephrine (PE), can desensitize myosin to Ca2+. It is unknown precisely how these stimuli cause Ca2+ desensitization. To test the hypothesis that PKA, PKG, and PE pretreatment signaling systems converge to cause relaxation by inhibition of ROK in intact, isolated tissues, we examined the effects of forskolin (FSK; PKA activation), 8-bromo-cGMP (8br-cGMP; PKG activation), and PE pretreatment on KCl-induced force maintenance in rabbit arteries, a response nearly completely dependent on ROK activation. PE pretreatment and agents activating PKA and PKG caused Ca2+ desensitization by inhibiting KCl-induced tonic force and MLC phosphorylation without inhibiting intracellular [Ca2+]. At pCa 5 in beta-escin-permeabilized muscle, FSK and 8b-cGMP accelerated the relaxation rate when tissues were returned to pCa 9, suggesting that both agents can elevate MLCP activity. However, a component of the Ca2+ desensitization attributed to PKG activation in intact tissues appeared to involve a MLC phosphorylation-independent component. Inhibition of KCl-induced tonic force by the ROK inhibitor, Y-27632, and by PE pretreatment, were synergistically potentiated by 8b-cGMP, but not FSK. FSK and PE pretreatment, but not 8b-cGMP, inhibited the KCl-induced increase in site-specific myosin phosphatase target protein-1 phosphorylation at Thr853. These data support the hypothesis that PKA and PE pretreatment converge on a common Ca2+-desensitization pathway, but that PKG can act by a mechanism different from that activated by PKA and PE pretreatment.

  10. MEF2 Cooperates With Forskolin/cAMP and GATA4 to Regulate Star Gene Expression in Mouse MA-10 Leydig Cells.

    PubMed

    Daems, Caroline; Di-Luoffo, Mickaël; Paradis, Élise; Tremblay, Jacques J

    2015-07-01

    In Leydig cells, steroidogenic acute regulatory protein (STAR) participates in cholesterol shuttling from the outer to the inner mitochondrial membrane, the rate-limiting step in steroidogenesis. Steroid hormone biosynthesis and steroidogenic gene expression are regulated by LH, which activates various signaling pathways and transcription factors, including cAMP/Ca(2+)/CAMK (Ca(2+)/calmodulin-dependent kinase)-myocyte enhancer factor 2 (MEF2). The 4 MEF2 transcription factors are essential regulators of cell differentiation and organogenesis in numerous tissues. Recently, MEF2 was identified in Sertoli and Leydig cells of the testis. Here, we report that MEF2 regulates steroidogenesis in mouse MA-10 Leydig cells by acting on the Star gene. In MA-10 cells depleted of MEF2 using siRNAs (small interfering RNAs), STAR protein levels, Star mRNA levels, and promoter activity were significantly decreased. On its own, MEF2 did not activate the mouse Star promoter but was found to cooperate with forskolin/cAMP. By chromatin immunoprecipitation and DNA precipitation assays, we confirmed MEF2 binding to a consensus element located at -232 bp of the Star promoter. Mutation or deletion of the MEF2 element reduced but did not abrogate the MEF2/cAMP cooperation, indicating that MEF2 cooperates with other DNA-bound transcription factor(s). We identified GATA4 (GATA binding protein 4) as a partner for MEF2 in Leydig cells, because mutation of the GATA element abrogated the MEF2/cAMP cooperation on a reporter lacking a MEF2 element. MEF2 and GATA4 interact as revealed by coimmunoprecipitation, and MEF2 and GATA4 transcriptionally cooperate on the Star promoter. Altogether, our results define MEF2 as a novel regulator of steroidogenesis and Star transcription in Leydig cells and identify GATA4 as a key partner for MEF2-mediated action.

  11. The Role of ABC Proteins in Drug Resistant Breast Cancer Cells

    DTIC Science & Technology

    2009-03-01

    7] Morris DI, Greenberger LM, Bruggemann EP, Carda relli C, Gottesman MM, Pastan I and Seamon KB. (1994) Localization of the forskolin labeling...sites to both h alves of P-glycoprotein: similarity of the sites labeled by forskolin and prazosin. Mol Pharmacol. 46(2): 329-37. [8] Cooper RA

  12. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent.

    PubMed

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-10-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].

  13. Conversion of Fibroblasts to Parvalbumin Neurons by One Transcription Factor, Ascl1, and the Chemical Compound Forskolin*

    PubMed Central

    Shi, Zixiao; Zhang, Juan; Chen, Shuangquan; Li, Yanxin; Lei, Xuepei; Qiao, Huimin; Zhu, Qianwen; Hu, Baoyang; Zhou, Qi; Jiao, Jianwei

    2016-01-01

    Abnormalities in parvalbumin (PV)-expressing interneurons cause neurodevelopmental disorders such as epilepsy, autism, and schizophrenia. Unlike other types of neurons that can be efficiently differentiated from pluripotent stem cells, PV neurons were minimally generated using a conventional differentiation strategy. In this study we developed an adenovirus-based transdifferentiation strategy that incorporates an additional chemical compound for the efficient generation of induced PV (iPV) neurons. The chemical compound forskolin combined with Ascl1 induced ∼80% of mouse fibroblasts to iPV neurons. The iPV neurons generated by this procedure matured 5–7 days post infection and were characterized by electrophysiological properties and known neuronal markers, such as PV and GABA. Our studies, therefore, identified an efficient approach for generating PV neurons. PMID:27137935

  14. Chronic gonadotropin-releasing hormone inhibits activin induction of the ovine follicle-stimulating hormone beta-subunit: involvement of 3',5'-cyclic adenosine monophosphate response element binding protein and nitric oxide synthase type I.

    PubMed

    Shafiee-Kermani, Farideh; Han, Sang-oh; Miller, William L

    2007-07-01

    FSH is induced by activin, and this expression is modulated by GnRH through FSHB expression. This report focuses on the inhibitory effect of GnRH on activin-induced FSHB expression. Activin-treated primary murine pituitary cultures robustly express mutant ovine FSHBLuc-DeltaAP1, a luciferase transgene driven by 4.7 kb of ovine FSHB promoter. This promoter lacks two GnRH-inducible activator protein-1 sites, making it easier to observe GnRH-mediated inhibition. Luciferase expression from this transgene was decreased 94% by 100 nM GnRH with a half-time of approximately 4 h in pituitary cultures, and this inhibition was independent of follistatin. Activators of cAMP and protein kinase C like forskolin and phorbol 12-myristate 3-acetate (PMA), respectively, mimicked GnRH action. Kinetic studies of wild-type ovine FSHBLuc in LbetaT2 cells showed continuous induction by activin (4-fold) over 20 h. Most of this induction (78%) was blocked, beginning at 6 h. cAMP response element binding protein (CREB) was implicated in this inhibition because overexpression of its constitutively active mutant mimicked GnRH, and its inhibitor (inducible cAMP early repressor isoform II) reversed the inhibition caused by GnRH, forskolin, or PMA. In addition, GnRH, forskolin, or PMA increased the expression of a CREB-responsive reporter gene, 6xCRE-37PRL-Luc. Inhibition of nitric oxide type I (NOSI) by 7-nitroindazole also reversed GnRH-mediated inhibition by 60%. It is known that GnRH and CREB induce production of NOSI in gonadotropes and neuronal cells, respectively. These data support the concept that chronic GnRH inhibits activin-induced ovine FSHB expression by sequential activation of CREB and NOSI through the cAMP and/or protein kinase C pathways.

  15. Modulation of transglutaminase 2 activity in H9c2 cells by PKC and PKA signalling: a role for transglutaminase 2 in cytoprotection

    PubMed Central

    Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R

    2014-01-01

    BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315

  16. Conversion of Fibroblasts to Parvalbumin Neurons by One Transcription Factor, Ascl1, and the Chemical Compound Forskolin.

    PubMed

    Shi, Zixiao; Zhang, Juan; Chen, Shuangquan; Li, Yanxin; Lei, Xuepei; Qiao, Huimin; Zhu, Qianwen; Hu, Baoyang; Zhou, Qi; Jiao, Jianwei

    2016-06-24

    Abnormalities in parvalbumin (PV)-expressing interneurons cause neurodevelopmental disorders such as epilepsy, autism, and schizophrenia. Unlike other types of neurons that can be efficiently differentiated from pluripotent stem cells, PV neurons were minimally generated using a conventional differentiation strategy. In this study we developed an adenovirus-based transdifferentiation strategy that incorporates an additional chemical compound for the efficient generation of induced PV (iPV) neurons. The chemical compound forskolin combined with Ascl1 induced ∼80% of mouse fibroblasts to iPV neurons. The iPV neurons generated by this procedure matured 5-7 days post infection and were characterized by electrophysiological properties and known neuronal markers, such as PV and GABA. Our studies, therefore, identified an efficient approach for generating PV neurons. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Potential for Aedes albopictus and Ochlerotatus j. japonicus to Change the Field Ecology of Arboviruses of Human Health Importance in the Mid-Atlantic Region of the United States

    DTIC Science & Technology

    2001-10-16

    in the midgut epithelial cells. Step 3 is release 17 of virus from the midgut epithelial cell into the hemolymph. Step 4 is infection of the...proteins, maturation, and budding. During attachment, the viral attachment proteins on the surface of the virion bind to receptors on the microvillar...membrane of the mosquito s midgut . Penetration refers to the process through which the virions enter the midgut cells; arboviruses enter cell

  18. Synthesis of cyclic 1,9-acetal derivatives of forskolin and their bioactivity evaluation.

    PubMed

    Ponnam, Devendar; Shilpi, Singh; Srinivas, K V N S; Suiab, Luqman; Alam, Sarfaraz; Amtul, Zehra; Arigari, Niranjan Kumar; Jonnala, Kotesh Kumar; Siddiqui, Lubna; Dubey, Vijaya; Tiwari, Ashok Kumar; Balasubramanian, Sridhar; Khan, Feroz

    2014-11-24

    A new series of 1,9-acetals of forskolin were synthesized by treating with aromatic and aliphatic aldehydes using Ceric ammonium nitrate as catalyst and evaluated for anticancer and α-glucosidase inhibition activities. Among the synthesized compounds 2a, 2b and 3a showed potential cytotoxic activity towards human cancer cell lines MCF-7 (Human Breast Adenocarcinoma), MDA-MB (Human Breast Carcinoma), HeLa (Human Cervix Adenocarcinoma), A498 (Human Kidney Carcinoma), K562 (Human Erythromyeloblastoid leukemia), SH-SY5Y (Human Neuroblastoma), Hek293 (Human Embryonic Kidney) and WRL68 (Human Hepatic) with IC50 values ranging between 0.95 and 47.96 μg/ml. Osmotic fragility test revealed compound 3a as non-toxic to human erythrocytes at the tested concentrations of 50 and 100 μg/ml. Compounds 1g (IC50 value 0.76 μg/ml) and 1p (IC50 value 0.74 μg/ml) significantly inhibited α-glucosidase in in vitro system. In silico based docking, ADME and toxicity risk assessment studies also showed discernible α-glucosidase activity for compounds 1g, 1p compared to standard acarbose. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of ({sup 3}H)GDP binding to plasma membranes suggested a single high affinity site with a K{sub d} = 0.24 uM. Competition studies indicated that GTP{sub {gamma}}S was 7-fold more potent than GDP{sub {beta}}S. Bound GDP could be released by FSH in the presence of GTP{sub {gamma}}S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP{sub {beta}}S to the activated enzyme (FSH plus GTP) resulted inmore » a time-dependent decay to basal activity within 20 sec. GDP{sub {beta}}S competitively inhibited GTP{sub {gamma}}S-stimulated adenylate cyclase activity with a K{sub i} = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP{sub {gamma}}S-bound form persisted even if GDP{sub {beta}}S previously occupied all available binding sites. Two membrane proteins, M{sub r} = 43,000 and 48,000, were ADP{centered dot}ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP{sub {gamma}}S but not by GDP{sub {beta}}S. The M{sub r} = 43,000 and 48,000 proteins represented variant forms of G{sub S}. A single protein of M{sub r} = 40,000 (G{sub i}) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC{sub 50} = 0.1 uM. The adenosine analog, N{sup 6}{centered dot}phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin.« less

  20. Forskolin Inhibits Lipopolysaccharide-Induced Modulation of MCP-1 and GPR120 in 3T3-L1 Adipocytes through an Inhibition of NFκB

    PubMed Central

    Chiadak, Jeanne Durendale; Arsenijevic, Tatjana; Verstrepen, Kevin; Gregoire, Françoise; Bolaky, Nargis; Delforge, Valérie; Flamand, Véronique

    2016-01-01

    In an obese state, Toll-like receptor-4 (TLR-4) upregulates proinflammatory adipokines secretion including monocyte chemotactic protein-1 (MCP-1) in adipose tissue. In contrast, G-protein coupled receptor 120 (GPR120) mediates antiobesity effects. The aim of this study was to determine the signaling pathway by which Forskolin (FK), a cyclic adenosine monophosphate- (cAMP-) promoting agent causing positive changes in body composition in overweight and obese adult men, affects MCP-1 and GPR120 expression during an inflammatory response induced by lipopolysaccharide (LPS) in adipocytes, such as in an obese state. 3T3-L1 cells differentiated into adipocytes (DC) were stimulated with LPS in the absence or presence of FK and inhibitors of TLR-4 and inhibitor of kappa B (IκBα). In DC, LPS increased MCP-1, TLR-4, and nuclear factor-κB1 (NFκB1) mRNA levels, whereas it decreased GPR120 mRNA levels. In DC, FK inhibited the LPS-induced increase in MCP-1, TLR-4, and NFκB1 mRNA levels and the LPS-induced decrease in GPR120 mRNA. BAY11-7082 and CLI-095 abolished these LPS-induced effects. In conclusion, FK inhibits LPS-induced increase in MCP-1 mRNA levels and decrease in GPR120 mRNA levels in adipocytes and may be a potential treatment for inflammation in obesity. Furthermore, TLR-4-induced activation of NFκB may be involved in the LPS-induced regulation of these genes. PMID:27881903

  1. Forskolin Inhibits Lipopolysaccharide-Induced Modulation of MCP-1 and GPR120 in 3T3-L1 Adipocytes through an Inhibition of NFκB.

    PubMed

    Chiadak, Jeanne Durendale; Arsenijevic, Tatjana; Verstrepen, Kevin; Gregoire, Françoise; Bolaky, Nargis; Delforge, Valérie; Flamand, Véronique; Perret, Jason; Delporte, Christine

    2016-01-01

    In an obese state, Toll-like receptor-4 (TLR-4) upregulates proinflammatory adipokines secretion including monocyte chemotactic protein-1 (MCP-1) in adipose tissue. In contrast, G-protein coupled receptor 120 (GPR120) mediates antiobesity effects. The aim of this study was to determine the signaling pathway by which Forskolin (FK), a cyclic adenosine monophosphate- (cAMP-) promoting agent causing positive changes in body composition in overweight and obese adult men, affects MCP-1 and GPR120 expression during an inflammatory response induced by lipopolysaccharide (LPS) in adipocytes, such as in an obese state. 3T3-L1 cells differentiated into adipocytes (DC) were stimulated with LPS in the absence or presence of FK and inhibitors of TLR-4 and inhibitor of kappa B (I κ B α ). In DC, LPS increased MCP-1, TLR-4, and nuclear factor- κ B1 (NF κ B1) mRNA levels, whereas it decreased GPR120 mRNA levels. In DC, FK inhibited the LPS-induced increase in MCP-1, TLR-4, and NF κ B1 mRNA levels and the LPS-induced decrease in GPR120 mRNA. BAY11-7082 and CLI-095 abolished these LPS-induced effects. In conclusion, FK inhibits LPS-induced increase in MCP-1 mRNA levels and decrease in GPR120 mRNA levels in adipocytes and may be a potential treatment for inflammation in obesity. Furthermore, TLR-4-induced activation of NF κ B may be involved in the LPS-induced regulation of these genes.

  2. Gonadotropin-dependent oocyte maturational competence requires activation of the protein kinase A pathway and synthesis of RNA and protein in ovarian follicles of Nibe, Nibea mitsukurii (Teleostei, Sciaenidae)

    USGS Publications Warehouse

    Yoshizaki, G.; Shusa, M.; Takeuchi, T.; Patino, R.

    2002-01-01

    Luteinizing hormone- (LH)-dependent ovarian follicle maturation has been recently described in two stages for teleost fishes. The oocyte's ability to respond to the steroidal maturation-inducing hormone (MIH), also known as oocyte maturational competence (OMC), is acquired during the first stage; whereas the MIH-dependent resumption of meiosis occurs during the second stage. However, studies directly addressing OMC have been performed with a limited number of species and therefore the general relevance of the two-stage model and its mechanisms remain uncertain. In this study, we examined the hormonal regulation of OMC and its basic transduction mechanisms in ovarian follicles of the sciaenid teleost, Nibe (Nibea mitsukurii). Exposure to MIH [17,20??-dihydroxy-4-pregnen-3-one or 17,20??,21-trihydroxy-4-pregnen-3-one] stimulated germinal vesicle breakdown (index of meiotic resumption) in full-grown follicles primed with human chorionic gonadotropin (HCG, an LH-like gonadotropin) but not in those pre-cultured in plain incubation medium. The induction of OMC by HCG was mimicked by protein kinase A (PKA) activators (forskolin and dibutyryl cyclic AMP), and blocked by specific inhibitors of PKA (H89 and H8) as well as inhibitors of RNA (actinomycin D) and protein (cycloheximide) synthesis. Forskolin-induced OMC was also inhibited by actinomycin D and cycloheximide. A strong activator of protein kinase C, PMA, inhibited HCG-dependent OMC. In conclusion, OMC in Nibe ovarian follicles is gonadotropin-dependent and requires activation of the PKA pathway followed by gene transcription and translation events. These observations are consistent with the two-stage model of ovarian follicle maturation proposed for other teleosts, and suggest that Nibe can be used as new model species for mechanistic studies of ovarian follicle differentiation and maturation in fishes.

  3. Computational analysis of liquid chromatography-tandem mass spectrometric steroid profiling in NCI H295R cells following angiotensin II, forskolin and abiraterone treatment.

    PubMed

    Mangelis, Anastasios; Dieterich, Peter; Peitzsch, Mirko; Richter, Susan; Jühlen, Ramona; Hübner, Angela; Willenberg, Holger S; Deussen, Andreas; Lenders, Jacques W M; Eisenhofer, Graeme

    2016-01-01

    Adrenal steroid hormones, which regulate a plethora of physiological functions, are produced via tightly controlled pathways. Investigations of these pathways, based on experimental data, can be facilitated by computational modeling for calculations of metabolic rate alterations. We therefore used a model system, based on mass balance and mass reaction equations, to kinetically evaluate adrenal steroidogenesis in human adrenal cortex-derived NCI H295R cells. For this purpose a panel of 10 steroids was measured by liquid chromatographic-tandem mass spectrometry. Time-dependent changes in cell incubate concentrations of steroids - including cortisol, aldosterone, dehydroepiandrosterone and their precursors - were measured after incubation with angiotensin II, forskolin and abiraterone. Model parameters were estimated based on experimental data using weighted least square fitting. Time-dependent angiotensin II- and forskolin-induced changes were observed for incubate concentrations of precursor steroids with peaks that preceded maximal increases in aldosterone and cortisol. Inhibition of 17-alpha-hydroxylase/17,20-lyase with abiraterone resulted in increases in upstream precursor steroids and decreases in downstream products. Derived model parameters, including rate constants of enzymatic processes, appropriately quantified observed and expected changes in metabolic pathways at multiple conversion steps. Our data demonstrate limitations of single time point measurements and the importance of assessing pathway dynamics in studies of adrenal cortical cell line steroidogenesis. Our analysis provides a framework for evaluation of steroidogenesis in adrenal cortical cell culture systems and demonstrates that computational modeling-derived estimates of kinetic parameters are an effective tool for describing perturbations in associated metabolic pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Antagonist interaction with the human 5-HT7 receptor mediates the rapid and potent inhibition of non-G-protein-stimulated adenylate cyclase activity: a novel GPCR effect

    PubMed Central

    Klein, MT; Teitler, M

    2011-01-01

    BACKGROUND AND PURPOSE The human 5-hydroxytryptamine7 (h5-HT7) receptor is Gs-coupled and stimulates the production of the intracellular signalling molecule cAMP. Previously, we reported a novel property of the h5-HT7 receptor: pseudo-irreversible antagonists irreversibly inhibit forskolin-stimulated (non-receptor-mediated) cAMP production. Herein, we sought to determine if competitive antagonists also affect forskolin-stimulated activity and if this effect is common among other Gs-coupled receptors. EXPERIMENTAL APPROACH Recombinant cell lines expressing h5-HT7 receptors or other receptors of interest were briefly exposed to antagonists; cAMP production was then stimulated by forskolin and quantified by an immunocompetitive assay. KEY RESULTS In human embryonic kidney 293 cells stably expressing h5-HT7 receptors, all competitive antagonists inhibited nearly 100% of forskolin-stimulated cAMP production. This effect was insensitive to pertussis toxin, that is, not Gi/o-mediated. Potency to inhibit forskolin-stimulated activity strongly correlated with h5-HT7 binding affinity (r2= 0.91), indicating that the antagonists acted through h5-HT7 receptors to inhibit forskolin. Potency and maximal effects of clozapine, a prototypical competitive h5-HT7 antagonist, were unaffected by varying forskolin concentration. Antagonist interaction with h5-HT6, human β1, β2, and β3 adrenoceptors did not inhibit forskolin's activity. CONCLUSIONS AND IMPLICATIONS The inhibition of adenylate cyclase, as measured by forskolin's activity, is an underlying property of antagonist interaction with h5-HT7 receptors; however, this is not a common property of other Gs-coupled receptors. This phenomenon may be involved in the roles played by h5-HT7 receptors in human physiology. Development of h5-HT7 antagonists that do not elicit this effect would aid in the elucidation of its mechanisms and shed light on its possible physiological relevance. PMID:21198551

  5. Gi proteins regulate adenylyl cyclase activity independent of receptor activation.

    PubMed

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to G(i), some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.

  6. Gi Proteins Regulate Adenylyl Cyclase Activity Independent of Receptor Activation

    PubMed Central

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Background and purpose Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to Gi, some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. Experimental approach We used the Gs-selective (R,R)- and the Gs- and Gi-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. Key results PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Conclusions and implications Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic Gi and Gs activity upon AC towards Gs

  7. Apolipoprotein A-1 (apoA-1) deposition in, and release from, the enterocyte brush border: a possible role in transintestinal cholesterol efflux (TICE)?

    PubMed

    Danielsen, E Michael; Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte; Frenzel, Franz

    2012-03-01

    Transintestinal cholesterol efflux (TICE) has been proposed to represent a non-hepatobiliary route of cholesterol secretion directly "from blood to gut" and to play a physiologically significant role in excretion of neutral sterols, but so far little is known about the proteins involved in the process. We have previously observed that apolipoprotein A-1 (apoA-1) synthesized by enterocytes of the small intestine is mainly secreted apically into the gut lumen during fasting where its assembly into chylomicrons and basolateral discharge is at a minimal level. In the present work we showed, both by immunomicroscopy and subcellular fractionation, that a fraction of the apically secreted apoA-1 in porcine small intestine was not released from the cell surface but instead deposited in the brush border. Cholesterol was detected in immunoisolated microvillar apoA-1, and it was partially associated with detergent resistant membranes (DRMs), indicative of localization in lipid raft microdomains. The apolipoprotein was not readily released from microvillar vesicles by high salt or by incubation with phosphatidylcholine-specific phospholipase C or trypsin, indicating a relatively firm attachment to the membrane bilayer. However, whole bile or taurocholate efficiently released apoA-1 at low concentrations that did not solubilize the transmembrane microvillar protein aminopeptidase N. Based on these findings and the well known role played by apoA-1 in extrahepatic cellular cholesterol removal and reverse cholesterol transport (RCT), we propose that brush border-deposited apoA-1 in the small intestine acts in TICE by mediating cholesterol efflux into the gut lumen. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Beta-Adrenergic Receptor Population is Up-Regulated by Increased Cyclic Amp Concentration in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Vaughn, Jeffrey R.

    1999-01-01

    Skeletal muscle hypertrophy is promoted in vivo by administration of beta-drenergic receptor (bAR) agonists. Chicken skeletal muscle cells were treated with 1 (mu)M isoproterenol, a strong bAR agonist, between days 7 and 10 in culture. bAR population increased by approximately 40% during this treatment; however, the ability of the cells to synthesize cyclic AMP (cAMP) was diminished by two-fold. The quantity of myosin heavy chain (MHC) was not affected. To understand further the relationship between intracellular cAMP levels, bAR population, and muscle protein accumulation, intracellular cAMP levels were artificially elevated by treatment with 0-10 uM forskolin for up to three days. The basal concentration of CAMP in forskolin-treated cells increased up to 7-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in bAR population, with a maximum increase of approximately 40-60% at 10 uM forskolin. A maximum increase of 40-50% in the quantity of MHC was observed at 0.2 uM forskolin, but higher concentrations of forskolin reduced the quantity of MHC back to control levels. At 0.2 uM forskolin, intracellular levels of cAMP were higher by approximately 35%, and the (beta)AR population was higher by approximately 30%. Neither the number of muscle nuclei fused into myotubes nor the percentage of nuclei in myotubes were affected by forskolin at any of the concentrations studied.

  9. Endocytosis of GPI-anchored proteins in human lymphocytes: role of glycolipid-based domains, actin cytoskeleton, and protein kinases

    PubMed Central

    1996-01-01

    GPI-anchored surface proteins mediate many important functions, including transport, signal transduction, adhesion, and protection against complement. They cluster into glycolipid-based membrane domains and caveolae, plasmalemmal vesicles involved in the transcytosis and endocytosis of these surface proteins. However, in lymphocytes, neither the characteristic flask shaped caveolae nor caveolin, a transmembrane protein typical of caveolae, have been observed. Here, we show that the GPI-anchored CD59 molecule on Jurkat T cells is internalized after cross-linking, a process inhibited by nystatin, a sterol chelating agent. Clustered CD59 molecules mostly accumulate in non-coated invaginations of the lymphocyte membrane before endocytosis, in marked contrast with the pattern of CD3-TCR internalization. Cytochalasin H blocked CD59 internalization in lymphocytes, but neither CD3 internalization nor transferrin uptake. Confocal microscopy analysis of F-actin distribution within lymphocytes showed that CD59 clusters were associated with patches of polymerized actin. Also, we found that internalization of CD59 was prevented by the protein kinase C inhibitor staurosporine and by the protein kinase A activator forskolin. Thus, in lymphocytes, as in other cell types, glycolipid-based domains provide sites of integration of signaling pathways involved in GPI-anchored protein endocytosis. This process, which is regulated by both protein kinase C and A activity, is tightly controlled by the dynamic organization of actin cytoskeleton, and may be critical for polarized contacts of circulating cells. PMID:8666664

  10. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies.

    PubMed

    Jochim, Ryan C; Teixeira, Clarissa R; Laughinghouse, Andre; Mu, Jianbing; Oliveira, Fabiano; Gomes, Regis B; Elnaiem, Dia-Eldin; Valenzuela, Jesus G

    2008-01-14

    In the life cycle of Leishmania within the alimentary canal of sand flies the parasites have to survive the hostile environment of blood meal digestion, escape the blood bolus and attach to the midgut epithelium before differentiating into the infective metacyclic stages. The molecular interactions between the Leishmania parasites and the gut of the sand fly are poorly understood. In the present work we sequenced five cDNA libraries constructed from midgut tissue from the sand fly Lutzomyia longipalpis and analyzed the transcripts present following sugar feeding, blood feeding and after the blood meal has been processed and excreted, both in the presence and absence of Leishmania infantum chagasi. Comparative analysis of the transcripts from sugar-fed and blood-fed cDNA libraries resulted in the identification of transcripts differentially expressed during blood feeding. This included upregulated transcripts such as four distinct microvillar-like proteins (LuloMVP1, 2, 4 and 5), two peritrophin like proteins, a trypsin like protein (Lltryp1), two chymotrypsin like proteins (LuloChym1A and 2) and an unknown protein. Downregulated transcripts by blood feeding were a microvillar-like protein (LuloMVP3), a trypsin like protein (Lltryp2) and an astacin-like metalloprotease (LuloAstacin). Furthermore, a comparative analysis between blood-fed and Leishmania infected midgut cDNA libraries resulted in the identification of the transcripts that were differentially expressed due to the presence of Leishmania in the gut of the sand fly. This included down regulated transcripts such as four microvillar-like proteins (LuloMVP1,2, 4 and 5), a Chymotrypsin (LuloChym1A) and a carboxypeptidase (LuloCpepA1), among others. Upregulated midgut transcripts in the presence of Leishmania were a peritrophin like protein (LuloPer1), a trypsin-like protein (Lltryp2) and an unknown protein. This transcriptome analysis represents the largest set of sequence data reported from a specific sand

  11. Receptor mediated endocytosis of vicilin in Callosobruchus maculatus (Coleoptera: Chrysomelidae) larval midgut epithelial cells.

    PubMed

    Kunz, Daniele; Oliveira, Gabriel B; Uchôa, Adriana F; Samuels, Richard I; Macedo, Maria Lígia R; Silva, Carlos P

    2017-08-01

    The transport of proteins across the intestinal epithelium of insects is still not well understood. There is evidence that vicilin, a major storage protein of cowpea seeds (Vigna unguiculata), is internalized in larvae of the seed-beetle Callosobruchus maculatus. It has been reported that this vicilin interacts with proteins present in the microvillar membranes of columnar cells along the digestive tract of the larvae. In the present work, we studied the cellular pathway involved in endocytosis of vicilin in larval C. maculatus by employing ex vivo experiments. In the ex vivo approach, we incubated FITC-labelled vicilin with isolated midgut wholemounts in the absence or in the presence of endocytosis inhibitors. The fate of labelled or non-labelled globulins was monitored by confocal microscopy and fluorescence measurement. Our results suggest that the internalization of vicilins is due to receptor-mediated endocytosis. Here we report the identity of a microvillar vicilin-binding protein that was purified using affinity chromatography on a vicilin-sepharose column. The putative vicilin receptor showed high homology to proteins with the CRAL-TRIO domain, specifically the Sec14 superfamily member α-tocopherol transfer protein. The precise mechanism involved in vicilin internalization was defined through the use of specific inhibitors of the endocytosis pathway. The inhibitors filipin III and nystatin significantly inhibited the endocytosis of vicilin, while chlorpromazine and phenylarsine oxide had a much lower effect on endocytosis, suggesting that the endocytic pathway is predominantly mediated by caveolin. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Modulatory effects of steroid hormones, oxytocin, arachidonic acid, forskolin and cyclic AMP on the expression of aquaporin 1 and aquaporin 5 in the porcine uterus during placentation.

    PubMed

    Skowronska, A; Mlotkowska, P; Okrasa, S; Nielsen, S; Skowronski, M T

    2016-04-01

    Aquaporins (AQPs) are proteins forming trans-membrane channels responsible for water transport. AQP1 and AQP5 are present in structures of the female reproductive system. In the uterus, these AQPs are involved in water movement between the intraluminal, interstitial and capillary compartments and their uterine expression is essential throughout the pregnancy, including its early stages. Thus, the study aimed to assess the influence of P4 (progesterone), E2 (estradiol), OT (oxytocin), AA (arachidonic acid), cAMP and FSK (forskolin) on the AQP1 and AQP5 mRNA and protein expression in the uterine tissue of gilts on Days 30 - 32 of gestation (the placentation period), following short (3 h) and long (24 h) incubations. Steroid hormones influenced the expression of AQP1 and AQP5; E2 up-regulated, but P4 down-regulated mRNAs of these AQPs, whereas the protein level of studied AQPs was increased by both steroids. OT treatment decreased AQP1 (after 24 h), but increased AQP5 (after 3 h) mRNA expression. Treatment with AA significantly reduced the AQP1 expression at the mRNA level, but stimulated at the protein level. The expression of AQP5 mRNA and protein was stimulated by AA. FSK markedly decreased AQP1 mRNA, but increased of AQP5 after 3-h incubation. In turn, cAMP stimulated and inhibited transcription of AQP5 after 3- and 24-h incubations, respectively. Immunohistochemical analysis confirmed the uterine localization of AQP1 in the apical and basal membranes of endothelial cells and AQP5 in the apical membranes of epithelial cells under control condition. Treatments with P4, E2, AA, cAMP or FSK have caused additional appearance of AQP5 labeling in the basolateral membranes of epithelial cells. These results suggest a participation of steroid hormones (P4 and E2), AA derivatives and cAMP in controlling the expression of AQP1 and AQP5 as well as the distribution of AQP5 in the uterine tissue of pregnant gilts during placentation (Days 30 - 32 of gestation).

  13. Potential for Aedes albopictus and Ochlerotatus j. japonicus to Change the Field Ecology of Arboviruses of Human Health Importance in the Mid-Atlantic Region of the United States

    DTIC Science & Technology

    2001-10-16

    attachment, the viral attachment proteins on the surface of the virion bind to receptors on the microvillar membrane of the mosquito s midgut ...Penetration refers to the process through which the virions enter the midgut cells; arboviruses enter cell through receptor -mediated endocytosis. During...inactivation of the virus by digestive enzymes in the lumen of the midgut , and the absence or reduced number of cellular receptor sites for virus attachment

  14. Mouse SLLP1, a sperm lysozyme-like protein involved in sperm-egg binding and fertilization.

    PubMed

    Herrero, María Belén; Mandal, Arabinda; Digilio, Laura C; Coonrod, Scott A; Maier, Bernhard; Herr, John C

    2005-08-01

    This study demonstrates the retention of mouse sperm lysozyme-like protein (mSLLP1) in the equatorial segment of spermatozoa following the acrosome reaction and a role for mSLLP1 in sperm-egg binding and fertilization. Treatment of cumulus intact oocytes with either recmSLLP1 or its antiserum resulted in a significant (P < or = 0.05) inhibition of fertilization. Co-incubation of zona-free mouse oocytes with capacitated mouse spermatozoa in the presence of varying concentrations of anti-recmSLLP1 serum or recmSLLP1 also inhibited sperm-oolemma binding. A complete inhibition of binding and fusion of spermatozoa to the oocyte occurred at 12.5 muM concentration of recmSLLP1, while conventional chicken and human lysozymes did not block sperm-egg binding. mSLLP1 showed receptor sites in the perivitelline space as well as on the microvillar region of the egg plasma membrane. The retention of mSLLP1 in the equatorial segment of acrosome-reacted sperm, the inhibitory effects of both recmSLLP1 and antibodies to SLLP1 on in vitro fertilization with both cumulus intact and zona-free eggs, and the definition of complementary SLLP1-binding sites on the egg plasma membrane together support the hypothesis that a c lysozyme-like protein is involved in the binding of spermatozoa to the egg plasma membrane during fertilization.

  15. Inhibition of Rho Is Required for cAMP-induced Melanoma Cell Differentiation

    PubMed Central

    Buscà, Roser; Bertolotto, Corine; Abbe, Patricia; Englaro, Walter; Ishizaki, Toshimasa; Narumiya, Shuh; Boquet, Patrice; Ortonne, Jean-Paul; Ballotti, Robert

    1998-01-01

    Up-regulation of the cAMP pathway by forskolin or α-melanocyte stimulating hormone induces melanocyte and melanoma cell differentiation characterized by stimulation of melanin synthesis and dendrite development. Here we show that forskolin-induced dendricity is associated to a disassembly of actin stress fibers. Since Rho controls actin organization, we studied the role of this guanosine triphosphate (GTP)-binding protein in cAMP-induced dendrite formation. Clostridium botulinum C3 exotransferase, which inhibits Rho, mimicked the effect of forskolin in promoting dendricity and stress fiber disruption, while the Escherichia coli toxin cytotoxic necrotizing factor-1 (CNF-1), which activates Rho and the expression of a constitutively active Rho mutant, blocked forskolin-induced dendrite outgrowth. In addition, overexpression of a constitutively active form of the Rho target p160 Rho-kinase (P160ROCK) prevented the dendritogenic effects of cAMP. Our results suggest that inhibition of Rho and of its target p160ROCK are required events for cAMP-induced dendrite outgrowth in B16 cells. Furthermore, we present evidence that Rho is involved in the regulation of melanogenesis. Indeed, Rho inactivation enhanced the cAMP stimulation of tyrosinase gene transcription and protein expression, while Rho constitutive activation impaired these cAMP-induced effects. This reveals that, in addition to controlling dendricity, Rho also participates in the regulation of melanin synthesis by cAMP. PMID:9614180

  16. Impact of divalent metal ions on regulation of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Erdorf, Miriam; Mou, Tung-Chung; Seifert, Roland

    2011-12-01

    Mammalian membranous adenylyl cyclases (mACs) play an important role in transmembrane signalling events in almost every cell and represent an interesting drug target. Forskolin (FS) is an invaluable research tool, activating AC isoforms 1-8. However, there is a paucity of AC isoform-selective FS analogs. Therefore, we examined the effects of FS and six FS derivatives on recombinant ACs 1, 2 and 5, representing members of different mAC families. Correlations of the pharmacological properties of the different AC isoforms revealed pronounced differences between ACs 1, 2 and 5. Additionally, potencies and efficacies of FS derivatives changed for any given AC isoform, depending on the metal ion, Mg(2+) or Mn(2+). The most striking effects of Mg(2+) and Mn(2+) on the diterpene profile were observed for AC2 where the large inhibitory effect of BODIPY-FS in the presence of Mg(2+) was considerably reduced in the presence of Mn(2+). Sequence alignment and docking experiments confirmed an exceptional position of AC2 compared to ACs 1 and 5 with respect to the structural environment of the catalytic core and cation-dependent diterpene effects. In conclusion, mAC isoforms 1, 2 and 5 exhibit a distinct pharmacological diterpene profile, depending on the divalent cation present. mAC crystal structures and modelling/docking studies provided an explanation for the pharmacological differences between the AC isoforms. Our study constitutes an important step towards the development of isoform-specific diterpenes exhibiting stimulatory or inhibitory effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The orphan G protein-coupled receptor 25 (GPR25) is activated by Apelin and Apela in non-mammalian vertebrates.

    PubMed

    Zhang, Jiannan; Wan, Yiping; Fang, Chao; Chen, Junan; Ouyang, Wangan; Li, Juan; Wang, Yajun

    2018-06-22

    G protein-coupled receptor 25 (GPR25) is an orphan G protein-coupled receptor in vertebrates, that has been implicated to be associated with autoimmune diseases and regulate blood pressure in humans. However, the endogenous ligand of GPR25 remains unknown in vertebrates. Here, we reported that in non-mammalian vertebrates (zebrafish, spotted gars, and pigeons), GPR25 could be activated by Apelin and Apela peptides, which are also the two endogenous ligands of vertebrate Apelin receptor (APLNR). Using the pGL3-CRE-luciferase reporter assay and confocal microscopy, we first demonstrated that like APLNR, zebrafish GPR25 expressing in HEK293 cells could be effectively activated by zebrafish Apelin and Apela peptides, leading to the inhibition of forskolin-stimulated cAMP production and receptor internalization. Like zebrafish GPR25, pigeon and spotted gar GPR25 could also be activated by Apelin and Apela, and their activation could inhibit forskolin-induced cAMP accumulation. Interestingly, unlike zebrafish (/spotted gar/pigeon) GPR25, human GPR25 could not be activated by Apelin and Apela under the same experimental conditions. RNA-seq analysis further revealed that GPR25 is expressed in a variety of tissues, including the testes and intestine of zebrafish/spotted gars/humans, implying the potential roles of GPR25 signaling in many physiological processes in vertebrates. Taken together, our data not only provides the first proof that the orphan receptor GPR25 possesses two potential ligands 'Apelin and Apela' and its activation decreases intracellular cAMP levels in non-mammalian vertebrates, but also facilitates to unravel the physiological roles of GPR25 signaling in vertebrates. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The PDZ and band 4.1 containing protein Frmpd1 regulates the subcellular location of activator of G-protein signaling 3 and its interaction with G-proteins.

    PubMed

    An, Ningfei; Blumer, Joe B; Bernard, Michael L; Lanier, Stephen M

    2008-09-05

    Activator of G-protein signaling 3 (AGS3) is one of nine mammalian proteins containing one or more G-protein regulatory (GPR) motifs that stabilize the GDP-bound conformation of Galphai. Such proteins have revealed unexpected functional diversity for the "G-switch" in the control of events within the cell independent of the role of heterotrimeric G-proteins as transducers for G-protein-coupled receptors at the cell surface. A key question regarding this class of proteins is what controls their subcellular positioning and interaction with G-proteins. We conducted a series of yeast two-hybrid screens to identify proteins interacting with the tetratricopeptide repeat (TPR) of AGS3, which plays an important role in subcellular positioning of the protein. We report the identification of Frmpd1 (FERM and PDZ domain containing 1) as a regulatory binding partner of AGS3. Frmpd1 binds to the TPR domain of AGS3 and coimmunoprecipitates with AGS3 from cell lysates. Cell fractionation indicated that Frmpd1 stabilizes AGS3 in a membrane fraction. Upon cotransfection of COS7 cells with Frmpd1-GFP and AGS3-mRFP, AGS3-mRFP is observed in regions of the cell cortex and also in membrane extensions or processes where it appears to be colocalized with Frmpd1-GFP based upon the merged fluorescent signals. Frmpd1 knockdown (siRNA) in Cath.a-differentiated neuronal cells decreased the level of endogenous AGS3 in membrane fractions by approximately 50% and enhanced the alpha2-adrenergic receptor-mediated inhibition of forskolin-induced increases in cAMP. The coimmunoprecipitation of Frmpd1 with AGS3 is lost as the amount of Galphai3 in the cell is increased and AGS3 apparently switches its binding partner from Frmpd1 to Galphai3 indicating that the interaction of AGS3 with Frmpd1 and Galphai3 is mutually exclusive. Mechanistically, Frmpd1 may position AGS3 in a membrane environment where it then interacts with Galphai in a regulated manner.

  19. Structural Evidence for a Sequential Release Mechanism for Activation of Heterotrimeric G Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, Neeraj; Menon, Santosh T.; Chauhan, Radha

    2010-01-12

    Heptahelical G-protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors couple to heterotrimeric G proteins to relay extracellular signals to intracellular signaling networks, but the molecular mechanism underlying guanosine 5'-diphosphate (GDP) release by the G protein {alpha}-subunit is not well understood. Amino acid substitutions in the conserved {alpha}5 helix of Gi, which extends from the C-terminal region to the nucleotide-binding pocket, cause dramatic increases in basal (receptor-independent) GDP release rates. For example, mutant G{alpha}{sub i1}-T329A shows an 18-fold increase in basal GDP release rate and, when expressed in culture, it causes a significant decrease in forskolin-stimulated cAMP accumulation. The crystal structure of G{alpha}{submore » i1}-T329A {center_dot} GDP shows substantial conformational rearrangement of the switch I region and additional striking alterations of side chains lining the catalytic pocket that disrupt the Mg{sup +2} coordination sphere and dislodge bound Mg{sup +2}. We propose a 'sequential release' mechanism whereby a transient conformational change in the {alpha}5 helix alters switch I to induce GDP release. Interestingly, this mechanistic model for heterotrimeric G protein activation is similar to that suggested for the activation of the plant small G protein Rop4 by RopGEF8.« less

  20. Somatostatin inhibits exocytosis in rat pancreatic α-cells by Gi2-dependent activation of calcineurin and depriming of secretory granules

    PubMed Central

    Gromada, Jesper; Høy, Marianne; Buschard, Karsten; Salehi, Albert; Rorsman, Patrik

    2001-01-01

    Measurements of cell capacitance were used to investigate the molecular mechanisms by which somatostatin inhibits Ca2+-induced exocytosis in single rat glucagon-secreting pancreatic α-cells. Somatostatin decreased the exocytotic responses elicited by voltage-clamp depolarisations by 80 % in the presence of cyclic AMP-elevating agents such as isoprenaline and forskolin. Inhibition was time dependent and half-maximal within 22 s. The inhibitory action of somatostatin was concentration dependent with an IC50 of 68 nm and prevented by pretreatment of the cells with pertussis toxin. The latter effect was mimicked by intracellular dialysis with specific antibodies to Gi1/2 and by antisense oligonucleotides against G proteins of the subtype Gi2. Somatostatin lacked inhibitory action when applied in the absence of forskolin or in the presence of the L-type Ca2+ channel blocker nifedipine. The size of the ω-conotoxin-sensitive and forskolin-independent component of exocytosis was limited to 60 fF. By contrast, somatostatin abolished L-type Ca2+ channel-dependent exocytosis in α-cells exposed to forskolin. The magnitude of the latter pool amounted to 230 fF. The inhibitory effect of somatostatin on exocytosis was mediated by activation of the serine/threonine protein phosphatase calcineurin and was prevented by pretreatment with cyclosporin A and deltamethrin or intracellularly applied calcineurin autoinhibitory peptide. Experiments using the stable ATP analogue AMP-PCP indicate that somatostatin acts by depriming of granules. We propose that somatostatin receptors associate with L-type Ca2+ channels and couple to Gi2 proteins leading to a localised activation of calcineurin and depriming of secretory granules situated close to the L-type Ca2+ channels. PMID:11533141

  1. Spatio-temporal imaging of EGF-induced activation of protein kinase A by FRET in living cells

    NASA Astrophysics Data System (ADS)

    Wang, Jin Jun; Chen, Xiao-Chuan; Xing, Da

    2004-07-01

    Intracellular molecular interaction is important for the study of cell physiology, yet current relevant methods require fixation or microinjection and lack temporal or spatial resolution. We introduced a new method -- fluorescence resonance energy transfer (FRET) to detect molecular interaction in living cells. On the basis of FRET principle, A-kinase activity reporter (AKAR) protein was designed to consist of the fusions of cyan fluorescent protein (CFP), a phosphoamino acid binding domain, a consensus substrate for protein kinase-A (PKA), and yellow fluorescent protein (YFP). In this study, the designed pAKAR plasmid was used to transfect a human lung cancer cell line (ASTC-a-1). When the AKAR-transfected cells were treated by forskolin (Fsk), we were able to observe the efficient transfer of energy from excited CFP to YFP within the AKAR molecule by fluorescence microcopy, whereas no FRET was detected in the transfected cells without the treatment of Fsk. When the cells were treated by Epidermal growth factor (EGF), the change of FRET was observed at different subcellular locations, reflecting PKA activation inside the cells upon EGF stimulation. The successful design of a fluorescence reporter of PKA activation and its application demonstrated the superiority of this technology in the research of intracellular protein-protein interaction.

  2. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    PubMed Central

    Engprasert, Surang; Taura, Futoshi; Kawamukai, Makoto; Shoyama, Yukihiro

    2004-01-01

    Background Isopentenyl diphosphate (IPP), a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots. PMID:15550168

  3. Melanopsin-mediated light-sensing in amphioxus

    PubMed Central

    del Pilar Gomez, María

    2009-01-01

    The two fundamental lineages of photoreceptor cells, microvillar and ciliary, were long thought to be a prerogative of invertebrate and vertebrate organisms, respectively. However evidence of their ancient origin, preceding the divergence of these two branches of metazoa, suggests instead that they should be ubiquitously distributed. Melanopsin-expressing ‘circadian’ light receptors may represent the remnants of the microvillar photo- receptors amongst vertebrates, but they lack the characteristic architecture of this lineage, and much remains to be clarified about their signaling mechanisms. Hesse and Joseph cells of the neuronal tube of amphioxus (Branchiostoma fl.)—the most basal chordate extant—turn out to be depolarizing primary microvillar photoreceptors, that generate a melanopsin-initiated, PLC-dependent response to light, mobilizing internal Ca and increasing a membrane conductance selective to Na and Ca ions. As such, they represent a canonical instance of invertebrate-like visual cells in the chordate phylum. PMID:19907713

  4. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition.

    PubMed

    Fey, E G; Wan, K M; Penman, S

    1984-06-01

    Madin-Darby canine kidney (MDCK) cells grow as differentiated, epithelial colonies that display tissue-like organization. We examined the structural elements underlying the colony morphology in situ using three consecutive extractions that produce well-defined fractions for both microscopy and biochemical analysis. First, soluble proteins and phospholipid were removed with Triton X-100 in a physiological buffer. The resulting skeletal framework retained nuclei, dense cytoplasmic filament networks, intercellular junctional complexes, and apical microvillar structures. Scanning electron microscopy showed that the apical cell morphology is largely unaltered by detergent extraction. Residual desmosomes, as can be seen in thin sections, were also well-preserved. The skeletal framework was visualized in three dimensions as an unembedded whole mount that revealed the filament networks that were masked in Epon-embedded thin sections of the same preparation. The topography of cytoskeletal filaments was relatively constant throughout the epithelial sheet, particularly across intercellular borders. This ordering of epithelial skeletal filaments across contiguous cell boundaries was in sharp contrast to the more independent organization of networks in autonomous cells such as fibroblasts. Further extraction removed the proteins of the salt-labile cytoskeleton and the chromatin as separate fractions, and left the nuclear matrix-intermediate filament (NM-IF) scaffold. The NM-IF contained only 5% of total cellular protein, but whole mount transmission electron microscopy and immunofluorescence showed that this scaffold was organized as in the intact epithelium. Immunoblots demonstrate that vimentin, cytokeratins, desmosomal proteins, and a 52,000-mol-wt nuclear matrix protein were found almost exclusively in the NM-IF scaffold. Vimentin was largely perinuclear while the cytokeratins were localized at the cell borders. The 52,000-mol-wt nuclear matrix protein was confined to the

  5. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition

    PubMed Central

    1984-01-01

    Madin-Darby canine kidney (MDCK) cells grow as differentiated, epithelial colonies that display tissue-like organization. We examined the structural elements underlying the colony morphology in situ using three consecutive extractions that produce well-defined fractions for both microscopy and biochemical analysis. First, soluble proteins and phospholipid were removed with Triton X-100 in a physiological buffer. The resulting skeletal framework retained nuclei, dense cytoplasmic filament networks, intercellular junctional complexes, and apical microvillar structures. Scanning electron microscopy showed that the apical cell morphology is largely unaltered by detergent extraction. Residual desmosomes, as can be seen in thin sections, were also well- preserved. The skeletal framework was visualized in three dimensions as an unembedded whole mount that revealed the filament networks that were masked in Epon-embedded thin sections of the same preparation. The topography of cytoskeletal filaments was relatively constant throughout the epithelial sheet, particularly across intercellular borders. This ordering of epithelial skeletal filaments across contiguous cell boundaries was in sharp contrast to the more independent organization of networks in autonomous cells such as fibroblasts. Further extraction removed the proteins of the salt-labile cytoskeleton and the chromatin as separate fractions, and left the nuclear matrix-intermediate filament (NM-IF) scaffold. The NM-IF contained only 5% of total cellular protein, but whole mount transmission electron microscopy and immunofluorescence showed that this scaffold was organized as in the intact epithelium. Immunoblots demonstrate that vimentin, cytokeratins, desmosomal proteins, and a 52,000-mol-wt nuclear matrix protein were found almost exclusively in the NM-IF scaffold. Vimentin was largely perinuclear while the cytokeratins were localized at the cell borders. The 52,000-mol-wt nuclear matrix protein was confined to the

  6. Relevance of Wnt10b and activation of β-catenin/GCMa/syncytin-1 pathway in BeWo cell fusion.

    PubMed

    Malhotra, Sudha Saryu; Banerjee, Priyanka; Chaudhary, Piyush; Pal, Rahul; Gupta, Satish Kumar

    2017-10-01

    To study the involvement of specific Wnt(s) ligand during trophoblastic BeWo cell differentiation. BeWo cells on treatment with forskolin/human chorionic gonadotropin (hCG) were studied for cell fusion by desmoplakin I+II staining and/or hCG secretion by ELISA. Levels of Wnt10b/β-catenin/glial cell missing a (GCMa)/syncytin-1 were studied by qPCR/Western blotting in forskolin-/hCG-treated control siRNA and Wnt10b silenced BeWo cells. BeWo cells on treatment with hCG (5 IU/mL) led to a 94-fold increase in Wnt10b transcript. Wnt10b silencing showed significant decrease in forskolin-/hCG-mediated BeWo cell fusion and/or hCG secretion. It led to down-regulation of β-catenin (nuclear and cytoplasmic), GCMa and syncytin-1 expression. Treatment of BeWo cells with H89, protein kinase A (PKA) signaling inhibitor, significantly reduced forskolin-/hCG-induced Wnt10b, β-catenin, and syncytin-1 expression, which also resulted in reduced cell fusion. Wnt10b is involved in forskolin/hCG-mediated BeWo cell fusion via β-catenin/GCMa/syncytin pathway, which may also involve activation of PKA. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Quantitative Proteomics Analysis of the cAMP/Protein Kinase A Signaling Pathway

    PubMed Central

    2012-01-01

    To define the proteins whose expression is regulated by cAMP and protein kinase A (PKA), we used a quantitative proteomics approach in studies of wild-type (WT) and kin- (PKA-null) S49 murine T lymphoma cells. We also compared the impact of endogenous increases in the level of cAMP [by forskolin (Fsk) and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX)] or by a cAMP analogue (8-CPT-cAMP). We identified 1056 proteins in WT and kin- S49 cells and found that 8-CPT-cAMP and Fsk with IBMX produced differences in protein expression. WT S49 cells had a correlation coefficient of 0.41 between DNA microarray data and the proteomics analysis in cells incubated with 8-CPT-cAMP for 24 h and a correlation coefficient of 0.42 between the DNA microarray data obtained at 6 h and the changes in protein expression after incubation with 8-CPT-cAMP for 24 h. Glutathione reductase (Gsr) had a higher level of basal expression in kin- S49 cells than in WT cells. Consistent with this finding, kin- cells are less sensitive to cell killing and generation of malondialdehyde than are WT cells incubated with H2O2. Cyclic AMP acting via PKA thus has a broad impact on protein expression in mammalian cells, including in the regulation of Gsr and oxidative stress. PMID:23110364

  8. Somatostatin inhibits exocytosis in rat pancreatic alpha-cells by G(i2)-dependent activation of calcineurin and depriming of secretory granules.

    PubMed

    Gromada, J; Høy, M; Buschard, K; Salehi, A; Rorsman, P

    2001-09-01

    1. Measurements of cell capacitance were used to investigate the molecular mechanisms by which somatostatin inhibits Ca(2+)-induced exocytosis in single rat glucagon-secreting pancreatic alpha-cells. 2. Somatostatin decreased the exocytotic responses elicited by voltage-clamp depolarisations by 80 % in the presence of cyclic AMP-elevating agents such as isoprenaline and forskolin. Inhibition was time dependent and half-maximal within 22 s. 3. The inhibitory action of somatostatin was concentration dependent with an IC(50) of 68 nM and prevented by pretreatment of the cells with pertussis toxin. The latter effect was mimicked by intracellular dialysis with specific antibodies to G(i1/2) and by antisense oligonucleotides against G proteins of the subtype G(i2). 4. Somatostatin lacked inhibitory action when applied in the absence of forskolin or in the presence of the L-type Ca(2+) channel blocker nifedipine. The size of the omega-conotoxin-sensitive and forskolin-independent component of exocytosis was limited to 60 fF. By contrast, somatostatin abolished L-type Ca(2+) channel-dependent exocytosis in alpha-cells exposed to forskolin. The magnitude of the latter pool amounted to 230 fF. 5. The inhibitory effect of somatostatin on exocytosis was mediated by activation of the serine/threonine protein phosphatase calcineurin and was prevented by pretreatment with cyclosporin A and deltamethrin or intracellularly applied calcineurin autoinhibitory peptide. Experiments using the stable ATP analogue AMP-PCP indicate that somatostatin acts by depriming of granules. 6. We propose that somatostatin receptors associate with L-type Ca(2+) channels and couple to G(i2) proteins leading to a localised activation of calcineurin and depriming of secretory granules situated close to the L-type Ca(2+) channels.

  9. Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A.

    PubMed

    Kaur, Manminder; Holden, Neil S; Wilson, Sylvia M; Sukkar, Maria B; Chung, Kian Fan; Barnes, Peter J; Newton, Robert; Giembycz, Mark A

    2008-09-01

    In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.

  10. Forskolin-induced apical membrane insertion of virally expressed, epitope-tagged CFTR in polarized MDCK cells.

    PubMed

    Howard, M; Jiang, X; Stolz, D B; Hill, W G; Johnson, J A; Watkins, S C; Frizzell, R A; Bruton, C M; Robbins, P D; Weisz, O A

    2000-08-01

    Channel gating of the cystic fibrosis transmembrane conductance regulator (CFTR) is activated in response to cAMP stimulation. In addition, CFTR activation may also involve rapid insertion of a subapical pool of CFTR into the plasma membrane (PM). However, this issue has been controversial, in part because of the difficulty in distinguishing cell surface vs. intracellular CFTR. Recently, a fully functional, epitope-tagged form of CFTR (M2-901/CFTR) that can be detected immunologically in nonpermeabilized cells was characterized (Howard M, Duvall MD, Devor DC, Dong J-Y, Henze K, and Frizzell RA. Am J Physiol Cell Physiol 269: C1565-C1576, 1995; and Schultz BD, Takahashi A, Liu C, Frizzell RA, and Howard M. Am J Physiol Cell Physiol 273: C2080-C2089, 1997). We have developed replication-defective recombinant adenoviruses that express M2-901/CFTR and used them to probe cell surface CFTR in forskolin (FSK)-stimulated polarized Madin-Darby canine kidney (MDCK) cells. Virally expressed M2-901/CFTR was functional and was readily detected on the apical surface of FSK-stimulated polarized MDCK cells. Interestingly, at low multiplicity of infection, we observed FSK-stimulated insertion of M2901/CFTR into the apical PM, whereas at higher M2-901/CFTR expression levels, no increase in surface expression was detected using indirect immunofluorescence. Immunoelectron microscopy of unstimulated and FSK-stimulated cells confirmed the M2-901/CFTR redistribution to the PM upon FSK stimulation and demonstrates that the apically inserted M2-901/CFTR originates from a population of subapical vesicles. Our observations may reconcile previous conflicting reports regarding the effect of cAMP stimulation on CFTR trafficking.

  11. Sensitivity of imatinib-resistant T315I BCR-ABL CML to a synergistic combination of ponatinib and forskolin treatment.

    PubMed

    Oaxaca, Derrick M; Yang-Reid, Sun Ah; Ross, Jeremy A; Rodriguez, Georgialina; Staniswalis, Joan G; Kirken, Robert A

    2016-09-01

    Tyrosine kinase inhibitors (TKIs) have dramatically improved the life expectancy of patients suffering from chronic myeloid leukemia (CML); however, patients will eventually develop resistance to TKI therapy or adverse side effects due to secondary off-target mechanisms associated with TKIs. CML patients exhibiting TKI resistance are at greater risk of developing an aggressive and drug-insensitive disease. Drug-resistant CML typically arises in response to spontaneous mutations within the drug binding sites of the targeted oncoproteins. To better understand the mechanism of drug resistance in TKI-resistant CML patients, the BCR-ABL transformed cell line KCL22 was grown with increasing concentrations of imatinib for a period of 6 weeks. Subsequently, a drug-resistant derivative of the parental KCL22 cell line harboring the T315I gatekeeper mutation was isolated and investigated for TKI drug sensitivity via multi-agent drug screens. A synergistic combination of ponatinib- and forskolin-reduced cell viability was identified in this clinically relevant imatinib-resistant CML cell line, which also proved efficacious in other CML cell lines. In summary, this study provides new insight into the biological underpinnings of BCR-ABL-driven CML and potential rationale for investigating novel treatment strategies for patients with T315I CML.

  12. Cardiovascular and adenylate cyclase stimulating effects of colforsin daropate, a water-soluble forskolin derivative, compared with those of isoproterenol, dopamine and dobutamine.

    PubMed

    Yoneyama, Masahiko; Sugiyama, Atsushi; Satoh, Yoshioki; Takahara, Akira; Nakamura, Yuji; Hashimoto, Keitaro

    2002-12-01

    Colforsin daropate is a recently developed water-soluble derivative of forskolin that directly stimulates adenylate cyclase, unlike the catecholamines. The chronotropic, inotropic and coronary vasodilator actions of colforsin daropate were compared with those of isoproterenol, dopamine and dobutamine, using canine isolated, blood-perfused heart preparations. The stimulating effect of each drug on adenylate cyclase activity was also assessed. Colforsin daropate, as well as each of the catecholamines, exerted positive chronotropic, inotropic and coronary vasodilator actions. The order of selectivity for the cardiovascular variables of colforsin daropate was coronary vasodilation > positive inotropy > positive chronotropy; whereas that of isoproterenol, dopamine and dobutamine was positive inotropy > coronary vasodilation > positive chronotropy. Thus, a marked characteristic of colforsin daropate is its potent coronary vasodilator action. On the other hand, each drug significantly increased the adenylate cyclase activity in a dose-related manner: colforsin daropate > isoproterenol > dopamine = dobutamine. These results suggest that colforsin daropate may be preferable in the treatment of severe heart failure where the coronary blood flow is reduced and beta-adrenoceptor-dependent signal transduction pathway is down-regulated.

  13. Beta-Adrenergic Receptor Expression in Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  14. The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    PubMed Central

    2007-01-01

    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use. PMID:17903277

  15. Progesterone, estradiol, arachidonic acid, oxytocin, forskolin and cAMP influence on aquaporin 1 and 5 expression in porcine uterine explants during the mid-luteal phase of the estrous cycle and luteolysis: an in vitro study.

    PubMed

    Skowronska, Agnieszka; Młotkowska, Patrycja; Wojciechowicz, Bartosz; Okrasa, Stanisław; Nielsen, Soren; Skowronski, Mariusz T

    2015-02-18

    The cell membrane water channel protein, aquaporins (AQPs), regulate cellular water transport and cell volume and play a key role in water homeostasis. Recently, AQPs are considered as important players in the field of reproduction. In previous studies, we have established the presence of AQP1 and 5 in porcine uterus. Their expression at protein level altered in distinct tissues of the female reproductive system depending on the phase of the estrous cycle. However, the regulation of aquaporin genes and proteins expression has not been examined in porcine uterine tissue. Therefore, we have designed an in vitro experiment to explain whether steroid hormones, progesterone (P4) and estradiol (E2), and other factors: oxytocine (OT), arachidonic acid (AA; substrate for prostaglandins synthesis) as well as forskolin (FSK; adenylate cyclase activator) and cAMP (second messenger, cyclic adenosine monophosphate) may impact AQPs expression. Uterine tissues were collected on Days 10-12 and 14-16 of the estrous cycle representing the mid-luteal phase and luteolysis. Real-time PCR and Western blot analysis were performed to examine the expression of porcine AQP1 and AQP5. Their expression in the uterine explants was also evaluated by immunohistochemistry. The results indicated that uterine expression of AQP1 and AQP5 potentially remains under control of steroid hormones and AA-derived compounds (e.g. prostaglandins). P4, E2, AA, FSK and cAMP cause translocation of AQP5 from apical to the basolateral plasma membrane of the epithelial cells, which might affect the transcellular water movement (through epithelial cells) between uterine lumen and blood vessels. The AC/cAMP pathway is involved in the intracellular signals transduction connected with the regulation of AQPs expression in the pig uterus. This study documented specific patterns of AQP1 and AQP5 expression in response to P4, E2, AA, FSK and cAMP, thereby providing new indirect evidence of their role in maintaining the

  16. Spontaneous water secretion in T84 cells: effects of STa enterotoxin, bumetanide, VIP, forskolin, and A-23187.

    PubMed

    Toriano, R; Kierbel, A; Ramirez, M A; Malnic, G; Parisi, M

    2001-09-01

    The regulated Cl(-) secretory apparatus of T84 cells responds to several pharmacological agents via different second messengers (Ca(2+), cAMP, cGMP). However, information about water movements in T84 cells has not been available. In the absence of osmotic or chemical gradient, we observed a net secretory transepithelial volume flux (J(w) = -0.16 +/- 0.02 microl.min(-1).cm(-2)) in parallel with moderate short-circuit current values (I(sc) = 1.55 +/- 0.23 microA/cm(2)). The secretory J(w) reversibly reverted to an absorptive value when A-23187 was added to the serosal bath. Vasoactive intestinal polypeptide increased I(sc), but, unexpectedly, J(w) was not affected. Bumetanide, an inhibitor of basolateral Na(+)-K(+)-2Cl(-) cotransporter, completely blocked secretory J(w) with no change in I(sc). Conversely, serosal forskolin increased I(sc), but J(w) switched from secretory to absorptive values. Escherichia coli heat-stable enterotoxin increased secretory J(w) and I(sc). No difference between the absorptive and secretory unidirectional Cl(-) fluxes was observed in basal conditions, but after STa stimulation, a significant net secretory Cl(-) flux developed. We conclude that, under these conditions, the presence of secretory or absorptive J(w) values cannot be shown by I(sc) and ion flux studies. Furthermore, RT-PCR experiments indicate that aquaporins were not expressed in T84 cells. The molecular pathway for water secretion appears to be transcellular, moving through the lipid bilayer or, as recently proposed, through water-solute cotransporters.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, E.L.; Singh, J.C.; Jacobson, K.L.

    Cholinergic-mediated amylase release in mouse parotid acini was augmented by forskolin; the potency but not the maximal response to carbachol was altered. Amylase released by carbachol plus forskolin was dependent on extracellular calcium and was mimicked by the calcium ionophore, A23187 plus forskolin. Forskolin was also shown to enhance carbachol-stimulated /sup 45/Ca/sup 2 +/ uptake into isolated acini. Hydroxylamine, nitroprusside, and 8-bromo-c-GMP each in combination with forskolin mimicked the effects of carbachol plus forskolin on amylase release. In the presence of carbachol (10/sup -8/M) forskolin did not augment c-AMP levels. However, in the presence of carbachol (5 x 10/sup -7/more » M) or hydroxylamine (50 ..mu..M) forskolin did significantly augment c-AMP accumulation. These results suggest that calcium and c-GMP may mediate the augmentation of cholinergic-mediated amylase release by effects on c-AMP metabolism. 21 references, 1 figure, 3 tables.« less

  18. Cross-talk between Rho-associated kinase and cyclic nucleotide-dependent kinase signaling pathways in the regulation of smooth muscle myosin light chain phosphatase.

    PubMed

    Grassie, Michael E; Sutherland, Cindy; Ulke-Lemée, Annegret; Chappellaz, Mona; Kiss, Enikö; Walsh, Michael P; MacDonald, Justin A

    2012-10-19

    Ca(2+) sensitization of smooth muscle contraction depends upon the activities of protein kinases, including Rho-associated kinase, that phosphorylate the myosin phosphatase targeting subunit (MYPT1) at Thr(697) and/or Thr(855) (rat sequence numbering) to inhibit phosphatase activity and increase contractile force. Both Thr residues are preceded by the sequence RRS, and it has been suggested that phosphorylation at Ser(696) prevents phosphorylation at Thr(697). However, the effects of Ser(854) and dual Ser(696)-Thr(697) and Ser(854)-Thr(855) phosphorylations on myosin phosphatase activity and contraction are unknown. We characterized a suite of MYPT1 proteins and phosphospecific antibodies for specificity toward monophosphorylation events (Ser(696), Thr(697), Ser(854), and Thr(855)), Ser phosphorylation events (Ser(696)/Ser(854)) and dual Ser/Thr phosphorylation events (Ser(696)-Thr(697) and Ser(854)-Thr(855)). Dual phosphorylation at Ser(696)-Thr(697) and Ser(854)-Thr(855) by cyclic nucleotide-dependent protein kinases had no effect on myosin phosphatase activity, whereas phosphorylation at Thr(697) and Thr(855) by Rho-associated kinase inhibited phosphatase activity and prevented phosphorylation by cAMP-dependent protein kinase at the neighboring Ser residues. Forskolin induced phosphorylation at Ser(696), Thr(697), Ser(854), and Thr(855) in rat caudal artery, whereas U46619 induced Thr(697) and Thr(855) phosphorylation and prevented the Ser phosphorylation induced by forskolin. Furthermore, pretreatment with forskolin prevented U46619-induced Thr phosphorylations. We conclude that cross-talk between cyclic nucleotide and RhoA signaling pathways dictates the phosphorylation status of the Ser(696)-Thr(697) and Ser(854)-Thr(855) inhibitory regions of MYPT1 in situ, thereby regulating the activity of myosin phosphatase and contraction.

  19. T1alpha/podoplanin shows raft-associated distribution in mouse lung alveolar epithelial E10 cells.

    PubMed

    Barth, Kathrin; Bläsche, Robert; Kasper, Michael

    2010-01-01

    T1alpha/(podoplanin) is abundantly expressed in the alveolar epithelial type I cells (ATI) of rodent and human lungs. Caveolin-1 is a classical primary structural protein of plasmalemal invaginations, so-called caveolae, which represent specialized lipid rafts, and which are particularly abundant in ATI cells. The biological functions of T1alpha in the alveolar epithelium are unknown. Here we report on the characteristics of raft domains in the microplicae/microvillar protrusions of ATI cells, which contain T1alpha. Detergent resistant membranes (DRMs) from cell lysates of the mouse epithelial ATI-like cell line E10 were prepared using different detergents followed by flotation in a sucrose gradient and tested by Western and dot blots with raft markers (caveolin-1, GM1) and nonraft markers (transferrin receptor, PDI and beta-Cop). Immunocytochemistry was employed for the localization of T1alpha in E10 cells and in situ in rat lungs. Our biochemical results showed that the solubility or insolubility of T1alpha and caveolin-1 differs in Triton X-100 and Lubrol WX, two distinct non-ionic detergents. Caveolin-1 was unsoluble in both detergents, whereas T1alpha was Triton X-100 soluble but Lubrol WX insoluble. Immunofluorescence double stainings revealed that both proteins were colocalized with GM1, while caveolin-1 and T1alpha were not colocalized in the plasma membrane. Cholesterol depletion modified the segregation of T1alpha in Lubrol WX DRMs. Cellular processes in ultrathin sections of cultured mouse E10 cells were immunogold positive. Immunoelectron microscopy (postembedding) of rat lung tissue revealed the preferential localization of T1alpha on apical microvillar protrusions of ATI cells. We conclude that T1alpha and caveolin-1 are located in distinct plasma membrane microdomains, which differ in their protein-lipid interactions. The raft-associated distribution of T1alpha may have an impact on a specific, not yet clarified function of this protein in the

  20. Pendrin protein abundance in the kidney is regulated by nitric oxide and cAMP.

    PubMed

    Thumova, Monika; Pech, Vladimir; Froehlich, Otto; Agazatian, Diana; Wang, Xiaonan; Verlander, Jill W; Kim, Young Hee; Wall, Susan M

    2012-09-15

    Pendrin is a Cl(-)/HCO(3)(-) exchanger, expressed in the apical regions of some intercalated cell subtypes, and is critical in the pressor response to angiotensin II. Since angiotensin type 1 receptor inhibitors reduce renal pendrin protein abundance in mice in vivo through a mechanism that is dependent on nitric oxide (NO), we asked if NO modulates renal pendrin expression in vitro and explored the mechanism by which it occurs. Thus we quantified pendrin protein abundance by confocal fluorescent microscopy in cultured mouse cortical collecting ducts (CCDs) and connecting tubules (CNTs). After overnight culture, CCDs maintain their tubular structure and maintain a solute gradient when perfused in vitro. Pendrin protein abundance increased 67% in CNT and 53% in CCD when NO synthase was inhibited (N(G)-nitro-L-arginine methyl ester, 100 μM), while NO donor (DETA NONOate, 200 μM) application reduced pendrin protein by ∼33% in the CCD and CNT. When CNTs were cultured in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (10 μM), NO donors did not alter pendrin abundance. Conversely, pendrin protein abundance rose when cAMP content was increased by the application of an adenylyl cyclase agonist (forskolin, 10 μM), a cAMP analog (8-bromo-cAMP, 1 mM), or a phosphodiesterase inhibitor (BAY60-7550, 50 μM). Since NO reduces cellular cAMP in the CNT, we asked if NO reduces pendrin abundance by reducing cAMP. With blockade of cGMP-stimulated phosphodiesterase II, NO did not alter pendrin protein abundance. We conclude that NO acts through cAMP to reduce pendrin total protein abundance by enhancing cAMP degradation.

  1. Pendrin protein abundance in the kidney is regulated by nitric oxide and cAMP

    PubMed Central

    Thumova, Monika; Pech, Vladimir; Froehlich, Otto; Agazatian, Diana; Wang, Xiaonan; Verlander, Jill W.; Kim, Young Hee

    2012-01-01

    Pendrin is a Cl−/HCO3− exchanger, expressed in the apical regions of some intercalated cell subtypes, and is critical in the pressor response to angiotensin II. Since angiotensin type 1 receptor inhibitors reduce renal pendrin protein abundance in mice in vivo through a mechanism that is dependent on nitric oxide (NO), we asked if NO modulates renal pendrin expression in vitro and explored the mechanism by which it occurs. Thus we quantified pendrin protein abundance by confocal fluorescent microscopy in cultured mouse cortical collecting ducts (CCDs) and connecting tubules (CNTs). After overnight culture, CCDs maintain their tubular structure and maintain a solute gradient when perfused in vitro. Pendrin protein abundance increased 67% in CNT and 53% in CCD when NO synthase was inhibited (NG-nitro-l-arginine methyl ester, 100 μM), while NO donor (DETA NONOate, 200 μM) application reduced pendrin protein by ∼33% in the CCD and CNT. When CNTs were cultured in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (10 μM), NO donors did not alter pendrin abundance. Conversely, pendrin protein abundance rose when cAMP content was increased by the application of an adenylyl cyclase agonist (forskolin, 10 μM), a cAMP analog (8-bromo-cAMP, 1 mM), or a phosphodiesterase inhibitor (BAY60-7550, 50 μM). Since NO reduces cellular cAMP in the CNT, we asked if NO reduces pendrin abundance by reducing cAMP. With blockade of cGMP-stimulated phosphodiesterase II, NO did not alter pendrin protein abundance. We conclude that NO acts through cAMP to reduce pendrin total protein abundance by enhancing cAMP degradation. PMID:22811483

  2. Espins and the actin cytoskeleton of hair cell stereocilia and sensory cell microvilli

    PubMed Central

    Sekerková, Gabriella; Zheng, Lili; Loomis, Patricia A.; Mugnaini, Enrico; Bartles, James R.

    2008-01-01

    The espins are novel actin-bundling proteins that are produced in multiple isoforms from a single gene. They are present at high concentration in the parallel actin bundle of hair cell stereocilia and are the target of deafness mutations in mice and humans. Espins are also enriched in the microvilli of taste receptor cells, solitary chemoreceptor cells, vomeronasal sensory neurons and Merkel cells, suggesting that espins play important roles in the microvillar projections of vertebrate sensory cells. Espins are potent actin-bundling proteins that are not inhibited by Ca2+. In cells, they efficiently elongate parallel actin bundles and, thereby, help determine the steady-state length of microvilli and stereocilia. Espins bind actin monomer via their WH2 domain and can assemble actin bundles in cells. Certain espin isoforms can also bind phosphatidylinositol 4,5-bisphosphate, profilins or SH3 proteins. These biological activities distinguish espins from other actin-bundling proteins and may make them well-suited to sensory cells. PMID:16909209

  3. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells

    PubMed Central

    Schmid, Daniela; Zeis, Thomas; Schaeren-Wiemers, Nicole

    2014-01-01

    In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be modulated by forskolin. One of the strongest differentially regulated gene transcripts was the transcription factor Olig1 (oligodendrocyte transcription factor 1), whose mRNA expression levels were reduced in treated Schwann cells. Olig1 protein was localized in myelinating and nonmyelinating Schwann cells within the sciatic nerve as well as in primary Schwann cells, proposing it as a novel transcription factor of the Schwann cell lineage. Data analysis further revealed that a number of differentially expressed genes in forskolin-treated Schwann cells were associated with the ECM (extracellular matrix), underlining its importance during Schwann cell differentiation in vitro. Comparison of samples derived from postnatal sciatic nerves and from both treated and untreated Schwann cell cultures showed considerable differences in gene expression between in vivo and in vitro, allowing us to separate Schwann cell autonomous from tissue-related changes. The whole data set of the cell culture microarray study is provided to offer an interactive search tool for genes of interest. PMID:24641305

  4. The toxicity of a lipid transfer protein (Cc-LTP1) from Coffea canephora Seeds on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae).

    PubMed

    Zottich, Umberto; Da Cunha, Maura; Dias, Germana B; Rabelo, Guilherme R; Oliveira, Antonia Elenir A; Carvalho, André O; Fernandes, Kátia Valevski S; do Nascimento, Viviane V; Gomes, Valdirene M

    2014-10-01

    In this work, we analyzed the effects of coffee seed proteins, especially Cc-LTP1 on the larval development of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae), a bruchid pest of beans and the most important insect pest of Vigna unguiculata (L.) Walp. Artificial seed assay, which incorporated the F/0-90 fraction from Coffea canephora seeds, resulted in the reduction of oviposition and caused an inhibition of C. maculatus larval development in a dose-dependent manner. The F/0-90 fraction used at a 4 % concentration resulted in the survival of no larvae. The purified Cc-LTP1, at a concentration of 0.5 %, also demonstrated effective inhibition of larval development, reducing both females oviposition and the weight and number of larvae. Cc-LTP1 was also able to inhibit the C. maculatus gut α-amylase activity, and immunolabeling by an anti-LTP serum was observed in the midgut tissues of the C. maculatus larvae. Cc-LTP1 has shown binding affinity towards microvillar cells, endoplasmic reticulum and mitochondria, as demonstrated by micrographic images taken by a transmission electron microscope. The results from this study indicate that Cc-LTP1 has insecticidal actions toward C. maculatus and exerts anti-nutritional effects with direct actions on intestinal tissues.

  5. Lubiprostone activates Cl- secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84.

    PubMed

    Ao, Mei; Venkatasubramanian, Jayashree; Boonkaewwan, Chaiwat; Ganesan, Nivetha; Syed, Asma; Benya, Richard V; Rao, Mrinalini C

    2011-02-01

    Lubiprostone, used clinically (b.i.d.) to treat constipation, has been reported to increase transepithelial Cl(-) transport in T84 cells by activating ClC-2 channels. To identify the underlying signaling pathway, we explored the effects of short-term and overnight lubiprostone treatment on second messenger signaling and Cl(-) transport. Cl(-) transport was assessed either as I(sc) across T84 monolayers grown on Transwells and mounted in Ussing chambers or by the iodide efflux assay. [cAMP](i) was measured by enzyme immunoassay, and [Ca(2+)](i) by Fluo-3 fluorescence. Quantitation of apical cell surface CFTR protein levels was assessed by Western blotting and biotinylation with the EZ-Link Sulfo-NHS-LC-LC-Biotin. ClC-2 mRNA level was studied by RT-PCR. Lubiprostone and the cAMP stimulator, forskolin, caused comparable and maximal increases of I(sc) in T84 cells. The I(sc) effects of lubiprostone and forskolin were each suppressed if the tissue had previously been treated with the other agent. These responses were unaltered even if the monolayers were treated with lubiprostone overnight. Lubiprostone-induced increases in iodide efflux were ~80% of those obtained with forskolin. Lubiprostone increased [cAMP](i). H89, bumetanide, or CFTR(inh)-172 greatly attenuated lubiprostone-stimulated Cl(-) secretion, whereas the ClC-2 inhibitor CdCl(2) did not. Compared to controls, FSK-treatment increased membrane-associated CFTR by 1.9 fold, and lubiprostone caused a 2.6-fold increase in apical membrane CFTR as seen by immunoblotting following cell surface biotinylation. Lubiprostone activates Cl(-) secretion in T84 cells via cAMP, protein kinase A, and by increasing apical membrane CFTR protein.

  6. Inhibition of vascular smooth muscle growth via signaling crosstalk between AMP-activated protein kinase and cAMP-dependent protein kinase

    PubMed Central

    Stone, Joshua D.; Narine, Avinash; Tulis, David A.

    2012-01-01

    Abnormal vascular smooth muscle (VSM) growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP)-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remain unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells (VSMC), the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSMC migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashion. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth. PMID:23112775

  7. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.

    PubMed

    Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H

    2012-10-25

    Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in

  8. Interleukin 2 transcription factors as molecular targets of cAMP inhibition: delayed inhibition kinetics and combinatorial transcription roles

    PubMed Central

    1994-01-01

    Elevation of cAMP can cause gene-specific inhibition of interleukin 2 (IL-2) expression. To investigate the mechanism of this effect, we have combined electrophoretic mobility shift assays and in vivo genomic footprinting to assess both the availability of putative IL-2 transcription factors in forskolin-treated cells and the functional capacity of these factors to engage their sites in vivo. All observed effects of forskolin depended upon protein kinase A, for they were blocked by introduction of a dominant negative mutant subunit of protein kinase A. In the EL4.E1 cell line, we report specific inhibitory effects of cAMP elevation both on NF-kappa B/Rel family factors binding at -200 bp, and on a novel, biochemically distinct "TGGGC" factor binding at -225 bp with respect to the IL-2 transcriptional start site. Neither NF-AT nor AP-1 binding activities are detectably inhibited in gel mobility shift assays. Elevation of cAMP inhibits NF-kappa B activity with delayed kinetics in association with a delayed inhibition of IL-2 RNA accumulation. Activation of cells in the presence of forskolin prevents the maintenance of stable protein- DNA interactions in vivo, not only at the NF-kappa B and TGGGC sites of the IL-2 enhancer, but also at the NF-AT, AP-1, and other sites. This result, and similar results in cyclosporin A-treated cells, imply that individual IL-2 transcription factors cannot stably bind their target sequences in vivo without coengagement of all other distinct factors at neighboring sites. It is proposed that nonhierarchical, cooperative enhancement of binding is a structural basis of combinatorial transcription factor action at the IL-2 locus. PMID:8113685

  9. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    PubMed

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  10. CacyBP/SIP as a regulator of transcriptional responses in brain cells

    PubMed Central

    Kilanczyk, Ewa; Filipek, Anna; Hetman, Michal

    2014-01-01

    Summary The Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP) is highly expressed in the brain and was shown to regulate the β-catenin-driven transcription in thymocytes. Therefore, it was investigated whether in brain cells CacyBP/SIP might play a role as a transcriptional regulator. In BDNF- or forskolin-stimulated rat primary cortical neurons, overexpression of CacyBP/SIP enhanced transcriptional activity of the cAMP-response element (CRE). In addition, overexpressed CacyBP/SIP enhanced BDNF-mediated activation of the Nuclear Factor of Activated T-cells (NFAT) but not the Serum Response Element (SRE). These stimulatory effects required an intact C-terminal domain of CacyBP/SIP. Moreover, in C6 rat glioma cells, the overexpressed CacyBP/SIP enhanced activation of CRE- or NFAT- following forskolin- or serum stimulation, respectively. Conversely, knockdown of endogenous CacyBP/SIP reduced activation of CRE- and NFAT but not SRE. Taken together, these results indicate that CacyBP/SIP is a novel regulator of CRE- and NFAT-driven transcription. PMID:25163685

  11. Triphenyltin impairs a protein kinase A (PKA)-dependent increase of cytosolic Na{sup +} and Ca{sup 2+} and PKA-independent increase of cytosolic Ca{sup 2+} associated with insulin secretion in hamster pancreatic {beta}-cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Yoshikazu; Matsui, Hisao

    2006-11-01

    Oral administration of triphenyltin chloride (TPT) (60 mg/kg body weight) inhibits the insulin secretion by decreasing the cytoplasmic Ca{sup 2+} concentration ([Ca{sup 2+}] {sub i}) induced by glucose-dependent insulinotropic polypeptide (GIP) in pancreatic {beta}-cells of the hamster. To test the possibility that the abnormal level of [Ca{sup 2+}] {sub i} induced by TPT administration could be due to a defect in the cAMP-dependent cytoplasmic Na{sup +} concentration ([Na{sup +}] {sub i}) in the {beta}-cells, we investigated the effects of TPT administration on the changes of [Na{sup +}] {sub i} induced by GIP, glucagon-like peptide-1 (GLP-1), or forskolin, an activator ofmore » adenylyl cyclase, and on the changes of [Na{sup +}] {sub i} or [Ca{sup 2+}] {sub i} induced by 6-Bnz-cAMP, an activator of protein kinase A (PKA), and 8-pCPT-2'-O-Me-cAMP, an activator of Epac. The [Na{sup +}] {sub i} and [Ca{sup 2+}] {sub i} were measured in islet cells loaded with sodium-binding benzofuran isophthalate (SBFI) and fura-2, respectively. In the presence of 135 mM Na{sup +}, TPT administration significantly reduced the rise in [Na{sup +}] {sub i} by 10 nM GLP-1, 10 {mu}M forskolin, and 50 {mu}M 6-Bnz-cAMP, but had not effect in a Na{sup +}-free medium. In the presence of 135 mM Na{sup +}, TPT administration also reduced the rise in [Ca{sup 2+}] {sub i} by 8-pCPT-2'-O-Me-cAMP plus10 {mu}M H-89, a inhibitor of PKA, and 6-Bnz-cAMP. Moreover, TPT administration significantly reduced the insulin secretion by 2 mM db-cAMP, GLP-1, GIP, and 8-pCPT-2'-O-Me-cAMP with and without H-89, and that by 6-Bnz-cAMP and forskolin. Our study suggested that TPT has inhibitory effects on the cellular Ca{sup 2+} response due to a reduced Na{sup +} permeability through PKA-dependent mechanisms in hamster islet cells. Also TPT has the reduction of [Ca{sup 2+}] {sub i} related to Na{sup +}-dependent insulin secretion after an activation of Epac.« less

  12. Filamentous actin organization in the unfertilized sea urchin egg cortex.

    PubMed

    Henson, J H; Begg, D A

    1988-06-01

    We have investigated the organization of filamentous actin in the cortex of unfertilized eggs of the sea urchins Strongylocentrotus purpuratus and Lytechinus variegatus. Rhodamine phalloidin and anti-actin immunofluorescent staining of isolated cortices reveal a punctate pattern of fluorescent sources. Comparison of this pattern with SEM images of microvillar morphology and distribution indicates that filamentous actin in the cortex is predominantly localized in the microvilli. Thin-section TEM and quick-freeze deep-etch ultrastructure of isolated cortices demonstrates that this microvillar-associated actin is in a novel organizational state composed of very short filaments arranged in a tight network and that these filament networks form mounds that extend beyond the plane of the plasma membrane. Actin filaments within the networks do not exhibit free ends and make end-on attachments with the membrane only within the region of the evaginating microvilli. Myosin S-1 dissociable crosslinks, 2-3 nm in diameter, are observed between network filaments and between network filaments and the membrane. A second population of long, individual actin filaments is observed in close lateral association with the plasma membrane and frequently complexes with the microvillar actin networks. The filamentous actin of the unfertilized egg cortex may participate in establishing the mechanical properties of the egg surface and may function in nucleating the assembly of cortical actin following fertilization.

  13. Analysis of SOST expression using large minigenes reveals the MEF2C binding site in the evolutionarily conserved region (ECR5) enhancer mediates forskolin, but not 1,25-dihydroxyvitamin D3 or TGFβ1 responsiveness.

    PubMed

    St John, Hillary C; Hansen, Sydney J; Pike, J Wesley

    2016-11-01

    Transcribed from the SOST gene, sclerostin is an osteocyte-derived negative regulator of bone formation that inhibits osteoblastogenesis via antagonism of the Wnt pathway. Sclerostin is a promising therapeutic target for low bone mass diseases and neutralizing antibody therapies that target sclerostin are in development. Diverse stimuli regulate SOST including the vitamin D hormone, forskolin (Fsk), bone morphogenic protein 2 (BMP-2), oncostatin M (OSM), dexamethasone (Dex), and transforming growth factor (TGFβ 1 ). To explore the mechanisms by which these compounds regulate SOST expression, we examined their ability to regulate a SOST reporter minigene containing the entire SOST locus including the downstream regionor mutant minigenes containing a deletion of the -1kb to -2kb promoter proximal region (-1kb), ECR2, ECR5, or two point mutations in the MEF2 binding site of ECR5 (ECR5/MEF2). Previous reports suggest that both the PTH and TGFβ 1 effects on SOST are mediated through ECR5 and that the action of PTH is mediated specifically via the MEF2 binding site at ECR5. Consistent with these reports, the suppressive effects of Fsk were abrogated following both ECR5 deletion and ECR5/MEF2 mutation. In contrast, we found that TGFβ 1 negatively regulated SOST and that neither ECR5 nor ECR5/MEF2 was involved. Surprisingly, none of these four deletions/mutations abrogated the suppressive effects of the vitamin D hormone, OSM, Dex, or TGFβ 1 , or the positive effects of BMP-2. These data suggest that we need to move beyond ECR5 to understand SOST regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels

    PubMed Central

    Purves, Gregor I; Kamishima, Tomoko; Davies, Lowri M; Quayle, John M; Dart, Caroline

    2009-01-01

    Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2′-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 ± 4.7% inhibition (mean ±s.e.m.; n= 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2′-O-Me-cAMP caused a transient 171.0 ± 18.0 nm (n= 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2′-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow. PMID:19491242

  15. Protein Kinase Inhibitor γ reciprocally regulates osteoblast and adipocyte differentiation by downregulating Leukemia Inhibitory Factor

    PubMed Central

    Chen, Xin; Hausman, Bryan S.; Luo, Guangbin; Zhou, Guang; Murakami, Shunichi; Rubin, Janet; Greenfield, Edward M.

    2013-01-01

    The Protein Kinase Inhibitor (Pki) gene family inactivates nuclear PKA and terminates PKA-induced gene expression. We previously showed that Pkig is the primary family member expressed in osteoblasts and that Pkig knockdown increases the effects of parathyroid hormone and isoproterenol on PKA activation, gene expression, and inhibition of apoptosis. Here, we determined whether endogenous levels of Pkig regulate osteoblast differentiation. Pkig is the primary family member in MEFs, murine marrow-derived mesenchymal stem cells, and human mesenchymal stem cells. Pkig deletion increased forskolin-dependent nuclear PKA activation and gene expression and Pkig deletion or knockdown increased osteoblast differentiation. PKA signaling is known to stimulate adipogenesis; however, adipogenesis and osteogenesis are often reciprocally regulated. We found that the reciprocal regulation predominates over the direct effects of PKA since adipogenesis was decreased by Pkig deletion or knockdown. Pkig deletion or knockdown simultaneously increased osteogenesis and decreased adipogenesis in mixed osteogenic/adipogenic medium. Pkig deletion increased PKA-induced expression of Leukemia Inhibitory Factor (Lif) mRNA and LIF protein. LIF neutralizing antibodies inhibited the effects on osteogenesis and adipogenesis of either Pkig deletion in MEFs or PKIγ knockdown in both murine and human mesenchymal stem cells. Collectively, our results show that endogenous levels of Pkig reciprocally regulate osteoblast and adipocyte differentiation and that this reciprocal regulation is mediated in part by LIF. PMID:23963683

  16. The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies.

    PubMed

    Dostálová, Anna; Votýpka, Jan; Favreau, Amanda J; Barbian, Kent D; Volf, Petr; Valenzuela, Jesus G; Jochim, Ryan C

    2011-05-10

    Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. Leishmania development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female Phlebotomus perniciosus and compared the transcript expression profiles. A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (PperPer1), two chymotrypsin-like proteins (PperChym1 and PperChym2), a putative trypsin (PperTryp3) and four putative microvillar proteins (PperMVP1, 2, 4 and 5). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (PperTryp1 and PperTryp2), a chymotrypsin (PperChym3) and a microvillar protein (PperMVP3). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in Leishmania infantum-infected and uninfected sand flies, which identified the L. infantum-induced down regulation of PperTryp3 at 24 hours post-blood meal. This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of P. perniciosus, an important vector of visceral leishmaniasis in the Old World. Through the comparative

  17. PKA-induced receptor activator of NF-kappaB ligand (RANKL) expression in vascular cells mediates osteoclastogenesis but not matrix calcification.

    PubMed

    Tseng, Wendy; Graham, Lucia S; Geng, Yifan; Reddy, Aneela; Lu, Jinxiu; Effros, Rita B; Demer, Linda; Tintut, Yin

    2010-09-24

    Vascular calcification is a predictor of cardiovascular mortality and is prevalent in patients with atherosclerosis and chronic renal disease. It resembles skeletal osteogenesis, and many bone cells as well as bone-related factors involved in both formation and resorption have been localized in calcified arteries. Previously, we showed that aortic medial cells undergo osteoblastic differentiation and matrix calcification both spontaneously and in response to PKA agonists. The PKA signaling pathway is also involved in regulating bone resorption in skeletal tissue by stimulating osteoblast-production of osteoclast regulating cytokines, including receptor-activator of nuclear κB ligand (RANKL) and interleukins. Therefore, we investigated whether PKA activators regulate osteoclastogenesis in aortic smooth muscle cells (SMC). Treatment of murine SMC with the PKA agonist forskolin stimulated RANKL expression at both mRNA and protein levels. Forskolin also stimulated expression of interleukin-6 but not osteoprotegerin (OPG), an inhibitor of RANKL. Consistent with these results, osteoclastic differentiation was induced when monocytic preosteoclasts (RAW264.7) were cocultured with forskolin-treated aortic SMC. Oxidized phospholipids also slightly induced RANKL expression in T lymphocytes, another potential source of RANKL in the vasculature. Because previous studies have shown that RANKL treatment alone induces matrix calcification of valvular and vascular cells, we next examined whether RANKL mediates forskolin-induced matrix calcification by aortic SMC. RANKL inhibition with OPG had little or no effect on osteoblastic differentiation and matrix calcification of aortic SMC. These findings suggest that, as in skeletal tissues, PKA activation induces bone resorptive factors in the vasculature and that aortic SMC calcification specifically induced by PKA, is not mediated by RANKL.

  18. Comparison of alpha 1A- and alpha 1B-adrenoceptor coupling to inositol phosphate formation in rat kidney.

    PubMed

    Büscher, R; Erdbrügger, W; Philipp, T; Brodde, O E; Michel, M C

    1994-12-01

    We have compared the coupling mechanisms of rat renal alpha 1A- and alpha 1B-like adrenoceptors to inositol phosphate formation. The experiments were performed in parallel in native renal tissue preparations and in those where alpha 1B-adrenoceptors had been inactivated by treatment with 10 mumol/l chloroethylclonidine for 30 min at 37 degrees C; renal slices were used in most experiments but isolated renal cells were also used in some cases. The Ca2+ chelating agent, EGTA (5 mmol/l), reduced noradrenaline-stimulated inositol phosphate formation in native but enhanced it in chloroethylclonidine-treated renal slices. The inhibitory effect of EGTA was not mimicked by 100 nmol/l nifedipine. Inactivation of 87% of cellular Gi by 16-20 h treatment with 500 ng/ml pertussis toxin did not significantly affect noradrenaline-stimulated inositol phosphate formation in isolated renal cells but abolished the inhibitory effect of chloroethylclonidine. The adenylate cyclase activator, forskolin (20 mumol/l), inhibited noradrenaline-stimulated inositol phosphate formation in native and chloroethylclonidine-treated slices, and the inhibitory effects of chloroethylclonidine treatment and forskolin were additive. We conclude that in rat kidney inositol phosphate formation via alpha 1B-like adrenoceptors may involve the influx of extracellular Ca2+ and a pertussis toxin-sensitive G-protein but is insensitive to inhibition by forskolin. In contrast alpha 1A-like adrenoceptor-mediated inositol phosphate formation does not require the presence of extracellular Ca2+ or of Gi and is sensitive to inhibition by forskolin. In comparison to published data from other model systems we further conclude that the signaling mechanisms of alpha 1-adrenoceptor subtypes may depend on their cellular environment.

  19. Improvements in the Methodology for Analyzing Receptor Subtypes and Neuronal Populations Affected by Anticholinesterase Exposure.

    DTIC Science & Technology

    1984-11-14

    Slide-mounted tissue sections can be treated with [ H]forskolin (a diterpene plant derivative which is a potent activator of adenylate cyclase) to...protein activities are altered in response to the chronic presence of anticholinesterase agents. Significant progress and improvement has been made in...359 FILE COPY IMPROVEMENTS IN THE METHODOLOGY FOR ANALYZING RECEPTOR SUBTYPES AND NEURONAL POPULATIONS AFFECTED BY ANTICHOLINESTERASE EXPOSURE Annual

  20. Zinc attenuates forskolin-stimulated electrolyte secretion without involvement of the enteric nervous system in small intestinal epithelium from weaned piglets.

    PubMed

    Feng, Zike; Carlson, Dorthe; Poulsen, Hanne Damgaard

    2006-11-01

    In a previous study, we found that secretagogue-stimulated electrolyte secretion was attenuated by dietary and serosal zinc in piglet small intestinal epithelium in Ussing chambers. Several studies show that the enteric nervous system (ENS) is involved in regulation of electrolyte and/or fluid transport in intestinal epithelium from many species. The aim of the present study is to examine the mechanisms behind the attenuating effect of zinc on electrolyte secretion and to study whether the ENS is involved in this effect of zinc in vitro. Twenty-four piglets (six litters of four piglets) were allocated randomly to one of two dietary treatments consisting of a basic diet supplemented with 100 mg zinc/kg (Zn(100)) or 2500 mg zinc/kg (Zn(2500)), as ZnO. All the piglets were killed at 5-6 days after weaning and in vitro experiments with small intestinal epithelium in Ussing chambers were carried out. Furthermore, zinc, copper, alkaline phosphatase (AP) and metallothionein (MT) in mucosa, liver, and plasma were measured. These measurements showed that zinc status was increased in the Zn(2500) compared to the Zn(100) fed piglets. The in vitro studies did not confirm previous findings of attenuating effects of dietary zinc and zinc in vitro on the 5-HT induced secretion. But it showed that the addition of zinc at the serosal side attenuated the forskolin (FSK) (cAMP-dependent) induced ion secretion in epithelium from piglets fed with Zn(100) diet. Blocking the ENS with lidocaine or hexamethonium apparently slightly reduced this effect of zinc in vitro, but did not remove the effect of zinc. Consequently, it is suggested that zinc attenuates the cAMP dependent ion secretion mainly due to an effect on epithelial cells rather than affecting the mucosal neuronal pathway.

  1. Effect of prophylactic bronchodilator treatment with intravenous colforsin daropate, a water-soluble forskolin derivative, on airway resistance after tracheal intubation.

    PubMed

    Wajima, Zen'ichiro; Shiga, Toshiya; Yoshikawa, Tatsusuke; Ogura, Akira; Imanaga, Kazuyuki; Inoue, Tetsuo; Ogawa, Ryo

    2003-07-01

    After induction of anesthesia, lung resistance increases. The authors hypothesized that prophylactic bronchodilator treatment with intravenous colforsin daropate, a water-soluble forskolin derivative, before tracheal intubation would result in decreased lung resistance and increased lung compliance after tracheal intubation when compared with placebo medication. Forty-six adult patients were randomized to placebo or colforsin daropate treatment. Patients in the control group received normal saline; patients in the colforsin group received 0.75 microg. kg-1 x min-1 colforsin daropate intravenously until the study ended. Thirty minutes after the study began, the authors administered 5 mg/kg thiamylal and 5 microg/kg fentanyl for induction of general anesthesia and 0.3 mg/kg vecuronium for muscle relaxation. A 15-mg. kg-1. h-1 continuous infusion of thiamylal followed anesthetic induction. Four, 8, 12, and 16 min after tracheal intubation, mean airway resistance (R(awm)), expiratory airway resistance (R(awe)), and dynamic lung compliance (C(dyn)) were measured. Patients in the colforsin group had significantly lower R(awm) and R(awe) and higher C(dyn) after intubation than those in the control group. Differences in R(awm), R(awe), and C(dyn) between the two groups persisted through the final measurement at 16 min. At 4 min after intubation, smokers had a higher R(awm) and a lower C(dyn) than nonsmokers in the control group. After treatment by intravenous colforsin daropate, R(awm), R(awe), and C(dyn) values were similar for smokers and nonsmokers after tracheal intubation. Prophylactic treatment with colforsin daropate produced lower R(awm) and R(awe) and higher C(dyn) after tracheal intubation when compared with placebo medication. Pretreatment before intubation may be beneficial and advantageous for middle-aged smokers.

  2. Pharmacokinetics and a simulation model of colforsin daropate, new forskolin derivative inotropic vasodilator, in patients undergoing coronary artery bypass grafting.

    PubMed

    Kikura, Mutsuhito; Morita, Koji; Sato, Shigehito

    2004-03-01

    Colforsin daropate, a water-soluble forskolin derivative, is an adenyl cyclase activator with positive inotropic and vasodilatory effects that are useful in the treatment of ventricular dysfunction. We investigated the pharmacokinetics of colforsin daropate in cardiac surgery patients and performed simulations to determine the dosage necessary to maintain an effective plasma concentration following cardiopulmonary bypass. In six patients undergoing coronary artery bypass graft, colforsin daropate (0.01mgkg(-1)) was administered immediately after separation from cardiopulmonary bypass. Arterial blood was sampled over the next 16h and plasma concentrations of colforsin daropate and its initial active metabolite were determined by gas-chromatography. Extended nonlinear least-squares regression was used to fit a three-compartment model to each patient's data. Distribution half-life (t(1/2alpha)) was 3.9+/-1.1min, metabolic half-life (t(1/2beta)) was 1.9+/-0.7h, and elimination half-life (t(1/2gamma)) was 95.3+/-15.2h. Central-compartment volume was 591.0+/-42.8mlkg(-1), volume distribution was 2689.2+/-450.6mlkg(-1), and elimination clearance was 27.7+/-14.7mlkg(-1)min(-1). In the pharmacokinetic simulation model, 0.5, 0.75, and 1.0microgkg(-1)min(-1) continuous infusion of colforsin daropate produce effective concentration (5-10ngml(-1)) within 30, 20, and 10min, respectively following administration. An initial active metabolite of decreased rapidly to less than 1.0ngml(-1) within the first 10min.A colforsin daropate infusion of 0.7-1.0microgkg(-1)min(-1) for 10-20min followed by 0.5microgkg(-1)min(-1) continuous infusion is recommended to produce an effective concentration (5-10ngml(-1)) within 10-20min and to maintain a therapeutic concentration throughout the administration period after cardiopulmonary bypass.

  3. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice

    PubMed Central

    Blake, Camille B.

    2014-01-01

    Pathologies in which insulin is dysregulated, including diabetes, can disrupt central vagal circuitry, leading to gastrointestinal and other autonomic dysfunction. Insulin affects whole body metabolism through central mechanisms and is transported into the brain stem dorsal motor nucleus of the vagus (DMV) and nucleus tractus solitarius (NTS), which mediate parasympathetic visceral regulation. The NTS receives viscerosensory vagal input and projects heavily to the DMV, which supplies parasympathetic vagal motor output. Normally, insulin inhibits synaptic excitation of DMV neurons, with no effect on synaptic inhibition. Modulation of synaptic inhibition in DMV, however, is often sensitive to cAMP-dependent mechanisms. We hypothesized that an effect of insulin on GABAergic synaptic transmission may be uncovered by elevating resting cAMP levels in GABAergic terminals. We used whole cell patch-clamp recordings in brain stem slices from control and diabetic mice to identify insulin effects on inhibitory neurotransmission in the DMV in the presence of forskolin to elevate cAMP levels. In the presence of forskolin, insulin decreased the frequency of inhibitory postsynaptic currents (IPSCs) and the paired-pulse ratio of evoked IPSCs in DMV neurons from control mice. This effect was blocked by brefeldin-A, a Golgi-disrupting agent, or indinavir, a GLUT4 blocker, indicating that protein trafficking and glucose transport were involved. In streptozotocin-treated, diabetic mice, insulin did not affect IPSCs in DMV neurons in the presence of forskolin. Results suggest an impairment of cAMP-induced insulin effects on GABA release in the DMV, which likely involves disrupted protein trafficking in diabetic mice. These findings provide insight into mechanisms underlying vagal dysregulation associated with diabetes. PMID:24990858

  4. A forskolin derivative, colforsin daropate hydrochloride, inhibits the decrease in cortical renal blood flow induced by noradrenaline or angiotensin II in anesthetized rats.

    PubMed

    Ogata, Junichi; Minami, Kouichiro; Segawa, Kayoko; Uezono, Yasuhito; Shiraishi, Munehiro; Yamamoto, Chikako; Sata, Takeyoshi; Sung-Teh, Kim; Shigematsu, Akio

    2004-01-01

    A forskolin derivative, colforsin daropate hydrochloride (CDH), acts directly on adenylate cyclase to increase the intracellular cyclic adenosine monophosphate levels which produce a positive inotropic effect and a lower blood pressure. However, little is known about the effects of CDH on the renal function. We used laser Doppler flowmetry to measure the cortical renal blood flow (RBF) in male Wistar rats given a continuous intravenous infusion of CDH and evaluated the effects of CDH on the noradrenaline (NA) and angiotensin II (AngII) induced increases in blood pressure and reductions in RBF. Continuous intravenous administration of CDH at 0.25 microg/kg/min did not affect the mean arterial pressure (MAP), but increased heart rate and RBF. Continuous intravenous administration of CDH at high doses (0.5-0.75 microg/kg/min) decreased the MAP, with little effect on the RBF. The administration of exogenous NA (1.7 microg/kg) increased the MAP and decreased the RBF. However, a bolus injection of NA did not decrease the RBF during continuous intravenous administration of CDH, and CDH did not affect the NA-induced increase in MAP. The administration of exogenous AngII (100 ng/kg) increased MAP and decreased RBF and heart rate, but a bolus injection of AngII did not decrease RBF during continuous intravenous administration of CDH. These results suggest that CDH plays a protective role against the pressor effects and the decrease in RBF induced by NA or AngII. Copyright 2004 S. Karger AG, Basel

  5. Regulation of aromatase activity in bone-derived cells: possible role of mitogen-activated protein kinase.

    PubMed

    Shozu, M; Sumitani, H; Murakami, K; Segawa, T; Yang, H J; Inoue, M

    2001-12-01

    Fetal human osteoblast-like cells and the THP-1 cell line that differentiates into macrophage/osteoblast-like cells in the presence of Vitamin D3 and which possesses high aromatase activity, constitute a useful model with which to study the regulation of aromatase in bone. We showed that dexamethasone (DEX)-induced aromatase activity in the THP-1 cell line is completely suppressed by forskolin and by dibutyryl cAMP. We therefore investigated the contribution of mitogen-activated protein kinase (MAPK) to the regulation of aromatase, because cAMP inhibits MAPK in many cells. We examined the role of MAPK on aromatase activity using PD98059, a selective inhibitor of MEK-1. PD98059 (100 microM) reduced DEX+interleukin (IL)-1beta-induced aromatase activity in human osteoblast-like cells by more than 90%, whereas 50% of the aromatase mRNA concentration was retained compared with the control incubated with DEX+IL-1beta. PD98059 (50 microM) reduced the activity of aromatase in THP-1 cells by 80% without significantly affecting the mRNA level. These results indicated that MAPK plays an important role in aromatase activation at the post-transcriptional level.

  6. cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.

    PubMed

    Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin

    2009-09-01

    The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.

  7. Nigral dopamine type-1 receptors are reduced in Huntington's disease: A postmortem autoradiographic study using ( sup 3 H)SCH 23390 and correlation with ( sup 3 H)forskolin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filloux, F.; Wagster, M.V.; Folstein, S.

    1990-11-01

    Intrastriatal injection of excitatory amino acids, particularly quinolinic acid, has been proposed as an animal model of Huntington's disease. Such neurotoxic lesions of caudate-putamen result in marked dopamine type-1 (D1) receptor losses in the injected nuclei as well as in the ipsilateral substantia nigra pars reticulata. Postmortem human substantia nigra from Huntington's disease brains and from control brains were examined using in vitro autoradiography. A marked reduction in ({sup 3}H)SCH 23390 binding (labeling D1 receptors) in the substantia nigra of postmortem brains of Huntington's patients was identified, thus paralleling the alterations seen in the animal models. A positive, statistically significantmore » correlation was also encountered between D1 receptor binding (labeled by ({sup 3}H)SCH 23390) and ({sup 3}H)forskolin binding (which identifies adenylate cyclase, a second messenger system linked to D1 receptor activation). The results suggest that in the human--as in lower vertebrates--D1 receptors are located on striatonigral terminals and that D1 receptor loss tends to be paralleled by a reduction in adenylate cyclase. Radioactive agents selective for the D1 receptor may prove useful in future studies of Huntington's disease using positron emission tomography scanning.« less

  8. Measurement of adhesion of human platelets in plasma to protein surfaces in microplates.

    PubMed

    Eriksson, Andreas C; Whiss, Per A

    2005-01-01

    Platelet adhesion is an initial, crucial and complex event for inhibiting blood loss upon vascular injury. Activation and adhesion of platelets also play a fundamental role in the development of thrombosis. A combination of exposed extracellular matrix proteins in the vascular wall and release of activating compounds from the participating cells activate the platelets. New potent anti-platelet agents are in progress but there is a shortage of methods that measure the concerted action of adhesive surfaces and soluble compounds upon platelet adhesion in vitro. The aim of this work was to develop a method to measure adhesion of platelets in plasma with standard laboratory equipment. Platelet-rich plasma from healthy humans was used in studies to optimise the conditions of the present assay. Different proteins were coated in microplate wells and various soluble platelet activators and inhibitors were added to establish the ability of the current method to detect increased as well as decreased platelet adhesion. The amount of platelet adhesion was measured by the reaction between p-nitrophenyl phosphate and the intracellular enzyme acid phosphatase. Adhesion of platelets in plasma to microplate wells coated with albumin, collagen, fibrinogen and activated plasma showed significant surface dependency. The known soluble platelet activators adenosine diphosphate, adrenaline and ristocetin enhanced the levels of adhesion. Available anti-platelet agents such as prostacyclin, forskolin, acetylsalicylic acid and RGD containing peptides caused dose-dependent inhibition of platelet adhesion. This report describes a further development of a previously described method and offers the advantage to use platelets in plasma to measure platelet adhesion to protein surfaces. The assay is simple and flexible and is suitable in basic research for screening and characterisation of platelet adhesion responsiveness.

  9. Aquaporin 3 expression in human fetal membranes and its up-regulation by cyclic adenosine monophosphate in amnion epithelial cell culture.

    PubMed

    Wang, Shengbiao; Amidi, Fataneh; Beall, Marie; Gui, Lizhen; Ross, Michael G

    2006-04-01

    The cell membrane water channel protein aquaporins (AQPs) may be important in regulating the intramembranous (IM) pathway of amniotic fluid (AF) resorption. The objective of the present study was to determine whether aquaporin 3 (AQP3) is expressed in human fetal membranes and to further determine if AQP3 expression in primary human amnion cell culture is regulated by second-messenger cyclic adenosine monophosphate (cAMP). AQP3 expression in human fetal membranes of normal term pregnancy was studied by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). To determine the effect of cAMP on AQP3 expression, primary human amnion cell cultures were treated in either heat-inactivated medium alone (control), or heat-inactivated medium containing: (1) SP-cAMP, a membrane-permeable and phosphodiesterase resistant cAMP agonist, or (2) forskolin, an adenylate cyclase stimulator. Total RNA was isolated and multiplex real-time RT-PCR employed for relative quantitation of AQP3 expression. We detected AQP3 expression in placenta, chorion, and amnion using RT-PCR. Using IHC, we identified AQP3 protein expression in placenta syncytiotrophoblasts and cytotrophoblasts, chorion cytotrophoblasts, and amnion epithelia. In primary amnion epithelial cell culture, AQP3 mRNA significantly increased at 2 hours following forskolin or SP-cAMP, remained elevated at 10 hours following forskolin, and returned to baseline levels by 20 hours following treatment. This study provides evidence of AQP3 expression in human fetal membranes and demonstrates that AQP3 expression in primary human amnion cell culture is up-regulated by second-messenger cAMP. As AQP3 is permeable to water, urea, and glycerol, modulation of its expression in fetal membranes may contribute to AF homeostasis.

  10. Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn

    PubMed Central

    Lakshminrusimha, Satyan; Porta, Nicolas F. M.; Farrow, Kathryn N.; Chen, Bernadette; Gugino, Sylvia F.; Kumar, Vasanth H.; Russell, James A.; Steinhorn, Robin H.

    2009-01-01

    Prostacyclin is a pulmonary vasodilator and is produced by prostacyclin synthase and stimulates adenylate cyclase (AC) via the prostacyclin receptor (IP) to produce cAMP. Forskolin is a direct stimulant of AC. Phosphodiesterase 3 hydrolyzes cAMP and is inhibited by milrinone. Objective To characterize the prostacyclin-AC-cAMP pathway in the ovine ductal ligation model of persistent pulmonary hypertension of the newborn (PPHN). Setting University-based laboratory animal facility. Subjects Lambs delivered to time-dated pregnant ewes. Interventions Fifth generation pulmonary arteries (PA) and lung parenchyma were isolated from control fetal lambs (n = 8) and fetal lambs with PPHN induced by antenatal ductal ligation (n = 9). We studied relaxation responses to various agonists (milrinone, forskolin, prostacyclin, and iloprost, a prostacyclin analog) that increase cAMP in PA after half-maximal constriction with norepinephrine and pretreatment with propranolol ± indo-methacin. Lung protein levels of prostacyclin synthase, IP, AC2, and phosphodiesterase 3A were analyzed by Western blot and cAMP by enzyme-linked immunoassay. Main Results Milrinone relaxed control and PPHN PA and pretreatment with indomethacin significantly impaired this response. Relaxation to milrinone, prostacyclin, and iloprost were significantly impaired in PA from PPHN lambs. Pretreatment with milrinone markedly enhanced relaxation to prostacyclin and iloprost in PPHN PA, similar to relaxation in control PA. Relaxation to forskolin was similar in control and PPHN PAs indicating normal AC activity. Protein levels of prostacyclin synthase and IP were decreased in PPHN lungs compared with control, but AC2, cAMP, and phosphodiesterase 3A remained unchanged. Conclusions Prostacyclin and iloprost are dilators of PAs from PPHN lambs and their effect is enhanced by milrinone. This combination therapy may be an effective strategy in the management of patients with PPHN. PMID:19057444

  11. Pharmacological characterization of human recombinant melatonin mt1 and MT2 receptors

    PubMed Central

    Browning, Christopher; Beresford, Isabel; Fraser, Neil; Giles, Heather

    2000-01-01

    We have pharmacologically characterized recombinant human mt1 and MT2 receptors, stably expressed in Chinese hamster ovary cells (CHO-mt1 and CHO-MT2), by measurement of [3H]-melatonin binding and forskolin-stimulated cyclic AMP (cAMP) production. [3H]-melatonin bound to mt1 and MT2 receptors with pKD values of 9.89 and 9.56 and Bmax values of 1.20 and 0.82 pmol mg−1 protein, respectively. Whilst most melatonin receptor agonists had similar affinities for mt1 and MT2 receptors, a number of putative antagonists had substantially higher affinities for MT2 receptors, including luzindole (11 fold), GR128107 (23 fold) and 4-P-PDOT (61 fold). In both CHO-mt1 and CHO-MT2 cells, melatonin inhibited forskolin-stimulated accumulation of cyclic AMP in a concentration-dependent manner (pIC50 9.53 and 9.74, respectively) causing 83 and 64% inhibition of cyclic AMP production at 100 nM, respectively. The potencies of a range of melatonin receptor agonists were determined. At MT2 receptors, melatonin, 2-iodomelatonin and 6-chloromelatonin were essentially equipotent, whilst at the mt1 receptor these agonists gave the rank order of potency of 2-iodomelatonin>melatonin>6-chloromelatonin. In both CHO-mt1 and CHO-MT2 cells, melatonin-induced inhibition of forskolin-stimulated cyclic AMP production was antagonized in a concentration-dependent manner by the melatonin receptor antagonist luzindole, with pA2 values of 5.75 and 7.64, respectively. Melatonin-mediated responses were abolished by pre-treatment of cells with pertussis toxin, consistent with activation of Gi/Go G-proteins. This is the first report of the use of [3H]-melatonin for the characterization of recombinant mt1 and MT2 receptors. Our results demonstrate that these receptor subtypes have distinct pharmacological profiles. PMID:10696085

  12. Decreased glucagon responsiveness by bile acids: a role for protein kinase Calpha and glucagon receptor phosphorylation.

    PubMed

    Ikegami, Tadashi; Krilov, Lada; Meng, Jianping; Patel, Bhumika; Chapin-Kennedy, Kelli; Bouscarel, Bernard

    2006-11-01

    Dihydroxy bile acids like chenodeoxycholic acid (CDCA) induce heterologous glucagon receptor desensitization. We previously demonstrated that protein kinase C (PKC) was activated by certain bile acids and mediated the CDCA-induced decrease in glucagon responsiveness. The aim of the present study was to explore the role of PKC in the phosphorylation and desensitization of the glucagon receptor by CDCA. Desensitization was evaluated by measuring adenylyl cyclase activity. Receptor phosphorylation was assayed by metabolic labeling with [gamma-(32)P] ATP. Protein kinase C (PKC) translocation and activation was visualized by fluorescence microscopy. CDCA decreased cAMP production induced by glucagon in a dose-dependent manner without affecting cAMP synthesis through stimulation of either stimulatory GTP-binding protein (Gs) by NaF or adenylyl cyclase by forskolin. The CDCA-induced inhibition of adenylyl cyclase activity was potentiated by the phosphatase inhibitor, okadaic acid. The desensitizing effect of CDCA was bile acid-specific and was significantly reduced in the presence of PKC inhibitors and after PKC down-regulation by phorbol 12-myristate 13-acetate. CDCA increased glucagon receptor phosphorylation more than 3-fold at concentrations as low as 25 mum. Furthermore, CDCA significantly stimulated human recombinant PKCalpha autophosphorylation in vitro, as well as PKCalpha translocation to the plasma membrane and phosphorylation in vivo at concentrations as low as 25 mum. CDCA also stimulated PKCdelta translocation to the perinuclear region. Activated PKCalpha, PKCzeta, and to a lesser extent, PKCdelta, phosphorylated the glucagon receptor in vitro. This study demonstrates that certain bile acids, such as CDCA, stimulate phosphorylation and heterologous desensitization of the glucagon receptor, involving at least PKCalpha activation.

  13. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niles, L.P.; Hashemi, F.

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax =more » 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.« less

  14. Luteinizing hormone stimulates mammalian target of rapamycin signaling in bovine luteal cells via pathways independent of AKT and mitogen-activated protein kinase: modulation of glycogen synthase kinase 3 and AMP-activated protein kinase.

    PubMed

    Hou, Xiaoying; Arvisais, Edward W; Davis, John S

    2010-06-01

    LH stimulates the production of cAMP in luteal cells, which leads to the production of progesterone, a hormone critical for the maintenance of pregnancy. The mammalian target of rapamycin (MTOR) signaling cascade has recently been examined in ovarian follicles where it regulates granulosa cell proliferation and differentiation. This study examined the actions of LH on the regulation and possible role of the MTOR signaling pathway in primary cultures of bovine corpus luteum cells. Herein, we demonstrate that activation of the LH receptor stimulates the phosphorylation of the MTOR substrates ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1. The actions of LH were mimicked by forskolin and 8-bromo-cAMP. LH did not increase AKT or MAPK1/3 phosphorylation. Studies with pathway-specific inhibitors demonstrated that the MAPK kinase 1 (MAP2K1)/MAPK or phosphatidylinositol 3-kinase/AKT signaling pathways were not required for LH-stimulated MTOR/S6K1 activity. However, LH decreased the activity of glycogen synthase kinase 3Beta (GSK3B) and AMP-activated protein kinase (AMPK). The actions of LH on MTOR/S6K1 were mimicked by agents that modulated GSK3B and AMPK activity. The ability of LH to stimulate progesterone secretion was not prevented by rapamycin, a MTOR inhibitor. In contrast, activation of AMPK inhibited LH-stimulated MTOR/S6K1 signaling and progesterone secretion. In summary, the LH receptor stimulates a unique series of intracellular signals to activate MTOR/S6K1 signaling. Furthermore, LH-directed changes in AMPK and GSK3B phosphorylation appear to exert a greater impact on progesterone synthesis in the corpus luteum than rapamycin-sensitive MTOR-mediated events.

  15. A New Therapeutic Strategy for Autosomal Dominant Polycystic Kidney Disease: Activation of AMP Kinase by Metformin

    DTIC Science & Technology

    2011-07-01

    control MDCK cells treated with IBMX and forskolin and then CFTR-Inh172 at the indicated times is shown. (c) A similar representative trace of mock...initiate CFTR-mediated secretion, CFTR-expressing and mock-transduced MDCK cells were treated with the cAMP agonists IBMX and forskolin , and the...2c. In CFTR-expressing cells there was generally an early peak in Isc within 1-2 min following forskolin /IBMX treatment, followed by a lower plateau

  16. Targeting Epithelial Cell Migration to Accelerate Wound Healing

    DTIC Science & Technology

    2012-02-01

    the presence and absence of forskolin to stimulate PKA. As seen in figure 10 cells depleted of Rsu1 and PINCH1 exhibit elevated phospho-VASP(ser157)at...a site of PKA and PKC phosphorylation even in the absence of cAMP increase and PKA activation by forskolin treatment. This indicates that RIPP...transfection were harvested with or without a 15 minutes exposure to forskolin (20 M). Blots were reacted with anti- phosphoVASP specific for serine 157

  17. cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption

    PubMed Central

    Harford, Terri J.; Linfield, Debra T.; Altawallbeh, Ghaith; Midura, Ronald J.; Ivanov, Andrei I.; Piedimonte, Giovanni

    2017-01-01

    Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches. PMID:28759570

  18. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway.

    PubMed

    Huang, Wen-Chin; Xie, Zhihui; Konaka, Hiroyuki; Sodek, Jaro; Zhau, Haiyen E; Chung, Leland W K

    2005-03-15

    Osteocalcin and bone sialoprotein are the most abundant noncollagenous bone matrix proteins expressed by osteoblasts. Surprisingly, osteocalcin and bone sialoprotein are also expressed by malignant but not normal prostate epithelial cells. The purpose of this study is to investigate how osteocalcin and bone sialoprotein expression is regulated in prostate cancer cells. Our investigation revealed that (a) human osteocalcin and bone sialoprotein promoter activities in an androgen-independent prostate cancer cell line of LNCaP lineage, C4-2B, were markedly enhanced 7- to 12-fold in a concentration-dependent manner by conditioned medium collected from prostate cancer and bone stromal cells. (b) Deletion analysis of human osteocalcin and bone sialoprotein promoter regions identified cyclic AMP (cAMP)-responsive elements (CRE) as the critical determinants for conditioned medium-mediated osteocalcin and bone sialoprotein gene expression in prostate cancer cells. Consistent with these results, the protein kinase A (PKA) pathway activators forskolin and dibutyryl cAMP and the PKA pathway inhibitor H-89, respectively, increased or repressed human osteocalcin and bone sialoprotein promoter activities. (c) Electrophoretic mobility shift assay showed that conditioned medium-mediated stimulation of human osteocalcin and bone sialoprotein promoter activities occurs through increased interaction between CRE and CRE-binding protein. (d) Conditioned medium was found to induce human osteocalcin and bone sialoprotein promoter activities via increased CRE/CRE-binding protein interaction in a cell background-dependent manner, with marked stimulation in selected prostate cancer but not bone stromal cells. Collectively, these results suggest that osteocalcin and bone sialoprotein expression is coordinated and regulated through cAMP-dependent PKA signaling, which may define the molecular basis of the osteomimicry exhibited by prostate cancer cells.

  19. Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus.

    PubMed

    Peinado, Gabriel; Osorno, Tomás; Gomez, María del Pilar; Nasi, Enrico

    2015-06-23

    Melanopsin, the photopigment of the "circadian" receptors that regulate the biological clock and the pupillary reflex in mammals, is homologous to invertebrate rhodopsins. Evidence supporting the involvement of phosphoinositides in light-signaling has been garnered, but the downstream effectors that control the light-dependent conductance remain unknown. Microvillar photoreceptors of the primitive chordate amphioxus also express melanopsin and transduce light via phospholipase-C, apparently not acting through diacylglycerol. We therefore examined the role of calcium in activating the photoconductance, using simultaneous, high time-resolution measurements of membrane current and Ca(2+) fluorescence. The light-induced calcium rise precedes the onset of the photocurrent, making it a candidate in the activation chain. Moreover, photolysis of caged Ca elicits an inward current of similar size, time course and pharmacology as the physiological photoresponse, but with a much shorter latency. Internally released calcium thus emerges as a key messenger to trigger the opening of light-dependent channels in melanopsin-expressing microvillar photoreceptors of early chordates.

  20. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    PubMed Central

    Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades. PMID:25928058

  1. cAMP Stimulates Transepithelial Short-Circuit Current and Fluid Transport Across Porcine Ciliary Epithelium.

    PubMed

    Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai

    2016-12-01

    To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.

  2. Effects of Helicobacter pylori Infection on the Expressions and Functional Activities of Human Duodenal Mucosal Bicarbonate Transport Proteins.

    PubMed

    Wen, Guorong; Jin, Hai; Deng, Shili; Xu, Jingyu; Liu, Xuemei; Xie, Rui; Tuo, Biguang

    2016-12-01

    The mechanisms for Helicobacter pylori (H. pylori)-induced duodenal ulcerogenesis are not fully understood. In this study, we investigated the effects of H. pylori infection on the expressions and functional activities of human duodenal mucosal bicarbonate transport proteins and hope to further clarify the pathogenesis of H. pylori-associated duodenal ulcer. The experiments were performed in the patients with H. pylori-associated duodenal ulcers, H. pylori-associated chronic gastritis, and H. pylori-negative healthy subjects. Duodenal mucosal bicarbonate secretion was measured by Ussing Chamber technology. The expressions of duodenal mucosal bicarbonate transport proteins, CFTR (cystic fibrosis transmembrane conductance regulator) and SLC26A6 (solute-linked carrier 26 gene A6), in the patients with H. pylori-associated duodenal ulcers were markedly lower than those in healthy controls. Basal and both forskolin- and prostaglandin E 2 -stimulated duodenal mucosal bicarbonate secretions in the patients with H. pylori-associated duodenal ulcers were also lower than those in healthy controls. After anti-H. pylori treatment for H. pylori-associated duodenal ulcers, duodenal mucosal bicarbonate secretion and CFTR and SLC26A6 expressions in H. pylori-eradicated patients recovered to levels comparable to healthy controls, but those were found to be not significantly altered in non-H. pylori-eradicated patients. The further results showed that decreases in the H. pylori-induced CFTR and SLC26A6 expression were related to the severity and virulent factors of H. pylori infection. H. pylori infection impairs the expressions and functional activities of duodenal mucosal bicarbonate transport proteins, CFTR and SLC26A6, which contributes to the development of duodenal ulcer. © 2016 John Wiley & Sons Ltd.

  3. Lgr4 Protein Deficiency Induces Ataxia-like Phenotype in Mice and Impairs Long Term Depression at Cerebellar Parallel Fiber-Purkinje Cell Synapses*

    PubMed Central

    Guan, Xin; Duan, Yanhong; Zeng, Qingwen; Pan, Hongjie; Qian, Yu; Li, Dali; Cao, Xiaohua; Liu, Mingyao

    2014-01-01

    Cerebellar dysfunction causes ataxia characterized by loss of balance and coordination. Until now, the molecular and neuronal mechanisms of several types of inherited cerebellar ataxia have not been completely clarified. Here, we report that leucine-rich G protein-coupled receptor 4 (Lgr4/Gpr48) is highly expressed in Purkinje cells (PCs) in the cerebellum. Deficiency of Lgr4 leads to an ataxia-like phenotype in mice. Histologically, no obvious morphological changes were observed in the cerebellum of Lgr4 mutant mice. However, the number of PCs was slightly but significantly reduced in Lgr4−/− mice. In addition, in vitro electrophysiological analysis showed an impaired long term depression (LTD) at parallel fiber-PC (PF-PC) synapses in Lgr4−/− mice. Consistently, immunostaining experiments showed that the level of phosphorylated cAMP-responsive element-binding protein (Creb) was significantly decreased in Lgr4−/− PCs. Furthermore, treatment with forskolin, an adenylyl cyclase agonist, rescued phospho-Creb in PCs and reversed the impairment in PF-PC LTD in Lgr4−/− cerebellar slices, indicating that Lgr4 is an upstream regulator of Creb signaling, which is underlying PF-PC LTD. Together, our findings demonstrate for first time an important role for Lgr4 in motor coordination and cerebellar synaptic plasticity and provide a potential therapeutic target for certain types of inherited cerebellar ataxia. PMID:25063812

  4. cAMP-Mediated Stimulation of Tyrosine Hydroxylase mRNA Translation Is Mediated by Polypyrimidine-Rich Sequences within Its 3′-Untranslated Region and Poly(C)-Binding Protein 2

    PubMed Central

    Xu, Lu; Sterling, Carol R.

    2009-01-01

    Tyrosine hydroxylase (TH) plays a critical role in maintaining the appropriate concentrations of catecholamine neurotransmitters in brain and periphery, particularly during long-term stress, long-term drug treatment, or neurodegenerative diseases. Its expression is controlled by both transcriptional and post-transcriptional mechanisms. In a previous report, we showed that treatment of rat midbrain slice explant cultures or mouse MN9D cells with cAMP analog or forskolin leads to induction of TH protein without concomitant induction of TH mRNA. We further showed that cAMP activates mechanisms that regulate TH mRNA translation via cis-acting sequences within its 3′-untranslated region (UTR). In the present report, we extend these studies to show that MN9D cytoplasmic proteins bind to the same TH mRNA 3′-UTR domain that is required for the cAMP response. RNase T1 mapping demonstrates binding of proteins to a 27-nucleotide polypyrimidine-rich sequence within this domain. A specific mutation within the polypyrimidine-rich sequence inhibits protein binding and cAMP-mediated translational activation. UV-cross-linking studies identify a ∼44-kDa protein as a major TH mRNA 3′-UTR binding factor, and cAMP induces the 40- to 42-kDa poly(C)-binding protein-2 (PCBP2) in MN9D cells. We show that PCBP2 binds to the TH mRNA 3′-UTR domain that participates in the cAMP response. Overexpression of PCBP2 induces TH protein without concomitant induction of TH mRNA. These results support a model in which cAMP induces PCBP2, leading to increased interaction with its cognate polypyrimidine binding site in the TH mRNA 3′-UTR. This increased interaction presumably plays a role in the activation of TH mRNA translation by cAMP in dopaminergic neurons. PMID:19620256

  5. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC1-alpha

    DTIC Science & Technology

    2009-02-01

    media or incubated with Forskolin and dexamethasone for 4 hours. Finally, cells were incubated with insulin for 2h. 0.0 0.5 1.0 1.5 0.0 1.0 2.0 3.0 4.0...depletion decreases its own endogenous mRNA levels. We mimicked the fed/fasting response by using insulin (fed) and forskolin and dexamethasone (that...expression of GK or LPK (Fig. 3). As a control we show that under forskolin /dexamethasone treatment expression of both genes as strongly decreased as

  6. Regulation of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of MMP, and progesterone secretion in luteinized granulosa cells from normally ovulating women with polycystic ovary disease.

    PubMed

    Ben-Shlomo, Izhar; Goldman, Shlomit; Shalev, Eliezer

    2003-03-01

    To investigate the regulation of MMP-9, TIMP-1, and progesterone via three signal transduction pathways in luteinized granulosa cells from normal ovulatory and PCOD women. In vitro study. Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Hospital, Afula, Israel. Ten normal ovulatory and 10 women with polycystic ovary disease (PCOD) treated in an assisted reproduction program. Cultured cells were exposed to phorbol 12-myristate 13-acetate (TPA), acting via protein kinase C (PKC), to epidermal growth factor (EGF), acting via protein tyrosine kinase (PTK), and to forskolin, acting via protein kinase A (PKA). Secretion of MMP-9, TIMP-1, and progesterone. Phorbol 12-myristate 13-acetate elicited an increase in MMP-9 and TIMP-1 secretion in both groups and apparently did not affect progesterone secretion. Epidermal growth factor did not change significantly neither MMP-9 nor TIMP-1 secretion but dose dependently decreased MMP-9-TIMP-1 ratio and increased progesterone secretion in the PCOD group. Forskolin inhibited MMP-9 activity and increased TIMP-1 and progesterone secretion in both groups. Progesterone production was inversely related to the ratio of MMP-9-TIMP-1 regardless of cell origin. In this preliminary study, similar and divergent patterns have emerged in the regulation of MMP-9 and TIMP-1 in human luteinized granulosa cells. Repressing MMP-9-TIMP-1 ratio may have an important modulatory effect on progesterone secretion.

  7. Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2.

    PubMed

    Condie, R; Herring, A; Koh, W S; Lee, M; Kaminski, N E

    1996-05-31

    Cannabinoid receptors negatively regulate adenylate cyclase through a pertussis toxin-sensitive GTP-binding protein. In the present studies, signaling via the adenylate cyclase/cAMP pathway was investigated in the murine thymoma-derived T-cell line, EL4.IL-2. Northern analysis of EL4.IL-2 cells identified the presence of 4-kilobase CB2 but not CB1 receptor-subtype mRNA transcripts. Southern analysis of genomic DNA digests for the CB2 receptor demonstrated identical banding patterns for EL4.IL-2 cells and mouse-derived DNA, both of which were dissimilar to DNA isolated from rat. Treatment of EL4.IL-2 cells with either cannabinol or Delta9-THC disrupted the adenylate cyclase signaling cascade by inhibiting forskolin-stimulated cAMP accumulation which consequently led to a decrease in protein kinase A activity and the binding of transcription factors to a CRE consensus sequence. Likewise, an inhibition of phorbol 12-myristate 13-acetate (PMA)/ionomycin-induced interleukin 2 (IL-2) protein secretion, which correlated to decreased IL-2 gene transcription, was induced by both cannabinol and Delta9-THC. Further, cannabinoid treatment also decreased PMA/ionomycin-induced nuclear factor binding to the AP-1 proximal site of the IL-2 promoter. Conversely, forskolin enhanced PMA/ionomycin-induced AP-1 binding. These findings suggest that inhibition of signal transduction via the adenylate cyclase/cAMP pathway induces T-cell dysfunction which leads to a diminution in IL-2 gene transcription.

  8. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1

    PubMed Central

    Mao, Yang; Resende, Mafalda; Daugaard, Mads; Riis Kristensen, Anders; Damm, Peter; G. Theander, Thor; R. Hansson, Stefan; Salanti, Ali

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. PMID:27556547

  9. A large contribution of a cyclic AMP-independent pathway to turtle olfactory transduction

    PubMed Central

    1994-01-01

    Although multiple pathways are involved in the olfactory transduction mechanism, cAMP-dependent pathway has been considered to contribute mainly to the transduction. We examined the degree of contribution of cAMP-independent pathway to the turtle olfactory response by recording inward currents from isolated cells, nerve impulses from cilia and olfactory bulbar responses. The results obtained by the three recordings were essentially consistent with each other, but detail studies were carried out by recording the bulbar response to obtain quantitative data. Application of an odorant cocktail to the isolated olfactory neuron after injection of 1 mM cAMP from the patch pipette elicited a large inward current. Mean amplitude of inward currents evoked by the cocktail with 1 mM cAMP in the patch pipette was similar to that without cAMP in the pipette. Application of the cocktail after the response to 50 microM forskolin was adapted also induced a large inward current. Application of the odorant cocktail to the olfactory epithelium, after the response to 50 microM forskolin was adapted, brought about an appreciable increase in the impulse frequency. The bulbar response to forskolin alone reached a saturation level around 10 microM. After the response to 50 microM forskolin was adapted, 11 species of odorants were applied to the olfactory epithelium. The magnitudes of responses to the odorants after forskolin were 45-80% of those of the control responses. There was no essential difference in the degree of the suppression by forskolin between cAMP- and IP3- producing odorants classified in the rat, suggesting that certain part of the forskolin-suppressive component was brought about by nonspecific action of forskolin. Application of a membrane permeant cAMP analogue, cpt-cAMP elicited a large response, and 0.1 mM citralva after 3 mM cpt- cAMP elicited 51% of the control response which was close to the response to citralva after 50 microM forskolin. A membrane permeant c

  10. Isolation of an inhibitory insulin-like growth factor (IGF) binding protein from bone cell-conditioned medium: A potential local regulator of IGF action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, S.; Bautista, C.M.; Wergedal, J.

    1989-11-01

    Inhibitory insulin-like growth factor binding protein (In-IGF-BP) has been purified to homogeneity from medium conditioned by TE89 human osteosarcoma cells by two different methods using Sephadex G-100 gel filtration, FPLC Mono Q ion-exchange, HPLC C{sub 4} reverse-phase, HPLC CN reverse-phase and affinity chromatographies. In-IGF-BP thus purified appeared to be homogeneous and unique by the following criteria. (i) N-terminal sequence analysis yielded a unique sequence (Asp-Glu-Ala-Ile-His-Cys-Pro-Pro-Glu-Ser-Glu-Ala-Lys-Leu-Ala). (ii) Amino acid composition of In-IGF-BP revealed marked differences with the amino acid compositions of other known PBs. (iii) In-IGF-BP exhibited a single band with molecular mass of 25 kDa under reducing conditions on sodiummore » dodecyl sulfate/polyacrylamide gels. IGF-I and IGF-II but not insulin displaced the binding of {sup 125}I-labeled IGF-I or {sup 125}I-labeled IGF-II binding to In-IGF-BP. In-IGF-BP inhibited basal, IGF-stimulated bone cell proliferation and serum-stimulated bone cell proliferation. Forskolin increases synthesis of In-IGF-BP in TE85 human osteosarcoma cells in a dose-dependent manner. Based on these findings, the authors conclude that In-IGF-BP is a protein that has a unique sequence and significant biological actions on bone cells.« less

  11. In Vitro Endocrine Disruption Screening of 3-nitro-1,2,4-triazol-5-one (NTO)

    DTIC Science & Technology

    2012-09-25

    8 4 NTO does not significantly induce or inhibit testosterone in H295R cells compared to 10 µM forskolin and 1 µM prochloraz...controls for low basal production of estradiol. Dilutions of the known inducer Forskolin (Cat# F3917, Sigma Aldrich, St. Louis MO and inhibitor...Concentration µM µg/mL equivalent Forskolin 1, 10 1, 10 Prochloraz 0.1, 1 0.1, 1 NTO 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30 0.01, 0.03, 0.1, 0.3

  12. Agonists for G-protein-coupled receptor 84 (GPR84) alter cellular morphology and motility but do not induce pro-inflammatory responses in microglia.

    PubMed

    Wei, Li; Tokizane, Kyohei; Konishi, Hiroyuki; Yu, Hua-Rong; Kiyama, Hiroshi

    2017-10-03

    Several G-protein-coupled receptors (GPCRs) have been shown to be important signaling mediators between neurons and glia. In our previous screening for identification of nerve injury-associated GPCRs, G-protein-coupled receptor 84 (GPR84) mRNA showed the highest up-regulation by microglia after nerve injury. GPR84 is a pro-inflammatory receptor of macrophages in a neuropathic pain mouse model, yet its function in resident microglia in the central nervous system is poorly understood. We used endogenous, natural, and surrogate agonists for GPR84 (capric acid, embelin, and 6-OAU, respectively) and examined their effect on mouse primary cultured microglia in vitro. 6-n-Octylaminouracil (6-OAU), embelin, and capric acid rapidly induced membrane ruffling and motility in cultured microglia obtained from C57BL/6 mice, although these agonists failed to promote microglial pro-inflammatory cytokine expression. Concomitantly, 6-OAU suppressed forskolin-induced increase of cAMP in cultured microglia. Pertussis toxin, an inhibitor of Gi-coupled signaling, completely suppressed 6-OAU-induced microglial membrane ruffling and motility. In contrast, no 6-OAU-induced microglial membrane ruffling and motility was observed in microglia from DBA/2 mice, a mouse strain that does not express functional GPR84 protein due to endogenous nonsense mutation of the GPR84 gene. GPR84 mediated signaling causes microglial motility and membrane ruffling but does not promote pro-inflammatory responses. As GPR84 is a known receptor for medium-chain fatty acids, those released from damaged brain cells may be involved in the enhancement of microglial motility through GPR84 after neuronal injury.

  13. Methadone but not morphine inhibits lubiprostone-stimulated Cl- currents in T84 intestinal cells and recombinant human ClC-2, but not CFTR Cl- currents.

    PubMed

    Cuppoletti, John; Chakrabarti, Jayati; Tewari, Kirti; Malinowska, Danuta H

    2013-05-01

    In clinical trials, methadone, but not morphine, appeared to prevent beneficial effects of lubiprostone, a ClC-2 Cl(-) channel activator, on opioid-induced constipation. Effects of methadone and morphine on lubiprostone-stimulated Cl(-) currents were measured by short circuit current (Isc) across T84 cells. Whole cell patch clamp of human ClC-2 (hClC-2) stably expressed in HEK293 cells and in a high expression cell line (HEK293EBNA) as well as human CFTR (hCFTR) stably expressed in HEK293 cells was used to study methadone and morphine effects on recombinant hClC-2 and hCFTR Cl(-) currents. Methadone but not morphine inhibited lubiprostone-stimulated Isc in T84 cells with half-maximal inhibition at 100 nM. Naloxone did not affect lubiprostone stimulation or methadone inhibition of Isc. Lubiprostone-stimulated Cl(-) currents in hClC-2/HEK293 cells, but not forskolin/IBMX-stimulated Cl(-) currents in hCFTR/HEK293 cells, were inhibited by methadone, but not morphine. HEK293EBNA cells expressing hClC-2 showed time-dependent, voltage-activated, CdCl2-inhibited Cl(-) currents in the absence (control) and the presence of lubiprostone. Methadone, but not morphine, inhibited control and lubiprostone-stimulated hClC-2 Cl(-) currents with half-maximal inhibition at 100 and 200-230 nM, respectively. Forskolin/IBMX-stimulated hClC-2 Cl(-) currents were also inhibited by methadone. Myristoylated protein kinase inhibitor (a specific PKA inhibitor) inhibited forskolin/IBMX- but not lubiprostone-stimulated hClC-2 Cl(-) currents. Methadone caused greater inhibition of lubiprostone-stimulated currents added before patching (66.1 %) compared with after patching (28.7 %). Methadone caused inhibition of lubiprostone-stimulated Cl(-) currents in T84 cells and control; lubiprostone- and forskolin/IBMX-stimulated recombinant hClC-2 Cl(-) currents may be the basis for reduced efficacy of lubiprostone in methadone-treated patients.

  14. c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells.

    PubMed

    Iijima, Yoshihiro; Laser, Martin; Shiraishi, Hirokazu; Willey, Christopher D; Sundaravadivel, Balasubramanian; Xu, Lin; McDermott, Paul J; Kuppuswamy, Dhandapani

    2002-06-21

    p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.

  15. Oral Administration of Forskolin, Homotaurine, Carnosine, and Folic Acid in Patients with Primary Open Angle Glaucoma: Changes in Intraocular Pressure, Pattern Electroretinogram Amplitude, and Foveal Sensitivity.

    PubMed

    Mutolo, Maria Giulia; Albanese, Giuseppe; Rusciano, Dario; Pescosolido, Nicola

    2016-04-01

    To evaluate the effects of a food supplement containing forskolin, homotaurine, carnosine, folic acid, vitamins B1, B2, B6, and magnesium in patients with primary open angle glaucoma (POAG) already in treatment and compensated by intraocular pressure (IOP)-lowering drugs, during a period of 12 months. Twenty-two patients (44 eyes) with POAG, with their IOP compensated by topical drugs, were enrolled and randomly assigned to the food supplement or control treatment group. The additional food supplement treatment consisted of 2 tablets per day (1 in the morning, 1 in the evening) given for 1 year of a balanced association of homotaurine, Coleus forskohlii root extract, L-carnosine, folic acid, vitamins B1, B2, B6, and magnesium. Pattern Electroretinogram (PERG) amplitude, foveal sensitivity obtained with the visual field analyzer frequency doubling technology, and IOP were detected at enrollment (T0), 3 months (T1), 6 months (T2), 9 months (T3), and 12 months (T4). We observed in treated patients a significant further decrease of IOP and an improvement of PERG amplitude at 6, 9, and 12 months, and foveal sensitivity at 12 months. All values remained substantially stable in control patients. The results of the present pilot study indicate that the components of the food supplement reach the eye in a detectable manner, as evidenced by the effects on the IOP. Moreover, they suggest a short-term neuroactive effect, as indicated by the improvement of PERG amplitude and foveal sensitivity in treated, but not in control patients.

  16. Role of protein kinase C-α in hypertonicity-stimulated urea permeability in mouse inner medullary collecting ducts.

    PubMed

    Wang, Yanhua; Klein, Janet D; Froehlich, Otto; Sands, Jeff M

    2013-01-15

    The kidney's ability to concentrate urine is vitally important to our quality of life. In the hypertonic environment of the kidney, urea transporters must be regulated to optimize function. We previously showed that hypertonicity increases urea permeability and that the protein kinase C (PKC) blockers chelerythrine and rottlerin decreased hypertonicity-stimulated urea permeability in rat inner medullary collecting ducts (IMCDs). Because PKCα knockout (PKCα(-/-)) mice have a urine-concentrating defect, we tested the effect of hypertonicity on urea permeability in isolated perfused mouse IMCDs. Increasing the osmolality of perfusate and bath from 290 to 690 mosmol/kgH(2)O did not change urea permeability in PKCα(-/-) mice but significantly increased urea permeability in wild-type mice. To determine whether the response to protein kinase A was also missing in IMCDs of PKCα(-/-) mice, tubules were treated with vasopressin and subsequently with the PKC stimulator phorbol dibutyrate (PDBu). Vasopressin stimulated urea permeability in PKCα(-/-) mice. Like vasopressin, forskolin stimulated urea permeability in PKCα(-/-) mice. We previously showed that, in rats, vasopressin and PDBu have additive stimulatory effects on urea permeability. In contrast, in PKCα(-/-) mice, PDBu did not further increase vasopressin-stimulated urea permeability. Western blot analysis showed that expression of the UT-A1 urea transporter in IMCDs was increased in response to vasopressin in wild-type mice as well as PKCα(-/-) mice. Hypertonicity increased UT-A1 phosphorylation in wild-type mice but not in PKCα(-/-) mice. We conclude that PKCα mediates hypertonicity-stimulated urea transport but is not necessary for vasopressin stimulation of urea permeability in mouse IMCDs.

  17. Label-free fluorescent detection of protein kinase activity based on the aggregation behavior of unmodified quantum dots.

    PubMed

    Xu, Xiahong; Liu, Xin; Nie, Zhou; Pan, Yuliang; Guo, Manli; Yao, Shouzhuo

    2011-01-01

    Herein, we present a novel label-free fluorescent assay for monitoring the activity and inhibition of protein kinases based on the aggregation behavior of unmodified CdTe quantum dots (QDs). In this assay, cationic substrate peptides induce the selective aggregation of unmodified QDs with anionic surface charge, whereas phosphorylated peptides do not. Phosphorylation by kinase alters the net charge of peptides and subsequently inhibits the aggregation of unmodified QDs, causing an enhanced fluorescence with a 45 nm blue-shift in emission and a yellow-to-green emission color change. Hence the fluorescence response allows this QD-based method to easily probe kinase activity by a spectrometer or even by the naked eye. The feasibility of the method has been demonstrated by sensitive measurement of the activity of cAMP-dependent protein kinase (PKA) with a low detection limit (0.47 mU μL(-1)). On the basis of the fluorescence response of QDs on the concentration of PKA inhibitor H-89, the IC(50) value, the half maximal inhibitory concentration, was estimated, which was in agreement with the literature value. Moreover, the system can be applicable to detect the Forskolin/3-isobutyl-1-methylxantine (IBMX)-stimulated activation of PKA in cell lysate. Unlike the existing QD-based enzyme activity assays in which the modification process of QDs is essential, this method relies on unmodified QDs without the requirement of peptide labeling and QDs' modification, presenting a promising candidate for cost-effective kinase activity and inhibitor screening assays.

  18. Palisade is required in the Drosophila ovary for assembly and function of the protective vitelline membrane.

    PubMed

    Elalayli, Maggie; Hall, Jacklyn D; Fakhouri, Mazen; Neiswender, Hannah; Ellison, Tambrea T; Han, Zhe; Roon, Penny; LeMosy, Ellen K

    2008-07-15

    The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell.

  19. Palisade is required in the Drosophila ovary for assembly and function of the protective vitelline membrane

    PubMed Central

    Elalayli, Maggie; Hall, Jacklyn D.; Fakhouri, Mazen; Neiswender, Hannah; Ellison, Tambrea T.; Han, Zhe; Roon, Penny; LeMosy, Ellen K.

    2008-01-01

    The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell. PMID:18514182

  20. Analysis of p21-Activated Kinase Function in Neurofibromatosis Type 2

    DTIC Science & Technology

    2010-01-01

    6,6′-dithiobis) for 10 min, before stimulation with 10% FCS (PAA, Pasching, Austria), 0.5 μM forskolin (Sigma-Aldrich, St. Louis, USA), 10 nM β1...0.5 μM forskolin (Sigma-Aldrich), 10 nM β1- heregulin144–244 (Genentech), 0.5 mM 3-isobutyl-1-methylxanthin (IBMX, Sigma-Aldrich) and 2.5 μg/ml...0.5 μM forskolin (Sigma-Aldrich), 10 nM β1-heregulin144–244 (Genentech), 0.5 mM 3-isobutyl-1-methylxanthin and 2.5 μg/ml insulin (both from Sigma

  1. Dopamine D2 receptor signaling modulates mutant ataxin-1 S776 phosphorylation and aggregation.

    PubMed

    Hearst, Scoty M; Lopez, Mariper E; Shao, Qingmei; Liu, Yong; Vig, Parminder J S

    2010-08-01

    Spinocerebellar ataxia 1 (SCA1) is a dominantly inherited neurodegenerative disease associated with progressive ataxia resulting from the loss of cerebellar Purkinje cells (PCs) and neurons in the brainstem. In PCs of SCA1 transgenic mice, the disease causing ataxin-1 protein mediates the formation of S100B containing cytoplasmic vacuoles and further self-aggregates to form intranuclear inclusions. The exact function of the ataxin-1 protein is not fully understood. However, the aggregation and neurotoxicity of the mutant ataxin-1 protein is dependent on the phosphorylation at serine 776 (S776). Although protein kinase A (PKA) has been implicated as the S776 kinase, the mechanism of PKA/ataxin-1 regulation in SCA1 is still not clear. We propose that a dopamine D(2) receptor (D2R)/S100B pathway may be involved in modulating PKA activity in PCs. Using a D2R/S100B HEK stable cell line transiently transfected with GFP-ataxin-1[82Q], we demonstrate that stimulation of the D2R/S100B pathway caused a reduction in mutant ataxin-1 S776 phosphorylation and ataxin-1 aggregation. Activation of PKA by forskolin resulted in an enhanced S776 phosphorylation and increased ataxin-1 nuclear aggregation, which was suppressed by treatment with D2R agonist bromocriptine and PKA inhibitor H89. Furthermore, treating SCA1 transgenic PC slice cultures with forskolin induced neurodegenerative morphological abnormalities in PC dendrites consistent with those observed in vivo. Taken together our data support a mechanism where PKA dependent mutant ataxin-1 phosphorylation and aggregation can be regulated by D2R/S100B signaling.

  2. Dopamine D2 Receptor Signaling Modulates Mutant Ataxin-1 S776 Phosphorylation and Aggregation

    PubMed Central

    Hearst, SM; Lopez, ME; Shao, Q; Liu, Y; Vig, PJS

    2010-01-01

    Spinocerebellar ataxia 1 (SCA1) is a dominantly inherited neurodegenerative disease associated with progressive ataxia resulting from the loss of cerebellar Purkinje cells (PCs) and neurons in the brainstem. In PCs of SCA1 transgenic (Tg) mice, the disease causing ataxin-1 protein mediates the formation of S100B containing cytoplasmic vacuoles and further self-aggregates to form intranuclear inclusions. The exact function of the ataxin-1 protein is not fully understood. However, the aggregation and neurotoxicity of the mutant ataxin-1 protein is dependent on the phosphorylation at serine 776 (S776). Although protein kinase A (PKA) has been implicated as the S776 kinase, the mechanism of PKA/ataxin-1 regulation in SCA1 is still not clear. We propose that a dopamine D2 receptor (D2R)/S100B pathway may be involved in modulating PKA activity in PCs. Using a D2R/S100B HEK stable cell line transiently transfected with GFP-ataxin-1[82Q], we demonstrate that stimulation of the D2R/S100B pathway caused a reduction in mutant ataxin-1 S776 phosphorylation and ataxin-1 aggregation. Activation of PKA by forskolin resulted in an enhanced S776 phosphorylation and increased ataxin-1 nuclear aggregation, which was suppressed by treatment with D2R agonist bromocriptine and PKA inhibitor H89. Furthermore, treating SCA1 Tg PC slice cultures with forskolin induced neurodegenerative morphological abnormalities in PC dendrites consistent with those observed in vivo. Taken together our data support a mechanism where PKA dependent mutant ataxin-1 phosphorylation and aggregation can be regulated by D2R/S100B signaling. PMID:20477910

  3. Binding and internalization in vivo of (/sup 125/I)hCG in Leydig cells of the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermo, L.; Lalli, M.

    1988-01-01

    The present study was performed to demonstrate the binding, mode of uptake, pathway and fate of iodinated human chorionic gonadotropin ((/sup 125/I)hCG) by Leydig cells in vivo using electron microscope radioautography. Following a single injection of (/sup 125/I)hCG into the interstitial space of the testis, the animals were fixed by perfusion with glutaraldehyde at 20 minutes, 1, 3, 6 and 24 hours. The electron microscope radioautographs demonstrated a prominent and qualitatively similar binding of the labeled hCG on the microvillar processes of the Leydig cells at 20 minutes, 1, 3, and 6 hours. The specificity of the (/sup 125/I)hCG bindingmore » was determined by injecting a 100-fold excess of unlabeled hormone concurrently with the labeled hormone. Under these conditions, the surface, including the microvillar processes of Leydig cells, was virtually unlabeled, indicating that the binding was specific and receptor-mediated. In animals injected with labeled hCG and sacrificed 20 minutes later, silver grains were also seen overlying the limiting membrane of large, uncoated surface invaginations and large subsurface vacuoles with an electron-lucent content referred to as endosomes. A radioautographic reaction was also seen within multivesicular bodies with a pale stained matrix. At 1 hour, silver grains appeared over dense multivesicular bodies and occasionally over secondary lysosomes, in addition to the structures mentioned above, while at 3 and 6 hours, an increasing number of secondary lysosomes became labeled. At 24 hours, binding of (/sup 125/I)hCG to the microvillar processes of Leydig cells persisted but was diminished, although a few endosomes, multivesicular bodies and secondary lysosomes still showed a radioautographic reaction. No membranous tubules that were seen in close proximity to, or in continuity with, endosomes and multivesicular bodies were observed to be labeled at any time interval.« less

  4. Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VX-770 (ivacaftor).

    PubMed

    Matthes, Elizabeth; Goepp, Julie; Carlile, Graeme W; Luo, Yishan; Dejgaard, Kurt; Billet, Arnaud; Robert, Renaud; Thomas, David Y; Hanrahan, John W

    2016-02-01

    The most common cystic fibrosis (CF) mutation F508del inhibits the gating and surface expression of CFTR, a plasma membrane anion channel. Optimal pharmacotherapies will probably require both a 'potentiator' to increase channel open probability and a 'corrector' that improves folding and trafficking of the mutant protein and its stability at the cell surface. Interaction between CF drugs has been reported but remains poorly understood. CF bronchial epithelial cells were exposed to the corrector VX-809 (lumacaftor) and potentiator VX-770 (ivacaftor) individually or in combination. Functional expression of CFTR was assayed as the forskolin-stimulated short-circuit current (Isc ) across airway epithelial monolayers expressing F508del CFTR. The potentiated Isc response during forskolin stimulation was increased sixfold after pretreatment with VX-809 alone and reached ~11% that measured across non-CF monolayers. VX-770 (100 nM) and genistein (50 μM) caused similar levels of potentiation, which were not additive and were abolished by the CFTR inhibitor CFTRinh -172. The unbound fraction of VX-770 in plasma was 0.13 ± 0.04%, which together with previous measurements in patients given 250 mg p.o. twice daily, suggests a peak free plasma concentration of 1.5-8.5 nM. Chronic exposure to high VX-770 concentrations (>1 μM) inhibited functional correction by VX-809 but not in the presence of physiological protein levels (20-40 mg·mL(-1) ). Chronic exposure to a low concentration of VX-770 (100 nM) together with VX-809 (1 μM) also did not reduce the forskolin-stimulated Isc , relative to cells chronically exposed to VX-809 alone, provided it was assayed acutely using the same, clinically relevant concentration of potentiator. Chronic exposure to clinically relevant concentrations of VX-770 did not reduce F508del CFTR function. Therapeutic benefit of VX-770 + VX-809 (Orkambi) is probably limited by the efficacy of VX-809 rather than by inhibition by VX-770. © 2015

  5. Comparative effects of sub-stimulating concentrations of non-human versus human Luteinizing Hormones (LH) or chorionic gonadotropins (CG) on adenylate cyclase activation by forskolin in MLTC cells.

    PubMed

    Nguyen, Thi-Mong Diep; Filliatreau, Laura; Klett, Danièle; Combarnous, Yves

    2018-05-15

    We have compared various Luteinizing Hormone (LH) and Chorionic Gonadotropin (CG) preparations from non-human and human species in their ability to synergize with 10 µM forskolin (FSK) for cyclic AMP intracellular accumulation, in MLTC cells. LH from rat pituitary as well as various isoforms of pituitary ovine, bovine, porcine, equine and human LHs and equine and human CG were studied. In addition, recombinant human LH and CG were also compared with the natural human and non-human hormones. Sub-stimulating concentrations of all LHs and CGs (2-100 pM) were found to stimulate cyclic AMP accumulation in MLTC cells in the presence of an also non-stimulating FSK concentration (10 µM). Like rat LH, the most homologous available hormone for mouse MLTC cells, all non-human LHs and CG exhibit a strong potentiating effect on FSK response. The human, natural and recombinant hLH and hCG also do so but in addition, they were found to elicit a permissive effect on FSK stimulation. Indeed, when incubated alone with MLTC cells at non-stimulating concentrations (2-70 pM) hLH and hCG permit, after being removed, a dose-dependent cyclic AMP accumulation with 10 µM FSK. Our data show a clearcut difference between human LH and CG compared to their non-human counterparts on MLTC cells adenylate cyclase activity control. This points out the risk of using hCG as a reference ligand for LHR in studies using non-human cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells.

    PubMed

    Shepard, A R; Zhang, W; Eberhardt, N L

    1994-01-21

    We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.

  7. Copper amplification of prostaglandin E/sub 2/ stimulation of the release of luteinizing hormone-releasing hormone is a postreceptor event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnea, A.; Cho, G.

    1987-01-01

    The authors have shown that copper amplifies prostaglandin E/sub 2/ (PGE/sub 2/) stimulation of luteinizing hormone-releasing hormone (LH-RH) from explants of the median eminence area (MEA) and that this process is calcium-dependent. Since a Ca-cAMP pathway has been implicated in PGE/sub 2/ action on the LH-RH neuron, in this study the authors wished to ascertain if copper exerts its effect on the PGE/sub 2/ receptor or on a postreceptor component involved in PGE/sub 2/ action. MEA of adult male rats were incubated for 5 min with 200 ..mu..M Cu/histidine and then incubated for 15 min either with 10 ..mu..M PGE/submore » 2/ (Cu/PGE/sub 2/), 100 ..mu..M forskolin (Cu/forskolin), or 1 mM 8-bromoadenosine 3',5'-cyclic monophosphate (Cu/cAMP). Basal release of LH-RH was 4.6 +/- 0.45 pg/15 min per MEA determined by radioimmunoassay. Net stimulated release during the 15-min exposure to PGE/sub 2/, forskolin, or 8-bromoadenosine 3',5'-cyclic monophosphate was 3.6 +/- 0.52, 3.1 +/- 0.39, and 1.6 +/- 0.42 pg/15 min per MEA, respectively. Net stimulated release after exposure to Cu/PGE/sub 2/, Cu/forskolin, or Cu/cAMP indicated that copper amplifies the action of PGE/sub 2/ and forskolin but not cAMP action. When MEA were exposed to a mixture of PGE/sub 2/ and forskolin for 15 min, the effects of these two secretagogues on LH-RH release were not additive. In contrast to PGE/sub 2/ and forskolin, copper did not amplify K/sup +/ stimulation of OH-RH release. These results are supportive of the proposition that PGE/sub 2/ stimulation of OH-RH release is mediated by the Ca-cAMP pathway and that copper amplification of PGE/sub 2/ action is a postreceptor event.« less

  8. Cholesterol regulates contractility and inotropic response to β2-adrenoceptor agonist in the mouse atria: Involvement of Gi-protein-Akt-NO-pathway.

    PubMed

    Odnoshivkina, Yulia G; Sytchev, Vaycheslav I; Petrov, Alexey M

    2017-06-01

    Majority of cardiac β2-adrenoceptors is located in cholesterol-rich microdomains. Here, we have investigated the underlying mechanisms by which a slight to moderate cholesterol depletion with methyl-β-cyclodextrin (MβCD, 1 and 5mM) interferes with contractility and inotropic effect of β2-adrenergic agonist (fenoterol, 50μM) in the mouse atria. Treatment with MβCD itself increased amplitude of Ca 2+ transient but did not change the contraction amplitude due to a clamping action of elevated NO. Cholesterol depletion significantly attenuated the positive inotropic response to fenoterol which is accompanied by increase in NO generation and decrease in Ca 2+ transient. Influence of 1mM MβCD on the fenoterol-driven changes in both contractility and NO level was strongly attenuated by inhibition of G i -protein (pertussis toxin), Akt (Akt 1/2 kinase inhibitor) or NO-synthase (L-NAME). After exposure to 5mM MβCD, pertussis toxin or Akt inhibitor could recover the β2-agonist effects on contractility, NO production and Ca 2+ transient, while L-NAME only reduced NO level. An adenylyl cyclase activator (forskolin, 50nM) had no influence on the MβCD-induced changes in the β2-agonist effects. Obtained results suggest that slight cholesterol depletion upregulates G i -protein/Akt/NO-synthase signaling that attenuates the positive inotropic response to β2-adrenergic stimulation without altering the Ca 2+ transient. Whilst moderate cholesterol depletion additionally could suppress the enhancement of the Ca 2+ transient amplitude caused by the β2-adrenergic agonist administration in G i -protein/Akt-dependent but NO-independent manner. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Antihelminthic drug niclosamide inhibits CIP2A and reactivates tumor suppressor protein phosphatase 2A in non-small cell lung cancer cells.

    PubMed

    Kim, Myeong-Ok; Choe, Min Ho; Yoon, Yi Na; Ahn, Jiyeon; Yoo, Minjin; Jung, Kwan-Young; An, Sungkwan; Hwang, Sang-Gu; Oh, Jeong Su; Kim, Jae-Sung

    2017-11-15

    Protein phosphatase 2A (PP2A) is a critical tumor suppressor complex responsible for the inactivation of various oncogenes. Recently, PP2A reactivation has emerged asan anticancer strategy. Cancerous inhibitor of protein phosphatase 2A (CIP2A), an endogenous inhibitor of PP2A, is upregulated in many cancer cells, including non-small cell lung cancer (NSCLC) cells. We demonstrated that the antihelminthic drug niclosamide inhibited the expression of CIP2A and reactivated the tumor suppressor PP2A in NSCLC cells. We performed a drug-repurposing screen and identified niclosamide asa CIP2A suppressor in NSCLC cells. Niclosamide inhibited cell proliferation, colony formation, and tumor sphere formation, and induced mitochondrial dysfunction through increased mitochondrial ROS production in NSCLC cells; however, these effects were rescued by CIP2A overexpression, which indicated that the antitumor activity of niclosamide was dependent on CIP2A. We found that niclosamide increased PP2A activity through CIP2A inhibition, which reduced the phosphorylation of several oncogenic proteins. Moreover, we found that a niclosamide analog inhibited CIP2A expression and increased PP2A activity in several types of NSCLC cells. Finally, we showed that other well-known PP2A activators, including forskolin and FTY720, did not inhibit CIP2A and that their activities were not dependent on CIP2A. Collectively, our data suggested that niclosamide effectively suppressed CIP2A expression and subsequently activated PP2A in NSCLC cells. This provided strong evidence for the potential use of niclosamide asa PP2A-activating drug in the clinical treatment of NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Role of calcium in the regulation of theca cell androstenedione production in the domestic hen.

    PubMed

    Levorse, J M; Tilly, J L; Johnson, A L

    1991-05-01

    Theca cells were collected from the second largest preovulatory follicle. Chelation of extracellular calcium with EGTA attenuated LH (10 ng)-induced androstenedione production by theca cells, and this effect was more pronounced in calcium-deficient than in calcium-replete incubation medium. Incubation of theca cells with steroidogenic agonists in the presence of the calcium channel blocker verapamil (100 microM) suppressed androstenedione production stimulated by LH (a 57% decrease), the adenylate cyclase activator forskolin (a 59% decrease) and the cyclic adenosine monophosphate (cAMP) analog 8-bromo-cAMP (a 61% decrease). Furthermore, 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8), a putative inhibitor of intracellular calcium mobilization, suppressed LH-induced androstenedione production in a dose-dependent fashion. The calmodulin inhibitors trifluoperazine (100 microM) and R24571 (50 microM) inhibited androstenedione production stimulated by hormonal (LH) and non-hormonal (forskolin, 8-bromo-cAMP) agonists (decreases ranging from 76 to 98%). While increasing the intracellular calcium ion concentrations with the calcium ionophore A23187 did not affect basal concentrations of androstenedione, treatment of LH-stimulated cells with the ionophore caused dose-dependent inhibition of androstenedione production; these effects were enhanced by coincubation with phorbol 12-myristate 13-acetate (a known activator of protein kinase C). We conclude that the mobilization of calcium is critical for agonist-stimulated steroidogenesis in hen theca cells, apparently requiring the interaction of calcium with its binding protein, calmodulin. Furthermore, increased cytosolic calcium concentrations may be involved in the suppression of androstenedione production, possibly as a result of an interaction with protein kinase C.

  11. Modulation of chloride, potassium and bicarbonate transport by muscarinic receptors in a human adenocarcinoma cell line.

    PubMed

    Holliday, N D; Cox, H M

    1999-01-01

    1. Short-circuit current (I(SC)) responses to carbachol (CCh) were investigated in Colony 1 epithelia, a subpopulation of the HCA-7 adenocarcinoma cell line. In Krebs-Henseleit (KH) buffer, CCh responses consisted of three I(SC) components: an unusual rapid decrease (the 10 s spike) followed by an upward spike at 30 s and a slower transient increase (the 2 min peak). This response was not potentiated by forskolin; rather, CCh inhibited cyclic AMP-stimulated I(SC). 2. In HCO3- free buffer, the decrease in forskolin-elevated I(SC) after CCh was reduced, although the interactions between CCh and forskolin remained at best additive rather than synergistic. When Cl- anions were replaced by gluconate, both Ca2+- and cyclic AMP-mediated electrogenic responses were significantly inhibited. 3. Basolateral Ba2+ (1-10 mM) and 293B (10 microM) selectively inhibited forskolin stimulation of I(SC), without altering the effects of CCh. Under Ba2+- or 293B-treated conditions, CCh responses were potentiated by pretreatment with forskolin. 4. Basolateral charybdotoxin (50 nM) significantly increased the size of the 10 s spike of CCh responses in both KH and HCO3- free medium, without affecting the 2 min peak. The enhanced 10 s spike was inhibited by prior addition of 5 mM apical Ba2+. Charybdotoxin did not affect forskolin responses. 5. In epithelial layers prestimulated with forskolin, the muscarinic antagonists atropine and 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, both at 100 nM) abolished subsequent 10 microM CCh responses. Following addition of p-fluoro hexahydro-sila-difenidol (pF-HHSiD, 10 microM) or pirenzepine (1 microM), qualitative changes in the CCh response time-profile also indicated a rightward shift of the agonist concentration-response curve; however, 1 microM gallamine had no effect. These results suggest that a single M3-like receptor subtype mediates the secretory response to CCh. 6. It is concluded that CCh and forskolin activate discrete

  12. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation.

    PubMed

    Veremeyko, Tatyana; Yung, Amanda W Y; Dukhinova, Marina; Kuznetsova, Inna S; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S; Ponomarev, Eugene D

    2018-01-01

    Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro , suggesting prevalence of indirect effect of Forskolin on differentiation and

  13. Effects of chromium(III) picolinate on cortisol and DHEAs secretion in H295R human adrenocortical cells.

    PubMed

    Kim, Beob G; Adams, Julye M; Jackson, Brian A; Lindemann, Merlin D

    2010-02-01

    Dietary chromium(III) picolinate (CrPic) effects on circulating steroid hormones have been reported in various experimental animals. However, direct effects of CrPic on adrenocortical steroidogenesis are uncertain. Therefore, the objective was to determine the effects of CrPic on cortisol and dehydroepiandrosterone sulfate (DHEAs) secretion from H295R cells. In experiment 1, a 24-h exposure to CrPic (0 to 200 microM) had both linear (p < 0.001) and quadratic (p < 0.001) effects on cortisol secretion from forskolin-stimulated cells with the highest cortisol secretion at 0.1 microM of CrPic and the lowest at 200 microM of CrPic. In experiment 2, a 48-h exposure to CrPic (200 microM) decreased cortisol (p < 0.07) release from forskolin-stimulated cells during a 24-h collection period. In experiment 3, a 48-h exposure to CrPic (100 microM) decreased cortisol (p < 0.05) and DHEAs (p < 0.01) from forskolin-stimulated cells during a 24-h sampling period. In experiment 4, a 24-h exposure to forskolin followed by a 24-h exposure to both forskolin and CrPic (100 and 200 microM) decreased both cortisol and DHEAs secretion (p < 0.01). This study suggests that at high concentrations, CrPic inhibits aspects of steroidogenesis in agonist-stimulated adrenocortical cells.

  14. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes.

    PubMed

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer; Jensen, Thomas Elbenhardt; Sakamoto, Kei; Göransson, Olga

    2011-05-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes remains elusive. Previous studies have identified LKB1 as a major AMPK kinase in muscle, liver, and other tissues. In certain cell types, Ca(2+) /calmodulin-dependent protein kinase kinase β (CaMKKβ) has been shown to activate AMPK in response to increases of intracellular Ca(2+) levels. Our aim was to investigate if LKB1 and/or CaMKK function as AMPK kinases in adipocytes. We used adipose tissue and isolated adipocytes from mice in which the expression of LKB1 was reduced to 10-20% of that of wild-type (LKB1 hypomorphic mice). We show that adipocytes from LKB1 hypomorphic mice display a 40% decrease in basal AMPK activity and a decrease of AMPK activity in the presence of the AMPK activator phenformin. We also demonstrate that stimulation of 3T3L1 adipocytes with intracellular [Ca(2+) ]-raising agents results in an activation of the AMPK pathway. The inhibition of CaMKK isoforms, particularly CaMKKβ, by the inhibitor STO-609 or by siRNAs, blocked Ca(2+) -, but not phenformin-, AICAR-, or forskolin-induced activation of AMPK, indicating that CaMKK activated AMPK in response to Ca(2+) . Collectively, we show that LKB1 is required to maintain normal AMPK-signaling in non-stimulated adipocytes and in the presence of phenformin. In addition, we demonstrate the existence of a Ca(2+) /CaMKK signaling pathway that can also regulate the activity of AMPK in adipocytes. Copyright © 2011 Wiley-Liss, Inc.

  15. Role of protein kinase C-α in hypertonicity-stimulated urea permeability in mouse inner medullary collecting ducts

    PubMed Central

    Klein, Janet D.; Froehlich, Otto; Sands, Jeff M.

    2013-01-01

    The kidney's ability to concentrate urine is vitally important to our quality of life. In the hypertonic environment of the kidney, urea transporters must be regulated to optimize function. We previously showed that hypertonicity increases urea permeability and that the protein kinase C (PKC) blockers chelerythrine and rottlerin decreased hypertonicity-stimulated urea permeability in rat inner medullary collecting ducts (IMCDs). Because PKCα knockout (PKCα−/−) mice have a urine-concentrating defect, we tested the effect of hypertonicity on urea permeability in isolated perfused mouse IMCDs. Increasing the osmolality of perfusate and bath from 290 to 690 mosmol/kgH2O did not change urea permeability in PKCα−/− mice but significantly increased urea permeability in wild-type mice. To determine whether the response to protein kinase A was also missing in IMCDs of PKCα−/− mice, tubules were treated with vasopressin and subsequently with the PKC stimulator phorbol dibutyrate (PDBu). Vasopressin stimulated urea permeability in PKCα−/− mice. Like vasopressin, forskolin stimulated urea permeability in PKCα−/− mice. We previously showed that, in rats, vasopressin and PDBu have additive stimulatory effects on urea permeability. In contrast, in PKCα−/− mice, PDBu did not further increase vasopressin-stimulated urea permeability. Western blot analysis showed that expression of the UT-A1 urea transporter in IMCDs was increased in response to vasopressin in wild-type mice as well as PKCα−/− mice. Hypertonicity increased UT-A1 phosphorylation in wild-type mice but not in PKCα−/− mice. We conclude that PKCα mediates hypertonicity-stimulated urea transport but is not necessary for vasopressin stimulation of urea permeability in mouse IMCDs. PMID:23097465

  16. Espin cytoskeletal proteins in the sensory cells of rodent taste buds

    PubMed Central

    Sekerková, Gabriella; Freeman, David; Mugnaini, Enrico; Bartles, James R.

    2010-01-01

    Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste bud cells contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of rat circumvallate taste buds. In confocal images, we counted 21.5±0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7±1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP3R3),α-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP3R3, PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP3R3, α-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of ~3 μm-long microvilli

  17. The role of G-protein receptor 84 in experimental neuropathic pain.

    PubMed

    Nicol, Louise S C; Dawes, John M; La Russa, Federica; Didangelos, Athanasios; Clark, Anna K; Gentry, Clive; Grist, John; Davies, John B; Malcangio, Marzia; McMahon, Stephen B

    2015-06-10

    G-protein receptor 84 (GPR84) is an orphan receptor that is induced markedly in monocytes/macrophages and microglia during inflammation, but its pathophysiological function is unknown. Here, we investigate the role of GPR84 in a murine model of traumatic nerve injury. Naive GPR84 knock-out (KO) mice exhibited normal behavioral responses to acute noxious stimuli, but subsequent to partial sciatic nerve ligation (PNL), KOs did not develop mechanical or thermal hypersensitivity, in contrast to wild-type (WT) littermates. Nerve injury increased ionized calcium binding adapter molecule 1 (Iba1) and phosphorylated p38 MAPK immunoreactivity in the dorsal horn and Iba1 and cluster of differentiation 45 expression in the sciatic nerve, with no difference between genotypes. PCR array analysis revealed that Gpr84 expression was upregulated in the spinal cord and sciatic nerve of WT mice. In addition, the expression of arginase-1, a marker for anti-inflammatory macrophages, was upregulated in KO sciatic nerve. Based on this evidence, we investigated whether peripheral macrophages behave differently in the absence of GPR84. We found that lipopolysaccharide-stimulated KO macrophages exhibited attenuated expression of several proinflammatory mediators, including IL-1β, IL-6, and TNF-α. Forskolin-stimulated KO macrophages also showed greater cAMP induction, a second messenger associated with immunosuppression. In summary, our results demonstrate that GPR84 is a proinflammatory receptor that contributes to nociceptive signaling via the modulation of macrophages, whereas in its absence the response of these cells to an inflammatory insult is impaired. Copyright © 2015 Nicol et al.

  18. The Role of G-Protein Receptor 84 in Experimental Neuropathic Pain

    PubMed Central

    Nicol, Louise S.C.; Dawes, John M.; La Russa, Federica; Didangelos, Athanasios; Clark, Anna K.; Gentry, Clive; Grist, John; Davies, John B.; Malcangio, Marzia

    2015-01-01

    G-protein receptor 84 (GPR84) is an orphan receptor that is induced markedly in monocytes/macrophages and microglia during inflammation, but its pathophysiological function is unknown. Here, we investigate the role of GPR84 in a murine model of traumatic nerve injury. Naive GPR84 knock-out (KO) mice exhibited normal behavioral responses to acute noxious stimuli, but subsequent to partial sciatic nerve ligation (PNL), KOs did not develop mechanical or thermal hypersensitivity, in contrast to wild-type (WT) littermates. Nerve injury increased ionized calcium binding adapter molecule 1 (Iba1) and phosphorylated p38 MAPK immunoreactivity in the dorsal horn and Iba1 and cluster of differentiation 45 expression in the sciatic nerve, with no difference between genotypes. PCR array analysis revealed that Gpr84 expression was upregulated in the spinal cord and sciatic nerve of WT mice. In addition, the expression of arginase-1, a marker for anti-inflammatory macrophages, was upregulated in KO sciatic nerve. Based on this evidence, we investigated whether peripheral macrophages behave differently in the absence of GPR84. We found that lipopolysaccharide-stimulated KO macrophages exhibited attenuated expression of several proinflammatory mediators, including IL-1β, IL-6, and TNF-α. Forskolin-stimulated KO macrophages also showed greater cAMP induction, a second messenger associated with immunosuppression. In summary, our results demonstrate that GPR84 is a proinflammatory receptor that contributes to nociceptive signaling via the modulation of macrophages, whereas in its absence the response of these cells to an inflammatory insult is impaired. PMID:26063927

  19. Inhibitory mechanism of monensin on high K+-induced contraction in guniea-pig urinary bladder.

    PubMed

    Kaneda, Takeharu; Takeuchi, Mayumi; Shimizu, Kazumasa; Urakawa, Norimoto; Nakajyo, Shinjiro; Mochizuki-Kobayashi, Mariko; Ueda, Fukiko; Hondo, Ryo

    2006-02-01

    In this study, we examined the inhibitory mechanism of monensin on high K+-induced contraction in guinea-pig urinary bladder. The relaxant effect of monensin (0.001 - 10 microM) was more potent than those of NaCN (100 microM - 1 mM) and forskolin (3 - 10 microM). Monensin (0.1 microM), NaCN (300 microM), or forskolin (10 microM) inhibited high K+-induced contraction without decreasing [Ca2+]i level. Monensin and NaCN remarkably decreased creatine phosphate and ATP contents. Monensin and NaCN inhibited high K+-induced increases in flavoprotein fluorescence, which is involved in mitochondrial respiration. Forskolin increased cAMP content but monensin did not. Monensin increased Na+ content at 10 microM but not at 0.1 microM that induced maximum relaxation. In the alpha-toxin-permeabilized muscle, forskolin significantly inhibited the Ca2+-induced contraction, but monensin did not affect it. These results suggest that the relaxation mechanism of monensin in smooth muscle of urinary bladder may be an inhibition of oxidative metabolism.

  20. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    PubMed

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action. Copyright 2006 Wiley-Liss, Inc.

  1. cAMP-responsive Element-binding Protein (CREB) and cAMP Co-regulate Activator Protein 1 (AP1)-dependent Regeneration-associated Gene Expression and Neurite Growth*

    PubMed Central

    Ma, Thong C.; Barco, Angel; Ratan, Rajiv R.; Willis, Dianna E.

    2014-01-01

    To regenerate damaged axons, neurons must express a cassette of regeneration-associated genes (RAGs) that increases intrinsic growth capacity and confers resistance to extrinsic inhibitory cues. Here we show that dibutyrl-cAMP or forskolin combined with constitutive-active CREB are superior to either agent alone in driving neurite growth on permissive and inhibitory substrates. Of the RAGs examined, only arginase 1 (Arg1) expression correlated with the increased neurite growth induced by the cAMP/CREB combination, both of which were AP1-dependent. This suggests that cAMP-induced AP1 activity is necessary and interacts with CREB to drive expression of RAGs relevant for regeneration and demonstrates that combining a small molecule (cAMP) with an activated transcription factor (CREB) stimulates the gene expression necessary to enhance axonal regeneration. PMID:25296755

  2. Gastrin-releasing peptide receptor-induced internalization, down-regulation, desensitization, and growth: possible role for cyclic AMP.

    PubMed

    Benya, R V; Fathi, Z; Kusui, T; Pradhan, T; Battey, J F; Jensen, R T

    1994-08-01

    Stimulation of the gastrin-releasing peptide receptor (GRP-R) in Swiss 3T3 cells resembles that of a number of other recently described G protein-coupled receptors, insofar as both the phospholipase C and adenylyl cyclase signal transduction pathways are activated. GRP-R activation induces numerous alterations in both the cell and the receptor, but because two signal transduction pathways are activated it is difficult to determine the specific contributions of either pathway. We have found that BALB/3T3 fibroblasts transfected with the coding sequence for the GRP-R are pharmacologically indistinguishable from native receptor-expressing cells and activate phospholipase C in a manner similar to that of the native receptor but fail to increase cAMP in response to bombesin; thus, they may be useful cells to explore the role of activation of each pathway in altering cell and receptor function. Swiss 3T3 cells and GRP-R-transfected BALB/3T3 cells expressed identically glycosylated receptors that bound various agonists and antagonists similarly. G protein activation, as determined by evaluation of agonist-induced activation of phospholipase C and by analysis of the effect of guanosine-5'-(beta,gamma-imido)triphosphate on GRP-R binding affinity, was indistinguishable. Agonist stimulation of GRP-R caused similar receptor changes (internalization and down-regulation) and homologous desensitization in both cell types. Bombesin stimulation of Swiss 3T3 cells that had been preincubated with forskolin increased cAMP levels 9-fold, but no bombesin-specific increase in cAMP levels was detected in transfected cells, even though forskolin and cholera toxin increased cAMP levels in these cells. Quiescent Swiss 3T3 cells treated with bombesin rapidly increased c-fos mRNA levels and [3H]thymidine incorporation, whereas both effects were potentiated by forskolin. The specific protein kinase A inhibitor H-89 blocked increases in c-fos levels and [3H]thymidine incorporation induced by low

  3. Cyclic Adenosine Monophosphate Regulation of Ion Transport in Porcine Vocal Fold Mucosae

    PubMed Central

    Sivasankar, Mahalakshmi; Nofziger, Charity; Blazer-Yost, Bonnie

    2012-01-01

    Objectives/Hypothesis Cyclic adenosine monophosphate (cAMP) is an important biological molecule that regulates ion transport and inflammatory responses in epithelial tissue. The present study examined whether the adenylyl cyclase activator, forskolin, would increase cAMP concentration in porcine vocal fold mucosa and whether the effects of increased cAMP would be manifested as a functional increase in transepithelial ion transport. Additionally, changes in cAMP concentrations following exposure to an inflammatory mediator, tumor necrosis factor-α (TNFα) were investigated. Study Design In vitro experimental design with matched treatment and control groups. Methods Porcine vocal fold mucosae (N = 30) and tracheal mucosae (N = 20) were exposed to forskolin, TNFα, or vehicle (dimethyl sulfoxide) treatment. cAMP concentrations were determined with enzyme-linked immunosorbent assay. Ion transport was measured using electrophysiological techniques. Results Thirty minute exposure to forskolin significantly increased cAMP concentration and ion transport in porcine vocal fold and tracheal mucosae. However, 30-minute and 2-hour exposure to TNFα did not significantly alter cAMP concentration. Conclusions We demonstrate that forskolin-sensitive adenylyl cyclase is present in vocal fold mucosa, and further, that the product, cAMP increases vocal fold ion transport. The results presented here contribute to our understanding of the intracellular mechanisms underlying vocal fold ion transport. As ion transport is important for maintaining superficial vocal fold hydration, data demonstrating forskolin-stimulated ion transport in vocal fold mucosa suggest opportunities for developing pharmacological treatments that increase surface hydration. PMID:18596479

  4. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation

    PubMed Central

    Veremeyko, Tatyana; Yung, Amanda W. Y.; Dukhinova, Marina; Kuznetsova, Inna S.; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S.; Ponomarev, Eugene D.

    2018-01-01

    Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro, suggesting prevalence of indirect effect of Forskolin on differentiation and

  5. Regulation of tyrosine hydroxylase activity and phosphorylation at Ser(19) and Ser(40) via activation of glutamate NMDA receptors in rat striatum.

    PubMed

    Lindgren, N; Xu, Z Q; Lindskog, M; Herrera-Marschitz, M; Goiny, M; Haycock, J; Goldstein, M; Hökfelt, T; Fisone, G

    2000-06-01

    The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser(19)-tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser(40) and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser(40) phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser(40)-tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser(40) via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis.

  6. Cannabinoids reduce cAMP levels in the striatum of freely moving rats: an in vivo microdialysis study.

    PubMed

    Wade, Mark R; Tzavara, Eleni T; Nomikos, George G

    2004-04-16

    The cannabinoid receptor subtype 1 (CB1R) is a member of the G(i)-protein-coupled receptor family and cannabinoid signaling is largely dependent on the suppression of adenylyl cyclase-catalyzed cAMP production. In cell lines transfected with the CB1R or in native tissue preparations, treatment with cannabinoid agonists reduces both basal and forskolin-stimulated cAMP synthesis. We measured extracellular cAMP concentrations in the striatum of freely moving rats utilizing microdialysis to determine if changes in cAMP concentrations in response to CB1R agonists can be monitored in vivo. Striatal infusion of the CB1R agonist WIN55,212-2 (100 microM or 1 mM), dose-dependently decreased basal and forskolin-stimulated extracellular cAMP. These effects were reversed by co-infusion of the CB1R antagonist SR141716A (30 microM), which alone had no effect up to the highest concentration tested (300 microM). These data indicate that changes in extracellular cAMP concentrations in response to CB1R stimulation can be monitored in vivo allowing the study of cannabinoid signaling in the whole animal.

  7. A new concept for risk assessment of the hazards of non-genotoxic chemicals--electronmicroscopic studies of the cell surface. Evidence for the action of lipophilic chemicals on the Ca2+ signaling system.

    PubMed

    Gartzke, J; Lange, K; Brandt, U; Bergmann, J

    1997-06-20

    Recently, we presented evidence for the localization of components of the cellular Ca2+ signaling pathway in microvilli. On stimulation of this pathway, microvilli undergo characteristic morphological changes which can be detected by scanning electron microscopy (SEM) of the cell surface. Here we show that both receptor-mediated (vasopressin) and unspecific stimulation of the Ca2+ signaling system by the lipophilic tumor promoters thapsigargin (TG) and phorbolmyristateacetate (PMA) are accompanied by the same type of morphological changes of the cell surface. Since stimulated cell proliferation accelerates tumor development and sustained elevation of the intracellular Ca2+ concentrations is a precondition for stimulated cell proliferation, activated Ca2+ signaling is one possible mechanism of non-genomic tumor promotion. Using isolated rat hepatocytes we show that all tested lipophilic chemicals with known tumor promoter action, caused characteristic microvillar shape changes. On the other hand, lipophilic solvents that were used as differentiating agents in cell cultures such as dimethylsulfoxide (DMSO) and dimethylformamide also, failed to change the microvillar shapes. Instead DMSO stabilized the original appearance of microvilli. The used technique provides a convenient method for the evaluation of non-genomic carcinogenicity of chemicals prior to their industrial application.

  8. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia.

    PubMed

    Khanal, Ichha; Elbediwy, Ahmed; Diaz de la Loza, Maria Del Carmen; Fletcher, Georgina C; Thompson, Barry J

    2016-07-01

    In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain. Patronin and Shot then act to polarise microtubules along the apical-basal axis to enable apical transport of Rab11 endosomes by the Nuf-Dynein microtubule motor complex. Finally, Rab11 endosomes are transferred to the MyoV (also known as Didum in Drosophila) actin motor to deliver the key microvillar determinant Cadherin 99C to the apical membrane to organise the biogenesis of actin microvilli. © 2016. Published by The Company of Biologists Ltd.

  9. Escherichia coli Heat-Stable Enterotoxin Mediates Na+/H+ Exchanger 4 Inhibition Involving cAMP in T84 Human Intestinal Epithelial Cells.

    PubMed

    Beltrán, Ana R; Carraro-Lacroix, Luciene R; Bezerra, Camila N A; Cornejo, Marcelo; Norambuena, Katrina; Toledo, Fernando; Araos, Joaquín; Pardo, Fabián; Leiva, Andrea; Sanhueza, Carlos; Malnic, Gerhard; Sobrevia, Luis; Ramírez, Marco A

    2015-01-01

    The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF-preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 μmol/L STa (30 minutes), 25 μmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 μmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 μmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 μmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (JH+) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and JH+ (~63%), without altering basal pHi (range 7.144-7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and JH+ was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa-decreased dpHi/dt and JH+ was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function promoting human

  10. Escherichia coli Heat-Stable Enterotoxin Mediates Na+/H+ Exchanger 4 Inhibition Involving cAMP in T84 Human Intestinal Epithelial Cells

    PubMed Central

    Beltrán, Ana R.; Carraro-Lacroix, Luciene R.; Bezerra, Camila N. A.; Cornejo, Marcelo; Norambuena, Katrina; Toledo, Fernando; Araos, Joaquín; Pardo, Fabián; Leiva, Andrea; Sanhueza, Carlos; Malnic, Gerhard; Sobrevia, Luis; Ramírez, Marco A.

    2015-01-01

    The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF–preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 μmol/L STa (30 minutes), 25 μmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 μmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 μmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 μmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (J H +) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and J H + (~63%), without altering basal pHi (range 7.144–7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and J H + was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa–decreased dpHi/dt and J H + was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function

  11. Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats

    PubMed Central

    Bernabeu, Ramon; Bevilaqua, Lia; Ardenghi, Patricia; Bromberg, Elke; Schmitz, Paulo; Bianchin, Marino; Izquierdo, Ivan; Medina, Jorge H.

    1997-01-01

    cAMP/cAMP-dependent protein kinase (PKA) signaling pathway has been recently proposed to participate in both the late phase of long term potentiation in the hippocampus and in the late, protein synthesis-dependent phase of memory formation. Here we report that a late memory consolidation phase of an inhibitory avoidance learning is regulated by an hippocampal cAMP signaling pathway that is activated, at least in part, by D1/D5 receptors. Bilateral infusion of SKF 38393 (7.5 μg/side), a D1/D5 receptor agonist, into the CA1 region of the dorsal hippocampus, enhanced retention of a step-down inhibitory avoidance when given 3 or 6 h, but not immediately (0 h) or 9 h, after training. In contrast, full retrograde amnesia was obtained when SCH 23390 (0.5 μg/side), a D1/D5 receptor antagonist, was infused into the hippocampus 3 or 6 h after training. Intrahippocampal infusion of 8Br-cAMP (1.25 μg/side), or forskolin (0.5 μg/side), an activator of adenylyl cyclase, enhanced memory when given 3 or 6 h after training. KT5720 (0.5 μg/side), a specific inhibitor of PKA, hindered memory consolidation when given immediately or 3 or 6 h posttraining. Rats submitted to the avoidance task showed learning-specific increases in hippocampal 3H-SCH 23390 binding and in the endogenous levels of cAMP 3 and 6 h after training. In addition, PKA activity and P-CREB (phosphorylated form of cAMP responsive element binding protein) immunoreactivity increased in the hippocampus immediately and 3 and 6 h after training. Together, these findings suggest that the late phase of memory consolidation of an inhibitory avoidance is modulated cAMP/PKA signaling pathways in the hippocampus. PMID:9192688

  12. μ-Opioid Receptor Trafficking on Inhibitory Synapses in the Rat Brainstem

    PubMed Central

    Browning, Kirsteen N.; Kalyuzhny, Alexander E.; Travagli, R. Alberto

    2011-01-01

    Whole-cell recordings were made from identified gastric-projecting rat dorsal motor nucleus of the vagus (DMV) neurons. The amplitude of evoked IPSCs (eIPSCs) was unaffected by perfusion with met-enkephalin (ME) or by μ-, δ-, or κ-opioid receptor selective agonists, namely d-Ala2-N-Me-Phe4-Glycol5-enkephalin (DAMGO), cyclic [d-Pen2-d-Pen5]-enkephalin, or trans-3,4-dichloro-N-methyl-N-[2-(1-pyrolytinil)-cyclohexyl]-benzeneacetamide methane sulfonate (U50,488), respectively. Brief incubation with the adenylate cyclase activator forskolin or the nonhydrolysable cAMP analog 8-bromo-cAMP, thyrotropin releasing hormone, or cholecystokinin revealed the ability of ME and DAMGO to inhibit IPSC amplitude; this inhibition was prevented by pretreatment with the μ-opioid receptor (MOR1) selective antagonist d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH2. Conversely, incubation with the adenylate cyclase inhibitor dideoxyadenosine, with the protein kinase A (PKA) inhibitor N-[2-(p-Bromocinnamyl-amino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89), or with the Golgi-disturbing agent brefeldin A, blocked the ability of forskolin to facilitate the inhibitory actions of ME. Immunocytochemical experiments revealed that under control conditions, MOR1 immunoreactivity (MOR1-IR) was colocalized with glutamic acid decarboxylase (GAD)-IR in profiles apposing DMV neurons only after stimulation of the cAMP–PKA pathway. Pretreatment with H89 or brefeldin A or incubation at 4°C prevented the forskolin-mediated insertion of MOR1 on GAD-IR-positive profiles. These results suggest that the cAMP–PKA pathway regulates trafficking of μ-opioid receptors into the cell surface of GABAergic nerve terminals. By consequence, the inhibitory actions of opioid peptides in the dorsal vagal complex may depend on the state of activation of brainstem vagal circuits. PMID:15317860

  13. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor.

    PubMed

    Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N

    2000-02-18

    Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2

  14. Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion

    PubMed Central

    Fromm, Anja; Günzel, Dorothee

    2011-01-01

    Background and Purpose The root extract of the African Uzara plant is used in traditional medicine as anti-diarrheal drug. It is known to act via inhibition of intestinal motility, but malabsorptive or antisecretory mechanisms are unknown yet. Experimental Approach HT-29/B6 cells and human colonic biopsies were studied in Ussing experiments in vitro. Uzara was tested on basal as well as on forskolin- or cholera toxin-induced Cl− secretion by measuring short-circuit current (ISC) and tracer fluxes of 22Na+ and 36Cl−. Para- and transcellular resistances were determined by two-path impedance spectroscopy. Enzymatic activity of the Na+/K+-ATPase and intracellular cAMP levels (ELISA) were measured. Key Results In HT-29/B6 cells, Uzara inhibited forskolin- as well as cholera toxin-induced ISC within 60 minutes indicating reduced active chloride secretion. Similar results were obtained in human colonic biopsies pre-stimulated with forskolin. In HT-29/B6, the effect of Uzara on the forskolin-induced ISC was time- and dose-dependent. Analyses of the cellular mechanisms of this Uzara effect revealed inhibition of the Na+/K+-ATPase, a decrease in forskolin-induced cAMP production and a decrease in paracellular resistance. Tracer flux experiments indicate that the dominant effect is the inhibition of the Na+/K+-ATPase. Conclusion and Implications Uzara exerts anti-diarrheal effects via inhibition of active chloride secretion. This inhibition is mainly due to an inhibition of the Na+/K+-ATPase and to a lesser extent to a decrease in intracellular cAMP responses and paracellular resistance. The results imply that Uzara is suitable for treating acute secretory diarrhea. PMID:21479205

  15. Impaired M3 and enhanced M2 muscarinic receptor contractile function in a streptozotocin model of mouse diabetic urinary bladder.

    PubMed

    Pak, K J; Ostrom, R S; Matsui, M; Ehlert, F J

    2010-05-01

    We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg(-1)) 2-24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC(50) value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 microM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M(2) function is enhanced following streptozotocin treatment.

  16. Bombyx neuropeptide G protein-coupled receptor A7 is the third cognate receptor for short neuropeptide F from silkworm.

    PubMed

    Ma, Qiang; Cao, Zheng; Yu, Yena; Yan, Lili; Zhang, Wenjuan; Shi, Ying; Zhou, Naiming; Huang, Haishan

    2017-12-15

    The short neuropeptide F (sNPF) neuropeptides, closely related to vertebrate neuropeptide Y (NPY), have been suggested to exert pleiotropic effects on many physiological processes in insects. In the silkworm ( Bombyx mori ) two orphan G protein-coupled receptors, Bombyx neuropeptide G protein-coupled receptor (BNGR) A10 and A11, have been identified as cognate receptors for sNPFs, but other sNPF receptors and their signaling mechanisms in B. mori remain unknown. Here, we cloned the full-length cDNA of the orphan receptor BNGR-A7 from the brain of B. mori larvae and identified it as a receptor for Bombyx sNPFs. Further characterization of signaling and internalization indicated that BNGR-A7, -A10, and -A11 are activated by direct interaction with synthetic Bombyx sNPF-1 and -3 peptides. This activation inhibited forskolin or adipokinetic hormone-induced adenylyl cyclase activity and intracellular Ca 2+ mobilization via a G i/o -dependent pathway. Upon activation by sNPFs, BNGR-A7, -A10, and -A11 evoked ERK1/2 phosphorylation and underwent internalization. On the basis of these findings, we designated the receptors BNGR-A7, -A10, and -A11 as Bommo -sNPFR-1, -2, and -3, respectively. Moreover, the results obtained with quantitative RT-PCR analysis revealed that the three Bombyx sNPF receptor subtypes exhibit differential spatial and temporal expression patterns, suggesting possible roles of sNPF signaling in the regulation of a wide range of biological processes. Our findings provide the first in-depth information on sNPF signaling for further elucidation of the roles of the Bombyx sNPF/sNPFR system in the regulation of physiological activities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Environmental cues and symbiont microbe-associated molecular patterns function in concert to drive the daily remodelling of the crypt-cell brush border of the Euprymna scolopes light organ

    PubMed Central

    Heath-Heckman, Elizabeth A.C.; Foster, Jamie; Apicella, Michael A.; Goldman, William E.; McFall-Ngai, Margaret

    2016-01-01

    Summary Recent research has shown that the microbiota affects the biology of associated host epithelial tissues, including their circadian rhythms, although few data are available on how such influences shape the microarchitecture of the brush border. The squid-vibrio system exhibits two modifications of the brush border that supports the symbionts: effacement and repolarization. Together these occur on a daily rhythm in adult animals, at the dawn expulsion of symbionts into the environment, and symbiont colonization of the juvenile host induces an increase in microvillar density. Here we sought to define how these processes are related and the roles of both symbiont colonization and environmental cues. Ultrastructural analyses showed that the juvenile-organ brush borders also efface concomitantly with daily dawn-cued expulsion of symbionts. Manipulation of the environmental light cue and juvenile symbiotic state demonstrated that this behaviour requires the light cue, but not colonization. In contrast, symbionts were required for the observed increase in microvillar density that accompanies post dawn brush-border repolarization; this increase was induced solely by host exposure to phosphorylated lipid A of symbiont cells. These data demonstrate that a partnering of environmental and symbiont cues shapes the brush border and that microbe-associated molecular patterns play a role in the regulation of brush-border microarchitecture. PMID:27062511

  18. Second-messenger regulation of sodium transport in mammalian airway epithelia.

    PubMed Central

    Graham, A; Steel, D M; Alton, E W; Geddes, D M

    1992-01-01

    1. Sodium absorption is the dominant ion transport process in conducting airways and is a major factor regulating the composition of airway surface liquid. However, little is known about the control of airway sodium transport by intracellular regulatory pathways. 2. In sheep tracheae and human bronchi mounted in Ussing chambers under short circuit conditions, the sodium current can be isolated by pretreating tissues with acetazolamide (100 microM) to inhibit bicarbonate secretion, bumetanide (100 microM) to inhibit chloride secretion and phloridzin (200 microM) to inhibit sodium-glucose cotransport. This sodium current consists of amiloride-sensitive (57%) and amiloride-insensitive (43%) components. 3. The regulation of the isolated sodium current by three second messenger pathways was studied using the calcium ionophore A23187 to elevate intracellular calcium, a combination of forskolin and the phosphodiesterase inhibitor zardaverine to elevate intracellular cyclic AMP, and the phorbol ester 12,13-phorbol dibutyrate (PDB) to stimulate protein kinase C. 4. In sheep trachea, A23187 produces a dose-related inhibition of the sodium current with maximal effect (38% of ISC) at 10 microM and IC50 1 microM. This response affects both the amiloride-sensitive and insensitive components of the sodium current and is not altered by prior stimulation of protein kinase C or elevation of intracellular cyclic AMP. In human bronchi, A23187 (10 microM) produced a significantly greater inhibition of ISC (68%), a response which was unaffected by prior treatment with PDB or forskolin-zardaverine. 5. In sheep trachea, stimulation of protein kinase C with PDB produced a dose-related inhibition of ISC maximal (56% of ISC) at 50 nM (IC50 7 nM). This response was abolished by amiloride (100 microM) pretreatment suggesting a selective effect on the amiloride-sensitive component of the sodium current. The response was not altered by prior elevation of intracellular calcium or cyclic AMP. PDB

  19. Action of insulin on the surface morphology of hepatocytes: role of phosphatidylinositol 3-kinase in insulin-induced shape change of microvilli.

    PubMed

    Lange, K; Brandt, U; Gartzke, J; Bergmann, J

    1998-02-25

    primary products, PIP and PIP2. Thus, activated PI 3-kinase may direct a flux of profilin-actin complexes to the membrane locations of activated insulin receptors, where, due to the release of actin monomers after binding of profilactin to PI(3,4)P2 and PI(3,4,5)P3, massive actin polymerization is initiated. As a consequence, PI 3-kinase activation initiates a vectorial reorganization of the cellular actin system to membrane sites neighboring activated insulin receptors, giving rise to local membrane stress as visualized by extensive surface deformations and shortening of microvilli. In addition, extensive high-affinity binding of F-actin-barbed endcapping proteins enhances the cytoplasmic concentration of rapidly polymerizing filament ends. Consequently, the actin monomer concentration is lowered and the (cytoplasmic) pointed ends of the microvillar shaft bundle depolymerize and become shorter. The observations presented strengthen the previously postulated diffusion-barrier concept of glucose- and ion-uptake regulation and provide a mechanistic basis for explaining the action of insulin and other growth factors on transport processes across the plasma membrane.

  20. Vector Competence of Mosquitoes for Arboviruses

    DTIC Science & Technology

    1988-07-30

    of WEE viral receptor sites on the BBF isolated from the mesenteronal epithelial cells of the WS strain of Culex tarsalis. The data were combined from...for receptor sites on BBF. (A) Comparison between Culex pipiens ( ) and WS Culer tarsalis ( ). (B) Results of three competitive binding experi- ments...system, the barrier is governed by receptor sites for the attachment of WEE virions to microvillar membranes (Houk et al., 1986; Houk et al. In manuscript

  1. Increase in Ca2+ current by sustained cAMP levels enhances proliferation rate in GH3 cells.

    PubMed

    Rodrigues, Andréia Laura; Brescia, Marcella; Koschinski, Andreas; Moreira, Thaís Helena; Cameron, Ryan T; Baillie, George; Beirão, Paulo S L; Zaccolo, Manuela; Cruz, Jader S

    2018-01-01

    Ca 2+ and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca 2+ currents and proliferation in pituitary tumor GH3 cells. Effect of long-term exposure to forskolin and dibutyryl-cyclic AMP (dbcAMP) on Ca 2+ current density and cell proliferation rate were determined by using the whole-cell patch-clamp technique and real time cell monitoring system. The cAMP levels were assayed, after exposing transfected GH3 cells with the EPAC-1 cAMP sensor to forskolin and dbcAMP, by FRET analysis. Sustained forskolin treatment (24 and 48h) induced a significant increase in total Ca 2+ current density in GH3 cells. Accordingly, dibutyryl-cAMP incubation (dbcAMP) also elicited increase in Ca 2+ current density. However, the maximum effect of dbcAMP occurred only after 72h incubation, whereas forskolin showed maximal effect at 48h. FRET-experiments confirmed that the time-course to elevate intracellular cAMP was distinct between forskolin and dbcAMP. Mibefradil inhibited the fast inactivating current component selectively, indicating the recruitment of T-type Ca 2+ channels. A significant increase on cell proliferation rate, which could be related to the elevated and sustained intracellular levels of cAMP was observed. We conclude that maintaining high levels of intracellular cAMP will cause an increase in Ca 2+ current density and this phenomenon impacts proliferation rate in GH3 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Impaired M3 and enhanced M2 muscarinic receptor contractile function in a streptozotocin model of mouse diabetic urinary bladder

    PubMed Central

    Pak, K. J.; Ostrom, R. S.; Matsui, M.

    2010-01-01

    We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg−1) 2–24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC50 value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 µM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M2 function is enhanced following streptozotocin treatment. PMID:20349044

  3. Hypertonicity-induced transmitter release at Drosophila neuromuscular junctions is partly mediated by integrins and cAMP/protein kinase A

    NASA Technical Reports Server (NTRS)

    Suzuki, Kazuhiro; Grinnell, Alan D.; Kidokoro, Yoshiaki

    2002-01-01

    The frequency of quantal transmitter release increases upon application of hypertonic solutions. This effect bypasses the Ca(2+) triggering step, but requires the presence of key molecules involved in vesicle fusion, and hence could be a useful tool for dissecting the molecular process of vesicle fusion. We have examined the hypertonicity response at neuromuscular junctions of Drosophila embryos in Ca(2+)-free saline. Relative to wild-type, the response induced by puff application of hypertonic solution was enhanced in a mutant, dunce, in which the cAMP level is elevated, or in wild-type embryos treated with forskolin, an activator of adenylyl cyclase, while protein kinase A (PKA) inhibitors decreased it. The response was also smaller in a mutant, DC0, which lacks the major subunit of PKA. Thus the cAMP/PKA cascade is involved in the hypertonicity response. Peptides containing the sequence Arg-Gly-Asp (RGD), which inhibit binding of integrins to natural ligands, reduced the response, whereas a peptide containing the non-binding sequence Arg-Gly-Glu (RGE) did not. A reduced response persisted in a mutant, myospheroid, which expresses no integrins, and the response in DC0 was unaffected by RGD peptides. These data indicate that there are at lease two components in the hypertonicity response: one that is integrin mediated and involves the cAMP/PKA cascade, and another that is not integrin mediated and does not involve the cAMP/PKA cascade.

  4. Pertussis toxin modifies the characteristics of both the inhibitory GTP binding proteins and the somatostatin receptor in anterior pituitary tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahy, N.; Woolkalis, M.; Thermos, K.

    1988-08-01

    The effects of pertussis toxin treatment on the characteristics of somatostatin receptors in the anterior pituitary tumor cell line AtT-20 were examined. Pertussis toxin selectively catalyzed the ADP ribosylation of the alpha subunits of the inhibitory GTP binding proteins in AtT-20 cells. Toxin treatment abolished somatostatin inhibition of forskolin-stimulated adenylyl cyclase activity and somatostatin stimulation of GTPase activity. To examine the effects of pertussis toxin treatment on the characteristics of the somatostatin receptor, the receptor was labeled by the somatostatin analog (125I)CGP 23996. (125I)CGP 23996 binding to AtT-20 cell membranes was saturable and within a limited concentration range was tomore » a single high affinity site. Pertussis toxin treatment reduced the apparent density of the high affinity (125I)CGP 23996 binding sites in AtT-20 cell membranes. Inhibition of (125I)CGP 23996 binding by a wide concentration range of CGP 23996 revealed the presence of two binding sites. GTP predominantly reduced the level of high affinity sites in control membranes. Pertussis toxin treatment also diminished the amount of high affinity sites. GTP did not affect (125I)CGP 23996 binding in the pertussis toxin-treated membranes. The high affinity somatostatin receptors were covalently labeled with (125I) CGP 23996 and the photoactivated crosslinking agent n-hydroxysuccinimidyl-4-azidobenzoate. No high affinity somatostatin receptors, covalently bound to (125I)CGP 23996, were detected in the pertussis toxin-treated membranes. These results are most consistent with pertussis toxin uncoupling the inhibitory G proteins from the somatostatin receptor thereby converting the receptor from a mixed population of high and low affinity sites to only low affinity receptors.« less

  5. Distinct Action of Flavonoids, Myricetin and Quercetin, on Epithelial Cl− Secretion: Useful Tools as Regulators of Cl− Secretion

    PubMed Central

    Sun, Hongxin; Niisato, Naomi; Nishio, Kyosuke; Hamilton, Kirk L.; Marunaka, Yoshinori

    2014-01-01

    Epithelial Cl− secretion plays important roles in water secretion preventing bacterial/viral infection and regulation of body fluid. We previously suggested that quercetin would be a useful compound for maintaining epithelial Cl− secretion at a moderate level irrespective of cAMP-induced stimulation. However, we need a compound that stimulates epithelial Cl− secretion even under cAMP-stimulated conditions, since in some cases epithelial Cl− secretion is not large enough even under cAMP-stimulated conditions. We demonstrated that quercetin and myricetin, flavonoids, stimulated epithelial Cl− secretion under basal conditions in epithelial A6 cells. We used forskolin, which activates adenylyl cyclase increasing cytosolic cAMP concentrations, to study the effects of quercetin and myricetin on cAMP-stimulated epithelial Cl− secretion. In the presence of forskolin, quercetin diminished epithelial Cl− secretion to a level similar to that with quercetin alone without forskolin. Conversely, myricetin further stimulated epithelial Cl− secretion even under forskolin-stimulated conditions. This suggests that the action of myricetin is via a cAMP-independent pathway. Therefore, myricetin may be a potentially useful compound to increase epithelial Cl− secretion under cAMP-stimulated conditions. In conclusion, myricetin would be a useful compound for prevention from bacterial/viral infection even under conditions that the amount of water secretion driven by cAMP-stimulated epithelial Cl− secretion is insufficient. PMID:24818160

  6. Further investigation into the signal transduction mechanism of the 5-HT4-like receptor in the circular smooth muscle of human colon.

    PubMed Central

    McLean, P. G.; Coupar, I. M.

    1996-01-01

    1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that

  7. Further investigation into the signal transduction mechanism of the 5-HT4-like receptor in the circular smooth muscle of human colon.

    PubMed

    McLean, P G; Coupar, I M

    1996-06-01

    1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that

  8. Dual contradictory roles of cAMP signaling pathways in hydroxyl radical production in the rat striatum.

    PubMed

    Hara, Shuichi; Kobayashi, Masamune; Kuriiwa, Fumi; Mukai, Toshiji; Mizukami, Hajime

    2012-03-15

    Studies have suggested that cAMP signaling pathways may be associated with the production of reactive oxygen species. In this study, we examined how modifications in cAMP signaling affected the production of hydroxyl radicals in rat striatum using microdialysis to measure extracellular 2,3-dihydroxybenzoic acid (2,3-DHBA), which is a hydroxyl radical adduct of salicylate. Up to 50 nmol of the cell-permeative cAMP mimetic 8-bromo-cAMP (8-Br-cAMP) increased 2,3-DHBA in a dose-dependent manner (there was no additional increase in 2,3-DHBA at 100 nmol). Another cAMP mimetic, dibutyryl cAMP (db-cAMP), caused a nonsignificant increase in 2,3-DHBA at 50 nmol and a significant decrease at 100 nmol. Up to 20 nmol of forskolin, which is a direct activator of adenylyl cyclase, increased 2,3-DHBA, similar to the effect of 8-Br-cAMP; however, forskolin resulted in a much greater increase in 2,3-DHBA. A potent inhibitor of protein kinase A (PKA), H89 (500 μM), potentiated the 8-Br-cAMP- and forskolin-induced increases in 2,3-DHBA and antagonized the inhibitory effect of 100 nmol of db-cAMP. Interestingly, the administration of 100 nmol of 8-bromo-cGMP alone or in combination with H89 had no significant effect on 2,3-DHBA levels. Doses of 100 nmol of a preferential PKA activator (6-phenyl-cAMP) or a preferential PKA inhibitor (8-bromoadenosine-3',5'-cyclic monophosphorothionate, Rp-isomer; Rp-8-Br-cAMPS), which also inhibits the cAMP-mediated activation of Epac (the exchange protein directly activated by cAMP), suppressed or enhanced, respectively, the formation of 2,3-DHBA. Up to 100 nmol of 8-(4-chlorophenylthio)-2'-O-methyladenosine-cAMP, which is a selective activator of Epac, dose-dependently stimulated the formation of 2,3-DHBA. These findings suggest that cAMP signaling plays contradictory roles (stimulation and inhibition) in the production of hydroxyl radicals in rat striatum by differential actions of Epac and PKA. These roles might contribute to the production of

  9. A Zebrafish Embryo Culture System Defines Factors that Promote Vertebrate Myogenesis across Species

    PubMed Central

    Ciarlo, Christie; Liu, Jingxia; Castiglioni, Alessandra; Price, Emily; Liu, Min; Barton, Elisabeth R.; Kahn, C. Ronald; Wagers, Amy J.; Zon, Leonard I.

    2013-01-01

    SUMMARY Ex vivo expansion of satellite cells and directed differentiation of pluripotent cells to mature skeletal muscle have proved difficult challenges for regenerative biology. Using a zebrafish embryo culture system with reporters of early and late skeletal muscle differentiation, we examined the influence of 2,400 chemicals on myogenesis and identified six that expanded muscle progenitors, including three GSK3β inhibitors, two calpain inhibitors and one adenylyl cyclase activator, forskolin. Forskolin also enhanced proliferation of mouse satellite cells in culture and maintained their ability to engraft muscle in vivo. A combination of bFGF, forskolin and the GSK3β inhibitor BIO induced skeletal muscle differentiation in human induced pluripotent stem cells (iPSCs) and produced engraftable myogenic progenitors that contributed to muscle repair in vivo. In summary, these studies reveal functionally conserved pathways regulating myogenesis across species and identify chemical compounds that expand mouse satellite cells and differentiate human iPSCs into engraftable muscle. PMID:24209627

  10. Molecular mechanism of monoamine oxidase A gene regulation under inflammation and ischemia-like conditions: key roles of the transcription factors GATA2, Sp1 and TBP.

    PubMed

    Gupta, Vinayak; Khan, Abrar A; Sasi, Binu K; Mahapatra, Nitish R

    2015-07-01

    Monoamine oxidase A (MAOA) plays important roles in the pathogenesis of several neurological and cardiovascular disorders. The mechanism of transcriptional regulation of MAOA under basal and pathological conditions, however, remains incompletely understood. Here, we report systematic identification and characterization of cis elements and transcription factors that govern the expression of MAOA gene. Extensive computational analysis of MAOA promoter, followed by 5'-promoter deletion/reporter assays, revealed that the -71/-40 bp domain was sufficient for its basal transcription. Gel-shift and chromatin immunoprecipitation assays provided evidence of interactions of the transcription factors GATA-binding protein 2 (GATA2), Sp1 and TATA-binding protein (TBP) with this proximal promoter region. Consistently, over-expression of GATA2, Sp1 and TBP augmented MAOA promoter activity in a coordinated manner. In corroboration, siRNA-mediated down-regulation of GATA2/Sp1/TBP repressed the endogenous MAOA expression as well as transfected MAOA promoter activity. Tumor necrosis factor-α and forskolin activated MAOA transcription that was reversed by Sp1 siRNA; in support, tumor necrosis factor-α- and forskolin-induced activities were enhanced by ectopic over-expression of Sp1. On the other hand, MAOA transcription was diminished upon exposure of neuroblasts or cardiac myoblasts to ischemia-like conditions because of reduced binding of GATA2/Sp1/TBP with MAOA promoter. In conclusion, this study revealed previously unknown roles of GATA2, Sp1 and TBP in modulating MAOA expression under basal as well as pathophysiological conditions such as inflammation and ischemia, thus providing new insights into the molecular basis of aberrant MAOA expression in neuronal/cardiovascular disease states. Dysregulation of monoamine oxidase A (MAOA) have been implicated in several behavioral and neuronal disease states. Here, we identified three crucial transcription factors (GATA2, Sp1 and TBP

  11. Transcriptional and functional studies of Human Endogenous Retrovirus envelope EnvP(b) and EnvV genes in human trophoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Amandine, E-mail: amandine.vargas@voila.fr; Thiery, Maxime, E-mail: thiery.maxime@courrier.uqam.ca; Lafond, Julie, E-mail: lafond.julie@uqam.ca

    2012-03-30

    HERV (Human Endogenous Retrovirus)-encoded envelope proteins are implicated in the development of the placenta. Indeed, Syncytin-1 and -2 play a crucial role in the fusion of human trophoblasts, a key step in placentation. Other studies have identified two other HERV env proteins, namely EnvP(b) and EnvV, both expressed in the placenta. In this study, we have fully characterized both env transcripts and their expression pattern and have assessed their implication in trophoblast fusion. Through RACE analyses, standard spliced transcripts were detected, while EnvV transcripts demonstrated alternative splicing at its 3 Prime end. Promoter activity and expression of both genes weremore » induced in forskolin-stimulated BeWo cells and in primary trophoblasts. Although we have confirmed the fusogenic activity of EnvP(b), overexpression or silencing experiments revealed no impact of this protein on trophoblast fusion. Our results demonstrate that both env genes are expressed in human trophoblasts but are not required for syncytialization.« less

  12. Protein kinase-dependent oxidative regulation of the cardiac Na+–K+ pump: evidence from in vivo and in vitro modulation of cell signalling

    PubMed Central

    Galougahi, Keyvan Karimi; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A S; Hamilton, Elisha J; Rasmussen, Helge H; Figtree, Gemma A

    2013-01-01

    The widely reported stimulation of the cardiac Na+–K+ pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na+ levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47phox and membranous p22phox NADPH oxidase subunits and reduced myocardial O2•−-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na+–K+ pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na+ in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure. PMID:23587884

  13. Absence of PDGF-induced, PKC-independent c-fos expression in a chemically transformed C3H/10T1/2 cell clone.

    PubMed

    Vassbotn, F S; Skar, R; Holmsen, H; Lillehaug, J R

    1992-09-01

    The effect of platelet-derived growth factor (PDGF) on c-fos mRNA transcription was studied in the immortalized mouse embryo fibroblast C3H/10T1/2 Cl 8 (10T1/2) cells and the chemically transformed, tumorigenic subclone C3H/10T1/2 Cl 16 (Cl 16). In the 10T1/2 cells as well as the Cl 16 subclone, the dose-dependent PDGF stimulation of c-fos mRNA synthesis was similar in both logarithmically growing and confluent cultures. c-fos mRNA was induced severalfold by 12-O-tetradecanoylphorbol-13-acetate (TPA) in both 10T1/2 and Cl 16. Down-regulation of protein kinase C (PKC) activity by TPA pretreatment inhibited PDGF-stimulated c-fos mRNA expression in Cl 16 cells but did not affect this induction in the 10T1/2 cells. This inhibition was not a general phenomenon of 3-methylcholanthrene-mediated transformation of 10T1/2 cells since experiments with another transformed 10T1/2 cell clone, C3H/10T1/2 TPA 482, gave qualitatively the same results as the 10T1/2 cells. Receptor binding experiments showed that the nontransformed and transformed cells had a comparable number of PDGF receptors, 1.3 x 10(5) and 0.7 x 10(5) receptors per cell, respectively. Furthermore, cAMP-induced c-fos expression induced by forskolin is formerly shown to be independent of PKC down-regulation. In our experiments, forskolin induced c-fos expression in both clones. However, PKC down-regulation inhibited the forskolin-induced c-fos expression in Cl 16 cells. This apparently demonstrates cross talk between PKC and PKA in the c-fos induction pathway. The present results provide evidence for an impaired mechanism for activating c-fos expression through PKC-independent, PDGF-induced signal transduction in the chemically transformed Cl 16 fibroblasts compared to that in nontransformed 10T1/2 cells.

  14. Heterogeneity in Kv7 channel function in the Cerebral and Coronary Circulation

    PubMed Central

    Tanner, Miles A.; Li, Min; Hill, Michael A.

    2014-01-01

    Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study examined the hypotheses that 1. Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity, and 2. regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and left anterior descending (LAD) arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50μM) was significantly greater in basilar compared to LAD. Similarly, the Kv7 channel inhibitor, linopirdine (10μM) caused stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. PMID:25476662

  15. Defective Fluid Secretion from Submucosal Glands of Nasal Turbinates from CFTR-/- and CFTRΔF508/ΔF508 Pigs

    PubMed Central

    Cho, Hyung-Ju; Joo, Nam Soo; Wine, Jeffrey J.

    2011-01-01

    Background Cystic fibrosis (CF), caused by reduced CFTR function, includes severe sinonasal disease which may predispose to lung disease. Newly developed CF pigs provide models to study the onset of CF pathophysiology. We asked if glands from pig nasal turbinates have secretory responses similar to those of tracheal glands and if CF nasal glands show reduced fluid secretion. Methodology/Principal Findings Unexpectedly, we found that nasal glands differed from tracheal glands in five ways, being smaller, more numerous (density per airway surface area), more sensitive to carbachol, more sensitive to forskolin, and nonresponsive to Substance P (a potent agonist for pig tracheal glands). Nasal gland fluid secretion from newborn piglets (12 CF and 12 controls) in response to agonists was measured using digital imaging of mucus bubbles formed under oil. Secretion rates were significantly reduced in all conditions tested. Fluid secretory rates (Controls vs. CF, in pl/min/gland) were as follows: 3 µM forskolin: 9.2±2.2 vs. 0.6±0.3; 1 µM carbachol: 143.5±35.5 vs. 52.2±10.3; 3 µM forskolin + 0.1 µM carbachol: 25.8±5.8 vs. CF 4.5±0.9. We also compared CFΔF508/ΔF508 with CFTR-/- piglets and found significantly greater forskolin-stimulated secretion rates in the ΔF508 vs. the null piglets (1.4±0.8, n = 4 vs. 0.2±0.1, n = 7). An unexpected age effect was also discovered: the ratio of secretion to 3 µM forskolin vs. 1 µM carbachol was ∼4 times greater in adult than in neonatal nasal glands. Conclusions/Significance These findings reveal differences between nasal and tracheal glands, show defective fluid secretion in nasal glands of CF pigs, reveal some spared function in the ΔF508 vs. null piglets, and show unexpected age-dependent differences. Reduced nasal gland fluid secretion may predispose to sinonasal and lung infections. PMID:21935358

  16. Chronic adriamycin treatment impairs CGRP-mediated functions of meningeal sensory nerves.

    PubMed

    Deák, Éva; Rosta, Judit; Boros, Krisztina; Kis, Gyöngyi; Sántha, Péter; Messlinger, Karl; Jancsó, Gábor; Dux, Mária

    2018-06-01

    Adriamycin is a potent anthracycline-type antitumor agent, but it also exerts potentially serious side effects due to its cardiotoxic and neurotoxic propensity. Multiple impairments in sensory nerve functions have been recently reported in various rat models. The present experiments were initiated in an attempt to reveal adriamycin-induced changes in sensory effector functions of chemosensitive meningeal afferents. Meningeal blood flow was measured with laser Doppler flowmetry in the parietal dura mater of adult male Wistar rats. The dura mater was repeatedly stimulated by topical applications of capsaicin, a transient receptor potential vanilloid 1 (TRPV1) receptor agonist, or acrolein, a transient receptor potential ankyrin 1 (TRPA1) receptor agonist, which induce the release of calcitonin gene-related peptide (CGRP) from meningeal afferents. The blood flow increasing effects of CGRP, histamine, acetylcholine and forskolin were also measured. Capsaicin- and acrolein-induced CGRP release was measured with enzyme-linked immunoassay in an ex vivo dura mater preparation. TRPV1 content of trigeminal ganglia and TRPV1-, CGRP- and CGRP receptor component-immunoreactive structures were examined in dura mater samples obtained from control and adriamycin-treated rats. The vasodilator effects of capsaicin, acrolein and CGRP were significantly reduced in adriamycin-treated animals while histamine-, acetylcholine- and forskolin-induced vasodilatation were unaffected. Measurements of CGRP release in an ex vivo dura mater preparation revealed an altered dynamic upon repeated stimulations of TRPV1 and TRPA1 receptors. In whole-mount dura mater preparations immunohistochemistry revealed altered CGRP receptor component protein (RCP)-immunoreactivity in adriamycin-treated animals, while CGRP receptor activity modifying protein (RAMP1)-, TRPV1- and CGRP-immunostaining were left apparently unaltered. Adriamycin-treatment slightly reduced TRPV1 protein content of trigeminal ganglia

  17. Modafinil inhibits K(Ca)3.1 currents and muscle contraction via a cAMP-dependent mechanism.

    PubMed

    Choi, Shinkyu; Kim, Moon Young; Joo, Ka Young; Park, Seonghee; Kim, Ji Aee; Jung, Jae-Chul; Oh, Seikwan; Suh, Suk Hyo

    2012-07-01

    Modafinil has been used as a psychostimulant for the treatment of narcolepsy. However, its primary mechanism of action remains elusive. Therefore, we examined the effects of modafinil on K(Ca)3.1 channels and vascular smooth muscle contraction. K(Ca)3.1 currents and channel activity were measured using a voltage-clamp technique and inside-out patches in mouse embryonic fibroblast cell line, NIH-3T3 fibroblasts. Intracellular adenosine 3',5'-cyclic monophosphate (cAMP) concentration was measured, and the phosphorylation of K(Ca)3.1 channel protein was examined using western blotting in NIH-3T3 fibroblasts and/or primary cultured mouse aortic smooth muscle cells (SMCs). Muscle contractions were recorded from mouse aorta and rat pulmonary artery by using a myograph developed in-house. Modafinil was found to inhibit K(Ca)3.1 currents in a concentration-dependent manner, and the half-maximal inhibition (IC(50)) of modafinil for the current inhibition was 6.8 ± 0.7 nM. The protein kinase A (PKA) activator forskolin also inhibited K(Ca)3.1 currents. The inhibitory effects of modafinil and forskolin on K(Ca)3.1 currents were blocked by the PKA inhibitors PKI(14-22) or H-89. In addition, modafinil relaxed blood vessels (mouse aorta and rat pulmonary artery) in a concentration-dependent manner. Modafinil increased cAMP concentrations in NIH-3T3 fibroblasts or primary cultured mouse aortic SMCs and phosphorylated K(Ca)3.1 channel protein in NIH-3T3 fibroblasts. However, open probability and single-channel current amplitudes of K(Ca)3.1 channels were not changed by modafinil. From these results, we conclude that modafinil inhibits K(Ca)3.1 channels and vascular smooth muscle contraction by cAMP-dependent phosphorylation, suggesting that modafinil can be used as a cAMP-dependent K(Ca)3.1 channel blocker and vasodilator. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BKα Surface Expression

    PubMed Central

    2015-01-01

    The regulation of surface levels of protein is critical for proper cell function and influences properties including cell adhesion, ion channel contributions to current flux, and the sensitivity of surface receptors to ligands. Here we demonstrate a two-color labeling system in live cells using a single fluorogen activating peptide (FAP) based fusion tag, which enables the rapid and simultaneous quantification of surface and internal proteins. In the nervous system, BK channels can regulate neural excitability and neurotransmitter release, and the surface trafficking of BK channels can be modulated by signaling cascades and assembly with accessory proteins. Using this labeling approach, we examine the dynamics of BK channel surface expression in HEK293 cells. Surface pools of the pore-forming BKα subunit were stable, exhibiting a plasma membrane half-life of >10 h. Long-term activation of adenylyl cyclase by forskolin reduced BKα surface levels by 30%, an effect that could not be attributed to increased bulk endocytosis of plasma membrane proteins. This labeling approach is compatible with microscopic imaging and flow cytometry, providing a solid platform for examining protein trafficking in living cells. PMID:26301573

  19. Modulation of steroidogenesis and estrogen signalling in the estuarine killifish (Fundulus heteroclitus) exposed to ethinylestradiol.

    PubMed

    Hogan, Natacha S; Currie, Suzanne; LeBlanc, Sacha; Hewitt, L Mark; MacLatchy, Deborah L

    2010-06-10

    Previous studies have shown that mummichog (Fundulus heteroclitus; a lunar, asynchronous-spawning killifish of the western Atlantic) exposed to 17alpha-ethynylestradiol (EE2) exhibit decreased plasma reproductive steroid levels, decreased gonadal steroid production, increased plasma vitellogenin, decreased fecundity and impaired fertilization. The objective of this study was to determine the potential mechanisms by which EE2 depresses gonadal steroidogenesis and influences estrogen signalling in the mummichog. Adult recrudesced fish were exposed to the potent synthetic estrogen, ethinylestradiol (EE2; 0-270ng/L) for 14 days. Following exposure, gonadal tissue was removed and incubated for 24h with stimulators of steroidogenesis, including forskolin; 25-OH cholesterol; or pregnenolone. Testosterone production was decreased in basal, forskolin-stimulated and pregnenolone-stimulated EE2-exposed males, indicating effects on the steroidogenic pathway both at and downstream of cholesterol mobilization to P450 side-chain cleavage (P450scc) and/or P450scc conversion of cholesterol to pregnenolone. Hepatic transcript levels of estrogen receptor alpha (ERalpha) and vitellogenin were increased in EE2-treated males compared to control recrudescing males and females confirming an estrogenic response. Hepatic heat shock protein 90 (Hsp90), a chaperoning molecule involved in estrogen signalling, was not affected by EE2 exposure at either the transcript or protein level. However, higher levels of Hsp90 observed in the membrane fractions of female fish raise interesting questions regarding the influence of gender on Hsp90's role in estrogen signalling. These results demonstrate that EE2 can alter steroid production at specific sites within the steroidogenic pathway and can stimulate hepatic estrogen signalling, providing important information regarding the molecular mechanisms underlying the endocrine response of the mummichog to exogenous estrogen.

  20. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages.

    PubMed

    Hwang, Tsong-Long; Tang, Ming-Chi; Kuo, Liang-Mou; Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E₁ (a stable PGE₂ analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE₁- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE₁ significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE₁-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE₁ also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE₁-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Human deafness mutation E385D disrupts the mechanochemical coupling and subcellular targeting of myosin-1a.

    PubMed

    Yengo, Christopher M; Ananthanarayanan, Shobana K; Brosey, Chris A; Mao, Suli; Tyska, Matthew J

    2008-01-15

    Missense mutations in the membrane-binding actin-based motor protein, myosin-1a (Myo1a), have recently been linked to sensorineural deafness in humans. One of these mutations, E385D, impacts a residue in the switch II region of the motor domain that is present in virtually all members of the myosin superfamily. We sought to examine the impact of E385D on the function of Myo1a, both in terms of mechanochemical activity and ability to target to actin-rich microvilli in polarized epithelial cells. While E385D-Myo1a demonstrated actin-activated ATPase activity, the V(MAX) was reduced threefold relative to wild-type. Despite maintaining an active mechanochemical cycle, E385D-Myo1a was unable to move actin in the sliding filament assay. Intriguingly, when an enhanced-green-fluorescent-protein-tagged form of E385D-Myo1a was stably expressed in polarized epithelial cells, this mutation abolished the microvillar targeting normally demonstrated by wild-type Myo1a. Notably, these data are the first to suggest that mechanical activity is essential for proper localization of Myo1a in microvilli. These studies also provide a unique example of how even the most mild substitution of invariant switch II residues can effectively uncouple enzymatic and mechanical activity of the myosin motor domain.

  2. Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus.

    PubMed

    Valdizán, Elsa Maria; Castro, Elena; Pazos, Angel

    2010-08-01

    5-HT1A receptors couple to different Go/Gi proteins in order to mediate a wide range of physiological actions. While activation of post-synaptic 5-HT1A receptors is mainly related to inhibition of adenylyl cyclase activity, functionality of autoreceptors located in raphe nuclei has been classically ascribed to modifications of the activity of potassium and calcium channels. In order to evaluate the possible existence of agonist-directed trafficking for 5-HT1A autoreceptors in the rat dorsal raphe nucleus, we studied their activation by two agonists with a different profile of efficacy [(+)8-OH-DPAT and buspirone], addressing simultaneously the identification of the specific Galpha subtypes ([35S]GTPgammaS labelling and immunoprecipitation) involved and the subsequent changes in cAMP formation. A significant increase (32%, p<0.05) in (+)8-OH-DPAT-induced [35S]GTPgammaS labelling of immunoprecipitates was obtained with anti-Galphai3 antibodies but not with anti-Galphao, anti-Galphai1, anti-Galphai2, anti-Galphaz or anti-Galphas antibodies. In contrast, in the presence of buspirone, significant [35S]GTPgammaS labelling of immunoprecipitates was obtained with anti-Galphai3 (50%, p<0.01), anti-Galphao (32%, p<0.01) and anti-Galphai2 (29%, p<0.05) antibodies, without any labelling with anti-Galphai1, anti-Galphaz or anti-Galphas. The selective 5-HT1A antagonist WAY 100635 blocked the labelling induced by both agonists. Furthermore, (+)8-OH-DPAT failed to modify forskolin-stimulated cAMP accumulation, while buspirone induced a dose-dependent, WAY 100635-sensitive, inhibition of this response (Imax 30.8+/-4.9, pIC50 5.95+/-0.46). These results demonstrate the existence of an agonist-dependency pattern of G-protein coupling and transduction for 5-HT1A autoreceptors in native brain tissue. These data also open new perspectives for the understanding of the differential profiles of agonist efficacy in pre- vs. post-synaptic 5-HT1A receptor-associated responses.

  3. Vasodilator responses to nitric oxide are enhanced in mesenteric arteries of portal hypertensive rats.

    PubMed

    Heinemann, A; Stauber, R E

    1996-09-01

    Nitric oxide (NO) is discussed as a mediator of the splanchnic hyperaemia in portal hypertension. We assessed the vasorelaxation by the NO-dependent vasodilator acetylcholine, the NO donor 3-morpholino-sydnonimine (SIN-1) and forskolin, a stimulator of the adenylate cyclase pathway in potassium-preconstricted isolated perfused mesenteric arteries of portal vein-ligated and sham-operated rats. Dilator responses to acetylcholine and SIN-1 were significantly enhanced in vessels of portal vein-ligated rats as compared to sham-operated rats, whereas no difference was found in forskolin-induced vasodilatation. This suggests enhanced reactivity of the vasculature to NO in experimental portal hypertension.

  4. Eicosapentaenoic acid membrane incorporation impairs ABCA1-dependent cholesterol efflux via a protein kinase A signaling pathway in primary human macrophages.

    PubMed

    Fournier, Natalie; Tardivel, Sylviane; Benoist, Jean-François; Vedie, Benoît; Rousseau-Ralliard, Delphine; Nowak, Maxime; Allaoui, Fatima; Paul, Jean-Louis

    2016-04-01

    A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Non-neural ectoderm is really neural: evolution of developmental patterning mechanisms in the non-neural ectoderm of chordates and the problem of sensory cell homologies.

    PubMed

    Holland, Linda Z

    2005-07-15

    In chordates, the ectoderm is divided into the neuroectoderm and the so-called non-neural ectoderm. In spite of its name, however, the non-neural ectoderm contains numerous sensory cells. Therefore, the term "non-neural" ectoderm should be replaced by "general ectoderm." At least in amphioxus and tunicates and possibly in vertebrates as well, both the neuroectoderm and the general ectoderm are patterned anterior/posteriorly by mechanisms involving retinoic acid and Hox genes. In amphioxus and tunicates the ectodermal sensory cells, which have a wide range of ciliary and microvillar configurations, are mostly primary neurons sending axons to the CNS, although a minority lack axons. In contrast, vertebrate mechanosensory cells, called hair cells, are all secondary neurons that lack axons and have a characteristic eccentric cilium adjacent to a group of microvilli of graded lengths. It has been highly controversial whether the ectodermal sensory cells in the oral siphons of adult tunicates are homologous to vertebrate hair cells. In some species of tunicates, these cells appear to be secondary neurons, and microvillar and ciliary configurations of some of these cells approach those of vertebrate hair cells. However, none of the tunicate cells has all the characteristics of a hair cell, and there is a high degree of variation among ectodermal sensory cells within and between different species. Thus, similarities between the ectodermal sensory cells of any one species of tunicate and craniate hair cells may well represent convergent evolution rather than homology. Copyright 2005 Wiley-Liss, Inc.

  6. The distribution of actin immunoreactivity in rhabdomeres of tipulid flies in relation to extracellular membrane shedding.

    PubMed

    Blest, A D; Stowe, S; Clausen, J A; Carter, M

    1991-09-01

    Rhabdomeres of tipulid flies lose membrane during turnover from a 'shedding zone' composed of microvillar tips. These distal domains lack intramicrovillar cytoskeletons and appear to be empty sacs of membrane. Recent concerns about the role of ninaC mechano-enzymes in the architecture of dipteran rhabdomeral microvilli and the dynamic role that they may play in the creation of shedding zones demand an examination of the distribution of actin in tipulid rhabdomeres. We compared rhabdomeres from tipulid retinae incubated before fixation for immunocytochemistry in a buffer without additives and a stabilising buffer that contained a cocktail of cysteine protease inhibitors; both were challenged by an anti-actin antibody for immunogold labelling after embedding in LR White Resin. Shedding zones thus processed collapse to structureless detritus. Stabilised and unstabilized shedding zones were immunonegative to anti-actin. To ensure that the negative results were not consequent upon conformational changes generated by the processing protocol, we examined microvilli of degenerating rhabdomeres of the Drosophila light-dependent retinal degeneration mutant rdgBKS222 (which separate and collapse without creating a shedding zone) and found the detritus they generate to be immunopositive to anti-actin. Stabilised and unstabilized regions of basal regions of tipulid rhabdomeres were equally immunopositive. We infer that (a) actin is absent from shedding zones; (b) actin is not degraded by microvillar cysteine proteases. The implications of these conclusions are discussed in relation to some functional models of arthropod photoreceptor microvilli.

  7. Tetrodotoxin Blockade on Canine Cardiac L-Type Ca2+ Channels Depends on pH and Redox Potential

    PubMed Central

    Hegyi, Bence; Komáromi, István; Kistamás, Kornél; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Nánási, Péter P.; Szentandrássy, Norbert

    2013-01-01

    Tetrodotoxin (TTX) is believed to be one of the most selective inhibitors of voltage-gated fast Na+ channels in excitable tissues. Recently, however, TTX has been shown to block L-type Ca2+ current (ICa) in canine cardiac cells. In the present study, the TTX-sensitivity of ICa was studied in isolated canine ventricular myocytes as a function of (1) channel phosphorylation, (2) extracellular pH and (3) the redox potential of the bathing medium using the whole cell voltage clamp technique. Fifty-five micromoles of TTX (IC50 value obtained under physiological conditions) caused 60% ± 2% inhibition of ICa in acidic (pH = 6.4), while only a 26% ± 2% block in alkaline (pH = 8.4) milieu. Similarly, the same concentration of TTX induced 62% ± 6% suppression of ICa in a reductant milieu (containing glutathione + ascorbic acid + dithiothreitol, 1 mM each), in contrast to the 31% ± 3% blockade obtained in the presence of a strong oxidant (100 μM H2O2). Phosphorylation of the channel protein (induced by 3 μM forskolin) failed to modify the inhibiting potency of TTX; an IC50 value of 50 ± 4 μM was found in forskolin. The results are in a good accordance with the predictions of our model, indicating that TTX binds, in fact, to the selectivity filter of cardiac L-type Ca channels. PMID:23771047

  8. Regulatory role of melatonin and BMP-4 in prolactin production by rat pituitary lactotrope GH3 cells.

    PubMed

    Ogura-Ochi, Kanako; Fujisawa, Satoshi; Iwata, Nahoko; Komatsubara, Motoshi; Nishiyama, Yuki; Tsukamoto-Yamauchi, Naoko; Inagaki, Kenichi; Wada, Jun; Otsuka, Fumio

    2017-08-01

    The effects of melatonin on prolactin production and its regulatory mechanism remain uncertain. We investigated the regulatory role of melatonin in prolactin production using rat pituitary lactotrope GH3 cells by focusing on the bone morphogenetic protein (BMP) system. Melatonin receptor activation, induced by melatonin and its receptor agonist ramelteon, significantly suppressed basal and forskolin-induced prolactin secretion and prolactin mRNA expression in GH3 cells. The melatonin MT2 receptor was predominantly expressed in GH3 cells, and the inhibitory effects of melatonin on prolactin production were reversed by treatment with the receptor antagonist luzindole, suggesting functional involvement of MT2 action in the suppression of prolactin release. Melatonin receptor activation also suppressed BMP-4-induced prolactin expression by inhibiting phosphorylation of Smad and transcription of the BMP-target gene Id-1, while BMP-4 treatment upregulated MT2 expression. Melatonin receptor activation suppressed basal, BMP-4-induced and forskolin-induced cAMP synthesis; however, BtcAMP-induced prolactin mRNA expression was not affected by melatonin or ramelteon, suggesting that MT2 activation leads to inhibition of prolactin production through the suppression of Smad signaling and cAMP synthesis. Experiments using intracellular signal inhibitors revealed that the ERK pathway is, at least in part, involved in prolactin induction by GH3 cells. Thus, a new regulatory role of melatonin involving BMP-4 in prolactin secretion was uncovered in lactotrope GH3 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Heterogeneity in Kv7 channel function in the cerebral and coronary circulation.

    PubMed

    Lee, Sewon; Yang, Yan; Tanner, Miles A; Li, Min; Hill, Michael A

    2015-02-01

    Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study aimed to examine the hypotheses that (i) Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity and (ii) regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and LAD arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50 μM) was significantly greater in the basilar artery compared to the LAD artery. Similarly, the Kv7 channel inhibitor, linopirdine (10 μM) caused a stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than in the coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. © 2014 John Wiley & Sons Ltd.

  10. Caffeine accelerates recovery from general anesthesia via multiple pathways.

    PubMed

    Fong, Robert; Khokhar, Suhail; Chowdhury, Atif N; Xie, Kelvin G; Wong, Josiah Hiu-Yuen; Fox, Aaron P; Xie, Zheng

    2017-09-01

    Various studies have explored different ways to speed emergence from anesthesia. Previously, we have shown that three drugs that elevate intracellular cAMP (forskolin, theophylline, and caffeine) accelerate emergence from anesthesia in rats. However, our earlier studies left two main questions unanswered. First, were cAMP-elevating drugs effective at all anesthetic concentrations? Second, given that caffeine was the most effective of the drugs tested, why was caffeine more effective than forskolin since both drugs elevate cAMP? In our current study, emergence time from anesthesia was measured in adult rats exposed to 3% isoflurane for 60 min. Caffeine dramatically accelerated emergence from anesthesia, even at the high level of anesthetic employed. Caffeine has multiple actions including blockade of adenosine receptors. We show that the selective A 2a adenosine receptor antagonist preladenant or the intracellular cAMP ([cAMP] i )-elevating drug forskolin, accelerated recovery from anesthesia. When preladenant and forskolin were tested together, the effect on anesthesia recovery time was additive indicating that these drugs operate via different pathways. Furthermore, the combination of preladenant and forskolin was about as effective as caffeine suggesting that both A 2A receptor blockade and [cAMP] i elevation play a role in caffeine's ability to accelerate emergence from anesthesia. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in humans at all anesthetic concentrations and that both the elevation of [cAMP] i and adenosine receptor blockade play a role in this response. NEW & NOTEWORTHY Currently, there is no method to accelerate emergence from anesthesia. Patients "wake" when they clear the anesthetic from their systems. Previously, we have shown that caffeine can accelerate emergence from anesthesia. In this study, we show that

  11. Palmatine, a protoberberine alkaloid, inhibits both Ca2+- and cAMP-activated Cl− secretion in isolated rat distal colon

    PubMed Central

    Wu, D Z; Yuan, J Y; Shi, H L; Hu, Z B

    2008-01-01

    Background and purpose: The protoberberine alkaloid berberine has been reported to inhibit colonic Cl− secretion. However, it is not known if other protoberberine alkaloids share these effects. We have therefore selected another protoberberine alkaloid, palmatine, to assess its effects on active ion transport across rat colonic epithelium. Experimental approach: Rat colonic mucosa was mounted in Ussing chambers and short circuit current (I SC), apical Cl− current and basolateral K+ current were recorded. Intracellular cAMP content was determined by an enzyme immunoassay. Intracellular Ca2+ concentration was measured with Fura-2 AM. Key results: Palmatine inhibited carbachol-induced Ca2+-activated Cl− secretion and the carbachol-induced increase of intracellular Ca2+ concentration. Palmatine also inhibited cAMP-activated Cl− secretion induced by prostaglandin E2 (PGE2) or forskolin. Palmatine prevented the elevation of intracellular cAMP by forskolin. Determination of apical Cl− currents showed that palmatine suppressed the forskolin-stimulated, apical cAMP-activated Cl− current but not the carbachol-stimulated apical Ca2+-activated Cl− current. Following permeabilization of apical membranes with nystatin, we found that palmatine inhibited a carbachol-stimulated basolateral K+ current that was sensitive to charybdotoxin and resistant to chromanol 293B. However, the forskolin-stimulated basolateral K+ current inhibited by palmatine was specifically blocked by chromanol 293B and not by charybdotoxin. Conclusions and implications: Palmatine attenuated Ca2+-activated Cl− secretion through inhibiting basolateral charybdotoxin-sensitive, SK4 K+ channels, whereas it inhibited cAMP-activated Cl− secretion by inhibiting apical CFTR Cl− channels and basolateral chromanol 293B-sensitive, KvLQT1 K+ channels. PMID:18204477

  12. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.

    PubMed

    Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark

    2016-01-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipasemore » A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.« less

  14. MondoA Is an Essential Glucose-Responsive Transcription Factor in Human Pancreatic β-Cells.

    PubMed

    Richards, Paul; Rachdi, Latif; Oshima, Masaya; Marchetti, Piero; Bugliani, Marco; Armanet, Mathieu; Postic, Catherine; Guilmeau, Sandra; Scharfmann, Raphael

    2018-03-01

    Although the mechanisms by which glucose regulates insulin secretion from pancreatic β-cells are now well described, the way glucose modulates gene expression in such cells needs more understanding. Here, we demonstrate that MondoA, but not its paralog carbohydrate-responsive element-binding protein, is the predominant glucose-responsive transcription factor in human pancreatic β-EndoC-βH1 cells and in human islets. In high-glucose conditions, MondoA shuttles to the nucleus where it is required for the induction of the glucose-responsive genes arrestin domain-containing protein 4 (ARRDC4) and thioredoxin interacting protein (TXNIP), the latter being a protein strongly linked to β-cell dysfunction and diabetes. Importantly, increasing cAMP signaling in human β-cells, using forskolin or the glucagon-like peptide 1 mimetic Exendin-4, inhibits the shuttling of MondoA and potently inhibits TXNIP and ARRDC4 expression. Furthermore, we demonstrate that silencing MondoA expression improves glucose uptake in EndoC-βH1 cells. These results highlight MondoA as a novel target in β-cells that coordinates transcriptional response to elevated glucose levels. © 2017 by the American Diabetes Association.

  15. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    PubMed

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-05-01

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  16. Detecting protein-protein interactions using Renilla luciferase fusion proteins.

    PubMed

    Burbelo, Peter D; Kisailus, Adam E; Peck, Jeremy W

    2002-11-01

    We have developed a novel system designated the luciferase assay for protein detection (LAPD) to study protein-protein interactions. This method involves two protein fusions, a soluble reporter fusion and a fusion for immobilizing the target protein. The soluble reporter is an N-terminal Renilla luciferase fusion protein that exhibits high Renilla luciferase activity. Crude cleared lysates from transfected Cos1 cells that express the Renilla luciferase fusion protein can be used in binding assays with immobilized target proteins. Following incubation and washing, target-bound Renilla luciferase fusion proteins produce light from the coelenterazine substrate, indicating an interaction between the two proteins of interest. As proof of the principle, we reproduced known, transient protein-protein interactions between the Cdc42 GTPase and its effector proteins. GTPase Renilla fusion proteins produced in Cos1 cells were tested with immobilized recombinant GST-N-WASP and CEP5 effector proteins. Using this assay, we could detect specific interactions of Cdc42 with these effector proteins in approximately 50 min. The specificity of these interactions was demonstrated by showing that they were GTPase-specific and GTP-dependent and not seen with other unrelated target proteins. These results suggest that the LAPD method, which is both rapid and sensitive, may have research and practical applications.

  17. Promoter-dependent and -independent activation of insulin-like growth factor binding protein-5 gene expression by prostaglandin E2 in primary rat osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Casinghino, S.; Mittanck, D. W.; Ji, C. H.; Centrella, M.; Rotwein, P.

    1996-01-01

    Insulin-like growth factor (IGF) action is mediated by high affinity cell surface IGF receptors and modulated by a family of secreted IGF binding proteins (IGFBPs). IGFBP-5, the most conserved of six IGFBPs characterized to date, uniquely potentiates the anabolic actions of IGF-I for skeletal cells. In osteoblasts, IGFBP-5 production is stimulated by prostaglandin E2 (PGE2), a local factor that mediates certain effects induced by parathyroid hormone, cytokines such as interleukin-1 and transforming growth factor-beta, and mechanical strain. In this study, we show that transcriptional and post-transcriptional events initiated by PGE2 collaborate to enhance IGFBP-5 gene expression in primary fetal rat osteoblast cultures. PGE2 treatment stimulated up to a 7-fold rise in steady-state levels of IGFBP-5 mRNA throughout 32 h of incubation. Analysis of nascent IGFBP-5 mRNA suggested that PGE2 had only a modest stimulatory effect on IGFBP-5 gene transcription, and transient transfection studies with IGFBP-5 promoter-reporter genes confirmed that PGE2 enhanced promoter activity by approximately 2-fold. Similar stimulatory effects were seen with forskolin. A DNA fragment with only 51 base pairs of the 5'-flanking sequence retained hormonal responsiveness, which may be mediated by a binding site for transcription factor AP-2 located at positions -44 to -36 in the proximal IGFBP-5 promoter. Incubation of osteoblasts with the mRNA transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that PGE2 enhanced IGFBP-5 mRNA stability by 2-fold, increasing the t1/2 from 9 to 18 h. The effects of PGE2 on steady-state IGFBP-5 transcripts were abrogated by preincubating cells with cycloheximide, indicating that the effects of PGE2 on both gene transcription and mRNA stability required ongoing protein synthesis. Therefore, both promoter-dependent and -independent pathways converge to enhance IGFBP-5 gene expression in response to PGE2 in osteoblasts.

  18. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase.

    PubMed

    Van Raemdonck, Katrien; Gouwy, Mieke; Lepers, Stefanie Antoinette; Van Damme, Jo; Struyf, Sofie

    2014-07-01

    CXC chemokines influence a variety of biological processes, such as angiogenesis, both in a physiological and pathological context. Platelet factor-4 (PF-4)/CXCL4 and its variant PF-4var/CXCL4L1 are known to favor angiostasis by inhibiting endothelial cell proliferation and chemotaxis. CXCL4L1 in particular is a potent inhibitor of angiogenesis with anti-tumoral characteristics, both through regulation of neovascularization and through attraction of activated lymphocytes. However, its underlying signaling pathways remain to be elucidated. Here, we have identified various intracellular pathways activated by CXCL4L1 in comparison with other CXCR3 ligands, including CXCL4 and interferon-γ-induced protein 10/CXCL10. Signaling experiments show involvement of the mitogen-activated protein kinase (MAPK) family in CXCR3A-transfected cells, activated lymphocytes and human microvascular endothelial cells (HMVEC). In CXCR3A transfectants, CXCL4 and CXCL4L1 activated p38 MAPK, as well as Src kinase within 30 and 5 min, respectively. Extracellular signal-regulated kinase (ERK) phosphorylation occurred in activated lymphocytes, yet was inhibited in microvascular and lymphatic endothelial cells. CXCL4L1 and CXCL4 counterbalanced the angiogenic chemokine stromal cell-derived factor-1/CXCL12 in both endothelial cell types. Notably, inhibition of ERK signaling by CXCL4L1 and CXCL4 in lymphatic endothelial cells implies that these chemokines might also regulate lymphangiogenesis. Furthermore, CXCL4, CXCL4L1 and CXCL10 slightly enhanced forskolin-stimulated cAMP production in HMVEC. Finally, CXCL4, but not CXCL4L1, induced activation of p70S6 kinase within 5 min in HMVEC. Our findings confirm that the angiostatic chemokines CXCL4L1 and CXCL4 activate both CXCR3A and CXCR3B and bring new insights into the complexity of their signaling cascades.

  19. Protein docking prediction using predicted protein-protein interface.

    PubMed

    Li, Bin; Kihara, Daisuke

    2012-01-10

    Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  20. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.

  1. Unique system of photoreceptors in sea urchin tube feet

    PubMed Central

    Ullrich-Lüter, Esther M; Dupont, Sam; Arboleda, Enrique; Hausen, Harald; Arnone, Maria Ina

    2011-01-01

    Different sea urchin species show a vast variety of responses to variations in light intensity; however, despite this behavioral evidence for photosensitivity, light sensing in these animals has remained an enigma. Genome information of the recently sequenced purple sea urchin (Strongylocentrotus purpuratus) allowed us to address this question from a previously unexplored molecular perspective by localizing expression of the rhabdomeric opsin Sp-opsin4 and Sp-pax6, two genes essential for photoreceptor function and development, respectively. Using a specifically designed antibody against Sp-Opsin4 and in situ hybridization for both genes, we detected expression in two distinct groups of photoreceptor cells (PRCs) located in the animal's numerous tube feet. Specific reactivity of the Sp-Opsin4 antibody with sea star optic cushions, which regulate phototaxis, suggests a similar visual function in sea urchins. Ultrastructural characterization of the sea urchin PRCs revealed them to be of a microvillar receptor type. Our data suggest that echinoderms, in contrast to chordates, deploy a microvillar, r-opsin–expressing PRC type for vision, a feature that has been so far documented only in protostome animals. Surprisingly, sea urchin PRCs lack any associated screening pigment. Indeed, one of the tube foot PRC clusters may account for directional vision by being shaded through the opaque calcite skeleton. The PRC axons connect to the animal internal nervous system, suggesting an integrative function beyond local short circuits. Because juveniles display no phototaxis until skeleton completion, we suggest a model in which the entire sea urchin, deploying its skeleton as PRC screening device, functions as a huge compound eye. PMID:21536888

  2. [Organization of olfactory system of the Indian major carp Labeo rohita (Ham.): a study using scanning and transmission microscopy].

    PubMed

    Bhute, Y V; Baile, V V

    2007-01-01

    Catla catla, Labeo rohita, and Cirrhinus mrigala are important alimentary fish in India. Their reproduction (breeding) depends on season. The fish perceive external factors-stimuli and chemical signals through the olfactory system that plays the key role in the central regulation of reproduction. However, in the available literature, any electron microscopy data on organization of olfactory elements in these fish are absent. We have studied ultrastructure of the olfactory organ in male L. rohita by using scanning (SEM) and transmission electron microscopy (TEM). The olfactory organ consists of olfactory epithelium, a short nerve, and olfactory bulb. The organ has oval shape and consists of approximately 47-52 lamellae in adult fish and of 14-20 lamellae in fish at the stage of fingerling. These lamellae originate from the midline raphe. By using SEM, the presence of microvillar sensory and ciliated non-sensory cells in these lamellae is shown. By using TEM, a microvillar receptor cell is revealed, which has rough endoplasmic reticulum and Golgi apparatus towards the apical end. Basal cells are found at the base of the receptor cell; supporting cells are located adjacent to olfactory receptor neurons, while epithelial cells--in the non-sensory part of olfactory epithelium. Mast, blastema and macrophages cells are also found in the basal lamina. This work is the first publication on structural organization of olfactory system of the Indian major carp, which provides information about morphological and ultrastructural organization of olfactory system and opens new opportunities for study of chemical neuroanatomy, sensory signal processing, and nervous regulation of reproduction of the Indian major carp.

  3. H{sub 2}S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sen; Ping, Na-na; Cao, Lei, E-mail: leicao@mail.xjtu.edu.cn

    2015-12-15

    Hydrogen sulfide (H{sub 2}S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H{sub 2}S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H{sub 2}S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-typemore » Ca{sup 2+} channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H{sub 2}S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway. - Highlights: • The vasoactivity effect of NaHS, a donor of H{sub 2}S, was studied on rat cerebral arteries. • H{sub 2}S induces a constriction, not a relaxant effect on basilar arteries. • The vasoconstrictive effect is invovled in inhibiting adenylyl cyclase to reduce cAMP levels. • The vasoconstriction is partially antagonized by NO, and does not necessarily act via NO pathway.« less

  4. Activation of AMPK Inhibits Cholera Toxin Stimulated Chloride Secretion in Human and Murine Intestine

    PubMed Central

    Hoekstra, Nadia; Collins, Danielle; Collaco, Anne; Baird, Alan W.; Winter, Desmond C.; Ameen, Nadia; Geibel, John P.; Kopic, Sascha

    2013-01-01

    Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR), is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK), can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX) mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK). In order to substantiate our findings on the whole tissue level, short-circuit current (SCC) was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK) significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness. PMID:23935921

  5. Cholinergic system modulates growth, apoptosis, and secretion of cholangiocytes from bile duct-ligated rats.

    PubMed

    LeSagE, G; Alvaro, D; Benedetti, A; Glaser, S; Marucci, L; Baiocchi, L; Eisel, W; Caligiuri, A; Phinizy, J L; Rodgers, R; Francis, H; Alpini, G

    1999-07-01

    To investigate the role of the cholinergic system in regulation of cholangiocyte functions, we evaluated the effects of vagotomy on cholangiocyte proliferation and secretion in rats that underwent bile duct ligation (BDL rats). After bile duct ligation (BDL), the vagus nerve was resected; 7 days later, expression of M3 acetylcholine receptor was evaluated. Cholangiocyte proliferation was assessed by morphometry and measurement of DNA synthesis. Apoptosis was evaluated by light microscopy and annexin-V staining. Ductal secretion was evaluated by measurement of secretin-induced choleresis, secretin receptor (SR) gene expression, and cyclic adenosine 3',5'-monophosphate (cAMP) levels. Vagotomy decreased the expression of M3 acetylcholine receptors in cholangiocytes. DNA synthesis and ductal mass were markedly decreased, whereas cholangiocyte apoptosis was increased by vagotomy. Vagotomy decreased ductal secretion. Forskolin treatment prevented the decrease in cAMP levels induced by vagotomy, maintained cholangiocyte proliferation, and decreased cholangiocyte apoptosis caused by vagotomy in BDL rats. Cholangiocyte secretion was also maintained by forskolin. Vagotomy impairs cholangiocyte proliferation and enhances apoptosis, leading to decreased ductal mass in response to BDL. Secretin-induced choleresis of BDL rats was virtually eliminated by vagotomy in association with decreased cholangiocyte cAMP levels. Maintenance of cAMP levels by forskolin administration prevents the effects of vagotomy on cholangiocyte proliferation, apoptosis, and secretion.

  6. Effect of age and posture on human lymphocyte adenylate cyclase activity.

    PubMed

    Mader, S L; Robbins, A S; Rubenstein, L Z; Tuck, M L; Scarpace, P J

    1988-03-01

    1. A number of age-related changes have been reported in the catecholamine-adrenoceptor-adenylate cyclase system. Most of the data available on these alterations come from resting subjects; the response to acute stress may provide additional insights into the age effect on these responses. 2. We measured supine and 10 min upright plasma noradrenaline and lymphocyte adenylate cyclase activity in ten healthy elderly subjects (age 66-80 years) and seven healthy young subjects (age 27-34 years). 3. Isoprenaline stimulation of lymphocyte adenylate cyclase activity was not significantly different between supine and upright positions or between elderly and young subjects. There was a marked increase in forskolin-stimulated adenylate cyclase activity in the upright posture in both elderly and young subjects. The increment over supine levels was 70% in the elderly (P less than 0.025) and 73% in the young (P less than 0.05). This enhanced forskolin activity was not seen in two young subjects who became syncopal. 4. These data suggest that enhanced forskolin-stimulated adenylate cyclase activity occurs after 10 min of upright posture in both elderly and young subjects, and may be relevant to immediate blood pressure regulation. We were unable to demonstrate any age-related differences in these acute adrenergic responses.

  7. Interaction entropy for protein-protein binding

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.

    2017-03-01

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  8. Interaction entropy for protein-protein binding.

    PubMed

    Sun, Zhaoxi; Yan, Yu N; Yang, Maoyou; Zhang, John Z H

    2017-03-28

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interactionentropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interactionentropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  9. Inhibition of basal and stimulated release of endothelin-1 from guinea pig tracheal epithelial cells in culture by beta 2-adrenoceptor agonists and cyclic AMP enhancers.

    PubMed

    Yang, Quan; Battistini, Bruno; Pelletier, Stéphane; Sirois, Pierre

    2007-10-01

    The effects of cyclic AMP-related compounds and beta adrenoceptor agonists on the basal and lipopolysaccharide (LPS)-stimulated release of endothelin-1 (ET-1) from guinea-pig tracheal epithelial cells (GPTEpCs) in culture were studied. Forskolin (a potent activator of adenylyl cyclase), 8-bromo-cyclic AMP (a cyclic AMP analogue), salbutamol and salmeterol (two beta 2-adrenoceptor agonists), were used to increase cyclic AMP levels. Cultured GPTEpCs released ET-1 continuously over a 24 h incubation period. The values reached 1,938 +/- 122 pg/mg of total cell proteins after 24 h. LPS (10 microg/ml) significantly stimulated the release of ET-1 by 1.6- to 1.8-fold, up to 1,262 +/- 56 pg/mg total cell proteins after an 8 h incubation period. Compound 8-bromo-cyclic AMP (10(-5), 10(-4) and 10(-3) M) reduced the basal release of ET-1 from GPTEpCs by up to 31% (P < 0.01) and the LPS stimulated release by up to 42% (P < 0.05), after an 8 h incubation period. Forskolin (10(-6), 10(-5) and 10(-4) M) also inhibited the basal release of ET-1 by up to 28% (P < 0.05) and LPS-stimulated release of ET-1 by up to 50% (P < 0.05), after an 8 h incubation period. At the concentration of 10(-5) M, forskolin increased cyclic AMP levels in GPTEpCs by 17-fold (P < 0.001) in the medium, 15 min after the beginning of the incubation. Salbutamol (10(-8) to 10(-6) M) had no effect on the basal production and release of ET-1 after 8 h. Conversely, this short acting beta 2-adrenoceptor agonist significantly reduced LPS-mediated increase of ET-1 production by up to 55% (P < 0.05) after an 8 h incubation period. Salmeterol (10(-9) M to 10(-5) M) inhibited basal and LPS-stimulated production and release of ET-1 after an 8 h incubation period (between 44 and 51%, P < 0.01). Both salbutamol and salmeterol (10(-6) M) increase cyclic AMP levels by five- and twofold, respectively (P < 0.05). In summary, these observations indicate that beta 2-adrenoceptor agonists or cyclic AMP enhancers can modulate both

  10. A synonymous codon change alters the drug sensitivity of ΔF508 cystic fibrosis transmembrane conductance regulator

    PubMed Central

    Bali, Vedrana; Lazrak, Ahmed; Guroji, Purushotham; Fu, Lianwu; Matalon, Sadis; Bebok, Zsuzsanna

    2016-01-01

    Synonymous mutations, such as I507-ATC→ATT, in deletion of Phe508 in cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR), the most frequent disease-associated mutant of CFTR, may affect protein biogenesis, structure, and function and contribute to an altered disease phenotype. Small-molecule drugs are being developed to correct ΔF508 CFTR. To understand correction mechanisms and the consequences of synonymous mutations, we analyzed the effect of mechanistically distinct correctors, corrector 4a (C4) and lumacaftor (VX-809), on I507-ATT and I507-ATC ΔF508 CFTR biogenesis and function. C4 stabilized I507-ATT ΔF508 CFTR band B, but without considerable biochemical and functional correction. VX-809 biochemically corrected ∼10% of both of the variants, leading to stable, forskolin+3-isobutyl-1-methylxanthine (IBMX)-activated whole-cell currents in the presence of the corrector. Omitting VX-809 during whole-cell recordings led to a spontaneous decline of the currents, suggesting posttranslational stabilization by VX-809. Treatment of cells with the C4+VX-809 combination resulted in enhanced rescue and 2-fold higher forskolin+IBMX–activated currents of both I507-ATT and I507-ATC ΔF508 CFTR, compared with VX-809 treatment alone. The lack of an effect of C4 on I507-ATC ΔF508 CFTR, but its additive effect in combination with VX-809, implies that C4 acted on VX-809–modified I507-ATC ΔF508 CFTR. Our results suggest that binding of C4 and VX-809 to ΔF508 CFTR is conformation specific and provide evidence that synonymous mutations can alter the drug sensitivity of proteins.—Bali, V., Lazrak, A., Guroji, P., Fu, L., Matalon, S., Bebok, Z. A synonymous codon change alters the drug sensitivity of ΔF508 cystic fibrosis transmembrane conductance regulator. PMID:26336913

  11. Optimization of a cAMP response element signal pathway reporter system.

    PubMed

    Shan, Qiang; Storm, Daniel R

    2010-08-15

    A sensitive cAMP response element (CRE) reporter system is essential for studying the cAMP/protein kinase A/cAMP response element binding protein signal pathway. Here we have tested a few CRE promoters and found one with high sensitivity to external stimuli. Using this optimal CRE promoter and the enhanced green fluorescent protein as the reporter, we have established a CRE reporter cell line. This cell line can be used to study the signal pathway by fluorescent microscope, fluorescence-activated cell analysis and luciferase assay. This cell line's sensitivity to forskolin, using the technique of fluorescence-activated cell sorting, was increased to approximately seven times that of its parental HEK 293 cell line, which is currently the most commonly used cell line in the field for the signal pathway study. Therefore, this newly created cell line is potentially useful for studying the signal pathway's modulators, which generally have weaker effect than its mediators. Our research has also established a general procedure for optimizing transcription-based reporter cell lines, which might be useful in performing the same task when studying many other transcription-based signal pathways. (c) 2010 Elsevier B.V. All rights reserved.

  12. Intracellular Cs+ activates the PKA pathway, revealing a fast, reversible, Ca2+-dependent inactivation of L-type Ca2+ current.

    PubMed

    Brette, Fabien; Lacampagne, Alain; Sallé, Laurent; Findlay, Ian; Le Guennec, Jean-Yves

    2003-08-01

    Inactivation of the L-type Ca2+ current (ICaL) was studied in isolated guinea pig ventricular myocytes with different ionic solutions. Under basal conditions, ICaL of 82% of cells infused with Cs+-based intracellular solutions showed enhanced amplitude with multiphasic decay and diastolic depolarization-induced facilitation. The characteristics of ICaL in this population of cells were not due to contamination by other currents or an artifact. These phenomena were reduced by ryanodine, caffeine, cyclopiazonic acid, the protein kinase A inhibitor H-89, and the cAMP-dependent protein kinase inhibitor. Forskolin and isoproterenol increased ICaL by only approximately 60% in these cells. Cells infused with either N-methyl-d-glucamine or K+-based intracellular solutions did not show multiphasic decay or facilitation under basal conditions. Isoproterenol increased ICaL by approximately 200% in these cells. In conclusion, we show that multiphasic inactivation of ICaL is due to Ca2+-dependent inactivation that is reversible on a time scale of tens of milliseconds. Cs+ seems to activate the cAMP-dependent protein kinase pathway when used as a substitute for K+ in the pipette solution.

  13. Optimization of protein-protein docking for predicting Fc-protein interactions.

    PubMed

    Agostino, Mark; Mancera, Ricardo L; Ramsland, Paul A; Fernández-Recio, Juan

    2016-11-01

    The antibody crystallizable fragment (Fc) is recognized by effector proteins as part of the immune system. Pathogens produce proteins that bind Fc in order to subvert or evade the immune response. The structural characterization of the determinants of Fc-protein association is essential to improve our understanding of the immune system at the molecular level and to develop new therapeutic agents. Furthermore, Fc-binding peptides and proteins are frequently used to purify therapeutic antibodies. Although several structures of Fc-protein complexes are available, numerous others have not yet been determined. Protein-protein docking could be used to investigate Fc-protein complexes; however, improved approaches are necessary to efficiently model such cases. In this study, a docking-based structural bioinformatics approach is developed for predicting the structures of Fc-protein complexes. Based on the available set of X-ray structures of Fc-protein complexes, three regions of the Fc, loosely corresponding to three turns within the structure, were defined as containing the essential features for protein recognition and used as restraints to filter the initial docking search. Rescoring the filtered poses with an optimal scoring strategy provided a success rate of approximately 80% of the test cases examined within the top ranked 20 poses, compared to approximately 20% by the initial unrestrained docking. The developed docking protocol provides a significant improvement over the initial unrestrained docking and will be valuable for predicting the structures of currently undetermined Fc-protein complexes, as well as in the design of peptides and proteins that target Fc. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.

    PubMed

    Sitaraman, Kalavathy; Chatterjee, Deb K

    2011-01-01

    In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.

  15. Theoretical studies of protein-protein and protein-DNA binding rates

    NASA Astrophysics Data System (ADS)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  16. Electrostatic complementarity at protein/protein interfaces.

    PubMed

    McCoy, A J; Chandana Epa, V; Colman, P M

    1997-05-02

    Calculation of the electrostatic potential of protein-protein complexes has led to the general assertion that protein-protein interfaces display "charge complementarity" and "electrostatic complementarity". In this study, quantitative measures for these two terms are developed and used to investigate protein-protein interfaces in a rigorous manner. Charge complementarity (CC) was defined using the correlation of charges on nearest neighbour atoms at the interface. All 12 protein-protein interfaces studied had insignificantly small CC values. Therefore, the term charge complementarity is not appropriate for the description of protein-protein interfaces when used in the sense measured by CC. Electrostatic complementarity (EC) was defined using the correlation of surface electrostatic potential at protein-protein interfaces. All twelve protein-protein interfaces studied had significant EC values, and thus the assertion that protein-protein association involves surfaces with complementary electrostatic potential was substantially confirmed. The term electrostatic complementarity can therefore be used to describe protein-protein interfaces when used in the sense measured by EC. Taken together, the results for CC and EC demonstrate the relevance of the long-range effects of charges, as described by the electrostatic potential at the binding interface. The EC value did not partition the complexes by type such as antigen-antibody and proteinase-inhibitor, as measures of the geometrical complementarity at protein-protein interfaces have done. The EC value was also not directly related to the number of salt bridges in the interface, and neutralisation of these salt bridges showed that other charges also contributed significantly to electrostatic complementarity and electrostatic interactions between the proteins. Electrostatic complementarity as defined by EC was extended to investigate the electrostatic similarity at the surface of influenza virus neuraminidase where the

  17. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  18. Direct protein-protein conjugation by genetically introducing bioorthogonal functional groups into proteins.

    PubMed

    Kim, Sanggil; Ko, Wooseok; Sung, Bong Hyun; Kim, Sun Chang; Lee, Hyun Soo

    2016-11-15

    Proteins often function as complex structures in conjunction with other proteins. Because these complex structures are essential for sophisticated functions, developing protein-protein conjugates has gained research interest. In this study, site-specific protein-protein conjugation was performed by genetically incorporating an azide-containing amino acid into one protein and a bicyclononyne (BCN)-containing amino acid into the other. Three to four sites in each of the proteins were tested for conjugation efficiency, and three combinations showed excellent conjugation efficiency. The genetic incorporation of unnatural amino acids (UAAs) is technically simple and produces the mutant protein in high yield. In addition, the conjugation reaction can be conducted by simple mixing, and does not require additional reagents or linker molecules. Therefore, this method may prove very useful for generating protein-protein conjugates and protein complexes of biochemical significance. Copyright © 2016. Published by Elsevier Ltd.

  19. Bifunctional fusion proteins of calmodulin and protein A as affinity ligands in protein purification and in the study of protein-protein interactions.

    PubMed

    Hentz, N G; Daunert, S

    1996-11-15

    An affinity chromatography system is described that incorporates a genetically designed bifunctional affinity ligand. The utility of the system in protein purification and in the study of protein-protein interactions is demonstrated by using the interaction between protein A and the heat shock protein DnaK as a model system. The bifunctional affinity ligand was developed by genetically fusing calmodulin (CaM) to protein A (ProtA). The dual functionality of protein A-calmodulin (ProtA-CaM) stems from the molecular recognition properties of the two components of the fusion protein. In particular, CaM serves as the anchoring component by virtue of its binding properties toward phenothiazine. Thus, the ProtA-CaM can be immobilized on a solid support containing phenothiazine from the C-terminal domain of the fusion protein. Protein A is at the N-terminal domain of the fusion protein and serves as the affinity site for DnaK. While DnaK binds specifically to the protein A domain of the bifunctional ligand, it is released upon addition of ATP and under very mild conditions (pH 7.0). In addition to obtaining highly purified DnaK, this system is very rugged in terms of its performance. The proteinaceous bifunctional affinity ligand can be easily removed by addition of EGTA, and fresh ProtA-CaM can be easily reloaded onto the column. This allows for a facile regeneration of the affinity column because the phenothiazine-silica support matrix is stable for long periods of time under a variety of conditions. This study also demonstrates that calmodulin fusions can provide a new approach to study protein-protein interactions. Indeed, the ProtA-CaM fusion protein identified DnaK as a cellular component that interacts with protein A from among the thousands of proteins present in Escherichia coli.

  20. Molecular modelling of protein-protein/protein-solvent interactions

    NASA Astrophysics Data System (ADS)

    Luchko, Tyler

    The inner workings of individual cells are based on intricate networks of protein-protein interactions. However, each of these individual protein interactions requires a complex physical interaction between proteins and their aqueous environment at the atomic scale. In this thesis, molecular dynamics simulations are used in three theoretical studies to gain insight at the atomic scale about protein hydration, protein structure and tubulin-tubulin (protein-protein) interactions, as found in microtubules. Also presented, in a fourth project, is a molecular model of solvation coupled with the Amber molecular modelling package, to facilitate further studies without the need of explicitly modelled water. Basic properties of a minimally solvated protein were calculated through an extended study of myoglobin hydration with explicit solvent, directly investigating water and protein polarization. Results indicate a close correlation between polarization of both water and protein and the onset of protein function. The methodology of explicit solvent molecular dynamics was further used to study tubulin and microtubules. Extensive conformational sampling of the carboxy-terminal tails of 8-tubulin was performed via replica exchange molecular dynamics, allowing the characterisation of the flexibility, secondary structure and binding domains of the C-terminal tails through statistical analysis methods. Mechanical properties of tubulin and microtubules were calculated with adaptive biasing force molecular dynamics. The function of the M-loop in microtubule stability was demonstrated in these simulations. The flexibility of this loop allowed constant contacts between the protofilaments to be maintained during simulations while the smooth deformation provided a spring-like restoring force. Additionally, calculating the free energy profile between the straight and bent tubulin configurations was used to test the proposed conformational change in tubulin, thought to cause microtubule

  1. Conformational Heterogeneity of Unbound Proteins Enhances Recognition in Protein-Protein Encounters.

    PubMed

    Pallara, Chiara; Rueda, Manuel; Abagyan, Ruben; Fernández-Recio, Juan

    2016-07-12

    To understand cellular processes at the molecular level we need to improve our knowledge of protein-protein interactions, from a structural, mechanistic, and energetic point of view. Current theoretical studies and computational docking simulations show that protein dynamics plays a key role in protein association and support the need for including protein flexibility in modeling protein interactions. Assuming the conformational selection binding mechanism, in which the unbound state can sample bound conformers, one possible strategy to include flexibility in docking predictions would be the use of conformational ensembles originated from unbound protein structures. Here we present an exhaustive computational study about the use of precomputed unbound ensembles in the context of protein docking, performed on a set of 124 cases of the Protein-Protein Docking Benchmark 3.0. Conformational ensembles were generated by conformational optimization and refinement with MODELLER and by short molecular dynamics trajectories with AMBER. We identified those conformers providing optimal binding and investigated the role of protein conformational heterogeneity in protein-protein recognition. Our results show that a restricted conformational refinement can generate conformers with better binding properties and improve docking encounters in medium-flexible cases. For more flexible cases, a more extended conformational sampling based on Normal Mode Analysis was proven helpful. We found that successful conformers provide better energetic complementarity to the docking partners, which is compatible with recent views of binding association. In addition to the mechanistic considerations, these findings could be exploited for practical docking predictions of improved efficiency.

  2. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  3. UDoNC: An Algorithm for Identifying Essential Proteins Based on Protein Domains and Protein-Protein Interaction Networks.

    PubMed

    Peng, Wei; Wang, Jianxin; Cheng, Yingjiao; Lu, Yu; Wu, Fangxiang; Pan, Yi

    2015-01-01

    Prediction of essential proteins which are crucial to an organism's survival is important for disease analysis and drug design, as well as the understanding of cellular life. The majority of prediction methods infer the possibility of proteins to be essential by using the network topology. However, these methods are limited to the completeness of available protein-protein interaction (PPI) data and depend on the network accuracy. To overcome these limitations, some computational methods have been proposed. However, seldom of them solve this problem by taking consideration of protein domains. In this work, we first analyze the correlation between the essentiality of proteins and their domain features based on data of 13 species. We find that the proteins containing more protein domain types which rarely occur in other proteins tend to be essential. Accordingly, we propose a new prediction method, named UDoNC, by combining the domain features of proteins with their topological properties in PPI network. In UDoNC, the essentiality of proteins is decided by the number and the frequency of their protein domain types, as well as the essentiality of their adjacent edges measured by edge clustering coefficient. The experimental results on S. cerevisiae data show that UDoNC outperforms other existing methods in terms of area under the curve (AUC). Additionally, UDoNC can also perform well in predicting essential proteins on data of E. coli.

  4. Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma

    PubMed Central

    Kim, Yongbo; Che, Lihua; Kim, Jeong Beom; Chang, Gyeong Eon; Cheong, Eunji; Kang, Seok-Gu; Ha, Yoon

    2017-01-01

    Glioma is the most malignant type of primary central nervous system tumors, and has an extremely poor prognosis. One potential therapeutic approach is to induce the terminal differentiation of glioma through the forced expression of pro-neural factors. Our goal is to show the proof of concept of the neuronal conversion of C6 glioma through the combined action of small molecules. We investigated the various changes in gene expression, cell-specific marker expression, signaling pathways, physiological characteristics, and morphology in glioma after combination treatment with two small molecules (CHIR99021, a glycogen synthase kinase 3 [GSK3] inhibitor and forskolin, a cyclic adenosine monophosphate [cAMP] activator). Here, we show that the combined action of CHIR99021 and forskolin converted malignant glioma into fully differentiated neurons with no malignant characteristics; inhibited the proliferation of malignant glioma; and significantly down-regulated gene ontology and gene expression profiles related to cell division, gliogenesis, and angiogenesis in small molecule–induced neurons. In vivo, the combined action of CHIR99021 and forskolin markedly delayed neurological deficits and significantly reduced the tumor volume. We suggest that reprogramming technology may be a potential treatment strategy replacing the therapeutic paradigm of traditional treatment of malignant glioma, and a combination molecule comprising a GSK3 inhibitor and a cAMP inducer could be the next generation of anticancer drugs. PMID:29161257

  5. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    PubMed

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  6. Protein-protein interaction network-based detection of functionally similar proteins within species.

    PubMed

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  7. Protein-Protein Docking in Drug Design and Discovery.

    PubMed

    Kaczor, Agnieszka A; Bartuzi, Damian; Stępniewski, Tomasz Maciej; Matosiuk, Dariusz; Selent, Jana

    2018-01-01

    Protein-protein interactions (PPIs) are responsible for a number of key physiological processes in the living cells and underlie the pathomechanism of many diseases. Nowadays, along with the concept of so-called "hot spots" in protein-protein interactions, which are well-defined interface regions responsible for most of the binding energy, these interfaces can be targeted with modulators. In order to apply structure-based design techniques to design PPIs modulators, a three-dimensional structure of protein complex has to be available. In this context in silico approaches, in particular protein-protein docking, are a valuable complement to experimental methods for elucidating 3D structure of protein complexes. Protein-protein docking is easy to use and does not require significant computer resources and time (in contrast to molecular dynamics) and it results in 3D structure of a protein complex (in contrast to sequence-based methods of predicting binding interfaces). However, protein-protein docking cannot address all the aspects of protein dynamics, in particular the global conformational changes during protein complex formation. In spite of this fact, protein-protein docking is widely used to model complexes of water-soluble proteins and less commonly to predict structures of transmembrane protein assemblies, including dimers and oligomers of G protein-coupled receptors (GPCRs). In this chapter we review the principles of protein-protein docking, available algorithms and software and discuss the recent examples, benefits, and drawbacks of protein-protein docking application to water-soluble proteins, membrane anchoring and transmembrane proteins, including GPCRs.

  8. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria

    PubMed Central

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  9. Cross-talk from β-Adrenergic Receptors Modulates α2A-Adrenergic Receptor Endocytosis in Sympathetic Neurons via Protein Kinase A and Spinophilin*

    PubMed Central

    Cottingham, Christopher; Lu, Roujian; Jiao, Kai; Wang, Qin

    2013-01-01

    Inter-regulation of adrenergic receptors (ARs) via cross-talk is a long appreciated but mechanistically unclear physiological phenomenon. Evidence from the AR literature and our own extensive studies on regulation of α2AARs by the scaffolding protein spinophilin have illuminated a potential novel mechanism for cross-talk from β to α2ARs. In the present study, we have characterized a mode of endogenous AR cross-talk in native adrenergic neurons whereby canonical βAR-mediated signaling modulates spinophilin-regulated α2AAR endocytosis through PKA. Our findings demonstrate that co-activation of β and α2AARs, either by application of endogenous agonist or by simultaneous stimulation with distinct selective agonists, results in acceleration of endogenous α2AAR endocytosis in native neurons. We show that receptor-independent PKA activation by forskolin is sufficient to accelerate α2AAR endocytosis and that α2AAR stimulation alone drives accelerated endocytosis in spinophilin-null neurons. Endocytic response acceleration by β/α2AAR co-activation is blocked by PKA inhibition and lost in spinophilin-null neurons, consistent with our previous finding that spinophilin is a substrate for phosphorylation by PKA that disrupts its interaction with α2AARs. Importantly, we show that α2AR agonist-mediated α2AAR/spinophilin interaction is blocked by βAR co-activation in a PKA-dependent fashion. We therefore propose a novel mechanism for cross-talk from β to α2ARs, whereby canonical βAR-mediated signaling coupled to PKA activation results in phosphorylation of spinophilin, disrupting its interaction with α2AARs and accelerating α2AAR endocytic responses. This mechanism of cross-talk has significant implications for endogenous adrenergic physiology and for therapeutic targeting of β and α2AARs. PMID:23965992

  10. Protein function prediction using neighbor relativity in protein-protein interaction network.

    PubMed

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Protein Structure Prediction by Protein Threading

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  12. Predicting protein-protein interactions from protein domains using a set cover approach.

    PubMed

    Huang, Chengbang; Morcos, Faruck; Kanaan, Simon P; Wuchty, Stefan; Chen, Danny Z; Izaguirre, Jesús A

    2007-01-01

    One goal of contemporary proteome research is the elucidation of cellular protein interactions. Based on currently available protein-protein interaction and domain data, we introduce a novel method, Maximum Specificity Set Cover (MSSC), for the prediction of protein-protein interactions. In our approach, we map the relationship between interactions of proteins and their corresponding domain architectures to a generalized weighted set cover problem. The application of a greedy algorithm provides sets of domain interactions which explain the presence of protein interactions to the largest degree of specificity. Utilizing domain and protein interaction data of S. cerevisiae, MSSC enables prediction of previously unknown protein interactions, links that are well supported by a high tendency of coexpression and functional homogeneity of the corresponding proteins. Focusing on concrete examples, we show that MSSC reliably predicts protein interactions in well-studied molecular systems, such as the 26S proteasome and RNA polymerase II of S. cerevisiae. We also show that the quality of the predictions is comparable to the Maximum Likelihood Estimation while MSSC is faster. This new algorithm and all data sets used are accessible through a Web portal at http://ppi.cse.nd.edu.

  13. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    PubMed Central

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  14. 5D imaging approaches reveal the formation of distinct intracellular cAMP spatial gradients

    NASA Astrophysics Data System (ADS)

    Rich, Thomas C.; Annamdevula, Naga; Trinh, Kenny; Britain, Andrea L.; Mayes, Samuel A.; Griswold, John R.; Deal, Joshua; Hoffman, Chase; West, Savannah; Leavesley, Silas J.

    2017-02-01

    Cyclic AMP (cAMP) is a ubiquitous second messenger known to differentially regulate many cellular functions. Several lines of evidence suggest that the distribution of cAMP within cells is not uniform. However, to date, no studies have measured the kinetics of 3D cAMP distributions within cells. This is largely due to the low signal-tonoise ratio of FRET-based probes. We previously reported that hyperspectral imaging improves the signal-to-noise ratio of FRET measurements. Here we utilized hyperspectral imaging approaches to measure FRET signals in five dimensions (5D) - three spatial (x, y, z), wavelength (λ), and time (t) - allowing us to visualize cAMP gradients in pulmonary endothelial cells. cAMP levels were measured using a FRET-based sensor (H188) comprised of a cAMP binding domain sandwiched between FRET donor and acceptor - Turquoise and Venus fluorescent proteins. We observed cAMP gradients in response to 0.1 or 1 μM isoproterenol, 0.1 or 1 μM PGE1, or 50 μM forskolin. Forskolin- and isoproterenol-induced cAMP gradients formed from the apical (high cAMP) to basolateral (low cAMP) face of cells. In contrast, PGE1-induced cAMP gradients originated from both the basolateral and apical faces of cells. Data suggest that 2D (x,y) studies of cAMP compartmentalization may lead to erroneous conclusions about the existence of cAMP gradients, and that 3D (x,y,z) studies are required to assess mechanisms of signaling specificity. Results demonstrate that 5D imaging technologies are powerful tools for measuring biochemical processes in discrete subcellular domains.

  15. Pharmacologic induction of epidermal melanin and protection against sunburn in a humanized mouse model.

    PubMed

    Amaro-Ortiz, Alexandra; Vanover, Jillian C; Scott, Timothy L; D'Orazio, John A

    2013-09-07

    Fairness of skin, UV sensitivity and skin cancer risk all correlate with the physiologic function of the melanocortin 1 receptor, a Gs-coupled signaling protein found on the surface of melanocytes. Mc1r stimulates adenylyl cyclase and cAMP production which, in turn, up-regulates melanocytic production of melanin in the skin. In order to study the mechanisms by which Mc1r signaling protects the skin against UV injury, this study relies on a mouse model with "humanized skin" based on epidermal expression of stem cell factor (Scf). K14-Scf transgenic mice retain melanocytes in the epidermis and therefore have the ability to deposit melanin in the epidermis. In this animal model, wild type Mc1r status results in robust deposition of black eumelanin pigment and a UV-protected phenotype. In contrast, K14-Scf animals with defective Mc1r signaling ability exhibit a red/blonde pigmentation, very little eumelanin in the skin and a UV-sensitive phenotype. Reasoning that eumelanin deposition might be enhanced by topical agents that mimic Mc1r signaling, we found that direct application of forskolin extract to the skin of Mc1r-defective fair-skinned mice resulted in robust eumelanin induction and UV protection (1). Here we describe the method for preparing and applying a forskolin-containing natural root extract to K14-Scf fair-skinned mice and report a method for measuring UV sensitivity by determining minimal erythematous dose (MED). Using this animal model, it is possible to study how epidermal cAMP induction and melanization of the skin affect physiologic responses to UV exposure.

  16. Somatostatin Signaling in Neuronal Cilia Is Criticalfor Object Recognition Memory

    PubMed Central

    Einstein, Emily B.; Patterson, Carlyn A.; Hon, Beverly J.; Regan, Kathleen A.; Reddi, Jyoti; Melnikoff, David E.; Mateer, Marcus J.; Schulz, Stefan; Johnson, Brian N.

    2010-01-01

    Most neurons possess a single, nonmotile cilium that projects out from the cell surface. These microtubule-based organelles are important in brain development and neurogenesis; however, their function in mature neurons is unknown. Cilia express a complement of proteins distinct from other neuronal compartments, one of which is the somatostatin receptor subtype SST3. We show here that SST3 is critical for object recognition memory in mice. sst3 knock-out mice are severely impaired in discriminating novel objects, whereas they retain normal memory for object location. Further, systemic injection of an SST3 antagonist (ACQ090) disrupts recall of familiar objects in wild-type mice. To examine mechanisms of SST3, we tested synaptic plasticity in CA1 hippocampus. Electrically evoked long-term potentiation (LTP) was normal in sst3 knock-out mice, while adenylyl cyclase/cAMP-mediated LTP was impaired. The SST3 antagonist also disrupted cAMP-mediated LTP. Basal cAMP levels in hippocampal lysate were reduced in sst3 knock-out mice compared with wild-type mice, while the forskolin-induced increase in cAMP levels was normal. The SST3 antagonist inhibited forskolin-stimulated cAMP increases, whereas the SST3 agonist L-796,778 increased basal cAMP levels in hippocampal slices but not hippocampal lysate. Our results show that somatostatin signaling in neuronal cilia is critical for recognition memory and suggest that the cAMP pathway is a conserved signaling motif in cilia. Neuronal cilia therefore represent a novel nonsynaptic compartment crucial for signaling involved in a specific form of synaptic plasticity and in novelty detection. PMID:20335466

  17. Phytomonas serpens: cysteine peptidase inhibitors interfere with growth, ultrastructure and host adhesion.

    PubMed

    Santos, André L S; d'Avila-Levy, Claudia M; Dias, Felipe A; Ribeiro, Rachel O; Pereira, Fernanda M; Elias, Camila G R; Souto-Padrón, Thaïs; Lopes, Angela H C S; Alviano, Celuta S; Branquinha, Marta H; Soares, Rosangela M A

    2006-01-01

    In this study, we report the ultrastructural and growth alterations caused by cysteine peptidase inhibitors on the plant trypanosomatid Phytomonas serpens. We showed that the cysteine peptidase inhibitors at 10 microM were able to arrest cellular growth as well as promote alterations in the cell morphology, including the parasites becoming short and round. Additionally, iodoacetamide induced ultrastructural alterations, such as disintegration of cytoplasmic organelles, swelling of the nucleus and kinetoplast-mitochondrion complex, which culminated in parasite death. Leupeptin and antipain induced the appearance of microvillar extensions and blebs on the cytoplasmic membrane, resembling a shedding process. A 40 kDa cysteine peptidase was detected in hydrophobic and hydrophilic phases of P. serpens cells after Triton X-114 extraction. Additionally, we have shown through immunoblotting that anti-cruzipain polyclonal antibodies recognised two major polypeptides in P. serpens, including a 40 kDa component. Flow cytometry analysis confirmed that this cruzipain-like protein has a location on the cell surface. Ultrastructural immunocytochemical analysis demonstrated the presence of the cruzipain-like protein on the surface and in small membrane fragments released from leupeptin-treated parasites. Furthermore, the involvement of cysteine peptidases of P. serpens in the interaction with explanted salivary glands of the phytophagous insect Oncopeltus fasciatus was also investigated. When P. serpens cells were pre-treated with either cysteine peptidase inhibitors or anti-cruzipain antibody, a significant reduction of the interaction process was observed. Collectively, these results suggest that cysteine peptidases participate in several biological processes in P. serpens including cell growth and interaction with the invertebrate vector.

  18. Do cancer proteins really interact strongly in the human protein-protein interaction network?

    PubMed Central

    Xia, Junfeng; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2011-01-01

    Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to interact more strongly than other categories of proteins, even essential proteins, in the human interactome. However, it remains unclear whether this observation was introduced by the bias towards more cancer studies in humans. Here, we examined this important issue by uniquely comparing network characteristics of cancer proteins with three other sets of proteins in four organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity, shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential proteins, and control proteins. Our statistical evaluation indicated that such observations were overall unlikely attributed to random events. Considering the large size and high quality of the PPI data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins might cause major changes of cellular systems and result in abnormal cell function leading to cancer. PMID:21666777

  19. Detection of protein complex from protein-protein interaction network using Markov clustering

    NASA Astrophysics Data System (ADS)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  20. Quantification of the Influence of Protein-Protein Interactions on Adsorbed Protein Structure and Bioactivity

    PubMed Central

    Wei, Yang; Thyparambil, Aby A.; Latour, Robert A.

    2013-01-01

    While protein-surface interactions have been widely studied, relatively little is understood at this time regarding how protein-surface interaction effects are influenced by protein-protein interactions and how these effects combine with the internal stability of a protein to influence its adsorbed-state structure and bioactivity. The objectives of this study were to develop a method to study these combined effects under widely varying protein-protein interaction conditions using hen egg-white lysozyme (HEWL) adsorbed on silica glass, poly(methyl methacrylate), and polyethylene as our model systems. In order to vary protein-protein interaction effects over a wide range, HEWL was first adsorbed to each surface type under widely varying protein solution concentrations for 2 h to saturate the surface, followed by immersion in pure buffer solution for 15 h to equilibrate the adsorbed protein layers in the absence of additionally adsorbing protein. Periodic measurements were made at selected time points of the areal density of the adsorbed protein layer as an indicator of the level of protein-protein interaction effects within the layer, and these values were then correlated with measurements of the adsorbed protein’s secondary structure and bioactivity. The results from these studies indicate that protein-protein interaction effects help stabilize the structure of HEWL adsorbed on silica glass, have little influence on the structural behavior of HEWL on HDPE, and actually serve to destabilize HEWL’s structure on PMMA. The bioactivity of HEWL on silica glass and HDPE was found to decrease in direct proportion to the degree of adsorption-induce protein unfolding. A direct correlation between bioactivity and the conformational state of adsorbed HEWL was less apparent on PMMA, thus suggesting that other factors influenced HEWL’s bioactivity on this surface, such as the accessibility of HEWL’s bioactive site being blocked by neighboring proteins or the surface

  1. Do cancer proteins really interact strongly in the human protein-protein interaction network?

    PubMed

    Xia, Junfeng; Sun, Jingchun; Jia, Peilin; Zhao, Zhongming

    2011-06-01

    Protein-protein interaction (PPI) network analysis has been widely applied in the investigation of the mechanisms of diseases, especially cancer. Recent studies revealed that cancer proteins tend to interact more strongly than other categories of proteins, even essential proteins, in the human interactome. However, it remains unclear whether this observation was introduced by the bias towards more cancer studies in humans. Here, we examined this important issue by uniquely comparing network characteristics of cancer proteins with three other sets of proteins in four organisms, three of which (fly, worm, and yeast) whose interactomes are essentially not biased towards cancer or other diseases. We confirmed that cancer proteins had stronger connectivity, shorter distance, and larger betweenness centrality than non-cancer disease proteins, essential proteins, and control proteins. Our statistical evaluation indicated that such observations were overall unlikely attributed to random events. Considering the large size and high quality of the PPI data in the four organisms, the conclusion that cancer proteins interact strongly in the PPI networks is reliable and robust. This conclusion suggests that perturbation of cancer proteins might cause major changes of cellular systems and result in abnormal cell function leading to cancer. © 2011 Elsevier Ltd. All rights reserved.

  2. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arana, Maite Rocío, E-mail: arana@ifise-conicet.gov.ar; Tocchetti, Guillermo Nicolás, E-mail: gtocchetti@live.com.ar; Domizi, Pablo, E-mail: domizi@ibr-conicet.gov.ar

    2015-09-01

    The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent withmore » increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury.

  3. Quantifying protein-protein interactions in high throughput using protein domain microarrays.

    PubMed

    Kaushansky, Alexis; Allen, John E; Gordus, Andrew; Stiffler, Michael A; Karp, Ethan S; Chang, Bryan H; MacBeath, Gavin

    2010-04-01

    Protein microarrays provide an efficient way to identify and quantify protein-protein interactions in high throughput. One drawback of this technique is that proteins show a broad range of physicochemical properties and are often difficult to produce recombinantly. To circumvent these problems, we have focused on families of protein interaction domains. Here we provide protocols for constructing microarrays of protein interaction domains in individual wells of 96-well microtiter plates, and for quantifying domain-peptide interactions in high throughput using fluorescently labeled synthetic peptides. As specific examples, we will describe the construction of microarrays of virtually every human Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain, as well as microarrays of mouse PDZ domains, all produced recombinantly in Escherichia coli. For domains that mediate high-affinity interactions, such as SH2 and PTB domains, equilibrium dissociation constants (K(D)s) for their peptide ligands can be measured directly on arrays by obtaining saturation binding curves. For weaker binding domains, such as PDZ domains, arrays are best used to identify candidate interactions, which are then retested and quantified by fluorescence polarization. Overall, protein domain microarrays provide the ability to rapidly identify and quantify protein-ligand interactions with minimal sample consumption. Because entire domain families can be interrogated simultaneously, they provide a powerful way to assess binding selectivity on a proteome-wide scale and provide an unbiased perspective on the connectivity of protein-protein interaction networks.

  4. Assessment of the reliability of protein-protein interactions and protein function prediction.

    PubMed

    Deng, Minghua; Sun, Fengzhu; Chen, Ting

    2003-01-01

    As more and more high-throughput protein-protein interaction data are collected, the task of estimating the reliability of different data sets becomes increasingly important. In this paper, we present our study of two groups of protein-protein interaction data, the physical interaction data and the protein complex data, and estimate the reliability of these data sets using three different measurements: (1) the distribution of gene expression correlation coefficients, (2) the reliability based on gene expression correlation coefficients, and (3) the accuracy of protein function predictions. We develop a maximum likelihood method to estimate the reliability of protein interaction data sets according to the distribution of correlation coefficients of gene expression profiles of putative interacting protein pairs. The results of the three measurements are consistent with each other. The MIPS protein complex data have the highest mean gene expression correlation coefficients (0.256) and the highest accuracy in predicting protein functions (70% sensitivity and specificity), while Ito's Yeast two-hybrid data have the lowest mean (0.041) and the lowest accuracy (15% sensitivity and specificity). Uetz's data are more reliable than Ito's data in all three measurements, and the TAP protein complex data are more reliable than the HMS-PCI data in all three measurements as well. The complex data sets generally perform better in function predictions than do the physical interaction data sets. Proteins in complexes are shown to be more highly correlated in gene expression. The results confirm that the components of a protein complex can be assigned to functions that the complex carries out within a cell. There are three interaction data sets different from the above two groups: the genetic interaction data, the in-silico data and the syn-express data. Their capability of predicting protein functions generally falls between that of the Y2H data and that of the MIPS protein complex

  5. Building protein-protein interaction networks for Leishmania species through protein structural information.

    PubMed

    Dos Santos Vasconcelos, Crhisllane Rafaele; de Lima Campos, Túlio; Rezende, Antonio Mauro

    2018-03-06

    Systematic analysis of a parasite interactome is a key approach to understand different biological processes. It makes possible to elucidate disease mechanisms, to predict protein functions and to select promising targets for drug development. Currently, several approaches for protein interaction prediction for non-model species incorporate only small fractions of the entire proteomes and their interactions. Based on this perspective, this study presents an integration of computational methodologies, protein network predictions and comparative analysis of the protozoan species Leishmania braziliensis and Leishmania infantum. These parasites cause Leishmaniasis, a worldwide distributed and neglected disease, with limited treatment options using currently available drugs. The predicted interactions were obtained from a meta-approach, applying rigid body docking tests and template-based docking on protein structures predicted by different comparative modeling techniques. In addition, we trained a machine-learning algorithm (Gradient Boosting) using docking information performed on a curated set of positive and negative protein interaction data. Our final model obtained an AUC = 0.88, with recall = 0.69, specificity = 0.88 and precision = 0.83. Using this approach, it was possible to confidently predict 681 protein structures and 6198 protein interactions for L. braziliensis, and 708 protein structures and 7391 protein interactions for L. infantum. The predicted networks were integrated to protein interaction data already available, analyzed using several topological features and used to classify proteins as essential for network stability. The present study allowed to demonstrate the importance of integrating different methodologies of interaction prediction to increase the coverage of the protein interaction of the studied protocols, besides it made available protein structures and interactions not previously reported.

  6. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    PubMed

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  7. PREFACE: Protein protein interactions: principles and predictions

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Tsai, Chung-Jung

    2005-06-01

    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  8. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.

    PubMed

    Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun

    2011-05-20

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.

  9. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  10. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    PubMed Central

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  11. C-Myc Protein-Protein and Protein-DNA Interactions: Targets for Therapeutic Intervention.

    DTIC Science & Technology

    1997-09-01

    including those of the Myc family. In fact, members of different bHLH protein subgroups, including the Myc proteins, are characterized by conserved BR...important functional consequences, and they provide insights into how different bHLH proteins can act on different targets. The zinc finger protein...roles for a number of BR residues which do not contact bases, yet are conserved within different bHLH protein sub- families (Benezra et al. 1990), and

  12. Protein Solubility and Protein Homeostasis: A Generic View of Protein Misfolding Disorders

    PubMed Central

    Vendruscolo, Michele; Knowles, Tuomas P.J.; Dobson, Christopher M.

    2011-01-01

    According to the “generic view” of protein aggregation, the ability to self-assemble into stable and highly organized structures such as amyloid fibrils is not an unusual feature exhibited by a small group of peptides and proteins with special sequence or structural properties, but rather a property shared by most proteins. At the same time, through a wide variety of techniques, many of which were originally devised for applications in other disciplines, it has also been established that the maintenance of proteins in a soluble state is a fundamental aspect of protein homeostasis. Taken together, these advances offer a unified framework for understanding the molecular basis of protein aggregation and for the rational development of therapeutic strategies based on the biological and chemical regulation of protein solubility. PMID:21825020

  13. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  14. Regulation of protein turnover by heat shock proteins.

    PubMed

    Bozaykut, Perinur; Ozer, Nesrin Kartal; Karademir, Betul

    2014-12-01

    Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Principles of Protein Recognition and Properties of Protein-protein Interfaces

    NASA Astrophysics Data System (ADS)

    Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth

    In this chapter we address two aspects - the static physical interactions which allow the information transfer for the function to be performed; and the dynamic, i.e. how the information is transmitted between the binding sites in the single protein molecule and in the network. We describe the single protein molecules and their complexes; and the analogy between protein folding and protein binding. Eventually, to fully understand the interactome and how it performs the essential cellular functions, we have to put all together - and hierarchically progress through the system.

  16. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    PubMed

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  17. Proteins interacting with cloning scars: a source of false positive protein-protein interactions

    PubMed Central

    Banks, Charles A. S.; Boanca, Gina; Lee, Zachary T.; Florens, Laurence; Washburn, Michael P.

    2015-01-01

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine “cloning scar” present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected. PMID:25704442

  18. Predicting permanent and transient protein-protein interfaces.

    PubMed

    La, David; Kong, Misun; Hoffman, William; Choi, Youn Im; Kihara, Daisuke

    2013-05-01

    Protein-protein interactions (PPIs) are involved in diverse functions in a cell. To optimize functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions are conventionally classified into permanent and transient, where the former denotes tight binding between proteins that result in strong complexes, whereas the latter compose of relatively weak interactions that can dissociate after binding to regulate functional activity at specific time point. Knowing the type of interactions has significant implications for understanding the nature and function of PPIs. In this study, we constructed amino acid substitution models that capture mutation patterns at permanent and transient type of protein interfaces, which were found to be different with statistical significance. Using the substitution models, we developed a novel computational method that predicts permanent and transient protein binding interfaces (PBIs) in protein surfaces. Without knowledge of the interacting partner, the method uses a single query protein structure and a multiple sequence alignment of the sequence family. Using a large dataset of permanent and transient proteins, we show that our method, BindML+, performs very well in protein interface classification. A very high area under the curve (AUC) value of 0.957 was observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy was achieved with an AUC of 0.991 when actual binding sites were classified. The developed method will be also useful for protein design of permanent and transient PBIs. Copyright © 2013 Wiley Periodicals, Inc.

  19. Molecular simulations of lipid-mediated protein-protein interactions.

    PubMed

    de Meyer, Frédérick Jean-Marie; Venturoli, Maddalena; Smit, Berend

    2008-08-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the lipid-mediated interactions between two intrinsic membrane proteins, we developed a mesoscopic model of a lipid bilayer with embedded proteins, which we studied with dissipative particle dynamics. Our calculations of the potential of mean force between transmembrane proteins show that hydrophobic forces drive long-range protein-protein interactions and that the nature of these interactions depends on the length of the protein hydrophobic segment, on the three-dimensional structure of the protein and on the properties of the lipid bilayer. To understand the nature of the computed potentials of mean force, the concept of hydrophilic shielding is introduced. The observed protein interactions are interpreted as resulting from the dynamic reorganization of the system to maintain an optimal hydrophilic shielding of the protein and lipid hydrophobic parts, within the constraint of the flexibility of the components. Our results could lead to a better understanding of several membrane processes in which protein interactions are involved.

  20. Secretagogue stimulation enhances NBCe1 (electrogenic Na(+)/HCO(3)(-) cotransporter) surface expression in murine colonic crypts.

    PubMed

    Yu, Haoyang; Riederer, Brigitte; Stieger, Nicole; Boron, Walter F; Shull, Gary E; Manns, Michael P; Seidler, Ursula E; Bachmann, Oliver

    2009-12-01

    A Na(+)/HCO(3)(-) cotransporter (NBC) is located in the basolateral membrane of the gastrointestinal epithelium, where it imports HCO(3)(-) during stimulated anion secretion. Having previously demonstrated secretagogue activation of NBC in murine colonic crypts, we now asked whether vesicle traffic and exocytosis are involved in this process. Electrogenic NBCe1-B was expressed at significantly higher levels than electroneutral NBCn1 in colonic crypts as determined by QRT-PCR. In cell surface biotinylation experiments, a time-dependent increase in biotinylated NBCe1 was observed, which occurred with a peak of +54.8% after 20 min with forskolin (P < 0.05) and more rapidly with a peak of +59.8% after 10 min with carbachol (P < 0.05) and which corresponded well with the time course of secretagogue-stimulated colonic bicarbonate secretion in Ussing chamber experiments. Accordingly, in isolated colonic crypts pretreated with forskolin and carbachol for 10 min, respectively, and subjected to immunohistochemistry, the NBCe1 signal showed a markedly stronger colocalization with the E-cadherin signal, which was used as a membrane marker, compared with the untreated control. Cytochalasin D did not change the observed increase in membrane abundance, whereas colchicine alone enhanced NBCe1 membrane expression without an additional increase after carbachol or forskolin, and LY294002 had a marked inhibitory effect. Taken together, our results demonstrate a secretagogue-induced increase of NBCe1 membrane expression. Vesicle traffic and exocytosis might thus represent a novel mechanism of intestinal NBC activation by secretagogues.

  1. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa

    PubMed Central

    Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F

    2015-01-01

    Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (Isc). Subsequent Isc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. Isc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation. PMID:26038704

  2. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa.

    PubMed

    Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F

    2015-03-01

    Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (I sc). Subsequent I sc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. I sc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation.

  3. Nature and consequences of protein-protein interactions in high protein concentration solutions.

    PubMed

    Saluja, Atul; Kalonia, Devendra S

    2008-06-24

    High protein concentration solutions are becoming increasingly important in the pharmaceutical industry. The solution behavior of proteins at high concentrations can markedly differ from that predicted based on dilute solution analysis due to thermodynamic non-ideality in these solutions. The non-ideality observed in these systems is related to the protein-protein interactions (PPI). Different types of forces play a key role in determining the overall nature and extent of these PPI and their relative contributions are affected by solute and solvent properties. However, individual contributions of these forces to the solution properties of concentrated protein solutions are not fully understood. The role of PPI, driven by these intermolecular forces, in governing solution rheology and physical stability of high protein concentration solutions is discussed from the point of view of pharmaceutical product development. Investigation of protein self-association and aggregation in concentrated protein solutions is crucial for ensuring the safety and efficacy of the final product for the duration of the desired product shelf life. Understanding rheology of high concentration protein solutions is critical for addressing issues during product manufacture and administration of final formulation to the patient. To this end, analysis of solution viscoelastic character can also provide an insight into the nature of PPI affecting solution rheology.

  4. Computer Simulation of Protein-Protein and Protein-Peptide Interactions

    DTIC Science & Technology

    1983-12-08

    a full molecular dynamic z simulation is performed, with resulting dipolar re - laxation. However, this is prohibitive when a large . number of...1993 Dr. Mike Marron Program Manager Molecular Biology Office of Naval Research 800 N. Quincy Street Arlington, VA 22217 Dear Mike, Here is the...rztnbutior is unLi--ited. , 93-30630 98 12 � 12/08/93 01/0/92-;03/31/93: Final Report, Computer Simulation of Protein-Protein and Protein-Peptide

  5. Cyclic AMP-dependent modification of gonad-selective TAF(II)105 in a human ovarian granulosa cell line.

    PubMed

    Wu, Yimin; Lu, Yunzhe; Hu, Yanfen; Li, Rong

    2005-11-01

    In response to gonadotropins, the elevated level of intracellular-cyclic AMP (cAMP) in ovarian granulosa cells triggers an ordered activation of multiple ovarian genes, which in turn promotes various ovarian functions including folliculogenesis and steroidogenesis. Identification and characterization of transcription factors that control ovarian gene expression are pivotal to the understanding of the molecular basis of the tissue-specific gene regulation programs. The recent discovery of the mouse TATA binding protein (TBP)-associated factor 105 (TAF(II)105) as a gonad-selective transcriptional co-activator strongly suggests that general transcription factors such as TFIID may play a key role in regulating tissue-specific gene expression. Here we show that the human TAF(II)105 protein is preferentially expressed in ovarian granulosa cells. We also identified a novel TAF(II)105 mRNA isoform that results from alternative exon inclusion and is predicted to encode a dominant negative mutant of TAF(II)105. Following stimulation by the adenylyl cyclase activator forskolin, TAF(II)105 in granulosa cells undergoes rapid and transient phosphorylation that is dependent upon protein kinase A (PKA). Thus, our work suggests that pre-mRNA processing and post-translational modification represent two important regulatory steps for the gonad-specific functions of human TAF(II)105. Copyright 2005 Wiley-Liss, Inc.

  6. Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli.

    PubMed

    Gartzke, Joachim; Lange, Klaus

    2002-11-01

    The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals

  7. Membrane peptidases in the pig choroid plexus and on other cell surfaces in contact with the cerebrospinal fluid.

    PubMed Central

    Bourne, A; Barnes, K; Taylor, B A; Turner, A J; Kenny, A J

    1989-01-01

    A comprehensive survey of 11 peptidases, all of which are markers for renal microvillar membranes, has been made in membrane fractions prepared from pig choroid plexus. Two fractionation schemes were explored, both depending on a MgCl2-precipitation step, the preferred one having advantages in speed and yield of the activities. The specific activities of the peptidases in the choroid-plexus membranes were, with the exception of carboxypeptidase M, lower than in renal microvillar membranes: those of aminopeptidase N, peptidyl dipeptidase A ('angiotensin-converting enzyme') and gamma-glutamyltransferase were 3-5-fold lower, those of aminopeptidase A and endopeptidase-24.11 were 12-15 fold lower, and those of dipeptidyl peptidase IV and aminopeptidase W were 50-70-fold lower. Carboxypeptidase M had a similar activity in both membranes. Alkaline phosphatase and (Na+ + K+)-activated ATPase were more active in the choroid-plexus membranes. No activity for microsomal dipeptidase, aminopeptidase P and carboxypeptidase P could be detected. Six of the peptidases and (Na+ + K+)-activated ATPase were also studied by immunoperoxidase histochemistry at light- and electron-microscopic levels. Endopeptidase-24.11 and (Na+ + K+)-activated ATPase were uniquely located on the brush border, and the other two peptidases appeared to be much more abundant on the endothelial lining of microvessels. Dipeptidyl peptidase IV and aminopeptidase W were also detected in microvasculature. Pial membranes associated with the brain and spinal cord also stained positively for endopeptidase-24.11, aminopeptidase N and peptidyl dipeptidase A. The immunohistochemical studies indicated the subcellular fractionation did not discriminate between membranes derived from epithelial cells (i.e. microvilli) and those from endothelial cells. The possible significance of these studies in relation to neuropeptide metabolism and the control of cerebrospinal fluid production is discussed. Images Fig. 1. Fig. 2. Fig

  8. Prediction of physical protein protein interactions

    NASA Astrophysics Data System (ADS)

    Szilágyi, András; Grimm, Vera; Arakaki, Adrián K.; Skolnick, Jeffrey

    2005-06-01

    Many essential cellular processes such as signal transduction, transport, cellular motion and most regulatory mechanisms are mediated by protein-protein interactions. In recent years, new experimental techniques have been developed to discover the protein-protein interaction networks of several organisms. However, the accuracy and coverage of these techniques have proven to be limited, and computational approaches remain essential both to assist in the design and validation of experimental studies and for the prediction of interaction partners and detailed structures of protein complexes. Here, we provide a critical overview of existing structure-independent and structure-based computational methods. Although these techniques have significantly advanced in the past few years, we find that most of them are still in their infancy. We also provide an overview of experimental techniques for the detection of protein-protein interactions. Although the developments are promising, false positive and false negative results are common, and reliable detection is possible only by taking a consensus of different experimental approaches. The shortcomings of experimental techniques affect both the further development and the fair evaluation of computational prediction methods. For an adequate comparative evaluation of prediction and high-throughput experimental methods, an appropriately large benchmark set of biophysically characterized protein complexes would be needed, but is sorely lacking.

  9. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation.

    PubMed

    Paulmurugan, R; Gambhir, S S

    2003-04-01

    In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein-protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor alpha through NFkappaB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein-protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network.

  10. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behaviormore » and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.« less

  11. CONVERSION OF PLASMA PROTEIN TO TISSUE PROTEIN WITHOUT EVIDENCE OF PROTEIN BREAKDOWN

    PubMed Central

    Yuile, C. L.; Lamson, B. G.; Miller, L. L.; Whipple, G. H.

    1951-01-01

    Labeled plasma proteins obtained from donor dogs, previously fed ε-C14-dl-lysine, have been given intravenously to recipient dogs. The disappearance of labeled globulin from the plasma at a rate considerably faster than albumin has been confirmed. Evidence suggesting that the mass of protein in solution in the extravascular, extracellular fluid is approximately equal to the plasma proteins in circulation has been derived from a study of the dilution of labeled plasma protein by repeated injections of non-labeled plasma protein. In a period of 7 days the transfer of C14 from plasma to tissue proteins amounted to between 30 and 40 per cent of the activity in the labeled plasma protein injected intravenously. The conversion was accompanied by a very small loss of activity in the urine and expired air and the activity remained in the lysine residue of the liver and probably of other tissues. The data presented favor the view that plasma proteins are utilized in the body economy after partial catabolism within the cell area and provide no evidence of complete breakdown to the amino acid level. PMID:14832401

  12. Benchmarking protein-protein interface predictions: why you should care about protein size.

    PubMed

    Martin, Juliette

    2014-07-01

    A number of predictive methods have been developed to predict protein-protein binding sites. Each new method is traditionally benchmarked using sets of protein structures of various sizes, and global statistics are used to assess the quality of the prediction. Little attention has been paid to the potential bias due to protein size on these statistics. Indeed, small proteins involve proportionally more residues at interfaces than large ones. If a predictive method is biased toward small proteins, this can lead to an over-estimation of its performance. Here, we investigate the bias due to the size effect when benchmarking protein-protein interface prediction on the widely used docking benchmark 4.0. First, we simulate random scores that favor small proteins over large ones. Instead of the 0.5 AUC (Area Under the Curve) value expected by chance, these biased scores result in an AUC equal to 0.6 using hypergeometric distributions, and up to 0.65 using constant scores. We then use real prediction results to illustrate how to detect the size bias by shuffling, and subsequently correct it using a simple conversion of the scores into normalized ranks. In addition, we investigate the scores produced by eight published methods and show that they are all affected by the size effect, which can change their relative ranking. The size effect also has an impact on linear combination scores by modifying the relative contributions of each method. In the future, systematic corrections should be applied when benchmarking predictive methods using data sets with mixed protein sizes. © 2014 Wiley Periodicals, Inc.

  13. Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.

    PubMed

    Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ohue, Masahito; Akiyama, Yutaka

    Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein-protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein-protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein-protein interactions that form protein complexes.

  14. Reverse Nearest Neighbor Search on a Protein-Protein Interaction Network to Infer Protein-Disease Associations.

    PubMed

    Suratanee, Apichat; Plaimas, Kitiporn

    2017-01-01

    The associations between proteins and diseases are crucial information for investigating pathological mechanisms. However, the number of known and reliable protein-disease associations is quite small. In this study, an analysis framework to infer associations between proteins and diseases was developed based on a large data set of a human protein-protein interaction network integrating an effective network search, namely, the reverse k -nearest neighbor (R k NN) search. The R k NN search was used to identify an impact of a protein on other proteins. Then, associations between proteins and diseases were inferred statistically. The method using the R k NN search yielded a much higher precision than a random selection, standard nearest neighbor search, or when applying the method to a random protein-protein interaction network. All protein-disease pair candidates were verified by a literature search. Supporting evidence for 596 pairs was identified. In addition, cluster analysis of these candidates revealed 10 promising groups of diseases to be further investigated experimentally. This method can be used to identify novel associations to better understand complex relationships between proteins and diseases.

  15. Role of gap junctions and protein kinase A during the development of oocyte maturational competence in Ayu (Plecoglossus altivelis)

    USGS Publications Warehouse

    Yamamoto, Y.; Yoshizaki, G.; Takeuchi, T.; Soyano, K.; Patino, R.

    2008-01-01

    Meiotic resumption in teleost oocytes is induced by a maturation-inducing hormone (MIH). The sensitivity of oocytes to MIH, also known as oocyte maturational competence (OMC), is induced by LH via mechanisms that are not fully understood. A previous study of Ayu (Plecoglossus altivelis) showed the presence of functional heterologous gap junctions (GJs) between oocytes and their surrounding granulosa cells. The objectives of this study were to determine the role of ovarian GJs and of protein kinase A (PKA) during the acquisition of OMC. We examined the effects of the specific GJ inhibitor carbenoxolone (CBX) and 18??-glycyrrhetinic acid (??-GA) on the LH-(hCG)-dependent acquisition of OMC and on MIH-(17,20??-dihydroxy-4-pregnen-3-one)-dependent meiotic resumption; measured the cAMP content of ovarian follicles during the hCG-dependent acquisition of OMC; and determined the effects of PK activators and inhibitors on hCG-dependent OMC. Production of follicular cAMP increased during the hCG-dependent acquisition of OMC. Both GJ inhibitors and the PKA inhibitor H8-dihydrochloride, but not the PKC inhibitor GF109203X, suppressed the hCG-dependent acquisition of OMC in a dose-dependent manner. The PKA activator forskolin induced OMC with a similar potency to hCG. Unlike previous observations with teleosts where disruption of heterologous GJ either blocks or stimulates meiotic resumption, treatment with GJ inhibitors did not affect MIH-dependent meiotic resumption in maturationally competent follicles of Ayu. These observations suggest that ovarian GJs are essential for LH-dependent acquisition of OMC but not for MIH-dependent meiotic resumption, and that the stimulation of OMC by LH is mediated by cAMP-dependent PKA. They are also consistent with the view that a precise balance between GJ-mediated signals (positive or negative) and oocyte maturational readiness is required for hormonally regulated meiotic resumption. ?? 2007 Elsevier Inc. All rights reserved.

  16. Purification of Proteins Fused to Maltose-Binding Protein.

    PubMed

    Lebendiker, Mario; Danieli, Tsafi

    2017-01-01

    Maltose-Binding Protein (MBP) is one of the most popular fusion partners being used for producing recombinant proteins in bacterial cells. MBP allows the use of a simple capture affinity step on Amylose-Agarose or Dextrin-Sepharose columns, resulting in a protein that is often 70-90 % pure in a single step. In addition to protein isolation applications, MBP provides a high degree of translation, and facilitates the proper folding and solubility of the target protein. This paper describes efficient procedures for isolating highly purified MBP target proteins. Special attention is given to considerations for downstream applications such as structural determination studies, protein activity assays, and assessing the chemical characteristics of the target protein.

  17. What induces pocket openings on protein surface patches involved in protein-protein interactions?

    PubMed

    Eyrisch, Susanne; Helms, Volkhard

    2009-02-01

    We previously showed for the proteins BCL-X(L), IL-2, and MDM2 that transient pockets at their protein-protein binding interfaces can be identified by applying the PASS algorithm to molecular dynamics (MD) snapshots. We now investigated which aspects of the natural conformational dynamics of proteins induce the formation of such pockets. The pocket detection protocol was applied to three different conformational ensembles for the same proteins that were extracted from MD simulations of the inhibitor bound crystal conformation in water and the free crystal/NMR structure in water and in methanol. Additional MD simulations studied the impact of backbone mobility. The more efficient CONCOORD or normal mode analysis (NMA) techniques gave significantly smaller pockets than MD simulations, whereas tCONCOORD generated pockets comparable to those observed in MD simulations for two of the three systems. Our findings emphasize the influence of solvent polarity and backbone rearrangements on the formation of pockets on protein surfaces and should be helpful in future generation of transient pockets as putative ligand binding sites at protein-protein interfaces.

  18. Manipulating Protein-Protein Interactions in Nonribosomal Peptide Synthetase Type II Peptidyl Carrier Proteins.

    PubMed

    Jaremko, Matt J; Lee, D John; Patel, Ashay; Winslow, Victoria; Opella, Stanley J; McCammon, J Andrew; Burkart, Michael D

    2017-10-10

    In an effort to elucidate and engineer interactions in type II nonribosomal peptide synthetases, we analyzed biomolecular recognition between the essential peptidyl carrier proteins and adenylation domains using nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics, and mutational studies. Three peptidyl carrier proteins, PigG, PltL, and RedO, in addition to their cognate adenylation domains, PigI, PltF, and RedM, were investigated for their cross-species activity. Of the three peptidyl carrier proteins, only PigG showed substantial cross-pathway activity. Characterization of the novel NMR solution structure of holo-PigG and molecular dynamics simulations of holo-PltL and holo-PigG revealed differences in structures and dynamics of these carrier proteins. NMR titration experiments revealed perturbations of the chemical shifts of the loop 1 residues of these peptidyl carrier proteins upon their interaction with the adenylation domain. These experiments revealed a key region for the protein-protein interaction. Mutational studies supported the role of loop 1 in molecular recognition, as mutations to this region of the peptidyl carrier proteins significantly modulated their activities.

  19. What induces pocket openings on protein surface patches involved in protein-protein interactions?

    NASA Astrophysics Data System (ADS)

    Eyrisch, Susanne; Helms, Volkhard

    2009-02-01

    We previously showed for the proteins BCL-XL, IL-2, and MDM2 that transient pockets at their protein-protein binding interfaces can be identified by applying the PASS algorithm to molecular dynamics (MD) snapshots. We now investigated which aspects of the natural conformational dynamics of proteins induce the formation of such pockets. The pocket detection protocol was applied to three different conformational ensembles for the same proteins that were extracted from MD simulations of the inhibitor bound crystal conformation in water and the free crystal/NMR structure in water and in methanol. Additional MD simulations studied the impact of backbone mobility. The more efficient CONCOORD or normal mode analysis (NMA) techniques gave significantly smaller pockets than MD simulations, whereas tCONCOORD generated pockets comparable to those observed in MD simulations for two of the three systems. Our findings emphasize the influence of solvent polarity and backbone rearrangements on the formation of pockets on protein surfaces and should be helpful in future generation of transient pockets as putative ligand binding sites at protein-protein interfaces.

  20. Protein-Protein Interface and Disease: Perspective from Biomolecular Networks.

    PubMed

    Hu, Guang; Xiao, Fei; Li, Yuqian; Li, Yuan; Vongsangnak, Wanwipa

    Protein-protein interactions are involved in many important biological processes and molecular mechanisms of disease association. Structural studies of interfacial residues in protein complexes provide information on protein-protein interactions. Characterizing protein-protein interfaces, including binding sites and allosteric changes, thus pose an imminent challenge. With special focus on protein complexes, approaches based on network theory are proposed to meet this challenge. In this review we pay attention to protein-protein interfaces from the perspective of biomolecular networks and their roles in disease. We first describe the different roles of protein complexes in disease through several structural aspects of interfaces. We then discuss some recent advances in predicting hot spots and communication pathway analysis in terms of amino acid networks. Finally, we highlight possible future aspects of this area with respect to both methodology development and applications for disease treatment.

  1. Protein-protein recognition control by modulating electrostatic interactions.

    PubMed

    Han, Song; Yin, Shijin; Yi, Hong; Mouhat, Stéphanie; Qiu, Su; Cao, Zhijian; Sabatier, Jean-Marc; Wu, Yingliang; Li, Wenxin

    2010-06-04

    Protein-protein control recognition remains a huge challenge, and its development depends on understanding the chemical and biological mechanisms by which these interactions occur. Here we describe a protein-protein control recognition technique based on the dominant electrostatic interactions occurring between the proteins. We designed a potassium channel inhibitor, BmP05-T, that was 90.32% identical to wild-type BmP05. Negatively charged residues were translocated from the nonbinding interface to the binding interface of BmP05 inhibitor, such that BmP05-T now used BmP05 nonbinding interface as the binding interface. This switch demonstrated that nonbinding interfaces were able to control the orientation of protein binding interfaces in the process of protein-protein recognition. The novel function findings of BmP05-T peptide suggested that the control recognition technique described here had the potential for use in designing and utilizing functional proteins in many biological scenarios.

  2. Biophysics of protein evolution and evolutionary protein biophysics

    PubMed Central

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  3. Effect of sensory denervation on the structure and physiologic responsiveness of rabbit lacrimal gland.

    PubMed

    Meneray, M A; Bennett, D J; Nguyen, D H; Beuerman, R W

    1998-01-01

    This work was conducted to determine the effects of unilateral trigeminal ganglion ablation on lacrimal gland structure and secretory activity. Adult male New Zealand rabbits underwent unilateral thermocoagulation of the ophthalmic division of the trigeminal ganglion. Sensory denervation was affirmed by anatomic inspection of the lesion and transmission electron microscopy (TEM) of the lacrimal gland innervation. Eight to 10 days after the procedure, the intraorbital lacrimal glands were removed from both sides. To compare the physiologic competence of the intact and denervated glands, freshly isolated gland fragments from the paired intact and denervated glands were stimulated with carbachol (100 microM), isoproterenol (10 microM), phorbol-12,13-dibutyrate (PDBu, 10 microM), forskolin (40 microM), or vehicle. Total secreted protein was measured at 30 or 60 min after the establishment of baseline values. Intact and denervated glands also were examined by light and TEM, and the morphologic appearance of the acinar structures as well as the appearance of nerves innervating the gland after denervation were assessed. Similar experiments were conducted with animals that underwent unilateral superior cervical ganglionectomy. Tissues from sensory denervated glands released significantly more protein than did tissues from innervated glands in response to in vitro stimulation by carbachol or isoproterenol but not in response to PDBu or forskolin. Microscopy showed that the acinar cells that had undergone sensory denervation showed a massive accumulation of secretory granules. The secretory granules filled the entire cytoplasmic space and displaced the ellipsoidal nuclei to the extreme periphery. Examination of segments of nerves revealed numerous unmyelinated axons, a few small-diameter myelinated axons, and a large amount of nerve degeneration after sensory denervation. In contrast to the effects of sensory denervation, sympathetic denervation did not alter either the

  4. Protein and protein hydrolysates in sports nutrition.

    PubMed

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  5. Effects of arginine vasotocin and mesotocin on the activation and development of amiloride-blockable short-circuit current across larval, adult, and cultured larval bullfrog skins.

    PubMed

    Takada, Makoto; Fujimaki-Aoba, Kayo; Hokari, Shigeru

    2010-03-01

    Amphibian skin has osmoregulatory functions, with Na(+) crossing from outside to inside. Na(+) transport can be measured as the short-circuit current (SCC). We investigated the short-term and long-term effects of arginine vasotocin (AVT) and mesotocin (MT) (which modulate Na(+) transport) on the activation and development of an amiloride-blockable SCC (adult-type feature) in larval, adult, and corticoid-cultured larval bullfrog skins. We found: (1) AVT-receptor (AVT-R) and MT-receptor (MT-R) mRNAs could be detected in both larval and adult skins, (2) in the short term (within 60 min), the larval SCC (amiloride-stimulated SCC) was increased by AVT, forskolin, and MT, suggesting that AVT and MT did not activate the inactive ENaC (epithelial sodium channel) protein thought to be expressed in larval skin, (3) in the short term (within 90 min), AVT, forskolin, and MT stimulated the adult SCC (amiloride-blockable SCC), (4) AVT and MT increased both the larval and adult SCC via receptors insensitive to OPC-21268 (an antagonist of the V(1)-type receptor), OPC-31260 (an antagonist of the V(2)-type receptor), and ([d(CH(2))(5),Tyr(Me)(2),Thr(4),Orn(8),des-Gly-NH (2) (9) ]VT) (an antagonist of the oxytocin receptor), (5) culturing EDTA-treated larval skin with corticoids supplemented with AVT (1 microM) or MT (1 microM) for 2 weeks (long-term effects of AVT and MT) did not alter the corticoid-induced development of an amiloride-blockable SCC (adult-type feature). AVT and MT thus have the potential to stimulate SCC though channels that are already expressed, but they may not influence the development of the amiloride-blockable SCC (an adult-type feature) in larval skin.

  6. Inhibition of basolateral cAMP permeability in the toad urinary bladder.

    PubMed

    Boom, A; Golstein, P E; Frerotte, M; Sande, J V; Beauwens, R

    2000-10-01

    1. The effect of sulphonylurea drugs on hydrosmotic flow across toad urinary bladder epithelium was re-evaluated in the present study. Glibenclamide, added to the basolateral medium, significantly enhanced the osmotic flow induced by low doses of antidiuretic hormone (ADH) or forskolin (FK), while it inhibited the effect of exogenous cyclic adenosine monophosphate (cAMP) or its non-hydrolysable bromo derivative, 8-Br-cAMP, added to the basolateral medium. These opposite effects of glibenclamide on the transepithelial osmotic flow can be explained by a reduction of cAMP permeability across the basolateral membrane of the epithelium. The decrease in cAMP permeability leads, according to the direction of the cAMP gradient, to firstly an enhanced osmotic flow when cAMP is generated intracellularly by addition of ADH and FK, glibenclamide reducing cAMP exit from the cell, and secondly a decreased osmotic flow in response to cAMP (and 8-Br-cAMP) added to the basolateral medium, glibenclamide inhibiting, in this case, their entry into the cell. 2. The demonstration that glibenclamide actually inhibits the basolateral cAMP permeability rests on the fact that firstly it decreases the release of cAMP into the basolateral medium by about 40 %, at each concentration of ADH or forskolin tested, secondly it increases the cAMP content of paired hemibladders incubated in the presence of ADH or FK, when intracellular degradation was prevented by phosphodiesterase inhibition, and thirdly it decreases also the uptake of basolateral 8-Br-[3H]cAMP into paired toad hemibladders. 3. Taken together, the present data demonstrate that glibenclamide inhibits the toad urinary bladder basolateral membrane permeability to cAMP, most probably by a direct interaction with a membrane protein not yet indentified but distinct from the sulphonylurea receptor.

  7. Sex differences and the effects of ovariectomy on the β-adrenergic contractile response

    PubMed Central

    McIntosh, Victoria J.; Chandrasekera, P. Charukeshi

    2011-01-01

    The presence of sex differences in myocardial β-adrenergic responsiveness is controversial, and limited studies have addressed the mechanism underlying these differences. Studies were performed using isolated perfused hearts from male, intact female and ovariectomized female mice to investigate sex differences and the effects of ovarian hormone withdrawal on β-adrenergic receptor function. Female hearts exhibited blunted contractile responses to the β-adrenergic receptor agonist isoproterenol (ISO) compared with males but not ovariectomized females. There were no sex differences in β1-adrenergic receptor gene or protein expression. To investigate the role of adenylyl cyclase, phosphodiesterase, and the cAMP-signaling cascade in generating sex differences in the β-adrenergic contractile response, dose-response studies were performed in isolated perfused male and female hearts using forskolin, 3-isobutyl-1-methylxanthine (IBMX), and 8-(4-chlorophenylthio)adenosine 3′,5′-cyclic monophosphate (CPT-cAMP). Males showed a modestly enhanced contractile response to forskolin at 300 nM and 5 μM compared with females, but there were no sex differences in the response to IBMX or CPT-cAMP. The role of the A1 adenosine receptor (A1AR) in antagonizing the β-adrenergic contractile response was investigated using both the A1AR agonist 2-chloro-N6-cyclopentyl-adenosine and A1AR knockout (KO) mice. Intact females showed an enhanced A1AR anti-adrenergic effect compared with males and ovariectomized females. The β-adrenergic contractile response was potentiated in both male and female A1ARKO hearts, with sex differences no longer present above 1 nM ISO. The β-adrenergic contractile response is greater in male hearts than females, and minor differences in the action of adenylyl cyclase or the A1AR may contribute to these sex differences. PMID:21685268

  8. Bovine ovarian cells have (pro)renin receptors and prorenin induces resumption of meiosis in vitro.

    PubMed

    Dau, Andressa Minussi Pereira; da Silva, Eduardo Pradebon; da Rosa, Paulo Roberto Antunes; Bastiani, Felipe Tusi; Gutierrez, Karina; Ilha, Gustavo Freitas; Comim, Fabio Vasconcellos; Gonçalves, Paulo Bayard Dias

    2016-07-01

    The discovery of a receptor that binds prorenin and renin in human endothelial and mesangial cells highlights the possible effect of renin-independent prorenin in the resumption of meiosis in oocytes that was postulated in the 1980s.This study aimed to identify the (pro)renin receptor in the ovary and to assess the effect of prorenin on meiotic resumption. The (pro)renin receptor protein was detected in bovine cumulus-oocyte complexes, theca cells, granulosa cells, and in the corpus luteum. Abundant (pro)renin receptor messenger ribonucleic acid (mRNA) was detected in the oocytes and cumulus cells, while prorenin mRNA was identified in the cumulus cells only. Prorenin at concentrations of 10(-10), 10(-9), and 10(-8)M incubated with oocytes co-cultured with follicular hemisections for 15h caused the resumption of oocyte meiosis. Aliskiren, which inhibits free renin and receptor-bound renin/prorenin, at concentrations of 10(-7), 10(-5), and 10(-3)M blocked this effect (P<0.05). To determine the involvement of angiotensin II in prorenin-induced meiosis resumption, cumulus-oocyte complexes and follicular hemisections were treated with prorenin and with angiotensin II or saralasin (angiotensin II antagonist). Prorenin induced the resumption of meiosis independently of angiotensin II. Furthermore, cumulus-oocyte complexes cultured with forskolin (200μM) and treated with prorenin and aliskiren did not exhibit a prorenin-induced resumption of meiosis (P<0.05). Only the oocytes' cyclic adenosine monophosphate levels seemed to be regulated by prorenin and/or forskolin treatment after incubation for 6h. To the best of our knowledge, this is the first study to identify the (pro)renin receptor in ovarian cells and to demonstrate the independent role of prorenin in the resumption of oocyte meiosis in cattle. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Regulation of HSD17B1 and SRD5A1 in lymphocytes.

    PubMed

    Zhou, Z; Speiser, P W

    1999-11-01

    We previously reported lymphocyte expression of genes encoding enzymes required for steroid metabolism; however, only 17beta-HSD and 5alpha-reductase showed significant enzyme activity. We now investigate regulation of lymphocyte expression for genes encoding 17beta-HSD and 5alpha-reductase. Cultured human T and B lymphoid cell lines and peripheral blood mononuclear cells were treated with known regulators of steroidogenic gene expression including forskolin, PMA, ionomycin, various steroids, interleukin (IL)-4, and IL-6. Treatment with 10 or 50 microM forskolin resulted in a 20-60% reduction of expression for HSD17B1 (encoding 17beta-HSD I) in T and B lymphoid cell lines and peripheral blood mononuclear cells, although such a change was not observed in the expression of SRD5A1 (encoding 5alpha-reductase I). No significant changes were found when cells were treated for 24 h with various concentrations of PMA or ionomycin. Incubation with 10(-9) to 10(-7) M androstenedione or estradiol increased expression of HSD17B1, while testosterone decreased the expression of this gene. SRD5A1 expression was increased in the presence of 5alpha-DHT although no consistent changes were observed when the cells were treated with testosterone. Other steroids, including dexamethasone, progesterone, and 6-hydroxypregnanolone, produced no effects on expression of either HSD17B1 or SRD5A1. Treatment with 0.1-10 ng/ml of IL-4 or IL-6 also did not effect significant changes in gene expression. These data implicate the involvement of the cAMP-protein kinase signal transduction pathway in regulating lymphocyte expression of HSD17B1. Furthermore, it appears that lymphocyte HSD17B1 and SRD5A1 are regulated to some extent by specific steroids. Copyright 1999 Academic Press.

  10. Reactive oxygen species potentiate the negative inotropic effect of cardiac M2-muscarinic receptor stimulation.

    PubMed

    Peters, S L; Sand, C; Batinik, H D; Pfaffendorf, M; van Zwieten, P A

    2001-08-01

    The aim of the present study was to investigate the influence of reactive oxygen species (ROS) on the contractile responses of rat isolated left atria to muscarinic receptor stimulation. ROS were generated by means of electrolysis (30 mA, 75 s) of the organ bath fluid. Twenty minutes after the electrolysis period, the electrically paced atria (3 Hz) were stimulated with the adenylyl cyclase activator forskolin (1 microM). Subsequently, cumulative acetylcholine concentration-response curves were constructed (0.01 nM-10 microM). In addition, phosphoinositide turnover and adenylyl cyclase activity under basal and stimulated conditions were measured. For these biochemical experiments we used the stable acetylcholine analogue carbachol. The atria exposed to reactive oxygen species were influenced more potently (pD2 control: 6.2 vs. 7.1 for electrolysis-treated atria, P<0.05) and more effectively (Emax control: 40% vs. 90% reduction of the initial amplitude, P<0.05) by acetylcholine. In contrast, ROS exposure did not alter the responses to adenosine, whose receptor is also coupled via a Gi-protein to adenylyl cyclase. The basal (40% vs. control, P<0.05) as well as the carbachol-stimulated (-85% vs. control, P<0.05) inositol-phosphate formation was reduced in atria exposed to ROS. The forskolin-stimulated adenylyl cyclase activity was identical in both groups but carbachol stimulation induced a more pronounced reduction in adenylyl cyclase activity in the electrolysis-treated atria. Accordingly we may conclude that ROS enhance the negative inotropic response of isolated rat atria to acetylcholine by both a reduction of the positive (inositide turnover) and increase of the negative (adenylyl cyclase inhibition) inotropic components of cardiac muscarinic receptor stimulation. This phenomenon is most likely M2-receptor specific, since the negative inotropic response to adenosine is unaltered by ROS exposure.

  11. A modified Lowry protein test for dilute protein solutions

    Treesearch

    Garold F. Gregory; Keith F. Jensen

    1971-01-01

    A modified Lowry protein test for dilute protein solutions modified Lowry protein test was compared with the standard Lowry protein test. The modified test was found to give estimates of protein concentration that were as good as the standard test and has the advange that proteins can be measured in very dilute solutions.

  12. The Role of Shape Complementarity in the Protein-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-11-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody-antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity.

  13. Electrostatic design of protein-protein association rates.

    PubMed

    Schreiber, Gideon; Shaul, Yossi; Gottschalk, Kay E

    2006-01-01

    De novo design and redesign of proteins and protein complexes have made promising progress in recent years. Here, we give an overview of how to use available computer-based tools to design proteins to bind faster and tighter to their protein-complex partner by electrostatic optimization between the two proteins. Electrostatic optimization is possible because of the simple relation between the Debye-Huckel energy of interaction between a pair of proteins and their rate of association. This can be used for rapid, structure-based calculations of the electrostatic attraction between the two proteins in the complex. Using these principles, we developed two computer programs that predict the change in k(on), and as such the affinity, on introducing charged mutations. The two programs have a web interface that is available at www.weizmann.ac.il/home/bcges/PARE.html and http://bip.weizmann.ac.il/hypare. When mutations leading to charge optimization are introduced outside the physical binding site, the rate of dissociation is unchanged and therefore the change in k(on) parallels that of the affinity. This design method was evaluated on a number of different protein complexes resulting in binding rates and affinities of hundreds of fold faster and tighter compared to wild type. In this chapter, we demonstrate the procedure and go step by step over the methodology of using these programs for protein-association design. Finally, the way to easily implement the principle of electrostatic design for any protein complex of choice is shown.

  14. Targeting protein-protein interaction between MLL1 and reciprocal proteins for leukemia therapy.

    PubMed

    Wang, Zhi-Hui; Li, Dong-Dong; Chen, Wei-Lin; You, Qi-Dong; Guo, Xiao-Ke

    2018-01-15

    The mixed lineage leukemia protein-1 (MLL1), as a lysine methyltransferase, predominantly regulates the methylation of histone H3 lysine 4 (H3K4) and functions in hematopoietic stem cell (HSC) self-renewal. MLL1 gene fuses with partner genes that results in the generation of MLL1 fusion proteins (MLL1-FPs), which are frequently detected in acute leukemia. In the progress of leukemogenesis, a great deal of proteins cooperate with MLL1 to form multiprotein complexes serving for the dysregulation of H3K4 methylation, the overexpression of homeobox (HOX) cluster genes, and the consequent generation of leukemia. Hence, disrupting the interactions between MLL1 and the reciprocal proteins has been considered to be a new treatment strategy for leukemia. Here, we reviewed potential protein-protein interactions (PPIs) between MLL1 and its reciprocal proteins, and summarized the inhibitors to target MLL1 PPIs. The druggability of MLL1 PPIs for leukemia were also discussed. Copyright © 2017. Published by Elsevier Ltd.

  15. A Method for Predicting Protein Complexes from Dynamic Weighted Protein-Protein Interaction Networks.

    PubMed

    Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao

    2018-06-01

    Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.

  16. A protein interaction network analysis for yeast integral membrane protein.

    PubMed

    Shi, Ming-Guang; Huang, De-Shuang; Li, Xue-Ling

    2008-01-01

    Although the yeast Saccharomyces cerevisiae is the best exemplified single-celled eukaryote, the vast number of protein-protein interactions of integral membrane proteins of Saccharomyces cerevisiae have not been characterized by experiments. Here, based on the kernel method of Greedy Kernel Principal Component analysis plus Linear Discriminant Analysis, we identify 300 protein-protein interactions involving 189 membrane proteins and get the outcome of a highly connected protein-protein interactions network. Furthermore, we study the global topological features of integral membrane proteins network of Saccharomyces cerevisiae. These results give the comprehensive description of protein-protein interactions of integral membrane proteins and reveal global topological and robustness of the interactome network at a system level. This work represents an important step towards a comprehensive understanding of yeast protein interactions.

  17. Protein kinesis: The dynamics of protein trafficking and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  18. The Role of Shape Complementarity in the Protein-Protein Interactions

    PubMed Central

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-01-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody–antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity. PMID:24253561

  19. Solubilization of adenylyl cyclase from human myometrium in a alphas-coupled form.

    PubMed

    Bajo, Ana M; Prieto, Juan C; Valenzuela, Pedro; Martinez, Pilar; Guijarro, Luis G

    2003-08-01

    Adenylyl cyclase (AC) was extracted from human myometrium with either non-ionic (Lubrol-PX or Triton X-100) or zwitterionic (3-[3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, CHAPS) detergents. The soluble enzyme was stimulated by forskolin, a hydrophobic activator, in the presence of Mg2+ indicating that the catalytic subunit had not been damaged after solubilization. The enzyme was also activated by 5'-guanylyl imidodiphosphate (Gpp(NH)p) showing that the catalytic unit was not separated from stimulatory guanine nucleotide binding protein (Gs) during the extraction. Both activators showed different effects on the stimulatory efficacy and potency of AC activity solobulized with detergents. Gel filtration of Lubrol-PX and CHAPS extracts over a Sepharose CL-2B column partially resolved AC and its complexes. The chromatographic profile for Lubrol-solubilized AC presented a main peak of about 200 kDa whereas CHAPS-solubilized AC showed a dominant peak of about 1100 kDa. The heterodisperse peaks obtained revealed that the catalytic AC subunit was not separated from Gs proteins after gel filtration, and that AC could be associated with other cellular proteins. When Lubrol extract was submitted to anionic-exchange chromatography, the enzyme was purified about 7.5 fold (enzymatic activity of 48.1 pmol/min/mg of protein). The catalytic subunit was co-eluted with both AC-activating proteins Galphas large (52.2 kDa) and Galphas small (48.7 kDa). This is the first demonstration of the stable physical association of AC with both alphas subunits of G proteins in human myometrium.

  20. FRODOCK 2.0: fast protein-protein docking server.

    PubMed

    Ramírez-Aportela, Erney; López-Blanco, José Ramón; Chacón, Pablo

    2016-08-01

    The prediction of protein-protein complexes from the structures of unbound components is a challenging and powerful strategy to decipher the mechanism of many essential biological processes. We present a user-friendly protein-protein docking server based on an improved version of FRODOCK that includes a complementary knowledge-based potential. The web interface provides a very effective tool to explore and select protein-protein models and interactively screen them against experimental distance constraints. The competitive success rates and efficiency achieved allow the retrieval of reliable potential protein-protein binding conformations that can be further refined with more computationally demanding strategies. The server is free and open to all users with no login requirement at http://frodock.chaconlab.org pablo@chaconlab.org Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Computational prediction of host-pathogen protein-protein interactions.

    PubMed

    Dyer, Matthew D; Murali, T M; Sobral, Bruno W

    2007-07-01

    Infectious diseases such as malaria result in millions of deaths each year. An important aspect of any host-pathogen system is the mechanism by which a pathogen can infect its host. One method of infection is via protein-protein interactions (PPIs) where pathogen proteins target host proteins. Developing computational methods that identify which PPIs enable a pathogen to infect a host has great implications in identifying potential targets for therapeutics. We present a method that integrates known intra-species PPIs with protein-domain profiles to predict PPIs between host and pathogen proteins. Given a set of intra-species PPIs, we identify the functional domains in each of the interacting proteins. For every pair of functional domains, we use Bayesian statistics to assess the probability that two proteins with that pair of domains will interact. We apply our method to the Homo sapiens-Plasmodium falciparum host-pathogen system. Our system predicts 516 PPIs between proteins from these two organisms. We show that pairs of human proteins we predict to interact with the same Plasmodium protein are close to each other in the human PPI network and that Plasmodium pairs predicted to interact with same human protein are co-expressed in DNA microarray datasets measured during various stages of the Plasmodium life cycle. Finally, we identify functionally enriched sub-networks spanned by the predicted interactions and discuss the plausibility of our predictions. Supplementary data are available at http://staff.vbi.vt.edu/dyermd/publications/dyer2007a.html. Supplementary data are available at Bioinformatics online.

  2. The De Novo Design of Protein-Protein Interfaces

    DTIC Science & Technology

    it was our intention to add to this body by engineering de novo (from scratch) protein/protein complexes. Using this inverse approach we have furthered...key physical features needed to drive specific protein/protein interactions. It is considered inverse because, instead of studying natural complexes

  3. Influence of Protein Abundance on High-Throughput Protein-Protein Interaction Detection

    DTIC Science & Technology

    2009-06-05

    the interaction data sets we determined, via comparisons with strict randomized simulations , the propensity for essential proteins to selectively...and analysis of high- quality PPI data sets. Materials and Methods We analyzed protein interaction networks for yeast and E. coli determined from Y2H...we reinvestigated the centrality-lethality rule, which implies that proteins having more interactions are more likely to be essential. From analysis

  4. ProtPhylo: identification of protein-phenotype and protein-protein functional associations via phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-07-01

    ProtPhylo is a web-based tool to identify proteins that are functionally linked to either a phenotype or a protein of interest based on co-evolution. ProtPhylo infers functional associations by comparing protein phylogenetic profiles (co-occurrence patterns of orthology relationships) for more than 9.7 million non-redundant protein sequences from all three domains of life. Users can query any of 2048 fully sequenced organisms, including 1678 bacteria, 255 eukaryotes and 115 archaea. In addition, they can tailor ProtPhylo to a particular kind of biological question by choosing among four main orthology inference methods based either on pair-wise sequence comparisons (One-way Best Hits and Best Reciprocal Hits) or clustering of orthologous proteins across multiple species (OrthoMCL and eggNOG). Next, ProtPhylo ranks phylogenetic neighbors of query proteins or phenotypic properties using the Hamming distance as a measure of similarity between pairs of phylogenetic profiles. Candidate hits can be easily and flexibly prioritized by complementary clues on subcellular localization, known protein-protein interactions, membrane spanning regions and protein domains. The resulting protein list can be quickly exported into a csv text file for further analyses. ProtPhylo is freely available at http://www.protphylo.org. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. The NMR contribution to protein-protein networking in Fe-S protein maturation.

    PubMed

    Banci, Lucia; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Piccioli, Mario

    2018-03-22

    Iron-sulfur proteins were among the first class of metalloproteins that were actively studied using NMR spectroscopy tailored to paramagnetic systems. The hyperfine shifts, their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues are an efficient fingerprint of the nature and the oxidation state of the Fe-S cluster. NMR significantly contributed to the analysis of the magnetic coupling patterns and to the understanding of the electronic structure occurring in [2Fe-2S], [3Fe-4S] and [4Fe-4S] clusters bound to proteins. After the first NMR structure of a paramagnetic protein was obtained for the reduced E. halophila HiPIP I, many NMR structures were determined for several Fe-S proteins in different oxidation states. It was found that differences in chemical shifts, in patterns of unobserved residues, in internal mobility and in thermodynamic stability are suitable data to map subtle changes between the two different oxidation states of the protein. Recently, the interaction networks responsible for maturing human mitochondrial and cytosolic Fe-S proteins have been largely characterized by combining solution NMR standard experiments with those tailored to paramagnetic systems. We show here the contribution of solution NMR in providing a detailed molecular view of "Fe-S interactomics". This contribution was particularly effective when protein-protein interactions are weak and transient, and thus difficult to be characterized at high resolution with other methodologies.

  6. Molecular tweezers modulate 14-3-3 protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  7. Predicting Functions of Proteins in Mouse Based on Weighted Protein-Protein Interaction Network and Protein Hybrid Properties

    PubMed Central

    Shi, Xiaohe; Lu, Wen-Cong; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Background With the huge amount of uncharacterized protein sequences generated in the post-genomic age, it is highly desirable to develop effective computational methods for quickly and accurately predicting their functions. The information thus obtained would be very useful for both basic research and drug development in a timely manner. Methodology/Principal Findings Although many efforts have been made in this regard, most of them were based on either sequence similarity or protein-protein interaction (PPI) information. However, the former often fails to work if a query protein has no or very little sequence similarity to any function-known proteins, while the latter had similar problem if the relevant PPI information is not available. In view of this, a new approach is proposed by hybridizing the PPI information and the biochemical/physicochemical features of protein sequences. The overall first-order success rates by the new predictor for the functions of mouse proteins on training set and test set were 69.1% and 70.2%, respectively, and the success rate covered by the results of the top-4 order from a total of 24 orders was 65.2%. Conclusions/Significance The results indicate that the new approach is quite promising that may open a new avenue or direction for addressing the difficult and complicated problem. PMID:21283518

  8. TGF-beta signaling proteins and the Protein Ontology.

    PubMed

    Arighi, Cecilia N; Liu, Hongfang; Natale, Darren A; Barker, Winona C; Drabkin, Harold; Blake, Judith A; Smith, Barry; Wu, Cathy H

    2009-05-06

    The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or post-translational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO is manually curated on the basis of PrePRO, an automatically generated file with content derived from standard protein data sources. Manual curation ensures that the treatment of the protein classes and the internal and external relationships conform to the PRO framework. The current release of PRO is based upon experimental data from mouse and human proteins wherein equivalent protein forms are represented by single terms. In addition to the PRO ontology, the annotation of PRO terms is released as a separate PRO association file, which contains, for each given PRO term, an annotation from the experimentally characterized sub-types as well as the corresponding database identifiers and sequence coordinates. The annotations are added in the form of relationship to other ontologies. Whenever possible, equivalent forms in other species are listed to facilitate cross-species comparison. Splice and allelic variants, gene fusion products and modified protein forms are all represented as entities in the ontology. Therefore, PRO provides for the representation of protein entities and a resource for describing the associated data. This makes PRO useful both for proteomics studies where isoforms and modified forms must be differentiated, and for studies of biological pathways, where representations need to take account of the different ways in which the cascade of events may depend on specific protein modifications. PRO provides

  9. Energy Landscape and Transition State of Protein-Protein Association

    NASA Astrophysics Data System (ADS)

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2006-11-01

    Formation of a stereospecific protein complex is favored by specific interactions between two proteins but disfavored by the loss of translational and rotational freedom. Echoing the protein folding process, we have previously proposed a transition state for protein-protein association. Here we clarify the specification of the transition state by working with two toy models for protein association. The models demonstrate that a sharp transition between the bound state with numerous short-range interactions but restricted translation and rotational freedom and the unbound state with at most a small number of interactions but expanded configurational freedom. This transition sets the outer boundary of the bound state as well as the transition state for association. The energy landscape is funnel-like, with the deep well of the bound state surrounded by a broad shallow basin. This formalism of protein-protein association is applied to four protein-protein complexes, and is found to give accurate predictions for the effects of charge mutations and ionic strength on the association rates.

  10. An ontology-based search engine for protein-protein interactions.

    PubMed

    Park, Byungkyu; Han, Kyungsook

    2010-01-18

    Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology.

  11. Variant vicilins from a resistant Vigna unguiculata lineage (IT81D-1053) accumulate inside Callosobruchus maculatus larval midgut epithelium.

    PubMed

    Oliveira, Gabriel B; Kunz, Daniele; Peres, Tanara V; Leal, Rodrigo B; Uchôa, Adriana F; Samuels, Richard I; Macedo, Maria Lígia R; Carlini, Célia R; Ribeiro, Alberto F; Grangeiro, Thalles B; Terra, Walter R; Xavier-Filho, José; Silva, Carlos P

    2014-02-01

    It has been demonstrated that variant vicilins are the main resistance factor of cowpea seeds (Vigna unguiculata) against attack by the cowpea beetle Callosobruchus maculatus. There is evidence that the toxic properties of these storage proteins may be related to their interaction with glycoproteins and other microvillar membrane constituents along the digestive tract of the larvae. New findings have shown that following interaction with the microvilli, the vicilins are absorbed across the intestinal epithelium and thus reach the internal environment of the larvae. In the present paper we studied the insecticidal activity of the variant vicilins purified from a resistant cowpea variety (IT81D-1053). Bioassays showed that the seeds of this genotype affected larval growth, causing developmental retardation and 100% mortality. By feeding C. maculatus larvae on susceptible and IT81D-1053 derived vicilins (FITC labelled or unlabelled), followed by fluorescence and immunogold cytolocalization, we were able to demonstrate that both susceptible and variant forms are internalized in the midgut cells and migrate inside vesicular structures from the apex to the basal portion of the enterocytes. However, when larvae were fed with the labelled vicilins for 24h and then returned to a control diet, the concentration of the variant form remained relatively high, suggesting that variant vicilins are not removed from the cells at the same rate as the non-variant vicilins. We suggest that the toxic effects of variant vicilins on midgut cells involve the binding of these proteins to the cell surface followed by internalization and interference with the normal physiology of the enterocytes, thereby affecting larval development in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Two Chimeric Regulators of G-protein Signaling (RGS) Proteins Differentially Modulate Soybean Heterotrimeric G-protein Cycle*

    PubMed Central

    Roy Choudhury, Swarup; Westfall, Corey S.; Laborde, John P.; Bisht, Naveen C.; Jez, Joseph M.; Pandey, Sona

    2012-01-01

    Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1–4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1–4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks. PMID:22474294

  13. On the role of adenylate cyclase, tyrosine kinase, and tyrosine phosphatase in the response of nerve and glial cells to photodynamic impact

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Bragin, D. E.; Dergacheva, Olga Y.; Vanzha, O.; Oparina, L.; Uzdensky, Anatoly B.

    2004-08-01

    The role of different intercellular signaling pathways involving adenylate cyclase (AC), receptor tyrosine kinase (RTK), tyrosine and serine/threonine protein phosphatases (PTP or PP, respectively) in the response of crayfish mechanoreceptor neuron (MRN) and surrounding glial cells to photodynamic effect of aluminum phthalocyanine Photosens have been studied. AC inhibition by MDL-12330A decreased neuron lifetime, whereas AC activation by forskolin increase it. Thus, increase in cAMP produced by activated AC protects SRN against photodynamic inactivation. Similarly, RTK inhibition by genistein decreased neuron lifetime, while inhibition of PTP or PP that remove phosphate groups from proteins, prolonged neuronal activity. AC inhibition reduced photoinduced damage of the plasma membrane, and, therefore, necrosis in neuronal and glial cells. RTK inhibition protected only neurons against PDT-induced membrane permeabilization while glial cells became lesser permeable under ortovanadate-mediated PTP inhibition. AC activation also prevented PDT-induced apoptosis in glial cells. PP inhibition enhanced apoptotic processes in photosensitized glial cells. Therefore, both intercellular signaling pathways involving AC and TRK are involved in the maintenance of neuronal activity, integrity of the neuronal and glial plasma membranes and in apoptotic processes in glia under photosensitization.

  14. Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions

    PubMed Central

    Ruan, Peiying; Hayashida, Morihiro; Maruyama, Osamu; Akutsu, Tatsuya

    2013-01-01

    Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes. PMID:23776458

  15. Light-scattering studies of protein solutions: role of hydration in weak protein-protein interactions.

    PubMed

    Paliwal, A; Asthagiri, D; Abras, D; Lenhoff, A M; Paulaitis, M E

    2005-09-01

    We model the hydration contribution to short-range electrostatic/dispersion protein interactions embodied in the osmotic second virial coefficient, B(2), by adopting a quasi-chemical description in which water molecules associated with the protein are identified through explicit molecular dynamics simulations. These water molecules reduce the surface complementarity of highly favorable short-range interactions, and therefore can play an important role in mediating protein-protein interactions. Here we examine this quasi-chemical view of hydration by predicting the interaction part of B(2) and comparing our results with those derived from light-scattering measurements of B(2) for staphylococcal nuclease, lysozyme, and chymotrypsinogen at 25 degrees C as a function of solution pH and ionic strength. We find that short-range protein interactions are influenced by water molecules strongly associated with a relatively small fraction of the protein surface. However, the effect of these strongly associated water molecules on the surface complementarity of short-range protein interactions is significant, and must be taken into account for an accurate description of B(2). We also observe remarkably similar hydration behavior for these proteins despite substantial differences in their three-dimensional structures and spatial charge distributions, suggesting a general characterization of protein hydration.

  16. Computational Prediction of Protein-Protein Interactions

    PubMed Central

    Ehrenberger, Tobias; Cantley, Lewis C.; Yaffe, Michael B.

    2015-01-01

    The prediction of protein-protein interactions and kinase-specific phosphorylation sites on individual proteins is critical for correctly placing proteins within signaling pathways and networks. The importance of this type of annotation continues to increase with the continued explosion of genomic and proteomic data, particularly with emerging data categorizing posttranslational modifications on a large scale. A variety of computational tools are available for this purpose. In this chapter, we review the general methodologies for these types of computational predictions and present a detailed user-focused tutorial of one such method and computational tool, Scansite, which is freely available to the entire scientific community over the Internet. PMID:25859943

  17. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  18. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  19. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed Central

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-01-01

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions. Images PMID:2556266

  20. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-12-20

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions.

  1. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    PubMed

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces

    PubMed Central

    Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with

  3. Repurposing Treprostinil for Enhancing Hematopoietic Progenitor Cell Transplantation

    PubMed Central

    Kazemi, Zahra; Bergmayr, Christian; Prchal-Murphy, Michaela; Javaheri, Tahereh; Themanns, Madeleine; Pham, Ha T. T.; Strohmaier, Wolfgang; Sexl, Veronika; Zebedin-Brandl, Eva

    2016-01-01

    Activation of Gs-coupled receptors enhances engraftment of hematopoietic stem and progenitor cells (HSPCs). We tested the hypothesis that treprostinil, a prostacyclin analog approved for the treatment of pulmonary hypertension, can be repurposed to improve hematopoietic stem cell transplantation. Murine and human HSPCs were isolated from bone marrow and umbilical cord blood, respectively. Prostanoid receptor agonists and the combination thereof with forskolin were tested for their capacity to stimulate [3H]cAMP accumulation in HSPCs. Three independent approaches were employed to verify the ability of agonist-activated HSPCs to reconstitute the bone marrow in lethally irradiated recipient mice. The underlying mechanism was explored in cellular migration assays and by blocking C-X-C motif chemokine receptor 4 (CXCR4). Among several prostanoid agonists tested in combination with forskolin, treprostinil was most efficacious in raising intracellular cAMP levels in murine and human HPSCs. Injection of murine and human HSPCs, which had been pretreated with treprostinil and forskolin, enhanced survival of lethally irradiated recipient mice. Survival was further improved if recipient mice were subcutaneously administered treprostinil (0.15 mg kg−1 8 h−1) for 10 days. This regimen also reduced the number of HSPCs required to rescue lethally irradiated mice. Enhanced survival of recipient mice was causally related to treprostinil-enhanced CXCR4-dependent migration of HSPCs. Treprostinil stimulates the engraftment of human and murine hematopoietic stem cells without impairing their capacity for self-renewal. The investigated dose range corresponds to the dose approved for human use. Hence, these findings may be readily translated into a clinical application. PMID:26989084

  4. Protein subcellular localization assays using split fluorescent proteins

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  5. An ontology-based search engine for protein-protein interactions

    PubMed Central

    2010-01-01

    Background Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. Results We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Conclusion Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology. PMID:20122195

  6. Hot-spot analysis for drug discovery targeting protein-protein interactions.

    PubMed

    Rosell, Mireia; Fernández-Recio, Juan

    2018-04-01

    Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.

  7. Protein-induced satiety: effects and mechanisms of different proteins.

    PubMed

    Veldhorst, M; Smeets, A; Soenen, S; Hochstenbach-Waelen, A; Hursel, R; Diepvens, K; Lejeune, M; Luscombe-Marsh, N; Westerterp-Plantenga, M

    2008-05-23

    Relatively high protein diets, i.e. diets that maintain the absolute number of grams of protein ingested as compared to before dieting, are a popular strategy for weight loss and weight maintenance. Research into multiple mechanisms regulating body weight has focused on the effects of different quantities and types of dietary protein. Satiety and energy expenditure are important in protein-enhanced weight loss and weight maintenance. Protein-induced satiety has been shown acutely, with single meals, with contents of 25% to 81% of energy from protein in general or from specific proteins, while subsequent energy intake reduction was significant. Protein-induced satiety has been shown with high protein ad libitum diets, lasting from 1 to 6 days, up to 6 months. Also significantly greater weight loss has been observed in comparison with control. Mechanisms explaining protein-induced satiety are nutrient-specific, and consist mainly of synchronization with elevated amino acid concentrations. Different proteins cause different nutrient related responses of (an)orexigenic hormones. Protein-induced satiety coincides with a relatively high GLP-1 release, stimulated by the carbohydrate content of the diet, PYY release, while ghrelin does not seem to be especially affected, and little information is available on CCK. Protein-induced satiety is related to protein-induced energy expenditure. Finally, protein-induced satiety appears to be of vital importance for weight loss and weight maintenance. With respect to possible adverse events, chronic ingestion of large amounts of sulphur-containing amino acids may have an indirect effect on blood pressure by induction of renal subtle structural damage, ultimately leading to loss of nephron mass, and a secondary increase in blood pressure. The established synergy between obesity and low nephron number on induction of high blood pressure and further decline of renal function identifies subjects with obesity, metabolic syndrome and

  8. A Discontinuous Potential Model for Protein-Protein Interactions.

    PubMed

    Shao, Qing; Hall, Carol K

    2016-01-01

    Protein-protein interactions play an important role in many biologic and industrial processes. In this work, we develop a two-bead-per-residue model that enables us to account for protein-protein interactions in a multi-protein system using discontinuous molecular dynamics simulations. This model deploys discontinuous potentials to describe the non-bonded interactions and virtual bonds to keep proteins in their native state. The geometric and energetic parameters are derived from the potentials of mean force between sidechain-sidechain, sidechain-backbone, and backbone-backbone pairs. The energetic parameters are scaled with the aim of matching the second virial coefficient of lysozyme reported in experiment. We also investigate the performance of several bond-building strategies.

  9. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    PubMed Central

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  10. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    NASA Astrophysics Data System (ADS)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  11. Exploiting Amino Acid Composition for Predicting Protein-Protein Interactions

    PubMed Central

    Roy, Sushmita; Martinez, Diego; Platero, Harriett; Lane, Terran; Werner-Washburne, Margaret

    2009-01-01

    Background Computational prediction of protein interactions typically use protein domains as classifier features because they capture conserved information of interaction surfaces. However, approaches relying on domains as features cannot be applied to proteins without any domain information. In this paper, we explore the contribution of pure amino acid composition (AAC) for protein interaction prediction. This simple feature, which is based on normalized counts of single or pairs of amino acids, is applicable to proteins from any sequenced organism and can be used to compensate for the lack of domain information. Results AAC performed at par with protein interaction prediction based on domains on three yeast protein interaction datasets. Similar behavior was obtained using different classifiers, indicating that our results are a function of features and not of classifiers. In addition to yeast datasets, AAC performed comparably on worm and fly datasets. Prediction of interactions for the entire yeast proteome identified a large number of novel interactions, the majority of which co-localized or participated in the same processes. Our high confidence interaction network included both well-studied and uncharacterized proteins. Proteins with known function were involved in actin assembly and cell budding. Uncharacterized proteins interacted with proteins involved in reproduction and cell budding, thus providing putative biological roles for the uncharacterized proteins. Conclusion AAC is a simple, yet powerful feature for predicting protein interactions, and can be used alone or in conjunction with protein domains to predict new and validate existing interactions. More importantly, AAC alone performs at par with existing, but more complex, features indicating the presence of sequence-level information that is predictive of interaction, but which is not necessarily restricted to domains. PMID:19936254

  12. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.

    PubMed

    Mistry, Divya; Wise, Roger P; Dickerson, Julie A

    2017-01-01

    Identification of central genes and proteins in biomolecular networks provides credible candidates for pathway analysis, functional analysis, and essentiality prediction. The DiffSLC centrality measure predicts central and essential genes and proteins using a protein-protein interaction network. Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures helped identify critical genes and proteins in biomolecular networks. The proposed centrality measure, DiffSLC, combines the number of interactions of a protein and the gene coexpression values of genes from which those proteins were translated, as a weighting factor to bias the identification of essential proteins in a protein interaction network. Potentially essential proteins with low node degree are promoted through eigenvector centrality. Thus, the gene coexpression values are used in conjunction with the eigenvector of the network's adjacency matrix and edge clustering coefficient to improve essentiality prediction. The outcome of this prediction is shown using three variations: (1) inclusion or exclusion of gene co-expression data, (2) impact of different coexpression measures, and (3) impact of different gene expression data sets. For a total of seven networks, DiffSLC is compared to other centrality measures using Saccharomyces cerevisiae protein interaction networks and gene expression data. Comparisons are also performed for the top ranked proteins against the known essential genes from the Saccharomyces Gene Deletion Project, which show that DiffSLC detects more essential proteins and has a higher area under the ROC curve than other compared methods. This makes DiffSLC a stronger alternative to other centrality methods for detecting essential genes using a protein-protein interaction network that obeys centrality-lethality principle. DiffSLC is implemented using the igraph package in R, and networkx package in Python. The python package can be

  13. In Situ Protein Binding Assay Using Fc-Fusion Proteins.

    PubMed

    Padmanabhan, Nirmala; Siddiqui, Tabrez J

    2017-01-01

    This protocol describes an in situ protein-protein interaction assay between tagged recombinant proteins and cell-surface expressed synaptic proteins. The assay is arguably more sensitive than other traditional protein binding assays such as co-immunoprecipitation and pull-downs and provides a visual readout for binding. This assay has been widely used to determine the dissociation constant of binding of trans-synaptic adhesion proteins. The step-wise description in the protocol should facilitate the adoption of this method in other laboratories.

  14. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    PubMed

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Multiple protein-protein interactions converging on the Prp38 protein during activation of the human spliceosome.

    PubMed

    Schütze, Tonio; Ulrich, Alexander K C; Apelt, Luise; Will, Cindy L; Bartlick, Natascha; Seeger, Martin; Weber, Gert; Lührmann, Reinhard; Stelzl, Ulrich; Wahl, Markus C

    2016-02-01

    Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein-protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein-protein interaction platform that might organize the relative positioning of other proteins during splicing. © 2016 Schütze et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. A credit-card library approach for disrupting protein-protein interactions.

    PubMed

    Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D

    2006-04-15

    Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.

  17. Noninvasive imaging of protein-protein interactions in living animals

    NASA Astrophysics Data System (ADS)

    Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David

    2002-05-01

    Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.

  18. NOXclass: prediction of protein-protein interaction types.

    PubMed

    Zhu, Hongbo; Domingues, Francisco S; Sommer, Ingolf; Lengauer, Thomas

    2006-01-19

    Structural models determined by X-ray crystallography play a central role in understanding protein-protein interactions at the molecular level. Interpretation of these models requires the distinction between non-specific crystal packing contacts and biologically relevant interactions. This has been investigated previously and classification approaches have been proposed. However, less attention has been devoted to distinguishing different types of biological interactions. These interactions are classified as obligate and non-obligate according to the effect of the complex formation on the stability of the protomers. So far no automatic classification methods for distinguishing obligate, non-obligate and crystal packing interactions have been made available. Six interface properties have been investigated on a dataset of 243 protein interactions. The six properties have been combined using a support vector machine algorithm, resulting in NOXclass, a classifier for distinguishing obligate, non-obligate and crystal packing interactions. We achieve an accuracy of 91.8% for the classification of these three types of interactions using a leave-one-out cross-validation procedure. NOXclass allows the interpretation and analysis of protein quaternary structures. In particular, it generates testable hypotheses regarding the nature of protein-protein interactions, when experimental results are not available. We expect this server will benefit the users of protein structural models, as well as protein crystallographers and NMR spectroscopists. A web server based on the method and the datasets used in this study are available at http://noxclass.bioinf.mpi-inf.mpg.de/.

  19. Modelling of DNA-Mediated of Two- and -Three dimensional Protein-Protein and Protein-Nanoparticle Self-Assembly

    NASA Astrophysics Data System (ADS)

    Millan, Jaime; McMillan, Janet; Brodin, Jeff; Lee, Byeongdu; Mirkin, Chad; Olvera de La Cruz, Monica

    Programmable DNA interactions represent a robust scheme to self-assemble a rich variety of tunable superlattices, where intrinsic and in some cases non-desirable nano-scale building blocks interactions are substituted for DNA hybridization events. Recent advances in synthesis has allowed the extension of this successful scheme to proteins, where DNA distribution can be tuned independently of protein shape by selectively addressing surface residues, giving rise to assembly properties in three dimensional protein-nanoparticle superlattices dependent on DNA distribution. In parallel to this advances, we introduced a scalable coarse-grained model that faithfully reproduces the previously observed co-assemblies from nanoparticles and proteins conjugates. Herein, we implement this numerical model to explain the stability of complex protein-nanoparticle binary superlattices and to elucidate experimentally inaccessible features such as protein orientation. Also, we will discuss systematic studies that highlight the role of DNA distribution and sequence on two-dimensional protein-protein and protein-nanoparticle superlattices.

  20. Prediction of Protein Aggregation in High Concentration Protein Solutions Utilizing Protein-Protein Interactions Determined by Low Volume Static Light Scattering.

    PubMed

    Hofmann, Melanie; Winzer, Matthias; Weber, Christian; Gieseler, Henning

    2016-06-01

    The development of highly concentrated protein formulations is more demanding than for conventional concentrations due to an elevated protein aggregation tendency. Predictive protein-protein interaction parameters, such as the second virial coefficient B22 or the interaction parameter kD, have already been used to predict aggregation tendency and optimize protein formulations. However, these parameters can only be determined in diluted solutions, up to 20 mg/mL. And their validity at high concentrations is currently controversially discussed. This work presents a μ-scale screening approach which has been adapted to early industrial project needs. The procedure is based on static light scattering to directly determine protein-protein interactions at concentrations up to 100 mg/mL. Three different therapeutic molecules were formulated, varying in pH, salt content, and addition of excipients (e.g., sugars, amino acids, polysorbates, or other macromolecules). Validity of the predicted aggregation tendency was confirmed by stability data of selected formulations. Based on the results obtained, the new prediction method is a promising screening tool for fast and easy formulation development of highly concentrated protein solutions, consuming only microliter of sample volumes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.