Science.gov

Sample records for microwave water radiometer

  1. Monolithic microwave integrated circuit water vapor radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  2. Microwave Radiometer (MWR) Handbook

    SciTech Connect

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  3. Continuous Time Series of Water Vapor Profiles from a Combination of Raman Lidar and Microwave Radiometer

    NASA Astrophysics Data System (ADS)

    Foth, Andreas; Baars, Holger; Di Girolamo, Paolo; Pospichal, Bernhard

    2016-06-01

    In this paper, we present a method to retrieve continuous water vapor profiles from a combination of a Raman lidar and a microwave radiometer. The integrated water vapor from the microwave radiometer is used to calibrate the Raman lidar operationally resulting in small biases compared to radiosondes. The height limitations for Raman lidars (cloud base and daylight contamination) can be well compensated by the application of a two-step algorithm combining the Raman lidars mass mixing ratio and the microwave radiometers brightness temperatures.

  4. Using Multiple Instrument Measurements To Assess Integrated Water Vapor Path From A Multispectral Microwave Radiometer

    NASA Astrophysics Data System (ADS)

    Fallon, J.; Han, Z. T.; Gross, B.; Moshary, F.

    2013-12-01

    Microwave Radiometers are mounted on satellites and the ground to collect climatological data. While they provide very useful information about temperature, RH, and water vapor, radiometers should periodically be cross-referenced with other instruments to gauge the veracity of the data. Data available from the closest ground-based GPS receivers and sun photometers was plotted alongside, and used to analyze, data from City College's Microwave Radiometer. Observing all of the data together in a graph allows one to see some of the general advantages and disadvantages of each instrument. The GPS-MET seems to be accurate continuously, while AERONET data is not even available during the night and while there is cloud cover. Lastly, the microwave radiometer collects data continuously, but at certain times the data are about five times higher than the expected values, based on the values given by GPS-MET and AERONET. A good explanation for those spikes is rainfall. For times when it is not raining, the microwave radiometer at City College is sufficiently close to the integrated water vapor data collected by City College's sun photometer and data from Union, New Jersey and East Moriches, New York, as proven by statistical tools.

  5. Microwave radiometer studies of atmospheric water over the oceans, volume 1

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.

    1992-01-01

    Since Seasat carried the Scanning Multichannel Microwave Radiometer (SMMR) into space, shortly followed by the SMMR on Nimbus 7, a new type of data source on atmospheric water vapor and other meteorological parameters has been available for analysis of weather systems over the ocean. Since 1987, the Scanning Multichannel Microwave/Imager (SMM/I) has provided similar data. A collection of work using this data is presented.

  6. Studies of Atmospheric Water in Storms with the Nimbus 7 Scanning Multichannel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.

    1984-01-01

    The new tools for the study of midlattitude cyclones by atmospheric water channels of the scanning multichannel microwave radiometer (SMMR) on Nimbus 7, were discussed. The integrated atmospheric water vapor, total cloud liquid water and rain data were obtained from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR). The frontal structure of several midlattitude cyclones over the North Pacific Ocean as they approached the West Coast of North America were studied. It is found that fronts are consistently located at the leading edge of the strongest gradient in integrated water vapor. The cloud liquid water content has patterns which are consistent with the structure seen in visible and infrared imagery. The rain distribution is a good indicator of frontal location. It is concluded that the onset of rain on the coast can be forecast accurately by simple advection of the SMMR observed rain areas.

  7. Microwave radiometer studies of atmospheric water over the oceans, volume 2

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.

    1992-01-01

    Since the Seasat carried the Scanning Multichannel Microwave Radiometer (SMMR) into space in July of 1978, shortly followed by the SMMR on Nimbus 7, which operated for almost a decade, a new type of data source on atmospheric water vapor and other meteorological parameters has been available for analysis of weather systems over the ocean. Since 1987, we have had the Scanning Multichannel Microwave/Imager (SSM/I) instrument on Defense Meteorological Satellites providing similar data. We present a collection of our work performed over the last years of the study.

  8. Wideband Agile Digital Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Brown, Shannon T.; Ruf, Christopher; Gross, Steven

    2012-01-01

    The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.

  9. Observing atmospheric water in storms with the Nimbus 7 scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.; Lewis, R. M.

    1984-01-01

    Employing data on integrated atmospheric water vapor, total cloud liquid water and rain rate obtainable from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR), we study the frontal structure of several mid-latitude cyclones over the North Pacific Ocean as they approach the West Coast of North America in the winter of 1979. The fronts, analyzed with all available independent data, are consistently located at the leading edge of the strongest gradient in integrated water vapor. The cloud liquid water content, which unfortunately has received very little in situ verification, has patterns which are consistent with the structure seen in visible and infrared imagery. The rain distribution is also a good indicator of frontal location and rain amounts are generally within a factor of two of what is observed with rain gauges on the coast. Furthermore, the onset of rain on the coast can often be accurately forecast by simple advection of the SMMR observed rain areas.

  10. Measurements of integrated water vapor and cloud liquid water from microwave radiometers at the DOE ARM Cloud and Radiation Testbed in the U.S. Southern Great Plains

    SciTech Connect

    Liljegren, J.C.; Lesht, B.M.

    1996-06-01

    The operation and calibration of the ARM microwave radiometers is summarized. Measured radiometric brightness temperatures are compared with calculations based on the model using co-located radiosondes. Comparisons of perceptible water vapor retrieved from the radiometer with integrated soundings and co-located GPS retrievals are presented. The three water vapor sensing systems are shown to agree to within about 1 mm.

  11. Water vapour variability during Indian monsoon over Trivandrum observed using Microwave Radiometer and GPS

    NASA Astrophysics Data System (ADS)

    Raju, Suresh C.; Krishna Moorthy, K.; Ramachandran Pillai, Renju; Uma, K. N.; Saha, Korak

    2012-07-01

    The Indian summer monsoon is a highly regular synoptic event, providing most of the annual rainfall received over the sub-continent. Trivandrum, at the southwestern tip of Indian peninsula, is considered as the gate way of Indian monsoon, with its climatological onset on June 01. During this season, the region, experiences large seasonal variation in water vapor, rain fall and wind (speed and direction) in the troposphere. The variability in water vapor and wind information are the vital parameters in forecasting the onset of monsoon. This study focuses on water vapor measurements over the tropical coastal station Trivandrum (8.5oN & 76.9oE) using microwave techniques and the analyses with an effort to link the seasonal variability of water vapor with the onset of monsoon. At Trivandrum a hyper-spectral microwave radiometer profiler (MRP) and a Triple-frequency global positioning system receiver (GPS) have been in regular operation since April 2010. A station-dependent simple empirical relation suitable for the equatorial atmospheric condition is formulated to map the nonhydrostatic component of GPS tropospheric delay to the PWV, based on the columnar water vapor estimated from the multi-year daily radiosonde ascends from Trivandrum. A trained artificial neural network (ANN) with climatological atmospheric data of Trivandrum, is employed to derive the water vapor from the MRP brightness temperature measurements. The accuracy, reliability and consistency of PWV measurements over the tropical coastal station from these two independent instruments are assessed by comparing PWV derived from MRP and GPS measurements which resulted an rms deviation of <1.2mm (with correlation coefficient of ~0.98). This confirms the PWV derived over Trivandrum from microwave measurements are accurate even during the monsoon period in the presence of clouds and rain. PWV from microwave radiometer measurements for more than two years are used to study the water vapour variability during

  12. Observations of water vapor by ground-based micro-wave radiometers and Raman lidar

    NASA Astrophysics Data System (ADS)

    Han, Yong; Snider, J. B.; Westwater, E. R.; Melfi, S. H.; Ferrare, R. A.

    1994-09-01

    In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment FIRE II. Included in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. We compared 2-min measurements of brightness temperature (Tb) with calculations of Tb that were based on the Liebe and Lay ton (1987) and Liebe et al. (1993) microwave propagation models, as well as the Waters (1976) model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. (1993) model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton (1987) and Liebe et al. (1993) models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potential of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor.

  13. Observations of water vapor by ground-based microwave radiometers and Raman lidar

    NASA Technical Reports Server (NTRS)

    Han, Yong; Snider, J. B.; Westwater, E. R.; Melfi, S. H.; Ferrare, R. A.

    1994-01-01

    In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment First ISCCP Regional Experiment Phase 2 (FIRE 2). Includede in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. We compared 20 min measurements of brightness temperature (T(sub b) with calculations of T(sub b) that were based on the Liebe and Layton (1987) and Liebe et al. (1993) microwave propagation models, as well as the Waters (1976) model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. (1993) model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton (1987) and Liebe et al. (1993) models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potential of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor.

  14. A comparative study of microwave radiometer observations over snowfields with radiative transfer model calculations. [for water runoff estimation

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Shiue, J. C.

    1979-01-01

    Truck mounted microwave instrumentation was used to study the microwave emission characteristics of the Colorado Rocky Mountain snowpack in the vicinity of Fraser, Colorado during the winter of 1978. The spectral signatures of 5.0, 10.7, 18, and 37 GHz radiometers with dual polarization were used to measure the snowpack density and temperature profiles, rain profile, and free water content. These data were compared with calculated results based on microscopic scattering models for dry, surface melting, and very wet snowpacks.

  15. Inter- annual variability of water vapor over an equatorial coastal station using Microwave Radiometer observations.

    NASA Astrophysics Data System (ADS)

    Renju, Ramachandran Pillai; Uma, K. N.; Krishna Moorthy, K.; Mathew, Nizy; Raju C, Suresh

    The south-western region of the Indian peninsula is the gateway of Indian summer monsoon. This region experiences continuous monsoon rain for a longer period of about six months from June to November. The amount of water vapor variability is one of the important parameters to study the onset, active and break phases of the monsoon. Keeping this in view, a multi-frequency Microwave Radiometer Profiler (MRP) has been made operational for continuous measurements of water vapor over an equatorial coastal station Thiruvananthapuram (8.5(°) N, 76.9(°) E) since April 2010. The MRP estimated precipitable water vapor (PWV) for different seasons including monsoon periods have been evaluated by comparing with the collocated GPS derived water vapor and radiosonde measurements. The diurnal, seasonal and inter annual variation of water vapor has been studied for the last four years (2010-2013) over this station. The significant diurnal variability of water vapor is found only during the winter and pre-monsoon periods (Dec -April). The vertical distribution of water vapour is studied in order to understand its variability especially during the onset of monsoon. During the building up of south-west monsoon, the specific humidity increases to ˜ 10g/kg in the altitude range of 4-6 km and consistently maintained it throughout the active spells and reduces to below 2g/kg during break spells of monsoon. The instrument details and the results will be presented.

  16. Salinity surveys using an airborne microwave radiometer

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Droppleman, J. D.; Evans, D. E.

    1972-01-01

    The Barnes PRT-5 infrared radiometer and L-band channel of the multifrequency microwave radiometer are used to survey the distribution of surface water temperature and salinity. These remote sensors were flown repetitively in November 1971 over the outflow of the Mississippi River into the Gulf of Mexico. Data reduction parameters were determined through the use of flight data obtained over a known water area. With these parameters, the measured infrared and microwave radiances were analyzed in terms of the surface temperature and salinity.

  17. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Datasets

    SciTech Connect

    KL Gaustad; DD Turner

    2007-09-30

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) microwave radiometer (MWR) RETrievel (MWRRET) Value-Added Product (VAP) algorithm. This algorithm utilizes complimentary physical and statistical retrieval methods and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  18. Atmospheric water distribution in a midlatitude cyclone observed by the Seasat Scanning Multichannel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Mcmurdie, L. A.; Katsaros, K. B.

    1985-01-01

    Patterns in the horizontal distribution of integrated water vapor, integrated liquid water and rainfall rate derived from the Seasat Scanning Multichannel Microwave Radiometer (SMMR) during a September 10-12, 1978 North Pacific cyclone are studied. These patterns are compared with surface analyses, ship reports, radiosonde data, and GOES-West infrared satellite imagery. The SMMR data give a unique view of the large mesoscale structure of a midlatitude cyclone. The water vapor distribution is found to have characteristic patterns related to the location of the surface fronts throughout the development of the cyclone. An example is given to illustrate that SMMR data could significantly improve frontal analysis over data-sparse oceanic regions. The distribution of integrated liquid water agrees qualitatively well with corresponding cloud patterns in satellite imagery and appears to provide a means to distinguish where liquid water clouds exist under a cirrus shield. Ship reports of rainfall intensity agree qualitatively very well with SMMR-derived rainrates. Areas of mesoscale rainfall, on the order of 50 km x 50 km or greater are detected using SMMR derived rainrates.

  19. Two-channel microwave radiometer for observations of total column precipitable water vapor and cloud liquid water path

    SciTech Connect

    Liljegren, J.C.

    1994-01-01

    The Atmospheric Radiation Measurement (ARM) Program is focused on improving the treatment of radiation transfer in models of the atmospheric general circulation, as well as on improving parameterizations of cloud properties and formation processes in these models (USDOE, 1990). To help achieve these objectives, ARM is deploying several two-channel, microwave radiometers at the Cloud and Radiation Testbed (CART) site in Oklahoma for the purpose of obtaining long time series observations of total precipitable water vapor (PWV) and cloud liquid water path (LWP). The performance of the WVR-1100 microwave radiometer deployed by ARM at the Oklahoma CART site central facility to provide time series measurements precipitable water vapor (PWV) and liquid water path (LWP) has been presented. The instrument has proven to be durable and reliable in continuous field operation since June, 1992. The accuracy of the PWV has been demonstrated to achieve the limiting accuracy of the statistical retrieval under clear sky conditions, degrading with increasing LWP. Improvements are planned to address moisture accumulation on the Teflon window, as well as to identity the presence of clouds with LWP at or below the retrieval uncertainty.

  20. A new algorithm for microwave delay estimation from water vapor radiometer data

    NASA Technical Reports Server (NTRS)

    Robinson, S. E.

    1986-01-01

    A new algorithm has been developed for the estimation of tropospheric microwave path delays from water vapor radiometer (WVR) data, which does not require site and weather dependent empirical parameters to produce high accuracy. Instead of taking the conventional linear approach, the new algorithm first uses the observables with an emission model to determine an approximate form of the vertical water vapor distribution which is then explicitly integrated to estimate wet path delays, in a second step. The intrinsic accuracy of this algorithm has been examined for two channel WVR data using path delays and stimulated observables computed from archived radiosonde data. It is found that annual RMS errors for a wide range of sites are in the range from 1.3 mm to 2.3 mm, in the absence of clouds. This is comparable to the best overall accuracy obtainable from conventional linear algorithms, which must be tailored to site and weather conditions using large radiosonde data bases. The new algorithm's accuracy and flexibility are indications that it may be a good candidate for almost all WVR data interpretation.

  1. Microwave radiometer observations of interannual water vapor variability and vertical structure over a tropical station

    NASA Astrophysics Data System (ADS)

    Renju, R.; Suresh Raju, C.; Mathew, Nizy; Antony, Tinu; Krishna Moorthy, K.

    2015-05-01

    The intraseasonal and interannual characteristics and the vertical distribution of atmospheric water vapor from the tropical coastal station Thiruvananthapuram (TVM) located in the southwestern region of the Indian Peninsula are examined from continuous multiyear, multifrequency microwave radiometer profiler (MRP) measurements. The accuracy of MRP for precipitable water vapor (PWV) estimation, particularly during a prolonged monsoon period, has been demonstrated by comparing with the PWV derived from collocated GPS measurements based on regression model between PWV and GPS wet delay component which has been developed for TVM station. Large diurnal and intraseasonal variations of PWV are observed during winter and premonsoon seasons. There is large interannual PWV variability during premonsoon, owing to frequent local convection and summer thunderstorms. During monsoon period, low interannual PWV variability is attributed to the persistent wind from the ocean which brings moisture to this coastal station. However, significant interannual humidity variability is seen at 2 to 6 km altitude, which is linked to the monsoon strength over the station. Prior to monsoon onset over the station, the specific humidity increases up to 5-10 g/kg in the altitude region above 5 km and remains consistently so throughout the active spells.

  2. Initial evaluation of profiles of temperature, water vapor, and cloud liquid water from a new microwave profiling radiometer.

    SciTech Connect

    Liljegren, J. C.; Lesht, B. M.; Clothiaux, E. E.; Kato, S.

    2000-11-01

    To measure the vertical profiles of temperature and water vapor that are essential for modeling atmospheric processes, the Atmospheric Radiation Measurement (ARM) Program of the U. S. Department of Energy launches approximately 2600 radiosondes each year from its Southern Great Plains (SGP) facilities in Oklahoma and Kansas, USA. The annual cost of this effort exceeds $500,000 in materials and labor. Despite the expense, these soundings have a coarse temporal resolution and reporting interval compared with model time steps. In contrast, the radiation measurements used for model evaluations have temporal resolutions and reporting intervals of a few minutes at most. Conversely, radiosondes have a much higher vertical spatial resolution than most models can use. Modelers generally reduce the vertical resolution of the soundings by averaging over the vertical layers of the model. Recently, Radiometries Corporation (Boulder, Colorado, USA) developed a 12-channel, ground-based microwave radiometer capable of providing continuous, real-time vertical profiles of temperature, water vapor, and limited-resolution cloud liquid water from the surface to 10 km in nearly all weather conditions. The microwave radiometer profiler (MWRP) offers a much finer temporal resolution and reporting interval (about 10 minutes) than the radiosonde but a coarser vertical resolution that may be more appropriate for models. Profiles of temperature, water vapor, and cloud liquid water are obtained at 47 levels: from 0 to 1 km above ground level at 100-m intervals and from 1 to 10 km at 250-m intervals. The profiles are derived from the measured brightness temperatures with neural network retrieval. In Figure 1, profiles of temperature, water vapor, and cloud liquid water for 10 May 2000 are presented as time-height plots. MWRP profiles coincident with the 11:31 UTC (05:31 local) and 23:47 UTC (17:47 local) soundings for 10 May are presented in Figures 2 and 3, respectively. These profiles

  3. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  4. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations

    NASA Astrophysics Data System (ADS)

    Wentz, Frank J.; Meissner, Thomas

    2016-05-01

    The Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100 GHz are refined based on an analysis of antenna temperature (TA) measurements taken by the Global Precipitation Measurement Microwave Imager (GMI) in the frequency range 10.7 to 89.0 GHz. The GMI TA measurements are compared to the TA predicted by a radiative transfer model (RTM), which incorporates both the atmospheric absorption model and a model for the emission and reflection from a rough-ocean surface. The inputs for the RTM are the geophysical retrievals of wind speed, columnar water vapor, and columnar cloud liquid water obtained from the satellite radiometer WindSat. The Liebe and Rosenkranz absorption models are adjusted to achieve consistency with the RTM. The vapor continuum is decreased by 3% to 10%, depending on vapor. To accomplish this, the foreign-broadening part is increased by 10%, and the self-broadening part is decreased by about 40% at the higher frequencies. In addition, the strength of the water vapor line is increased by 1%, and the shape of the line at low frequencies is modified. The dry air absorption is increased, with the increase being a maximum of 20% at the 89 GHz, the highest frequency considered here. The nonresonant oxygen absorption is increased by about 6%. In addition to the RTM comparisons, our results are supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.

  5. Interferometric Synthetic Aperture Microwave Radiometers : an Overview

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; McKague, Darren

    2011-01-01

    This paper describes 1) the progress of the work of the IEEE Geoscience and Remote Sensing Society (GRSS) Instrumentation and Future Technologies Technical Committee (IFT-TC) Microwave Radiometer Working Group and 2) an overview of the development of interferometric synthetic aperture microwave radiometers as an introduction to a dedicated session.

  6. Comparison of atmospheric water vapour content with GNSS, Radiosonde, Microwave radiometer, and Lidar

    NASA Astrophysics Data System (ADS)

    Sohn, D.; Park, K.

    2012-12-01

    The increased amount of saturated water vapor due to the Earth's temperature rise frequently causes abnormal meteorological phenomena such as local severe rainfall in Korea. The National Institute of Meteorological Research of Korea Meteorological Administration (KMA) conducted observation experiments using a variety of water-vapor measuring equipments to improve the accuracy of weather forecasts and accurately measure the precipitable water vapor in the atmosphere. Equipments used were GNSS, water vapor radiometers (WVR), radiosonde, and LiDAR. For GNSS measurements we used two receivers that can collect not only GPS but also GLONASS signals: Trimble NetR5 and Septentrio PolaRx4. The two WVR makers are Raidometrics and RPG. For radiosonde observations, KMA launched Vaisala GPSondes every 6 hours during the experiment period. The LiDAR system was made locally by Hanbat University in Daejeon. Thus, we could obtain collocation experiment results from 6 different kinds of water vapor measurement and analyze the characteristics of each device.

  7. Advanced Microwave Radiometer (AMR) for SWOT mission

    NASA Astrophysics Data System (ADS)

    Chae, C. S.

    2015-12-01

    The objective of the SWOT (Surface Water & Ocean Topography) satellite mission is to measure wide-swath, high resolution ocean topography and terrestrial surface waters. Since main payload radar will use interferometric SAR technology, conventional microwave radiometer system which has single nadir look antenna beam (i.e., OSTM/Jason-2 AMR) is not ideally applicable for the mission for wet tropospheric delay correction. Therefore, SWOT AMR incorporates two antenna beams along cross track direction. In addition to the cross track design of the AMR radiometer, wet tropospheric error requirement is expressed in space frequency domain (in the sense of cy/km), in other words, power spectral density (PSD). Thus, instrument error allocation and design are being done in PSD which are not conventional approaches for microwave radiometer requirement allocation and design. A few of novel analyses include: 1. The effects of antenna beam size to PSD error and land/ocean contamination, 2. Receiver error allocation and the contributions of radiometric count averaging, NEDT, Gain variation, etc. 3. Effect of thermal design in the frequency domain. In the presentation, detailed AMR design and analyses results will be discussed.

  8. Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer and radiosondes.

    SciTech Connect

    Liou, Y. A.; Teng, Y. T.; VanHove, T.; Liljegren, J. C.; Environmental Research; National Central Univ.; UCAR

    2001-01-01

    The sensing of precipitable water (PW) using the Global Positioning System (GPS) in the near Tropics is investigated. GPS data acquired from the Central Weather Bureau's Taipei weather station in Banchao (Taipei), Taiwan, and each of nine International GPS Service (IGS) stations were utilized to determine independently the PW at the Taipei site from 18 to 24 March 1998. Baselines between Taipei and the other nine stations range from 676 to 3009 km. The PW determined from GPS observations for the nine baseline cases are compared with measurements by a dual-channel water vapor radiometer (WVR) and radiosondes at the Taipei site. Although previous results from other locations show that the variability in the rms difference between GPS- and WVR-observed PW ranges from 1 to 2 mm, a variability of 2.2 mm is found. The increase is consistent with scaling of the variability with the total water vapor burden (PW). In addition, accurate absolute PW estimates from GPS data for baseline lengths between 1500 and 3000 km were obtained. Previously, 500 and 2000 km have been recommended in the literature as the minimum baseline length needed for accurate absolute PW estimation. An exception occurs when GPS data acquired in Guam, one of the nine IGS stations, were utilized. This result is a possible further indication that the rms difference between GPS- and WVR-measured PW is dependent on the total water vapor burden, because both Taipei and Guam are located in more humid regions than the other stations.

  9. A new algorithm for phase transition water content retrieval during soil freeze-thaw process using microwave radiometer

    NASA Astrophysics Data System (ADS)

    Ye, Qinyu; Chai, Linna

    2014-11-01

    Seasonally soil freeze-thaw process has a profound impact on hydrologic cycle, meteorology and soil erosion. A useful indicator to evaluate the soil freeze-thaw intensity is the amount of phase transition water content (PTWC) in soil pores. In this research, a large dataset of simulated brightness temperature were generated using Advanced Integral Equation Model (AIEM) based on the configuration of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) with soil parameters changing in a wide range. Through analyzing of the simulated brightness temperature and PTWC, a nearly linear correlation relationship existed between the brightness temperature difference of frozen and thawed soil in vertical or horizontal polarization to the PTWC, but it was affected by soil roughness. Then a statistical algorithm was put forward to estimate the PTWC using a combined brightness temperature of vertical and horizontal polarization. Finally, this algorithm was applied to the ground-based radiometer observation and validated by the ground truth. The results showed that this algorithm had an acceptable precision with a root mean square error (RMSE) of 0.0261 (m3/m3) and the absolute error less than 0.02 (m3/m3) was about 82.67%. The advantage of this algorithm is that it combines v and h polarization brightness temperature through adding different weights on them so as to weaken the influence of surface roughness and achieves the desired results.

  10. Retrieval of vertical profiles of liquid water and ice content in mixed clouds from Doppler Radar and microwave radiometer measurements

    SciTech Connect

    Sauvageot, H.

    1996-01-01

    A new method to retrieve vertical profiles of liquid water content M{sub w}(z), ice water content M{sub i}(z), and ice particle size distribution N{sub i}(D, z) (where D is the ice particle size and z the vertical coordinate) in mixed nonprecipitating clouds using the observations of a zenith-viewing Doppler radar and of a microwave radiometer is proposed. In this method, the profile of the vertical air velocity deduced from Doppler radar measurements is used to describe the rate of production by the updrafts of water vapor in excess of saturation with respect to ice. Using a Z{sub i}-M{sub i} power-law relation with an unknown linear parameter (let {alpha}{sub i} be this parameter) and initially assuming that Z{sub w} is negligible with respect to Z{sub i} (where Z{sub w} and Z{sub i} are the radar reflectivity factors of liquid water and ice particles, respectively), the measured radar reflectivity factor profile Z{sub m}({approx}Z{sub i}) is inverted to estimate N{sub i}(D, z). From N{sub i}(D, z), the profile of the rate of water vapor that can be consumed by pure deposition on ice particles is calculated. The difference between the rate of production of the excess water vapor and the rate of deposited water vapor is an expression of the rate of liquid water generation at each level. By writing that the integral of the liquid water along the profile has to be equal to the total liquid water deduced from the microwave radiometer measurement, an estimation of the {alpha}{sub i} parameter is obtained. From {alpha}{sub i}, an estimation of the profiles M{sub w}(z), M{sub i}(z), Z{sub w}(z), Z{sub i}(z) (=Z{sub m} - Z{sub w}), and N{sub i}(D, z) is calculated. If Z{sub w} is effectively negligible with respect to Z{sub i}, the computation of the retrieved profiles is ended. If not, Z{sub i}(z) is corrected and a new estimation of the profiles is computed. The results of the numerical simulation of the algorithm are presented. 21 refs., 6 figs., 1 tab.

  11. Electrically scanning microwave radiometer for Nimbus E

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An electronically scanning microwave radiometer system has been designed, developed, and tested for measurement of meteorological, geomorphological and oceanographic parameters from NASA/GSFC's Nimbus E satellite. The system is a completely integrated radiometer designed to measure the microwave brightness temperature of the earth and its atmosphere at a microwave frequency of 19.35 GHz. Calibration and environmental testing of the system have successfully demonstrated its ability to perform accurate measurements in a satellite environment. The successful launch and data acquisition of the Nimbus 5 (formerly Nimbus E) gives further demonstration to its achievement.

  12. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Datasets May 2009

    SciTech Connect

    Gaustad, KL; Turner, DD

    2009-05-30

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) microwave radiometer (MWR) RETrievel (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  13. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)

    SciTech Connect

    Gaustad, KL; Turner, DD; McFarlane, SA

    2011-07-25

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  14. Tomographic retrieval of cloud liquid water fields from a single scanning microwave radiometer aboard a moving platform – Part 1: Field trial results from the Wakasa Bay experiment

    SciTech Connect

    Huang, D.; Gasiewski, A.; Wiscombe, W.

    2010-07-22

    Tomographic methods offer great potential for retrieving three-dimensional spatial distributions of cloud liquid water from radiometric observations by passive microwave sensors. Fixed tomographic systems require multiple radiometers, while mobile systems can use just a single radiometer. Part 1 (this paper) examines the results from a limited cloud tomography trial with a single-radiometer airborne system carried out as part of the 2003 AMSR-E validation campaign over Wakasa Bay of the Sea of Japan. During this trial, the Polarimetric Scanning Radiometer (PSR) and Microwave Imaging Radiometer (MIR) aboard the NASA P-3 research aircraft provided a useful dataset for testing the cloud tomography method over a system of low-level clouds. We do tomographic retrievals with a constrained inversion algorithm using three configurations: PSR, MIR, and combined PSR and MIR data. The liquid water paths from the PSR retrieval are consistent with those from the MIR retrieval. The retrieved cloud field based on the combined data appears to be physically plausible and consistent with the cloud image obtained by a cloud radar. We find that some vertically-uniform clouds appear at high altitudes in the retrieved field where the radar shows clear sky. This is likely due to the sub-optimal data collection strategy. This sets the stage for Part 2 of this study that aims to define optimal data collection strategies using observation system simulation experiments.

  15. Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design

    NASA Technical Reports Server (NTRS)

    King, J. L.

    1980-01-01

    The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.

  16. Digital simulation of dynamic processes in radiometer systems. [microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    The development and application of several computer programs for simulating different classes of microwave radiometers are described. The programs are dynamic in nature, and they may be used to determine the instantaneous behavior of system variables as a function of time. Some of the programs employ random variable models in the simulations so that the statistical nature of the results may be investigated. The programs have been developed to utilize either the Continuous System Modeling Program or the Advanced Continuous System Language. The validity of most of the programs was investigated using statistical tests, and the results show excellent correlation with theoretical predictions. The programs are currently being used in the investigation of new design techniques for microwave radiometers.

  17. Comparison of column water vapor measurements using downward-looking near-infrared and infrared imaging systems and upward-looking microwave radiometers

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Westwater, Ed R.; Stankov, B. B.; Birkenheuer, D.; Goetz, Alexander F. H.

    1992-01-01

    Remote soundings of precipitable water vapor from three systems are compared with each other and with ground truth from radiosondes. Ancillary data from a mesoscale network of surface observing stations and from wind-profiling radars are also used in the analysis. The three remote-sounding techniques are: (a) a reflectance technique using spectral data collected by the Airborne Visible-Infrared Imaging Spectrometer; (b) an emission technique using Visible-Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) data acquired from the NOAA's GOES; and (c) a microwave technique using data from a limited network of three ground-based dual-channel microwave radiometers. The data were taken over the Front Range of eastern Colorado on 22-23 March 1990. The generally small differences between the three types of remote-sounding measurements are consistent with the horizontal and temporal resolutions of the instruments. The microwave and optical reflectance measurements agreed to within 0.1 cm; comparisons of the microwave data with radiosondes were also either as good or explainable. The largest differences between the VAS and the microwave radiometer at Elbert were between 0.4 and 0.5 cm and appear to be due to variable terrain within the satellite footprint.

  18. Microwave Radiometer – 3 Channel (MWR3C) Handbook

    SciTech Connect

    Cadeddu, MP

    2012-05-04

    The microwave radiometer 3-channel (MWR3C) provides time-series measurements of brightness temperatures from three channels centered at 23.834, 30, and 89 GHz. These three channels are sensitive to the presence of liquid water and precipitable water vapor.

  19. The microwave radiometer spacecraft: A design study

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor)

    1981-01-01

    A large passive microwave radiometer spacecraft with near all weather capability of monitoring soil moisture for global crop forecasting was designed. The design, emphasizing large space structures technology, characterized the mission hardware at the conceptual level in sufficient detail to identify enabling and pacing technologies. Mission and spacecraft requirements, design and structural concepts, electromagnetic concepts, and control concepts are addressed.

  20. Accounting For Nonlinearity In A Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Stelzried, Charles T.

    1991-01-01

    Simple mathematical technique found to account adequately for nonlinear component of response of microwave radiometer. Five prescribed temperatures measured to obtain quadratic calibration curve. Temperature assumed to vary quadratically with reading. Concept not limited to radiometric application; applicable to other measuring systems in which relationships between quantities to be determined and readings of instruments differ slightly from linearity.

  1. Microwave Radiometer-High Frequency (MWRHF) Handbook

    SciTech Connect

    Caddedu, MP

    2011-03-17

    The 90/150-GHz Vapor Radiometer provides time-series measurements of brightness temperatures from two channels centered at 90 and 150 GHz. These two channels are sensitive to the presence of liquid water and precipitable water vapor.

  2. Submarine fresh water outflow detection with a dual-frequency microwave and an infrared radiometer system

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Kendall, B. M.; Fedors, J. C.

    1981-01-01

    Since infrared measurements are only very slightly affected by whitecap and banking angle influences, the combined multifrequency radiometric signatures of the L-band, the S-band, and an infrared radiometer are used in identifying freshwater outflows (submerged and superficial). To separate the river and lagoon outflows from the submarine outflows, geographical maps with a scale of 1:100,000 are used. In all, 44 submarine freshwater springs are identified. This is seen as indicating that the submarine freshwater outflow locations are more numerous around the island than had earlier been estimated. Most of the submarine springs are located at the northwest and southeast portion of the Puerto Rican coastline; the success in detecting the submarine springs during both missions at the northwest portion of the island is 39%. Salinity and temperature distribution plots along the flight path in longitude and latitude coordinates reveal that runoff direction can be determined.

  3. Radiometer system requirements for microwave remote sensing from satellites

    NASA Technical Reports Server (NTRS)

    Juang, Jeng-Nan

    1990-01-01

    An area of increasing interest is the establishment of a significant research program in microwave remote sensing from satellites, particularly geosynchronous satellites. Due to the relatively small resolution cell sizes, a severe requirement is placed on beam efficiency specifications for the radiometer antenna. Geostationary satellite microwave radiometers could continuously monitor several important geophysical parameters over the world's oceans. These parameters include the columnar content of atmospheric liquid water (both cloud and rain) and water vapor, air temperature profiles, and possibly sea surface temperature. Two principle features of performance are of concern. The first is the ability of the radiometer system to resolve absolute temperatures with a very small absolute error, a capability that depends on radiometer system stability, on frequency bandwidth, and on footprint dwell time. The second is the ability of the radiometer to resolve changes in temperature from one resolution cell to the next when these temperatures are subject to wide variation over the overall field-of-view of the instrument. Both of these features are involved in the use of the radiometer data to construct high-resolution temperature maps with high absolute accuracy.

  4. On the interpretation of integrated water vapor patterns in midlatitude cyclones derived from the Nimbus 7 scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Mcmurdie, Lynn A.; Katsaros, Kristina B.

    1988-01-01

    The present exploration of methods for the interpretation of the Nimbus 7 satellite's Scanning Multichannel Microwave Radiometer (SMMR) vapor patterns and the ways in which they relate to the dynamical structure of individual midlatitude storms employs gridded meteorological data from the First GARP Global Experiment special observing period in order to calculate diagnostic quantities. SMMR patterns for a storm at a weak stage determined from the diagnostic quantities are compared with SMMR patterns for the storm at a stronger stage. A more complete interpretation of the SMMR patterns emerges from these considerations.

  5. Intercomparison of total precipitable water measurements made by satellite-borne microwave radiometers and ground-based GPS instruments

    NASA Astrophysics Data System (ADS)

    Mears, Carl A.; Wang, Junhong; Smith, Deborah; Wentz, Frank J.

    2015-03-01

    High-quality, high temporal resolution measurements of total precipitable water (TPW) can be made by evaluating the vapor-dependent delay of radio signals reaching land-based Global Positioning System (GPS) receivers from GPS satellites. These measurements are available since the mid-1990s when the GPS system became operational. Over the world's oceans, satellite-borne microwave imaging radiometers have been making measurements of TPW for more than 25 years. In this work, we perform an intercomparison of collocated TPW measurements made by these two disparate systems using measurements from 26 GPS stations located on small islands. The two types of measurements agree well, with typical satellite-station mean differences of less than 1.0 kg m-2. Analysis revealed several cases of inhomogeneities in the GPS data set, and two deficiencies in the Remote Sensing Systems satellite data, demonstrating the usefulness of intercomparison for improving the accuracy of both types of data. After the individual station, biases were removed, the standard deviation of the overall differences between individual satellites and GPS measurements ranged between 1.60 and 1.94 kg m-2. Twelve GPS stations had overlap time periods long enough to evaluate difference trends, yielding 59 satellite-station pairs when paired with different satellites. More than half of the pairs (39 of 59) did not show a significant trend. The 20 pairs with significant trends did not show trends of predominantly one sign, suggesting that neither system is plagued by a system-wide drift in TPW.

  6. Receivers for the Microwave Radiometer on Juno

    NASA Technical Reports Server (NTRS)

    Maiwald, F.; Russell, D.; Dawson, D.; Hatch, W.; Brown, S.; Oswald, J.; Janssen, M.

    2009-01-01

    Six receivers for the MicroWave Radiometer (MWR) are currently under development at JPL. These receivers cover a frequency range of 0.6 to 22 GHz in approximately octave steps, with 4 % bandwidth. For calibration and diagnosis three noise diodes and a Dicke switch are integrated into each receiver. Each receiver is connected to its own antenna which is mounted with its bore sights perpendicular to the spin axis of the spacecraft. As the spacecraft spins at 2 RPM, the antenna field of view scans Jupiter's atmosphere from limb to nadir to limb, measuring microwave emission down to 1000-bar.

  7. Present status of the global change observation mission 1st - water 'SHIZUKU' (GCOM-W1) and the advanced microwave scanning radiometer 2 (AMSR2)

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hiroyuki; Imaoka, Keiji; Kachi, Misako; Maeda, Takeshi; Kasahara, Marehito; Ito, Norimasa; Oki, Taikan; Shimoda, Haruhisa

    2014-11-01

    The Global Change Observation Mission 1st - Water (CGOM-W1) or "SHIZUKU" was launched on May 18, 2012 (JST) from the JAXA's Tanegashima Space Center. Subsequently, the GCOM-W1 satellite was joined to the NASA's A-train orbit since June 29, 2012 to succeed observation by the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and to provide combined utilization with other A-train satellites. The Advanced Microwave Scanning Radiometer 2 (AMSR2), which is a successor of AMSR-E, onboard GCOM-W1 has started its scientific observation since July 3, 2012. AMSR-E was halted its scientific observation on October 4, 2011, but has restarted observation in slow antenna rotation rate since December 4, 2012 for cross-calibration with AMSR2. AMSR2 has multi-frequency, total-power microwave radiometer systems with dual polarization channels for all frequency bands, and continues AMSR-E observations: 1) Water vapor, 2) Cloud liquid water, 3) Precipitation, 4) SST, 5) Sea surface wind speed, 6) Sea ice concentration, 7) Snow depth, 8) Soil moisture. JAXA opened the AMSR2's brightness temperature products to the public since January 2013 after initial calibration/validation period by the GCOM-W1 Data Providing Service (https://gcomwl.jaxa.jp/). Thereafter, the retrieval algorithms of standard geophysical products for water vapor, cloud liquid water, precipitation, sea surface temperature, sea surface wind speed, sea ice concentration, snow depth and soil moisture were modified, and JAXA opened these standard geophysical products to the public since May 2013. In this paper, we present the present operation status of AMSR2.

  8. Validation of GPS derived integrated water vapor with microwave radiometer measurements in zenith and satellite tracking mode

    NASA Astrophysics Data System (ADS)

    Heise, Stefan; Shangguan, Ming; Deng, Zhiguo; Dick, Galina; Wickert, Jens; Zus, Florian

    2015-04-01

    Reliable and precise water vapour measurements are important for both, numerical weather prediction and climatological studies. In this context, zenith and slant total delay (ZTD, STD) data from Global Positioning System (GPS) ground observations provide a valuable source of integrated water vapour (IWV) information with high potential for assimilation to numerical weather models and nowcasting applications but also for climatological analysis of longer GPS IWV time series. Therefore it is important to validate the accuracy of GPS IWV with independent observations. For this purpose, in 2012 GFZ started to operate a water vapour radiometer (WVR) in vicinity of the Potsdam GPS station. It measures the absorption lines of atmospheric water vapour and oxygen at 14 frequency channels in the 22-58 GHz range and provides among others integrated water vapour measurements along the respective line of sight. Besides zenith IWV measurements the radiometer is operated in GPS satellite tracking mode enabling direct comparisons with the nearby GPS slant IWV observations (processed at GFZ). In this study we present validation results of GPS slant and zenith IWV data with the collocated radiometer observations. The validation covers all seasons including dry and wet humidity conditions. We address relations between the GPS-WVR differences and corresponding observation conditions that might have influence on the comparison results (elevation angles, ground pressure and temperature, atmospheric humidity).

  9. Retrieval techniques and information content analysis to improve remote sensing of atmospheric water vapor, liquid water and temperature from ground-based microwave radiometer measurements

    NASA Astrophysics Data System (ADS)

    Sahoo, Swaroop

    Observation of profiles of temperature, humidity and winds with sufficient accuracy and fine vertical and temporal resolution are needed to improve mesoscale weather prediction, track conditions in the lower to mid-troposphere, predict winds for renewable energy, inform the public of severe weather and improve transportation safety. In comparing these thermodynamic variables, the absolute atmospheric temperature varies only by 15%; in contrast, total water vapor may change by up to 50% over several hours. In addition, numerical weather prediction (NWP) models are initialized using water vapor profile information, so improvements in their accuracy and resolution tend to improve the accuracy of NWP. Current water vapor profile observation systems are expensive and have insufficient spatial coverage to observe humidity in the lower to mid-troposphere. To address this important scientific need, the principal objective of this dissertation is to improve the accuracy, vertical resolution and revisit time of tropospheric water vapor profiles retrieved from microwave and millimeter-wave brightness temperature measurements. This dissertation advances the state of knowledge of retrieval of atmospheric water vapor from microwave brightness temperature measurements. It focuses on optimizing two information sources of interest for water vapor profile retrieval, i.e. independent measurements and background data set size. From a theoretical perspective, it determines sets of frequencies in the ranges of 20-23, 85-90 and 165-200 GHz that are optimal for water vapor retrieval from each of ground-based and airborne radiometers. The maximum number of degrees of freedom for the selected frequencies for ground-based radiometers is 5-6, while the optimum vertical resolution is 0.5 to 1.5 km. On the other hand, the maximum number of degrees of freedom for airborne radiometers is 8-9, while the optimum vertical resolution is 0.2 to 0.5 km. From an experimental perspective, brightness

  10. High-Precision Laboratory Measurements Supporting Retrieval of Water Vapor, Gaseous Ammonia, and Aqueous Ammonia Clouds with the Juno Microwave Radiometer (MWR)

    NASA Astrophysics Data System (ADS)

    Steffes, Paul G.; Hanley, Thomas R.; Karpowicz, Bryan M.; Devaraj, Kiruthika; Noorizadeh, Sahand; Duong, Danny; Chinsomboon, Garrett; Bellotti, Amadeo; Janssen, Michael A.; Bolton, Scott J.

    2016-08-01

    The NASA Juno mission includes a six-channel microwave radiometer system (MWR) operating in the 1.3-50 cm wavelength range in order to retrieve abundances of ammonia and water vapor from the microwave signature of Jupiter (see Janssen et al. 2016). In order to plan observations and accurately interpret data from such observations, over 6000 laboratory measurements of the microwave absorption properties of gaseous ammonia, water vapor, and aqueous ammonia solution have been conducted under simulated Jovian conditions using new laboratory systems capable of high-precision measurement under the extreme conditions of the deep atmosphere of Jupiter (up to 100 bars pressure and 505 K temperature). This is one of the most extensive laboratory measurement campaigns ever conducted in support of a microwave remote sensing instrument. New, more precise models for the microwave absorption from these constituents have and are being developed from these measurements. Application of these absorption properties to radiative transfer models for the six wavelengths involved will provide a valuable planning tool for observations, and will also make possible accurate retrievals of the abundance of these constituents during and after observations are conducted.

  11. Single-Pole Double-Throw MMIC Switches for a Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka P.

    2012-01-01

    In order to reduce the effect of gain and noise instabilities in the RF chain of a microwave radiometer, a Dicke radiometer topology is often used, as in the case of the proposed surface water and ocean topography (SWOT) radiometer instrument. For this topology, a single-pole double-throw (SPDT) microwave switch is needed, which must have low insertion loss at the radiometer channel frequencies to minimize the overall receiver noise figure. Total power radiometers are limited in accuracy due to the continuous variation in gain of the receiver. High-frequency SPDT switches were developed in the form of monolithic microwave integrated circuits (MMICs) using 75 micron indium phosphide (InP) PIN-diode technology. These switches can be easily integrated into Dicke switched radiometers that utilize microstrip technology.

  12. Preliminary development of digital signal processing in microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    Topics covered involve a number of closely related tasks including: the development of several control loop and dynamic noise model computer programs for simulating microwave radiometer measurements; computer modeling of an existing stepped frequency radiometer in an effort to determine its optimum operational characteristics; investigation of the classical second order analog control loop to determine its ability to reduce the estimation error in a microwave radiometer; investigation of several digital signal processing unit designs; initiation of efforts to develop required hardware and software for implementation of the digital signal processing unit; and investigation of the general characteristics and peculiarities of digital processing noiselike microwave radiometer signals.

  13. COBE differential microwave radiometers - Calibration techniques

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Smoot, G. F.; Janssen, M.; Gulkis, S.; Kogut, A.; Hinshaw, G.; Backus, C.; Hauser, M. G.; Mather, J. C.; Rokke, L.

    1992-01-01

    The COBE spacecraft was launched November 18, 1989 UT carrying three scientific instruments into earth orbit for studies of cosmology. One of these instruments, the Differential Microwave Radiometer (DMR), is designed to measure the large-angular-scale temperature anisotropy of the cosmic microwave background radiation at three frequencies (31.5, 53, and 90 GHz). This paper presents three methods used to calibrate the DMR. First, the signal difference between beam-filling hot and cold targets observed on the ground provides a primary calibration that is transferred to space by noise sources internal to the instrument. Second, the moon is used in flight as an external calibration source. Third, the signal arising from the Doppler effect due to the earth's motion around the barycenter of the solar system is used as an external calibration source. Preliminary analysis of the external source calibration techniques confirms the accuracy of the currently more precise ground-based calibration. Assuming the noise source behavior did not change from the ground-based calibration to flight, a 0.1-0.4 percent relative and 0.7-2.5 percent absolute calibration uncertainty is derived, depending on radiometer channel.

  14. Sensor Calibration and Ocean Products for TRMM Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Lawrence, Richard J. (Technical Monitor)

    2003-01-01

    During the three years of finding, we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.

  15. Sensor Calibration and Ocean Products for TRMM Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Lawrence, Richard J. (Technical Monitor); Wentz, Frank J.

    2003-01-01

    During the three years of fundin& we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.

  16. Stratus cloud liquid water and turbulence profiles using a K{sub {alpha}}-band Doppler radar and a microwave radiometer

    SciTech Connect

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.; Lenschow, D.H.

    1994-12-31

    The goal of the Atlantic Stratocumulus Transition Experiment (ASTEX) held in the North Atlantic during June 1992 was to determine the physical reasons for the transition from stratocumulus to broken clouds. Some possible reasons for this transition were such things as cloud top entrainment instability, and the decoupling effects of drizzle. As part of this experiment, the ETL cloud sensing Doppler radar and three channel microwave radiometer were deployed on the island of Porto Santo in the Madeira Islands of Portugal along with a CO{sub 2} Doppler lider. Drizzle properties in stratus were examined using a log-normal droplet distribution model which related the three parameters of the model to the first 3 Doppler spectral moments of the cloud radar. With these moments, the authors are then able to compute the drizzle droplet concentration, modal radius, liquid water and liquid water flux as a function of height.

  17. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  18. Application of microwave radiometers for wetlands and estuaries monitoring

    SciTech Connect

    Shutko, A.; Haldin, A.; Novichikhin, E.

    1997-06-01

    This paper presents the examples of experimental data obtained with airborne microwave radiometers used for monitoring of wetlands and estuaries located in coastal environments. The international team of researchers has successfully worked in Russia, Ukraine and USA. The data presented relate to a period of time between 1990 and 1995. They have been collected in Odessa Region, Black Sea coast, Ukraine, in Regions of Pittsville and Winfield, Maryland, USA, and in Region of St. Marks, Florida, USA. The parameters discussed are a soil moisture, depth to a shallow water table, vegetation index, salinity of water surface.

  19. Advanced microwave radiometer antenna system study

    NASA Technical Reports Server (NTRS)

    Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.

    1976-01-01

    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.

  20. Mapping the sky with the COBE differential microwave radiometers

    NASA Technical Reports Server (NTRS)

    Janssen, M. A.; Gulkis, S.

    1992-01-01

    The Differential Microwave Radiometers (DMR) instrument on COBE is designed to determine the anisotropy of the Cosmic Microwave Background by providing all-sky maps of the diffuse sky brightness at microwave frequencies. The principal intent of this lecture is to show how these maps are generated from differential measurements.

  1. Passive microwave sensing of coastal area waters

    NASA Technical Reports Server (NTRS)

    Kendall, B. M.

    1980-01-01

    A technique to remotely measure sea-surface temperature and salinity was demonstrated during the 1970's with a dual-frequency microwave radiometer system developed at the NASA Langley Research Center. Accuracies in temperature of 1 C and 1 part per thousand in salinity were obtained using state-of-the-art radiometers. Several aircraft programs for the measurement of coastal area waters demonstrating the application of the microwave radiometer system are discussed. Improvements of the microwave radiometer system during the 1980's and the design and development of new radiometer systems at other frequencies are outlined and related to potential applications.

  2. Variability of winter-time middle atmospheric water vapour over the Arctic as observed with a ground-based microwave radiometer

    NASA Astrophysics Data System (ADS)

    Tschanz, Brigitte; Kivi, Rigel; Rüfenacht, Rolf; Kämpfer, Niklaus

    2014-05-01

    Middle atmospheric water vapour has a long chemical lifetime and can therefore be used as a tracer for dynamics. The ground-based microwave radiometer MIAWARA-C is designed for the use on campaigns and measures profiles of water vapour in the upper stratosphere and mesosphere and thus provides valuable data for the investigation of atmospheric processes. It has been operational for five years and has successfully participated in measurement campaigns under various climatic conditions in Germany, Switzerland, California, Finland and on la Réunion. The temporal resolution of the obtained water vapour profiles approximately 2 hours depending on tropospheric conditions. During two campaigns from January to June 2010 and from July 2011 to April 2013 in Sodankylä, Finland, MIAWARA-C monitored time series of polar middle atmospheric water vapour for three winters with three Sudden Stratospheric Warmings (SSW) occurring in early 2010, 2012 and 2013. The obtained time series are used to study the effects of the three SSWs on middle-atmospheric water vapour. During an SSW, humid mid- to low-latitude air is transported towards the polar region resulting in a fast increase in water vapour. The descent of water vapour after the SSW allows the estimation of the descent rate over the polar region as the normal wintertime circulation reforms. Results from the three SSWs are compared. The ground-based water vapour data is combined with sonde data of the Finnish Meteorological Institute and ground-based microwave wind measurements for one winter in order to obtain a more complete picture of the dynamics in the polar winter atmosphere.

  3. Progress report of FY 1999 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    SciTech Connect

    Edgeworth R. Westwater; Yong Han

    1999-09-10

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this effort is to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. While analyzing data obtained during the Water Vapor Intensive Operating Period'97 at the SGP CART site in central Oklahoma, several questions arose about the calibration of the ARM microwave radiometers (MWR). A large portion of this years effort was a thorough analysis of the many factors that are important for the calibration of this instrument through the tip calibration method and the development of algorithms to correct this procedure. An open literature publication describing this analysis has been accepted.

  4. ENVISAT-1 Microwave Radiometer MWR: current design status

    NASA Astrophysics Data System (ADS)

    L'Abbate, Michele; Bombaci, Ornella; Caltagirone, Francesco

    1996-12-01

    ENVISAT-1 microwave radiometer (MWR) is an instrument designed and developed for the European Space Agency by the European Industry. The instrument will be part of the ENVISAT-1 satellite scientific payload. Alenia Spazio is engaged in the phase C-D as instrument Prime Contractor, responsible for design and development, leading an industrial consortium of European and American companies. The current design takes also benefits from Alenia Spazio activities as MIMR radiometer Prime Contractor in the frame of METOP ESA program. The MWR design concept derives from the experimental radiometers embarked on ERS-1 satellite.It is a two channels passive Dicke microwave radiometer, operating at 23.8 and 36.5 GHz. By receiving and analyzing the earth's generated and reflected radiation at these two frequencies, this instrument is able to measure the amount of water content in the atmosphere within a 20 Km diameter field of view immediately beneath the satellite's track. A two points calibration scheme is adopted with hot and old calibration reference points, so that periodically the measurements of earth scene radiation are interrupted to allow the measurement of an on-board calibration load and of the deep cold space. The MWR output products are of prime importance for wind/wave products of radar altimeter instrument part of the ENVISAT-1 payload, providing correction of atmospheric propagation data, but also for direct evaluation of brightness temperature to characterize polar ice, land surface properties and for sea surface temperature accurate measurements. Within this paper, after an overview of the instrument design concept, the MWR radiometric performance prediction is presented, with emphasis on the design and technology applied to radiometric receivers.

  5. Sensitivity of Spacebased Microwave Radiometer Observations to Ocean Surface Evaporation

    NASA Technical Reports Server (NTRS)

    Liu, Timothy W.; Li, Li

    2000-01-01

    Ocean surface evaporation and the latent heat it carries are the major components of the hydrologic and thermal forcing on the global oceans. However, there is practically no direct in situ measurements. Evaporation estimated from bulk parameterization methods depends on the quality and distribution of volunteer-ship reports which are far less than satisfactory. The only way to monitor evaporation with sufficient temporal and spatial resolutions to study global environment changes is by spaceborne sensors. The estimation of seasonal-to-interannual variation of ocean evaporation, using spacebased measurements of wind speed, sea surface temperature (SST), and integrated water vapor, through bulk parameterization method,s was achieved with reasonable success over most of the global ocean, in the past decade. Because all the three geophysical parameters can be retrieved from the radiance at the frequencies measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, the feasibility of retrieving evaporation directly from the measured radiance was suggested and demonstrated using coincident brightness temperatures observed by SMMR and latent heat flux computed from ship data, in the monthly time scale. However, the operational microwave radiometers that followed SMMR, the Special Sensor Microwave/Imager (SSM/I), lack the low frequency channels which are sensitive to SST. This low frequency channels are again included in the microwave imager (TMI) of the recently launched Tropical Rain Measuring Mission (TRMM). The radiance at the frequencies observed by both TMI and SSM/I were simulated through an atmospheric radiative transfer model using ocean surface parameters and atmospheric temperature and humidity profiles produced by the reanalysis of the European Center for Medium Range Weather Forecast (ECMWF). From the same ECMWF data set, coincident evaporation is computed using a surface layer turbulent transfer model. The sensitivity of the radiance to

  6. Intercomparison Between Microwave Radiometer and Radiosonding Data

    NASA Astrophysics Data System (ADS)

    Toanca, Florica; Stefan, Sabina

    2014-05-01

    The aim of this study is to compare relative humidity and temperature vertical profiles measured by ground based Microwave Radiometer (MWR) RPG HATPRO installed at the Romanian Atmospheric Observatory (Magurele, 44.35 N, 26.03 E) and by radio-sounding (RS) (Baneasa, 44.30 N, 26.04 E) provided by National Meteorological Administration. MWR uses passive microwave detection in the 22.335 to 31.4 GHz and 51to 58 GHz bands to obtain the vertical profiles of temperature and relative humidity up to 10km with a temporal resolution of several minutes. The reliability of atmospheric temperature and relative humidity profiles retrieved continuously by the MWR for the winter and summer of year 2013 was studied. The study was conducted, comparing the temperature and humidity profiles from the MWR with the ones from the radio soundings at 0:00 a.m. Two datasets of the humidity show a fairly good agreement for the interval between ground and 1.5 km in the January month for winter and up to 2 km in the July month for summer. Above 2 km, for the both seasons, the humidity profiles present in most of the selected cases the same trend evolution. The temperature vertical profiles agreed in 95% of the cases during summer and 85% during winter. It is very important for intercomparison that for both seasons almost all temperature vertical profiles highlight temperature inversions. Two cases have been analyzed in order to find possible explanations for the discrepancies between vertical profiles, focusing on advantages and disadvantages of MWR measurements.

  7. A Microwave Radiometer for Internal Body Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Scheeler, Robert Patterson

    This thesis presents the analysis and design of a microwave radiometer for internal body temperature measurements. There is currently no available method for non-invasive temperature measurement inside the human body. However, knowledge of both relative and absolute temperature variations over time is important to a number of medical applications. The research presented in this thesis details a proof-of-concept near-field microwave radiometer demonstrating relative thermometry of a multi-layer phantom. There are a number of technical challenges addressed in this thesis for radiometric determination of sub-degree temperature variations in the human body. A theoretical approach is developed for determining sensing depth from known complex layered tissues, which is defined as a figure of merit, and is shown to be dependent on frequency, electrical properties of the tissues, and the near-field probe. In order to obtain depth resolution, multiple frequency operation can be used, so multi-frequency probes are designed and demonstrated in this work. The choice of frequencies is determined not only by the tissue material properties, but also by the ever increasing radio interference in the environment. In this work, quiet bands allocated to radio astronomy are investigated. The radiometer and probe need to be compact to be wearable, and several advancements are made towards a fully wearable device: multi-frequency low-profile probes are designed and fabricated on a flexible substrate and the process of on-chip integration is demonstrated by a GaAs MMIC cold noise source for radiometer calibration. The implemented proof-of-concept device consists of two radiometers at 1.4 GHz and 2.7 GHz, designed with commercial inexpensive devices that can enable sufficient sensitivity. The device is tested on a phantom with two water layers whose temperatures are varied in a controlled manner, and focused on the human body temperature range. Measured results are discussed qualitatively

  8. Supercooled liquid water content profiling case studies with a new vibrating wire sonde compared to a ground-based microwave radiometer

    NASA Astrophysics Data System (ADS)

    Serke, David; Hall, Emrys; Bognar, John; Jordan, Allen; Abdo, Spencer; Baker, Kirstin; Seitel, Tom; Nelson, Marta; Ware, Randolph; McDonough, Frank; Politovich, Marcia

    2014-11-01

    An improved version of the vibrating wire sensor, used to measure supercooled cloud liquid water content, was developed by Anasphere Inc. and tested during early 2012. The sensor works on the principle that supercooled liquid will freeze to the vibrating wire and reduce the frequency at a known rate proportional to the liquid water content as the sensor rises through the cloud attached to a weather balloon and radiosonde. The disposable Anasphere sensor interfaces with an InterMet Systems iMet radiosonde. This updated sensor reduces the weight of the instrument while updating the technology when compared to the preceding balloon-borne sensor that was developed in the 1980's by Hill and Woffinden. Balloon-borne test flights were performed from Boulder, Colorado during February and March of 2012. These flights provided comparisons to integrated liquid water and profiles of liquid water content derived from a collocated multichannel microwave radiometer, built and operated by Radiometrics Corporation. Inter-comparison data such as these are invaluable for calibration, verification and validation of remote-sensing instruments. The data gathered from this sensor are potentially important to detection of icing hazards to aircraft, validation of microphysical output from numerical models, and calibrating remote sensors measuring supercooled liquid water.

  9. Remote monitoring of soil moisture using airborne microwave radiometers

    NASA Technical Reports Server (NTRS)

    Kroll, C. L.

    1973-01-01

    The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.

  10. Passive microwave radiometer experiment for GOES-NEXT

    NASA Technical Reports Server (NTRS)

    Vonder Haar, Thomas H.; Shenk, William E.; Graul, Donald W.

    1986-01-01

    A new passive microwave radiometer (PMR) experiment for GOES-NEXT is described. The PMR, expected to be in orbit in the early 1990's, is a multichannel microwave radiometer which will allow new measurements of temperature and moisture structure and precipitation by penetrating much of the overlying cloud cover near significant weather systems. PMR experimental objectives are to use a geostationary platform for the first time to obtain passive microwave imagery and soundings in a high time frequency mode to address several scientific objectives. These scientific objectives address current problems of atmospheric science at the mesoscale and in climate research.

  11. Progress report of FY 1997 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    SciTech Connect

    Edgeworth R. Westwater; Yong Han

    1997-10-05

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this proposal was to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. The algorithm will include recently-developed quality control procedures for radiometers. The focus of this years activities has been on the intercomparison of data obtained during an intensive operating period at the SGP CART site in central Oklahoma.

  12. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    Satellite precipitation retrievals from microwave sensors are fundamentally underconstrained requiring either implicit or explicit a-priori information to constrain solutions. The radiometer algorithm designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of a database of possible rain structures from the GPM core satellite and a Bayesian retrieval scheme. The a-priori database will eventually come from the GPM core satellite's combined radar/radiometer retrieval algorithm. That product is physically constrained to ensure radiometric consistency between the radars and radiometers and is thus ideally suited to create the a-priori databases for all radiometers in the GPM constellation. Until a robust product exists, however, the a-priori databases are being generated from the combination of existing sources over land and oceans. Over oceans, the Day-1 GPM radiometer algorithm uses the TRMM PR/TMI physically derived hydrometer profiles that are available from the tropics through sea surface temperatures of approximately 285K. For colder sea surface temperatures, the existing profiles are used with lower hydrometeor layers removed to correspond to colder conditions. While not ideal, the results appear to be reasonable placeholders until the full GPM database can be constructed. It is more difficult to construct physically consistent profiles over land due to ambiguities in surface emissivities as well as details of the ice scattering that dominates brightness temperature signatures over land. Over land, the a-priori databases have therefore been constructed by matching satellite overpasses to surface radar data derived from the WSR-88 network over the continental United States through the National Mosaic and Multi-Sensor QPE (NMQ) initiative. Databases are generated as a function of land type (4 categories of increasing vegetation cover as well as 4 categories of increasing snow depth), land surface temperature and

  13. ESTAR - A synthetic aperture microwave radiometer for measuring soil moisture

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Griffis, A.; Swift, C. T.; Jackson, T. J.

    1992-01-01

    The measurement of soil moisture from space requires putting relatively large microwave antennas in orbit. Aperture synthesis, an interferometric technique for reducing the antenna aperture needed in space, offers the potential for a practical means of meeting these requirements. An aircraft prototype, electronically steered thinned array L-band radiometer (ESTAR), has been built to develop this concept and to demonstrate its suitability for the measurement of soil moisture. Recent flights over the Walnut Gulch Watershed in Arizona show good agreement with ground truth and with measurements with the Pushbroom Microwave Radiometer (PBMR).

  14. Progress report of FY 1998 activities: The application of Kalman filtering to derive water vapor profiles from combined ground-based sensors: Raman lidar, microwave radiometers, GPS, and radiosondes

    SciTech Connect

    Edgeworth R. Westwater; Yong Han

    1999-10-01

    Previously, the proposers have delivered to ARM a documented algorithm, that is now applied operationally, and which derives water vapor profiles from combined remote sensor measurements of water vapor radiometers, cloud-base ceilometers, and radio acoustic sounding systems (RASS). With the expanded deployment of a Raman lidar at the CART Central Facility, high quality, high vertical-resolution, water vapor profiles will be provided during nighttime clear conditions, and during clear daytime conditions, to somewhat lower altitudes. The object of this effort is to use Kalman Filtering, previously applied to the combination of nighttime Raman lidar and microwave radiometer data, to derive high-quality water vapor profiles, during non-precipitating conditions, from data routinely available at the CART site. Input data to the algorithm would include: Raman lidar data, highly quality-controlled data of integrated moisture from microwave radiometers and GPS, RASS, and radiosondes. The focus of this years activities has been on the intercomparison of data obtained during the Water Vapor Intensive Operating Period'97 at the SGP CART site in central Oklahoma.

  15. Microwave radiometer for subsurface temperature measurement

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.

  16. Studies of midaltitude cyclone structure with SEASAT scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.

    1984-01-01

    The data provided by the atmospheric water channels of SEASAT's Scanning Multichannel Microwave Radiometer (SMMR) is used to investigate mesoscale structure at various stages of the development of a midlatitude cyclone. Seasonal and graphic differences in the storms are also studied.

  17. Source analysis of spaceborne microwave radiometer interference over land

    NASA Astrophysics Data System (ADS)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  18. ENVISAT-1 Microwave Radiometer (MWR): validation campaign achievements

    NASA Astrophysics Data System (ADS)

    Bombaci, Ornella; L'Abbate, Michele; Svara, Carlo; Caltagirone, Francesco; Guijarro, J.

    1998-12-01

    Alenia Aerospazio Remote Sensing Division started in 1986 the study of microwave radiometers under Italian Space Agency fundings, and since 1989 the definition and development of radiometric systems under European Space Agency (ESA) contracts. In particular the Multifrequency Imaging Microwave Radiometer (MIMR) and the ENVISAT Microwave Radiometer (MWR) were both developed by the European Industry, with Alenia Aerospazio as Prime Contractor. MWR is an instrument designed and developed as part of the Envisat-1 satellite scientific payload, with Alenia Spazio engaged in the phase C-D as instrument Prime Contractor, leading an industrial consortium of European and American companies. The Flight Model of the Instrument has been delivered to ESA at the end of July 1997, after completion of test and calibration activities. Given the MWR in-flight calibration concept, a specific pre-flight calibration and characterization activity was performed to define a radiometer mathematical model and a relevant ground characterization database including all model coefficients. The model and its database will be used by on-ground processing during instrument in-flight operation to retrieve the antenna-measured temperature. Standing its complexity and iterative measurement concept, the pre-flight characterization and calibration of the instrument is the key aspect of its development phase. Within this paper the key instrument design topics are summarized, and after a summary overview of the overall flight model qualification campaign, emphasis will be on the pre-flight calibration and characterization activities and radiometric performance achievements among several test phases.

  19. Satellite microwave observations of soil moisture variations. [by the microwave radiometer on the Nimbus 5 satellite

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Rango, A.; Neff, R.

    1975-01-01

    The electrically scanning microwave radiometer (ESMR) on the Nimbus 5 satellite was used to observe microwave emissions from vegetated and soil surfaces over an Illinois-Indiana study area, the Mississippi Valley, and the Great Salt Lake Desert in Utah. Analysis of microwave brightness temperatures (T sub B) and antecedent rainfall over these areas provided a way to monitor variations of near-surface soil moisture. Because vegetation absorbs microwave emission from the soil at the 1.55 cm wavelength of ESMR, relative soil moisture measurements can only be obtained over bare or sparsely vegetated soil. In general T sub B increased during rainfree periods as evaporation of water and drying of the surface soil occurs, and drops in T sub B are experienced after significant rainfall events wet the soil. Microwave observations from space are limited to coarse resolutions (10-25 km), but it may be possible in regions with sparse vegetation cover to estimate soil moisture conditions on a watershed or agricultural district basis, particularly since daily observations can be obtained.

  20. Remote sensing of soil moisture with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Wilheit, T.; Webster, W., Jr.; Gloerson, P.

    1976-01-01

    Results are presented that were derived from measurements made by microwave radiometers during the March 1972 and February 1973 flights of National Aeronautics and Space Administration (NASA) Convair-9900 aircraft over agricultural test sites in the southwestern part of United States. The purpose of the missions was to study the use of microwave radiometers for the remote sensing of soil moisture. The microwave radiometers covered the 0.8- to 21-cm wavelength range. The results show a good linear correlation between the observed microwave brightness temperature and moisture content of the 0- to 1-cm layer of the soil. The results at the largest wavelength (21 cm) show the greatest sensitivity to soil moisture variations and indicate the possibility of sensing these variations through a vegetative canopy. The effect of soil texture on the emission from the soil was also studied and it was found that this effect can be compensated for by expressing soil moisture as a percent of field capacity for the soil. The results were compared with calculations based on a radiative transfer model for layered dielectrics and the agreement is very good at the longer wavelengths. At the shorter wavelengths, surface roughness effects are larger and the agreement becomes poorer.

  1. Comparison of time series of integrated water vapor measured using radiosonde, GPS and microwave radiometer at the CNR-IMAA Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Amato, Franceso; Rosoldi, Marco; Madonna, Fabio

    2015-04-01

    . radiosondes (processed using GRUAN processing algorithm); 4. a microwave radiometer (data processed using a retrieval based on a neural network). F. Amato, M. Rosoldi, and F. Madonna Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA), Tito Scalo, Potenza, Italy Information about the amount and spatial distribution of atmospheric water vapor is essential to improve our knowledge of weather forecasting and climate change. Water vapor is highly variable in space and time depending on the complex interplay of several phenomena like convection, precipitation, turbulence, etc. It remains one of the most poorly characterized meteorological parameters. Remarkable progress in using of Global Navigation Satellite Systems (GNSS), in particular GPS, for the monitoring of atmospheric water vapor has been achieved during the last decades. Various studies have demonstrated that GPS could provide accurate water vapor estimates for the study of the atmosphere. Different GPS data processing provided within the scientific community made use of various tropospheric models that primarily differs for the assumptions on the vertical refractivity profiles and the mapping of the vertical delay with elevation angles. This works compares several models based on the use of surface meteorological data. In order to calculate the Integrated Water Vapour (IWV), an algorithm for calculating the zenith tropospheric delay was implemented. It is based upon different mapping functions (Niell, Saastamoinen, Chao and Herring Mapping Functions). Observations are performed at the Istituto di Metodologie per l'Analisi Ambientale (IMAA) GPS station located in Tito Scalo, Potenza (40.60N, 15.72E), from July to December 2014, in the framework of OSCAR project (Observation System for Climate Application at Regional scale). The retrieved values of the IWV using the GPS are systematically compared with the other estimation of IWV collected at CIAO (CNR-IMAA Atmospheric

  2. Progress in Low-Power Digital Microwave Radiometer Technologies

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Kim, Edward J.

    2004-01-01

    Three component technologies were combined into a digital correlation microwave radiometer. The radiometer comprises a dual-channel X-band superheterodyne receiver, low-power high-speed cross-correlator (HSCC), three-level ADCs, and a correlated noise source (CNS). The HSCC dissipates 10 mW and operates at 500 MHz clock speed. The ADCs are implemented using ECL components and dissipate more power than desired. Thus, a low-power ADC development is underway. The new ADCs arc predicted to dissipated less than 200 mW and operate at 1 GSps with 1.5 GHz of input bandwidth. The CNS provides different input correlation values for calibration of the radiometer. The correlation channel had a null offset of 0.0008. Test results indicate that the correlation channel can be calibrated with 0.09% error in gain.

  3. Remote sensing of soil moisture with microwave radiometers

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Gloersen, P.; Wilheit, T.; Geiger, F.

    1974-01-01

    Microwave radiometry has been used for the remote sensing of soil moisture in a series of aircraft flights over an agricultural test area in the vicinity of Phoenix, Arizona. The radiometers covered the wavelength range 0.8-21 cm. Ground truth in the form of gravimetric measurements of the soil moisture in the top 15 cm were obtained for 200 fields at this site. The results indicate that it is possible to monitor moisture variations with airborne radiometers. The emission is a function of the radiometer wavelength and the distribution of the moisture in the soil. At a wavelength of 1.55 cm there is little or no variation in the emission for soil moisture values below 10 or 15% moisture content by weight. Above this value, there is a linear decrease in the emission with a slope of approximately 3 K for each percentage point increase in soil moisture.

  4. Monitoring vegetation using Nimbus-7 scanning mutichannel microwave radiometer's data

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Tucker, C. J.; Golus, R. E.; Newcomb, W. W.

    1987-01-01

    Field studies and radiative transfer model calculations have shown that brightness temperature at high microwave frequencies is strongly affected by vegetation. The daytime observations for six consecutive years (1979 to 1984) over the Sahara, Senegalese Sahel, Burkina Fasso (Upper Volta), and U.S. Southern Great Plains at 37 GHz frequency of the Sanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7 satellite are analyzed, and a high correlation with the normalized difference vegetation index derived from the Advanced Very High Resolution Radiometer on board the NOAA-7 satellite is found. The SMMR data appear to provide a valuable new long-term global data set for monitoring vegetation. In particular, the differing responses of vegetation (for example, annual grasses versus woody plants) to drought and the stability of the desert/steppe boundary of northern Africa might be studied using the time series data.

  5. Inflatable Antenna Microwave Radiometer for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Kendall, Bruce M.; Schroeder, Lyle C.; Harrington, Richard F.

    1993-01-01

    Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current technology. Recently, new novel designs for lightweight reflector systems have been developed using deployable inflatable antenna structures which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30 meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type radiometer designs at 1.4 and 4.3 GHz to produce a 370 kilometer cross-track swath with a 10 kilometer resolution that could be packaged for launch with a Titan 2 class vehicle. This study includes design of the inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials.

  6. Electromagnetic design of a microwave radiometer antenna system

    NASA Technical Reports Server (NTRS)

    Agrawal, P. K.; Cockrell, C. R.

    1981-01-01

    A preliminary electromagnetic (EM) design of a radiometric antenna system was developed for the microwave radiometer spacecraft mission. The antenna system consists of a large spherical reflector and an array of feed horns along a concentric circular arc in front of the reflector. The reflector antenna was sized to simultaneously produce 200 contiguous 1 km diameter footprints with an overall beam efficiency of 90 percent, and the feed horns and feed horn array were designed to monitor the radiation from the footprints.

  7. Multifrequency Aperture-Synthesizing Microwave Radiometer System (MFASMR). Volume 1

    NASA Technical Reports Server (NTRS)

    Wiley, C. A.; Chang, M. U.

    1981-01-01

    Background material and a systems analysis of a multifrequency aperture - synthesizing microwave radiometer system is presented. It was found that the system does not exhibit high performance because much of the available thermal power is not used in the construction of the image and because the image that can be formed has a resolution of only ten lines. An analysis of image reconstruction is given. The system is compared with conventional aperture synthesis systems.

  8. Scanning mechanism study for multi-frequency microwave radiometers

    NASA Technical Reports Server (NTRS)

    Shin, I.

    1976-01-01

    Scanning mode for a microwave radiometer having large aperture antenna is determined from scientific needs by engineering tradeoffs. Two configurations of the scan drive mechanism with an integral momentum compensation are formulated for 1.OM and 1.4M diameter antennas. As the formulation is based on currently available components, it is possible to design and fabricate the formulated mechanism without new hardware development. A preliminary specification for major components of formulated drives is also included in the report.

  9. COBE Differential Microwave Radiometer (DMR) data processing techniques

    NASA Technical Reports Server (NTRS)

    Jackson, P. D.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Keegstra, P. B.; Kogut, A.; Lineweaver, C.

    1992-01-01

    The purpose of the Differential Microwave Radiometer (DMR) experiment on the Cosmic Background Explorer (COBE) satellite is to make whole-sky maps, at frequencies of 31.5, 53, and 90 GHz, of any departures of the Cosmic Microwave Background (CMB) from its mean value of 2.735 K. An elaborate software system is necessary to calibrate and invert the differential measurements, so as to make sky maps free from large scale systematic errors to levels less than a millionth of the CMB.

  10. COBE DMR results and implications. [Differential Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Smoot, George F.

    1992-01-01

    This lecture presents early results obtained from the first six months of measurements of the Cosmic Microwave Background (CMB) by Differential Microwave Radiometers (DMR) aboard COBE and discusses significant cosmological implications. The DMR maps show the dipole anisotropy and some galactic emission but otherwise a spatially smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. Maps of galactic and local emission such as those produced by the FIRAS and DIRBE instruments will be needed to identify foregrounds from extragalactic emission and thus to interpret the results in terms of events in the early universe. The current DMR results are significant for Cosmology.

  11. Electrically scanning microwave radiometers. [for satellite-borne remote sensing

    NASA Technical Reports Server (NTRS)

    Mix, R. F.

    1974-01-01

    The electrically scanning microwave radiometer (ESMR) developed for and currently used onboard the Nimbus 5 meteorological satellite is described, along with the ESMR developed for the Nimbus F satellite. They serve for synoptic mapping of microwave emissions from the earth's surface, the instrument on Nimbus 5 measuring these emissions at a wavelength of 1.55 cm (19.35 GHz) and the instrument on Nimbus F, at a wavelength of 0.81 cm (37 GHz). Radiative transfer characteristics measured at these wavelengths are sufficiently different from IR measurements to permit derivation and interpretation of unique meteorological, geomorphological, and oceanographic data.

  12. MMIC Receiver For Water-Vapor Radiometer

    NASA Technical Reports Server (NTRS)

    Sukamto, Lin M.; Cooley, Thomas W.; Janssen, Michael A.; Parks, Gary S.

    1993-01-01

    MMIC receiver puts out signal, frequency of which proportioned to brightness temperature of sky at input frequency of 31 GHz. Miniaturization enhances thermal stability and stability of calibration of water-vapor radiometer. Potential for mass production at relatively low cost. Facilitating widespread use of MMIC water vapor radiometers in meteorology and aviation, deployed at several global sites to improve capability of general circulation models and at airports to monitor icing conditions by measuring supercooled liquid water in clouds.

  13. Aperture synthesis for microwave radiometers in space

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Good, J. C.

    1983-01-01

    A technique is described for obtaining passive microwave measurements from space with high spatial resolution for remote sensing applications. The technique involves measuring the product of the signal from pairs of antennas at many different antenna spacings, thereby mapping the correlation function of antenna voltage. The intensity of radiation at the source can be obtained from the Fourier transform of this correlation function. Theory is presented to show how the technique can be applied to large extended sources such as the Earth when observed from space. Details are presented for a system with uniformly spaced measurements.

  14. Use of a cloud-sensing radar and a microwave radiometer as a stratus cloud profiler

    SciTech Connect

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.

    1994-12-31

    Remote sensors such as radar offer an alternate approach to the study of could and drizzle properties. Combining stratus cloud measurements from a K{sub {alpha}}-band radar and microwave radiometer can give profiles of liquid water and droplet distribution. In addition, in drizzle, the radar measurements can be used to estimate drizzle parameters such as number concentration, liquid water, and droplet distribution.

  15. A concept for global crop forecasting. [using microwave radiometer satellites

    NASA Technical Reports Server (NTRS)

    Lovelace, U. M.; Wright, R. L.

    1983-01-01

    The mission, instrumentation, and design concepts for microwave radiometer satellites for continuous crop condition forecasting and monitoring on a global basis are described. Soil moisture affects both crop growth and the dielectric properties of the soil, and can be quantified by analysis of reflected radiance passively received by orbiting spacecraft. A dedicated satellite reading a swath 200 km across, with 1 km and 1 K temperature resolution, could track the time-varying changes of solid moisture, sea ice, and water surface temperature. Launched by the Shuttle into an interim orbit, a boost would place the satellite in a 400 or 700 km orbit. Resolution requirements indicate a 45-725 m diam antenna, with 70 dB gain, operating at frequencies of 1.08, 2.03, and 4.95 GHz to ensure atmospheric transparency. Alternative structural concepts include either double-layer tetrahedral or single-layer geodesic trusses as the basic structural members. An analysis of the electrostatic positioning of the parabolic antenna membrane is outlined.

  16. Design and Development of the SMAP Microwave Radiometer Electronics

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  17. The Use of Rotating Shadowband Radiometers and Microwave Radiometers to Obtain Cloud Properties in Arctic Environments

    SciTech Connect

    Barnard, James C. ); Liljegren, James C.; Min, Qilong; Doran, J Christopher )

    2001-01-01

    In this paper we discuss the use of rotating shadowband radiometers and microwave radiometers to find shortwave cloud optical depth and cloud effective radius at two Arctic sites. These sites are the SHEBA ice camp site (a field study undertaken in 1997 and 1998) and the ARM Barrow (AK) site. Special measures are necessary to process the data from the SHEBA site to account for the harsh environment in which the instruments reside. The analysis shows that, over the summer of 1998, the median cloud optical depth at the SHEBA site is greater than the median cloud optical depth at the Barrow site. The cloud droplet effective radius is less at the SHEBA site than the Barrow site.

  18. NOAA Operational Ocean Products from AMSR-2 Microwave Radiometer

    NASA Astrophysics Data System (ADS)

    Jelenak, Zorana; Chang, Paul; Alsweiss, Suleiman; Park, Jun; Meyers, Patrick

    2014-05-01

    The Japanese Aerospace Exploration Agency (JAXA) Global Change Observation Mission (GCOM) consists of two satellite series, Water (GCOM-W) and Climate (GCOM-C). The first satellite of the GCOM program, GCOM-W1, was launched on May 18, 2012 carrying the follow-on to the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), AMSR-2. NOAA's GCOM-W1 product development and validation project will provide NOAA's users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA's Joint Polar Satellite System (JPSS) Level 1 Requirements Document Supplement, include: NOAA AMSR-2 Product Requirements: Day 1 Product Capability • Microwave Brightness Temperature (MBT) • Total Precipitable Water (TPW) • Cloud Liquid Water (CLW) • Precipitation Type/Rate (PT/R) • Sea Surface Temperature (SST) • Sea Surface Wind Speed (SSW) Day 2 Product Capability • Soil Moisture (SM) • Sea Ice Characterization (SIC) • Snow Cover/Depth (SC/D) • Snow Water Equivalent (SWE) • Surface Type (ST) GCOM-W1 data is being captured at the KSAT Svalbard Ground Station and assembled into APID packets. Using the JPSS (NPP) infrastructure, the GCOM raw data (APID packets) are routed to the NOAA Interface Data Processing System (IDPS), in near-real time. Once received at the IDPS, the APID packets will be reformatted into Raw Data Records (RDRs) and sent to the NPP Data Exploitation (NDE) system for distribution to the Environmental Satellite Date Processing System where further processing to brightness temperatures (Level 1)/sensor data records (SDRs) and geophysical products (Level 2)/Environmental Data Records (EDRs) will be performed. The RDRs are processed to SDRs utilizing software provided by JAXA. The goal of the product processing system is to provide validated operational L2 products from the AMSR-2 instrument that address the GCOM-W1 requirements in the JPSS L1RD Supplemental for distribution to operational users

  19. Data processing for the DMSP microwave radiometer system

    NASA Technical Reports Server (NTRS)

    Rigone, J. L.; Stogryn, A. P.

    1977-01-01

    A software program was developed and tested to process microwave radiometry data to be acquired by the microwave sensor (SSM/T) on the Defense Meteorological Satellite Program spacecraft. The SSM/T 7-channel microwave radiometer and systems data will be data-linked to Air Force Global Weather Central (AFGWC) where they will be merged with ephemeris data prior to product processing for use in the AFGWC upper air data base (UADB). The overall system utilizes an integrated design to provide atmospheric temperature soundings for global applications. The fully automated processing at AFGWC was accomplished by four related computer processor programs to produce compatible UADB soundings, evaluate system performance, and update the a priori developed inversion matrices. Tests with simulated data produced results significantly better than climatology.

  20. The Water Vapour Radiometer at Effelsberg

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Teuber, U.; Keller, R.

    We have installed a scanning 18 GHz to 26 GHz water vapour radiometer on the focus cabin of the Effelsberg 100 m telescope for tropospheric phase, delay and opacity correction during high-frequency VLBI observations. It is based on the design by Tahmoush & Rogers (2000) but with noise injection for calibration, weather-proof housing, and temperature stabilization. The radiometer is delivering data into an archive since July 2003, from which they are available for download. The data will be delivered automatically to PIs of EVN experiments in a calibration table attached by the EVN calibration pipeline. This paper describes the radiometer and its performance.

  1. Satellite Merged Microwave Radiometer Datasets for Climate Studies

    NASA Astrophysics Data System (ADS)

    Smith, D. K.; Mears, C. A.; Hilburn, K. A.; Ricciardulli, L.

    2013-12-01

    With more than two decades of continuous accurate monitoring over the global oceans, microwave satellite observations provide a very valuable data record for climate research and climate models validation. Observations of columnar water vapor, rain rates, cloud liquid water, and surface winds from microwave radiometers are retrieved twice daily since 1987 from a number of sensors: SSM/I F08 through F15, SSMIS F16 and F17, AMSR-E, TMI and WindSat. Sea surface temperature measurements through clouds are available since 1998. These datasets have been carefully intercalibrated at the brightness temperature level. The recently released V7 ocean products have been produced with a consistent methodology common to all sensors. Given the enormous amount of data, using these observations for climate research and model evaluation is time-consuming and proper quality control is non-trivial. At Remote Sensing Systems we are focusing on creating merged monthly gridded data records suitable for climate research for all these ocean products. The methodology to construct these merged datasets has been carefully developed after exploring different methods of combining the data from different sensors. Important aspects of the methodology include: selection of input data, requirement of minimal data values per grid cell, use of extended area rain flagging, use of extended area ice flagging, averaging method applied, and application of derived merging parameters. The resulting merged datasets are monthly timeseries of global gridded data over the ocean, with a 1-deg resolution. The timeseries starts in January 1988, and they are stored in a single NetCDF file which is updated every month. Included in the file are: monthly average timeseries, monthly climatology, monthly anomaly timeseries, trend map, and time-latitude array. Water vapor is the first of these merged datasets, and has been released in early 2013. Merged ocean surface winds and precipitation rates are currently under

  2. Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)

    NASA Technical Reports Server (NTRS)

    Dillon-Townes, L. A.; Averill, R. D.

    1984-01-01

    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.

  3. Development of the Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat for all-weather atmospheric sounding

    NASA Astrophysics Data System (ADS)

    Cahoy, K.; Blackwell, W. J.; Marinan, A.; Bishop, R. L.; Leslie, V. V.; Shields, M.; Marlow, W.; Kennedy, A.

    2015-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and GPS radio occultation (GPSRO) experiment. The microwave radiometer takes measurements of allweather temperature (V-band, 52-58 GHz), water vapor, and cloud ice (G-band, 175-191 & 207 GHz) to provide key contributions toward improved weather forecasting. The GPSRO experiment, called the Compact TEC (Total Electron Count)/Atmosphere GPS Sensor (CTAGS) measures profiles of temperature and pressure in the upper neutral atmosphere and electron density in the ionosphere. The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, and (2) new GPS receiver and patch antenna array technology for both neutral atmosphere and ionospheric GPS radio occultation retrieval on a nanosatellite. In addition, MiRaTA will test (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements.

  4. A One-Dimensional Synthetic-Aperture Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Doiron, Terence; Piepmeier, Jeffrey

    2010-01-01

    A proposed one-dimensional synthetic- aperture microwave radiometer could serve as an alternative to either the two-dimensional synthetic-aperture radiometer described in the immediately preceding article or to a prior one-dimensional one, denoted the Electrically Scanned Thinned Array Radiometer (ESTAR), mentioned in that article. The proposed radiometer would operate in a pushbroom imaging mode, utilizing (1) interferometric cross-track scanning to obtain cross-track resolution and (2) the focusing property of a reflector for along-track resolution. The most novel aspect of the proposed system would be the antenna (see figure), which would include a cylindrical reflector of offset parabolic cross section. The reflector could be made of a lightweight, flexible material amenable to stowage and deployment. Other than a stowage/deployment mechanism, the antenna would not include moving parts, and cross-track scanning would not entail mechanical rotation of the antenna. During operation, the focal line, parallel to the cylindrical axis, would be oriented in the cross-track direction, so that placement of receiving/radiating elements at the focal line would afford the desired along-track resolution. The elements would be microwave feed horns sparsely arrayed along the focal line. The feed horns would be oriented with their short and long cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis to obtain fan-shaped beams having their broad and narrow cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis. The interference among the beams would be controlled in the same manner as in the ESTAR to obtain along-cylindrical- axis (cross-track) resolution and cross-track scanning.

  5. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    NASA Astrophysics Data System (ADS)

    Kummerow, C. D.

    2012-12-01

    Satellite precipitation retrievals are fundamentally underconstrained requiring either implicit or explicit a-prior information to constrain the solutions. The radiometer algorithm being designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of an a-priori database of possible rain structures and a Bayesian retrieval scheme. The a-priori database has its heritage in the TRMM satellite which ushered in an era of active/passive microwave retrievals. Because the output from such retrievals is physically consistent with the rainfall seen by the radar and the brightness temperatures seen by the radiometer, they are ideally suited for the a-priori database. This approach will be repeated for the Global Precipitation Mission, now scheduled for launch in February 2014. Its core satellite will carry a dual frequency radar and state of the art microwave radiometer. This combination of sensors, and the accompanying multi-sensor algorithm will provide a basis for creating the a-priori database for the radiometer only retrievals that is applicable not only to the wider swath of the GPM Microwave Imager (GMI), but to all the constellation radiometers. This talk will present the pre-launch synthesis of various satellite systems to simulate the core satellite retrieval necessary to have a reasonably robust database in place for the launch of the GPM core satellite. The talk will then focus on the implementation of the algorithm itself. This algorithm has a number of advances over previous versions. Most importantly, is the absence of screening routines that previously identified pixels as being raining or non-raining. This was particularly important over land where the surface could easily be mistaken for ice scattering in raining clouds. By having much better controls over the land surface and land surface emissivities, along with robust a-priori databases, the new algorithm relies completely on the Tb signature to determine

  6. Microwave vegetation indices derived from satellite microwave radiometers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetation indices are valuable in many fields of geosciences. Conventional, visible-near infrared, indices are often limited by the effects of atmosphere, background soil conditions, and saturation at high levels of vegetation. In this study, the theoretical basis for a new type of passive microwav...

  7. Airborne Demonstration of Microwave and Wide-Band Millimeter-Wave Radiometers to Provide High-Resolution Wet-Tropospheric Path Delay Corrections for Coastal and Inland Water Altimetry

    NASA Astrophysics Data System (ADS)

    Reising, Steven; Kangaslahti, Pekka; Tanner, Alan; Padmanabhan, Sharmila; Montes, Oliver; Parashare, Chaitali; Bosch-Lluis, Xavier; Hadel, Victoria; Johnson, Thaddeus; Brown, Shannon; Khayatian, Behrouz; Dawson, Douglas; Gaier, Todd; Razavi, Behzad

    2014-05-01

    Current satellite ocean altimeters include nadir-viewing, co-located 18-34 GHz microwave radiometers to measure wet-tropospheric path delay. Due to the size of the surface instantaneous fields of view (IFOV) at these frequencies, the accuracy of wet path retrievals is substantially degraded near coastlines, and retrievals are not provided over land. Retrievals are flagged as not useful within approximately 40 km of the world's coastlines. A viable approach to improve their capability is to add wide-band high-frequency millimeter-wave window channels in the 90-180 GHz band, thereby achieving finer spatial resolution for a limited antenna size. In this context, the upcoming NASA/CNES/CSA Surface Water and Ocean Topography (SWOT) mission is in formulation and planned for launch in late 2020. The primary objectives of SWOT are to characterize ocean mesoscale and sub-mesoscale processes on 10-km and larger scales in the global oceans and provide measurements of the global water storage in inland surface water bodies and the flow rate of rivers. Therefore, an important new science objective of SWOT is to transition satellite altimetry from the open ocean into the coastal zone and over inland water. The addition of 90-180 GHz millimeter-wave window-channel radiometers to current Jason-class 18-34 GHz radiometers is expected to improve retrievals of wet-tropospheric delay in coastal areas and to enhance the potential for over-land retrievals. In 2012 the Ocean Surface Topography Science Team Meeting recommended to add high-frequency millimeter-wave radiometers to the Jason Continuity of Service (CS) mission. To reduce the risks of wet-tropospheric path delay measurement over coastal areas and inland water bodies, we have designed, developed and fabricated a new airborne radiometer, combining three high-frequency millimeter-wave window channels at 90, 130 and 168 GHz, along with Jason-series microwave channels at 18.7, 23.8 and 34.0 GHz, and validation channels sounding

  8. Detection of eruption-related microwave signals using a satellite-borne microwave radiometer AMSR2

    NASA Astrophysics Data System (ADS)

    Maeda, T.

    2014-12-01

    Japan Aerospace Exploration Agency (JAXA) launched GCOM-W1 (Global Change Observation Mission 1st - Water) satellite on 17 May, 2012 (UT). GCOM-W1 satellite carries the Advanced Microwave Scanning Radiometer 2 (AMSR2). AMSR2 is a multifrequency microwave radiometer, and has the single rotating antenna dish shared by multifrequency feedhorns from 6.9 GHz to 89 GHz. Due to this hardware design, a footprint size of each frequency significantly differs. Therefore, even if the multifrequency data obtained as brightness temperatures originate from the same geolocation, they represent responses of quite a different area one another. Accordingly, not considering the difference of footprint sizes in extracting significant information from the multifrequency brightness temperature will be one of implicit causes to deteriorate its quality. In order to solve this problem, it is necessary to correct multifrequency brightness temperatures observed in native footprints as they are observed in the same footprint. This concept is known as the Backus-Gilbert method. In this method, weighting coefficients for small antenna patterns of high frequency densely distributing in a large antenna pattern of low frequency are first calculated. Then, the large antenna pattern is emulated by weighted average of the small antenna patterns. It is important to find well-modified weighting coefficients in this method. In AMSR2, the brightness temperature dataset corrected by the Backus-Gilbert method is officially defined as level 1R (L1R) product. We have investigated its implementation, especially the criterion to calculate `well-modified' weighting coefficients. The new version of L1R product implemented based on this investigation will be released by the next end of March. Generally, L1R product produces a more effect in analysis of the land surface than the sea surface because microwave signals emitted from the land surface distribute more nonuniformly due to land cover. Therefore, we

  9. The advanced microwave precipitation radiometer: A new aircraft radiometer for passive precipitation remote sensing

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Spencer, Roy W.; James, Mark W.

    1991-01-01

    Past studies of passive microwave measurements of precipitating systems have yielded broad empirical relationships between hydrometeors and microwave transmission. In general, these relationships fall into two categories of passive microwave precipitation retrievals rely upon the observed effect of liquid precipitation to increase the brightness temperature of a radiometrically cold background such as an ocean surface. A scattering-based method is based upon the effect that frozen hydrometeors tend to decrease the brightness temperature of a radiometrically warm background such as land. One step toward developing quantitative brightness temperature-rain rate relationships is the recent construction of a new aircraft instrument sponsored by National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC). This instrument is the Advanced Microwave Precipitation Radiometer (AMPR) designed and built by Georgia Tech Research Institute to fly aboard high altitude research aircraft such as the NASA ER-2. The AMPR and its accompanying data acquisition system are mounted in the Q-bay compartment of the NASA ER-2.

  10. Low-frequency microwave radiometer for N-ROSS

    NASA Technical Reports Server (NTRS)

    Hollinger, J. P.; Lo, R. C.

    1985-01-01

    The all weather, global determination of sea surface temperature (SST) has been identified as a requirement needed to support naval operations. The target SST accuracy is + or - 1.0 K with a surface resolution of 10 km. Investigations of the phenomenology and technology of remote passive microwave sensing of the ocean environment over the past decade have demonstrated that this objective is presently attainable. Preliminary specification and trade off studies were conducted to define the frequency, polarization, scan geometry, antenna size, and other esstential parameters of the low frequency microwave radiometer (LFMR). It will be a dual polarized, dual frequency system at 5.2 and 10.4 GHz using a 4.9 meter deployable mesh surface antenna. It is to be flown on the Navy-Remote Ocean Sensing System (N-ROSS) satellite scheduled to be launched in late 1988.

  11. Mission definition for a large-aperture microwave radiometer spacecraft

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.

    1981-01-01

    An Earth-observation measurements mission is defined for a large-aperture microwave radiometer spacecraft. This mission is defined without regard to any particular spacecraft design concept. Space data application needs, the measurement selection rationale, and broad spacecraft design requirements and constraints are described. The effects of orbital parameters and image quality requirements on the spacecraft and mission performance are discussed. Over the land the primary measurand is soil moisture; over the coastal zones and the oceans important measurands are salinity, surface temperature, surface winds, oil spill dimensions and ice boundaries; and specific measurement requirements have been selected for each. Near-all-weather operation and good spatial resolution are assured by operating at low microwave frequencies using an extremely large aperture antenna in a low-Earth-orbit contiguous mapping mode.

  12. Millimeter-wave imaging radiometer data processing and development of water vapor retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1995-01-01

    This document describes the current status of Millimeter-wave Imaging Radiometer (MIR) data processing and the technical development of the first version of a water vapor retrieval algorithm. The algorithm is being used by NASA/GSFC Microwave Sensors Branch, Laboratory for Hydrospheric Processes. It is capable of a three dimensional mapping of moisture fields using microwave data from airborne sensor of MIR and spaceborne instrument of Special Sensor Microwave/T-2 (SSM/T-2).

  13. Advanced Passive Microwave Radiometer Technology for GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Im, Eastwood; Kummerow, Christian; Principe, Caleb; Ruf, Christoper; Wilheit, Thomas; Starr, David (Technical Monitor)

    2002-01-01

    An interferometer-type passive microwave radiometer based on MMIC receiver technology and a thinned array antenna design is being developed under the Instrument Incubator Program (TIP) on a project entitled the Lightweight Rainfall Radiometer (LRR). The prototype single channel aircraft instrument will be ready for first testing in 2nd quarter 2003, for deployment on the NASA DC-8 aircraft and in a ground configuration manner; this version measures at 10.7 GHz in a crosstrack imaging mode. The design for a two (2) frequency preliminary space flight model at 19 and 35 GHz (also in crosstrack imaging mode) has also been completed, in which the design features would enable it to fly in a bore-sighted configuration with a new dual-frequency space radar (DPR) under development at the Communications Research Laboratory (CRL) in Tokyo, Japan. The DPR will be flown as one of two primary instruments on the Global Precipitation Measurement (GPM) mission's core satellite in the 2007 time frame. The dual frequency space flight design of the ERR matches the APR frequencies and will be proposed as an ancillary instrument on the GPM core satellite to advance space-based precipitation measurement by enabling better microphysical characterization and coincident volume data gathering for exercising combined algorithm techniques which make use of both radar backscatter and radiometer attenuation information to constrain rainrate solutions within a physical algorithm context. This talk will discuss the design features, performance capabilities, applications plans, and conical/polarametric imaging possibilities for the LRR, as well as a brief summary of the project status and schedule.

  14. Satellite retrieval of hurricane wind speeds using the AMSR2 microwave radiometer

    NASA Astrophysics Data System (ADS)

    Yao, Panpan; Wan, Jianhua; Wang, Jin; Zhang, Jie

    2015-09-01

    The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite, launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm, the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature, wind speed, water vapor, and liquid cloud water content. However, rain alters the properties of atmospheric scattering and absorption, which contaminates the brightness temperatures measured by the microwave radiometer. Therefore, it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory, and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data, we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed, from which a channel combination of brightness temperature was established that is insensitive to rainfall, but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters, in conjunction with HRD wind field data, and adopting multiple linear regression and BP neural network methods, we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals, obtained using the multiple linear regression algorithm, were 3.1 m/s and 13%, respectively. However, the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better (2.1 m/s and 8%, respectively). Thus, the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.

  15. Calibrating ground-based microwave radiometers: Uncertainty and drifts

    NASA Astrophysics Data System (ADS)

    Küchler, N.; Turner, D. D.; Löhnert, U.; Crewell, S.

    2016-04-01

    The quality of microwave radiometer (MWR) calibrations, including both the absolute radiometric accuracy and the spectral consistency, determines the accuracy of geophysical retrievals. The Microwave Radiometer Calibration Experiment (MiRaCalE) was conducted to evaluate the performance of MWR calibration techniques, especially of the so-called Tipping Curve Calibrations (TCC) and Liquid Nitrogen Calibrations (LN2cal), by repeatedly calibrating a fourth-generation Humidity and Temperature Profiler (HATPRO-G4) that measures downwelling radiance between 20 GHz and 60 GHz. MiRaCalE revealed two major points to improve MWR calibrations: (i) the necessary repetition frequency for MWR calibration techniques to correct drifts, which ensures stable long-term measurements; and (ii) the spectral consistency of control measurements of a well known reference is useful to estimate calibration accuracy. Besides, we determined the accuracy of the HATPRO's liquid nitrogen-cooled blackbody's temperature. TCCs and LN2cals were found to agree within 0.5 K when observing the liquid nitrogen-cooled blackbody with a physical temperature of 77 K. This agreement of two different calibration techniques suggests that the brightness temperature of the LN2 cooled blackbody is accurate within at least 0.5 K, which is a significant reduction of the uncertainties that have been assumed to vary between 0.6 K and 1.5 K when calibrating the HATPRO-G4. The error propagation of both techniques was found to behave almost linearly, leading to maximum uncertainties of 0.7 K when observing a scene that is associated with a brightness temperature of 15 K.

  16. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    SciTech Connect

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.; Lenshow, D.H.; Mayer, S.D.

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  17. Ground registration of data from an airborne Multifrequency Microwave Radiometer (MfMR). [Colby, Kansas

    NASA Technical Reports Server (NTRS)

    Richter, J. C. (Principal Investigator)

    1981-01-01

    The agricultural soil moisture experiment was conducted near Colby, Kansas, in July and August 1978. A portion of the data collected was taken with a five band microwave radiometer. A method of locating the radiometer footprints with respect to a ground based coordinate system is documented. The procedure requires that the airplane's flight parameters along with aerial photography be acquired simultaneously with the radiometer data. The software which documented reads in data from the precision radiation thermometer (PRT Model 5) and attaches the scene temperature to the corresponding multifrequency microwave radiometer data. Listings of the programs used in the registration process are included.

  18. Retrieval of Atmospheric Temperature from Airborne Microwave Radiometer Observations

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Schreier, Franz; Kenntner, Mareike; Fix, Andreas; Trautmann, Thomas

    2015-06-01

    Atmospheric temperature is a key geophysical parameter associated with fields such as meteorology, climatology, or photochemistry. There exist several techniques to measure temperature profiles. In the case of microwave remote sensing, the vertical temperature profile can be estimated from thermal emission lines of molecular oxygen. The MTP (Microwave Temperature Profiler) instrument is an airborne radiometer developed at the Jet Propulsion Laboratory (JPL), United States. The instrument passively measures natural thermal emission from oxygen lines at 3 frequencies and at a selection of 10 viewing angles (from near zenith to near nadir). MTP has participated in hundreds of flights, including on DLR’s Falcon and HALO aircrafts. These flights have provided data of the vertical temperature distribution from the troposphere to the lower stratosphere with a good temporal and spatial resolution. In this work, we present temperature retrievals based on the Tikhonov-type regularized nonlinear least squares fitting method. In particular, Jacobians (i.e. temperature derivatives) are evaluated by means of automatic differentiation. The retrieval performance from the MTP measurements is analyzed by using synthetic data. Besides, the vertical sensitivity of the temperature retrieval is studied by weighting functions characterizing the sensitivity of the transmission at different frequencies with respect to changes of altitude levels.

  19. Advanced Microwave Precipitation Radiometer (AMPR) for remote observation of precipitation

    NASA Technical Reports Server (NTRS)

    Galliano, J. A.; Platt, R. H.

    1990-01-01

    The design, development, and tests of the Advanced Microwave Precipitation Radiometer (AMPR) operating in the 10 to 85 GHz range specifically for precipitation retrieval and mesoscale storm system studies from a high altitude aircraft platform (i.e., ER-2) are described. The primary goals of AMPR are the exploitation of the scattering signal of precipitation at frequencies near 10, 19, 37, and 85 GHz together to unambiguously retrieve precipitation and storm structure and intensity information in support of proposed and planned space sensors in geostationary and low earth orbit, as well as storm-related field experiments. The development of AMPR will have an important impact on the interpretation of microwave radiances for rain retrievals over both land and ocean for the following reasons: (1) A scanning instrument, such as AMPR, will allow the unambiguous detection and analysis of features in two dimensional space, allowing an improved interpretation of signals in terms of cloud features, and microphysical and radiative processes; (2) AMPR will offer more accurate comparisons with ground-based radar data by feature matching since the navigation of the ER-2 platform can be expected to drift 3 to 4 km per hour of flight time; and (3) AMPR will allow underflights of the SSM/I satellite instrument with enough spatial coverage at the same frequencies to make meaningful comparisons of the data for precipitation studies.

  20. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  1. Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) PARM tape user's guide

    NASA Technical Reports Server (NTRS)

    Han, D.; Gloersen, P.; Kim, S. T.; Fu, C. C.; Cebula, R. P.; Macmillan, D.

    1992-01-01

    The Scanning Multichannel Microwave Radiometer (SMMR) instrument, onboard the Nimbus-7 spacecraft, collected data from Oct. 1978 until Jun. 1986. The data were processed to physical parameter level products. Geophysical parameters retrieved include the following: sea-surface temperatures, sea-surface windspeed, total column water vapor, and sea-ice parameters. These products are stored on PARM-LO, PARM-SS, and PARM-30 tapes. The geophysical parameter retrieval algorithms and the quality of these products are described for the period between Nov. 1978 and Oct 1985. Additionally, data formats and data availability are included.

  2. Microwave radiometer and scatterometer design for the aquarius sea surface Salinity Mission

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Yueh, Simon H.; Pellerano, Fernando

    2004-01-01

    The measurement of sea surface salinity with L-band microwave radiometers is a very challenging task. Since the L-band brightness temperature variations associated with salinity changes are small, it is necessary to have a very sensitive and stable radiometer. In addition, the corrections for the ocean surface roughness require real time scatterometer measurements. The designs of the Aquarius radiometer and scatterometer are described in this paper.

  3. Estimation of the propagation delay through the troposphere from microwave radiometer data

    NASA Technical Reports Server (NTRS)

    Moran, J. M.; Rosen, B. R.

    1981-01-01

    Microwave propagation delay through the troposphere is studied as a means of estimating the adverse effect of atmospheric water vapor on the accuracy of measurements made with very long baseline interferometry. Vertical profiles of temperature and water vapor density were obtained from a total of 240 radiosonde launches taken simultaneously at three New England locations in 1974; all studies were made at the 19 and 22.2 GHz frequency operating range of the radiometers. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data, and with the brightness temperatures, it could be estimated to an accuracy of 0.3 cm. Two dual-frequency radiometers were also used to determine the accuracy of prediction of the path length from real radiometry data. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and for the radiometer brightness temperatures the rms error was 1.5 cm.

  4. Calibration of ground-based microwave radiometers - Accuracy assessment and recommendations for network users

    NASA Astrophysics Data System (ADS)

    Pospichal, Bernhard; Küchler, Nils; Löhnert, Ulrich; Crewell, Susanne; Czekala, Harald; Güldner, Jürgen

    2016-04-01

    Ground-based microwave radiometers (MWR) are becoming widely used in atmospheric remote sensing and start to be routinely operated by national weather services and other institutions. However, common standards for calibration of these radiometers and a detailed knowledge about the error characteristics is needed, in order to assimilate the data into models. Intercomparisons of calibrations by different MWRs have rarely been done. Therefore, two calibration experiments in Lindenberg (2014) and Meckenheim (2015) were performed in the frame of TOPROF (Cost action ES1303) in order to assess uncertainties and differences between various instruments. In addition, a series of experiments were taken in Oklahoma in autumn 2014. The focus lay on the performance of the two main instrument types, which are currently used operationally. These are the MP-Profiler series by Radiometrics Corporation as well as the HATPRO series by Radiometer Physics GmbH (RPG). Both instrument types are operating in two frequency bands, one along the 22 GHz water vapour line, the other one at the lower wing of the 60 GHz oxygen absorption complex. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR were developed and recommendations for radiometer users were compiled. We focus here mainly on data types, integration times and optimal settings for calibration intervals, both for absolute (liquid nitrogen, tipping curve) as well as relative (hot load, noise diode) calibrations. Besides the recommendations for ground-based MWR operators, we will present methods to determine the accuracy of the calibration as well as means for automatic data quality control. In addition, some results from the intercomparison of different radiometers will be discussed.

  5. Blending sequential scanning multichannel microwave radiometer and buoy data into a sea ice model

    NASA Astrophysics Data System (ADS)

    Thomas, D. R.; Rothrock, D. A.

    1989-08-01

    A method is presented for determining the concentrations of open water and of several ice types using multichannel satellite passive microwave data. The method uses the Kalman filter and provides the "best fit" to a time series of data. A crucial element of the procedure is a physical model of how the concentrations of ice types change with time in response to freezing, melting, aging of one ice type to another, and creation of open water by divergence of the ice cover. A measurement model relates the state of the ice cover to the multivariate microwave data. The procedure offers three distinct advantages over algorithms that interpret separately data from each instant in time: it provides a framework for incorporating additional data into the diagnosis of ice concentrations, it takes into account the known uncertainty in the microwave observations and the pure type signatures, and it allows the resolution of ice types with ambiguous signatures. Two examples are presented which make use of scanning multichannel microwave radiometer data and surface temperature and ice velocity data from drifting buoys to estimate the concentrations of open water, first-year, second-year, and older multiyear ice for a Lagrangian region of ice. Two other examples include melt ponds in place of second-year ice. Some of the parameters in the physical model (melt rates) and in the measurement model (signature of second-year ice or of frozen melt ponds) are unknown. Reasonable, but arbitrary, values of the unknown parameters are used in the examples.

  6. Synergetic use of microwave radiometer and multifilter rotating shadowband radiometer observations for the validation of satellite cloud retrievals

    NASA Astrophysics Data System (ADS)

    Deneke, H. M.; Meirink, J. M.; Greuell, W.; Wolters, E.; Roebeling, R.; Simmer, C.

    2009-12-01

    Bi-spectral algorithms to estimate cloud properties from reflected solar radiation at an absorbing and a non-absorbing wavelength are routinely applied to observations of meteorological satellite imagers. The underlying inversion process is highly underconstrained, and is based on the simplified view of 1D radiative transfer theory. It is therefore difficult to quantify the overall accuracy of these retrievals, and validation with independent datasets is crucial. The combination of measurements from a multifilter rotating shadowband radiometer and a passive microwave radiometer allows us to obtain a simultaneous and independent estimate of cloud optical thickness, liquid water path and effective droplet size from surface observations. In this study, a comparison of the surface-derived time series of these cloud properties for two European sites is carried out with collocated and synchronised retrievals from the geostationary METEOSAT SEVIRI satellite imager. This is done in order to test the suitability of this approach for routine quality monitoring of the cloud property products generated by the Satellite Application Facility on Climate Monitoring (CM-SAF). A discussion of the uncertainties affecting the surface and satellite algorithm is given. Particular attention is paid to the spatial and temporal matching of measurements. Also, the effects of cloud variability and the different resolution scales of the instruments are studied. This allows us to assess the level of agreement of the individual time series under specific conditions. It is shown that validation statistics are highly sensitive to quality screening and case selection, as well as the spatial and temporal averaging scales used for the comparison. This finding highlights the necessity to quantify the effects of sensor resolution and variability on cloud datasets, and to develop standard procedures to be able to compare validation results for different retrieval algorithms and satellite platforms.

  7. The estimation of the propagation delay through the troposphere from microwave radiometer data. [very long base interferometry

    NASA Technical Reports Server (NTRS)

    Moran, J. M.; Rosen, B. R.

    1980-01-01

    The uncertainity in propagation delay estimates is due primarily to tropospheric water, the total amount and vertical distribution of which is variable. Because water vapor both delays and attenuates microwave signals, the propagation delay, or wet path length, can be estimated from the microwave brightness temperature near the 22.235 GHz transition of water vapor. The data from a total of 240 radiosonde launches taken simultaneously were analyzed. Estimates of brightness temperature at 19 and 22 GHz and wet path length were made from these data. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data. Using the brightness temperatures, the wet path could be estimated to an accuracy of 0.3 cm. Two dual frequency radiometers were refurbished in order to test these techniques. These radiometers were capable of measuring the difference in the brightness temperature at 30 deg elevation angle and at the zenith to an accuracy of about 1 K. In August 1975, 45 radiosondes were launched over an 11 day period. Brightness temperature measurements were made simultaneously at 19 and 22 GHz with the radiometers. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and from the radiometer brightness temperatures, 1.5 cm.

  8. Ultra Stable Microwave Radiometers for Future Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Tanner, Alan B.; Pellerano, Fernando A.; Horgan, Kevin A.

    2005-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius will measure global sea surface salinity with 100-km spatial resolution every 8 days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than 0.1 K over 8 days. This three-year research program on ultra stable radiometers has addressed the radiometer requirements and configuration necessary to achieve this objective for Aquarius and future ocean salinity missions. The system configuration and component performance have been evaluated with radiometer testbeds at both JPL and GSFC. The research has addressed several areas including component characterization as a function of temperature, a procedure for the measurement and correction for radiometer system non-linearity, noise diode calibration versus temperature, low noise amplifier performance over voltage, and temperature control requirements to achieve the required stability. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability. This report also presents the results of the radiometer test program, a detailed radiometer noise model, and details of the operational switching sequence optimization that can be used to achieve the low noise and stability requirements. Many of the results of this research have been incorporated into the Aquarius radiometer design and will allow this instrument to achieve its goals.

  9. Low Power Silicon Germanium Electronics for Microwave Radiometers

    NASA Technical Reports Server (NTRS)

    Doiron, Terence A.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    Space-based radiometric observations of key hydrological parameters (e.g., soil moisture) at the spatial and temporal scales required in the post-2002 era face significant technological challenges. These measurements are based on relatively low frequency thermal microwave emission (at 1.4 GHz for soil moisture and salinity, 10 GHz and up for precipitation, and 19 and 37 GHz for snow). The long wavelengths at these frequencies coupled with the high spatial and radiometric resolutions required by the various global hydrology communities necessitate the use of very large apertures (e.g., greater than 20 m at 1.4 GHz) and highly integrated stable RF electronics on orbit. Radio-interferometric techniques such as Synthetic Thinned Array Radiometry (STAR), using silicon germanium (SiGe) low power radio frequency integrated circuits (RFIC), is one of the most promising technologies to enable very large non-rotating apertures in space. STAR instruments are composed of arrays of small antenna/receiving elements that are arranged so that the collecting area is smaller than an equivalent real aperture system, allowing very high packing densities for launch. A 20 meter aperture at L-band, for example, will require greater than 1000 of these receiving elements. SiGe RFIC's reduce power consumption enough to make an array like this possible in the power-limited environment of space flight. An overview of the state-of-the-art will be given, and current work in the area of SiGe radiometer development for soil moisture remote sensing will be discussed.

  10. High-resolution imaging of rain systems with the advanced microwave precipitation radiometer

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Hood, Robbie E.; Lafontaine, Frank J.; Smith, Eric A.; Platt, Robert; Galliano, Joe; Griffin, Vanessa L.; Lobl, Elena

    1994-01-01

    An advanced Microwave Precipitation Radiometer (AMPR) has been developed and flown in the NASA ER-2-high-altitude aircraft for imaging various atmospheric and surface processes, primarily the internal structure of rain clouds. The AMPR is a scanning four-frequency total power microwave radiometer that is externally calibrated with high-emissivity warm and cold loads. Separate antenna systems allow the sampling of the 10.7- and 19.35-GHz channels at the same spatial resolution, while the 37.1- and 85.5-GHz channels utilize the same multifrequency feedhorn as the 19.35-GHz channel. Spatial resolutions from an aircraft altitude of 20-km range from 0.6 km at 85.5 GHz to 2.8 km at 19.35 and 10.7 GHz. All channels are sampled every 0.6 km in both along-track and cross-track directions, leading to a contiguous sampling pattern of the 85.5-GHz 3-dB beamwidth footprints, 2.3X oversampling of the 37.1-GHz data, and 4.4X oversampling of the 19.35- and 10.7-GHz data. Radiometer temperature sensitivities range from 0.2 to 0.5 C. Details of the system are described, including two different calibration systems and their effect on the data collected. Examples of oceanic rain systems are presented from Florida and the tropical west Pacific that illustrate the wide variety of cloud water, rainwater, and precipitation-size ice combinations that are observable from aircraft altitudes.

  11. Baseline Observations of Hemispheric Sea Ice with the Nimbus 7 Scanning Multichannel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Gloersen, Per

    1998-01-01

    The Scanning Multichannel Microwave Radiometer (SMMR) on board the NASA Nimbus 7 satellite was designed to obtain data for sea surface temperatures (SSTs), near-surface wind speeds, sea ice coverage and type, rainfall rates over the oceans, cloud water content, snow water equivalent, and soil moisture. In this paper, I shall emphasize the sea ice observations and mention briefly some important SST observations. A prime factor contributing to the importance of SMMR sea ice observations lies in their successful integration into a long-term time series, presently being extended by observations from the series of Special Sensor Microwave/Imager (SSMI) on board the DOD/DMSP F8, Fl1, and F12 satellites. This currently constitutes a 19-year data set. Almost half of this was provided by the SMMR. Unfortunately, the 4-year data set produced earlier by the single-channel Electrically Scanned Microwave Radiometer (ESMR) was not successfully integrated into the SMMR/SSMI data set. This resulted primarily from the lack of an overlap period to provide intersensor adjustment, but also because of the large difference between the algorithms to produce ice concentrations and large temporal gaps in the ESMR data. The lack of overlap between the SeaSat and Nimbus 7 SMMR data sets was an important consideration for also excluding the SeatSat one, but the spatial gaps especially in the Southern Hemisphere daily SeaSat observations was another. The sea ice observations will continue into the future by means of the Advanced Microwave Scanning Radiometer (AMSR) on board the ADEOS II and EOS satellites due to be launched in mid- and late-2000, respectively. Analysis of the sea ice data has been carried out by a number of different techniques. Long-term trends have been examined by means of ordinary least squares and band-limited regression. Oscillations in the data have been examined by band-limited Fourier analysis. Here, I shall present results from a novel combination of Principal

  12. On the Long-Term Stability of Microwave Radiometers Using Noise Diodes for Calibration

    NASA Technical Reports Server (NTRS)

    Brown, Shannon T.; Desai, Shailen; Lu, Wenwen; Tanner, Alan B.

    2007-01-01

    Results are presented from the long-term monitoring and calibration of the National Aeronautics and Space Administration Jason Microwave Radiometer (JMR) on the Jason-1 ocean altimetry satellite and the ground-based Advanced Water Vapor Radiometers (AWVRs) developed for the Cassini Gravity Wave Experiment. Both radiometers retrieve the wet tropospheric path delay (PD) of the atmosphere and use internal noise diodes (NDs) for gain calibration. The JMR is the first radiometer to be flown in space that uses NDs for calibration. External calibration techniques are used to derive a time series of ND brightness for both instruments that is greater than four years. For the JMR, an optimal estimator is used to find the set of calibration coefficients that minimize the root-mean-square difference between the JMR brightness temperatures and the on-Earth hot and cold references. For the AWVR, continuous tip curves are used to derive the ND brightness. For the JMR and AWVR, both of which contain three redundant NDs per channel, it was observed that some NDs were very stable, whereas others experienced jumps and drifts in their effective brightness. Over the four-year time period, the ND stability ranged from 0.2% to 3% among the diodes for both instruments. The presented recalibration methodology demonstrates that long-term calibration stability can be achieved with frequent recalibration of the diodes using external calibration techniques. The JMR PD drift compared to ground truth over the four years since the launch was reduced from 3.9 to - 0.01 mm/year with the recalibrated ND time series. The JMR brightness temperature calibration stability is estimated to be 0.25 K over ten days.

  13. Microwave remote sensing of soil water content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1975-01-01

    Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.

  14. Reliability analysis in aperture synthesis interferometric radiometers: Application to L band Microwave Imaging Radiometer with Aperture Synthesis instrument

    NASA Astrophysics Data System (ADS)

    Vall-Llossera, M.; Duffo, N.; Camps, A.; Corbella, I.; Torres, F.; Bará, J.

    2001-01-01

    The Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) instrument will be the first radiometer using aperture synthesis techniques for Earth observation. It will be boarded in the Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Opportunity Mission of the European Space Agency and launched in 2005. The configuration under study in the MIRAS Demonstrator Pilot Project is a Y-shaped array with 27 dual-polarization L band antennas in each arm, spaced 0.89 wavelengths. In addition to these 81 antennas there are 3 additional ones between the arms for phase restoration and redundancy purposes and an extra one at the center of the Y array that is connected to a noise injection radiometer. The digitized in-phase and quadrature outputs of each receiver are multiplexed in groups of four and optically transmitted to the hub where the complex cross correlations are computed. In this configuration there are 85 antennas-receiving channels and 21 multiplexers. The objectives of this paper are twofold: (1) the study of the performance degradation of Y-shaped aperture synthesis interferometric radiometers in case of single or multiple subsystem failures and (2) a reliability analysis at subsystem level.

  15. Short term prediction of dynamic hydra precipitation activity using a microwave radiometer over Eastern Himalaya, India

    NASA Astrophysics Data System (ADS)

    Singh, S.

    2015-12-01

    First ever study of the feasibility of ground based radiometric study to predict a very short term based rain precipitation study has been conducted in eastern Himalaya, Darjeeling (27.01°N, 88.15°E, 2200 masl). Short term prediction or nowcasting relates to forecasting convective precipitation for time periods less than a few hours to avoid its effect on agriculture, aviation and lifestyle. Theoretical models involving radiometric predictions are not well understood and lack in temporal and spatial resolution. In this study specific utilization of a microwave Radiometer (Radiometrics Corporation, USA) for online monitoring of precipitable rainfall activity has been observed repeatability of data has been established. Previous few studies have shown the increase of water vapour and corresponding Brightness Temperature, but in mountain climatic conditions over Darjeeling, due to presence of fog 90 % of the year, water vapour monitoring related predictions can lead to false alarms. The measurement of blackbody emission noise in the bands of 23.8 GHz and 31.4 GHz, using a quadratic regression retrieval algorithm is converted to atmospheric parameters like integrated water vapour and liquid water content. It has been found in our study that the liquid water shows significant activity prior to precipitation events even for mild and stratiform rainfall. The alarm can be generated well 20 mins before the commencement of actual rain events even in the upper atmosphere of 6 Kms, measured by a rain radar also operating in 24 Ghz microwave band. Although few rain events were found and reported which do not respond in the microwave liquid water channel. Efforts to identify such rain events and their possible explanation is going on and shall be reported in near future. Such studies are important to predict flash flooding in the Himalayas. Darjeeling owing to its geographical conditions experiences mild to very heavy rain. Such studies help improve aspects of Himalayas as

  16. Tropical cyclone rainfall as measured by the Nimbus 5 electrically scanning microwave radiometer

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Wilheit, T. T.; Rodgers, E. B.; Fett, R. W.

    1974-01-01

    A selected group of 1973 North Pacific Ocean tropical cyclones was studied by using data from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR), the Temperature-Humidity Infrared Radiometer (THIR), NOAA-2 and USAF DMSP imageries. From the unique combination of infrared, visible, and microwave data, it was possible during various stages of storm development to differentiate between dense cirrus outflow and rain areas, to identify centers of circulation and areas of low-level moisture, and by the use of a theoretical model to estimate semi-quantitatively areas of light, moderate, and heavy rainfall rates.

  17. Microwave Radiometers from 0.6 to 22 GHz for Juno, a Polar Orbiter around Jupiter

    NASA Technical Reports Server (NTRS)

    P. Pingree; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact radiometer instrument is under development at JPL for Juno, the next NASA New Frontiers mission, scheduled to launch in 2011. This instrument is called the MWR (MicroWave Radiometer), and its purpose is to measure the thermal emission from Jupiter's atmosphere at selected frequencies from 0.6 to 22 GHz. The objective is to measure the distributions and abundances of water and ammonia in Jupiter's atmosphere, with the goal of understanding the previously unobserved dynamics of the subcloud atmosphere, and to discriminate among models for planetary formation in our solar system. The MWR instrument is currently being developed to address these science questions for the Juno mission. As part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The entire MWR instrument consists of six individual radiometer channels with approximately 4% bandwidth at 0.6, 1.25,2.6,5.2, 10,22 GHz operating in direct detection mode. Each radiometer channel has up to 80 dB of gain with a noise figure of several dB. The highest frequency channel uses a corrugated feedhorn and waveguide transmission lines, whereas all other channels use highly phase stable coaxial cables and either patch array or waveguide slot array antennas. Slot waveguide array antennas were chosen for the low loss at the next three highest frequencies and patch array antennas were implemented due to the mass constraint at the two lowest frequencies. The six radiometer channels receive their voltage supplies and control lines from an electronics unit that also provides the instrument communication interface to the Juno spacecraft. For calibration purposes each receiver has integrated noise diodes, a Dicke switch, and temperature sensors near each component that contributes to the noise figure. In addition, multiple sensors will be placed along the RF transmission lines and the antennas in order to measure temperature gradients. All antennas and RF

  18. Retrievals on Tropical small scale humidity variability from multi-channel microwave radiometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhao; Zuidema, Paquita; Turner, David

    2016-04-01

    Small-scale atmospheric humidity structure is important to many atmospheric process studies. In the Tropics especially, convection is sensitive to small variations in humidity. High temporal-resolution humidity profiles and spatially-resolved humidity fields are valuable for understanding the relationship of convection to tropical humidity, such as at convectively-induced cold pools and as part of the shallow-to-deep cloud transition. Radiosondes can provide high resolution vertical profiles of temperature and humidity, but are relatively infrequent. Microwave radiometers (MWR) are able to profile and scan autonomously and output measurements frequently (~1 Hz). To date, few assessments of microwave humidity profiling in the Tropics have been undertaken. Löhnert et al. (2009) provide one evaluation for Darwin, Australia. We build on this using four months of data from the equatorial Indian Ocean, at Gan Island, collected from University of Miami's (UM) multi-channel radiometer during the Dynamics of Madden-Julian Oscillation (DYNAMO) field campaign. Liquid Water Path (LWP) and Water Vapor Path (WVP) are physically retrieved using the MWR RETrieval (MWRRET) algorithm (Turner et al., 2007b), and humidity profiles in the tropics are retrieved using the Integrated Profiling Technique (Löhnert et al., 2004). Tropical temperature variability is weak and a climatological temperature profile is assumed, with humidity information drawn from five channels between 22 to 30 GHz. Scanning measurements were coordinated with the scanning pattern of NCAR's S-Pol-Ka radar. An analysis of the humidity information content gathered from both the profiling and scanning measurements will be presented.

  19. High altitude airborne remote sensing mission using the advanced microwave precipitation radiometer (AMPR)

    NASA Technical Reports Server (NTRS)

    Galliano, J.; Platt, R. H.; Spencer, Roy; Hood, Robbie

    1991-01-01

    The advanced microwave precipitation radiometer (AMPR) is an airborne multichannel imaging radiometer used to better understand how the earth's climate structure works. Airborne data results from the October 1990 Florida thunderstorm mission in Jacksonville, FL, are described. AMPR data on atmospheric precipitation in mesoscale storms were retrieved at 10.7, 19.35, 37.1, and 85.5 GHz onboard the ER-2 aircraft at an altitude of 20 km. AMPR's three higher-frequency data channels were selected to operate at the same frequencies as the spaceborne special sensor microwave/imager (SSM/I) presently in orbit. AMPR uses two antennas to receive the four frequencies: the lowest frequency channel uses a 9.7-in aperture lens antennas, while the three higher-frequency channels share a separate 5.3-in aperture lens antenna. The radiometer's temperature resolution performance is summarized.

  20. Dual frequency microwave radiometer measurements of soil moisture for bare and vegetated rough surfaces

    NASA Technical Reports Server (NTRS)

    Lee, S. L.

    1974-01-01

    Controlled ground-based passive microwave radiometric measurements on soil moisture were conducted to determine the effects of terrain surface roughness and vegetation on microwave emission. Theoretical predictions were compared with the experimental results and with some recent airborne radiometric measurements. The relationship of soil moisture to the permittivity for the soil was obtained in the laboratory. A dual frequency radiometer, 1.41356 GHz and 10.69 GHz, took measurements at angles between 0 and 50 degrees from an altitude of about fifty feet. Distinct surface roughnesses were studied. With the roughness undisturbed, oats were later planted and vegetated and bare field measurements were compared. The 1.4 GHz radiometer was less affected than the 10.6 GHz radiometer, which under vegetated conditions was incapable of detecting soil moisture. The bare surface theoretical model was inadequate, although the vegetation model appeared to be valid. Moisture parameters to correlate apparent temperature with soil moisture were compared.

  1. Geosynchronous Microwave Atmospheric Sounding Radiometer (MASR) feasibility studies. Volume 1: Management summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The mission of the microwave atmospheric sounding radiometer (MASR) is to collect data to aid in the observation and prediction of severe storms. The geosynchronous orbit allows the continuous atmospheric measurement needed to resolve mesoscale dynamics. The instrument may operate in conjunction with this document, Volume 1 - Management, which summarizes the highlights of final reports on both the radiometer instrument and antenna studies. The radiometer instrument summary includes a synopsis of Volume 2 - Radiometer Receiver Feasibility, including design, recommended configuration, performance estimates, and weight and power estimates. The summary of the antenna study includes a synopsis of Volume 3 - Antenna Feasibility, including preliminary design tradeoffs, performance of selected design, and details of the mechanical/thermal design.

  2. Orbiting multi-beam microwave radiometer for soil moisture remote sensing

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Lawrence, R. W.

    1985-01-01

    The effects of soil moisture and other factors on soil surface emissivity are reviewed and design concepts for a multibeam microwave radiometer with a 15 m antenna are described. Characteristic antenna gain and radiation patterns are shown and losses due to reflector roughness are estimated.

  3. L-Band Microwave Observations over land Surface using a Two-Dimensional Synthetic Aperture Radiometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of studies have demonstrated the potential capabilities of passive microwave remote sensing at L-band (1.4 GHz) to measure surface soil moisture. Aperture synthesis is a technology for obtaining high spatial resolution at long wavelengths with a practical radiometer antenna. During the So...

  4. Multifrequency Aperture-Synthesizing Microwave Radiometer System (MFASMR). Volume 2: Appendix

    NASA Technical Reports Server (NTRS)

    Wiley, C. A.; Chang, M. U.

    1981-01-01

    A number of topics supporting the systems analysis of a multifrequency aperture-synthesizing microwave radiometer system are discussed. Fellgett's (multiple) advantage, interferometer mapping behavior, mapping geometry, image processing programs, and sampling errors are among the topics discussed. A FORTRAN program code is given.

  5. Design, fabrication and deployment of a miniaturized spectrometer radiometer based on MMIC technology for tropospheric water vapor profiling

    NASA Astrophysics Data System (ADS)

    Iturbide-Sanchez, Flavio

    This dissertation describes the design, fabrication and deployment of the Compact Microwave Radiometer for Humidity profiling (CMR-H). The CMR-H is a new and innovative spectrometer radiometer that is based on monolithic microwave and millimeter-wave integrated circuit (MMIC) technology and is designed for tropospheric water vapor profiling. The CMR-H simultaneously measures microwave emission at four optimally-selected frequency channels near the 22.235 GHz water vapor absorption line, constituting a new set of frequencies for the retrieval of the water vapor profile. State-of-the-art water vapor radiometers either measure at additional channels with redundant information or perform multi-frequency measurements sequentially. The fabrication of the CMR-H demonstrates the capability of MMIC technology to reduce substantially the operational power consumption and size of the RF and IF sections. Those sections comprise much of the mass and volume of current microwave receivers for remote sensing, except in the case of large antennas. The use of the compact box-horn array antenna in the CMR-H demonstrates its capability to reduce the mass and volume of microwave radiometers, while maintaining similar performance to that of commonly-used, bulky horn antennas. Due to its low mass, low volume, low power consumption, fabrication complexity and cost, the CMR-H represents a technological improvement in the design of microwave radiometers for atmospheric water vapor observations. The field test and validation of the CMR-H described in this work focuses on comparisons of measurements during two field experiments from the CMR-H and a state-of-the-art microwave radiometer, which measures only in a volume subtended by the zenith-pointing antenna's beam pattern. In contrast, the CMR-H is designed to perform volumetric scans and to function correctly as a node in a network of radiometers. Mass production of radiometers based on the CMR-H design is expected to enable the

  6. A cross beam interferometer radiometer for high resolution microwave sensing

    NASA Astrophysics Data System (ADS)

    Malliot, Harold A.

    The conceptual design of a cross beam interferometer radiometer (CBIR) for sea surface temperature sensing at 5.0 GHz is described. In a 833-km orbit, the radiometer provides 0.48 K sensitivity with a spatial resolution less than 25 km in a 1561-km swath. The radiometer consists of a pair of rectangular phased arrays in a T configuration. Each array forms ten colinear beams that project ten pairs of crossed elliptical footprints on the sea surface. The footprints from the horizontal array have minor axes that range from 14.6 km to 22.9 km and are oriented in the cross-track direction. The footprints from the vertical array have minor axes that range from 18.6 km to 25.0 km and are oriented in the along-track direction. The Mills periodic 0-180-deg switching radio telescope technique is used to sense the variations in sea surface radio-thermal brightness temperature in the coincidence areas where the beams overlap. The CBIR concept, system design approach, antenna design and beamforming technique are described.

  7. A study of radio frequency interference with the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR)

    NASA Technical Reports Server (NTRS)

    Kogut, J. A.

    1980-01-01

    One of the important objectives of the NIMBUS-7 Scanning Multichannel Microwave Radiometer (SMMR) is to demonstrate the feasibility of all weather measurements of various ocean parameters; such as sea surface temperature (SST) and near surface wind speed (WS). These ocean parameters can be determined from multispectral measurements of ocean brightness temperatures in the microwave region of the electromagnetic spectrum. These microwave measurements, however, are distorted if the field of view of the SMMR antenna encounters radio transmissions from terrestrial sources. Sources of terrestrial Radio Frequency Interference (RFI) in the SMMR ocean data were identified. Its extent and characteristics over different ocean areas on the Earth were determined.

  8. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Astrophysics Data System (ADS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, Christopher S.; Lanyi. G. E.; Naudet, C. J.

    2005-11-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  9. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Technical Reports Server (NTRS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, C.; Lanyi, G.; Naudet, C.

    2005-01-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  10. Monitoring a convective winter episode of the Iberian Peninsula using a multichannel microwave radiometer

    NASA Astrophysics Data System (ADS)

    Gascón, E.; Sánchez, J. L.; Fernández-González, S.; Hermida, L.; López, L.; García-Ortega, E.; Merino, A.

    2015-02-01

    On 4 March 2011, a heavy snowfall episode affected the central Iberian Peninsula. Under the TECOAGUA Project (aimed at the study of winter cloud masses that produce snow in the Guadarrama Mountains near Madrid), measurements using a ground-based multichannel microwave radiometer (MMWR) with vertical range 10 km recorded this episode of winter convection embedded within stratiform precipitation. In contrast to radiosondes, data retrieval from the MMWR has a clear advantage for identifying hazardous weather phenomena of short duration, such as winter convective episodes. From these continuous measurements, we analyzed the behavior of variables such as temperature, surface pressure, relative humidity, liquid water content, liquid water path, water vapor content, and integrated water vapor throughout the day. The continuous measurements also permitted construction of skew-T log-P profiles every 15 min during the convective episode, indicating vertical evolution of an event with an appearance similar to a "zipper" in which temperature and dew point temperature profiles are "closed" from the surface to 400 hPa and "reopen" at the end of the event. Finally, we selected six indices of stability most suitable for the study of winter convection, namely, the Showalter index, low-topped convection index, most unstable lifted index, most unstable convective available potential energy (MUCAPE), convective inhibition, and MUCAPE level of free convection. Each of these indices has been evaluated for their capacity to warn of meteorological conditions leading to a convective heavy snowfall event.

  11. Angular power spectrum of the microwave background anisotropy seen by the COBE differential microwave radiometer

    NASA Technical Reports Server (NTRS)

    Wright, E. L.; Smoot, G. F.; Bennett, C. L.; Lubin, P. M.

    1994-01-01

    The angular power spectrum estimator developed by Peebles (1973) and Hauser & Peebles (1973) has been modified and applied to the 2 yr maps produced by the Cosmic Background Explorer Satellite Differential Microwave Radiometer (COBE DMR)). The power spectrum of the real sky has been compared to the power spectra of a large number of simulated random skies produced with noise equal to the observed noise and primordial density fluctuation power spectra of power-law form, with P(k) proportional to k(exp n). Within the limited range of spatial scales covered by the COBE DMR, corresponding to spherical harmonic indices 3 less than or = l is less than or approximately = 30, the best-fitting value of the spectral index is n = 1.25(sup +0.39 sub -0.44) with the Harrisson-Zel'dovich value n = 1 approximately 0.5 sigma below the best fit. For 3 less than or = l less than or approximately = 19, the best fit is n = 1.46(sup +0.39 sub -0.44). Comparing the COBE DMR delta-T/T at small l to the delta-T/T at l approximately = 50 from degree scale anisotropy experiments gives a smaller range of acceptable spectral indices which includes n = 1.

  12. A new broadband square law detector. [microwave radiometers

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Gardner, R. A.; Stelzried, C. T.

    1975-01-01

    A broadband constant law detector was developed for precision power measurements, radio metric measurements, and other applications. It has a wide dynamic range and an accurate square law response. Other desirable characteristics, which are all included in a single compact unit, are: (1) high-level dc output with immunity to ground loop problems; (2) fast response times; (3) ability to insert known time constants; and (4) good thermal stability. The detector and its performance are described in detail. The detector can be operated in a programmable system with a ten-fold increase in accuracy. The use and performance of the detector in a noise-adding radiometer system is also discussed.

  13. The monitoring of critical infrastructures using microwave radiometers

    NASA Astrophysics Data System (ADS)

    Peichl, Markus; Dill, Stephan; Jirousek, Matthias; Süß, Helmut

    2008-04-01

    Microwaves in the range of 1-300 GHz are used in many respects for remote sensing applications. Besides radar sensors particularly passive measurement methods are used for two-dimensional imaging. The imaging of persons and critical infrastructures for security purposes is of increasing interest particularly for transportation services or public events. Personnel inspection with respect to weapons and explosives becomes an important mean concerning terrorist attacks. Microwaves can penetrate clothing and a multitude of other materials and allow the detection of hidden objects by monitoring dielectric anomalies. Passive microwave remote sensing allows a daytime independent non-destructive observation and examination of the objects of interest under nearly all weather conditions without artificial exposure of persons or areas. The performance of millimeter-wave radiometric imaging with respect to wide-area surveillance is investigated. Measurement results of some typical critical infrastructure scenarios are discussed. Requirements for future operational systems are outlined exploring a radiometric range equation.

  14. Stratiform and Convective Rain Discrimination from Microwave Radiometer Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Cadeddu, M.; Short, D. A.; Weinman, J. A.; Schols, J. L.; Haferman, J.

    1997-01-01

    A criterion based on the SSM/I observations is developed to discriminate rain into convective and stratiform types. This criterion depends on the microwave polarization properties of the flat melting snow particles that fall slowly in the stratiform clouds. Utilizing this criterion and some spatial and temporal characteristics of hydrometeors in TOGA-COARE area revealed by ship borne radars, we have developed an algorithm to retrieve convective and stratiform rain rate from SSM/I data.

  15. Transfer-matrices for series-type microwave antenna circuits. [L-band radiometer

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1981-01-01

    Transfer matrices are developed which permit analysis and computer evaluation of certain series type microwave antenna circuits associated with an L-Band microwave radiometer (LBMR) under investigation at Goddard Space Flight Center. This radiometer is one of several diverse instrument designs to be used for the determination of soil moisture, sea state, salinity, and temperature data. Four port matrix notation is used throughout for the evaluation of LBMR circuits with mismatched couplers and lossy transmission lines. Matrix parameters in examples are predicted on an impedance analysis and an assumption of an array aperture distribution. The notation presented is easily adapted to longer and more varied chains of matrices, and to matrices of larger dimension.

  16. Studies on Physical Properties of Snow Based on Multi Channel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Tsuchiya, K.; Takeda, K.

    1985-01-01

    The analysis of the data observed over a snow field with a breadboard model of MSR (microwave scanning radiometer) to be installed in MOS-1 (Marine Observation Satellite-1) indicates that: (1) the influence of incident angle on brightness temperature is larger in horizontal polarization component than in vertical polarization component. The effect of incident angle depends upon the property of snow with larger value for dry snow; (2) the difference of snow surface configuration consisting of artifically made parallel ditches of 5 cm depth and 5 cm width with spacing of 10 and 30 cm respectively which are oriented normal to electrical axis do not affect brightness temperature significantly; and (3) there is high negative correlation between brightness temperature and snow depth up to the depth of 70 cm which suggests that the snow depth can be measured with a two channel microwave radiometer up to this depth.

  17. Weight estimates and packaging techniques for the microwave radiometer spacecraft. [shuttle compatible design

    NASA Technical Reports Server (NTRS)

    Jensen, J. K.; Wright, R. L.

    1981-01-01

    Estimates of total spacecraft weight and packaging options were made for three conceptual designs of a microwave radiometer spacecraft. Erectable structures were found to be slightly lighter than deployable structures but could be packaged in one-tenth the volume. The tension rim concept, an unconventional design approach, was found to be the lightest and transportable to orbit in the least number of shuttle flights.

  18. L band push broom microwave radiometer: Soil moisture verification and time series experiment Delmarva Peninsula

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Shiue, J.; Oneill, P.; Wang, J.; Fuchs, J.; Owe, M.

    1984-01-01

    The verification of a multi-sensor aircraft system developed to study soil moisture applications is discussed. This system consisted of a three beam push broom L band microwave radiometer, a thermal infrared scanner, a multispectral scanner, video and photographic cameras and an onboard navigational instrument. Ten flights were made of agricultural sites in Maryland and Delaware with little or no vegetation cover. Comparisons of aircraft and ground measurements showed that the system was reliable and consistent. Time series analysis of microwave and evaporation data showed a strong similarity that indicates a potential direction for future research.

  19. Heavy thunderstorms observed over land by the Nimbus 7 scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.; Olson, W. S.; Martin, D. W.; Weinman, J. A.; Santek, D. A.; Wu, R.

    1983-01-01

    Brightness temperatures obtained through examination of microwave data from the Nimbus 7 satellite are noted to be much lower than those expected on the strength of radiation emanating from rain-producing clouds. Very cold brightness temperature cases all coincided with heavy thunderstorm rainfall, with the cold temperatures being attributable to scattering by a layer of ice hydrometeors in the upper parts of the storms. It is accordingly suggested that brightness temperatures observed by satellite microwave radiometers can sometimes distinguish heavy rain over land.

  20. Meteorological interpretations of the images from Nimbus 5 electrically scanned microwave radiometer

    NASA Technical Reports Server (NTRS)

    Wilheit, T.; Theon, J.; Shenk, W. E.; Allison, L.

    1973-01-01

    The Electrically Scanned Microwave Radiometer on the Nimbus 5 satellite measures microwave radiation in a band centered at 1.55 cm. It scans perpendicular to the satellite motion from 50 deg to the left to 50 deg to the right in the 78 steps every 4 seconds producing an image with a best resolution of 25 km. It is shown that these images can be used to delineate areas of rain over the oceans. This data can be used to approximate the location of fronts, the rain/snow boundary and secondary cyclogenesis.

  1. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  2. Science Data Processing for the Advanced Microwave Scanning Radiometer: Earth Observing System

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Regner, Kathryn; Conover, Helen; Ashcroft, Peter; Wentz, Frank; Conway, Dawn; Lobl, Elena; Beaumont, Bruce; Hawkins, Lamar; Jones, Steve

    2004-01-01

    The National Aeronautics and Space Administration established the framework for the Science Investigator-led Processing Systems (SIPS) to enable the Earth science data products to be produced by personnel directly associated with the instrument science team and knowledgeable of the science algorithms. One of the first instantiations implemented for NASA was the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) SIPS. The AMSR-E SIPS is a decentralized, geographically distributed ground data processing system composed of two primary components located in California and Alabama. Initial science data processing is conducted at Remote Sensing Systems (RSS) in Santa Rosa, California. RSS ingests antenna temperature orbit data sets from JAXA and converts them to calibrated, resampled, geolocated brightness temperatures. The brightness temperatures are sent to the Global Hydrology and Climate Center in Huntsville, Alabama, which generates the geophysical science data products (e.g., water vapor, sea surface temperature, sea ice extent, etc.) suitable for climate research and applications usage. These science products are subsequently sent to the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado for archival and dissemination to the at-large science community. This paper describes the organization, coordination, and production techniques employed by the AMSR-E SIPS in implementing, automating and operating the distributed data processing system.

  3. Microwave Radiometers from 0.6 to 22 GHz for Juno, a Polar Orbiter around Jupiter

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact instrument called the MWR (microwave radiometer) is under development at JPL for Juno, the next NASA new frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. as part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that also provides for a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.

  4. Microwave Radiometers from 0.6 to 22 GHz for Juno, A Polar Orbiter Around Jupiter

    NASA Technical Reports Server (NTRS)

    Pingree, P.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact instrument called the MWR (MicroWave Radiometer) is under development at JPL for Juno, the next NASA New Frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. As part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that would provide a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.

  5. Seasat scanning multichannel microwave radiometer - Results of the Gulf of Alaska workshop

    NASA Technical Reports Server (NTRS)

    Lipes, R. G.; Njoku, E. G.; Riley, A. L.; Bernstein, R. L.; Cardone, V. J.; Katsaros, K. B.; Ross, D. B.; Swift, C. T.; Wentz, F. J.

    1979-01-01

    Scanning multichannel microwave radiometer results obtained by the Gulf of Alaska Seasat Experiment Workshop are reported. The Seasat SMMR provided data from five channels operating at 6.6, 10.7, 18, 21, and 37 GHz at vertical and horizontal polarizations. Two preliminary algorithms were used to retrieve geophysical parameters from the data: the Wentz algorithm (Bierman et al., 1978) based on a theoretically derived function for computing brightness temperatures and the Wilheit algorithm, based on statistical relationships between brightness temperatures and the geophysical parameters obtained from an ensemble of realistic sea-surface temperature values, wind speeds, atmospheric temperature profiles, water vapor profiles and cloud models. In spite of the immaturity of the data-processing algorithms, results are encouraging. For open ocean, rain-free cells of high-quality surface truth wind determinations display standard deviations of 3 m/sec about a bias of 1.5 m/sec. The sea-surface temperature exhibits a standard deviation of about 1.5 deg C about a bias of 3 to 5 deg C under a variety of meteorological conditions.

  6. The 1982-1983 El Nino Atlas: Nimbus-7 microwave radiometer data

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1987-01-01

    Monthly maps of sea surface temperature, atmospheric water vapor, and surface level wind speed as measured by the Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite for the tropical Pacific from June 1982 to October 1983, during one of the most intense El Nino Southern Oscillations (ENSO) episodes, are presented. The non-ENSO annual cycle was compiled by averaging the 1980 and 1981 data for each calendar month and was removed from monthly fields of 1982 and 1983 to reveal the anomalous distributions. The anomaly fields and part of the non-ENSO annual cycle are also presented. This study and earlier evaluations demonstrate that the Nimbus/SMMR can be used to monitor large scale and low frequency variabilities in the tropical ocean. The SMMR data support and extend conventional measurements. The variabilities of the three parameters are found to represent various aspects of ENSO related through ocean atmosphere interaction. Their simultaneous and quantitative descriptions pave the way for the derivation of ocean atmosphere latent heat exchange and further the understanding of the coupled atmospheric and oceanic thermodynamics.

  7. Mesoscale and synoptic scale features of North Pacific weather systems observed with the scanning multichannel microwave radiometer on Nimbus 7

    NASA Technical Reports Server (NTRS)

    Katsaros, K. B.; Lewis, R. M.

    1986-01-01

    Employing data on integrated atmospheric water vapor, total cloud liquid water and rain rate obtainable from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR), the frontal structure of several mid-latitude cyclones over the North Pacific Ocean as they approach the West Coast of North America in the winter of 1979. The fronts, analyzed with all available independent data, are consistently located at the leading edge of the strongest gradient in integrated water vapor. The cloud liquid water content, which unfortunately has received very little in situ verification, has patterns which are consistent with the structure seen in visible and infrared imagery. The rain distribution is also a good indicator of frontal location and rain amounts are generally within a factor of two of what is observed with rain gauges on the coast. Furthermore, the onset of rain on the coast can often be accurately forecast by simple advection of the SMMR observed rain areas.

  8. The Passive Microwave Neural Network Precipitation Retrieval (PNPR) for AMSU/MHS and ATMS cross-track scanning radiometers

    NASA Astrophysics Data System (ADS)

    Sano', Paolo; Casella, Daniele; Panegrossi, Giulia; Cinzia Marra, Anna; Dietrich, Stefano

    2016-04-01

    another when an observed precipitation system extends over two or more types of surfaces. As input data, the PNPR algorithm incorporates the TBs from selected channels, and various additional TBs-derived variables. Ancillary geographical/geophysical inputs (i.e., latitude, terrain height, surface type, season) are also considered during the training phase. The PNPR algorithm outputs consist of both the surface precipitation rate (along with the information on precipitation phase: liquid, mixed, solid) and a pixel-based quality index. We will illustrate the main features of the PNPR algorithm and will show results of a verification study over Europe and Africa. The study is based on the available ground-based radar and/or rain gauge network observations over the European area. In addition, results of the comparison with rainfall products available from the NASA/JAXA Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) (over the African area) and Global Precipitation Measurement (GPM) Dual frequency Precipitation Radar (DPR) will be shown. The analysis is built upon a two-years coincidence dataset of AMSU/MHS and ATMS observations with PR (2013-2014) and DPR (2014-2015). The PNPR is developed within the EUMETSAT H/SAF program (Satellite Application Facility for Operational Hydrology and Water Management), where it is used operationally towards the full exploitation of all microwave radiometers available in the GPM era. The algorithm will be tailored to the future European Microwave Sounder (MWS) onboard the MetOp-Second Generation (MetOp-SG) satellites.

  9. GROMOS-C, a novel ground-based microwave radiometer for ozone measurement campaigns

    NASA Astrophysics Data System (ADS)

    Fernandez, S.; Murk, A.; Kämpfer, N.

    2015-07-01

    Stratospheric ozone is of major interest as it absorbs most harmful UV radiation from the sun, allowing life on Earth. Ground-based microwave remote sensing is the only method that allows for the measurement of ozone profiles up to the mesopause, over 24 hours and under different weather conditions with high time resolution. In this paper a novel ground-based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a pre-amplified heterodyne receiver, and a digital fast Fourier transform spectrometer for the spectral analysis. Among its main new features, the incorporation of different calibration loads stands out; this includes a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen; therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition, the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station at Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS (Microwave Limb Sounding) satellite data, ECMWF (European Centre for Medium-Range Weather Forecast) model data, as well as our nearby NDACC (Network for the Detection of Atmospheric

  10. Assessment of forecast indices over Sriharikota using ground-based microwave radiometer

    NASA Astrophysics Data System (ADS)

    Pushpa Saroja, R.; Rajasekhar, M.; Papa Rao, G.; Rajeevan, M.; Bharathi, G.

    2016-05-01

    Continuous measurements of vertical profiles of thermodynamic variables are important for severe weather nowcasting & forecasting over a region instead of radiosonde observations which are available once or twice daily. Microwave Radiometer (MWR) provides high quality of thermodynamic (temperature, water vapor, and cloud liquid) soundings up to an altitude of 10 Kms in the clear and cloudy weather conditions except during heavy rainfall. Retrievals of MWR profiles are based on the intensity of the atmospheric radiation at selected frequencies (22-30 GHz) & (51-59 GHz) with high temporal and vertical resolution in the troposphere. The MWR used in the present study is TP/WVP-3166A, measures the intensity of radiation at 8 water vapor channels and 14 oxygen channels which is installed at Sriharikota in June. In this paper we analyzed the thermodynamic indices derived from MWR profiles during severe convective thunderstorms for Sriharikota region. MWR derived thermodynamic profiles are compared with radiosonde observations during rainy & non rainy days. MWR temperature profiles and vapor density profiles are well correlated with the observations with a cold bias of 1.5°C & 2.5°C and with a dry bias of 0.37 g/m3 & 0.04 g/m3respectively. For this we considered 10 thunderstorm cases from June to November 2014 analysed with indices K index, MDPI, CAPE, Windex, KO index, L index, S index, Showalter index, Total totals index, Vertical totals along with integrated liquid water and vapour density. MDPI, CAP index, Windex, Kindex, Lindex and convective temperature were best performed indices two hours prior to thunderstorm over SHAR region.

  11. Microwave radiometer experiment of soil moisture sensing at BARC test site during summer 1981

    NASA Technical Reports Server (NTRS)

    Wang, J.; Jackson, T.; Engman, E. T.; Gould, W.; Fuchs, J.; Glazer, W.; Oneill, P.; Schmugge, T. J.; Mcmurtrey, J., III

    1984-01-01

    Soil moisture was measured by truck mounted microwave radiometers at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz. The soil textures in the two test sites were different so that the soil type effect of microwave radiometric response could be studied. Several fields in each test site were prepared with different surface roughnesses and vegetation covers. Ground truth on the soil moisture, temperature, and the biomass of the vegetation was acquired in support of the microwave radiometric measurements. Soil bulk density for each of the fields in both test sites was sampled. The soils in both sites were measured mechanically and chemically. A tabulation of the measured data is presented and the sensors and operational problems associated with the measurements are discussed.

  12. Design data collection with Skylab microwave radiometer-scatterometer S-193, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Ulaby, F. T. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Skylab S-193 radiometer/scatterometer produced terrain responses with various polarizations and observation angles for cells of 100 to 400 sq km area. Classification of the observations into natural categories was achieved by K-means and spatial clustering algorithms. Microwave data acquired over the Great Salt Lake Desert area by sensors aboard Skylab and Nimbus 5 indicate that the microwave emission and backscatter were strongly influenced by contributions from subsurface layers of sediment saturated with brine. Correlations were noted between microwave backscatter response at approximately 33 deg from scatterometer (operating at 13.9 GHz) and the configuration of ground targets in Brazil as discerned from coarse scale maps. With limited, available ground truth, these correlations were sufficient to permit the production of image-like displays which bear a marked resemblance to known terrain features in several instances.

  13. Topographic Effects on the Surface Emissivity of a Mountainous Area Observed by a Spaceborne Microwave Radiometer

    PubMed Central

    Pulvirenti, Luca; Pierdicca, Nazzareno; Marzano, Frank S.

    2008-01-01

    A simulation study to understand the influence of topography on the surface emissivity observed by a satellite microwave radiometer is carried out. We analyze the effects due to changes in observation angle, including the rotation of the polarization plane. A mountainous area in the Alps (Northern Italy) is considered and the information on the relief extracted from a digital elevation model is exploited. The numerical simulation refers to a radiometric image, acquired by a conically-scanning radiometer similar to AMSR-E, i.e., flying at 705 km of altitude with an observation angle of 55°. To single out the impact on surface emissivity, scattering of the radiation due to the atmosphere or neighboring elevated surfaces is not considered. C and X bands, for which atmospheric effects are negligible, and Ka band are analyzed. The results indicate that the changes in the local observation angle tend to lower the apparent emissivity of a radiometric pixel with respect to the corresponding flat surface characteristics. The effect of the rotation of the polarization plane enlarges (vertical polarization), or attenuates (horizontal polarization) this decrease. By doing some simplifying assumptions for the radiometer antenna, the conclusion is that the microwave emissivity at vertical polarization is underestimated, whilst the opposite occurs for horizontal polarization, except for Ka band, for which both under- and overprediction may occur. A quantification of the differences with respect to a flat soil and an approximate evaluation of their impact on soil moisture retrieval are yielded.

  14. On-orbit structural dynamic performance of a 15-meter microwave radiometer antenna

    NASA Technical Reports Server (NTRS)

    Wahls, Deborah M.; Farmer, Jeffery T.; Sleight, David W.

    1990-01-01

    The on-orbit structural dynamic performance of a microwave radiometer antenna for Earth science applications is addressed. The radiometer is one of the Earth-observing instruments aboard a proposed geostationary platform as part of the Mission to the Planet Earth. A sequential approach is presented for assessing the ability of an antenna structure to retain its geometric shape subject to a representative onboard disturbance. This approach includes establishing the structural requirements of the antenna, developing the structural and disturbance models, performing modal and forced response analyses, and evaluating the resulting distortions in terms of the antenna's ability to meet stringent structural performance requirements. Two antenna configurations are discussed: free-flying and platform-mounted. These configurations are analyzed for a representative disturbance function which simulates rotation of the subreflector in order to perform a raster-type scan of the Earth disk. Results show that the scanning maneuver modeled would not induce antenna structural errors outside the specified limits.

  15. The Split Window Microwave Radiometer (SWMR) for hurricane wind speed measurement from space

    NASA Technical Reports Server (NTRS)

    Swift, Calvin T.; Black, P. G.

    1992-01-01

    The monitoring of hurricanes demands considerable resources each year by the National Oceanic and Atmospheric Administration. Even with the extensive use of satellite and airborne probing of those storms, there is still much uncertainty involved in predicting landfall for timely evacuation of people subject to the threat. The concept of the Split Window Microwave Radiometer (SWMR) is to add an additional capability of remotely measuring surface winds to hopefully improve prediction capabilities or at least define the severity of the storm while it is far from land. Some of the present science and observational needs are addressed in this report as are remote sensing limitations which impact the design of a minimal system which can be launched into low earth orbit by a low cost launch system. This study has concluded that wind speed and rain rate maps of hurricanes can be generated with an X-Band radiometer system with an antenna whose aperture is 2 m on a side.

  16. Large area mapping of soil moisture using the ESTAR passive microwave radiometer

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Levine, D. M.; Swift, C. T.; Schmugge, T. J.

    1994-01-01

    Investigations designed to study land surface hydrologic-atmospheric interactions, showing the potential of L band passive microwave radiometry for measuring surface soil moisture over large areas, are discussed. Satisfying the data needs of these investigations requires the ability to map large areas rapidly. With aircraft systems this means a need for more beam positions over a wider swath on each flightline. For satellite systems the essential problem is resolution. Both of these needs are currently being addressed through the development and verification of Electronically Scanned Thinned Array Radiometer (ESTAR) technology. The ESTAR L band radiometer was evaluated for soil moisture mapping applications in two studies. The first was conducted over the semiarid rangeland Walnut Gulch watershed located in south eastern Arizona (U.S.). The second was performed in the subhumid Little Washita watershed in south west Oklahoma (U.S.). Both tests showed that the ESTAR is capable of providing soil moisture with the same level of accuracy as existing systems.

  17. GROMOS-C, a novel ground based microwave radiometer for ozone measurement campaigns

    NASA Astrophysics Data System (ADS)

    Fernandez, S.; Murk, A.; Kämpfer, N.

    2015-03-01

    Stratospheric ozone is of major interest as it absorbs most of harmful UV radiation from the sun, allowing life on Earth. Ground based microwave remote sensing is the only method that allows to measure ozone profiles up to the mesopause, 24 h and under different weather conditions with high time resolution. In this paper a novel ground based microwave radiometer is presented. It is called GROMOS-C (GRound based Ozone MOnitoring System for Campaigns), and it has been designed to measure the vertical profile of ozone distribution in the middle atmosphere, by observing ozone emission spectra at a frequency of 110.836 GHz. The instrument is designed in a compact way which makes it transportable and suitable for outdoor use in campaigns, an advantageous feature that is lacking in present day ozone radiometers. It is operated through remote control. GROMOS-C is a total power radiometer which uses a preamplified heterodyne receiver, and a digital Fast Fourier Transform spectrometer for the spectral analysis. Among its main new features stands out the incorporation of different calibration loads, including a noise diode and a new type of blackbody target specifically designed for this instrument, based on Peltier elements. The calibration scheme does not depend on the use of liquid nitrogen, therefore GROMOS-C can be operated at remote places with no maintenance requirements. In addition the instrument can be switched in frequency to observe the CO line at 115 GHz. A description of the main characteristics of GROMOS-C is included in this paper, as well as the results of a first campaign at the High Altitude Research Station in Jungfraujoch (HFSJ), Switzerland. The validation is performed by comparison of the retrieved profiles against equivalent profiles from MLS satellite data, ECMWF model data, as well as our nearby NDACC ozone radiometer measuring at Bern.

  18. A microwave radiometer weather-correcting sea ice algorithm

    NASA Technical Reports Server (NTRS)

    Walters, J. M.; Ruf, C.; Swift, C. T.

    1987-01-01

    A new algorithm for estimating the proportions of the multiyear and first-year sea ice types under variable atmospheric and sea surface conditions is presented, which uses all six channels of the SMMR. The algorithm is specifically tuned to derive sea ice parameters while accepting error in the auxiliary parameters of surface temperature, ocean surface wind speed, atmospheric water vapor, and cloud liquid water content. Not only does the algorithm naturally correct for changes in these weather conditions, but it retrieves sea ice parameters to the extent that gross errors in atmospheric conditions propagate only small errors into the sea ice retrievals. A preliminary evaluation indicates that the weather-correcting algorithm provides a better data product than the 'UMass-AES' algorithm, whose quality has been cross checked with independent surface observations. The algorithm performs best when the sea ice concentration is less than 20 percent.

  19. Stratus cloud measurements with a K{sub {alpha}}-band Doppler radar and a microwave radiometer

    SciTech Connect

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.; Lenschow, D.H.

    1995-04-01

    The goal of the Atlantic Stratocumulus Transition Experiment (ASTEX) held in the North Atlantic during June 1992 was to determine the physical reasons for the transition from stratocumulus to broken clouds. Some possible reasons for this transition were such things as cloud top entrainment instability and the decoupling effects of drizzle. As part of this experiment, the Environmental Technology Laboratory`s cloud sensing Doppler radar and three-channel microwave radiometer were deployed in the island of Porto Santo in the Madeira Islands of Portugal along with a carbon dioxide Doppler lider. Drizzle properties in stratus were examined using a log-normal droplet distribution model that related the model`s three parameters to the first three Doppler spectral moments of the cloud radar. With these moments, we are then able to compute the drizzle droplet concentration, modal radius, liquid water, and liquid water flux as a function of height.

  20. Creation of Normalized Time Series Data for Microwave Radiometer AMSR2 Loaded on GCOM-W1 Satellite Launched Soon

    NASA Astrophysics Data System (ADS)

    Maeda, T.

    2012-04-01

    The operation of the Advanced Microwave Scanning Radiometer for Earth-Observation System (AMSR-E) loaded on Aqua satellite stopped in October, 2011 after more than 9-years observation. But, JAXA plans to launch GCOM-W1 (Global Change Observation Mission 1st - Water) satellite carrying the successor of AMSR-E (AMSR2), and this satellite will be launched in 2012. AMSR2 is a microwave radiometer to observe microwave signals at 6.9, 7.3, 10.65, 18.7, 23.8, 36.5 and 89.0 GHz emitted from the Earth almost twice a day because GCOM-W1 satellite is deployed into a sun-synchronous sub-recurrent orbit. Generally, measuring points of a spaceborne instrument differently distribute according to satellite tracks, eventually, observation times. The location and size of a receiver's footprint for one measurement also differ among frequencies. Therefore, as long as some kind of resampling method is applied, the data of different times and frequencies cannot be compared. As for a microwave radiometer, because the footprint size is large, and the main mission is to globally retrieve physical quantities, it has not been sufficiently considered what kind of resampling method is most suitable, which deteriorated the qualities of retrieved physical quantities. In contrast, because brightness temperature data observed by AMSR2 are resampled by Backus-Gilbert method, footprint size and location among frequencies are unified. These data are provided as the standard product (L1R product). However, because resampling by Backus-Gilbert method requires high amount of calculation, the process to make the L1R product is simplified, and the data of different times and frequencies still cannot be compared at an arbitrary point. We have developed a method to extract local and faint changes from AMSR-E data, and the idea of Backus-Gilbert method is important to use AMSR2 data for our purpose. So, we implemented Backus-Gilbert method without simplifying to our method to compare the data of different

  1. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Kim, Kyu-Myong

    2004-01-01

    Over the tropical land regions observations of the 85 GHz brightness temperature (T(sub 85v)) made by the TRMM Microwave Imager (TMI) radiometer when analyzed with the help of rain rate (R(sub pR)) deduced from the TRMM Precipitation Radar (PR) indicate that there are two maxima in rain rate. One strong maximum occurs when T(sub 85) has a value of about 220 K and the other weaker one when T(sub 85v) is much colder approx. 150 K. Together with the help of earlier studies based on airborne Doppler Radar observations and radiative transfer theoretical simulations, we infer the maximum near 220 K is a result of relatively weak scattering due to super cooled rain drops and water coated ice hydrometeors associated with a developing thunderstorm (Cb) that has a strong updraft. The other maximum is associated with strong scattering due to ice particles that are formed when the updraft collapses and the rain from the Cb is transit2oning from convective type to stratiform type. Incorporating these ideas and with a view to improve the estimation of rain rate from existing operational method applicable to the tropical land areas, we have developed a rain retrieval model. This model utilizes two parameters, that have a horizontal scale of approx. 20km, deduced from the TMI measurements at 19, 21 and 37 GHz (T(sub 19v), T(sub 21v), T(sub 37v). The third parameter in the model, namely the horizontal gradient of brightness temperature within the 20 km scale, is deduced from TMI measurements at 85 GHz. Utilizing these parameters our retrieval model is formulated to yield instantaneous rain rate on a scale of 20 km and seasonal average on a mesoscale that agree well with that of the PR.

  2. Combining microwave radiometer and wind profiler radar measurements to improve accuracy and resolution of atmospheric humidity profiling

    NASA Astrophysics Data System (ADS)

    Bianco, L.; Cimini, D.; Ware, R.; Marzano, F.

    2003-04-01

    37'N, longitude: 97^o30'W, altitude: 313 m ASL). Results show that the synergy of microwave radiometer and wind profiler measurements significantly improves both the accuracy and spatial vertical resolution of atmospheric humidity profiles. Bianco, L., and J. M. Wilczak, 2002: Convective boundary layer depth: Improved measurement by Doppler Radar Wind Profiler using fuzzy logic methods, J. Atmos. Ocean. Technol., 19, 1745-1758. Stankov, B. B., E. E. Gossard, B. L. Weber, R. J. Lataitis, A. B. White, D. E. Wolfe, and D. C. Welsh, 2002: Humidity gradient profiles from Wind Profiling Radars using the NOAA/ETL advanced Signal Processing System (SPS), Accepted for publication in JTECH. White, A. B., R. J. Lataitis, and R. S. Lawrence, 1999: Space and time filtering of remotely sensed velocity turbulence, J. Atmos. Ocean. Technol., 16, 1967-1971. Han, Y., and E. R. Westwater, 1995: Remote sensing of tropospheric water vapor and cloud liquid water by integrated ground-based sensors, J. Atmos. Ocean. Technol., 12, 1050-1059.

  3. Combining Microwave Radiometer and Wind Profiler Radar Measurements to Improve Accuracy and Resolution of Atmospheric Humidity Profiling

    NASA Astrophysics Data System (ADS)

    Bianco, L.; Cimini, D.; Ware, R.; Marzano, F.

    2003-04-01

    37'N, longitude: 97^o 30'W, altitude: 313 m ASL). Results show that the synergy of microwave radiometer and wind profiler measurements significantly improves both the accuracy and spatial vertical resolution of atmospheric humidity profiles. Bianco, L., and J. M. Wilczak, 2002: Convective boundary layer depth: Improved measurement by Doppler Radar Wind Profiler using fuzzy logic methods, J. Atmos. Ocean. Technol., 19, 1745-1758. Stankov, B. B., E. E. Gossard, B. L. Weber, R. J. Lataitis, A. B. White, D. E. Wolfe, and D. C. Welsh, 2002: Humidity gradient profiles from Wind Profiling Radars using the NOAA/ETL advanced Signal Processing System (SPS), Accepted for publication in JTECH. White, A. B., R. J. Lataitis, and R. S. Lawrence, 1999: Space and time filtering of remotely sensed velocity turbulence, J. Atmos. Ocean. Technol., 16, 1967-1971. Han, Y., and E. R. Westwater, 1995: Remote sensing of tropospheric water vapor and cloud liquid water by integrated ground-based sensors, J. Atmos. Ocean. Technol., 12, 1050-1059.

  4. Correlations between Nimbus-7 Scanning Multichannel Microwave Radiometer data and an antecedent precipitation index

    NASA Technical Reports Server (NTRS)

    Wilke, G. D.; Mcfarland, M. J.

    1986-01-01

    Passive microwave brightness temperatures from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) can be used to infer the soil moisture content over agricultural areas such as the southern Great Plains of the United States. A linear regression analysis between three transforms of the five dual polarized SMMR wavelengths of 0.81, 1.36, 1.66, 2.80 and 4.54 cm and an antecedent precipitation index representing the precipitation history showed correlation coefficients greater than 0.90 for pixel aggregates of 25-50 km. The use of surface air temperatures to approximate the temperature of the emitting layer was not required to obtain high correlation coefficients between the transforms and the antecedent precipitation index.

  5. Soil moisture verification study of the ESTAR microwave radiometer - Walnut Gulch, AZ 1991

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Le Vine, D. M.; Griffis, A.; Goodrich, D. C.; Schmugge, T. J.; Swift, C. T.; O'Neill, P. E.; Roberts, R. R.; Parry, R.

    1992-01-01

    The application of an electronically steered thinned array L-band radiometer (ESTAR) for soil moisture mapping is investigated over the arid rangeland Walnut Gulch Watershed. Antecedent rainfall and evaporation for the flights are very different and result in a wide range of soil moisture conditions. The high spatial variability of rainfall events within this region results in moisture conditions with dramatic spatial patterns. Sensor performance is verified using two approaches. Microwave data are used in conjunction with a microwave emission model to predict soil moisture. These predictions are compared to ground observations of soil moisture. A second verification is possible using an extensive data set. Both tests showed that the ESTAR is capable of providing soil moisture with the same level of accuracy as existing systems.

  6. Preliminary algorithm for retrieving Sea Ice Concentration from the Microwave Radiometer on SAC-D/Aquarius

    NASA Astrophysics Data System (ADS)

    Masuelli, S.; Tauro, C.; Salgado, H.; Jones, L.

    2011-12-01

    This paper presents the first version of the algorithm to estimate Sea Ice Concentration from brightness temperatures measured by the MWR (MicroWave Radiometer) on board of SAC-D/Aquarius satellite, launched in June 2011. The MWR is a three channel microwave radiometer, 23.8GHz (H-pol) and 36.5GHz (V-pol and H-pol), with 8 beams for channel of about 50 km in size. The corresponding 8 horns of each channel are in a pushbroom configuration with two different incident angles: 52° and 58°. The algorithm for ice estimation presented here is based on the Bootstrap and Nasa Team (NT) ones, that use gradient and polarization ratios of the obtained brightness temperatures for their calculations. Usually these algorithms use the band of 19GHz for calculating the polarization ratio (PR), while for the gradient ratio (GR) use 37GHz and 19GHz in V-pol, and additionally other bands such as 23GHz and 85GHz are used as clime filters to improve the accuracy of the estimations obtained. In this way they obtain a distribuition of data for polar areas very similar to a triangle in a PR vs GR plot where it is possible to estimate not only the ice concentration but also classify the ice type. For the MWR we adapted this idea to the characteristics of the sensor. We use the 36.5GHz channel for calculating PR and 36.5GHz and 23.8GHz in H-pol for calculating GR. The combination of those MWR data produces a (PR,GR) distribution very noisy as we could verified using Windsat data and comparing the obtained (PR,GR) plots using NT and our definition of these quantities. As the 23.8GHz and 36.5 GHz bands are very sensitives to water vapor variation and sea roughness respectively, the use combined of these bands is very sensitive to both environmental variables. To reduce this effect we develop our algorithm as auto calibrated one. We summarized the way as the algorithm is applied to each beam: 1) We make a scatter plot in a PR-GR diagram with the data of one day corresponding to higher

  7. Evaluation of geophysical parameters measured by the Nimbus-7 microwave radiometer for the TOGA Heat Exchange Project

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Mock, Donald R.

    1986-01-01

    The data distributed by the National Space Science Data Center on the Geophysical parameters of precipitable water, sea surface temperature, and surface-level wind speed, measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, are evaluated with in situ measurements between Jan. 1980 and Oct. 1983 over the tropical oceans. In tracking annual cycles and the 1982-83 E1 Nino/Southern Oscillation episode, the radiometer measurements are coherent with sea surface temperatures and surface-level wind speeds measured at equatorial buoys and with precipitable water derived from radiosonde soundings at tropical island stations. However, there are differences between SMMR and in situ measurements. Corrections based on radiosonde and ship data were derived supplementing correction formulae suggested in the databook. This study is the initial evaluation of the data for quantitative description of the 1982-83 E1 Nino/Southern Oscillation episode. It paves the way for determination of the ocean-atmosphere moisture and latent heat exchanges, a priority of the Tropical Ocean and Global Atmosphere (TOGA) Heat Exchange Program.

  8. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study.

    PubMed

    Alimenti, Federico; Roselli, Luca; Bonafoni, Stefania

    2016-01-01

    This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows. PMID:27322280

  9. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study †

    PubMed Central

    Alimenti, Federico; Roselli, Luca; Bonafoni, Stefania

    2016-01-01

    This paper introduces the theory of fire detection in moving vehicles by microwave radiometers. The system analysis is discussed and a feasibility study is illustrated on the basis of two implementation hypotheses. The basic idea is to have a fixed radiometer and to look inside the glass windows of the wagon when it passes in front of the instrument antenna. The proposed sensor uses a three-pixel multi-beam configuration that allows an image to be formed by the movement of the train itself. Each pixel is constituted by a direct amplification microwave receiver operating at 31.4 GHz. At this frequency, the antenna can be a 34 cm offset parabolic dish, whereas a 1 K brightness temperature resolution is achievable with an overall system noise figure of 6 dB, an observation bandwidth of 2 GHz and an integration time of 1 ms. The effect of the detector noise is also investigated and several implementation hypotheses are discussed. The presented study is important since it could be applied to the automatic fire alarm in trains and moving vehicles with dielectric wall/windows. PMID:27322280

  10. Validation of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    NASA Astrophysics Data System (ADS)

    Navas, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2016-04-01

    Vertical profiles of atmospheric temperature trends has become recognized as an important indicator of climate change, because different climate forcing mechanisms exhibit distinct vertical warming and cooling patterns. For example, the cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming. Despite its importance, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. One of the main reason is because stratospheric long-term datasets are sparse and obtained trends differ from one another. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. This study presents an evaluation of the stratospheric temperature profiles from a newly ground-based microwave temperature radiometer (TEMPERA) which has been built and designed at the University of Bern. The measurements from TEMPERA are compared with the ones from other different techniques such as in-situ (radiosondes), active remote sensing (lidar) and passive remote sensing on board of Aura satellite (MLS) measurements. In addition a statistical analysis of the stratospheric temperature obtained from TEMPERA measurements during four years of data has been performed. This analysis evidenced the capability of TEMPERA radiometer to monitor the temperature in the stratosphere for a long-term. The detection of some singular sudden stratospheric warming (SSW) during the analyzed period shows the necessity of these

  11. Rainfall estimation over oceans from scanning multichannel microwave radiometer and special sensor microwave/imager microwave data

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Dalu, G.; Liberti, G. L.; Nucciarone, J. J.; Suhasini, R.

    1991-01-01

    The brightness temperature (T sub b) measured at 37 GHz shows fairly strong emission from rain, and only slight effects caused by scattering by ice above the rain clouds. At frequencies below 37 GHz, were the fov is larger and the volume extinction coefficient is weaker, it is found that the observations do not yield appreciable additional information about rain. At 85 GHz (fov = 15 km), where the volume extinction is considerably larger, direct information about rain below the clouds is usually masked. Based on the above ideas, 37 GHz observations with a 30 km fov from SMMR and SSM/I are selected to develop an empirical method for the estimation of rain rate. In this method, the statistics of the observed T sub b's at 37 GHz in a rain storm are related to the rain rate statistics in that storm. The underestimation of rain rate, arising from the inability of the radiometer to respond sensitively to rain rate above a given threshold, is rectified in this technique with the aid of two parameters that depend on the total water vapor content in the atmosphere. The retrieved rain rates compare favorably with radar observations and monthly mean global maps of rain derived from this technique over the oceans.

  12. Observations of deep convection from an airborne high-frequency (92 and 183 GHz) passive microwave radiometer

    NASA Technical Reports Server (NTRS)

    Hakkarinen, I. M.; Adler, R. F.

    1984-01-01

    Spencer et al. (1983) have reported that very low Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures at 37 GHz over land coincide with heavy thunderstorm rainfall, while Wilheit et al. (1982) used an aircraft-mounted radiometer operating at 92 and 183 GHz to observe convective precipitation associated with a tropical storm over the ocean. A scanning version of the instrument employed by Wilheit et al. is the Advanced Microwave Moisture Sounder (AMMS). The present paper has the objective to summarize the preliminary results of AMMS observations of convective raining clouds and to determine whether empirical relationships between rain rate and microwave brightness temperature, such as those developed for 37 GHz satellite data by Spencer et al., can be extended to higher microwave frequencies.

  13. Status of VESAS: a fully-electronic microwave imaging radiometer system

    NASA Astrophysics Data System (ADS)

    Schreiber, Eric; Peichl, Markus; Suess, Helmut

    2010-04-01

    Present applications of microwave remote sensing systems cover a large variety. One utilisation of the frequency range from 1 - 300 GHz is the domain of security and reconnaissance. Examples are the observation of critical infrastructures or the performance of security checks on people in order to detect concealed weapons or explosives, both being frequent threats in our world of growing international terrorism. The imaging capability of concealed objects is one of the main advantages of microwave remote sensing, because of the penetration performance of electromagnetic waves through dielectric materials in this frequency domain. The main physical effects used in passive microwave sensing rely on the naturally generated thermal radiation and the physical properties of matter, the latter being surface characteristics, chemical and physical composition, and the temperature of the material. As a consequence it is possible to discriminate objects having different material characteristics like ceramic weapons or plastic explosives with respect to the human body. Considering the use of microwave imaging with respect to people scanning systems in airports, railway stations, or stadiums, it is advantageous that passively operating devices generate no exposure on the scanned objects like actively operating devices do. For frequently used security gateways it is additionally important to have a high through-put rate in order to minimize the queue time. Consequently fast imaging systems are necessary. In this regard the conceptual idea of a fully-electronic microwave imaging radiometer system is introduced. The two-dimensional scanning mechanism is divided into a frequency scan in one direction and the method of aperture synthesis in the other. The overall goal here is to design a low-cost, fully-electronic imaging system with a frame rate of around one second at Ka band. This frequency domain around a center frequency of 37 GHz offers a well-balanced compromise between the

  14. HMMR (High-Resolution Multifrequency Microwave Radiometer) Earth observing system, volume 2e. Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Recommendations and background are provided for a passive microwave remote sensing system of the future designed to meet the observational needs of Earth scientist in the next decade. This system, called the High Resolution Multifrequency Microwave Radiometer (HMMR), is to be part of a complement of instruments in polar orbit. Working together, these instruments will form an Earth Observing System (EOS) to provide the information needed to better understand the fundamental, global scale processes which govern the Earth's environment. Measurements are identified in detail which passive observations in the microwave portion of the spectrum could contribute to an Earth Observing System in polar orbit. Requirements are established, e.g., spatial and temporal resolution, for these measurements so that, when combined with the other instruments in the Earth Observing System, they would yield a data set suitable for understanding the fundamental processes governing the Earth's environment. Existing and/or planned sensor systems are assessed in the light of these requirements, and additional sensor hardware needed to meet these observational requirements are defined.

  15. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  16. The Effect of Sea-Surface Sun Glitter on Microwave Radiometer Measurements

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1981-01-01

    A relatively simple model for the microwave brightness temperature of sea surface Sun glitter is presented. The model is an accurate closeform approximation for the fourfold Sun glitter integral. The model computations indicate that Sun glitter contamination of on orbit radiometer measurements is appreciable over a large swath area. For winds near 20 m/s, Sun glitter affects the retrieval of environmental parameters for Sun angles as large as 20 to 25 deg. The model predicted biases in retrieved wind speed and sea surface temperature due to neglecting Sun glitter are consistent with those experimentally observed in SEASAT SMMR retrievals. A least squares retrieval algorithm that uses a combined sea and Sun model function shows the potential of retrieving accurate environmental parameters in the presence of Sun glitter so long as the Sun angles and wind speed are above 5 deg and 2 m/s, respectively.

  17. The correction of aberrations computed in the aperture plane of multifrequency microwave radiometer antennas

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1984-01-01

    An analytical/numerical approach to identifying and correcting the aberrations introduced by a general displacement of the feed from the focal point of a single offset paraboloid antenna used in deployable radiometer systems is developed. A 15 meter reflector with 18 meter focal length is assumed for the analysis, which considers far field radiation pattern quality, focal region fields, and aberrations appearing in the aperture plane. The latter are obtained by ray tracing in the transmit mode and are expressed in terms of optical notation. Attention is given to the physical restraints imposed on corrective elements by real microwave systems and to the intermediate near field aspects of the problem in three dimensions. The subject of wave fronts and caustics in the receive mode is introduced for comparative purposes. Several specific examples are given for aberration reduction at eight beamwidths of scan at a frequency of 1.414 GHz.

  18. Exploring the Turbulent Urban Boundary by Use of Lidars and Microwave Radiometers

    NASA Astrophysics Data System (ADS)

    Arend, Mark; Valerio, Ivan; Neufeld, Stephen; Bishir, Raymond; Wu, Younghu; Moshary, Fred; Melecio-Vazquez, David; Gonzalez, Jorge

    2016-06-01

    A Doppler lidar has been developed using fiber optic based technologies and advanced signal processing techniques. Although this system has been operated in a scanning mode in the past, for this application, the system is operated in a vertically pointing mode and delivers a time series of vertical velocity profiles. By cooperating the Doppler lidar with other instruments, including a back scatter lidar, and a microwave radiometer, models of atmospheric stability can be tested, opening up an exciting path for researchers, applied scientists and engineers to discover unique phenomena related to fundamental atmospheric science processes. A consistent set of retrievals between each of these instruments emphasizes the utility for such a network of instruments to better characterize the turbulent atmospheric urban boundary layers which is expected to offer a useful capability for assessing and improving models that are in great need of such ground truth.

  19. Observations of oceanic surface-wind fields from the Nimbus-7 microwave radiometer

    NASA Technical Reports Server (NTRS)

    Miller, J. R.; Geyser, J. E.; Chang, A. T. C.; Wilheit, T. T., Jr.

    1982-01-01

    Brightness temperatures from the five-frequency dual-polarized scanning multichannel microwave radiometer (SMMR) on Nimbus 7 have been used to obtain surface wind fields over the ocean. The satellite-derived wind field for 1200Z, Feb. 19, 1979, in the eastern North Pacific has been compared with an operationally generated surface-wind analysis field. Previous point comparisons at selected locations have indicated that satellite winds are accurate to 3 m/sec. The results, although of a preliminary nature, indicate that SMMR-derived winds may be used to determine large-scale wind fields over the ocean, particularly in areas of strong wind gradients such as found in cyclonic systems.

  20. A synthetic aperture microwave radiometer to measure soil moisture and ocean salinity from space

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Hilliard, L. M.; Swift, C. T.; Ruf, C. S.; Garrett, L. B.

    1991-01-01

    A concept is presented for a microwave radiometer in space to measure soil moisture and ocean salinity as part of an 'Earth Probe' mission. The measurements could be made using an array of stick antennas. The L-band channel (1.4 GHz) would be the primary channel for determining soil moisture, with the S-band (2.65-GHz) and C-band (5.0-GHz) channels providing ancillary information to help correct for the effects of the vegetation canopy and possibly to estimate a moisture profile. A preliminary study indicates that an orbit at 450 km would provide coverage of better than 95 percent of the earth every 3 days. A 10-km resolution cell (at nadir) requires stick antennas about 9.5-m long at L-band. The S-band and C-band sticks would be substantially shorter (5 m and 2.7 m, respectively).

  1. TOPEX Microwave Radiometer - Thermal design verification test and analytical model validation

    NASA Technical Reports Server (NTRS)

    Lin, Edward I.

    1992-01-01

    The testing of the TOPEX Microwave Radiometer (TMR) is described in terms of hardware development based on the modeling and thermal vacuum testing conducted. The TMR and the vacuum-test facility are described, and the thermal verification test includes a hot steady-state segment, a cold steady-state segment, and a cold survival mode segment totalling 65 hours. A graphic description is given of the test history which is related temperature tracking, and two multinode TMR test-chamber models are compared to the test results. Large discrepancies between the test data and the model predictions are attributed to contact conductance, effective emittance from the multilayer insulation, and heat leaks related to deviations from the flight configuration. The TMR thermal testing/modeling effort is shown to provide technical corrections for the procedure outlined, and the need for validating predictive models is underscored.

  2. Sea surface temperatures from the scanning multichannel microwave radiometer on Nimbus 7

    NASA Technical Reports Server (NTRS)

    Milman, A. S.; Wilheit, T. T.

    1985-01-01

    Because of problems with the design and calibration of the scanning multichannel microwave radiometer (SMMR) on Nimbus 7, sea surface temperature (SST) algorithms had to be developed that corrected for instrument effects. Several stages of this development are reported here. The quality of the SST products from the final version is assessed. Thirty-four months of data have been analyzed; the average SST error is about 1.12 C over the whole globe. The error is smaller in the equatorial region and larger in the northern oceans. The main source of error is due to heating of the SMMR instrument. Specific problems in the design of the instrument are discussed. The details of the ST algorithms are given in an appendix.

  3. Topical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Adler, R. F.

    1979-01-01

    Data from the Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR-5) were used to calculate latent heat release and other rainfall parameters for over 70 satellite observations of 21 tropical cyclones in the tropical North Pacific Ocean. The results indicate that the ESMR-5 measurements can be useful in determining the rainfall characteristics of these storms and appear to be potentially useful in monitoring as well as predicting their intensity. The ESMR-5 derived total tropical cyclone rainfall estimates agree favorably with previous estimates for both the disturbance and typhoon stages. The mean typhoon rainfall rate (1.9 mm h(-1)) is approximately twice that of disturbances (1.1 mm h(-1)).

  4. Aquarius L-Band Microwave Radiometer: Three Years of Radiometric Performance and Systematic Effects

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Hong, Liang; Pellerano, Fernando A.

    2015-01-01

    The Aquarius L-band microwave radiometer is a three-beam pushbroom instrument designed to measure sea surface salinity. Results are analyzed for performance and systematic effects over three years of operation. The thermal control system maintains tight temperature stability promoting good gain stability. The gain spectrum exhibits expected orbital variations with 1f noise appearing at longer time periods. The on-board detection and integration scheme coupled with the calibration algorithm produce antenna temperatures with NEDT 0.16 K for 1.44-s samples. Nonlinearity is characterized before launch and the derived correction is verified with cold-sky calibration data. Finally, long-term drift is discovered in all channels with 1-K amplitude and 100-day time constant. Nonetheless, it is adeptly corrected using an exponential model.

  5. Geosynchronous Microwave Atmospheric Sounding Radiometer (MASR) antenna feasibility study. Volume 3: Antenna feasibility

    NASA Technical Reports Server (NTRS)

    Villeneuve, A. T.

    1978-01-01

    Antenna systems capable of operating with a multichannel microwave radiometer intended for mapping severe storm activity over patches on the surface of the earth 750 km square were compared. These systems included a paraboloidal reflector with an offset focal point feed, and a symmetrical Cassegrain reflector system. Both systems are acceptable from the point of view of beam efficiency, however, from the point of view of maintaining the required positional accuracies and surface tolerances, as well as from the point of view of manufacturability, cost effectiveness, and technical risk, the symmetrical Casegrain was selected as the preferred configuration. Performance characteristics were calculated and a mechanical design study was conducted to provide estimates of the technical risk, costs, and development time required for the construction of such an antenna system.

  6. A conceptual design of a large aperture microwave radiometer geostationary platform

    NASA Technical Reports Server (NTRS)

    Garn, Paul A.; Garrison, James L.; Jasinski, Rachel

    1992-01-01

    A conceptual design of a Large Aperture Microwave Radiometer (LAMR) Platform has been developed and technology areas essential to the design and on-orbit viability of the platform have been defined. Those technologies that must be developed to the requirement stated here for the LAMR mission to be viable include: advanced radiation resistant solar cells, integrated complex structures, large segmented reflector panels, sub 3 kg/m(exp 2) areal density large antennas, and electric propulsion systems. Technology areas that require further development to enhance the capabilities of the LAMR platform (but are not essential for viability) include: electrical power storage, on-orbit assembly, and on-orbit systems checkout and correction.

  7. TRMM Microwave Radiometer Rain Rate Estimation Method with Convective and Stratiform Discrimination

    NASA Technical Reports Server (NTRS)

    Prabhakara, Cuddapah; Iacovazzi, R.; Weinman, J. A.; Dalu, G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer brightness temperature data in the 85 GHz channel (T85) reveal distinct local minima (T85min) in a regional map containing a Mesoscale Convective System (MCS). A map of surface rain rate for that region, deduced from simultaneous measurements made by the Precipitation Radar (PR) on board the TRMM satellite, reveals that these T85min, produced by scattering, correspond to local PR rain maxima. Utilizing the PR rain rate map as a guide, we have developed a TMI algorithm to retrieve convective and stratiform rain. In this algorithm, two parameters are used to classify three kinds of thunderstorms (Cbs) based on the T85 data: a) the magnitude of scattering depression deduced from local T85mi, and b) the mean horizontal gradient of T85 around such minima. Initially, the algorithm is optimized or tuned utilizing the PR and TMI data of a few MCS events. The areal distribution of light (1-10 mm/hr), moderate (10-20 mm/hr), and intense (greater than or equal to 20 mm/hr) rain rates are retrieved on the average with an accuracy of about 15%. Taking advantage of this ability of our retrieval method, one could derive the latent heat input into the atmosphere over the 760 km wide swath of the TMI radiometer in the tropics.

  8. Wind Retrievals under Rain for Passive Satellite Microwave Radiometers and its Applications to Hurricane Tracking

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.

    2008-01-01

    We have developed an algorithm that retrieves wind speed under rain using C-hand and X-band channels of passive microwave satellite radiometers. The spectral difference of the brightness temperature signals due to wind or rain allows to find channel combinations that are sufficiently sensitive to wind speed but little or not sensitive to rain. We &ve trained a statistical algorithm that applies under hurricane conditions and is able to measure wind speeds in hurricanes to an estimated accuracy of about 2 m/s. We have also developed a global algorithm, that is less accurate but can be applied under all conditions. Its estimated accuracy is between 2 and 5 mls, depending on wind speed and rain rate. We also extend the wind speed region in our model for the wind induced sea surface emissivity from currently 20 m/s to 40 mls. The data indicate that the signal starts to saturate above 30 mls. Finally, we make an assessment of the performance of wind direction retrievals from polarimetric radiometers as function of wind speed and rain rate

  9. Microwave radiometer to retrieve temperature profiles from the surface to the stratopause

    NASA Astrophysics Data System (ADS)

    Stähli, O.; Murk, A.; Kämpfer, N.; Mätzler, C.; Eriksson, P.

    2013-09-01

    TEMPERA (TEMPERature RAdiometer) is a new ground-based radiometer which measures in a frequency range from 51-57 GHz radiation emitted by the atmosphere. With this instrument it is possible to measure temperature profiles from ground to about 50 km. This is the first ground-based instrument with the capability to retrieve temperature profiles simultaneously for the troposphere and stratosphere. The measurement is done with a filterbank in combination with a digital fast Fourier transform spectrometer. A hot load and a noise diode are used as stable calibration sources. The optics consist of an off-axis parabolic mirror to collect the sky radiation. Due to the Zeeman effect on the emission lines used, the maximum height for the temperature retrieval is about 50 km. The effect is apparent in the measured spectra. The performance of TEMPERA is validated by comparison with nearby radiosonde and satellite data from the Microwave Limb Sounder on the Aura satellite. In this paper we present the design and measurement method of the instrument followed by a description of the retrieval method, together with a validation of TEMPERA data over its first year, 2012.

  10. Global Climate Monitoring with the EOS PM-Platform's Advanced Microwave Scanning Radiometer (AMSR-E)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.

    2002-01-01

    The Advanced Microwave Scanning 2 Radiometer (AMSR-E) is being built by NASDA to fly on NASA's PM Platform (now called Aqua) in December 2000. This is in addition to a copy of AMSR that will be launched on Japan's ADEOS-II satellite in 2001. The AMSRs improve upon the window frequency radiometer heritage of the SSM/I and SMMR instruments. Major improvements over those instruments include channels spanning the 6.9 GHz to 89 GHz frequency range, and higher spatial resolution from a 1.6 m reflector (AMSR-E) and 2.0 m reflector (ADEOS-II AMSR). The ADEOS-II AMSR also will have 50.3 and 52.8 GHz channels, providing sensitivity to lower tropospheric temperature. NASA funds an AMSR-E Science Team to provide algorithms for the routine production of a number of standard geophysical products. These products will be generated by the AMSR-E Science Investigator-led Processing System (SIPS) at the Global Hydrology Resource Center (GHRC) in Huntsville, Alabama. While there is a separate NASDA-sponsored activity to develop algorithms and produce products from AMSR, as well as a Joint (NASDA-NASA) AMSR Science Team 3 activity, here I will review only the AMSR-E Team's algorithms and how they benefit from the new capabilities that AMSR-E will provide. The US Team's products will be archived at the National Snow and Ice Data Center (NSIDC).

  11. Ice Water Path Retrieval Using Microwave and Submillimetre Wave Observations

    NASA Astrophysics Data System (ADS)

    Brath, Manfred; Grützun, Verena; Mendrok, Jana; Fox, Stuart; Eriksson, Patrick; Buehler, Stefan A.

    2016-04-01

    There is an ongoing need for data on ice clouds. The ice water path as an essential climate variable is a fundamental parameter to describe ice clouds. Combined passive microwave and submillimetre wave measurements are capable to sample the size distribution of the ice particles and are sensitive to relevant particle sizes. This makes combined microwave and submillimetre wave measurements useful for estimates of ice water path. Furthermore, instead of being sensitive for the upper ice column as for example for passive visible and passive infrared measurements, combined microwave and submillimetre wave measurements can sample the full ice column. We developed a retrieval algorithm for ice water path based on a neural network approach using combined microwave and submillimetre wave measurements, from about 20 channels in the range between 89 GHz and 664 GHz of the electromagnetic sprectra. We trained a neural network by using 1D radiative transfer simulations which were conducted using the Atmospheric Radiative Transfer Simulator (ARTS). The radiative transfer simulations were fed by atmospheric profiles from a numerical weather prediction model. We will present an analysis of the retrieval. Additionally, we will present results of retrieved IWP from combined ISMAR (International SubMillimetre Airborne Radiometer) and MARSS (Microwave Airborne Radiometer Scanning System) measurements on board of the Facility for Airborne Atmospheric Measurements (FAAM) aircraft during March 2015 over the North Atlantic.

  12. Detection of the Zeeman effect in atmospheric O2 using a ground-based microwave radiometer

    NASA Astrophysics Data System (ADS)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Murk, Axel; Larsson, Richard; Buehler, Stefan A.; Eriksson, Patrick

    2015-04-01

    In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The Zeeman effect is a phenomenon which occurs when an external magnetic field interacts with a molecule or an atom of total electron spin different from zero. Such an interaction will split an original energy level into several sub-levels [1]. In the atmosphere, oxygen is an abundant molecule which in its ground electronic state has a permanent magnetic dipole moment coming from two parallel electron spins. The interaction of the magnetic dipole moment with the Earth magnetic field leads to a Zeeman splitting of the O2 rotational transitions which polarizes the emission spectra. A special campaign was carried out in order to measure this effect in the oxygen emission line centered at 53.07 GHz in Bern (Switzerland). The measurements were possible using a Fast Fourier Transform (FFT) spectrometer with 1 GHz of band width to measure the whole oxygen emission line centered at 53.07 GHz and a narrow spectrometer (4 MHz) to measure the center of the line with a very high resolution (1 kHz). Both a fixed and a rotating mirror were incorporated to the TEMPERA (TEMPERature RAdiometer) radiometer in order to be able to measure under different observational angles. This new configuration allowed us to change the angle between the observational path and the Earth magnetic field direction. The measured spectra showed a clear polarized signature when the observational angles were changed evidencing the Zeeman effect in the oxygen molecule. In addition, simulations carried out with the Atmospheric Radiative Transfer Simulator (ARTS) [2] allowed us to verify the microwave measurements showing a very good agreement between model and measurements. The incorporation of this effect to the forward model will allow to extend the temperature retrievals beyond 50 km. This improvement in the forward model will be very useful for the assimilation of brightness temperatures in

  13. Passive Microwave Observation of Soil Water Infiltration

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Schmugge, Thomas J.; Rawls, Walter J.; ONeill, Peggy E.; Parlange, Marc B.

    1997-01-01

    Infiltration is a time varying process of water entry into soil. Experiments were conducted here using truck based microwave radiometers to observe small plots during and following sprinkler irrigation. Experiments were conducted on a sandy loam soil in 1994 and a silt loam in 1995. Sandy loam soils typically have higher infiltration capabilities than clays. For the sandy loam the observed brightness temperature (TB) quickly reached a nominally constant value during irrigation. When the irrigation was stopped the TB began to increase as drainage took place. The irrigation rates in 1995 with the silt loam soil exceeded the saturated conductivity of the soil. During irrigation the TB values exhibited a pattern that suggests the occurrence of coherent reflection, a rarely observed phenomena under natural conditions. These results suggested the existence of a sharp dielectric boundary (wet over dry soil) that was increasing in depth with time.

  14. The development of a stepped frequency microwave radiometer and its application to remote sensing of the Earth

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.

    1980-01-01

    The design, development, application, and capabilities of a variable frequency microwave radiometer are described. This radiometer demonstrated the versatility, accuracy, and stability required to provide contributions to the geophysical understanding of ocean and ice processes. A closed-loop feedback method was used, whereby noise pulses were added to the received electromagnetic radiation to achieve a null balance in a Dicke switched radiometer. Stability was achieved through the use of a constant temperature enclosure around the low loss microwave front end. The Dicke reference temperature was maintained to an absolute accuracy of 0.1 K using a closed-loop proportional temperature controller. A microprocessor based digital controller operates the radiometer and records the data on computer compatible tapes. This radiometer exhibits an absolute accuracy of better than 0.5 K when the sensitivity is 0.1 K. The sensitivity varies between 0.0125 K and 1.25 K depending upon the bandwidth and integration time selected by the digital controller. Remote sensing experiments were conducted from an aircraft platform and the first radiometeric mapping of an ocean polar front; exploratory experiments to measure the thickness of lake ice; first discrimination between first year and multiyear ice below 10 GHz; and the first known measurements of frequency sensitive characteristics of sea ice.

  15. Snow stratigraphic heterogeneity within ground-based passive microwave radiometer footprints: implications for emission modelling

    NASA Astrophysics Data System (ADS)

    Sandells, M.; Rutter, N.; Derksen, C.; Langlois, A.; Lemmetyinen, J.; Montpetit, B.; Pulliainen, J. T.; Royer, A.; Toose, P.

    2012-12-01

    Remote sensing of snow mass remains a challenging area of research. Scattering of electromagnetic radiation is sensitive to snow mass, but is also affected by contrasts in the dielectric properties of the snow. Although the argument that errors from simple algorithms average out at large scales has been used to justify current retrieval methods, it is not obvious why this should be the case. This hypothesis needs to be tested more rigorously. A ground-based field experiment was carried out to assess the impact of sub-footprint snow heterogeneity on microwave brightness temperature, in Churchill, Canada in winter in early 2010. Passive microwave measurements of snow were made using sled-mounted radiometers at 75cm intervals over a 5m transect. Measurements were made at horizontal and vertical polarizations at frequencies of 19 and 37 GHz. Snow beneath the radiometer footprints was subsequently excavated, creating a snow trench wall along the centrepoints of adjacent footprints. The trench wall was carefully smoothed and photographed with a near-infrared camera in order to determine the positions of stratigraphic snow layer boundaries. Three one-dimensional vertical profiles of snowpack properties (density and snow specific surface area) were taken at 75cm, 185cm and 355cm from the left hand side of the trench. These profile measurements were used to derive snow density and grain size for each of the layers identified from the NIR image. Microwave brightness temperatures for the 2-dimensional map of snow properties was simulated with the Helsinki University of Technology (HUT) model at 1cm intervals horizontally across the trench. Where each of five ice lenses was identified in the snow stratigraphy, a decrease in brightness temperature was simulated. However, the median brightness temperature simulated across the trench was substantially higher than the observations, of the order of tens of Kelvin, dependent on frequency and polarization. In order to understand and

  16. Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions

    NASA Technical Reports Server (NTRS)

    Johnson, Benjamin T.; Petty, Grant W.; Skofronick-Jackson, Gail

    2012-01-01

    A simplied framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase hydrometeors. Properties considered included the shape parameter of a gamma size distribution andthe melted-equivalent mass median diameter D0, the particle density, dielectric mixing formula, and the choice of complex index of refraction for ice. We examine these properties at selected radiometer frequencies of 18.7, 36.5, 89.0, and 150.0 GHz; and radar frequencies at 2.8, 13.4, 35.6, and 94.0 GHz consistent with existing and planned remote sensing instruments. Passive and active microwave observables of ice particles arefound to be extremely sensitive to the melted-equivalent mass median diameter D0 ofthe size distribution. Similar large sensitivities are found for variations in the ice vol-ume fraction whenever the geometric mass median diameter exceeds approximately 1/8th of the wavelength. At 94 GHz the two-way path integrated attenuation is potentially large for dense compact particles. The distribution parameter mu has a relatively weak effect on any observable: less than 1-2 K in brightness temperature and up to 2.7 dB difference in the effective radar reflectivity. Reversal of the roles of ice and air in the MaxwellGarnett dielectric mixing formula leads to a signicant change in both microwave brightness temperature (10 K) and radar reflectivity (2 dB). The choice of Warren (1984) or Warren and Brandt (2008) for the complex index of refraction of ice can produce a 3%-4% change in the brightness temperature depression.

  17. Characterization of downwelling radiance measured from a ground-based microwave radiometer using numerical weather prediction model data

    NASA Astrophysics Data System (ADS)

    Ahn, M.-H.; Won, H. Y.; Han, D.; Kim, Y.-H.; Ha, J.-C.

    2016-01-01

    The ground-based microwave sounding radiometers installed at nine weather stations of Korea Meteorological Administration alongside with the wind profilers have been operating for more than 4 years. Here we apply a process to assess the characteristics of the observation data by comparing the measured brightness temperature (Tb) with reference data. For the current study, the reference data are prepared by the radiative transfer simulation with the temperature and humidity profiles from the numerical weather prediction model instead of the conventional radiosonde data. Based on the 3 years of data, from 2010 to 2012, we were able to characterize the effects of the absolute calibration on the quality of the measured Tb. We also showed that when clouds are present the comparison with the model has a high variability due to presence of cloud liquid water therefore making cloudy data not suitable for assessment of the radiometer's performance. Finally we showed that differences between modeled and measured brightness temperatures are unlikely due to a shift in the selection of the center frequency but more likely due to spectroscopy issues in the wings of the 60 GHz absorption band. With a proper consideration of data affected by these two effects, it is shown that there is an excellent agreement between the measured and simulated Tb. The regression coefficients are better than 0.97 along with the bias value of better than 1.0 K except for the 52.28 GHz channel which shows a rather large bias and variability of -2.6 and 1.8 K, respectively.

  18. Global Climate Monitoring with the Eos Pm-Platform's Advanced Microwave Scanning Radiometer (AMSR-E)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.

    2000-01-01

    The Advanced Microwave Scanning Radiometer (AMSR-E) is being built by NASDA to fly on NASA's PM Platform (now called "Aqua") in December 2000. This is in addition to a copy of AMSR that will be launched on Japan's ADEOS-11 satellite in 2001. The AMSRs improve upon the window frequency radiometer heritage of the SSM[l and SMMR instruments. Major improvements over those instruments include channels spanning the 6.9 GHz to 89 GHz frequency range, and higher spatial resolution from a 1.6 m reflector (AMSR-E) and 2.0 m reflector (ADEOS-11 AMSR). The ADEOS-11 AMSR also will have 50.3 and 52.8 GHz channels, providing sensitivity to lower tropospheric temperature. NASA funds an AMSR-E Science Team to provide algorithms for the routine production of a number of standard geophysical products. These products will be generated by the AMSR-E Science Investigator-led Processing System (SIPS) at the Global Hydrology Resource Center (GHRC) in Huntsville, Alabama. While there is a separate NASDA-sponsored activity to develop algorithms and produce products from AMSR, as well as a Joint (NASDA-NASA) AMSR Science Team activity, here I will review only the AMSR-E Team's algorithms and how they benefit from the new capabilities that AMSR-E will provide. The U.S. Team's products will be archived at the National Snow and Ice Data Center (NSIDC). Further information about AMSR-E can be obtained at http://www.jzhcc.msfc.nasa.Vov/AMSR.

  19. ARIS-Campaign: Intercomparison of three 22GHz radiometers for middle atmospheric water vapor at the Zugspitze in winter 2009

    NASA Astrophysics Data System (ADS)

    Straub, Corinne; Kaempfer, Niklaus; Hallgren, Kristofer; Hartogh, Paul; Golchert, Sven; Hochschild, Gerd

    Upper stratospheric and mesospheric water vapor is mainly observed by passive remote sensing instruments, either space borne or ground based. While satellite instruments provide global coverage, their lifetime is limited to 5-10 years. Therefore a network of ground based microwave radiometers measuring water vapor at single spots, but having a much longer lifetime than space borne instruments, is of major importance for monitoring and for the merging of consecutive satellite missions. In addition the high temporal resolution (of the order of hours to days, depending on desired altitude coverage, observation conditions and instrument) of ground based instruments provides a good picture of temporal variability in water vapor, which allows to study dynamical phenomena. However, this requires that the network is consistent, hence, that the biases between the single instruments are known. Therefore intercomparison campaigns are crucial. During the Alpine Radiometer Intercomparison at the Schneefernerhaus (ARIS) on the Zugspitze (47.42° N, 10.98° E, 2650 m) three new 22GHz middle atmospheric water vapor radiometers, namely MIRA 5 (Karlsruhe Institute of Technology), CAWSES 3 (Max Planck Institute for Solar Research, Lindau) and MIAWARA-C (Institute of applied Physics, University of Bern), have been measuring from the same location at the same time. Even though the three instruments all measure water vapor in similar altitude regions using the same rotational transition line, there are major differences between the backends, the calibration concepts and the profile retrieval. For the comparison we focus on two time periods, one in the end of January and one in the beginning of April 2009. The profile retrievals for the three instruments have been standardized in a sense that the same line parameters, temperature-and a priori information is used. We will give a short overview of the three microwave radiometers with their backends, calibra-tion concepts and data retrieval

  20. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 3 - The electrically Scanning Microwave Radiometer and the Special Sensor Microwave/Imager

    NASA Technical Reports Server (NTRS)

    Wilheit, Thomas T.; Yamasaki, Hiromichi

    1990-01-01

    The two microwave radiometers for TRMM are designed to measure thermal microwave radiation upwelling from the earth. The Electrically Scanning Microwave Radiometer (ESMR) scans from 50 deg to the left through nadir to 50 deg to the right in 78 steps with no moving mechanical parts in a band centered at 19.35 GHz. The TRMM concept uses the radar to develop a climatology of rain-layer thickness which can be used for the interpretation of the radiometer data over a swath wider than the radar. The ESMR data are useful for estimating rain intensity only over an ocean background. The Special Sensor Microwave/Imager (SSM/I), which scans conically with three dual polarized channels at 19, 37, and 85 GHz and a single polarized channel at 22 GHz, provides a wider range of rainfall intensities. The SSM/I spins about an axis parallel to the local spacecraft vector and 128 uniformly spaced samples of the 85 GHz data are taken on each scan over a 112-deg scan region simultaneously with 64 samples of the other frequencies.

  1. Preliminary results from the COBE differential microwave radiometers - Large angular scale isotropy of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Aymon, J.; Bennett, C. L.; Kogut, A.; Backus, C.

    1991-01-01

    Preliminary but precise micowave maps are presented of the sky, and thus of the early universe, derived as the first results from the Differential Microwave Radiometers experiment aboard COBE. The dipole anisotropy attributed to the motion of the solar system with respect to the CMB reference frame shows strongly in all six sky maps and is consistent with a Doppler-shifted thermal spectrum. The best-fitted dipole has amplitude 3.3 + or - 0.2 mK in the direction (alpha, delta) = 11.2 h + or - 0.2 h, -7 deg + or - 2 deg (J2000) or (l,b) = 265 deg + or - 2 deg, 48 deg + or - 2 deg. There is no clear evidence in the maps for any other large angular-scale feature. Limits on Delta T/T0 of 3 x 10 to the -5th (T0 = 2.735 K), 4 x 10 to the -5th, and 4 x 10 to the -5th are found for the rms quadrupole amplitude, monochromatic fluctuations, and Gaussian fluctuations, respectively. These measurements place the most severe constraints to date on many potential physical processes in the early universe.

  2. Statistics and topology of the COBE differential microwave radiometer first-year sky maps

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Tenorio, L.; Banday, A. J.; Kogut, A.; Wright, E. L.; Hinshaw, G.; Bennett, C. L.

    1994-01-01

    We use statistical and topological quantities to test the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) first-year sky maps against the hypothesis that the observed temperature fluctuations reflect Gaussian initial density perturbations with random phases. Recent papers discuss specific quantities as discriminators between Gaussian and non-Gaussian behavior, but the treatment of instrumental noise on the data is largely ignored. The presence of noise in the data biases many statistical quantities in a manner dependent on both the noise properties and the unknown cosmic microwave background temperature field. Appropriate weighting schemes can minimize this effect, but it cannot be completely eliminated. Analytic expressions are presented for these biases, and Monte Carlo simulations are used to assess the best strategy for determining cosmologically interesting information from noisy data. The genus is a robust discriminator that can be used to estimate the power-law quadrupole-normalized amplitude, Q(sub rms-PS), independently of the two-point correlation function. The genus of the DMR data is consistent with Gaussian initial fluctuations with Q(sub rms-PS) = (15.7 +/- 2.2) - (6.6 +/- 0.3)(n - 1) micro-K, where n is the power-law index. Fitting the rms temperature variations at various smoothing angles gives Q(sub rms-PS) = 13.2 +/- 2.5 micro-K and n = 1.7(sup (+0.3) sub (-0.6)). While consistent with Gaussian fluctuations, the first year data are only sufficient to rule out strongly non-Gaussian distributions of fluctuations.

  3. Correlation function analysis of the COBE differential microwave radiometer sky maps

    SciTech Connect

    Lineweaver, C.H. |

    1994-08-01

    The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than {approximately}20{degree} is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9{sigma}, > 10{sigma} and > 18{sigma} above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60{degree} due to the 60{degree} separation of the DMR horns. The mean covariance of 60{degree} is 0.45%{sub {minus}0.14}{sup +0.18} of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.

  4. The New Version of Brightness Temperature Product of Microwave Radiometer AMSR2 onboard GCOM-W1 Satellite

    NASA Astrophysics Data System (ADS)

    Maeda, Takashi; Imaoka, Keiji; Kasahara, Marehito

    2015-04-01

    The Japan Aerospace Exploration Agency (JAXA) launched the GCOM-W1 (Global Change Observation Mission 1st - Water) satellite on 17 May 2012 (UT). The main mission of the GCOM-W1 satellite is to monitor the global water cycle, for which it has onboard the Advanced Microwave Scanning Radiometer-2 (AMSR2). The AMSR2 has multifrequency microwave receivers, and like many other satellite-borne microwave radiometers currently in orbit, its multifrequency feedhorns share a single rotating antenna dish. Because AMSR2 is designed to make a sharp antenna beam for each frequency, the FOV (field of view) size of each frequency differs substantially from one another: the higher the frequency, the smaller the FOV size. Therefore, the multifrequency data (brightness temperature, TB) represent responses of areas quite different from one another, even if the multifrequency TB values are obtained by the same measurement. Lack of consideration of the difference in FOV sizes will be an important reason for the deterioration of the accuracy of geophysical values retrieved from multifrequency TB values. To solve this problem, we can consider to replicate a large FOV of low-target frequency by adequately summing small FOV of high-source frequency spreading within it. One way to achieve this is with the Backus-Gilbert (BG) method, and there have been many studies related to this issue. The BG method provides a way to calculate the intensities for small-source FOVs to replicate a large-target FOV as accurately as possible. TB values that correspond to source FOVs (source TB values) are averaged using these intensities as weighting coefficients. Thus, the TB synthesized from the source TB values, i.e., the weighted mean of the source TB values becomes equivalent to the source frequency's TB measured by a target FOV. The source frequency's synthesized TB and the target frequency's TB enable us to evaluate more accurately the difference in the microwave emission characteristics between the two

  5. The water vapour radiometer of Paranal: homogeneity of precipitable water vapour from two years of operations

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Querel, Richard R.; Neureiter, Bianca

    2015-04-01

    A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median ∼2.4 mm). The instrument consists of a humidity profiler (183-191 GHz), a temperature profiler (51-58 GHz), and an infrared camera (∼10 μm) for cloud detection. We present a statistical analysis of the homogeneity of all-sky PWV using 24 months of PWV observations. The question we tried to address was whether PWV is homogeneous enough across the sky such that service mode observations with the VLT can routinely be conducted with a user-provided constraint for PWV measured at zenith. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5° elevation with a median variation of 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 2 to 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be justified in terms of scientific gain before implementation can be considered. We plan to extend our analysis of PWV variations covering a larger parameters space

  6. Comments on the statistical analysis of excess variance in the COBE differential microwave radiometer maps

    NASA Technical Reports Server (NTRS)

    Wright, E. L.; Smoot, G. F.; Kogut, A.; Hinshaw, G.; Tenorio, L.; Lineweaver, C.; Bennett, C. L.; Lubin, P. M.

    1994-01-01

    Cosmic anisotrophy produces an excess variance sq sigma(sub sky) in the Delta maps produced by the Differential Microwave Radiometer (DMR) on cosmic background explorer (COBE) that is over and above the instrument noise. After smoothing to an effective resolution of 10 deg, this excess sigma(sub sky)(10 deg), provides an estimate for the amplitude of the primordial density perturbation power spectrum with a cosmic uncertainty of only 12%. We employ detailed Monte Carlo techniques to express the amplitude derived from this statistic in terms of the universal root mean square (rms) quadrupole amplitude, (Q sq/RMS)(exp 0.5). The effects of monopole and dipole subtraction and the non-Gaussian shape of the DMR beam cause the derived (Q sq/RMS)(exp 0.5) to be 5%-10% larger than would be derived using simplified analytic approximations. We also investigate the properties of two other map statistics: the actual quadrupole and the Boughn-Cottingham statistic. Both the sigma(sub sky)(10 deg) statistic and the Boughn-Cottingham statistic are consistent with the (Q sq/RMS)(exp 0.5) = 17 +/- 5 micro K reported by Smoot et al. (1992) and Wright et al. (1992).

  7. Microwave radiometer to retrieve temperature profiles from the surface to the stratopause

    NASA Astrophysics Data System (ADS)

    Stähli, O.; Murk, A.; Kämpfer, N.; Mätzler, C.; Eriksson, P.

    2013-03-01

    TEMPERA is a new ground-based radiometer which measures in a frequency range from 51-57 GHz radiation emitted by the atmosphere. The instrument operates thermally stabilized inside a lab. With this instrument it is possible to measure temperature profiles from ground to about 50 km. This is the first ground-based instrument with the capability to retrieve temperature profiles simultaneously for the troposphere and stratosphere. The measurement is done with a filterbank in combination with a digital Fast-Fourier-Transform spectrometer. A hot load and a noise diode are used as stable calibration sources. The optics consist of an off-axis parabolic mirror to collect the sky radiation. Due to the Zeeman effect on the emission lines used, the maximum height for the temperature retrieval is about 50 km. The effect is apparent in the measured spectra. The performance of TEMPERA is validated by comparison with nearby radiosonde and satellite data from the Microwave Limb Sounder on the Aura satellite. In this paper we present the design and measurement method of the instrument followed by a description of the retrieval method, together with a validation of TEMPERA data over its first year, 2012.

  8. Attitude angle effects on Nimbus-7 Scanning Multichannel Microwave Radiometer radiances and geophysical parameter retrievals

    NASA Technical Reports Server (NTRS)

    Macmillan, Daniel S.; Han, Daesoo

    1989-01-01

    The attitude of the Nimbus-7 spacecraft has varied significantly over its lifetime. A summary of the orbital and long-term behavior of the attitude angles and the effects of attitude variations on Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures is presented. One of the principal effects of these variations is to change the incident angle at which the SMMR views the Earth's surface. The brightness temperatures depend upon the incident angle sensitivities of both the ocean surface emissivity and the atmospheric path length. Ocean surface emissivity is quite sensitive to incident angle variation near the SMMR incident angle, which is about 50 degrees. This sensitivity was estimated theoretically for a smooth ocean surface and no atmosphere. A 1-degree increase in the angle of incidence produces a 2.9 C increase in the retrieved sea surface temperature and a 5.7 m/sec decrease in retrieved sea surface wind speed. An incident angle correction is applied to the SMMR radiances before using them in the geophysical parameter retrieval algorithms. The corrected retrieval data is compared with data obtained without applying the correction.

  9. Global measurements of sea surface temperature, wind speed and atmospheric water content from satellite microwave radiometry

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.; Swanson, L.

    1983-01-01

    The Scanning Multichannel Microwave Radiometer (SMMR) was launched on the Seasat and Nimbus 7 satellites in 1978. The SMMR has the ability to measure sea surface temperature and wind speed with the aid of microwaves. In addition, the instrument was designed to measure water vapor and cloud liquid water with better spatial resolution than previous microwave radiometers, and to make sea-ice measurements with higher precision. A description is presented of the results of global analyses of sea surface temperature, wind speed, water vapor, and cloud liquid water, taking into account data provided by the SMMR on the Seasat satellite. It is found that the SMMR data show good self-consistency, and can usefully measure global distributions of sea surface temperatures, surface winds, water vapor, and cloud liquid water.

  10. Evolution of Mesoscale Convective System over the South Western Peninsular India: Observations from Microwave Radiometer and Simulations using WRF

    NASA Astrophysics Data System (ADS)

    Uma, K. N.; Krishna Moorthy, K.; Sijikumar, S.; Renju, R.; Tinu, K. A.; Raju, Suresh C.

    2012-07-01

    Meso-scale Convective Systems (MCS) are important in view of their large cumulous build-up, vertical extent, short horizontal extent and associated thundershowers. The Microwave Radiometer Profiler (MRP) over the equatorial coastal station Thiruvanathapuram (Trivandrum, 8.55oN, 76.9oE), has been utilized to understand the genesis of Mesoscale convective system (MCS), that occur frequently during the pre-monsoon season. Examination of the measurement of relative humidity, temperature and cloud liquid water measurements, over the zenith and two scanning elevation angles (15o) viewing both over the land and the sea respectively revealed that the MCS generally originate over the land during early afternoon hours, propagate seawards over the observational site and finally dissipate over the sea, with accompanying rainfall and latent heat release. The simulations obtained using Advanced Research-Weather Research and Forecast (WRF-ARW) model effectively reproduces the thermodynamical and microphysical properties of the MCS. The time duration and quantity of rainfall obtained by the simulations also well compared with the observations. Analysis also suggests that wind shear in the upper troposphere is responsible for the growth and the shape of the convective cloud.

  11. A TRMM Microwave Radiometer Rain Rate Estimation Method with Convective and Stratiform Discrimination

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Weinman, J. A.; Dalu, G.

    1999-01-01

    Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer brightness temperature data in the 85 GHz channel (T85) reveal distinct local minima (T85min) in a regional map containing a Mesoscale Convective System (MCS). This is because of relatively small footprint size (approximately 5.5 km) and strong extinction properties in this channel of the TMI. A map of surface rain rate for that region, deduced from simultaneous measurements made by the Precipitation Radar (PR) on board the TRMM satellite, reveals that these T85(sub min), produced by scattering, correspond to local PR rain maxima. Utilizing the PR rain rate map as a guide, we infer empirically from TMI data the presence of three different kinds of thunderstorms or Cbs. These Cbs are classified as young, mature, and decaying types, and are assumed to have a scale of about 20 km on the average. Two parameters are used to classify these three kinds of Cbs based on the T85 data: a) the magnitude of scattering depression deduced from local T85(sub min) and b) the mean horizontal gradient of T85 around such minima. Knowing the category of a given Cb, we can estimate the rain rate associated with it. Such estimation is done with the help of relationships linking T85min to rain rate in each Cb type. Similarly, a weak background rain rate in all the areas where T85 is less than 260 K is deduced with another relationship linking T85 to rain rate. In our rain retrieval model, this background rain constitutes stratiform rain where the Cbs are absent. Initially, these relationships are optimized or tuned utilizing the PR and TMI data of a few MCS events. After such tuning, the model is applied to independent MCS cases. The areal distribution of light (1-10 mm/hr), moderate (10-20 mm/hr), and intense (>= 20 mm/hr) rain rates are retrieved satisfactorily. Accuracy in the estimates of the light, moderate, and intense rain areas and the mean rain rates associated with such areas in these independent MCS

  12. Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K., ,, Dr.; O'Neill, Peggy, ,, Dr.

    2014-05-01

    Soil moisture is an important element for weather and climate prediction, hydrological sciences, and applications. Hence, measurements of this hydrologic variable are required to improve our understanding of hydrological processes, ecosystem functions, and the linkages between the Earth's water, energy, and carbon cycles (Srivastava et al. 2013). The retrieval of soil moisture depends not only on parameterizations in the retrieval algorithm but also on the soil dielectric mixing models used (Behari 2005). Although a number of soil dielectric mixing models have been developed, testing these models for soil moisture retrieval has still not been fully explored, especially with SMAP-like simulators. The main objective of this work focuses on testing different dielectric models for soil moisture retrieval using the Combined Radar/Radiometer (ComRAD) ground-based L-band simulator developed jointly by NASA/GSFC and George Washington University (O'Neill et al., 2006). The ComRAD system was deployed during a field experiment in 2012 in order to provide long active/passive measurements of two crops under controlled conditions during an entire growing season. L-band passive data were acquired at a look angle of 40 degree from nadir at both horizontal & vertical polarization. Currently, there are many dielectric models available for soil moisture retrieval; however, four dielectric models (Mironov, Dobson, Wang & Schmugge and Hallikainen) were tested here and found to be promising for soil moisture retrieval (some with higher performances). All the above-mentioned dielectric models were integrated with Single Channel Algorithms using H (SCA-H) and V (SCA-V) polarizations for the soil moisture retrievals. All the ground-based observations were collected from test site-United States Department of Agriculture (USDA) OPE3, located a few miles away from NASA GSFC. Ground truth data were collected using a theta probe and in situ sensors which were then used for validation. Analysis

  13. Design and development of a multibeam 1.4 GHz pushbroom microwave radiometer

    NASA Technical Reports Server (NTRS)

    Lawrence, R. W.; Bailey, M. C.; Harrington, R. F.; Hearn, C. P.; Wells, J. G.; Stanley, W. D.

    1986-01-01

    The design and operation of a multiple beam, digital signal processing radiometer are discussed. The discussion includes a brief description of each major subsystem and an overall explanation of the hardware requirements and operation. A series of flight tests was conducted in which sea-truth sites, as well as an existing radiometer were used to verify the Pushbroom Radiometer performance. The results of these tests indicate that the Pushbroom Radiometer did meet the sensitivity design goal of 1.0 kelvin, and exceeded the accuracy requirement of 2.0 kelvin. Additional performance characteristics and test results are also presented.

  14. Integrating a Microwave Radiometer into Radar Hardware for Simultaneous Data Collection Between the Instruments

    NASA Technical Reports Server (NTRS)

    McLinden, Matthew; Piepmeier, Jeffrey

    2013-01-01

    The conventional method for integrating a radiometer into radar hardware is to share the RF front end between the instruments, and to have separate IF receivers that take data at separate times. Alternatively, the radar and radiometer could share the antenna through the use of a diplexer, but have completely independent receivers. This novel method shares the radar's RF electronics and digital receiver with the radiometer, while allowing for simultaneous operation of the radar and radiometer. Radars and radiometers, while often having near-identical RF receivers, generally have substantially different IF and baseband receivers. Operation of the two instruments simultaneously is difficult, since airborne radars will pulse at a rate of hundreds of microseconds. Radiometer integration time is typically 10s or 100s of milliseconds. The bandwidth of radar may be 1 to 25 MHz, while a radiometer will have an RF bandwidth of up to a GHz. As such, the conventional method of integrating radar and radiometer hardware is to share the highfrequency RF receiver, but to have separate IF subsystems and digitizers. To avoid corruption of the radiometer data, the radar is turned off during the radiometer dwell time. This method utilizes a modern radar digital receiver to allow simultaneous operation of a radiometer and radar with a shared RF front end and digital receiver. The radiometer signal is coupled out after the first down-conversion stage. From there, the radar transmit frequencies are heavily filtered, and the bands outside the transmit filter are amplified and passed to a detector diode. This diode produces a DC output proportional to the input power. For a conventional radiometer, this level would be digitized. By taking this DC output and mixing it with a system oscillator at 10 MHz, the signal can instead be digitized by a second channel on the radar digital receiver (which typically do not accept DC inputs), and can be down-converted to a DC level again digitally. This

  15. Millimeter-Wave Imaging Radiometer (MIR) Data Processing and Development of Water Vapor Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1998-01-01

    This document describes the final report of the Millimeter-wave Imaging Radiometer (MIR) Data Processing and Development of Water Vapor Retrieval Algorithms. Volumes of radiometric data have been collected using airborne MIR measurements during a series of field experiments since May 1992. Calibrated brightness temperature data in MIR channels are now available for studies of various hydrological parameters of the atmosphere and Earth's surface. Water vapor retrieval algorithms using multichannel MIR data input are developed for the profiling of atmospheric humidity. The retrieval algorithms are also extended to do three-dimensional mapping of moisture field using continuous observation provided by airborne sensor MIR or spaceborne sensor SSM/T-2. Validation studies for water vapor retrieval are carried out through the intercomparison of collocated and concurrent measurements using different instruments including lidars and radiosondes. The developed MIR water vapor retrieval algorithm is capable of humidity profiling under meteorological conditions ranging from clear column to moderately cloudy sky. Simulative water vapor retrieval studies using extended microwave channels near 183 and 557 GHz strong absorption lines indicate feasibility of humidity profiling to layers in the upper troposphere and improve the overall vertical resolution through the atmosphere.

  16. A Texture-Polarization Method for Estimating Convective/Stratiform Precipitation Area Coverage from Passive Microwave Radiometer Data

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Hong, Ye; Kummerow, Christian D.; Turk, Joseph; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Observational and modeling studies have described the relationships between convective/stratiform rain proportion and the vertical distributions of vertical motion, latent heating, and moistening in mesoscale convective systems. Therefore, remote sensing techniques which can quantify the relative areal proportion of convective and stratiform, rainfall can provide useful information regarding the dynamic and thermodynamic processes in these systems. In the present study, two methods for deducing the convective/stratiform areal extent of precipitation from satellite passive microwave radiometer measurements are combined to yield an improved method. If sufficient microwave scattering by ice-phase precipitating hydrometeors is detected, the method relies mainly on the degree of polarization in oblique-view, 85.5 GHz radiances to estimate the area fraction of convective rain within the radiometer footprint. In situations where ice scattering is minimal, the method draws mostly on texture information in radiometer imagery at lower microwave frequencies to estimate the convective area fraction. Based upon observations of ten convective systems over ocean and nine systems over land, instantaneous 0.5 degree resolution estimates of convective area fraction from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) are compared to nearly coincident estimates from the TRMM Precipitation Radar (TRMM PR). The TMI convective area fraction estimates are slightly low-biased with respect to the PR, with TMI-PR correlations of 0.78 and 0.84 over ocean and land backgrounds, respectively. TMI monthly-average convective area percentages in the tropics and subtropics from February 1998 exhibit the greatest values along the ITCZ and in continental regions of the summer (southern) hemisphere. Although convective area percentages. from the TMI are systematically lower than those from the PR, monthly rain patterns derived from the TMI and PR rain algorithms are very similar

  17. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  18. Detection of Rain-on-Snow (ROS) Events Using the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Weather Station Observations

    NASA Astrophysics Data System (ADS)

    Ryan, E. M.; Brucker, L.; Forman, B. A.

    2015-12-01

    During the winter months, the occurrence of rain-on-snow (ROS) events can impact snow stratigraphy via generation of large scale ice crusts, e.g., on or within the snowpack. The formation of such layers significantly alters the electromagnetic response of the snowpack, which can be witnessed using space-based microwave radiometers. In addition, ROS layers can hinder the ability of wildlife to burrow in the snow for vegetation, which limits their foraging capability. A prime example occurred on 23 October 2003 in Banks Island, Canada, where an ROS event is believed to have caused the deaths of over 20,000 musk oxen. Through the use of passive microwave remote sensing, ROS events can be detected by utilizing observed brightness temperatures (Tb) from AMSR-E. Tb observed at different microwave frequencies and polarizations depends on snow properties. A wet snowpack formed from an ROS event yields a larger Tb than a typical dry snowpack would. This phenomenon makes observed Tb useful when detecting ROS events. With the use of data retrieved from AMSR-E, in conjunction with observations from ground-based weather station networks, a database of estimated ROS events over the past twelve years was generated. Using this database, changes in measured Tb following the ROS events was also observed. This study adds to the growing knowledge of ROS events and has the potential to help inform passive microwave snow water equivalent (SWE) retrievals or snow cover properties in polar regions.

  19. Polarimetric Scanning Radiometer C and X Band Microwave Observations During SMEX03

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; Bindlish, Rajat; Gasiewski, Albin J.; Stankov, Boba; Klein, Marian; Njoku, Eni G.; Bosch, David; Coleman, Thomas; Laymon, Charles; Starks, Patrick

    2004-01-01

    Soil Moisture Experiments 2003 (SMEX03) was the second in a series of field campaigns using the NOAA Polarimetric Scanning Radiometer (PSR/CX) designed to validate brightness temperature data and soil moisture retrieval algorithms for the Advanced during SMEX03 were: calibration and validation of AMSR-E brightness temperature observations over different climate/vegetation regions of the US. (Alabama, Georgia, Oklahoma), identification of possible sources of Radio Frequency Interference (RFI), comparison of X-band observations from TRMM Microwave Imager (TMI), AMSR-E and PSR/CX, and exploring the potential of soil moisture retrieval algorithms using C and X band imagery in diverse landscapes. In the current investigation, more than one hundred flightlines of PSR/CX data were extensively processed to produce gridded brightness temperature products for the four study regions. Variations associated with soil moisture were not as large as hoped for due to the lack of significant rainfall in Oklahoma. Observations obtained over Alabama include a wide range of soil moisture and vegetation conditions for C and X band frequencies. These results clearly showed a lack of sensitivity to rainfall/soil moisture under forest canopy cover. Quantitative comparisons made between the PSR/CX, AMSR-E for validated that both the PSR/CX and AMSR-E data were well calibrated. X band comparisons of the PSR/CX high resolution and AMSR-E and TMI low-resolution data indicated a linear scaling for the range of conditions studied in SMEX03. These results will form the basis for further soil moisture investigations.

  20. Atmospheric temperature profiles from ground to stratopause with a new microwave radiometer (51-57 GHz)

    NASA Astrophysics Data System (ADS)

    Stähli, Oliver; Murk, Axel; Kämpfer, Niklaus

    2013-04-01

    This instrument is the first ground-based radiometer which can measure tropospheric and stratospheric temperature profiles at the same time. TEMPERA operates in the frequency range from 51 to 57 GHz in the oxygen-emission region of the microwave spectrum and is measuring continuously since 2012 in our lab on the roof. The spectral analysis is done with a filterbank with 12 channels for the troposphere and with a digital FFT spectrometer which measures two oxygen-emission lines around 53 GHz with 32000 channels for the stratophere. In the measured spectra the influence of the Zeeman effect can be seen. A measurement is built up of a tipping curve from 30 to 70 degree zenith angle. For every zenith angle we change the frequency of the local oscillator to three different frequencies with a synthesizer in combination with an active multiplier. With this method we can measure 12 frequencies with only 4 detectors. The frontend is thermally stabilized with Peltier elements. An off-axis parabolic mirror feeds the incoming microwave radiation to the horn antenna providing an angular resolution of 4 degree (FWHM). Absolute calibration is done with a hot load and a noise diode. The noise diode is calibrated regularly with a liquid nitrogen load and a hot load. The temperature retrieval is done with the optimal estimation method by using the QPack2/ARTS2 software. For the a priori profile of the atmospheric temperature we use monthly mean of radiosonde data for the troposphere and climatology of satellite data (MLS) for the upper atmosphere. The forward model is calculated with the Rosenkranz 98 model. As atmopheric temperature is a key parameter for the investigation of dynamical and chemical processes in the atmosphere, this new instrument provides important information about the local atmospheric temperature over a high altitude range (ground to 50 km). The temporal resolution is about 15 minutes for the troposphere and about 2 hours in the stratosphere. We will present the

  1. Investigation of antenna pattern constraints for passive geosynchronous microwave imaging radiometers

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Skofronick, G. M.

    1992-01-01

    Progress by investigators at Georgia Tech in defining the requirements for large space antennas for passive microwave Earth imaging systems is reviewed. In order to determine antenna constraints (e.g., the aperture size, illumination taper, and gain uncertainty limits) necessary for the retrieval of geophysical parameters (e.g., rain rate) with adequate spatial resolution and accuracy, a numerical simulation of the passive microwave observation and retrieval process is being developed. Due to the small spatial scale of precipitation and the nonlinear relationships between precipitation parameters (e.g., rain rate, water density profile) and observed brightness temperatures, the retrieval of precipitation parameters are of primary interest in the simulation studies. Major components of the simulation are described as well as progress and plans for completion. The overall goal of providing quantitative assessments of the accuracy of candidate geosynchronous and low-Earth orbiting imaging systems will continue under a separate grant.

  2. A cloud detection algorithm using the downwelling infrared radiance measured by an infrared pyrometer of the ground-based microwave radiometer

    DOE PAGESBeta

    Ahn, M. H.; Han, D.; Won, H. Y.; Morris, Victor R.

    2015-02-03

    For better utilization of the ground-based microwave radiometer, it is important to detect the cloud presence in the measured data. Here, we introduce a simple and fast cloud detection algorithm by using the optical characteristics of the clouds in the infrared atmospheric window region. The new algorithm utilizes the brightness temperature (Tb) measured by an infrared radiometer installed on top of a microwave radiometer. The two-step algorithm consists of a spectral test followed by a temporal test. The measured Tb is first compared with a predicted clear-sky Tb obtained by an empirical formula as a function of surface air temperaturemore » and water vapor pressure. For the temporal test, the temporal variability of the measured Tb during one minute compares with a dynamic threshold value, representing the variability of clear-sky conditions. It is designated as cloud-free data only when both the spectral and temporal tests confirm cloud-free data. Overall, most of the thick and uniform clouds are successfully detected by the spectral test, while the broken and fast-varying clouds are detected by the temporal test. The algorithm is validated by comparison with the collocated ceilometer data for six months, from January to June 2013. The overall proportion of correctness is about 88.3% and the probability of detection is 90.8%, which are comparable with or better than those of previous similar approaches. Two thirds of discrepancies occur when the new algorithm detects clouds while the ceilometer does not, resulting in different values of the probability of detection with different cloud-base altitude, 93.8, 90.3, and 82.8% for low, mid, and high clouds, respectively. Finally, due to the characteristics of the spectral range, the new algorithm is found to be insensitive to the presence of inversion layers.« less

  3. A cloud detection algorithm using the downwelling infrared radiance measured by an infrared pyrometer of the ground-based microwave radiometer

    SciTech Connect

    Ahn, M. H.; Han, D.; Won, H. Y.; Morris, Victor R.

    2015-02-03

    For better utilization of the ground-based microwave radiometer, it is important to detect the cloud presence in the measured data. Here, we introduce a simple and fast cloud detection algorithm by using the optical characteristics of the clouds in the infrared atmospheric window region. The new algorithm utilizes the brightness temperature (Tb) measured by an infrared radiometer installed on top of a microwave radiometer. The two-step algorithm consists of a spectral test followed by a temporal test. The measured Tb is first compared with a predicted clear-sky Tb obtained by an empirical formula as a function of surface air temperature and water vapor pressure. For the temporal test, the temporal variability of the measured Tb during one minute compares with a dynamic threshold value, representing the variability of clear-sky conditions. It is designated as cloud-free data only when both the spectral and temporal tests confirm cloud-free data. Overall, most of the thick and uniform clouds are successfully detected by the spectral test, while the broken and fast-varying clouds are detected by the temporal test. The algorithm is validated by comparison with the collocated ceilometer data for six months, from January to June 2013. The overall proportion of correctness is about 88.3% and the probability of detection is 90.8%, which are comparable with or better than those of previous similar approaches. Two thirds of discrepancies occur when the new algorithm detects clouds while the ceilometer does not, resulting in different values of the probability of detection with different cloud-base altitude, 93.8, 90.3, and 82.8% for low, mid, and high clouds, respectively. Finally, due to the characteristics of the spectral range, the new algorithm is found to be insensitive to the presence of inversion layers.

  4. On-orbit structural dynamic performance of a low-frequency microwave radiometer for Mission to Planet Earth applications

    NASA Technical Reports Server (NTRS)

    Wahls, Deborah M.; Farmer, Jeffery T.

    1991-01-01

    The present paper addresses the on-orbit dynamic performance of a low-frequency microwave radiometer for earth science applications. The radiometer is one of the earth-observing instruments aboard a geostationary platform proposed as part of the Mission to Planet Earth. The paper includes establishing the structural requirements of the antenna, developing the structural and disturbance models, performing modal and forced response analyses, and evaluating the resulting distortions in terms of the antenna's ability to meet stringent structural performance requirements. Two antenna configurations are discussed: free-flying and platform-mounted. These configurations are analyzed for a representative disturbance function which simulates rotation of the subreflector in order to perform a raster-type scan of the earth disk. Results show that the scanning maneuver modeled did not induce antenna performance errors which were outside their estimated limits.

  5. ACA phase calibration scheme with the ALMA water vapor radiometers

    NASA Astrophysics Data System (ADS)

    Asaki, Yoshiharu; Matsushita, Satoki; Morita, Koh-Ichiro; Nikolic, Bojan

    2012-09-01

    In Atacama Large Millimeter/submillimeter Array (ALMA) commissioning and science verification we have conducted a series of experiments of a novel phase calibration scheme for Atacama Compact Array (ACA). In this scheme water vapor radiometers (WVRs) devoted to measurements of tropospheric water vapor content are attached to ACA’s four total-power array (TP Array) antennas surrounding the 7 m dish interferometer array (7 m Array). The excess path length (EPL) due to the water vapor variations aloft is fitted to a simple two-dimensional slope using WVR measurements. Interferometric phase fluctuations for each baseline of the 7 m Array are obtained from differences of EPL inferred from the two-dimensional slope and subtracted from the interferometric phases. In the experiments we used nine ALMA 12-m antennas. Eight of them were closely located in a 70-m square region, forming a compact array like ACA. We supposed the most four outsiders to be the TP Array while the inner 4 antennas were supposed to be the 7 m Array, so that this phase correction scheme (planar-fit) was tested and compared with the WVR phase correction. We estimated residual root-mean-square (RMS) phases for 17- to 41-m baselines after the planar-fit phase correction, and found that this scheme reduces the RMS phase to a 70 - 90 % level. The planar-fit phase correction was proved to be promising for ACA, and how high or low PWV this scheme effectively works in ACA is an important item to be clarified.

  6. Wearable microwave radiometers for remote fire detection: System-on-Chip (SoC) design and proof of the concept.

    PubMed

    Tasselli, G; Alimenti, F; Fonte, A; Zito, D; Roselli, L; De Rossi, D; Lanatà, A; Neri, B; Tognetti, A

    2008-01-01

    The paper reports the present status of the project aimed at the realization of a wearable low-cost low-power System-on-Chip (SoC) 13-GHz passive microwave radiometer in CMOS 90 nm technology. This sensor has been thought to be inserted into the firemen jacket in order to help them in the detection of a hidden fire behind a door or a wall, especially where the IR technology fail. With respect of the prior art, the SoC is further developed and a proof of the concept is provided by means of a discrete-component prototype. PMID:19162822

  7. ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)

    DOE Data Explorer

    Jensen, Mike

    2012-02-01

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  8. Standard Dataset of Brightness Temperature Resampled by Antenna Pattern Matching for Microwave Radiometer AMSR2 on GCOM-W1 Satellite

    NASA Astrophysics Data System (ADS)

    Maeda, Takashi; Imaoka, Keiji

    2014-05-01

    The operation of the Advanced Microwave Scanning Radiometer for Earth-Observation System (AMSR-E) loaded on Aqua satellite stopped in October, 2011 after more than 9-years observation. But after that, the successor of AMSR-E (AMSR2) was developed and loaded on GCOM-W1 (Global Change Observation Mission 1st - Water) satellite. GCOM-W1 satellite was successfully launched in May, 2012. AMSR2 is a microwave radiometer almost similar to AMSR-E, but some important improvements are made (i.e., expansion of its main reflector's size, addition of 7.3-GHz channel to detect radio frequency interferences at 6.9 GHz). GCOM-W1 satellite is deployed into a sun-synchronous sub-recurrent orbit, and AMSR2 observes microwave powers emitted from anywhere on the Earth almost twice a day, daytime in an ascending track and nighttime in a descending track. When we use a satellite-borne microwave radiometer data that have a main reflector shared by plural feed horns, there is an inevitable problem, the differences of footprints' sizes among frequencies. In case of AMSR2, the smallest footprint's size of 89 GHz (3 × 5 km2) has just one percent of the broadest one of 6.9 GHz (35 × 62 km2). Under the circumstance, when brightness temperatures (Tb values) of plural frequencies are obtained from the same geolocation, it is difficult to compare them one another because their observation areas are absolutely different. The concept to solve this problem is simple: actually, after a satellite-borne microwave radiometer observed on the Earth's surface, footprints which give brightness temperatures of each frequency densely distribute on it with overlaps at several-kilometer intervals (i.e., 5 km as for 89 GHz and 10 km as for other frequencies in AMSR2). The footprint is an antenna pattern projected to the Earth's surface. The antenna pattern's shape is generally like a 2-dimensional Gaussian distribution. The center of the antenna pattern has strong sensitivity, and its circumjacent part has weak

  9. Microwave radiometer measurement of tidally induced salinity changes off the Georgia coast

    NASA Technical Reports Server (NTRS)

    Kendall, B. M.; Blanton, J. O.

    1981-01-01

    A quasi-synoptic survey of tidally induced salinity changes off the Georgia coast was performed by using a L band microwave radiomater onboard a NASA aircraft. Salinity maps were obtained for ebb and flood conditions in order to define the salinity distributions near rivers and sounds and major changes that occur from ebb flow to flood flow. The Savannah River plume dominated the salinity regime and extended out from the Savannah River mouth about 12 km during ebb tidal conditions. The plume merged into a band of low salinity water extending along the Georgia-South Carolina coast which was produced by the many river sources of freshwater entering the coastal waters. The changes in salinity observed offshore of the river plume area were consistent with estimates of the changes that would occur over a typical tidal excursion perpendicular to the observed gradient.

  10. User's guide for the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) CELL-ALL tape

    NASA Technical Reports Server (NTRS)

    Cu, C. C.; Han, D.; Kim, S. T.; Gloersen, P.

    1988-01-01

    The SMMR instrument onboard the Nimbus-7 satellite has been in operation since October 1978. It provided global coverage of passive microwave observations at 6.6, 10.7, 18, 21, and 37 GHz. The oberved brightness temperature can be used to retrieve geophysical parameters, principally sea surface temperature, atmospheric water vapor and liquid water content over oceans, sea ice concentration, and snow cover over land. The SMME CELL-ALL Tape contains earth-located calibrated brightness temperature data which have been appropriately binned into cells of various grid sizes, allowing intercomparisons of observations made at different frequencies (with corresponding different footprint sizes). This user's guide describes the operation of the instrument, the flow of the data processing the calibration procedure, and the characteristics of the calibrated brightness temperatures and how they are binned. Detailed tape specifications and lists of available data are also provided.