Science.gov

Sample records for midbrain dopaminergic neurons

  1. Transcriptional comparison of human induced and primary midbrain dopaminergic neurons

    PubMed Central

    Xia, Ninuo; Zhang, Pengbo; Fang, Fang; Wang, Zhengyuan; Rothstein, Megan; Angulo, Benjamin; Chiang, Rosaria; Taylor, James; Reijo Pera, Renee A.

    2016-01-01

    Generation of induced dopaminergic (iDA) neurons may provide a significant step forward towards cell replacement therapy for Parkinson’s disease (PD). To study and compare transcriptional programs of induced cells versus primary DA neurons is a preliminary step towards characterizing human iDA neurons. We have optimized a protocol to efficiently generate iDA neurons from human pluripotent stem cells (hPSCs). We then sequenced the transcriptomes of iDA neurons derived from 6 different hPSC lines and compared them to that of primary midbrain (mDA) neurons. We identified a small subset of genes with altered expression in derived iDA neurons from patients with Parkinson’s Disease (PD). We also observed that iDA neurons differ significantly from primary mDA neurons in global gene expression, especially in genes related to neuron maturation level. Results suggest iDA neurons from patient iPSCs could be useful for basic and translational studies, including in vitro modeling of PD. However, further refinement of methods of induction and maturation of neurons may better recapitulate full development of mDA neurons from hPSCs. PMID:26842779

  2. The Transcription Factor Orthodenticle Homeobox 2 Influences Axonal Projections and Vulnerability of Midbrain Dopaminergic Neurons

    ERIC Educational Resources Information Center

    Chung, Chee Yeun; Licznerski, Pawel; Alavian, Kambiz N.; Simeone, Antonio; Lin, Zhicheng; Martin, Eden; Vance, Jeffery; Isacson, Ole

    2010-01-01

    Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease.…

  3. Striatal vessels receive phosphorylated tyrosine hydroxylase-rich innervation from midbrain dopaminergic neurons

    PubMed Central

    Afonso-Oramas, Domingo; Cruz-Muros, Ignacio; Castro-Hernández, Javier; Salas-Hernández, Josmar; Barroso-Chinea, Pedro; García-Hernández, Sonia; Lanciego, José L.; González-Hernández, Tomás

    2014-01-01

    Nowadays it is assumed that besides its roles in neuronal processing, dopamine (DA) is also involved in the regulation of cerebral blood flow. However, studies on the hemodynamic actions of DA have been mainly focused on the cerebral cortex, but the possibility that vessels in deeper brain structures receive dopaminergic axons and the origin of these axons have not been investigated. Bearing in mind the evidence of changes in the blood flow of basal ganglia in Parkinson’s disease (PD), and the pivotal role of the dopaminergic mesostriatal pathway in the pathophysiology of this disease, here we studied whether striatal vessels receive inputs from midbrain dopaminergic neurons. The injection of an anterograde neuronal tracer in combination with immunohistochemistry for dopaminergic, vascular and astroglial markers, and dopaminergic lesions, revealed that midbrain dopaminergic axons are in close apposition to striatal vessels and perivascular astrocytes. These axons form dense perivascular plexuses restricted to striatal regions in rats and monkeys. Interestingly, they are intensely immunoreactive for tyrosine hydroxylase (TH) phosphorylated at Ser19 and Ser40 residues. The presence of phosphorylated TH in vessel terminals indicates they are probably the main source of basal TH activity in the striatum, and that after activation of midbrain dopaminergic neurons, DA release onto vessels precedes that onto neurons. Furthermore, the relative weight of this “vascular component” within the mesostriatal pathway suggests that it plays a relevant role in the pathophysiology of PD. PMID:25206324

  4. Parkinson's disease candidate gene prioritization based on expression profile of midbrain dopaminergic neurons

    PubMed Central

    2010-01-01

    Background Parkinson's disease is the second most common neurodegenerative disorder. The pathological hallmark of the disease is degeneration of midbrain dopaminergic neurons. Genetic association studies have linked 13 human chromosomal loci to Parkinson's disease. Identification of gene(s), as part of the etiology of Parkinson's disease, within the large number of genes residing in these loci can be achieved through several approaches, including screening methods, and considering appropriate criteria. Since several of the indentified Parkinson's disease genes are expressed in substantia nigra pars compact of the midbrain, expression within the neurons of this area could be a suitable criterion to limit the number of candidates and identify PD genes. Methods In this work we have used the combination of findings from six rodent transcriptome analysis studies on the gene expression profile of midbrain dopaminergic neurons and the PARK loci in OMIM (Online Mendelian Inheritance in Man) database, to identify new candidate genes for Parkinson's disease. Results Merging the two datasets, we identified 20 genes within PARK loci, 7 of which are located in an orphan Parkinson's disease locus and one, which had been identified as a disease gene. In addition to identifying a set of candidates for further genetic association studies, these results show that the criteria of expression in midbrain dopaminergic neurons may be used to narrow down the number of genes in PARK loci for such studies. PMID:20716345

  5. Parkin Controls Dopamine Utilization in Human Midbrain Dopaminergic Neurons Derived from Induced Pluripotent Stem Cells

    PubMed Central

    Jiang, Houbo; Ren, Yong; Yuen, Eunice Y; Zhong, Ping; Ghaedi, Mahboobe; Hu, Zhixing; Azabdaftari, Gissou; Nakaso, Kazuhiro; Yan, Zhen; Feng, Jian

    2012-01-01

    Parkinson’s disease (PD) is defined by the degeneration of nigral dopaminergic (DA) neurons and can be caused by monogenic mutations of genes such as parkin. The lack of phenotype in parkin knockout mice suggests that human nigral DA neurons have unique vulnerabilities. Through the generation and analyses of induced pluripotent stem cells (iPSCs) from normal subjects and PD patients with parkin mutations, we show here that loss of parkin in human midbrain DA neurons greatly increased the transcription of monoamine oxidases and oxidative stress, significantly reduced DA uptake and increased spontaneous DA release. Lentiviral expression of parkin, but not its PD-linked mutant, rescued all the phenotypes. The results suggest that parkin controls dopamine utilization in human midbrain DA neurons by enhancing the precision of dopaminergic neurotransmission and suppressing dopamine oxidation. Thus, the study provides novel targets and a physiologically relevant screening platform for disease-modifying therapies of PD. PMID:22314364

  6. A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression.

    PubMed

    Kiyofuji, Kana; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Mishima, Satoshi; Katsuki, Hiroshi

    2015-08-01

    Inflammatory events involving activated microglia have been recognized to play an important role in pathogenesis of various neurodegenerative disorders including Parkinson disease. Compounds regulating activation profiles of microglia may provide therapeutic benefits for Parkinson disease characterized by degeneration of midbrain dopaminergic neurons. Here we examined the effect of macelignan, a compound derived from nutmeg, on inflammatory degeneration of midbrain dopaminergic neurons. Treatment of midbrain slice cultures with interferon (IFN)-γ and lipopolysaccharide (LPS) caused a substantial decrease in viable dopaminergic neurons and an increase in nitric oxide (NO) production indicated by extracellular nitrite accumulation. Application of macelignan (10 μM) concomitantly with LPS prevented the loss of dopaminergic neurons. Besides nitrite accumulation, up-regulation of inducible NO synthase protein expression in response to IFN-γ/LPS was confirmed by Western blotting, and immunohistochemical examination revealed expression of inducible NO synthase in a subpopulation of Iba-1-poitive microglia. However, macelignan did not affect any of these NO-related parameters. On the other hand, macelignan promoted expression of arginase-1 in midbrain slice cultures irrespective of the presence or the absence of IFN-γ/LPS treatment. Arginase-1 expression was mainly localized in a subpopulation of Iba-1-positive cells. Importantly, the neuroprotective effect of macelignan was antagonized by N(ω)-hydroxy-nor-L-arginine, a specific arginase inhibitor. The neuroprotective effect of macelignan was also prevented by GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Overall, these results indicate that macelignan, a compound with PPARγ agonist activity, can provide neuroprotective effect on dopaminergic neurons in an arginase-dependent but NO-independent manner. PMID:25917324

  7. Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling.

    PubMed

    Katsuki, Hiroshi; Kurimoto, Emi; Takemori, Sachiko; Kurauchi, Yuki; Hisatsune, Akinori; Isohama, Yoichiro; Izumi, Yasuhiko; Kume, Toshiaki; Shudo, Koichi; Akaike, Akinori

    2009-07-01

    Functions of retinoic acid receptors (RARs) in adult CNS have been poorly characterized. Here we investigated potential neuroprotective action of tamibarotene (Am80), an RARalpha/beta agonist available for the treatment of acute promyelocytic leukemia, on midbrain dopaminergic neurons. Am80 protected dopaminergic neurons in rat midbrain slice culture from injury mediated by lipopolysaccharide-activated microglia, without affecting production of nitric oxide, a key mediator of cell injury. The effect of Am80 was mimicked by another RAR agonist, TAC-101, but not by a retinoid X receptor agonist, HX630, and HX630 did not synergize with Am80. We observed neuronal expression of RARalpha and RARbeta in midbrain slice culture and also found that Am80 increased tissue level of brain-derived neurotrophic factor (BDNF) mRNA. Exogenous BDNF prevented dopaminergic neurodegeneration, and the neuroprotective effect of Am80 was suppressed by a TrkB inhibitor, K252a, or by anti-BDNF neutralizing antibody. These results reveal a novel action of RARs mediated by enhancement of BDNF expression. Finally, oral administration of Am80 prevented dopaminergic cell loss in the substantia nigra induced by local injection of lipopolysaccharide in mice, indicating that RARs are a promising target of therapeutics for neurodegenerative disorders. PMID:19457078

  8. Induction of midbrain dopaminergic neurons from primate embryonic stem cells by coculture with sertoli cells.

    PubMed

    Yue, Fengming; Cui, Li; Johkura, Kohei; Ogiwara, Naoko; Sasaki, Katsunori

    2006-07-01

    The aim of this study was to produce dopaminergic neurons from primate embryonic stem (ES) cells following coculture with mouse Sertoli cells. After 3 weeks of induction, immunostaining revealed that 90% +/- 9% of the colonies contained tyrosine hydroxylase-positive (TH(+)) neurons, and 60% +/- 7% of the tubulin beta III-positive (Tuj III(+)) neurons were TH(+). Reverse transcription-polymerase chain reaction analyses showed that Sertoli-induced neurons expressed midbrain dopaminergic neuron markers, including TH, dopamine transporter, aromatic amino acid decarboxylase (AADC), receptors such as TrkB and TrkC, and transcription factors NurrI and Lmx1b. Neurons that had been differentiated on Sertoli cells were positive for Pax2, En1, and AADC, midbrain-related markers, and negative for dopamine-beta-hydroxylase, a marker of noradrenergic neurons. These Sertoli cell-induced dopaminergic cells can release dopamine when depolarized by high K(+). Sertoli cell-conditioned medium contained glial cell line-derived neurotrophic factor (GDNF) and supported neuronal differentiation. After pretreatment with anti-GDNF antibody, the percentage of Tuj III(+) colonies was reduced to 14%. Thus, GDNF contributed significantly to inducing primate ES cells into dopaminergic neurons. When transplanted into a 6-hydroxydopamine-treated Parkinson's disease model, primate-derived dopaminergic neurons integrated into the mouse striatum. Two weeks after transplantation, surviving TH(+) cells were present. These TH(+) cells survived for 2 months. Therefore, the induction method of coculture ES cells with Sertoli cells provides an unlimited source of primate cells for the study of pathogenesis and transplantation in Parkinson's disease. PMID:16822882

  9. Differentiation and molecular heterogeneity of inhibitory and excitatory neurons associated with midbrain dopaminergic nuclei.

    PubMed

    Lahti, Laura; Haugas, Maarja; Tikker, Laura; Airavaara, Mikko; Voutilainen, Merja H; Anttila, Jenni; Kumar, Suman; Inkinen, Caisa; Salminen, Marjo; Partanen, Juha

    2016-02-01

    Local inhibitory GABAergic and excitatory glutamatergic neurons are important for midbrain dopaminergic and hindbrain serotonergic pathways controlling motivation, mood, and voluntary movements. Such neurons reside both within the dopaminergic nuclei, and in adjacent brain structures, including the rostromedial and laterodorsal tegmental nuclei. Compared with the monoaminergic neurons, the development, heterogeneity, and molecular characteristics of these regulatory neurons are poorly understood. We show here that different GABAergic and glutamatergic subgroups associated with the monoaminergic nuclei express specific transcription factors. These neurons share common origins in the ventrolateral rhombomere 1, where the postmitotic selector genes Tal1, Gata2 and Gata3 control the balance between the generation of inhibitory and excitatory neurons. In the absence of Tal1, or both Gata2 and Gata3, the GABAergic precursors adopt glutamatergic fates and populate the glutamatergic nuclei in excessive numbers. Together, our results uncover developmental regulatory mechanisms, molecular characteristics, and heterogeneity of central regulators of monoaminergic circuits. PMID:26718003

  10. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells.

    PubMed

    Jiang, Houbo; Ren, Yong; Yuen, Eunice Y; Zhong, Ping; Ghaedi, Mahboobe; Hu, Zhixing; Azabdaftari, Gissou; Nakaso, Kazuhiro; Yan, Zhen; Feng, Jian

    2012-01-01

    Parkinson's disease (PD) is defined by the degeneration of nigral dopaminergic (DA) neurons and can be caused by monogenic mutations of genes such as parkin. The lack of phenotype in parkin knockout mice suggests that human nigral DA neurons have unique vulnerabilities. Here we generate induced pluripotent stem cells from normal subjects and PD patients with parkin mutations. We demonstrate that loss of parkin in human midbrain DA neurons greatly increases the transcription of monoamine oxidases and oxidative stress, significantly reduces DA uptake and increases spontaneous DA release. Lentiviral expression of parkin, but not its PD-linked mutant, rescues these phenotypes. The results suggest that parkin controls dopamine utilization in human midbrain DA neurons by enhancing the precision of DA neurotransmission and suppressing dopamine oxidation. Thus, the study provides novel targets and a physiologically relevant screening platform for disease-modifying therapies of PD. PMID:22314364

  11. Neurotensin Induces Presynaptic Depression of D2 Dopamine Autoreceptor-Mediated Neurotransmission in Midbrain Dopaminergic Neurons

    PubMed Central

    Piccart, Elisabeth; Courtney, Nicholas A.; Branch, Sarah Y.; Ford, Christopher P.

    2015-01-01

    Increased dopaminergic signaling is a hallmark of severe mesencephalic pathologies such as schizophrenia and psychostimulant abuse. Activity of midbrain dopaminergic neurons is under strict control of inhibitory D2 autoreceptors. Application of the modulatory peptide neurotensin (NT) to midbrain dopaminergic neurons transiently increases activity by decreasing D2 dopamine autoreceptor function, yet little is known about the mechanisms that underlie long-lasting effects. Here, we performed patch-clamp electrophysiology and fast-scan cyclic voltammetry in mouse brain slices to determine the effects of NT on dopamine autoreceptor-mediated neurotransmission. Application of the active peptide fragment NT8–13 produced synaptic depression that exhibited short- and long-term components. Sustained depression of D2 autoreceptor signaling required activation of the type 2 NT receptor and the protein phosphatase calcineurin. NT application increased paired-pulse ratios and decreased extracellular levels of somatodendritic dopamine, consistent with a decrease in presynaptic dopamine release. Surprisingly, we observed that electrically induced long-term depression of dopaminergic neurotransmission that we reported previously was also dependent on type 2 NT receptors and calcineurin. Because electrically induced depression, but not NT-induced depression, was blocked by postsynaptic calcium chelation, our findings suggest that endogenous NT may act through a local circuit to decrease presynaptic dopamine release. The current research provides a mechanism through which augmented NT release can produce a long-lasting increase in membrane excitability of midbrain dopamine neurons. SIGNIFICANCE STATEMENT Whereas plasticity of glutamate synapses in the brain has been studied extensively, demonstrations of plasticity at dopaminergic synapses have been more elusive. By quantifying inhibitory neurotransmission between midbrain dopaminergic neurons in brain slices from mice we have

  12. Cocaine Increases Dopaminergic Neuron and Motor Activity via Midbrain α1 Adrenergic Signaling

    PubMed Central

    Goertz, Richard Brandon; Wanat, Matthew J; Gomez, Jorge A; Brown, Zeliene J; Phillips, Paul EM; Paladini, Carlos A

    2015-01-01

    Cocaine reinforcement is mediated by increased extracellular dopamine levels in the forebrain. This neurochemical effect was thought to require inhibition of dopamine reuptake, but cocaine is still reinforcing even in the absence of the dopamine transporter. Here, we demonstrate that the rapid elevation in dopamine levels and motor activity elicited by cocaine involves α1 receptor activation within the ventral midbrain. Activation of α1 receptors increases dopaminergic neuron burst firing by decreasing the calcium-activated potassium channel current (SK), as well as elevates dopaminergic neuron pacemaker firing through modulation of both SK and the hyperpolarization-activated cation currents (Ih). Furthermore, we found that cocaine increases both the pacemaker and burst-firing frequency of rat ventral-midbrain dopaminergic neurons through an α1 adrenergic receptor-dependent mechanism within the ventral tegmental area and substantia nigra pars compacta. These results demonstrate the mechanism underlying the critical role of α1 adrenergic receptors in the regulation of dopamine neurotransmission and behavior by cocaine. PMID:25374094

  13. Allopregnanolone enhances the neurogenesis of midbrain dopaminergic neurons in APPswe/PSEN1 mice.

    PubMed

    Zhang, P; Xie, M Q; Ding, Y-Q; Liao, M; Qi, S S; Chen, S X; Gu, Q Q; Zhou, P; Sun, C Y

    2015-04-01

    An earlier study has demonstrated that exogenous allopregnanolone (APα) can reverse the reduction of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc) of 3-month-old male triple transgenic Alzheimer's disease mouse (3xTgAD). This paper is focused on further clarifying the origin of these new-born TH-positive neurons induced by exogenous APα treatment. We performed a deeper research in another AD mouse model, 4-month-old male APPswe/PSEN1 double transgenic AD mouse (2xTgAD) by measuring APα concentration and counting immunopositive neurons using enzyme-linked immunosorbent assay (ELISA) and unbiased stereology. It was found that endogenous APα level and the number of TH-positive neurons were reduced in the 2xTgAD mice, and these reductions were present prior to the appearance of β-amyloid (Aβ)-positive plaques. Furthermore, a single 20mg/kg of exogenous APα treatment prevented the decline of total neurons, TH-positive neurons and TH/bromodeoxyuridine (BrdU) double-positive neurons in the SNpc of 2xTgAD mice although the decreased intensity of TH-positive fibers was not rescued in the striatum. It was also noted that exogenous APα administration had an apparent increase in the doublecortin (DCX)-positive neurons and DCX/BrdU double-positive neurons of subventricular zone (SVZ), as well as in the percentage of neuronal nuclear antigen (NeuN)/BrdU double-positive neurons of the SNpc in the 2xTgAD mice. These findings indicate that a lower level of endogenous APα is implicated in the loss of midbrain dopaminergic neurons in the 2xTgAD mice, and exogenous APα-induced a significant increase in the new-born dopaminergic neurons might be derived from the proliferating and differentiation of neural stem niche of SVZ. PMID:25637494

  14. Aquaporin-4 deficiency diminishes the differential degeneration of midbrain dopaminergic neurons in experimental Parkinson's disease.

    PubMed

    Zhang, Ji; Yang, Beibei; Sun, Hongbin; Zhou, Yan; Liu, Mengdi; Ding, Jianhua; Fang, Feng; Fan, Yi; Hu, Gang

    2016-02-12

    Parkinson's disease (PD) is primarily due to the progressive, selective and irreversible loss of dopaminergic (DA) neurons in the substantia nigra (SN). Interestingly, DA neurons in the ventral and lateral SN are much more susceptible than adjacent dopamine neurons in the ventral tegmental area (VTA) not only in human PD but in many PD model systems. However, the molecular causes of regional vulnerability in PD remain unknown. In our previous studies, we established acute PD animal models by administration of MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine), and found that AQP4 knockout mice were significantly more prone to MPTP-induced neurotoxicity. Here, we further observe that AQP4 deficiency resulted in the same susceptible to MPTP between SN DA neuron and VTA neurons both in acute and chronic PD model. Moreover, we show that AQP4 deficiency increased the numbers of reactive astrocytes and microglias not only in the SN and but also in the VTA under basal and MPTP-induced situations. Meanwhile, AQP4 deficiency disrupted the balance of the pro-inflammatory cytokine/neurotrophin in midbrain. Taken together, these results demonstrate that glial AQP4 is involved in the susceptibility differences of DA neurons between SN and VTA, although the precise mechanism of AQP4 remains to be explored. Moreover, these findings also suggest that these susceptibility differences are not only due to intrinsic neuronal factors, but also attribute to differences in astrocytes of these regions. PMID:26748031

  15. Neuregulin-1 receptor tyrosine kinase ErbB4 is upregulated in midbrain dopaminergic neurons in Parkinson disease.

    PubMed

    Depboylu, Candan; Höllerhage, Matthias; Schnurrbusch, Stefan; Brundin, Patrik; Oertel, Wolfgang H; Schrattenholz, André; Höglinger, Günter U

    2012-12-01

    Previously we demonstrated that systemically administered neuregulin-1-β1, a nerve growth and differentiation factor, passed the blood-brain barrier and accumulated in brain areas with expression of its receptor ErbB4. In substantia nigra (SN), neuregulin-1-β1 phosphorylated ErbB4 and protected dopaminergic neurons in a toxin-based mouse model of Parkinson disease (PD). We studied ErbB4 in the context of human midbrain dopaminergic degeneration in vivo and in vitro. Post-mortem ventral midbrain tissue sections of neuropsychiatric healthy individuals and PD patients (matched for age, gender and post-mortem delay) were immunostained for ErbB4. Cultured Lund human mesencephalic (LUHMES) post-mitotic dopaminergic neurons were treated with dopaminergic toxins and analyzed for ErbB4 expression. In control individuals, 85.0±5.0% of dopaminergic neurons, containing cytoplasmic neuromelanin, expressed ErbB4 in the SN. In PD cases, the percentage of ErbB4-positive nigral dopaminergic neurons was increased to 94.9±2.5%. The mean ErbB4 immunoreactivity of melanized neurons was higher in PD than controls. LUHMES neurons upregulated ErbB4 when exposed to toxins 1-methyl-4-phenylpyridinium and 6-hydroxydopamine. Increased rate of ErbB4-positive dopaminergic neurons in PD may either reflect a better survival of ErbB4-positive neurons or an increased expression of ErbB4 by remaining neurons to seek trophic support. Enhanced ErbB4 expression in human in vitro toxin-based PD models supports the latter interpretation. Thus, dopaminergic neurons in SN might be susceptible to neuregulin-1 treatment in PD. PMID:23123776

  16. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.

    PubMed

    Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui

    2016-08-01

    Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. PMID:27476966

  17. Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons.

    PubMed

    Doucet-Beaupré, Hélène; Gilbert, Catherine; Profes, Marcos Schaan; Chabrat, Audrey; Pacelli, Consiglia; Giguère, Nicolas; Rioux, Véronique; Charest, Julien; Deng, Qiaolin; Laguna, Ariadna; Ericson, Johan; Perlmann, Thomas; Ang, Siew-Lan; Cicchetti, Francesca; Parent, Martin; Trudeau, Louis-Eric; Lévesque, Martin

    2016-07-26

    The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, inactivation of Lmx1a and Lmx1b recreates cellular features observed in Parkinson's disease. We found that Lmx1a/b control the expression of key genes involved in mitochondrial functions, and their ablation results in impaired respiratory chain activity, increased oxidative stress, and mitochondrial DNA damage. Lmx1a/b deficiency caused axonal pathology characterized by α-synuclein(+) inclusions, followed by a progressive loss of dopaminergic neurons. These results reveal the key role of these transcription factors beyond the early developmental stages and provide mechanistic links between mitochondrial dysfunctions, α-synuclein aggregation, and the survival of dopaminergic neurons. PMID:27407143

  18. Aldehyde Dehydrogenase 1a1 Mediates a GABA Synthesis Pathway in Midbrain Dopaminergic Neurons

    PubMed Central

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X.; Wu, Yu-Wei; Park, Esther; Huang, Eric J.; Chen, Lu; Ding, Jun B.

    2016-01-01

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here we show that GABA corelease in dopamine neurons does not utilize the conventional GABA synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol at binge drinking blood alcohol concentrations and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction. PMID:26430123

  19. GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease.

    PubMed

    Kramer, Edgar R; Liss, Birgit

    2015-12-21

    Glial cell line-derived neurotrophic factor (GDNF) and its canonical receptor Ret can signal together or independently to fulfill many important functions in the midbrain dopaminergic (DA) system. While Ret signaling clearly impacts on the development, maintenance and regeneration of the mesostriatal DA system, the physiological functions of GDNF for the DA system are still unclear. Nevertheless, GDNF is still considered to be an excellent candidate to protect and/or regenerate the mesostriatal DA system in Parkinson disease (PD). Clinical trials with GDNF on PD patients are, however, so far inconclusive. Here, we review the current knowledge of GDNF and Ret signaling and function in the midbrain DA system, and their crosstalk with proteins and signaling pathways associated with PD. PMID:26555190

  20. Subchronic Polychlorinated Biphenyl (Aroclor 1254) Exposure Produces Oxidative Damage and Neuronal Death of Ventral Midbrain Dopaminergic Systems

    PubMed Central

    Lee, Donna W.; Notter, Sarah A.; Thiruchelvam, Mona; Dever, Daniel P.; Fitzpatrick, Richard; Kostyniak, Paul J.; Cory-Slechta, Deborah A.; Opanashuk, Lisa A.

    2012-01-01

    Recent epidemiologic studies have demonstrated a link between organochlorine and pesticide exposure to an enhanced risk for neurodegenerative disorders such as Parkinson’s disease (PD). A common biological phenomenon underlying cell injury associated with both polychlorinated biphenyl (PCB) exposure and dopaminergic neurodegeneration during aging is oxidative stress (OS). In this study, we tested the hypothesis that oral PCB exposure, via food ingestion, impairs dopamine systems in the adult murine brain. We determined whether PCB exposure was associated with OS in dopaminergic neurons, a population of cells that selectively degenerate in PD. After 4 weeks of oral exposure to the PCB mixture Aroclor 1254, several congeners, mostly ortho substituted, accumulated throughout the brain. Significant increases in locomotor activity were observed within 2 weeks, which persisted after cessation of PCB exposure. Stereologic analyses revealed a significant loss of dopaminergic neurons within the substantia nigra and ventral tegmental area. However, striatal dopamine levels were elevated, suggesting that compensatory mechanisms exist to maintain dopamine homeostasis, which could contribute to the observed increases in locomotor activity following PCB exposure. Biochemical experiments revealed alterations in OS markers, including increases in SOD and HO-1 levels and the presence of oxidatively modified lipids and proteins. These findings were accompanied by elevated iron levels within the striatal and midbrain regions, perhaps due to the observed dysregulation of transferrin receptors and ferritin levels following PCB exposure. In this study, we suggest that both OS and the uncoupling of iron regulation contribute to dopamine neuron degeneration and hyperactivity following PCB exposure. PMID:22094459

  1. Nato3 integrates with the Shh-Foxa2 transcriptional network regulating the differentiation of midbrain dopaminergic neurons.

    PubMed

    Nissim-Eliraz, Einat; Zisman, Sophie; Schatz, Omri; Ben-Arie, Nissim

    2013-09-01

    Mesencephalic dopaminergic (mesDA) neurons originate from the floor plate of the midbrain, a transient embryonic organizing center located at the ventral-most midline. Since the loss of mesDA leads to Parkinson's disease, the molecular mechanisms controlling the genesis and differentiation of dopaminergic progenitors are extensively studied and the identification and characterization of new genes is of interest. Here, we show that the expression of the basic helix-loop-helix transcription factor Nato3 (Ferd3l) increases in parallel to the differentiation of SN4741 dopaminergic cells in vitro. Nato3 transcription is directly regulated by the transcription factor Foxa2, a target and effector of the Sonic hedgehog (Shh) signaling cascade. Moreover, pharmacological inhibition of Shh signaling downregulated the expression of Nato3, thus defining Nato3 as a novel component of one of the major pathways controlling cell patterning and generation of mesDA. Furthermore, we show that Nato3 regulated Shh and Foxa2 through a novel feed-backward loop. Up- and downregulation of Nato3 further affected the transcription of Nurr1, implicated in the genesis of mesDA, but not of TH. Taken together, these data shed new light on the transcriptional networks controlling the generation of mesDA and may be utilized in the efforts to direct stem cells towards a dopaminergic fate. PMID:23254923

  2. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain

    PubMed Central

    Ho, Tracy; Jobling, Andrew I.; Greferath, Ursula; Chuang, Trinette; Ramesh, Archana; Fletcher, Erica L.; Vessey, Kirstan A.

    2015-01-01

    Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons. PMID:26500494

  3. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain.

    PubMed

    Ho, Tracy; Jobling, Andrew I; Greferath, Ursula; Chuang, Trinette; Ramesh, Archana; Fletcher, Erica L; Vessey, Kirstan A

    2015-01-01

    Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons. PMID:26500494

  4. The Effects of Electrical and Optical Stimulation of Midbrain Dopaminergic Neurons on Rat 50-kHz Ultrasonic Vocalizations

    PubMed Central

    Scardochio, Tina; Trujillo-Pisanty, Ivan; Conover, Kent; Shizgal, Peter; Clarke, Paul B. S.

    2015-01-01

    Rationale: Adult rats emit ultrasonic vocalizations (USVs) at around 50-kHz; these commonly occur in contexts that putatively engender positive affect. While several reports indicate that dopaminergic (DAergic) transmission plays a role in the emission of 50-kHz calls, the pharmacological evidence is mixed. Different modes of dopamine (DA) release (i.e., tonic and phasic) could potentially explain this discrepancy. Objective: To investigate the potential role of phasic DA release in 50-kHz call emission. Methods: In Experiment 1, USVs were recorded in adult male rats following unexpected electrical stimulation of the medial forebrain bundle (MFB). In parallel, phasic DA release in the nucleus accumbens (NAcc) was recorded using fast-scan cyclic voltammetry. In Experiment 2, USVs were recorded following response-contingent or non-contingent optogenetic stimulation of midbrain DAergic neurons. Four 20-s schedules of optogenetic stimulation were used: fixed-interval, fixed-time, variable-interval, and variable-time. Results: Brief electrical stimulation of the MFB increased both 50-kHz call rate and phasic DA release in the NAcc. During optogenetic stimulation sessions, rats initially called at a high rate comparable to that observed following reinforcers such as psychostimulants. Although optogenetic stimulation maintained reinforced responding throughout the 2-h session, the call rate declined to near zero within the first 30 min. The trill call subtype predominated following both electrical and optical stimulation. Conclusion: The occurrence of electrically-evoked 50-kHz calls, time-locked to phasic DA (Experiment 1), provides correlational evidence supporting a role for phasic DA in USV production. However, in Experiment 2, the temporal dissociation between calling and optogenetic stimulation of midbrain DAergic neurons suggests that phasic mesolimbic DA release is not sufficient to produce 50-kHz calls. The emission of the trill subtype of 50-kHz calls

  5. Defining midbrain dopaminergic neuron diversity by single-cell gene profiling

    PubMed Central

    Poulin, Jean-Francois; Zou, Jian; Drouin-Ouellet, Janelle; Kim, Kwang-Youn A; Cicchetti, Francesca; Awatramani, Rajeshwar B

    2014-01-01

    Effective approaches to neuropsychiatric disorders require detailed understanding of the cellular composition and circuitry of the complex mammalian brain. Here, we present a paradigm for deconstructing the diversity of neurons defined by a specific neurotransmitter, using a microfluidic dynamic array to simultaneously evaluate the expression of 96 genes in single neurons. With this approach, we successfully identified multiple molecularly distinct dopamine neuron subtypes, and localized them in the adult mouse brain. To validate the anatomical and functional correlates of molecular diversity, we provide evidence that one Vip+ subtype, located in the periaqueductal region, has a discrete projection field within the extended amygdala. Another Aldh1a1+ subtype, located in the substantia nigra, is especially vulnerable in the MPTP model of Parkinson’s disease. Overall, this rapid, cost-effective approach enables the identification and classification of multiple dopamine neuron subtypes, with distinct molecular, anatomical, and functional properties. PMID:25437550

  6. The {beta}-chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons

    SciTech Connect

    Edman, Linda C.; Mira, Helena; Arenas, Ernest

    2008-06-10

    {beta}-chemokines are secreted factors that regulate diverse functions in the adult brain, such as neuro-immune responses and neurotransmission, but their function in the developing brain is largely unknown. We recently found that the orphan nuclear receptor, Nurr1, up regulates CCL2 and CCL7 in neural stem cells, suggesting a possible function of {beta}-chemokines in midbrain development. Here we report that two {beta}-chemokines, CCL2 and CCL7, and two of their receptors, CCR1 and CCR2, are expressed and developmentally regulated in the ventral midbrain (VM). Moreover, we found that the expression of CCL7 was down regulated in the Nurr1 knockout mice, linking CCL7 to dopamine (DA) neuron development. When the function of CCL2 and CCL7 was examined, we found that they selectively enhanced the differentiation of Nurr1+ precursors into DA neurons, but not their survival or progenitor proliferation in primary precursor cultures. Moreover, both CCL2 and CCL7 promoted neuritogenesis in midbrain DA neuron cultures. Thus, our results show for the first time a function of {beta}-chemokines in the developing brain and identify {beta}-chemokines as novel class of pro-differentiation factors for midbrain DA neurons. These data also suggest that {beta}-chemokines may become useful tools to enhance the differentiation of DA cell preparations for cell replacement therapy and drug discovery in Parkinson's disease (PD)

  7. Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons.

    PubMed

    Caudal, D; Alvarsson, A; Björklund, A; Svenningsson, P

    2015-11-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigral dopaminergic neurons and by the presence of aggregates containing α-synuclein called Lewy bodies. Viral vector-induced overexpression of α-synuclein in dopaminergic neurons represents a model of PD which recapitulates disease progression better than commonly used neurotoxin models. Previous studies using this model have reported motor and cognitive impairments, whereas depression, mood and anxiety phenotypes are less described. To investigate these psychiatric phenotypes, Sprague-Dawley rats received bilateral injections of a recombinant adeno-associated virus (AAV) vector expressing human α-synuclein or GFP into the substantia nigra pars compacta. Behavior was assessed at two timepoints: 3 and 8 weeks post-injection. We report that nigral α-synuclein overexpression led to a pronounced nigral dopaminergic cell loss accompanied by a smaller cell loss in the ventral tegmental area, and to a decreased striatal density of dopaminergic fibers. The AAV-α-synuclein group exhibited modest, but significant motor impairments 8 weeks after vector administration. The AAV-α-synuclein group displayed depressive-like behavior in the forced swim test after 3 weeks, and reduced sucrose preference at week 8. At both timepoints, overexpression of α-synuclein was linked to a hyperactive hypothalamic-pituitary-adrenal (HPA) axis regulation of corticosterone. The depressive-like phenotype was also correlated with decreased nigral brain-derived neurotrophic factor and spinophilin levels, and with decreased striatal levels of the activity-regulated cytoskeleton-associated protein. This study demonstrates that AAV-mediated α-synuclein overexpression in dopamine neurons is not only useful to model motor impairments of PD, but also depression. This study also provides evidence that depression in experimental Parkinsonism is correlated to dysregulation of the HPA axis and to

  8. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP+ and Rotenone Toxicity

    PubMed Central

    Bayer Andersen, Kirsten; Leander Johansen, Jens; Hentzer, Morten; Smith, Garrick Paul; Dietz, Gunnar P. H.

    2016-01-01

    The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP+)-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson’s disease (PD) models and potential for GPR139 agonists in neuroprotection. PMID:27445691

  9. Disrupted Functional Connectivity with Dopaminergic Midbrain in Cocaine Abusers

    SciTech Connect

    Tomasi, D.; Tomasi, D.; Volkow, N.D.; Wang, R.; Carrillo, J.; Maloney, T.; Alia-Klein, N.; Woicik, P.A.; Telang, F.; Goldstein, R.Z.

    2010-06-01

    Chronic cocaine use is associated with disrupted dopaminergic neurotransmission but how this disruption affects overall brain function (other than reward/motivation) is yet to be fully investigated. Here we test the hypothesis that cocaine addicted subjects will have disrupted functional connectivity between the midbrain (where dopamine neurons are located) and cortical and subcortical brain regions during the performance of a sustained attention task. We measured brain activation and functional connectivity with fMRI in 20 cocaine abusers and 20 matched controls. When compared to controls, cocaine abusers had lower positive functional connectivity of midbrain with thalamus, cerebellum, and rostral cingulate, and this was associated with decreased activation in thalamus and cerebellum and enhanced deactivation in rostral cingulate. These findings suggest that decreased functional connectivity of the midbrain interferes with the activation and deactivation signals associated with sustained attention in cocaine addicts.

  10. Selective expression of Parkinson's disease-related Leucine-rich repeat kinase 2 G2019S missense mutation in midbrain dopaminergic neurons impairs dopamine release and dopaminergic gene expression.

    PubMed

    Liu, Guoxiang; Sgobio, Carmelo; Gu, Xinglong; Sun, Lixin; Lin, Xian; Yu, Jia; Parisiadou, Loukia; Xie, Chengsong; Sastry, Namratha; Ding, Jinhui; Lohr, Kelly M; Miller, Gary W; Mateo, Yolanda; Lovinger, David M; Cai, Huaibin

    2015-09-15

    Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release. PMID:26123485

  11. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence

    PubMed Central

    McNamara, Colin G; Tejero-Cantero, Álvaro; Trouche, Stéphanie; Campo-Urriza, Natalia; Dupret, David

    2014-01-01

    Here we found that optogenetic burst stimulation of hippocampal dopaminergic fibers from midbrain neurons in mice exploring novel environments enhanced the reactivation of pyramidal cell assemblies during subsequent sleep/rest. When applied during spatial learning of new goal locations, dopaminergic photostimulation improved the later recall of neural representations of space and stabilized memory performance. These findings reveal that midbrain dopaminergic neurons promote hippocampal network dynamics associated with memory persistence. PMID:25326690

  12. The role of growth/differentiation factor 5 (GDF5) in the induction and survival of midbrain dopaminergic neurones: relevance to Parkinson's disease treatment.

    PubMed

    Sullivan, Aideen M; O'Keeffe, Gerard W

    2005-09-01

    Growth/differentiation factor-5 (GDF5) is a member of the transforming growth factor-beta superfamily which has potent effects on dopaminergic neurones in vitro and in vivo. GDF5 is under investigation as a potential therapeutic agent for Parkinson's disease (PD), which is caused by the progressive degeneration of dopaminergic neurones projecting from the substantia nigra (SN) to the striatum. In the rat ventral mesencephalon (VM; the developing SN), GDF5 expression peaks at embryonic day 14, the time at which dopaminergic neurones undergo terminal differentiation. Addition of GDF5 protein to cultures of embryonic rat VM increases the survival and improves the morphology of dopaminergic neurones in these cultures. GDF5 treatment also increases the number of cells which adopt a dopaminergic phenotype in cultures of VM progenitor cells. Intracerebral administration of GDF5 has potent neuroprotective and restorative effects on the nigrostriatal pathway in animal models of PD. Furthermore, addition of GDF5 protein to embryonic rat dopaminergic neuronal transplants improves their survival and function in a rat model of PD. Thus, GDF5 has potential applications to PD therapy as a dopaminergic neuroprotective agent and as a factor that may induce a dopaminergic neuronal fate in unrestricted progenitor cells. PMID:16185246

  13. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection

    PubMed Central

    Chung, Chee Yeun; Seo, Hyemyung; Sonntag, Kai Christian; Brooks, Andrew; Lin, Ling; Isacson, Ole

    2008-01-01

    Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson’s disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [>2-fold; false discovery rate (FDR) <1%]. Genes of interest for further functional analysis were selected by criteria of (i) fold differences in gene expression, (ii) real-time PCR validation and (iii) potential roles in neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both α-synuclein overexpressing PC12 (PC12-αSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-αSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-αSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD. PMID:15888489

  14. Perinatal Exposure to Neuregulin-1 Results in Disinhibition of Adult Midbrain Dopaminergic Neurons: Implication in Schizophrenia Modeling

    PubMed Central

    Namba, Hisaaki; Okubo, Takeshi; Nawa, Hiroyuki

    2016-01-01

    Aberrant neuregulin-1 (NRG1) signals are suggested to associate with the neuropathophysiology of schizophrenia. Employing a mouse schizophrenia model established by neonatal neuregulin-1 challenge, we analysed postpubertal consequence of the NRG1 pretreatment for the electrophysiological property of nigral dopamine neurons. In vivo single unit recordings from anaesthetized NRG1-pretreated mice revealed increased spike bursting of nigral dopamine neurons. In slice preparations from NRG1-pretreated mice, spontaneous firing was elevated relative to controls. The relative increase in firing rates was abolished by a GABAA receptor antagonist. Whole-cell recording showed that perinatal NRG1 pretreatment diminished inhibitory miniature synaptic currents as well as GABAA receptor sensitivity. These results collectively suggest that perinatal exposure to neuregulin-1 results in the disinhibition of nigral dopamine neurons to influence their firing properties at the adult stage when the behavioral deficits are evident. PMID:26935991

  15. Fast transmission from the dopaminergic ventral midbrain to the sensory cortex of awake primates.

    PubMed

    Mylius, Judith; Happel, Max F K; Gorkin, Alexander G; Huang, Ying; Scheich, Henning; Brosch, Michael

    2015-11-01

    Motivated by the increasing evidence that auditory cortex is under control of dopaminergic cell structures of the ventral midbrain, we studied how the ventral tegmental area and substantia nigra affect neuronal activity in auditory cortex. We electrically stimulated 567 deep brain sites in total within and in the vicinity of the two dopaminergic ventral midbrain structures and at the same time, recorded local field potentials and neuronal discharges in cortex. In experiments conducted on three awake macaque monkeys, we found that electrical stimulation of the dopaminergic ventral midbrain resulted in short-latency (~35 ms) phasic activations in all cortical layers of auditory cortex. We were also able to demonstrate similar activations in secondary somatosensory cortex and superior temporal polysensory cortex. The electrically evoked responses in these parts of sensory cortex were similar to those previously described for prefrontal cortex. Moreover, these phasic responses could be reversibly altered by the dopamine D1-receptor antagonist SCH23390 for several tens of minutes. Thus, we speculate that the dopaminergic ventral midbrain exerts a temporally precise, phasic influence on sensory cortex using fast-acting non-dopaminergic transmitters and that their effects are modulated by dopamine on a longer timescale. Our findings suggest that some of the information carried by the neuronal discharges in the dopaminergic ventral midbrain, such as the motivational value or the motivational salience, is transmitted to auditory cortex and other parts of sensory cortex. The mesocortical pathway may thus contribute to the representation of non-auditory events in the auditory cortex and to its associative functions. PMID:25084746

  16. The Dopaminergic Midbrain Encodes the Expected Certainty about Desired Outcomes

    PubMed Central

    Schwartenbeck, Philipp; FitzGerald, Thomas H. B.; Mathys, Christoph; Dolan, Ray; Friston, Karl

    2015-01-01

    Dopamine plays a key role in learning; however, its exact function in decision making and choice remains unclear. Recently, we proposed a generic model based on active (Bayesian) inference wherein dopamine encodes the precision of beliefs about optimal policies. Put simply, dopamine discharges reflect the confidence that a chosen policy will lead to desired outcomes. We designed a novel task to test this hypothesis, where subjects played a “limited offer” game in a functional magnetic resonance imaging experiment. Subjects had to decide how long to wait for a high offer before accepting a low offer, with the risk of losing everything if they waited too long. Bayesian model comparison showed that behavior strongly supported active inference, based on surprise minimization, over classical utility maximization schemes. Furthermore, midbrain activity, encompassing dopamine projection neurons, was accurately predicted by trial-by-trial variations in model-based estimates of precision. Our findings demonstrate that human subjects infer both optimal policies and the precision of those inferences, and thus support the notion that humans perform hierarchical probabilistic Bayesian inference. In other words, subjects have to infer both what they should do as well as how confident they are in their choices, where confidence may be encoded by dopaminergic firing. PMID:25056572

  17. Histamine impairs midbrain dopaminergic development in vivo by activating histamine type 1 receptors

    PubMed Central

    2014-01-01

    Background Histamine (HA) regulates the sleep-wake cycle, synaptic plasticity and memory in adult mammals. Dopaminergic specification in the embryonic ventral midbrain (VM) coincides with increased HA brain levels. To study the effect of HA receptor stimulation on dopamine neuron generation, we administered HA to dopamine progenitors, both in vitro and in vivo. Results Cultured embryonic day 12 (E12) VM neural stem/progenitor cells expressed transcripts for HA receptors H1R, H2R and H3R. These undifferentiated progenitors increased intracellular calcium upon HA addition. In HA-treated cultures, dopamine neurons significantly decreased after activation of H1R. We performed intrauterine injections in the developing VM to investigate HA effects in vivo. HA administration to E12 rat embryos notably reduced VM Tyrosine Hydroxylase (TH) staining 2 days later, without affecting GABA neurons in the midbrain, or serotonin neurons in the mid-hindbrain boundary. qRT-PCR and Western blot analyses confirmed that several markers important for the generation and maintenance of dopaminergic lineage such as TH, Lmx1a and Lmx1b were significantly diminished. To identify the cell type susceptible to HA action, we injected embryos of different developmental stages, and found that neural progenitors (E10 and E12) were responsive, whereas differentiated dopaminergic neurons (E14 and E16) were not susceptible to HA actions. Proliferation was significantly diminished, whereas neuronal death was not increased in the VM after HA administration. We injected H1R or H2R antagonists to identify the receptor responsible for the detrimental effect of HA on dopaminergic lineage and found that activation of H1R was required. Conclusion These results reveal a novel action of HA affecting dopaminergic lineage during VM development. PMID:25112718

  18. Androgen Decreases Dopamine Neurone Survival in Rat Midbrain

    PubMed Central

    Johnson, M. L.; Day, A. E.; Ho, C. C.; Walker, Q. D.; Francis, R.; Kuhn, C. M.

    2011-01-01

    Clinical studies show that men are more likely to develop disorders affecting midbrain dopaminergic pathways, such as drug addiction and Parkinson’s disease (PD). Although a great deal of focus has been given to the role of oestrogen in the maintenance of midbrain dopaminergic pathways, little is known about how testosterone influences these pathways. In the present study, we used stereological analysis of tyrosine hydroxylase-immunoreactive (TH-IR) cell bodies to determine how testosterone influences the dopaminergic cell bodies of the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA). Rats and mice were castrated at post-natal day (PN) 60, and these midbrain cell populations were counted on PN 90. One month after castration, TH-IR cell number had increased in the SNpc and VTA of rats and mice. Replacement with testosterone or the non-aromatisable analogue dihydrotestosterone (DHT) in castrated animals reduced TH-IR cell number in the SNpc and VTA in rats. In mice, the decrease of TH-IR cell number with testosterone or DHT replacement was observed only in the SNpc. The apparent increase in TH-IR neurone number after castration is not explained by an increase in TH expression because the number of nondopaminergic cells (TH-immunonegative, TH-IN) did not decrease proportionally after castration. TH-IN cell number did not change after castration or hormone replacement in rat or mouse SNpc or VTA. These findings suggest that testosterone may play a suppressive role in midbrain dopaminergic pathways. PMID:20136692

  19. Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro.

    PubMed

    Kurowska, Z; Brundin, P; Schwab, M E; Li, J-Y

    2014-01-01

    Nogo-A is a transmembrane protein originally discovered in myelin, produced by postnatal CNS oligodendrocytes. Nogo-A induces growth cone collapse and inhibition of axonal growth in the injured adult CNS. In the intact CNS, Nogo-A functions as a negative regulator of growth and plasticity. Nogo-A is also expressed by certain neurons. Neuronal Nogo-A depresses long-term potentiation in the hippocampus and modulates neurite adhesion and fasciculation during development in mice. Here we show that Nogo-A is present in neurons derived from human midbrain (Lund human mesencephalic (LUHMES) cell line), as well as in embryonic and postnatal mouse midbrain (dopaminergic) neurons. In LUHMES cells, Nogo-A was upregulated threefold upon differentiation and neurite extension. Nogo-A was localized intracellularly in differentiated LUHMES cells. Cultured midbrain (dopaminergic) neurons from Nogo-A knock-out mice exhibited decreased numbers of neurites and branches when compared with neurons from wild-type (WT) mice. However, this phenotype was not observed when the cultures from WT mice were treated with an antibody neutralizing plasma membrane Nogo-A. In vivo, neither the regeneration of nigrostriatal tyrosine hydroxylase fibers, nor the survival of nigral dopaminergic neurons after partial 6-hydroxydopamine lesions was affected by Nogo-A deletion. These results indicate that during maturation of cultured midbrain (dopaminergic) neurons, intracellular Nogo-A supports neurite growth initiation and branch formation. PMID:24157929

  20. Physiological Characterisation of Human iPS-Derived Dopaminergic Neurons

    PubMed Central

    Ribeiro Fernandes, Hugo J.; Vowles, Jane; James, William S.; Cowley, Sally A.; Wade-Martins, Richard

    2014-01-01

    Human induced pluripotent stem cells (hiPSCs) offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson’s disease (PD), in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH) and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2), representative of the A9 population of substantia nigra pars compacta (SNc) neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz) and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3) receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+) which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models. PMID:24586273

  1. Physiological characterisation of human iPS-derived dopaminergic neurons.

    PubMed

    Hartfield, Elizabeth M; Yamasaki-Mann, Michiko; Ribeiro Fernandes, Hugo J; Vowles, Jane; James, William S; Cowley, Sally A; Wade-Martins, Richard

    2014-01-01

    Human induced pluripotent stem cells (hiPSCs) offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson's disease (PD), in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH) and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2), representative of the A9 population of substantia nigra pars compacta (SNc) neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz) and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3) receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+) which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models. PMID:24586273

  2. Transcriptional regulation by nicotine in dopaminergic neurons

    PubMed Central

    Henley, Beverley M.; Williams, Brian A.; Srinivasan, Rahul; Cohen, Bruce N.; Xiao, Cheng; Mackey, Elisha D.W.; Wold, Barbara J.; Lester, Henry A.

    2013-01-01

    Dopaminergic neurons in the substantia nigra pars compacta (SNc) degenerate in Parkinson’s disease. These neurons robustly express several nicotinic acetylcholine receptor (nAChR) subtypes. Smoking appears to be neuroprotective for Parkinson’s disease but the mechanism is unknown. To determine whether chronic nicotine-induced changes in gene expression contribute to the neuroprotective effects of smoking, we develop methods to measure the effect of prolonged nicotine exposure on the SNc neuronal transcriptome in an unbiased manner. Twenty neurons were collected using laser-capture microscopy and transcriptional changes were assessed using RNA deep sequencing. These results are the first whole-transcriptome analyses of chronic nicotine treatment in SNc neurons. Overall, 129 genes were significantly regulated: 67 upregulated, 62 downregulated. Nicotine-induced relief of endoplasmic reticulum (ER) stress has been postulated as a potential mechanism for the neuroprotective effects of smoking. Chronic nicotine did not significantly affect the expression of ER stress-related genes, nor of dopamine-related or nAChR genes, but it did modulate expression of 129 genes that could be relevant to the neuroprotective effects of smoking, including genes involved in (1) the ubiquitin–proteasome pathway, (2) cell cycle regulation, (3) chromatin modification, and (4) DNA binding and RNA regulation. We also report preliminary transcriptome data for single-cell dopaminergic and GABAergic neurons isolated from midbrain cultures. These novel techniques will facilitate advances in understanding the mechanisms taking place at the cellular level and may have applications elsewhere in the fields of neuroscience and molecular biology. The results give an emerging picture of the role of nicotine on the SNc and on dopaminergic neurons. PMID:23939186

  3. Glucocorticoid receptor expression and sub-cellular localization in dopamine neurons of the rat midbrain.

    PubMed

    Hensleigh, E; Pritchard, L M

    2013-11-27

    Stress plays an important role in the development of addiction. Animals subjected to stress exhibit sensitized responses to psychostimulant drugs, and this sensitized response is associated with functional adaptations of the mesolimbic dopamine system. These adaptations likely arise from direct or indirect effects of glucocorticoids on dopaminergic neurons. Though glucocorticoid receptor expression in midbrain dopaminergic neurons has been examined in previous studies, results have been somewhat equivocal. We sought to clarify this issue by analyzing tyrosine hydroxylase (TH) and glucocorticoid receptor (GR) co-localization in the rat midbrain by dual fluorescence immunohistochemistry. We also examined sub-cellular localization of the GR in rat midbrain neurons after acute restraint stress. Adult Long-Evans rats were sacrificed 0, 30, 60 or 120min after 30min of restraint stress. A control group did not undergo restraint. Blood samples were collected immediately before and after restraint for measurement of plasma corticosterone by enzyme immunoassay. Glucocorticoid receptors were observed in dopaminergic neurons in both the substantia nigra (SN) and ventral tegmental area (VTA). The degree of co-localization of TH and GR did not differ between the VTA and the SN. All animals subjected to stress exhibited significant increases in plasma corticosterone. Significant translocation of GR signal to cell nuclei was observed after restraint in the SN, but not in the VTA. These results suggest that stress-induced glucocorticoid secretion could trigger functional changes in the mesolimbic dopamine system by direct activation of glucocorticoid receptors in dopaminergic neurons. PMID:24121048

  4. Increased Fos Expression Among Midbrain Dopaminergic Cell Groups during Birdsong Tutoring

    PubMed Central

    Nordeen, E.J.; Holtzman, D.A.; Nordeen, K.W.

    2009-01-01

    During avian vocal learning, birds memorize conspecific song patterns and then use auditory feedback to match their vocal output to this acquired template. Some models of song learning posit that during tutoring, conspecific visual, social, and/or auditory cues activate neuromodulatory systems that encourage acquisition of the tutor’s song and attach incentive value to that specific acoustic pattern. This hypothesis predicts that stimuli experienced during social tutoring activate cell populations capable of signaling reward. Using immunocytochemistry for the protein product of the immediate early gene c-Fos, we found that brief exposure of juvenile male zebra finches to a live familiar male tutor increased the density of Fos+ cells within two brain regions implicated in reward processing; the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). This activation of Fos appears to involve both dopaminergic and non-dopaminergic VTA/SNc neurons. Intriguingly, a familiar tutor was more effective than a novel tutor in stimulating Fos expression within these regions. In the periaqueductal gray (PAG), a dopamine-enriched cell population that has been implicated in emotional processing, Fos labeling also was increased after tutoring, with a familiar tutor once again being more effective than a novel conspecific. Since several neural regions implicated in song acquisition receive strong dopaminergic projections from these midbrain nuclei, their activation in conjunction with hearing the tutor’s song could help establish sensory representations that later guide motor sequence learning. PMID:19686474

  5. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism.

    PubMed

    Dodson, Paul D; Dreyer, Jakob K; Jennings, Katie A; Syed, Emilie C J; Wade-Martins, Richard; Cragg, Stephanie J; Bolam, J Paul; Magill, Peter J

    2016-04-12

    Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits. PMID:27001837

  6. Sex-specific disruption of murine midbrain astrocytic and dopaminergic developmental trajectories following antenatal GC treatment.

    PubMed

    McArthur, Simon; Pienaar, Ilse S; Siddiqi, Sindhu M; Gillies, Glenda E

    2016-06-01

    The mammalian midbrain dopaminergic systems arising in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) are critical for coping behaviours and are implicated in neuropsychiatric disorders where early life challenges comprise significant risk factors. Here, we aimed to advance our hypothesis that glucocorticoids (GCs), recognised key players in neurobiological programming, target development within these systems, with a novel focus on the astrocytic population. Mice received antenatal GC treatment (AGT) by including the synthetic GC, dexamethasone, in the mothers' drinking water on gestational days 16-19; controls received normal drinking water. Analyses of regional shapes and volumes of the adult SNc and VTA demonstrated that AGT induced long-term, dose-dependent, structural changes that were accompanied by profound effects on astrocytes (doubling/tripling of numbers and/or density). Additionally, AGT induced long-term changes in the population size and distribution of SNc/VTA dopaminergic neurons, confirming and extending our previous observations made in rats. Furthermore, glial/neuronal structural remodelling was sexually dimorphic and depended on the AGT dose and sub-region of the SNc/VTA. Investigations within the neonatal brain revealed that these long-term organisational effects of AGT depend, at least in part, on targeting perinatal processes that determine astrocyte density and programmed cell death in dopaminergic neurons. Collectively, our characterisation of enduring, AGT-induced, sex-specific cytoarchitectural disturbances suggests novel mechanistic links for the strong association between early environmental challenge (inappropriate exposure to excess GCs) and vulnerability to developing aberrant behaviours in later life, with translational implications for dopamine-associated disorders (such as schizophrenia, ADHD, autism, depression), which typically show a sex bias. PMID:25944572

  7. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry.

    PubMed

    Hess, Martin E; Hess, Simon; Meyer, Kate D; Verhagen, Linda A W; Koch, Linda; Brönneke, Hella S; Dietrich, Marcelo O; Jordan, Sabine D; Saletore, Yogesh; Elemento, Olivier; Belgardt, Bengt F; Franz, Thomas; Horvath, Tamas L; Rüther, Ulrich; Jaffrey, Samie R; Kloppenburg, Peter; Brüning, Jens C

    2013-08-01

    Dopaminergic (DA) signaling governs the control of complex behaviors, and its deregulation has been implicated in a wide range of diseases. Here we demonstrate that inactivation of the Fto gene, encoding a nucleic acid demethylase, impairs dopamine receptor type 2 (D2R) and type 3 (D3R) (collectively, 'D2-like receptor')-dependent control of neuronal activity and behavioral responses. Conventional and DA neuron-specific Fto knockout mice show attenuated activation of G protein-coupled inwardly-rectifying potassium (GIRK) channel conductance by cocaine and quinpirole. Impaired D2-like receptor-mediated autoinhibition results in attenuated quinpirole-mediated reduction of locomotion and an enhanced sensitivity to the locomotor- and reward-stimulatory actions of cocaine. Analysis of global N(6)-methyladenosine (m(6)A) modification of mRNAs using methylated RNA immunoprecipitation coupled with next-generation sequencing in the midbrain and striatum of Fto-deficient mice revealed increased adenosine methylation in a subset of mRNAs important for neuronal signaling, including many in the DA signaling pathway. Several proteins encoded by these mRNAs had altered expression levels. Collectively, FTO regulates the demethylation of specific mRNAs in vivo, and this activity relates to the control of DA transmission. PMID:23817550

  8. Endocannabinoid Signaling in Midbrain Dopamine Neurons: More than Physiology?

    PubMed Central

    Melis, M; Pistis, P

    2007-01-01

    Different classes of neurons in the CNS utilize endogenous cannabinoids as retrograde messengers to shape afferent activity in a short- and long-lasting fashion. Transient suppression of excitation and inhibition as well as long-term depression or potentiation in many brain regions require endocannabinoids to be released by the postsynaptic neurons and activate presynaptic CB1 receptors. Memory consolidation and/or extinction and habit forming have been suggested as the potential behavioral consequences of endocannabinoid-mediated synaptic modulation. However, endocannabinoids have a dual role: beyond a physiological modulation of synaptic functions, they have been demonstrated to participate in the mechanisms of neuronal protection under circumstances involving excessive excitatory drive, glutamate excitotoxicity, hypoxia-ischemia, which are key features of several neurodegenerative disorders. In this framework, the recent discovery that the endocannabinoid 2-arachidonoyl-glycerol is released by midbrain dopaminergic neurons, under both physiological synaptic activity to modulate afferent inputs and pathological conditions such as ischemia, is particularly interesting for the possible implication of these molecules in brain functions and dysfunctions. Since dopamine dysfunctions underlie diverse neuropsychiatric disorders including schizophrenia, psychoses, and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Additionally, we will review the evidence of the involvement of the endocannabinoid system in the pathogenesis of Parkinson’s disease, where neuroprotective actions of cannabinoid-acting compounds may prove beneficial. The modulation of the endocannabinoid system by pharmacological agents is a valuable target in protection of dopamine neurons against functional abnormalities as well as against their neurodegeneration. PMID:19305743

  9. Making a mes: A transcription factor-microRNA pair governs the size of the midbrain and the dopaminergic progenitor pool

    PubMed Central

    Anderegg, Angela; Awatramani, Rajeshwar

    2015-01-01

    Canonical Wnt signaling is critical for midbrain dopaminergic progenitor specification, proliferation, and neurogenesis. Yet mechanisms that control Wnt signaling remain to be fully elucidated. Wnt1 is a key ligand in the embryonic midbrain, and directs proliferation, survival, specification and neurogenesis. In a recent study, we reveal that the transcription factor Lmx1b promotes Wnt1/Wnt signaling, and dopaminergic progenitor expansion, consistent with earlier studies. Additionally, Lmx1b drives expression of a non-coding RNA called Rmst, which harbors miR135a2 in its last intron. miR135a2 in turn targets Lmx1b as well as several Wnt pathway targets. Conditional overexpression of miR135a2 in the midbrain, particularly during an early time, results in a decreased dopaminergic progenitor pool, and less dopaminergic neurons, consistent with decreased Wnt signaling. We propose a model in which Lmx1b and miR135a2 influence levels of Wnt1 and Wnt signaling, and expansion of the dopaminergic progenitor pool. Further loss of function experiments and biochemical validation of targets will be critical to verify this model. Wnt agonists have recently been utilized for programming stem cells toward a dopaminergic fate in vitro, highlighting the importance of agents that modulate the Wnt pathway.

  10. Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat

    PubMed Central

    Choi, Won-Seok; Kruse, Shane E.; Palmiter, Richard D.; Xia, Zhengui

    2008-01-01

    Inhibition of mitochondrial complex I is one of the leading hypotheses for dopaminergic neuron death associated with Parkinson's disease (PD). To test this hypothesis genetically, we used a mouse strain lacking functional Ndufs4, a gene encoding a subunit required for complete assembly and function of complex I. Deletion of the Ndufs4 gene abolished complex I activity in midbrain mesencephalic neurons cultured from embryonic day (E) 14 mice, but did not affect the survival of dopaminergic neurons in culture. Although dopaminergic neurons were more sensitive than other neurons in these cultures to cell death induced by rotenone, MPP+, or paraquat treatments, the absence of complex I activity did not protect the dopaminergic neurons, as would be expected if these compounds act by inhibiting complex 1. In fact, the dopaminergic neurons were more sensitive to rotenone. These data suggest that dopaminergic neuron death induced by treatment with rotenone, MPP+, or paraquat is independent of complex I inhibition. PMID:18812510

  11. Primary Culture of Mouse Dopaminergic Neurons

    PubMed Central

    Gaven, Florence; Marin, Philippe; Claeysen, Sylvie

    2014-01-01

    Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson's disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment. PMID:25226064

  12. The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed

    PubMed Central

    2014-01-01

    Specific vulnerability and degeneration of the dopaminergic neurons in the substantia nigra pars compacta of the midbrain is the pathological hallmark of Parkinson’s disease. A number of transcription factors regulate the birth and development of this set of neurons and some remain constitutively expressed throughout life. These maintenance transcription factors are closely associated with essential neurophysiological functions and are required ultimately for the long-term survival of the midbrain dopaminergic neurons. The current review describes the role of two such factors, Nurr1 and engrailed, in differentiation, maturation, and in normal physiological functions including acquisition of neurotransmitter identity. The review will also elucidate the relationship of these factors with life, vulnerability, degeneration and death of mesencephalic dopaminergic neurons in the context of Parkinson’s disease. PMID:24685177

  13. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans

    PubMed Central

    Aumann, Tim D.; Raabus, Mai; Tomas, Doris; Prijanto, Agustinus; Churilov, Leonid; Spitzer, Nicholas C.; Horne, Malcolm K.

    2016-01-01

    Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA) synthesis in extant neurons (‘DA neurotransmitter switching’). If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) and DA transporter (DAT) immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5) versus winter (short-day photoperiod, n = 5). TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+) neurons was significantly (~6-fold) higher whereas the density of TH immunonegative (TH-) neurons was significantly (~2.5-fold) lower in summer compared with winter. The density of total neurons (TH+ and TH- combined) was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells), and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod) and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association. PMID:27428306

  14. Pitx3 is required for development of substantia nigra dopaminergic neurons

    PubMed Central

    Nunes, Irene; Tovmasian, Lucy T.; Silva, Robert M.; Burke, Robert E.; Goff, Stephen P.

    2003-01-01

    Dopaminergic (DA) neurons of substantia nigra in the midbrain control voluntary movement, and their degeneration is the cause of Parkinson's disease. The complete set of genes required to specifically determine the development of midbrain DA subgroups is not known yet. We report here that mice lacking the bicoid-related homeoprotein Pitx3 fail to develop DA neurons of the substantia nigra. Other mesencephalic DA neurons of the ventral tegmental area and retrorubral field are unaltered in their dopamine expression and histological organization. These data suggest that Pitx3-dependent gene expression is specifically required for the differentiation of DA progenitors within the mesencephalic DA system. PMID:12655058

  15. [Impact of opiates on dopaminergic neurons].

    PubMed

    Kaufling, Jennifer; Freund-Mercier, Marie-José; Barrot, Michel

    2016-01-01

    Since the work of Johnson and North, it is known that opiates increase the activity of dopaminergic neurons by a GABA neuron-mediated desinhibition. This model should however be updated based on recent advances. Thus, the neuroanatomical location of the GABA neurons responsible for this desinhibition has been recently detailed: they belong to a brain structure in continuity with the posterior part of the ventral tegmental area and discovered this past decade. Other data also highlighted the critical role played by glutamatergic transmission in the opioid regulation of dopaminergic neuron activity. During protracted opiate withdrawal, the inhibitory/excitatory balance exerted on dopaminergic neurons is altered. These results are now leading to propose an original hypothesis for explaining the impact of protracted opiate withdrawal on mood. PMID:27406773

  16. Inputs to the Midbrain Dopaminergic Complex in the Rat with Emphasis on Extended Amygdala-recipient Sectors

    PubMed Central

    Zahm, Daniel S.; Cheng, Anita Y.; Lee, Tristan J.; Ghobadi, Comeron W.; Schwartz, Zachary M.; Geisler, Stefanie; Parsely, Kenneth P.; Gruber, Clemens; Veh, Ruediger W.

    2011-01-01

    The midbrain dopaminergic neuronal groups A8, A9, A10 and A10dc occupy, respectively, the retrorubral field (RRF), substantia nigra compacta (SNc), ventral tegmental area (VTA) and ventrolateral periaqueductal gray (PAGvl). Collectively, these structures give rise to a mixed dopaminergic and non-dopaminergic projection system that essentially permits adaptive behavior. Yet, knowledge is incomplete regarding how the afferents of these structures are organized. While the VTA is known to get numerous afferents from cortex, basal forebrain and brainstem and the SNc is widely perceived as receiving inputs mainly from the striatum, the afferents of the RRF and PAGvl have yet to be addressed comprehensively. This study was done to provide an account of those connections and seek a better understanding of how afferents might contribute to the functional interrelatedness of the VTA, SNc, RRF and PAGvl. Ventral midbrain structures received injections of retrograde tracer and resulting retrogradely labeled structures were targeted with injections of anterogradely transported Phaseolus vulgaris-leucoagglutinin. While all injections of retrograde tracer into the VTA, SNc, RRF or PAGvl produced labeling in many of a long list of structures extending from the cortex to caudal brainstem, pronounced labeling of structures comprising the central division of the extended amygdala occurred following injections that involved the RRF and PAGvl. The anterograde tracing supported this finding and, interestingly, the combination of retrograde and anterograde labeling data also confirmed reports from other groups indicating that the SNc receives robust input from many of the same structures that innervate the VTA, RRF and PAGvl. PMID:21618227

  17. Role of neuropilin-2 in the ipsilateral growth of midbrain dopaminergic axons.

    PubMed

    Torigoe, Makio; Yamauchi, Kenta; Tamada, Atsushi; Matsuda, Ikuo; Aiba, Atsu; Castellani, Valérie; Murakami, Fujio

    2013-05-01

    Axonal projections in the CNS can be categorized as either crossed or uncrossed. Crossing and uncrossing of axons has been explained by attractive and repulsive molecules like Netrin-1 and Slits, which are secreted by midline structures. However, uncrossed projections can be established even in double knockout mice of slit1 and slit2 or of roundabout1 (robo1) and robo2, two receptors for Slits. Here, we found that a novel mechanism mediated by Neuropilin-2 (Nrp2) contributes to the formation of uncrossed projections of midbrain dopaminergic neurons (mDANs). Nrp2 transcriptional activities were detected in a subset of mDANs, and its protein was expressed in mDAN axons growing through the ipsilateral diencephalon. In nrp2(lac) (Z) (/lac) (Z) mice, mDAN axons aberrantly grew toward the ventral midline and even crossed it, suggesting that Nrp2 is necessary for the development of mDAN ipsilateral projections. We investigated the involvement of Semaphorin 3B (Sema3B) and Sema3F, two ligands of Nrp2, by analysing mDAN axon trajectories in single or double knockout mice. In both cases, mDAN axons still projected ipsilaterally, suggesting the involvement mechanisms independent of these Sema3s. Nrp2-deficient mDAN axons retained their responsiveness to Slit2, demonstrating that aberrant mDAN axons in nrp2(lac) (Z) (/lac) (Z) mice were not indirectly mediated by alterations in Slit/Robo signaling. Taken together, our results indicate that a novel mechanism mediated by Nrp2 contributes to the establishment of uncrossed projections by mDAN axons. PMID:23534961

  18. Activin A Protects Midbrain Neurons in the 6-Hydroxydopamine Mouse Model of Parkinson’s Disease

    PubMed Central

    Li, Kong M.; Vissel, Bryce

    2015-01-01

    Parkinson’s disease (PD) is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta (SNpc) and a subsequent loss of dopamine (DA) within the striatum. Despite advances in the development of pharmacological therapies that are effective at alleviating the symptoms of PD, the search for therapeutic treatments that halt or slow the underlying nigral degeneration remains a particular challenge. Activin A, a member of the transforming growth factor β superfamily, has been shown to play a role in the neuroprotection of midbrain neurons against 6-hydroxydopamine (6-OHDA) in vitro, suggesting that activin A may offer similar neuroprotective effects in in vivo models of PD. Using robust stereological methods, we found that intrastriatal injections of 6-OHDA results in a significant loss of both TH positive and NeuN positive populations in the SNpc at 1, 2, and 3 weeks post-lesioning in drug naïve mice. Exogenous application of activin A for 7 days, beginning the day prior to 6-OHDA administration, resulted in a significant survival of both dopaminergic and total neuron numbers in the SNpc against 6-OHDA-induced toxicity. However, we found no corresponding protection of striatal DA or dopamine transporter (DAT) expression levels in animals receiving activin A compared to vehicle controls. These results provide the first evidence that activin A exerts potent neuroprotection in a mouse model of PD, however this neuroprotection may be localized to the midbrain. PMID:25902062

  19. Antenatal Glucocorticoid Treatment Induces Adaptations in Adult Midbrain Dopamine Neurons, which Underpin Sexually Dimorphic Behavioral Resilience

    PubMed Central

    Virdee, Kanwar; McArthur, Simon; Brischoux, Frédéric; Caprioli, Daniele; Ungless, Mark A; Robbins, Trevor W; Dalley, Jeffrey W; Gillies, Glenda E

    2014-01-01

    We demonstrated previously that antenatal glucocorticoid treatment (AGT, gestational days 16–19) altered the size and organization of the adult rat midbrain dopaminergic (DA) populations. Here we investigated the consequences of these AGT-induced cytoarchitectural disturbances on indices of DA function in adult rats. We show that in adulthood, enrichment of striatal DA fiber density paralleled AGT-induced increases in the numbers of midbrain DA neurons, which retained normal basal electrophysiological properties. This was co-incident with changes in (i) striatal D2-type receptor levels (increased, both sexes); (ii) D1-type receptor levels (males decreased; females increased); (iii) DA transporter levels (males increased; females decreased) in striatal regions; and (iv) amphetamine-induced mesolimbic DA release (males increased; females decreased). However, despite these profound, sexually dimorphic changes in markers of DA neurotransmission, in-utero glucocorticoid overexposure had a modest or no effect on a range of conditioned and unconditioned appetitive behaviors known to depend on mesolimbic DA activity. These findings provide empirical evidence for enduring AGT-induced adaptive mechanisms within the midbrain DA circuitry, which preserve some, but not all, functions, thereby casting further light on the vulnerability of these systems to environmental perturbations. Furthermore, they demonstrate these effects are achieved by different, often opponent, adaptive mechanisms in males and females, with translational implications for sex biases commonly found in midbrain DA-associated disorders. PMID:23929547

  20. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target.

    PubMed

    Parker, Nathan F; Cameron, Courtney M; Taliaferro, Joshua P; Lee, Junuk; Choi, Jung Yoon; Davidson, Thomas J; Daw, Nathaniel D; Witten, Ilana B

    2016-06-01

    Dopaminergic (DA) neurons in the midbrain provide rich topographic innervation of the striatum and are central to learning and to generating actions. Despite the importance of this DA innervation, it remains unclear whether and how DA neurons are specialized on the basis of the location of their striatal target. Thus, we sought to compare the function of subpopulations of DA neurons that target distinct striatal subregions in the context of an instrumental reversal learning task. We identified key differences in the encoding of reward and choice in dopamine terminals in dorsal versus ventral striatum: DA terminals in ventral striatum responded more strongly to reward consumption and reward-predicting cues, whereas DA terminals in dorsomedial striatum responded more strongly to contralateral choices. In both cases the terminals encoded a reward prediction error. Our results suggest that the DA modulation of the striatum is spatially organized to support the specialized function of the targeted subregion. PMID:27110917

  1. α4β2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief.

    PubMed

    McGranahan, Tresa M; Patzlaff, Natalie E; Grady, Sharon R; Heinemann, Stephen F; Booker, T K

    2011-07-27

    Nicotine is the primary psychoactive substance in tobacco, and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the α4β2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal as well as nicotine-induced behaviors. Although α4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbrain dopaminergic regions involved in drug addiction, mental illness, and movement control in humans. We developed a unique model system to examine the role of α4-nAChRs within dopaminergic neurons by a targeted genetic deletion of the α4 subunit from dopaminergic neurons in mice. The loss α4 mRNA and α4β2-nAChRs from dopaminergic neurons was confirmed, as well as selective loss of α4β2-nAChR function from dopaminergic but not GABAergic neurons. Two behaviors central to nicotine dependence, reward and anxiety relief, were examined. α4-nAChRs specifically on dopaminergic neurons were demonstrated to be necessary for nicotine reward as measured by nicotine place preference, but not for another drug of addiction, cocaine. α4-nAChRs are necessary for the anxiolytic effects of nicotine in the elevated plus maze, and elimination of α4β2-nAChRs specifically from dopaminergic neurons decreased sensitivity to the anxiolytic effects of nicotine. Deletion of α4-nAChRs specifically from dopaminergic neurons also increased sensitivity to nicotine-induced locomotor depression; however, nicotine-induced hypothermia was unaffected. This is the first work to develop a dopaminergic specific deletion of a nAChR subunit and examine resulting changes in nicotine-related behaviors. PMID:21795541

  2. alpha4beta2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief

    PubMed Central

    McGranahan, Tresa M.; Patzlaff, Natalie E.; Grady, Sharon R.; Heinemann, Stephen F.; Booker, T.K.

    2012-01-01

    Nicotine is the primary psychoactive substance in tobacco and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the alpha4beta2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal, as well as nicotine-induced, behaviors. Although alpha4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbrain dopaminergic regions involved in drug addition, mental illness and movement control in humans. We developed a unique model system to examine the role of alpha4-nAChRs within dopaminergic neurons by a targeted genetic deletion of the alpha4 subunit from dopaminergic neurons in mice. The loss alpha4 mRNA and alpha4beta2-nAChRs from dopaminergic neurons was confirmed, as well as selective loss of alpha4beta2-nAChR function from dopaminergic but not GABAergic neurons. Two behaviors central to nicotine dependence, reward and anxiety relief, were examined. Alpha4-nAChRs specifically on dopaminergic neurons were demonstrated to be necessary for nicotine reward as measured by nicotine place preference, but not for another drug of addiction, cocaine. Alpha4-nAChRs are necessary for the anxiolytic effects of nicotine in the elevated plus maze and elimination of alpha4-beta2-nAChRs specifically from dopaminergic neurons decreased sensitivity to the anxiolytic effects of nicotine. Deletion of alpha4-nAChRs specifically from dopaminergic neurons also increased sensitivity to nicotine-induced locomotor depression, however nicotine-induced hypothermia was unaffected. This is the first work to develop a dopaminergic specific deletion of a nAChR subunit and examine resulting changes in nicotine behaviors. PMID:21795541

  3. Purity and Enrichment of Laser-Microdissected Midbrain Dopamine Neurons

    PubMed Central

    Brown, Amanda L.; Day, Trevor A.; Dayas, Christopher V.; Smith, Doug W.

    2013-01-01

    The ability to microdissect individual cells from the nervous system has enormous potential, as it can allow for the study of gene expression in phenotypically identified cells. However, if the resultant gene expression profiles are to be accurately ascribed, it is necessary to determine the extent of contamination by nontarget cells in the microdissected sample. Here, we show that midbrain dopamine neurons can be laser-microdissected to a high degree of enrichment and purity. The average enrichment for tyrosine hydroxylase (TH) gene expression in the microdissected sample relative to midbrain sections was approximately 200-fold. For the dopamine transporter (DAT) and the vesicular monoamine transporter type 2 (Vmat2), average enrichments were approximately 100- and 60-fold, respectively. Glutamic acid decarboxylase (Gad65) expression, a marker for GABAergic neurons, was several hundredfold lower than dopamine neuron-specific genes. Glial cell and glutamatergic neuron gene expression were not detected in microdissected samples. Additionally, SN and VTA dopamine neurons had significantly different expression levels of dopamine neuron-specific genes, which likely reflects functional differences between the two cell groups. This study demonstrates that it is possible to laser-microdissect dopamine neurons to a high degree of cell purity. Therefore gene expression profiles can be precisely attributed to the targeted microdissected cells. PMID:23984404

  4. The Dopaminergic Midbrain Mediates an Effect of Average Reward on Pavlovian Vigor.

    PubMed

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2016-09-01

    Dopamine plays a key role in motivation. Phasic dopamine response reflects a reinforcement prediction error (RPE), whereas tonic dopamine activity is postulated to represent an average reward that mediates motivational vigor. However, it has been hard to find evidence concerning the neural encoding of average reward that is uncorrupted by influences of RPEs. We circumvented this difficulty in a novel visual search task where we measured participants' button pressing vigor in a context where information (underlying an RPE) about future average reward was provided well before the average reward itself. Despite no instrumental consequence, participants' pressing force increased for greater current average reward, consistent with a form of Pavlovian effect on motivational vigor. We recorded participants' brain activity during task performance with fMRI. Greater average reward was associated with enhanced activity in dopaminergic midbrain to a degree that correlated with the relationship between average reward and pressing vigor. Interestingly, an opposite pattern was observed in subgenual cingulate cortex, a region implicated in negative mood and motivational inhibition. These findings highlight a crucial role for dopaminergic midbrain in representing aspects of average reward and motivational vigor. PMID:27082045

  5. White noise improves learning by modulating activity in dopaminergic midbrain regions and right superior temporal sulcus.

    PubMed

    Rausch, Vanessa H; Bauch, Eva M; Bunzeck, Nico

    2014-07-01

    In neural systems, information processing can be facilitated by adding an optimal level of white noise. Although this phenomenon, the so-called stochastic resonance, has traditionally been linked with perception, recent evidence indicates that white noise may also exert positive effects on cognitive functions, such as learning and memory. The underlying neural mechanisms, however, remain unclear. Here, on the basis of recent theories, we tested the hypothesis that auditory white noise, when presented during the encoding of scene images, enhances subsequent recognition memory performance and modulates activity within the dopaminergic midbrain (i.e., substantia nigra/ventral tegmental area, SN/VTA). Indeed, in a behavioral experiment, we can show in healthy humans that auditory white noise-but not control sounds, such as a sinus tone-slightly improves recognition memory. In an fMRI experiment, white noise selectively enhances stimulus-driven phasic activity in the SN/VTA and auditory cortex. Moreover, it induces stronger connectivity between SN/VTA and right STS, which, in addition, exhibited a positive correlation with subsequent memory improvement by white noise. Our results suggest that the beneficial effects of auditory white noise on learning depend on dopaminergic neuromodulation and enhanced connectivity between midbrain regions and the STS-a key player in attention modulation. Moreover, they indicate that white noise could be particularly useful to facilitate learning in conditions where changes of the mesolimbic system are causally related to memory deficits including healthy and pathological aging. PMID:24345178

  6. How to make a mesodiencephalic dopaminergic neuron.

    PubMed

    Smidt, Marten P; Burbach, J Peter H

    2007-01-01

    Dopaminergic neurons located in the ventral mesodiencephalon are essential for the control of voluntary movement and the regulation of emotion, and are severely affected in neurodegenerative diseases such as Parkinson's disease. Recent advances in molecular biology and mouse genetics have helped to unravel the mechanisms involved in the development of mesodiencephalic dopaminergic (mdDA) neurons, including their specification, migration and differentiation, as well as the processes that govern axonal pathfinding and their specific patterns of connectivity and maintenance. Here, we follow the developmental path of these neurons with the goal of generating a molecular code that could be exploited in cell-replacement strategies to treat diseases such as Parkinson's disease. PMID:17180160

  7. The atypical homeoprotein Pbx1a participates in the axonal pathfinding of mesencephalic dopaminergic neurons

    PubMed Central

    2012-01-01

    Background The pre B-cell leukemia transcription factor 1 (Pbx1) genes belong to the three amino acid loop extension family of homeodomain proteins that form hetero-oligomeric complexes with other homeodomain transcription factors, thereby modulating target specificity, DNA binding affinity and transcriptional activity of their molecular associates. Results Here, we provide evidence that Pbx1 is expressed in mesencephalic dopaminergic neurons from embryonic day 11 into adulthood and determines some of the cellular properties of this neuronal population. In Pbx1-deficient mice, the mesencephalic dopaminergic axons stall during mid-gestation at the border between di- and telencephalon before entering the ganglionic eminence, leading to a loose organization of the axonal bundle and partial misrouting. In Pbx1-deficient dopaminergic neurons, the high affinity netrin-1 receptor, deleted in colon cancer (DCC), is down-regulated. Interestingly, we found several conserved Pbx1 binding sites in the first intron of DCC, suggesting a direct regulation of DCC transcription by Pbx1. Conclusions The expression of Pbx1 in dopaminergic neurons and its regulation of DCC expression make it an important player in defining the axonal guidance of the midbrain dopaminergic neurons, with possible implications for the normal physiology of the nigro-striatal system as well as processes related to the degeneration of neurons during the course of Parkinson’s disease. PMID:22748019

  8. Non-dopaminergic neurons in ventral mesencephalic transplants make widespread axonal connections in the host brain.

    PubMed

    Thompson, Lachlan H; Kirik, Deniz; Björklund, Anders

    2008-09-01

    Motor dysfunction in Parkinson's disease (PD) can be effectively alleviated through intra-striatal transplantation of fetal ventral mesencephalic tissue. The success of this approach is dependent on the survival, axonal outgrowth and synaptic integration of newly grafted dopamine neurons with the host striatum. The functional outcome of transplantation therapy has, however, been highly variable, particularly in PD patients, but also in animal models of PD, and thus there is a need for a deeper understanding of possible mechanisms underlying this variability such as graft composition and the resulting graft-host connectivity. Here we describe a series of transplantation experiments whereby mouse VM tissue has been grafted into the striatum of 6-hydroxydopamine lesioned rats. Six weeks after grafting immunohistochemical analysis using the mouse specific 'M2M6' antibodies revealed both dopaminergic and non-dopaminergic components of graft-derived fibre outgrowth into the host brain. We report here that while dopaminergic outgrowth was predominately confined to the striatum, there was also a significant degree of non-dopaminergic outgrowth to extra-striatal structures including the thalamus, cortex and midbrain. Retrograde tracing experiments showed that grafted neurons of GABAergic identity contribute to this non-dopaminergic outgrowth. In line with our recent findings on the function of serotonergic neurons in fetal VM grafts, these results further underscore the potential impact that non-dopaminergic neurons may have on the functional outcome of intrastriatal fetal VM grafts. PMID:18602916

  9. Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death

    PubMed Central

    Zhang, Wei; Zecca, Luigi; Wilson, Belinda; Ren, RW; Wang, Yong-jun; Wang, Xiao-min; Hong, Jau-Shyong

    2013-01-01

    Substantial evidence indicates that neuroinflammation caused by over-activation of microglial in the substantia nigra is critical in the pathogenesis of dopaminergic neurodegeneration in Parkinson’s disease (PD). Increasing data demonstrates that environmental factors such as rotenone, paraquat play pivotal roles in the death of dopaminergic neurons. Here, potential role and mechanism of neuromelanin (NM), a major endogenous component in dopaminergic neurons of the substantia nigra, on microglial activation and associated dopaminergic neurotoxicity were investigated. Using multiple well-established primary mesencephalic cultures, we tested whether human NM (HNM) could activate microglia, thereby provoking dopaminergic neurodegeneration. The results demonstrated that in primary mesencephalic neuron-glia cultures, HNM caused dopaminergic neuronal damage characterized by the decreased dopamine uptake and reduced numbers and shorted dendrites of dopaminergic neurons. HNM-induced degeneration was relatively selective to dopaminergic neurons since the other types of neurons determined by either gamma-aminobutyric acid uptake and total neuronal numbers after staining showed smaller decrease. We demonstrated that HNM produced modest dopaminergic neurotoxicity in neuron-enriched cultures; in contrast, much greater neurotoxicity was observed in the presence of microglia. HNM-induced microglial activation was shown by morphological changes and production of proinflammatory and neurotoxic factors. These results suggest that HNM, once released from damaged dopaminergic neurons, can be an potent endogenous activator involved in the reactivation of microglia, which may mediate disease progression. Thus, inhibition of reactive microglia can be a useful strategy for PD therapy. PMID:23276965

  10. Parkin protects dopaminergic neurons from excessive Wnt/{beta}-catenin signaling

    SciTech Connect

    Rawal, Nina; Corti, Olga; Sacchetti, Paola; Ardilla-Osorio, Hector; Sehat, Bita; Brice, Alexis; Arenas, Ernest

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.

  11. FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons.

    PubMed

    Gennet, Nicole; Tamburini, Claudia; Nan, Xinsheng; Li, Meng

    2016-01-01

    Cell type-specific surface markers offer a powerful tool for purifying defined cell types for restorative therapies and drug screenings. Midbrain dopaminergic neurons (mesDA) are the nerve cells preferentially lost in the brains of Parkinson's disease patients. Clinical trials of transplantation of fetal neural precursors suggest that cell therapy may offer a cure for this devastating neurological disease. Many lines of preclinical studies demonstrate that neural progenitors committed to dopaminergic fate survive and integrate better than postmitotic DA neurons. We show that the folate-receptor 1 (FolR1), a GPI-anchored cell surface molecule, specifically marks mesDA neural progenitors and immature mesDA neurons. FolR1 expression superimposes with Lmx1a, a bona-fide mesDA lineage marker, during the active phase of mesDA neurogenesis from E9.5 to E14.5 during mouse development, as well as in ESC-derived mesDA lineage. FolR1(+) neural progenitors can be isolated by FACS or magnetic sorting (MAC) which give rise to dopamine neurons expressing TH and Pitx3, whilst FolR1 negative cells generate non-dopaminergic neurons and glia cells. This study identifies FolR1 as a new cell surface marker selectively expressed in mesDA progenitors in vivo and in vitro and that can be used to enrich in vitro differentiated TH neurons. PMID:27580818

  12. FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons

    PubMed Central

    Gennet, Nicole; Tamburini, Claudia; Nan, Xinsheng; Li, Meng

    2016-01-01

    Cell type-specific surface markers offer a powerful tool for purifying defined cell types for restorative therapies and drug screenings. Midbrain dopaminergic neurons (mesDA) are the nerve cells preferentially lost in the brains of Parkinson’s disease patients. Clinical trials of transplantation of fetal neural precursors suggest that cell therapy may offer a cure for this devastating neurological disease. Many lines of preclinical studies demonstrate that neural progenitors committed to dopaminergic fate survive and integrate better than postmitotic DA neurons. We show that the folate-receptor 1 (FolR1), a GPI-anchored cell surface molecule, specifically marks mesDA neural progenitors and immature mesDA neurons. FolR1 expression superimposes with Lmx1a, a bona-fide mesDA lineage marker, during the active phase of mesDA neurogenesis from E9.5 to E14.5 during mouse development, as well as in ESC-derived mesDA lineage. FolR1+ neural progenitors can be isolated by FACS or magnetic sorting (MAC) which give rise to dopamine neurons expressing TH and Pitx3, whilst FolR1 negative cells generate non-dopaminergic neurons and glia cells. This study identifies FolR1 as a new cell surface marker selectively expressed in mesDA progenitors in vivo and in vitro and that can be used to enrich in vitro differentiated TH neurons. PMID:27580818

  13. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans.

    PubMed

    Root, David H; Wang, Hui-Ling; Liu, Bing; Barker, David J; Mód, László; Szocsics, Péter; Silva, Afonso C; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson's disease. PMID:27477243

  14. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans

    PubMed Central

    Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243

  15. Zhichan decoction induces differentiation of dopaminergic neurons in Parkinson's disease rats after neural stem cell transplantation

    PubMed Central

    Shi, Huifen; Song, Jie; Yang, Xuming

    2014-01-01

    The goal of this study was to increase the dopamine content and reduce dopaminergic metabolites in the brain of Parkinson's disease rats. Using high-performance liquid chromatography, we found that dopamine and dopaminergic metabolite (dihydroxyphenylacetic acid and homovanillic acid) content in the midbrain of Parkinson's disease rats was increased after neural stem cell transplantation + Zhichan decoction, compared with neural stem cell transplantation alone. Our genetic algorithm results show that dihydroxyphenylacetic acid and homovanillic acid levels achieve global optimization. Neural stem cell transplantation + Zhichan decoction increased dihydroxyphenylacetic acid levels up to 10-fold, while transplantation alone resulted in a 3-fold increment. Homovanillic acid levels showed no apparent change. Our experimental findings show that after neural stem cell transplantation in Parkinson's disease rats, Zhichan decoction can promote differentiation of neural stem cells into dopaminergic neurons. PMID:25206914

  16. Minocycline enhances MPTP toxicity to dopaminergic neurons.

    PubMed

    Yang, Lichuan; Sugama, Shuei; Chirichigno, Jason W; Gregorio, Jason; Lorenzl, Stefan; Shin, Dong H; Browne, Susan E; Shimizu, Yoshinori; Joh, Tong H; Beal, M Flint; Albers, David S

    2003-10-15

    Minocycline has been shown previously to have beneficial effects against ischemia in rats as well as neuroprotective properties against excitotoxic damage in vitro, nigral cell loss via 6-hydroxydopamine, and to prolong the life-span of transgenic mouse models of Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). We investigated whether minocycline would protect against toxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin that selectively destroys nigrostriatal dopaminergic (DA) neurons and produces a clinical state similar to Parkinson's disease (PD) in rodents and primates. We found that although minocycline inhibited microglial activation, it significantly exacerbated MPTP-induced damage to DA neurons. We present evidence suggesting that this effect may be due to inhibition of DA and 1-methyl-4-phenylpridium (MPP+) uptake into striatal vesicles. PMID:14515357

  17. Methamphetamine Self-Administration in Mice Decreases GIRK Channel-Mediated Currents in Midbrain Dopamine Neurons

    PubMed Central

    Sharpe, Amanda L.; Varela, Erika; Bettinger, Lynne

    2015-01-01

    Background: Methamphetamine is a psychomotor stimulant with abuse liability and a substrate for catecholamine uptake transporters. Acute methamphetamine elevates extracellular dopamine, which in the midbrain can activate D2 autoreceptors to increase a G-protein gated inwardly rectifying potassium (GIRK) conductance that inhibits dopamine neuron firing. These studies examined the neurophysiological consequences of methamphetamine self-administration on GIRK channel-mediated currents in dopaminergic neurons in the substantia nigra and ventral tegmental area. Methods: Male DBA/2J mice were trained to self-administer intravenous methamphetamine. A dose response was conducted as well as extinction and cue-induced reinstatement. In a second study, after at least 2 weeks of stable self-administration of methamphetamine, electrophysiological brain slice recordings were conducted on dopamine neurons from self-administering and control mice. Results: In the first experiment, ad libitum-fed, nonfood-trained mice exhibited a significant increase in intake and locomotion following self-administration as the concentration of methamphetamine per infusion was increased (0.0015–0.15mg/kg/infusion). Mice exhibited extinction in responding and cue-induced reinstatement. In the second experiment, dopamine cells in both the substantia nigra and ventral tegmental area from adult mice with a history of methamphetamine self-administration exhibited significantly smaller D2 and GABAB receptor-mediated currents compared with control mice, regardless of whether their daily self-administration sessions had been 1 or 4 hours. Interestingly, the effects of methamphetamine self-administration were not present when intracellular calcium was chelated by including BAPTA in the recording pipette. Conclusions: Our results suggest that methamphetamine self-administration decreases GIRK channel-mediated currents in dopaminergic neurons and that this effect may be calcium dependent. PMID:25522412

  18. Oestrogen Receptors Enhance Dopamine Neurone Survival in Rat Midbrain

    PubMed Central

    Johnson, M. L.; Ho, C. C.; Day, A. E.; Walker, Q. D.; Francis, R.; Kuhn, C. M.

    2011-01-01

    Previous findings in our laboratory and elsewhere have shown that ovariectomy of rats in adulthood attenuates cocaine-stimulated locomotor behaviour. Ovarian hormones enhance both cocaine-stimulated behaviour and increase dopamine overflow after psychomotor stimulants. The present study aimed to determine whether ovarian hormones have these effects in part by maintaining dopamine neurone number in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) and to investigate the roles of specific oestrogen receptors (ERs) in the maintenance of mesencephalic dopamine neurones. To accomplish this goal, we used unbiased stereological techniques to estimate the number of tyrosine hydroxylase-immunoreactive (TH-IR) cell bodies in midbrain regions of intact, ovariectomised and hormone-replaced female rats and mice. Animals received active or sham gonadectomy on postnatal day 60 and received vehicle, 17β-oestradiol (E2) or selective ER agonists propyl-pyrazole-triol (PPT, ERα) or diarylpropionitrile (DPN, ERβ) for 1 month post-surgery. In both rats and mice, ovariectomy reduced the number of TH-IR cells in the SNpc and VTA. Replacement with E2, PPT or DPN prevented or attenuated the loss observed with ovariectomy in both rats and mice. An additional study using ER knockout mice revealed that adult female mice lacking ERα had fewer TH-IR cells in midbrain regions than wild-type mice, whereas mice lacking ERβ had TH-IR cell counts comparable to wild-type. These findings suggest that, although both ER subtypes play a role in the maintenance of TH-IR cell number in the SNpc and VTA, ERα may play a more significant role. PMID:20136693

  19. Wnt/B-Catenin Signaling is Required to Rescue Midbrain Dopaminergic Progenitors and Promote Neurorepair in Ageing Mouse Model of Parkinson’s Disease

    PubMed Central

    L’Episcopo, Francesca; Tirolo, Cataldo; Testa, Nunzio; Caniglia, Salvatore; Morale, Maria Concetta; Serapide, Maria Francesca; Pluchino, Stefano; Marchetti, Bianca

    2014-01-01

    SUMMARY Wnt/β-catenin signaling is required for specification and neurogenesis of midbrain dopaminergic (mDA) neurons, the pivotal neuronal population that degenerates in Parkinson’s disease (PD) and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wnt/β-catenin signaling plays a vital role in adult neurogenesis but whether it might engage DA neurogenesis/neurorepair in the affected PD brain is yet unresolved. Recently, the adult midbrain aqueduct periventricular regions (Aq-PVRs) were shown to harbor neural stem/progenitor cells (mNPCs) with DA potential in vitro, but restrictive mechanisms in vivo are believed to limit their DA regenerative capacity. Using in vitro mNPC culture systems we herein demonstrate that aging is one most critical factor restricting mNPC neurogenic potential via dysregulation of Wnt/β-catenin signaling. Cococulture paradigms between young/aged (Y/A) mNPCs and Y/A astrocytes identified glial age and a decline of glial-derived factors including Wnts as key determinants of impaired neurogenic potential, whereas Wnt activation regimens efficiently reversed the diminished proliferative, neuronal and DA differentiation potential of A-mNPCs. Next, in vivo studies in wild (Wt) and transgenic β-catenin reporter mice uncovered Wnt/β-catenin signaling activation and remarkable astrocyte remodeling of Aq-PVR in response to MPTP-induced DA neuron death. Spatio-temporal analyses unveiled β-catenin signaling in predopaminergic (Nurr1+/TH−) and imperiled or rescuing DAT+ neurons during MPTP-induced DA neuron injury and self-repair. Aging inhibited Wnt signaling, whereas β-catenin activation in situ with a specific GSK-3β antagonist promoted a significant degree of DA neurorestoration associated with reversal of motor deficit, with implications for neurorestorative approaches in PD. PMID:24648001

  20. Role of Nurr1 in the Generation and Differentiation of Dopaminergic Neurons from Stem Cells.

    PubMed

    Rodríguez-Traver, Eva; Solís, Oscar; Díaz-Guerra, Eva; Ortiz, Óscar; Vergaño-Vera, Eva; Méndez-Gómez, Héctor R; García-Sanz, Patricia; Moratalla, Rosario; Vicario-Abejón, Carlos

    2016-07-01

    NURR1 is an essential transcription factor for the differentiation, maturation, and maintenance of midbrain dopaminergic neurons (DA neurons) as it has been demonstrated using knock-out mice. DA neurons of the substantia nigra pars compacta degenerate in Parkinson's disease (PD) and mutations in the Nurr1 gene have been associated with this human disease. Thus, the study of NURR1 actions in vivo is fundamental to understand the mechanisms of neuron generation and degeneration in the dopaminergic system. Here, we present and discuss findings indicating that NURR1 is a valuable molecular tool for the in vitro generation of DA neurons which could be used for modeling and studying PD in cell culture and in transplantation approaches. Transduction of Nurr1 alone or in combination with other transcription factors such as Foxa2, Ngn2, Ascl1, and Pitx3, induces the generation of DA neurons, which upon transplantation have the capacity to survive and restore motor behavior in animal models of PD. We show that the survival of transplanted neurons is increased when the Nurr1-transduced olfactory bulb stem cells are treated with GDNF. The use of these and other factors with the induced pluripotent stem cell (iPSC)-based technology or the direct reprogramming of astrocytes or fibroblasts into human DA neurons has produced encouraging results for the study of the cellular and molecular mechanisms of neurodegeneration in PD and for the search of new treatments for this disease. PMID:26678495

  1. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain.

    PubMed

    Cui, X; Pelekanos, M; Liu, P-Y; Burne, T H J; McGrath, J J; Eyles, D W

    2013-04-16

    There is growing evidence that vitamin D is a neuroactive steroid capable of regulating multiple pathways important for both brain development and mature brain function. In particular, there is evidence from rodent models that prenatal vitamin D deficiency alters the development of dopaminergic pathways and this disruption is associated with altered behavior and neurochemistry in the adult brain. Although the presence of the vitamin D receptor (VDR) has been noted in the human substantia nigra, there is a lack of direct evidence showing that VDR is present in dopaminergic cells. Here we confirm that the VDR is present in the nucleus of tyrosine hydroxylase (TH)-positive neurons in both the human and rat substantia nigra, and it emerges early in development in the rat, between embryonic day 12 (E12) and E15. Consistent evidence based on immunohistochemistry, real-time PCR and western blot confirmed a pattern of increasing VDR expression in the rat midbrain until weaning. The nuclear expression of VDR in TH-positive neurons during critical periods of brain development suggests that alterations in early life vitamin D status may influence the orderly development of dopaminergic neurons. PMID:23352937

  2. Differential involvement of brainstem noradrenergic and midbrain dopaminergic nuclei in cognitive control.

    PubMed

    Köhler, Stefanie; Bär, Karl-Jürgen; Wagner, Gerd

    2016-06-01

    Several lines of evidence suggest that the lateral prefrontal cortex (PFC), the dorsal anterior cingulate cortex (dACC), the parietal cortex, and the thalamus are central cortical nodes in a network underlying cognitive control. However, the role of catecholamine producing midbrain and brainstem structures has rarely been addressed by functional magnetic resonance imaging (fMRI). We hypothesized differential activation patterns in the ventral tegmental area (VTA)/substantia nigra (SN) and locus coeruleus (LC) with respect to the degree of cognitive control during a Stroop task in healthy subjects. Forty-five healthy subjects were investigated by the manual version of the Stroop task in an event-related fMRI design. We observed significant BOLD activation of both the SN/VTA and LC during the Stroop interference condition (incongruent vs. congruent condition). LC, but not SN/VTA activation significantly correlated with the Stroop interference. Interestingly, a significant linear decrease in BOLD activation during the incongruent condition during the experiment was mainly observed in the fronto-cingulo-striatal network, but not in SN/VTA and LC. Using psychophysiological (PPI) analyses, a significant functional connectivity during cognitive control was observed between SN/VTA and the nigrostriatal/mesolimbic dopaminergic system. For the LC, distinct functional connectivity pattern was observed mainly to the dorsolateral and ventrolateral PFC. Both regions revealed significant functional connectivity to the dACC, parietal and occipital regions. Thus, we demonstrate for the first time that functional activation patterns in the SN/VTA and the LC are modulated by different demands of cognitive control. In addition, these nuclei exhibit distinguishable functional connectivity patterns to cortical brain networks. Hum Brain Mapp 37:2305-2318, 2016. © 2016 Wiley Periodicals, Inc. PMID:26970351

  3. ETHANOL ACTION ON DOPAMINERGIC NEURONS IN THE VENTRAL TEGMENTAL AREA: INTERACTION WITH INTRINSIC ION CHANNELS AND NEUROTRANSMITTER INPUTS

    PubMed Central

    Morikawa, Hitoshi; Morrisett, Richard A.

    2010-01-01

    The dopaminergic system originating in the midbrain ventral tegmental area (VTA) has been extensively studied over the past decades as a critical neural substrate involved in the development of alcoholism and addiction to other drugs of abuse. Accumulating evidence indicates that ethanol modulates the functional output of this system by directly affecting the firing activity of VTA dopamine neurons, whereas withdrawal from chronic ethanol exposure leads to a reduction in the functional output of these neurons. This chapter will provide an update on the mechanistic investigations of the acute ethanol action on dopamine neuron activity and the neuroadaptations/plasticities in the VTA produced by previous ethanol experience. PMID:20813245

  4. Midbrain dopamine neurons reflect affiliation phenotypes in finches and are tightly coupled to courtship.

    PubMed

    Goodson, James L; Kabelik, David; Kelly, Aubrey M; Rinaldi, Jacob; Klatt, James D

    2009-05-26

    Mesolimbic dopamine (DA) circuits mediate a wide range of goal-oriented behavioral processes, and DA strongly influences appetitive and consummatory aspects of male sexual behavior. In both birds and mammals, mesolimbic projections arise primarily from the ventral tegmental area (VTA), with a smaller contribution from the midbrain central gray (CG). Despite the well known importance of the VTA cell group for incentive motivation functions, relationships of VTA subpopulations to specific aspects of social phenotype remain wholly undescribed. We now show that in male zebra finches (Estrildidae: Taeniopygia guttata), Fos activity within a subpopulation of tyrosine hydroxylase-immunoreactive (TH-ir; presumably dopaminergic) neurons in the caudal VTA is significantly correlated with courtship singing and coupled to gonadal state. In addition, the number of TH-ir neurons in this caudal subpopulation dichotomously differentiates courting from non-courting male phenotypes, and evolves in relation to sociality (flocking vs. territorial) across several related finch species. Combined, these findings for the VTA suggest that divergent social phenotypes may arise due to the differential assignment of "incentive value" to conspecific stimuli. TH-ir neurons of the CG (a population of unknown function in mammals) exhibit properties that are even more selectively and tightly coupled to the expression of courtship phenotypes (and appetitive courtship singing), both in terms of TH-ir cell number, which correlates significantly with constitutive levels of courtship motivation, and with TH-Fos colocalization, which increases in direct proportion to the phasic expression of song. We propose that these neurons may be core components of social communication circuits across diverse vertebrate taxa. PMID:19439662

  5. Natural apoptosis in developing mice dopamine midbrain neurons and vermal Purkinje cells.

    PubMed

    Martí-Clúa, J

    2016-01-01

    Natural cell death by apoptosis was studied in two neuronal populations of BALB/c, C57BL/6 and B6CBA-Aw-j/A hybrid stock mice: (I) dopaminergic (DA) neurons in choosing coronal levels throughout the anteroposterior extent of the substantia nigra pars compacta (SNc), and (II) Purkinje cells (PCs) in each vermal lobe of the cerebellar cortex. Mice were collected at postnatal day (P) 2 and P14 for the midbrain study, and at P4 and P7 for the analysis of the cerebellum. No DA cells with morphologic criteria for apoptosis were found. Moreover, when the combination of tyrosine hydroxylase and TUNEL or tyrosine hydroxylase and active caspase-3 immunohistochemistry were performed in the same tissue section, no DA cells TUNEL positives or active caspase-3-stained DA neurons were seen. On the other hand, when PCs were considered, data analysis revealed that more dying PCs were observed at P4 than at P7. Values of neuron death were highest in the central lobe; this was followed by the posterior and anterior lobes and then by the inferior lobe. To determine if apoptotic death of PCs is linked to their time-of-origin profiles, pregnant dams were administered with [3H]TdR on embryonic days 11-12, 12-13, 13-14 and 14-15. When TUNEL and [3H]TdR autoradiography or active caspase-3 immunohistochemistry and [3H]TdR autoradiography were combined in the same tissue section, results reveal that the naturally occurring PC death is not related to its time of origin but, rather, is random across age. PMID:27543775

  6. Direct differentiation of adult ocular progenitors into striatal dopaminergic neurons.

    PubMed

    Ahmad, Iqbal; Zhao, Xing; Parameswaran, Sowmya; Destache, Christopher J; Rodriguez-Sierra, Jorge; Thoreson, Wallace B; Ahmad, Hiba; Sorrentino, John; Balasubramanian, Sudha

    2015-05-01

    Parkinson's disease, characterized by motor dysfunction due to the loss of nigrostriatal dopaminergic neurons, is one of the most prevalent age-related neurodegenerative disorders. Given there is no current cure, the stem cell approach has emerged as a viable therapeutic option to replace the dopaminergic neurons that are progressively lost to the disease. The success of the approach is likely to depend upon accessible, renewable, immune compatible, and non-tumorigenic sources of neural progenitors from which stable dopaminergic neurons can be generated efficaciously. Here, we demonstrate that neural progenitors derived from limbus, a regenerative and accessible ocular tissue, represent a safe source of dopaminergic neurons. When the limbus-derived neural progenitors were subjected to a well-established protocol of directed differentiation under the influence of Shh and FGF8, they acquired the biochemical and functional phenotype of dopaminergic neurons that included the ability to synthesize dopamine. Their intrastriatal transplantation in the rat model of hemi-Parkinsonism was associated with a reduction in the amphetamine-induced rotation. No tumor formation was observed 6 weeks post-transplantation. Together, these observations posit limbus-derived neural progenitors as an accessible and safe source of dopaminergic neurons for a potential autologous ex-vivo stem cell approach to Parkinson's disease. PMID:26019760

  7. Direct Differentiation of Adult Ocular Progenitors into Striatal Dopaminergic Neurons

    PubMed Central

    Ahmad, Iqbal; Zhao, Xing; Parameswaran, Sowmya; Destache, Christopher J.; Rodriguez-Sierra, Jorge; Thoreson, Wallace B.; Ahmad, Hiba; Sorrentino, John; Balasubramanian, Sudha

    2015-01-01

    Parkinson’s disease, characterized by motor dysfunction due to the loss of nigrostriatal dopaminergic neurons, is one of the most prevalent age-related neurodegenerative disorders. Given there is no current cure, the stem cell approach has emerged as a viable therapeutic option to replace the dopaminergic neurons that are progressively lost to the disease. The success of the approach is likely to depend upon accessible, renewable, immune compatible, and non-tumorigenic sources of neural progenitors from which stable dopaminergic neurons can be generated efficaciously. Here, we demonstrate that neural progenitors derived from limbus, a regenerative and accessible ocular tissue, represent a safe source of dopaminergic neurons. When the limbus-derived neural progenitors were subjected to a well-established protocol of directed differentiation under the influence of Shh and FGF8, they acquired the biochemical and functional phenotype of dopaminergic neurons that included the ability to synthesize dopamine. Their intrastriatal transplantation in the rat model of hemi-Parkinsonism was associated with a reduction in the amphetamine-induced rotation. No tumor formation was observed 6 weeks post-transplantation. Together, these observations posit limbus-derived neural progenitors as an accessible and safe source of dopaminergic neurons for a potential autologous ex-vivo stem cell approach to Parkinson’s disease. PMID:26019760

  8. Wnt5a Regulates Ventral Midbrain Morphogenesis and the Development of A9–A10 Dopaminergic Cells In Vivo

    PubMed Central

    Andersson, Emma R.; Prakash, Nilima; Bryja, Vitezslav; Bryjova, Lenka; Yamaguchi, Terry P.; Hall, Anita C.

    2008-01-01

    Wnt5a is a morphogen that activates the Wnt/planar cell polarity (PCP) pathway and serves multiple functions during development. PCP signaling controls the orientation of cells within an epithelial plane as well as convergent extension (CE) movements. Wnt5a was previously reported to promote differentiation of A9–10 dopaminergic (DA) precursors in vitro. However, the signaling mechanism in DA cells and the function of Wnt5a during midbrain development in vivo remains unclear. We hereby report that Wnt5a activated the GTPase Rac1 in DA cells and that Rac1 inhibitors blocked the Wnt5a-induced DA neuron differentiation of ventral midbrain (VM) precursor cultures, linking Wnt5a-induced differentiation with a known effector of Wnt/PCP signaling. In vivo, Wnt5a was expressed throughout the VM at embryonic day (E)9.5, and was restricted to the VM floor and basal plate by E11.5–E13.5. Analysis of Wnt5a−/− mice revealed a transient increase in progenitor proliferation at E11.5, and a precociously induced NR4A2+ (Nurr1) precursor pool at E12.5. The excess NR4A2+ precursors remained undifferentiated until E14.5, when a transient 25% increase in DA neurons was detected. Wnt5a−/− mice also displayed a defect in (mid)brain morphogenesis, including an impairment in midbrain elongation and a rounded ventricular cavity. Interestingly, these alterations affected mostly cells in the DA lineage. The ventral Sonic hedgehog-expressing domain was broadened and flattened, a typical CE phenotype, and the domains occupied by Ngn2+ DA progenitors, NR4A2+ DA precursors and TH+ DA neurons were rostrocaudally reduced and laterally expanded. In summary, we hereby describe a Wnt5a regulation of Wnt/PCP signaling in the DA lineage and provide evidence for multiple functions of Wnt5a in the VM in vivo, including the regulation of VM morphogenesis, DA progenitor cell division, and differentiation of NR4A2+ DA precursors. PMID:18953410

  9. Detailed Analysis of the Genetic and Epigenetic Signatures of iPSC-Derived Mesodiencephalic Dopaminergic Neurons

    PubMed Central

    Roessler, Reinhard; Smallwood, Sebastien A.; Veenvliet, Jesse V.; Pechlivanoglou, Petros; Peng, Su-Ping; Chakrabarty, Koushik; Groot-Koerkamp, Marian J.A.; Pasterkamp, R. Jeroen; Wesseling, Evelyn; Kelsey, Gavin; Boddeke, Erik; Smidt, Marten P.; Copray, Sjef

    2014-01-01

    Summary Induced pluripotent stem cells (iPSCs) hold great promise for in vitro generation of disease-relevant cell types, such as mesodiencephalic dopaminergic (mdDA) neurons involved in Parkinson’s disease. Although iPSC-derived midbrain DA neurons have been generated, detailed genetic and epigenetic characterizations of such neurons are lacking. The goal of this study was to examine the authenticity of iPSC-derived DA neurons obtained by established protocols. We FACS purified mdDA (Pitx3Gfp/+) neurons derived from mouse iPSCs and primary mdDA (Pitx3Gfp/+) neurons to analyze and compare their genetic and epigenetic features. Although iPSC-derived DA neurons largely adopted characteristics of their in vivo counterparts, relevant deviations in global gene expression and DNA methylation were found. Hypermethylated genes, mainly involved in neurodevelopment and basic neuronal functions, consequently showed reduced expression levels. Such abnormalities should be addressed because they might affect unambiguous long-term functionality and hamper the potential of iPSC-derived DA neurons for in vitro disease modeling or cell-based therapy. PMID:24749075

  10. Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons

    PubMed Central

    Hwang, Dong-Youn; Hong, Sunghoi; Jeong, Joo-Won; Choi, Sangdun; Kim, Hansoo; Kim, Jangwoo; Kim, Kwang-Soo

    2016-01-01

    Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson’s disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson’s disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway. PMID:19780901

  11. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly.

    PubMed

    Luo, Sarah X; Huang, Eric J

    2016-03-01

    Midbrain dopaminergic (DA) neurons in the substantia nigra pars compacta and ventral tegmental area regulate extrapyramidal movement and important cognitive functions, including motivation, reward associations, and habit learning. Dysfunctions in DA neuron circuitry have been implicated in several neuropsychiatric disorders, including addiction and schizophrenia, whereas selective degeneration of DA neurons in substantia nigra pars compacta is a key neuropathological feature in Parkinson disease. Efforts to understand these disorders have focused on dissecting the underlying causes, as well as developing therapeutic strategies to replenish dopamine deficiency. In particular, the promise of cell replacement therapies for clinical intervention has led to extensive research in the identification of mechanisms involved in DA neuron development. It is hoped that a comprehensive understanding of these mechanisms will lead to therapeutic strategies that improve the efficiency of DA neuron production, engraftment, and function. This review provides a comprehensive discussion on how Wnt/β-catenin and sonic hedgehog-Smoothened signaling mechanisms control the specification and expansion of DA progenitors and the differentiation of DA neurons. We also discuss how mechanisms involving transforming growth factor-β and transcriptional cofactor homeodomain interacting protein kinase 2 regulate the survival and maturation of DA neurons in early postnatal life. These results not only reveal fundamental mechanisms regulating DA neuron development, but also provide important insights to their potential contributions to neuropsychiatric and neurodegenerative diseases. PMID:26724386

  12. Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson's disease

    PubMed Central

    Zhang, Wei; Phillips, Kester; Wielgus, Albert R.; Liu, Jie; Albertini, Alberto; Zucca, Fabio A.; Faust, Rudolph; Qian, Steven Y.; Miller, David S.; Chignell, Colin F.; Wilson, Belinda; Jackson-Lewis, Vernice; Przedborski, Serge; Joset, Danielle; Loike, John; Hong, Jau-Shyong; Sulzer, David; Zecca, Luigi

    2013-01-01

    In Parkinson's disease (PD), there is a progressive loss of neuromelanin (NM)-containing dopamine (DA) neurons in substantia nigra (SN) which is associated with microgliosis and presence of extracellular NM. Herein, we have investigated the interplay between microglia and human NM on the degeneration of SN dopaminergic neurons. Although NM particles are phagocytised and degraded by microglia within minutes in vitro, extracellular NM particles induce microglial activation and ensuing production of superoxide, nitric oxide (NO), hydrogen peroxide (H2O2), and pro-inflammatory factors. Furthermore, NM produces, in a microglia-depended manner, neurodegeneration in primary ventral midbrain cultures. Neurodegeneration was effectively attenuated with microglia derived from mice deficient in macrophage antigen complex-1 (Mac-1), a microglial integrin receptor involved in the initiation of phagocytosis. Neuronal loss was also attenuated with microglia derived from mice deficient in phagocytic oxidase (PHOX), a subunit of NADPH oxidase, that is responsible for superoxide and H2O2 production, or apocyanin, a NADPH oxidase inhibitor. In vivo, NM injected into rat SN produces microgliosis and a loss of tyrosine hydroxylase (TH) neurons. Thus, these results show that extracellular NM can activate microglia, which in turn, may induce dopaminergic neurodegeneration in PD. Our study may have far-reaching implications, both pathogenic and therapeutic. PMID:19957214

  13. Caspase-11 Plays an Essential Role in Methamphetamine-Induced Dopaminergic Neuron Apoptosis

    PubMed Central

    Huang, Weiye; Xie, Wei-Bing; Qiao, Dongfang; Qiu, Pingming; Huang, Enping; Li, Bing; Chen, Chuanxiang; Liu, Chao; Wang, Qi; Lin, Zhoumeng; Wang, Huijun

    2015-01-01

    Methamphetamine (METH) is an extremely addictive stimulant drug that is widely used with high potential of abuse. Previous studies have shown that METH exposure damages the nervous system, especially dopaminergic neurons. However, the exact molecular mechanisms of METH-induced neurotoxicity remain unclear. We hypothesized that caspase-11 is involved in METH-induced neuronal apoptosis. We tested our hypothesis by examining the change of caspase-11 protein expression in dopaminergic neurons (PC12 and SH-SY5Y) and in the midbrain of rats exposed to METH with Western blotting. We also determined the effects of blocking caspase-11 expression with wedelolactone (a specific inhibitor of caspase-11) or siRNA on METH-induced apoptosis in PC12 cells and SH-SY5Y cells using Annexin V and TUNEL staining. Furthermore, we observed the protein expression changes of the apoptotic markers, cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1 (PARP), after silencing the caspase-11 expression in rat midbrain by injecting LV-shcasp11 lentivirus using a stereotaxic positioning system. Results showed that METH exposure increased caspase-11 expression both in vitro and in vivo, with the effects in vitro being dose- and time-dependent. Inhibition of caspase-11 expression with either wedelolactone or siRNAs reduced the number of METH-induced apoptotic cells. In addition, blocking caspase-11 expression inhibited METH-induced activation of caspase-3 and PARP in vitro and in vivo, suggesting that caspase-11/caspase-3 signal pathway is involved in METH-induced neurotoxicity. These results indicate that caspase-11 plays an essential role in METH-induced neuronal apoptosis and may be a potential gene target for therapeutics in METH-caused neurotoxicity. PMID:25631491

  14. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture.

    PubMed

    Schulz, Thomas C; Noggle, Scott A; Palmarini, Gail M; Weiler, Deb A; Lyons, Ian G; Pensa, Kate A; Meedeniya, Adrian C B; Davidson, Bruce P; Lambert, Nevin A; Condie, Brian G

    2004-01-01

    The use of human embryonic stem cells (hESCs) as a source of dopaminergic neurons for Parkinson's disease cell therapy will require the development of simple and reliable cell differentiation protocols. The use of cell cocultures, added extracellular signaling factors, or transgenic approaches to drive hESC differentiation could lead to additional regulatory as well as cell production delays for these therapies. Because the neuronal cell lineage seems to require limited or no signaling for its formation, we tested the ability of hESCs to differentiate to form dopamine-producing neurons in a simple serum-free suspension culture system. BG01 and BG03 hESCs were differentiated as suspension aggregates, and neural progenitors and neurons were detectable after 2-4 weeks. Plated neurons responded appropriately to electrophysiological cues. This differentiation was inhibited by early exposure to bone morphogenic protein (BMP)-4, but a pulse of BMP-4 from days 5 to 9 caused induction of peripheral neuronal differentiation. Real-time polymerase chain reaction and whole-mount immunocytochemistry demonstrated the expression of multiple markers of the midbrain dopaminergic phenotype in serum-free differentiations. Neurons expressing tyrosine hydroxylase (TH) were killed by 6-hydroxydopamine (6-OHDA), a neurotoxic catecholamine. Upon plating, these cells released dopamine and other catecholamines in response to K+ depolarization. Surviving TH+ neurons, derived from the cells differentiated in serum-free suspension cultures, were detected 8 weeks after transplantation into 6-OHDA-lesioned rat brains. This work suggests that hESCs can differentiate in simple serum-free suspension cultures to produce the large number of cells required for transplantation studies. PMID:15579641

  15. Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation

    PubMed Central

    2014-01-01

    Background Parkinson’s disease is an irreversible neurodegenerative disease linked to progressive movement disorders and is accompanied by an inflammatory reaction that is believed to contribute to its pathogenesis. Since sensitivity to inflammation is not the same in all brain structures, the aim of this work was to test whether physiological conditions as stress could enhance susceptibility to inflammation in the substantia nigra, where death of dopaminergic neurons takes place in Parkinson’s disease. Methods To achieve our aim, we induced an inflammatory process in nonstressed and stressed rats (subject to a chronic variate stress) by a single intranigral injection of lipopolysaccharide, a potent proinflammogen. The effect of this treatment was evaluated on inflammatory markers as well as on neuronal and glial populations. Results Data showed a synergistic effect between inflammation and stress, thus resulting in higher microglial activation and expression of proinflammatory markers. More important, the higher inflammatory response seen in stressed animals was associated with a higher rate of death of dopaminergic neurons in the substantia nigra, the most characteristic feature seen in Parkinson’s disease. This effect was dependent on glucocorticoids. Conclusions Our data demonstrate that stress sensitises midbrain microglia to further inflammatory stimulus. This suggests that stress may be an important risk factor in the degenerative processes and symptoms of Parkinson’s disease. PMID:24565378

  16. X-ray fluorescence analysis of iron and manganese distribution in primary dopaminergic neurons

    PubMed Central

    Dučić, Tanja; Barski, Elisabeth; Salome, Murielle; Koch, Jan C; Bähr, Mathias; Lingor, Paul

    2013-01-01

    Transition metals have been suggested to play a pivotal role in the pathogenesis of Parkinson's disease. X-ray microscopy combined with a cryogenic setup is a powerful method for elemental imaging in low concentrations and high resolution in intact cells, eliminating the need for fixation and sectioning of the specimen. Here, we performed an elemental distribution analysis in cultured primary midbrain neurons with a step size in the order of 300 nm and ∼ 0.1 ppm sensitivity under cryo conditions by using X-ray fluorescence microscopy. We report the elemental mappings on the subcellular level in primary mouse dopaminergic (DAergic) and non-DAergic neurons after treatment with transition metals. Application of Fe2+ resulted in largely extracellular accumulation of iron without preference for the neuronal transmitter subtype. A quantification of different Fe oxidation states was performed using X-ray absorption near edge structure analysis. After treatment with Mn2+, a cytoplasmic/paranuclear localization of Mn was observed preferentially in DAergic neurons, while no prominent signal was detectable after Mn3+ treatment. Immunocytochemical analysis correlated the preferential Mn uptake to increased expression of voltage-gated calcium channels in DAergic neurons. We discuss the implications of this differential elemental distribution for the selective vulnerability of DAergic neurons and Parkinson's disease pathogenesis. PMID:23106162

  17. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward.

    PubMed

    Pandit, Rahul; Omrani, Azar; Luijendijk, Mieneke C M; de Vrind, Véronne A J; Van Rozen, Andrea J; Ophuis, Ralph J A Oude; Garner, Keith; Kallo, Imre; Ghanem, Alexander; Liposits, Zsolt; Conzelmann, Karl-Klaus; Vanderschuren, Louk J M J; la Fleur, Susanne E; Adan, Roger A H

    2016-08-01

    The central melanocortin (MC) system mediates its effects on food intake via MC3 (MC3R) and MC4 receptors (MC4R). Although the role of MC4R in meal size determination, satiation, food preference, and motivation is well established, the involvement of MC3R in the modulation of food intake has been less explored. Here, we investigated the role of MC3R on the incentive motivation for food, which is a crucial component of feeding behavior. Dopaminergic neurons within the ventral tegmental area (VTA) have a crucial role in the motivation for food. We here report that MC3Rs are expressed on VTA dopaminergic neurons and that pro-opiomelanocortinergic (POMC) neurons in the arcuate nucleus of the hypothalamus (Arc) innervate these VTA dopaminergic neurons. Our findings show that intracerebroventricular or intra-VTA infusion of the selective MC3R agonist γMSH increases responding for sucrose under a progressive ratio schedule of reinforcement, but not free sucrose consumption in rats. Furthermore, ex vivo electrophysiological recordings show increased VTA dopaminergic neuronal activity upon γMSH application. Consistent with a dopamine-mediated effect of γMSH, the increased motivation for sucrose after intra-VTA infusion of γMSH was blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. Taken together, we demonstrate an Arc POMC projection onto VTA dopaminergic neurons that modulates motivation for palatable food via activation of MC3R signaling. PMID:26852738

  18. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward

    PubMed Central

    Pandit, Rahul; Omrani, Azar; Luijendijk, Mieneke C M; de Vrind, Véronne A J; Van Rozen, Andrea J; Ophuis, Ralph J A Oude; Garner, Keith; Kallo, Imre; Ghanem, Alexander; Liposits, Zsolt; Conzelmann, Karl-Klaus; Vanderschuren, Louk J M J; la Fleur, Susanne E; Adan, Roger A H

    2016-01-01

    The central melanocortin (MC) system mediates its effects on food intake via MC3 (MC3R) and MC4 receptors (MC4R). Although the role of MC4R in meal size determination, satiation, food preference, and motivation is well established, the involvement of MC3R in the modulation of food intake has been less explored. Here, we investigated the role of MC3R on the incentive motivation for food, which is a crucial component of feeding behavior. Dopaminergic neurons within the ventral tegmental area (VTA) have a crucial role in the motivation for food. We here report that MC3Rs are expressed on VTA dopaminergic neurons and that pro-opiomelanocortinergic (POMC) neurons in the arcuate nucleus of the hypothalamus (Arc) innervate these VTA dopaminergic neurons. Our findings show that intracerebroventricular or intra-VTA infusion of the selective MC3R agonist γMSH increases responding for sucrose under a progressive ratio schedule of reinforcement, but not free sucrose consumption in rats. Furthermore, ex vivo electrophysiological recordings show increased VTA dopaminergic neuronal activity upon γMSH application. Consistent with a dopamine-mediated effect of γMSH, the increased motivation for sucrose after intra-VTA infusion of γMSH was blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. Taken together, we demonstrate an Arc POMC projection onto VTA dopaminergic neurons that modulates motivation for palatable food via activation of MC3R signaling. PMID:26852738

  19. Presynaptic dopamine D2-like receptors inhibit excitatory transmission onto rat ventral tegmental dopaminergic neurones

    PubMed Central

    Koga, Eiko; Momiyama, Toshihiko

    2000-01-01

    The effects of dopamine (DA) on non-NMDA glutamatergic transmission onto dopaminergic neurones in the ventral tegmental area (VTA) were examined in rat midbrain slices using the whole-cell patch-clamp technique. EPSCs in dopaminergic neurones evoked by focal stimulation within the VTA were reversibly blocked by 5 μm CNQX in the presence of bicuculline (20 μm), strychnine (0.5 μm) and D-amino-5-phosphonopentanoic acid (D-AP5, 25 μm). Bath application of DA reduced the amplitude of EPSCs up to 65.1 ± 9.52% in a concentration-dependent manner between 0.3–1000 μm (IC50, 16.0 μm) without affecting the holding current at −60 mV measured using a Cs+-filled electrode. The effect of DA on evoked EPSCs was mimicked by the D2-like receptor agonist quinpirole but not by the D1-like receptor agonist SKF 81297, and was antagonized by the D2-like receptor antagonist sulpiride (KB, 0.96 μm), but not by the D1-like receptor antagonist SCH 23390 (KB, 228.6 μm). Dopamine (30 μm) reduced the mean frequency of spontaneous miniature EPSCs (mEPSCs) without affecting their mean amplitude, and the DA-induced effect on the mEPSCs was dependent on the external Ca2+ concentration. These results suggest that afferent glutamatergic fibres which terminate on VTA dopaminergic neurones possess presynaptic D2-like receptors, activation of which inhibits glutamate release by reducing Ca2+ influx. PMID:10673553

  20. Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

    PubMed

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A

    2016-03-01

    Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. PMID:26961950

  1. Multiple value signals in dopaminergic midbrain and their role in avoidance contexts.

    PubMed

    Rigoli, Francesco; Chew, Benjamin; Dayan, Peter; Dolan, Raymond J

    2016-07-15

    The role of dopaminergic brain regions in avoidance behaviour is unclear. Active avoidance requires motivation, and the latter is linked to increased activity in dopaminergic regions. However, avoidance is also often tethered to the prospect of punishment, a state typically characterized by below baseline levels of dopaminergic function. Avoidance has been considered from the perspective of two-factor theories where the prospect of safety is considered to act as a surrogate for reward, leading to dopamine release and enhanced motivational drive. Using fMRI we investigated predictions from two-factor theory by separating the neural representation of a conventional net expected value, which is negative in the case of avoidance, from an adjusted expected value which factors in a possibility of punishment and is larger for both big rewards and big (predictably avoidable) punishments. We show that neural responses in ventral striatum and ventral tegmental area/substantial nigra (VTA/SN) covaried with net expected value. Activity in VTA/SN also covaried with an adjusted expected value, as did activity in anterior insula. Consistent with two-factor theory models, the findings indicate that VTA/SN and insula process an adjusted expected value during avoidance behaviour. PMID:27132047

  2. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice.

    PubMed

    Pristerà, Alessandro; Lin, Wei; Kaufmann, Anna-Kristin; Brimblecombe, Katherine R; Threlfell, Sarah; Dodson, Paul D; Magill, Peter J; Fernandes, Cathy; Cragg, Stephanie J; Ang, Siew-Lan

    2015-09-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice. PMID:26283356

  3. Functional Rescue of Dopaminergic Neuron Loss in Parkinson's Disease Mice After Transplantation of Hematopoietic Stem and Progenitor Cells.

    PubMed

    Altarche-Xifro, Wassim; di Vicino, Umberto; Muñoz-Martin, Maria Isabel; Bortolozzi, Analía; Bové, Jordi; Vila, Miquel; Cosma, Maria Pia

    2016-06-01

    Parkinson's disease is a common neurodegenerative disorder, which is due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and for which no definitive cure is currently available. Cellular functions in mouse and human tissues can be restored after fusion of bone marrow (BM)-derived cells with a variety of somatic cells. Here, after transplantation of hematopoietic stem and progenitor cells (HSPCs) in the SNpc of two different mouse models of Parkinson's disease, we significantly ameliorated the dopaminergic neuron loss and function. We show fusion of transplanted HSPCs with neurons and with glial cells in the ventral midbrain of Parkinson's disease mice. Interestingly, the hybrids can undergo reprogramming in vivo and survived up to 4weeks after transplantation, while acquiring features of mature astroglia. These newly generated astroglia produced Wnt1 and were essential for functional rescue of the dopaminergic neurons. Our data suggest that glial-derived hybrids produced upon fusion of transplanted HSPCs in the SNpc can rescue the Parkinson's disease phenotype via a niche-mediated effect, and can be exploited as an efficient cell-therapy approach. PMID:27428421

  4. Differential Neuronal Plasticity of Dental Pulp Stem Cells From Exfoliated Deciduous and Permanent Teeth Towards Dopaminergic Neurons.

    PubMed

    Majumdar, Debanjana; Kanafi, Mohammad; Bhonde, Ramesh; Gupta, Pawan; Datta, Indrani

    2016-09-01

    Based on early occurrence in chronological age, stem-cells from human exfoliated deciduous teeth (SHED) has been reported to possess better differentiation-potential toward certain cell-lineage in comparison to stem-cells from adult teeth (DPSCs). Whether this same property between them extends for the yield of functional central nervous system neurons is still not evaluated. Hence, we aim to assess the neuronal plasticity of SHED in comparison to DPSCs toward dopaminergic-neurons and further, if the difference is reflected in a differential expression of sonic-hedgehog (SHH)-receptors and basal-expressions of tyrosine-hydroxylase [TH; through cAMP levels]. Human SHED and DPSCs were exposed to midbrain-cues [SHH, fibroblast growth-factor8, and basic fibroblast growth-factor], and their molecular, immunophenotypical, and functional characterization was performed at different time-points of induction. Though SHED and DPSCs spontaneously expressed early-neuronal and neural-crest marker in their naïve state, only SHED expressed a high basal-expression of TH. The upregulation of dopaminergic transcription-factors Nurr1, Engrailed1, and Pitx3 was more pronounced in DPSCs. The yield of TH-expressing cells decreased from 49.8% to 32.16% in SHED while it increased from 8.09% to 77.47% in DPSCs. Dopamine release and intracellular-Ca(2+) influx upon stimulation (KCl and ATP) was higher in induced DPSCs. Significantly lower-expression of SHH-receptors was noted in naïve SHED than DPSCs, which may explain the differential neuronal plasticity. In addition, unlike DPSCs, SHED showed a down-regulation of cyclic adenosine-monophosphate (cAMP) upon exposure to SHH; possibly another contributor to the lesser differentiation-potential. Our data clearly demonstrates for the first time that DPSCs possess superior neuronal plasticity toward dopaminergic-neurons than SHED; influenced by higher SHH-receptor and lower basal TH expression. J. Cell. Physiol. 231: 2048-2063, 2016. © 2016

  5. Electrical and Ca2+ signaling in dendritic spines of substantia nigra dopaminergic neurons

    PubMed Central

    Hage, Travis A; Sun, Yujie; Khaliq, Zayd M

    2016-01-01

    Little is known about the density and function of dendritic spines on midbrain dopamine neurons, or the relative contribution of spine and shaft synapses to excitability. Using Ca2+ imaging, glutamate uncaging, fluorescence recovery after photobleaching and transgenic mice expressing labeled PSD-95, we comparatively analyzed electrical and Ca2+ signaling in spines and shaft synapses of dopamine neurons. Dendritic spines were present on dopaminergic neurons at low densities in live and fixed tissue. Uncaging-evoked potential amplitudes correlated inversely with spine length but positively with the presence of PSD-95. Spine Ca2+ signals were less sensitive to hyperpolarization than shaft synapses, suggesting amplification of spine head voltages. Lastly, activating spines during pacemaking, we observed an unexpected enhancement of spine Ca2+ midway throughout the spike cycle, likely involving recruitment of NMDA receptors and voltage-gated conductances. These results demonstrate functionality of spines in dopamine neurons and reveal a novel modulation of spine Ca2+ signaling during pacemaking. DOI: http://dx.doi.org/10.7554/eLife.13905.001 PMID:27163179

  6. Direct Bidirectional μ-Opioid Control of Midbrain Dopamine Neurons

    PubMed Central

    Hjelmstad, Gregory O.; Fujita, Wakako; Fields, Howard L.

    2014-01-01

    The ventral tegmental area (VTA) is required for the rewarding and motivational actions of opioids and activation of dopamine neurons has been implicated in these effects. The canonical model posits that opioid activation of VTA dopamine neurons is indirect, through inhibition of GABAergic inputs. However, VTA dopamine neurons also express postsynaptic μ-opioid peptide (MOP) receptors. We report here that in Sprague Dawley rat, the MOP receptor-selective agonist DAMGO (0.5–3 μm) depolarized or increased the firing rate of 87 of 451 VTA neurons (including 22 of 110 dopamine neurons). This DAMGO excitation occurs in the presence of GABAA receptor blockade and its EC50 value is two orders of magnitude lower than for presynaptic inhibition of GABA release on to VTA neurons. Consistent with a postsynaptic channel opening, excitations were accompanied by a decrease in input resistance. Excitations were blocked by CdCl2 (100 μm, n = 5) and ω-agatoxin-IVA (100 nm, n = 3), nonselective and Cav2.1 Ca2+ channel blockers, respectively. DAMGO also produced a postsynaptic inhibition in 233 of 451 VTA neurons, including 45 of 110 dopamine neurons. The mean reversal potential of the inhibitory current was −78 ± 7 mV and inhibitions were blocked by the K+ channel blocker BaCl2 (100 μm, n = 7). Blockade of either excitation or inhibition unmasked the opposite effect, suggesting that MOP receptors activate concurrent postsynaptic excitatory and inhibitory processes in most VTA neurons. These results provide a novel direct mechanism for MOP receptor control of VTA dopamine neurons. PMID:25355223

  7. Dorsal Striatal-Midbrain Connectivity in Humans Predicts How Reinforcements Are Used to Guide Decisions

    ERIC Educational Resources Information Center

    Kahnt, Thorsten; Park, Soyoung Q.; Cohen, Michael X.; Beck, Anne; Heinz, Andreas; Wrase, Jana

    2009-01-01

    It has been suggested that the target areas of dopaminergic midbrain neurons, the dorsal (DS) and ventral striatum (VS), are differently involved in reinforcement learning especially as actor and critic. Whereas the critic learns to predict rewards, the actor maintains action values to guide future decisions. The different midbrain connections to…

  8. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: A molecular, cellular and behavioral analysis

    PubMed Central

    Gillies, G.E.; Virdee, K.; McArthur, S.; Dalley, J.W.

    2014-01-01

    The knowledge that diverse populations of dopaminergic neurons within the ventral tegmental area (VTA) can be distinguished in terms of their molecular, electrophysiological and functional properties, as well as their differential projections to cortical and subcortical regions has significance for key brain functions, such as the regulation of motivation, working memory and sensorimotor control. Almost without exception, this understanding has evolved from landmark studies performed in the male sex. However, converging evidence from both clinical and pre-clinical studies illustrates that the structure and functioning of the VTA dopaminergic systems are intrinsically different in males and females. This may be driven by sex differences in the hormonal environment during adulthood (‘activational’ effects) and development (perinatal and/or pubertal ‘organizational’ effects), as well as genetic factors, especially the SRY gene on the Y chromosome in males, which is expressed in a sub-population of adult midbrain dopaminergic neurons. Stress and stress hormones, especially glucocorticoids, are important factors which interact with the VTA dopaminergic systems in order to achieve behavioral adaptation and enable the individual to cope with environmental change. Here, also, there is male/female diversity not only during adulthood, but also in early life when neurobiological programing by stress or glucocorticoid exposure differentially impacts dopaminergic developmental trajectories in male and female brains. This may have enduring consequences for individual resilience or susceptibility to pathophysiological change induced by stressors in later life, with potential translational significance for sex bias commonly found in disorders involving dysfunction of the mesocorticolimbic dopaminergic systems. These findings highlight the urgent need for a better understanding of the sexual dimorphism in the VTA if we are to improve strategies for the prevention and

  9. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.

    PubMed

    Ramcharitar, J U; Tan, E W; Fortune, E S

    2006-11-01

    Eigenmannia, a genus of weakly electric fish, exhibits a specialized behavior known as the jamming avoidance response (JAR). The JAR results in a categorical difference between Eigenmannia that are in groups of conspecifics and those that are alone. Fish in groups exhibit the JAR behavior and thereby experience ongoing, global synchronous 20- to 50-Hz electrosensory oscillations, whereas solitary fish do not. Although previous work has shown that these ongoing signals do not significantly degrade electrosensory behavior, these oscillations nevertheless elicit short-term synaptic depression in midbrain circuits. Because short-term synaptic depression can have profound effects on the transmission of information through synapses, we examined the differences in intracellularly recorded responses of midbrain neurons in awake, behaving fish to moving electrosensory images under electrosensory conditions that mimic solitary fish and fish in groups. In solitary conditions, moving objects elicited Gaussian or sinusoidal postsynaptic potentials (PSPs) that commonly exhibited preferential responses to a direction of motion. Surprisingly, when the same stimulus was presented in the presence of the global oscillations, directional selectivity was increased in all neurons tested. The magnitudes of the differences in PSP amplitude for preferred and nonpreferred directions were correlated with a measure of short-term synaptic depression in both conditions. The electrosensory consequences of the JAR appear to result in an enhancement of the representation of direction of motion in midbrain neurons. The data also support a role for short-term synaptic depression in the generation and modulation of directional responses. PMID:16790600

  10. Unique responses of midbrain CART neurons in macaques to ovarian steroids.

    PubMed

    Lima, F B; Henderson, J A; Reddy, A P; Tokuyama, Y; Hubert, G W; Kuhar, M J; Bethea, C L

    2008-08-28

    CART (cocaine and amphetamine regulated transcript) is a neuropeptide involved in the control of several physiological processes, such as response to psychostimulants, food intake, depressive diseases and neuroprotection. It is robustly expressed in the brain, mainly in regions that control emotional and stress responses and it is regulated by estrogen in the hypothalamus. There is a distinct population of CART neurons located in the vicinity of the Edinger-Westphal nucleus of the midbrain that also colocalize urocortin-1. The aims of this study were 1) to determine the distribution of CART immunoreactive neurons in the monkey midbrain, 2) to examine the effects of estrogen (E) and progesterone (P) on midbrain CART mRNA and peptide expression and 3) to determine whether midbrain CART neurons contain steroid receptors. Adult female rhesus monkeys (Macaca mulatta) were spayed and either treated with placebo (OVX), estrogen alone (E), progesterone alone (P) or E+P. Animals were prepared (a) for RNA extraction followed by microarray analysis and quantitative (q) RT-PCR (n=3/group); (b) for immunohistochemical analysis of CART and CART+tryptophan hydroxylase (TPH), CART+estrogen receptors (ER) or CART+progesterone receptors (n=5/group) and (c) for Western blots (n=3/group). Both E- and E+P-administration decreased CART gene expression on the microarray and with qRT-PCR. Stereological analysis of CART immunostaining at five levels of the Edinger-Westphal nucleus indicated little effect of E or E+P administration on the area of CART immunostaining. However, P administration increased CART-immunopositive area in comparison to the OVX control group with Student's t-test, but not with ANOVA. CART 55-102 detection on Western blot was unchanged by hormone administration. ERbeta and PR were detected in CART neurons and CART fibers appeared to innervate TPH-positive serotonin neurons in the dorsal raphe. In summary, E decreased CART mRNA, but this effect did not translate to the

  11. Tuberoinfundibular dopaminergic neurons of the hypothalamus are progestin target cells

    SciTech Connect

    Sar, M.

    1986-03-01

    To find out a direct relationship between progestin target neurons and tuberoinfundibular dopaminergic neurons colocalization of /sup 3/H ORG 2058 (a synthetic progestin) and tyrosine hydroxylase, TH, antibodies were studied by combined autoradiography and immunohistochemistry. Eight 23 day-old ovariectomized and adrenalectomized rats were injected s.c. 17-beta estradiol, daily for 4 days. On the 5th day each animal was injected i.v. 1.0 ug per 100g b.w. of /sup 3/H ORG 2058. Two animals each received 1mg of unlabeled ORG 2058 15 min prior to the injection of /sup 3/H ORG 2058 to show the specificity of localization. Animals were sacrificed after 15 or 30 min, brains were dissected, frozen and processed for autoradiography. The autoradiograms were stained immunohistochemically with antibodies to TH. TH-containing cells in the arcuate nucleus and in the hypothalamic periventricular nucleus (Group A12) showed concentration of radioactivity in their nuclei, while TH cells in Group A11, A13, A14, and in the substantia nigra (Group A9), and ventral tegmental area (Group A10) did not show nuclear concentration of /sup 3/H ORG 2058. Competition studies with unlabeled ORG 2058 abolished the nuclear uptake of radioactivity in TH containing neurons. The results suggest a direct affect of progestin on tuberoinfundibular dopaminergic neurons.

  12. Parallel coding of first- and second-order stimulus attributes by midbrain electrosensory neurons.

    PubMed

    McGillivray, Patrick; Vonderschen, Katrin; Fortune, Eric S; Chacron, Maurice J

    2012-04-18

    Natural stimuli often have time-varying first-order (i.e., mean) and second-order (i.e., variance) attributes that each carry critical information for perception and can vary independently over orders of magnitude. Experiments have shown that sensory systems continuously adapt their responses based on changes in each of these attributes. This adaptation creates ambiguity in the neural code as multiple stimuli may elicit the same neural response. While parallel processing of first- and second-order attributes by separate neural pathways is sufficient to remove this ambiguity, the existence of such pathways and the neural circuits that mediate their emergence have not been uncovered to date. We recorded the responses of midbrain electrosensory neurons in the weakly electric fish Apteronotus leptorhynchus to stimuli with first- and second-order attributes that varied independently in time. We found three distinct groups of midbrain neurons: the first group responded to both first- and second-order attributes, the second group responded selectively to first-order attributes, and the last group responded selectively to second-order attributes. In contrast, all afferent hindbrain neurons responded to both first- and second-order attributes. Using computational analyses, we show how inputs from a heterogeneous population of ON- and OFF-type afferent neurons are combined to give rise to response selectivity to either first- or second-order stimulus attributes in midbrain neurons. Our study thus uncovers, for the first time, generic and widely applicable mechanisms by which parallel processing of first- and second-order stimulus attributes emerges in the brain. PMID:22514313

  13. Expression of transgenes in midbrain dopamine neurons using the tyrosine hydroxylase promoter

    PubMed Central

    Oh, Myung Sook; Hong, Seok Jong; Huh, Youngbuhm; Kim, Kwang-Soo

    2009-01-01

    Billions of neurons are interconnected in the central nervous system (CNS). Identification of specific neuronal circuit is indispensable for understanding the relationship between structure and function in the CNS. The midbrain dopamine (DA) neuron system consists of the retrorubral area (A8), the substantia nigra (SN; A9), and the ventral tegmental area (VTA; A10). We hypothesized that genetic methods using cell-type specific promoters may offer the possibility to express tracer molecules in DA neurons to facilitate neuronal tracing. To address this, we used the 2.5 kb rat tyrosine hydroxylase (TH) promoter in adenovirus or adeno-associated virus (AAV) to express tracers specifically in DA neurons. We found that stereotaxic injection of TH promoter containing adenoviral construct resulted in cell type-specific transgene expression in the noradrenaline (NA) neurons of the locus coeruleus (LC). However, it caused a significant toxicity to DA neurons in the SN. In contrast, stereotaxic injection of TH promoter containing AAV to the SN resulted in cell type-specific transgene expression in DA neurons with no detectable toxicity. Taken together, our results demonstrate that it is possible to selectively trace DA neuronal circuits in rodent brains using the TH promoter in the context of AAV. PMID:18800154

  14. Rapid dopaminergic and GABAergic modulation of calcium and voltage transients in dendrites of prefrontal cortex pyramidal neurons

    PubMed Central

    Zhou, Wen-Liang; Antic, Srdjan D

    2012-01-01

    The physiological responses of dendrites to dopaminergic inputs are poorly understood and controversial. We applied dopamine on one dendritic branch while simultaneously monitoring action potentials (APs) from multiple dendrites using either calcium-sensitive dye, voltage-sensitive dye or both. Dopaminergic suppression of dendritic calcium transients was rapid (<0.5 s) and restricted to the site of dopamine application. Voltage waveforms of backpropagating APs were minimally altered in the same dendrites where dopamine was confirmed to cause large suppression of calcium signals, as determined by dual voltage and calcium imaging. The dopamine effects on dendritic calcium transients were fully mimicked by D1 agonists, partially reduced by D1 antagonist and completely insensitive to protein kinase blockade; consistent with a membrane delimited mechanism. This dopamine effect was unaltered in the presence of L-, R- and T-type calcium channel blockers. The somatic excitability (i.e. AP firing) was not affected by strong dopaminergic stimulation of dendrites. Dopamine and GABA were then sequentially applied on the same dendrite. In contrast to dopamine, the pulses of GABA prohibited AP backpropagation distally from the application site, even in neurons with natural Cl− concentration (patch pipette removed). Thus, the neocortex employs at least two distinct mechanisms (dopamine and GABA) for rapid modulation of dendritic calcium influx. The spatio-temporal pattern of dendritic calcium suppression described in this paper is expected to occur during phasic dopaminergic signalling, when midbrain dopaminergic neurons generate a transient (0.5 s) burst of APs in response to a salient event. PMID:22641784

  15. Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures.

    PubMed

    Tian, Yuan-Yuan; An, Li-Jia; Jiang, Lan; Duan, Yan-Long; Chen, Jun; Jiang, Bo

    2006-12-23

    Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Microglia, the resident immune cells in the central nervous system, are pivotal in the inflammatory reaction. Activated microglia can induce expression of inducible nitric-oxide synthase (iNOS) and release significant amounts of nitric oxide (NO) and TNF-alpha, which can damage the dopaminergic neurons. Catalpol, an iridoid glycoside, contained richly in the roots of Rehmannia glutinosa, was found to be neuroprotective in gerbils subjected to transient global cerebral ischemia. But the effect of catalpol on inflammation-mediated neurodegeneration has not been examined. In this study, microglia in mesencephalic neuron-glia cultures were activated with lipopolysaccharide (LPS) and the aim of the study was to examine whether catalpol could protect dopaminergic neurons from LPS-induced neurotoxicity. The results showed that catalpol significantly reduced the release of reactive oxygen species (ROS), TNF-alpha and NO after LPS-induced microglial activation. Further, catalpol attenuated LPS-induced the expression of iNOS. As determined by immunocytochemical analysis, pretreatment by catalpol dose-dependently protected dopaminergic neurons against LPS-induced neurotoxicity. These results suggest that catalpol exerts its protective effect on dopaminergic neurons by inhibiting microglial activation and reducing the production of proinflammatory factors. Thus, catalpol may possess therapeutic potential against inflammation-related neurodegenerative diseases. PMID:17049947

  16. Desire, disease, and the origins of the dopaminergic system.

    PubMed

    Sillitoe, Roy V; Vogel, Michael W

    2008-03-01

    The dopaminergic neurons in the midbrain region of the central nervous system project an extensive network of connections throughout the forebrain, including the neocortex. The midbrain-forebrain dopaminergic circuits are thought to regulate a diverse set of behaviors, from the control of movement to modulation of cognition and desire--because they relate to mood, attention, reward, and addiction. Defects in these pathways, including neurodegeneration, are implicated in a variety of psychiatric and neurological diseases, such as schizophrenia, attention-deficit/hyperactivity disorder, drug addiction, and Parkinson disease. Based on the importance of the midbrain dopaminergic neurons to normal and pathological brain function, there is considerable interest in the molecular mechanisms that regulate their development. The goal of this short review is to outline new methods and recent advances in identifying the molecular networks that regulate midbrain dopaminergic neuron differentiation and fate. Midbrain dopaminergic neurons are descended from progenitor cells located near the ventral midline of the neural tube floor plate around the cephalic flexure. It is now clear that their initial formation is dependent on interactions between the signaling molecules Sonic hedgehog, WINGLESS 1, and FIBROBLAST growth factor 8, but there is still an extensive wider network of molecular interactions that must be resolved before the complete picture of dopaminergic neuron development can be described. PMID:18283047

  17. Neurotrophic effects of L-DOPA in postnatal midbrain dopamine neuron/cortical astrocyte cocultures.

    PubMed

    Mena, M A; Davila, V; Sulzer, D

    1997-10-01

    L-DOPA is toxic to catecholamine neurons in culture, but the toxicity is reduced by exposure to astrocytes. We tested the effect of L-DOPA on dopamine neurons using postnatal ventral midbrain neuron/cortical astrocyte cocultures in serum-free, glia-conditioned medium. L-DOPA (50 microM) protected against dopamine neuronal cell death and increased the number and branching of dopamine processes. In contrast to embryonically derived glia-free cultures, where L-DOPA is toxic, postnatal midbrain cultures did not show toxicity at 200 microM L-DOPA. The stereoisomer D-DOPA (50-400 microM) was not neurotrophic. The aromatic amino acid decarboxylase inhibitor carbidopa (25 microM) did not block the neurotrophic effect. These data suggest that the neurotrophic effect of L-DOPA is stereospecific but independent of the production of dopamine. However, L-DOPA increased the level of glutathione. Inhibition of glutathione peroxidase by L-buthionine sulfoximine (3 microM for 24 h) blocked the neurotrophic action of L-DOPA. N-Acetyl-L-cysteine (250 microM for 48 h), which promotes glutathione synthesis, had a neurotrophic effect similar to that of L-DOPA. These data suggest that the neurotrophic effect of L-DOPA may be mediated, at least in part, by elevation of glutathione content. PMID:9326268

  18. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli

    PubMed Central

    Aumentado-Armstrong, Tristan; Metzen, Michael G.; Sproule, Michael K. J.; Chacron, Maurice J.

    2015-01-01

    Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems. PMID:26474395

  19. Regional vulnerability of mesencephalic dopaminergic neurons prone to degenerate in Parkinson's disease: a post-mortem study in human control subjects.

    PubMed

    Lu, Lixia; Neff, Frauke; Fischer, Daniel Alvarez; Henze, Carmen; Hirsch, Etienne C; Oertel, Wolfgang H; Schlegel, Jürgen; Hartmann, Andreas

    2006-08-01

    Parkinson's disease (PD) is characterized by loss of dopaminergic (DA) neurons in the human midbrain, which varies greatly among mesencephalic subregions. The genetic expression profiles of mesencephalic DA neurons particularly prone to degenerate during PD (nigrosome 1 within the substantia nigra pars compacta-SNpc) and those particularly resistant in the disease course (central grey substance-CGS) were compared in five control subjects by immuno-laser capture microdissection followed by RNA arbitrarily primed PCR. 8 ESTs of interest were selected for analysis by real time quantitative reverse transcription PCR. DA neurons in the CGS preferentially expressed implicated in cell survival (7 out of 8 genes selected), whereas SNpc DA neurons preferentially expressed one gene making them potentially susceptible to undergo cell death in PD. We propose that factors making CGS DA neurons more resistant may be helpful in protecting SNpc DA neurons against a pathological insult. PMID:16753304

  20. Passive and active membrane properties contribute to the temporal filtering properties of midbrain neurons in vivo.

    PubMed

    Fortune, E S; Rose, G J

    1997-05-15

    This study examined the contributions of passive and active membrane properties to the temporal selectivities of electrosensory neurons in vivo. The intracellular responses to time-varying (2-30 Hz) electrosensory stimulation and current injection of 27 neurons in the midbrain of the weakly electric fish Eigenmannia were recorded. Each neuron was filled with biocytin to reveal its anatomy. Neurons were divided into two biophysically distinct groups based on their frequency-dependent responses to sinusoidal current injection over the range 2-30 Hz. Fourteen neurons showed low-pass filtering, with a maximum decline in the amplitude of voltage responses of >2.6 dB (X = 4.30 dB, s = 1.10 dB) to sinusoidal current injection. These neurons also showed low-pass filtering of electrosensory information but with larger maximum declines in postsynaptic potential amplitude (X = 9.53 dB, s = 3.34 dB; n = 10). These neurons had broad dendritic arbors and relatively spiny dendrites. Five neurons showed all-pass filtering, having maximum decline in the amplitude of voltage responses of <2.0 dB (X = 1.16 dB, s = 0.61 dB). For electrosensory stimuli, however, these neurons showed low-, band-, or high-pass filtering. These neurons had small dendritic arbors and few or no spines. Voltage-dependent "active" conductances were revealed in eight neurons by using several levels of current clamp. In four of these neurons, the duration of the voltage-dependent conductances decreased in concert with the period of the electrosensory stimulus, whereas in the other four neurons the duration of the voltage-dependent conductances was relatively short (<30 msec) and nearly constant across sensory stimulation frequencies. These conductances enhanced the temporal filtering properties of neurons. PMID:9133400

  1. Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1

    PubMed Central

    Nishimura, Kaneyasu; Doi, Daisuke; Samata, Bumpei; Murayama, Shigeo; Tahara, Tsuyoshi; Onoe, Hirotaka; Takahashi, Jun

    2016-01-01

    Summary For cell transplantation therapy for Parkinson's disease (PD) to be realized, the grafted neurons should be integrated into the host neuronal circuit to restore the lost neuronal function. Here, using wheat-germ agglutinin-based transsynaptic tracing, we show that integrin α5 is selectively expressed in striatal neurons that are innervated by midbrain dopaminergic (DA) neurons. In addition, we found that integrin α5β1 was activated by the administration of estradiol-2-benzoate (E2B) in striatal neurons of adult female rats. Importantly, we observed that the systemic administration of E2B into hemi-parkinsonian rat models facilitates the functional integration of grafted DA neurons derived from human induced pluripotent stem cells into the host striatal neuronal circuit via the activation of integrin α5β1. Finally, methamphetamine-induced abnormal rotation was recovered earlier in E2B-administered rats than in rats that received other regimens. Our results suggest that the simultaneous administration of E2B with stem cell-derived DA progenitors can enhance the efficacy of cell transplantation therapy for PD. PMID:26997644

  2. Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1.

    PubMed

    Nishimura, Kaneyasu; Doi, Daisuke; Samata, Bumpei; Murayama, Shigeo; Tahara, Tsuyoshi; Onoe, Hirotaka; Takahashi, Jun

    2016-04-12

    For cell transplantation therapy for Parkinson's disease (PD) to be realized, the grafted neurons should be integrated into the host neuronal circuit to restore the lost neuronal function. Here, using wheat-germ agglutinin-based transsynaptic tracing, we show that integrin α5 is selectively expressed in striatal neurons that are innervated by midbrain dopaminergic (DA) neurons. In addition, we found that integrin α5β1 was activated by the administration of estradiol-2-benzoate (E2B) in striatal neurons of adult female rats. Importantly, we observed that the systemic administration of E2B into hemi-parkinsonian rat models facilitates the functional integration of grafted DA neurons derived from human induced pluripotent stem cells into the host striatal neuronal circuit via the activation of integrin α5β1. Finally, methamphetamine-induced abnormal rotation was recovered earlier in E2B-administered rats than in rats that received other regimens. Our results suggest that the simultaneous administration of E2B with stem cell-derived DA progenitors can enhance the efficacy of cell transplantation therapy for PD. PMID:26997644

  3. Early-life stress increases the survival of midbrain neurons during postnatal development and enhances reward-related and anxiolytic-like behaviors in a sex-dependent fashion.

    PubMed

    Chocyk, Agnieszka; Majcher-Maślanka, Iwona; Przyborowska, Aleksandra; Maćkowiak, Marzena; Wędzony, Krzysztof

    2015-08-01

    Clinical studies have suggested that early-life stress (ELS) increases the risk of psychopathologies that are strongly associated with dysfunction of dopaminergic neurotransmission. Thus, ELS may interfere with the development and maturation of the dopaminergic system; however, the mechanisms involved in such interference are poorly understood. In the present study, we investigated the effect of ELS on the survival of specific populations of neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) during postnatal development. First, we injected bromodeoxyuridine (BrdU) into pregnant rat dams on embryonic days 12, 13 and 14 to permanently label midbrain neurons. Then, after birth, the dams and litters were subjected to a maternal separation (MS) procedure to model ELS conditions. The number of BrdU+ neurons and the total number of neurons (cresyl violet+, CV+) were estimated in both male and female juvenile, adolescent, and adult rats. Moreover, sucrose preference and anxiety-like behaviors were studied during adulthood. We found that MS permanently increased the number of BrdU+ and CV+ neurons in the VTA of males. In the SNc, a temporary increase in the number of BrdU+ neurons was observed in juvenile MS males; however, only adult MS males displayed an increase in the number of CV+ neurons. Immunofluorescence analysis implied that MS affected the fate of non-dopaminergic neurons. MS males displayed anxiolytic-like behavior and an increase in sucrose preference. These results suggest that ELS induces distinct dysregulation in the midbrain circuitry of males, which may lead to sex-specific psychopathology of the reward system. PMID:25980793

  4. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model.

    PubMed

    Kim, Mi Jin; Park, Meeyoung; Kim, Dae Won; Shin, Min Jea; Son, Ora; Jo, Hyo Sang; Yeo, Hyeon Ji; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Kim, Duk-Soo; Kwon, Oh-Shin; Kim, Joon; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-09-01

    Parkinson's disease (PD) is an oxidative stress-mediated neurodegenerative disorder caused by selective dopaminergic neuronal death in the midbrain substantia nigra. Paraoxonase 1 (PON1) is a potent inhibitor of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) against oxidation by destroying biologically active phospholipids with potential protective effects against oxidative stress-induced inflammatory disorders. In a previous study, we constructed protein transduction domain (PTD) fusion PEP-1-PON1 protein to transduce PON1 into cells and tissue. In this study, we examined the role of transduced PEP-1-PON1 protein in repressing oxidative stress-mediated inflammatory response in microglial BV2 cells after exposure to lipopolysaccharide (LPS). Moreover, we identified the functions of transduced PEP-1-PON1 proteins which include, mitigating mitochondrial damage, decreasing reactive oxidative species (ROS) production, matrix metalloproteinase-9 (MMP-9) expression and protecting against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in SH-SY5Y cells. Furthermore, transduced PEP-1-PON1 protein reduced MMP-9 expression and protected against dopaminergic neuronal cell death in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Taken together, these results suggest a promising therapeutic application of PEP-1-PON1 proteins against PD and other inflammation and oxidative stress-related neuronal diseases. PMID:26117230

  5. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-05-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification.

  6. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans

    PubMed Central

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D.

    2016-01-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification. PMID:27193056

  7. In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans.

    PubMed

    Tanimoto, Yuki; Zheng, Ying Grace; Fei, Xianfeng; Fujie, Yukako; Hashimoto, Koichi; Kimura, Koutarou D

    2016-01-01

    Many neuronal groups such as dopamine-releasing (dopaminergic) neurons are functionally divergent, although the details of such divergence are not well understood. Dopamine in the nematode Caenorhabditis elegans modulates various neural functions and is released from four left-right pairs of neurons. The terminal identities of these dopaminergic neurons are regulated by the same genetic program, and previous studies have suggested that they are functionally redundant. In this study, however, we show functional divergence within the dopaminergic neurons of C. elegans. Because dopaminergic neurons of the animals were supposedly activated by mechanical stimulus upon entry into a lawn of their food bacteria, we developed a novel integrated microscope system that can auto-track a freely-moving (in actio) C. elegans to individually monitor and stimulate the neuronal activities of multiple neurons. We found that only head-dorsal pair of dopaminergic neurons (CEPD), but not head-ventral or posterior pairs, were preferentially activated upon food entry. In addition, the optogenetic activation of CEPD neurons alone exhibited effects similar to those observed upon food entry. Thus, our results demonstrated functional divergence in the genetically similar dopaminergic neurons, which may provide a new entry point toward understanding functional diversity of neurons beyond genetic terminal identification. PMID:27193056

  8. Electric signals regulate directional migration of ventral midbrain derived dopaminergic neural progenitor cells via Wnt/GSK3β signaling.

    PubMed

    Liu, Jia; Zhu, Bangfu; Zhang, Gaofeng; Wang, Jian; Tian, Weiming; Ju, Gong; Wei, Xiaoqing; Song, Bing

    2015-01-01

    Neural progenitor cell (NPC) replacement therapy is a promising treatment for neurodegenerative disorders including Parkinson's disease (PD). It requires a controlled directional migration and integration of NPCs, for example dopaminergic (DA) progenitor cells, into the damaged host brain tissue. There is, however, only limited understanding of how to regulate the directed migration of NPCs to the diseased or damaged brain tissues for repair and regeneration. The aims of this study are to explore the possibility of using a physiological level of electrical stimulation to regulate the directed migration of ventral midbrain NPCs (NPCs(vm)), and to investigate their potential regulation via GSK3β and associated downstream effectors. We tested the effects of direct-current (DC) electric fields (EFs) on the migration behavior of the NPCs(vm). A DC EF induced directional cell migration toward the cathode, namely electrotaxis. Reversal of the EF polarity triggered a sharp reversal of the NPC(vm) electrotaxis. The electrotactic response was both time and EF voltage dependent. Pharmacologically inhibiting the canonical Wnt/GSK3β pathway significantly reduced the electrotactic response of NPCs(vm), which is associated with the down-regulation of GSK3β phosphorylation, β-catenin activation and CLASP2 expression. This was further proved by RNA interference of GSK3β, which also showed a significantly reduced electrotactic response in association with reduced β-catenin activation and CLASP2 expression. In comparison, RNA interference of β-catenin slightly reduced electrotactic response and CLASP2 expression. Both pharmacological inhibition of Wnt/GSK3β and RNA interference of GSK3β/β-catenin clearly reduced the asymmetric redistribution of CLASP2 and its co-localization with α-tubulin. These results suggest that Wnt/GSK3β signaling contributes to the electrotactic response of NPCs(vm) through the coordination of GSK3β phosphorylation, β-catenin activation, CLASP2

  9. Medium-throughput computer aided micro-island method to assay embryonic dopaminergic neuron cultures in vitro.

    PubMed

    Planken, A; Porokuokka, L L; Hänninen, A-L; Tuominen, R K; Andressoo, J-O

    2010-12-15

    In Parkinson's disease (PD) midbrain dopaminergic (DA) neurons degenerate and die, causing loss of motor function. Currently no therapies exist to ameliorate neurodegeneration or to restore DA neurons, although neurotrophic factors (NTFs) are promising leads. Prior in vivo studies the NTFs are routinely assessed in vitro by quantifying the survival of DA neurons from embryonic rodent midbrain cultures. Current in vitro methods are limited in terms of assay reliability, arduous workflow, low throughput, low statistical power and may obscure detection of molecules with minor yet critically important therapeutic effects. We have developed a medium-throughput, micro-island culture method. It permits analysis of 10-12 data points from a single embryo - several fold more than any previously published method - and enables comparisons of DA neurons from a single gene knockout (KO) embryo. It is computer-aided, improves statistical power and decreases the number of animals and workload per experiment. This method enhances testing capabilities of NTFs and other factors, and enables small scale screening of chemical drug libraries. We have validated the method by confirming the known effects of glial cell line-derived neurotrophic factor (GDNF) and neurturin (NRTN), and demonstrated additive effects via simultaneous addition of GDNF and heparin binding growth associated molecule (HB-GAM). We also show for the first time that DA neurons isolated from GDNF receptor RET-deficient mice are still GDNF responsive, suggesting the presence of an alternative non-RET receptor for GDNF in the DA system. Finally, the method can be adapted for analyses of other low abundance neuronal systems. PMID:20951734

  10. A Novel Combination of Factors, Termed SPIE, which Promotes Dopaminergic Neuron Differentiation from Human Embryonic Stem Cells

    PubMed Central

    Vazin, Tandis; Becker, Kevin G.; Chen, Jia; Spivak, Charles E.; Lupica, Carl R.; Zhang, Yongqing; Worden, Lila; Freed, William J.

    2009-01-01

    Background Stromal-Derived Inducing Activity (SDIA) is one of the most efficient methods of generating dopaminergic (DA) neurons from embryonic stem cells (ESC). DA neuron induction can be achieved by co-culturing ESC with the mouse stromal cell lines PA6 or MS5. The molecular nature of this effect, which has been termed “SDIA” is so far unknown. Recently, we found that factors secreted by PA6 cells provided lineage-specific instructions to induce DA differentiation of human ESC (hESC). Methodology/Principal Findings In the present study, we compared PA6 cells to various cell lines lacking the SDIA effect, and employed genome expression analysis to identify differentially-expressed signaling molecules. Among the factors highly expressed by PA6 cells, and known to be associated with CNS development, were stromal cell-derived factor 1 (SDF-1/CXCL12), pleiotrophin (PTN), insulin-like growth factor 2 (IGF2), and ephrin B1 (EFNB1). When these four factors, the combination of which was termed SPIE, were applied to hESC, they induced differentiation to TH-positive neurons in vitro. RT-PCR and western blot analysis confirmed the expression of midbrain specific markers, including engrailed 1, Nurr1, Pitx3, and dopamine transporter (DAT) in cultures influenced by these four molecules. Electrophysiological recordings showed that treatment of hESC with SPIE induced differentiation of neurons that were capable of generating action potentials and forming functional synaptic connections. Conclusions/Significance The combination of SDF-1, PTN, IGF2, and EFNB1 mimics the DA phenotype-inducing property of SDIA and was sufficient to promote differentiation of hESC to functional midbrain DA neurons. These findings provide a method for differentiating hESC to form DA neurons, without a requirement for the use of animal-derived cell lines or products. PMID:19672298

  11. Cellular manganese content is developmentally regulated in human dopaminergic neurons

    NASA Astrophysics Data System (ADS)

    Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.

    2014-10-01

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.

  12. Oxytocin activation of neurons in ventral tegmental area and interfascicular nucleus of mouse midbrain.

    PubMed

    Tang, Yamei; Chen, Zhiheng; Tao, Huai; Li, Cunyan; Zhang, Xianghui; Tang, Aiguo; Liu, Yong

    2014-02-01

    Oxytocin (OT) was reported to affect cognitive and emotional behavior by action in ventral tegmental area (VTA) and other brain areas. However, it is still unclear how OT activates VTA and related midline nucleus. Here, using patch-clamp recording, we studied the effects of OT on neuron activity in VTA and interfascicular nucleus (IF). OT dose-dependently and selectively excited small neurons located in medial VTA and the majority of IF neurons but not large neurons in lateral VTA. We found the hyperpolarization-activated current (I(h)) and the membrane capacitance of OT-sensitive neuron were significantly smaller than those of OT-insensitive neurons. The action potential width of OT-sensitive neurons was about half that of OT-insensitive neurons. The OT effect was blocked by the OT receptor antagonist atosiban and WAY-267464 but not by tetrodotoxin, suggesting a direct postsynaptic activation of OT receptors. In addition, the phospholipase C (PLC) inhibitor U73122 antagonized the depolarization by OT. Both the nonselective cation channel (NSCC) antagonist SKF96365 and the Na(+)-Ca(2+) exchanger (NCX) blocker SN-6 attenuated OT effects. These results suggested that the PLC signaling pathway coupling to NSCC and NCX contributes to the OT-mediated activation of neurons in medial VTA and IF. Taken together, our results indicate OT directly acted on medial VTA and especially IF neurons to activate NSCC and NCX via PLC. The direct activation by OT of midbrain neurons may be one mechanism underlying OT effects on social behavior. PMID:24148809

  13. Functional properties and synaptic integration of genetically labelled dopaminergic neurons in intrastriatal grafts.

    PubMed

    Sørensen, Andreas Toft; Thompson, Lachlan; Kirik, Deniz; Björklund, Anders; Lindvall, Olle; Kokaia, Merab

    2005-05-01

    Intrastriatal grafts of fetal ventral mesencephalic tissue, rich in dopaminergic neurons, can reverse symptoms in Parkinson's disease. For development of effective cell replacement therapy, other sources of dopaminergic neurons, e.g. derived from stem cells, are needed. However, the electrophysiological properties grafted cells need to have in order to induce substantial functional recovery are poorly defined. It has not been possible to prospectively identify and record from dopaminergic neurons in fetal transplants. Here we used transgenic mice expressing green fluorescent protein under control of the rat tyrosine hydroxylase promoter for whole-cell patch-clamp recordings of endogenous and grafted dopaminergic neurons. We transplanted ventral mesencephalic tissue from E12.5 transgenic mice into striatum of neonatal rats with or without lesions of the nigrostriatal dopamine system. The transplanted cells exhibited intrinsic electrophysiological properties typical of substantia nigra dopaminergic neurons, i.e. broad action potentials, inward rectifying currents with characteristic 'sag', and spontaneous action potentials. The grafted dopaminergic neurons also received functional excitatory and inhibitory synaptic inputs from the host brain, as shown by the presence of both spontaneous and stimulation-evoked excitatory and inhibitory postsynaptic currents. Occurrence of spontaneous excitatory and inhibitory currents was lower, and of spontaneous action potentials was higher, in neurons placed in the dopamine-depleted striatum than of those in the intact striatum. Our findings define specific electrophysiological characteristics of transplanted fetal dopaminergic neurons, and we provide the first direct evidence of functional synaptic integration of these neurons into host neural circuitries. PMID:15926926

  14. Ether-à-go-go 1 (Eag1) potassium channel expression in dopaminergic neurons of basal ganglia is modulated by 6-hydroxydopamine lesion.

    PubMed

    Ferreira, N R; Mitkovski, M; Stühmer, W; Pardo, L A; Del Bel, E A

    2012-04-01

    The ether à go-go (Eag) gene encodes the voltage-gated potassium (K(+)) ion channel Kv10.1, whose function still remains unknown. As dopamine may directly affect K(+) channels, we evaluated whether a nigrostriatal dopaminergic lesion induced by the neurotoxin 6-hydroxydopamine (6-OHDA) would alter Eag1-K(+) channel expression in the rat basal ganglia and related brain regions. Male Wistar rats received a microinjection of either saline or 6-OHDA (unilaterally) into the medial forebrain bundle. The extent of the dopaminergic lesion induced by 6-OHDA was evaluated by apomorphine-induced rotational behavior and by tyrosine hydroxylase (TH) immunoreactivity. The 6-OHDA microinjection caused a partial or complete lesion of dopaminergic cells, as well as a reduction of Eag1+ cells in a manner proportional to the extent of the lesion. In addition, we observed a decrease in TH immunoreactivity in the ipsilateral striatum. In conclusion, the expression of the Eag1-K(+)-channel throughout the nigrostriatal pathway in the rat brain, its co-localization with dopaminergic cells and its reduction mirroring the extent of the lesion highlight a physiological circuitry where the functional role of this channel can be investigated. The Eag1-K(+) channel expression in dopaminergic cells suggests that these channels are part of the diversified group of ion channels that generate and maintain the electrophysiological activity pattern of dopaminergic midbrain neurons. PMID:22048886

  15. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons.

    PubMed

    Carballo-Molina, Oscar A; Sánchez-Navarro, Andrea; López-Ornelas, Adolfo; Lara-Rodarte, Rolando; Salazar, Patricia; Campos-Romo, Aurelio; Ramos-Mejía, Verónica; Velasco, Iván

    2016-06-01

    Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models. PMID:27174503

  16. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons

    PubMed Central

    Carballo-Molina, Oscar A.; Sánchez-Navarro, Andrea; López-Ornelas, Adolfo; Lara-Rodarte, Rolando; Salazar, Patricia; Campos-Romo, Aurelio; Ramos-Mejía, Verónica

    2016-01-01

    Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models. PMID:27174503

  17. Neural Differentiation in the Third Dimension: Generating a Human Midbrain.

    PubMed

    Marton, Rebecca M; Paşca, Sergiu P

    2016-08-01

    In recent years, technological improvements in three-dimensional (3D) culture systems have enabled the generation of organoids or spheroids representing a variety of tissues, including the brain. In this issue of Cell Stem Cell, Jo et al. (2016) describe a 3D culture model of the human midbrain containing dopaminergic neurons and neuromelanin. PMID:27494668

  18. Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner.

    PubMed

    He, Xi-Biao; Kim, Mirang; Kim, Seon-Young; Yi, Sang-Hoon; Rhee, Yong-Hee; Kim, Taeho; Lee, Eun-Hye; Park, Chang-Hwan; Dixit, Shilpy; Harrison, Fiona E; Lee, Sang-Hun

    2015-04-01

    Intracellular Vitamin C (VC) is maintained at high levels in the developing brain by the activity of sodium-dependent VC transporter 2 (Svct2), suggesting specific VC functions in brain development. A role of VC as a cofactor for Fe(II)-2-oxoglutarate-dependent dioxygenases has recently been suggested. We show that VC supplementation in neural stem cell cultures derived from embryonic midbrains greatly enhanced differentiation toward midbrain-type dopamine (mDA) neurons, the neuronal subtype associated with Parkinson's disease. VC induced gain of 5-hydroxymethylcytosine (5hmC) and loss of H3K27m3 in DA phenotype gene promoters, which are catalyzed by Tet1 and Jmjd3, respectively. Consequently, VC enhanced DA phenotype gene transcriptions in the progenitors by Nurr1, a transcription factor critical for mDA neuron development, to be more accessible to the gene promoters. Further mechanism studies including Tet1 and Jmjd3 knockdown/inhibition experiments revealed that both the 5hmC and H3K27m3 changes, specifically in the progenitor cells, are indispensible for the VC-mediated mDA neuron differentiation. We finally show that in Svct2 knockout mouse embryos, mDA neuron formation in the developing midbrain decreased along with the 5hmC/H3k27m3 changes. These findings together indicate an epigenetic role of VC in midbrain DA neuron development. PMID:25535150

  19. A microfluidic method for dopamine uptake measurements in dopaminergic neurons.

    PubMed

    Yu, Yue; Shamsi, Mohtashim H; Krastev, Dimitar L; Dryden, Michael D M; Leung, Yen; Wheeler, Aaron R

    2016-02-01

    Dopamine (DA) is a classical neurotransmitter and dysfunction in its synaptic handling underlies many neurological disorders, including addiction, depression, and neurodegeneration. A key to understanding DA dysfunction is the accurate measurement of dopamine uptake by dopaminergic neurons. Current methods that allow for the analysis of dopamine uptake rely on standard multiwell-plate based ELISA, or on carbon-fibre microelectrodes used in in vivo recording techniques. The former suffers from challenges associated with automation and analyte degradation, while the latter has low throughput and is not ideal for laboratory screening. In response to these challenges, we introduce a digital microfluidic platform to evaluate dopamine homeostasis in in vitro neuron culture. The method features voltammetric dopamine sensors with limit of detection of 30 nM integrated with cell culture sites for multi-day neuron culture and differentiation. We demonstrate the utility of the new technique for DA uptake assays featuring in-line culture and analysis, with a determination of uptake of approximately ∼32 fmol in 10 min per virtual microwell (each containing ∼200 differentiated SH-SY5Y cells). We propose that future generations of this technique will be useful for drug discovery for neurodegenerative disease as well as for a wide range of applications that would benefit from integrated cell culture and electroanalysis. PMID:26725686

  20. Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila

    PubMed Central

    Wang, Danling; Qian, Li; Xiong, Hui; Liu, Jiandong; Neckameyer, Wendi S.; Oldham, Sean; Xia, Kun; Wang, Jianzhi; Bodmer, Rolf; Zhang, Zhuohua

    2006-01-01

    Parkinson's disease (PD) is the most frequent neurodegenerative movement disorder. Mutations in the PINK1 gene are linked to the autosomal recessive early onset familial form of PD. The physiological function of PINK1 and pathological abnormality of PD-associated PINK1 mutants are largely unknown. We here show that inactivation of Drosophila PINK1 (dPINK1) using RNAi results in progressive loss of dopaminergic neurons and in ommatidial degeneration of the compound eye, which is rescued by expression of human PINK1 (hPINK1). Expression of human SOD1 suppresses neurodegeneration induced by dPINK1 inactivation. Moreover, treatment of dPINK1 RNAi flies with the antioxidants SOD and vitamin E significantly inhibits ommatidial degeneration. Thus, dPINK1 plays an essential role in maintaining neuronal survival by preventing neurons from undergoing oxidative stress, thereby suggesting a potential mechanism by which a reduction in PINK1 function leads to PD-associated neurodegeneration. PMID:16938835

  1. Effects of Oxidative Stress and Testosterone on Pro-Inflammatory Signaling in a Female Rat Dopaminergic Neuronal Cell Line.

    PubMed

    Holmes, Shaletha; Singh, Meharvan; Su, Chang; Cunningham, Rebecca L

    2016-07-01

    Parkinson's disease, a progressive neurodegenerative disorder, is associated with oxidative stress and neuroinflammation. These pathological markers can contribute to the loss of dopamine neurons in the midbrain. Interestingly, men have a 2-fold increased incidence for Parkinson's disease than women. Although the mechanisms underlying this sex difference remain elusive, we propose that the primary male sex hormone, testosterone, is involved. Our previous studies show that testosterone, through a putative membrane androgen receptor, can increase oxidative stress-induced neurotoxicity in dopamine neurons. Based on these results, this study examines the role of nuclear factor κ B (NF-κB), cyclooxygenase-2 (COX2), and apoptosis in the deleterious effects of androgens in an oxidative stress environment. We hypothesize, under oxidative stress environment, testosterone via a putative membrane androgen receptor will exacerbate oxidative stress-induced NF-κB/COX2 signaling in N27 dopaminergic neurons, leading to apoptosis. Our data show that testosterone increased the expression of COX2 and apoptosis in dopamine neurons. Inhibiting the NF-κB and COX2 pathway with CAPE and ibuprofen, respectively, blocked testosterone's negative effects on cell viability, indicating that NF-κB/COX2 cascade plays a role in the negative interaction between testosterone and oxidative stress on neuroinflammation. These data further support the role of testosterone mediating the loss of dopamine neurons under oxidative stress conditions, which may be a key mechanism contributing to the increased incidence of Parkinson's disease in men compared with women. PMID:27167771

  2. Efficient Conversion of Spermatogonial Stem Cells to Phenotypic and Functional Dopaminergic Neurons via the PI3K/Akt and P21/Smurf2/Nolz1 Pathway.

    PubMed

    Yang, Hao; Liu, Yang; Hai, Yanan; Guo, Ying; Yang, Shi; Li, Zheng; Gao, Wei-Qiang; He, Zuping

    2015-12-01

    Parkinson's disease (PD) is a common neurodegenerative syndrome characterized by loss of midbrain dopaminergic (DA) neurons. Generation of functional dopaminergic (DA) neurons is of unusual significance for treating Parkinson's disease (PD). However, direct conversion of spermatogonial stem cells (SSCs) to functional DA neurons without being reprogrammed to a pluripotent status has not been achieved. Here, we report an efficient approach to obtain morphological, phenotypic, and functional DA neurons from SSCs using a specific combination of olfactory ensheathing cell-conditioned medium (OECCM) and several defined growth factors (DGF). By following the current protocol, direct conversion of SSCs (both SSC line and primary SSCs) to neural cells and DA neurons was demonstrated by expression of numerous phenotypic genes and proteins for neural cells, as well as cell morphological features. More significantly, SSCs-derived DA neurons acquired neuronal functional properties such as synapse formation, electrophysiology activity, and dopamine secretion. Furthermore, PI3K/Akt pathway and p21/Nolz1 cascades were activated whereas Smurf2 was inactivated, leading to cell cycle exit during the conversion of SSCs into DA neurons. Collectively, this study could provide sufficient neural cells from SSCs for applications in the treatment of PD and offers novel insights into mechanisms underlying neural system development from the line of germ cells. PMID:25373443

  3. Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila.

    PubMed

    Plaçais, Pierre-Yves; Trannoy, Séverine; Isabel, Guillaume; Aso, Yoshinori; Siwanowicz, Igor; Belliart-Guérin, Ghislain; Vernier, Philippe; Birman, Serge; Tanimoto, Hiromu; Preat, Thomas

    2012-04-01

    A fundamental duty of any efficient memory system is to prevent long-lasting storage of poorly relevant information. However, little is known about dedicated mechanisms that appropriately trigger production of long-term memory (LTM). We examined the role of Drosophila dopaminergic neurons in the control of LTM formation and found that they act as a switch between two exclusive consolidation pathways leading to LTM or anesthesia-resistant memory (ARM). Blockade, after aversive olfactory conditioning, of three pairs of dopaminergic neurons projecting on mushroom bodies, the olfactory memory center, enhanced ARM, whereas their overactivation conversely impaired ARM. Notably, blockade of these neurons during the intertrial intervals of a spaced training precluded LTM formation. Two pairs of these dopaminergic neurons displayed sustained calcium oscillations in naive flies. Oscillations were weakened by ARM-inducing massed training and were enhanced during LTM formation. Our results indicate that oscillations of two pairs of dopaminergic neurons control ARM levels and gate LTM. PMID:22366756

  4. Nicotinic Acetylcholine Receptors containing the α6 subunit contribute to ethanol activation of ventral tegmental area dopaminergic neurons

    PubMed Central

    Liu, Liwang; Zhao-Shea, Rubing; McIntosh, J. Michael; Tapper, Andrew R.

    2013-01-01

    Nicotine and alcohol are often co-abused suggesting a common mechanism of action may underlie their reinforcing properties. Both drugs acutely increase activity of ventral tegmental area (VTA) dopaminergic (DAergic) neurons, a phenomenon associated with reward behavior. Recent evidence indicates that nicotinic acetylcholine receptors (nAChRs), ligand-gated cation channels activated by ACh and nicotine, may contribute to ethanol-mediated activation of VTA DAergic neurons although the nAChR subtype(s) involved has not been fully elucidated. Here we show that expression and activation of nAChRs containing the α6 subunit contribute to ethanol-induced activation of VTA DAergic neurons. In wild-type (WT) mouse midbrain sections that contain the VTA, ethanol (50 or 100 mM) significantly increased firing frequency of DAergic neurons. In contrast, ethanol did not significantly increase activity of VTA DAergic neurons in mice that do not express CHRNA6, the gene encoding the α6 nAChR subunit (α6 knock-out (KO) mice). Ethanol-induced activity in WT slices was also reduced by pre-application of the α6 subtype-selective nAChR antagonist, α-conotoxin MII[E11A]. When co-applied, ethanol potentiated the response to ACh in WT DAergic neurons; whereas co-application of ACh and ethanol failed to significantly increase activity of DAergic neurons in α6 KO slices. Finally, pre-application of α-conotoxin MII[E11A] in WT slices reduced ethanol potentiation of ACh responses. Together our data indicate that α6-subunit containing nAChRs may contribute to ethanol activation of VTA DAergic neurons. These receptors are predominantly expressed in DAergic neurons and known to be critical for nicotine reinforcement, providing a potential common therapeutic molecular target to reduce nicotine and alcohol co-abuse. PMID:23811312

  5. Essential Roles of Enteric Neuronal Serotonin in Gastrointestinal Motility and the Development/Survival of Enteric Dopaminergic Neurons

    PubMed Central

    Li, Zhishan; Chalazonitis, Alcmène; Huang, Yung-yu; Mann, J. John; Margolis, Kara Gross; Yang, Qi Melissa; Kim, Dolly O.; Côté, Francine; Mallet, Jacques; Gershon, Michael D.

    2015-01-01

    The gut contains a large 5-HT pool in enterochromaffin (EC) cells and a smaller 5-HT pool in the enteric nervous system (ENS). During development, enteric neurons are generated asynchronously. We tested hypotheses that serotonergic neurons, which arise early, affect development/survival of later-born dopaminergic, GABAergic, nitrergic, and calcitonin gene-related peptide-expressing neurons and are essential for gastrointestinal motility. 5-HT biosynthesis depends on tryptophan hydroxylase 1 (TPH1) in EC cells and on TPH2 in neurons; therefore, mice lacking TPH1 and/or TPH2 distinguish EC-derived from neuronal 5-HT. Deletion of TPH2, but not TPH1, decreased myenteric neuronal density and proportions of dopaminergic and GABAergic neurons but did not affect the extrinsic sympathetic innervation of the gut; intestinal transit slowed in mice lacking TPH2 mice, but gastric emptying accelerated. Isolated enteric crest-derived cells (ENCDCs) expressed the serotonin reuptake transporter (SERT) and 15 subtypes of 5-HT receptor. Addition of 5- HT to cultures of isolated ENCDCs promoted total and dopaminergic neuronal development. Rings of SERT-immunoreactive terminal axons surrounded myenteric dopaminergic neurons and SERT knock-out increased intestinal levels of dopamine metabolites, implying that enteric dopaminergic neurons receive a serotonergic innervation. Observations suggest that constitutive gastrointestinal motility depends more on neuronal than EC cell serotonin; moreover, serotonergic neurons promote development/survival of some classes of late-born enteric neurons, including dopaminergic neurons, which appear to innervate and activate in the adult ENS. PMID:21677183

  6. Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain

    PubMed Central

    Prakash, Nilima; Puelles, Eduardo; Freude, Kristine; Trümbach, Dietrich; Omodei, Daniela; Di Salvio, Michela; Sussel, Lori; Ericson, Johan; Sander, Maike; Simeone, Antonio; Wurst, Wolfgang

    2009-01-01

    Summary Little is known about the cues controlling the generation of motoneuron populations in the mammalian ventral midbrain. We show that Otx2 provides the crucial anterior-posterior positional information for the generation of red nucleus neurons in the murine midbrain. Moreover, the homeodomain transcription factor Nkx6-1 controls the proper development of the red nucleus and of the oculomotor and trochlear nucleus neurons. Nkx6-1 is expressed in ventral midbrain progenitors and acts as a fate determinant of the Brn3a+ (also known as Pou4f1) red nucleus neurons. These progenitors are partially dorsalized in the absence of Nkx6-1, and a fraction of their postmitotic offspring adopts an alternative cell fate, as revealed by the activation of Dbx1 and Otx2 in these cells. Nkx6-1 is also expressed in postmitotic Isl1+ oculomotor and trochlear neurons. Similar to hindbrain visceral (branchio-) motoneurons, Nkx6-1 controls the proper migration and axon outgrowth of these neurons by regulating the expression of at least three axon guidance/neuronal migration molecules. Based on these findings, we provide additional evidence that the developmental mechanism of the oculomotor and trochlear neurons exhibits more similarity with that of special visceral motoneurons than with that controlling the generation of somatic motoneurons located in the murine caudal hindbrain and spinal cord. PMID:19592574

  7. Comparison of midbrain and thalamic space-specific neurons in barn owls.

    PubMed

    Pérez, María Lucía; Peña, José Luis

    2006-02-01

    Spatial receptive fields of neurons in the auditory pathway of the barn owl result from the sensitivity to combinations of interaural time (ITD) and level differences across stimulus frequency. Both the forebrain and tectum of the owl contain such neurons. The neural pathways, which lead to the forebrain and tectal representations of auditory space, separate before the midbrain map of auditory space is synthesized. The first nuclei that belong exclusively to either the forebrain or the tectal pathways are the nucleus ovoidalis (Ov) and the external nucleus of the inferior colliculus (ICx), respectively. Both receive projections from the lateral shell subdivision of the inferior colliculus but are not interconnected. Previous studies indicate that the owl's tectal representation of auditory space is different from those found in the owl's forebrain and the mammalian brain. We addressed the question of whether the computation of spatial cues in both pathways is the same by comparing the ITD tuning of Ov and ICx neurons. Unlike in ICx, the relationship between frequency and ITD tuning had not been studied in single Ov units. In contrast to the conspicuous frequency independent ITD tuning of space-specific neurons of ICx, ITD selectivity varied with frequency in Ov. We also observed that the spatially tuned neurons of Ov respond to lower frequencies and are more broadly tuned to ITD than in ICx. Thus there are differences in the integration of frequency and ITD in the two sound-localization pathways. Thalamic neurons integrate spatial information not only within a broader frequency band but also across ITD channels. PMID:16424454

  8. Longitudinal neuronal organization of defensive reactions in the midbrain periaqueductal gray region of the rat.

    PubMed

    Depaulis, A; Keay, K A; Bandler, R

    1992-01-01

    In a previous study we investigated the intraspecific defensive reactions evoked by excitation of neurons in the intermediate third of the midbrain periaqueductal gray matter (PAG) of the rat. Experiments revealed that activation of neurons in this region of the PAG mediated: (i) backward defensive behavior, characterized by upright postures and backward movements, and (ii) reactive immobility ("freezing"), in which the rat remained immobile, but reacted with backward defensive behavior to investigative, non-aggressive contact initiated by the partner. In the present study, we aimed to extend our understanding of PAG mediation of defensive behavior by observing: (i) in a non-aggressive social interaction test, the behavioral effects of microinjections of low doses of kainic acid (40 pmol in 200 nl) made in the caudal third of the PAG; and (ii) the behavioral and cardiovascular effects of microinjections of D,L-homocysteic acid (5-10 nmol in 50-100 nl) made in the PAG of the unanesthetized decerebrate rat. Kainic acid injections into the area lateral to the midbrain aqueduct in the caudal third of the PAG evoked: (i) forward avoidance behavior, characterized by forward locomotion and occasional hop/jumps; (ii) reactive immobility ("freezing"), in which the rat remained immobile, but reacted with forward avoidance behavior to investigative, non-aggressive contact initiated by the partner; and (iii) 22-28 kHz ultrasonic vocalizations. These injections also evoked a dramatic increase in defensive responsiveness to tactile stimuli on the half of the body contralateral, but not ipsilateral, to the site of injection. Electroencephalographic measurements indicated that none of these effects were secondary to seizure activity. In the decerebrate rat, D,L-homocysteic acid injections in the caudal third of the PAG evoked forward running movements along with increased blood pressure and heart rate, the strongest effects being evoked from the region lateral to the midbrain

  9. Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework

    PubMed Central

    Sadacca, Brian F; Jones, Joshua L; Schoenbaum, Geoffrey

    2016-01-01

    Midbrain dopamine neurons have been proposed to signal reward prediction errors as defined in temporal difference (TD) learning algorithms. While these models have been extremely powerful in interpreting dopamine activity, they typically do not use value derived through inference in computing errors. This is important because much real world behavior – and thus many opportunities for error-driven learning – is based on such predictions. Here, we show that error-signaling rat dopamine neurons respond to the inferred, model-based value of cues that have not been paired with reward and do so in the same framework as they track the putative cached value of cues previously paired with reward. This suggests that dopamine neurons access a wider variety of information than contemplated by standard TD models and that, while their firing conforms to predictions of TD models in some cases, they may not be restricted to signaling errors from TD predictions. DOI: http://dx.doi.org/10.7554/eLife.13665.001 PMID:26949249

  10. The role of alpha-synuclein in the development of the dopaminergic neurons in the substantia nigra and ventral tegmental area.

    PubMed

    Tarasova, T V; Lytkina, O A; Roman, A Yu; Bachurin, S O; Ustyugov, A A

    2016-01-01

    Alpha-synuclein is a presynaptic protein of vertebrates that belongs to the family of synucleins. Normal functions of synucleins remain unknown. Alpha-synuclein is one of the causative factors of the familial and idiopathic forms of Parkinson's disease (PD). The progressive loss of dopaminergic (DA) neurons is characteristic of PD and the most severe damage occurs in the substantia nigra (SN). This leads to an erraticism of the synthesis and synaptic secretion of the neurotransmitters, subsequently resulting in the loss of the connections between brain areas. This work shows that alpha-synuclein is directly involved in the formation of the mature DA neurons of the midbrain at different stages of the ontogenesis and these findings are consistent with data obtained in other studies. Thus, alpha-synuclein may have a varying modulating effect on the growth dynamics and the fate of populations of DA neurons. PMID:27021360

  11. Programming of Dopaminergic Neurons by Neonatal Sex Hormone Exposure: Effects on Dopamine Content and Tyrosine Hydroxylase Expression in Adult Male Rats

    PubMed Central

    Espinosa, Pedro; Silva, Roxana A.; Sanguinetti, Nicole K.; Venegas, Francisca C.; Riquelme, Raul; González, Luis F.; Cruz, Gonzalo; Renard, Georgina M.; Moya, Pablo R.; Sotomayor-Zárate, Ramón

    2016-01-01

    We sought to determine the long-term changes produced by neonatal sex hormone administration on the functioning of midbrain dopaminergic neurons in adult male rats. Sprague-Dawley rats were injected subcutaneously at postnatal day 1 and were assigned to the following experimental groups: TP (testosterone propionate of 1.0 mg/50 μL); DHT (dihydrotestosterone of 1.0 mg/50 μL); EV (estradiol valerate of 0.1 mg/50 μL); and control (sesame oil of 50 μL). At postnatal day 60, neurochemical studies were performed to determine dopamine content in substantia nigra-ventral tegmental area and dopamine release in nucleus accumbens. Molecular (mRNA expression of tyrosine hydroxylase) and cellular (tyrosine hydroxylase immunoreactivity) studies were also performed. We found increased dopamine content in substantia nigra-ventral tegmental area of TP and EV rats, in addition to increased dopamine release in nucleus accumbens. However, neonatal exposure to DHT, a nonaromatizable androgen, did not affect midbrain dopaminergic neurons. Correspondingly, compared to control rats, levels of tyrosine hydroxylase mRNA and protein were significantly increased in TP and EV rats but not in DHT rats, as determined by qPCR and immunohistochemistry, respectively. Our results suggest an estrogenic mechanism involving increased tyrosine hydroxylase expression, either by direct estrogenic action or by aromatization of testosterone to estradiol in substantia nigra-ventral tegmental area. PMID:26904299

  12. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson's disease model in C57BL/6J mice

    PubMed Central

    Zhang, Fang; Lu, Jian; Zhang, Ji-guo; Xie, Jun-xia

    2015-01-01

    The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson's disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect. PMID:25883632

  13. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson's disease model in C57BL/6J mice.

    PubMed

    Zhang, Fang; Lu, Jian; Zhang, Ji-Guo; Xie, Jun-Xia

    2015-02-01

    The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson's disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect. PMID:25883632

  14. Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila

    PubMed Central

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott

    2015-01-01

    Summary Dopaminergic neurons provide reward learning signals in mammals and insects [1–4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β′2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. PMID:25728694

  15. Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila.

    PubMed

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott

    2015-03-16

    Dopaminergic neurons provide reward learning signals in mammals and insects [1-4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β'2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. PMID:25728694

  16. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.

    PubMed

    Perier, Celine; Bender, Andreas; García-Arumí, Elena; Melià, Ma Jesus; Bové, Jordi; Laub, Christoph; Klopstock, Thomas; Elstner, Matthias; Mounsey, Ross B; Teismann, Peter; Prolla, Tomas; Andreu, Antoni L; Vila, Miquel

    2013-08-01

    Acquired alterations in mitochondrial DNA are believed to play a pathogenic role in Parkinson's disease. In particular, accumulation of mitochondrial DNA deletions has been observed in substantia nigra pars compacta dopaminergic neurons from patients with Parkinson's disease and aged individuals. Also, mutations in mitochondrial DNA polymerase gamma result in multiple mitochondrial DNA deletions that can be associated with levodopa-responsive parkinsonism and severe substantia nigra pars compacta dopaminergic neurodegeneration. However, whether mitochondrial DNA deletions play a causative role in the demise of dopaminergic neurons remains unknown. Here we assessed the potential pathogenic effects of mitochondrial DNA deletions on the dopaminergic nigrostriatal system by using mutant mice possessing a proofreading-deficient form of mitochondrial DNA polymerase gamma (POLGD257A), which results in a time-dependent accumulation of mitochondrial DNA deletions in several tissues, including the brain. In these animals, we assessed the occurrence of mitochondrial DNA deletions within individual substantia nigra pars compacta dopaminergic neurons, by laser capture microdissection and quantitative real-time polymerase chain reaction, and determined the potential deleterious effects of such mitochondrial DNA alterations on mitochondrial function and dopaminergic neuronal integrity, by cytochrome c oxidase histochemistry and quantitative morphology. Nigral dopaminergic neurons from POLGD257A mice accumulate mitochondrial DNA deletions to a similar extent (∼40-60%) as patients with Parkinson's disease and aged individuals. Despite such high levels of mitochondrial DNA deletions, the majority of substantia nigra pars compacta dopaminergic neurons from these animals did not exhibit mitochondrial dysfunction or degeneration. Only a few individual substantia nigra pars compacta neurons appeared as cytochrome c oxidase-negative, which exhibited higher levels of mitochondrial DNA

  17. The effect of different durations of morphine exposure on mesencephalic dopaminergic neurons in morphine dependent rats.

    PubMed

    Shi, Weibo; Ma, Chunling; Qi, Qian; Liu, Lizhe; Bi, Haitao; Cong, Bin; Li, Yingmin

    2015-12-01

    Mesencephalic dopaminergic neurons are heavily involved in the development of drug dependence. Thyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, plays an important role in the survival of dopaminergic neurons. Therefore, this study investigated TH changes in dopaminergic neurons of the ventral tegmental area (VTA) and substantia nigra (SN), as well as the morphine effects on dopaminergic neurons induced by different durations of morphine dependence. Models of morphine dependence were established in rats, and paraffin-embedded sections, immunohistochemistry and western blotting were used to observe the changes in the expression of TH protein. Fluoro-Jade B staining was used to detect degeneration and necrosis, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) detected the apoptosis of mesencephalic dopaminergic nerve cells. Immunohistochemistry and western blotting showed that the number of TH positive cells and the protein levels in the VTA and SN were significantly decreased in the rats with a long period of morphine dependency. With prolonged morphine exposure, the dopaminergic nerve cells in the VTA and SN showed degeneration and necrosis, while apoptotic cells were not observed. The number of VTA and SN dopaminergic nerve cells decreased with increasing periods of morphine dependence, which was most likely attributable to the degeneration and necrosis of nerve cells induced by morphine toxicity. PMID:26386147

  18. Non-Monotonic Relation between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain.

    PubMed

    Hesse, Lara Li; Bakay, Warren; Ong, Hui-Ching; Anderson, Lucy; Ashmore, Jonathan; McAlpine, David; Linden, Jennifer; Schaette, Roland

    2016-01-01

    The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to "hidden hearing loss" (HHL), i.e., functional deafferentation of auditory nerve fibers (ANFs) through loss of synaptic ribbons in inner hair cells. While it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e., a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus) demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus) in both groups. Surprisingly, the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups. Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might occur

  19. Non-Monotonic Relation between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain

    PubMed Central

    Hesse, Lara Li; Bakay, Warren; Ong, Hui-Ching; Anderson, Lucy; Ashmore, Jonathan; McAlpine, David; Linden, Jennifer; Schaette, Roland

    2016-01-01

    The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to “hidden hearing loss” (HHL), i.e., functional deafferentation of auditory nerve fibers (ANFs) through loss of synaptic ribbons in inner hair cells. While it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e., a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus) demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus) in both groups. Surprisingly, the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups. Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might occur

  20. Subcellular expression and neuroprotective effects of SK channels in human dopaminergic neurons

    PubMed Central

    Dolga, A M; de Andrade, A; Meissner, L; Knaus, H-G; Höllerhage, M; Christophersen, P; Zischka, H; Plesnila, N; Höglinger, G U; Culmsee, C

    2014-01-01

    Small-conductance Ca2+-activated K+ channel activation is an emerging therapeutic approach for treatment of neurological diseases, including stroke, amyotrophic lateral sclerosis and schizophrenia. Our previous studies showed that activation of SK channels exerted neuroprotective effects through inhibition of NMDAR-mediated excitotoxicity. In this study, we tested the therapeutic potential of SK channel activation of NS309 (25 μM) in cultured human postmitotic dopaminergic neurons in vitro conditionally immortalized and differentiated from human fetal mesencephalic cells. Quantitative RT-PCR and western blotting analysis showed that differentiated dopaminergic neurons expressed low levels of SK2 channels and high levels of SK1 and SK3 channels. Further, protein analysis of subcellular fractions revealed expression of SK2 channel subtype in mitochondrial-enriched fraction. Mitochondrial complex I inhibitor rotenone (0.5 μM) disrupted the dendritic network of human dopaminergic neurons and induced neuronal death. SK channel activation reduced mitochondrial membrane potential, while it preserved the dendritic network, cell viability and ATP levels after rotenone challenge. Mitochondrial dysfunction and delayed dopaminergic cell death were prevented by increasing and/or stabilizing SK channel activity. Overall, our findings show that activation of SK channels provides protective effects in human dopaminergic neurons, likely via activation of both membrane and mitochondrial SK channels. Thus, SK channels are promising therapeutic targets for neurodegenerative disorders such as Parkinson's disease, where dopaminergic cell loss is associated with progression of the disease. PMID:24434522

  1. A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection

    PubMed Central

    2011-01-01

    Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN

  2. Abnormal Development of Glutamatergic Synapses Afferent to Dopaminergic Neurons of the Pink1−/− Mouse Model of Parkinson’s Disease

    PubMed Central

    Pearlstein, Edouard; Michel, François J.; Save, Laurène; Ferrari, Diana C.; Hammond, Constance

    2016-01-01

    In a preceding study, we showed that in adult pink1−/− mice, a monogenic animal model of Parkinson’s disease (PD), striatal neurons display aberrant electrical activities that precede the onset of overt clinical manifestations. Here, we tested the hypothesis that the maturation of dopaminergic (DA) neurons of the pink1−/− substantia nigra compacta (SNc) follows, from early stages on, a different developmental trajectory from age-matched wild type (wt) SNc DA neurons. We used immature (postnatal days P2–P10) and young adult (P30–P90) midbrain slices of pink1−/− mice expressing the green fluorescent protein in tyrosine hydroxylase (TH)-positive neurons. We report that the developmental sequence of N-Methyl-D-aspartic acid (NMDA) spontaneous excitatory postsynaptic currents (sEPSCs) is altered in pink1−/− SNc DA neurons, starting from shortly after birth. They lack the transient episode of high NMDA receptor-mediated neuronal activity characteristic of the immature stage of wt SNc DA neurons. The maturation of the membrane resistance of pink1−/− SNc DA neurons is also altered. Collectively, these observations suggest that electrical manifestations occurring shortly after birth in SNc DA neurons might lead to dysfunction in dopamine release and constitute an early pathogenic mechanism of PD. PMID:27445695

  3. Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony.

    PubMed

    Komendantov, Alexander O; Canavier, Carmen C

    2002-03-01

    The role of gap junctions between midbrain dopamine (DA) neurons in mechanisms of firing pattern generation and synchronization has not been well characterized experimentally. We modified a multi-compartment model of DA neuron by adding a spike-generating mechanism and electrically coupling the dendrites of two such neurons through gap junctions. The burst-generating mechanism in the model neuron results from the interaction of a N-methyl-D-aspartate (NMDA)-induced current and the sodium pump. The firing patterns exhibited by the two model neurons included low frequency (2-7 Hz) spiking, high-frequency (13-20 Hz) spiking, irregular spiking, regular bursting, irregular bursting, and leader/follower bursting, depending on the parameter values used for the permeability for NMDA-induced current and the conductance for electrical coupling. All of these firing patterns have been observed in physiological neurons, but a systematic dependence of the firing pattern on the covariation of these two parameters has not been established experimentally. Our simulations indicate that electrical coupling facilitates NMDA-induced burst firing via two mechanisms. The first can be observed in a pair of identical cells. At low frequencies (low NMDA), as coupling strength was increased, only a transition from asynchronous to synchronous single-spike firing was observed. At high frequencies (high NMDA), increasing the strength of the electrical coupling in an identical pair resulted in a transition from high-frequency single-spike firing to burst firing, and further increases led to synchronous high-frequency spiking. Weak electrical coupling destabilizes the synchronous solution of the fast spiking subsystems, and in the presence of a slowly varying sodium concentration, the desynchronized spiking solution leads to bursts that are approximately in phase with spikes that are not in phase. Thus this transitional mechanism depends critically on action potential dynamics. The second

  4. Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1

    PubMed Central

    Valdés, Pamela; Mercado, Gabriela; Vidal, Rene L.; Molina, Claudia; Parsons, Geoffrey; Court, Felipe A.; Martinez, Alexis; Galleguillos, Danny; Armentano, Donna; Schneider, Bernard L.; Hetz, Claudio

    2014-01-01

    Parkinson disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Although growing evidence indicates that endoplasmic reticulum (ER) stress is a hallmark of PD, its exact contribution to the disease process is not well understood. Here we report that developmental ablation of X-Box binding protein 1 (XBP1) in the nervous system, a key regulator of the unfolded protein response (UPR), protects dopaminergic neurons against a PD-inducing neurotoxin. This survival effect was associated with a preconditioning condition that resulted from induction of an adaptive ER stress response in dopaminergic neurons of the SNpc, but not in other brain regions. In contrast, silencing XBP1 in adult animals triggered chronic ER stress and dopaminergic neuron degeneration. Supporting this finding, gene therapy to deliver an active form of XBP1 provided neuroprotection and reduced striatal denervation in animals injected with 6-hydroxydopamine. Our results reveal a physiological role of the UPR in the maintenance of protein homeostasis in dopaminergic neurons that may help explain the differential neuronal vulnerability observed in PD. PMID:24753614

  5. Effect of total flavonoids from Scutellaria baicalensis on dopaminergic neurons in the substantia nigra

    PubMed Central

    Li, Xue-Li; Xu, Xiao-Fan; Bu, Qing-Xia; Jin, Wei-Rong; Sun, Qian-Ru; Feng, De-Peng; Zhang, Qing-Jv; Wang, Le-Xin

    2016-01-01

    The aim of the present study was to investigate the effect of Scutellaria baicalensis stem-leaf total flavonoid (SSTF) on the dopaminergic neurons in the substantia nigra in a mouse model of Parkinson's disease (PD). The mouse model was established by intravenous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). SSTF (5 mg/kg) was administered to the mice before or after MPTP injection, and the effects of SSTF on the behavior of the mice and the dopaminergic neurons in the substantia nigra were assessed. In addition, the level of serum malondialdehyde (MDA) was measured. Following injection of MPTP, the number of dopaminergic neurons in the substantia nigra was decreased and the neurons appeared atrophic. In addition, the level of serum MDA in the MPTP mice increased. The mean behavioral scores and the number of dopaminergic neurons in the SSTF treatment groups were significantly higher than in the MPTP group (P<0.05), and the mean serum MDA levels were significantly lower (P<0.05). Thus, SSTF improves the behaviors and the numbers of dopaminergic neurons in the substantia nigra in MPTP-induced PD in mice. These beneficial effects appear to be associated with the reduction in serum MDA. PMID:27446544

  6. Dopamine-Dependent Compensation Maintains Motor Behavior in Mice with Developmental Ablation of Dopaminergic Neurons

    PubMed Central

    DeMaro, Joseph A.; Knoten, Amanda; Hoshi, Masato; Pehek, Elizabeth; Johnson, Eugene M.; Gereau, Robert W.

    2013-01-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and consequent depletion of striatal dopamine are known to underlie the motor deficits observed in Parkinson's disease (PD). Adaptive changes in dopaminergic terminals and in postsynaptic striatal neurons can compensate for significant losses of striatal dopamine, resulting in preservation of motor behavior. In addition, compensatory changes independent of striatal dopamine have been proposed based on PD therapies that modulate nondopaminergic circuits within the basal ganglia. We used a genetic strategy to selectively destroy dopaminergic neurons in mice during development to determine the necessity of these neurons for the maintenance of normal motor behavior in adult and aged mice. We find that loss of 90% of SNc dopaminergic neurons and consequent depletion of >95% of striatal dopamine does not result in changes in motor behavior in young-adult or aged mice as evaluated by an extensive array of motor behavior tests. Treatment of aged mutant mice with the dopamine receptor antagonist haloperidol precipitated motor behavior deficits in aged mutant mice, indicating that <5% of striatal dopamine is sufficient to maintain motor function in these mice. We also found that mutant mice exhibit an exaggerated response to l-DOPA compared with control mice, suggesting that preservation of motor function involves sensitization of striatal dopamine receptors. Our results indicate that congenital loss of dopaminergic neurons induces remarkable adaptions in the nigrostriatal system where limited amounts of dopamine in the dorsal striatum can maintain normal motor function. PMID:24155314

  7. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro.

    PubMed

    Wigmore, M A; Lacey, M G

    1998-02-01

    1. Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (e.p.s.ps.), evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain. 2. The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01-30 microM) by up to 60% with an EC50 of 0.82 microM. The depression induced by L-AP4 (3 microM) was reversed by the group III preferring mGlu receptor antagonist, alpha-methyl-4-phosphonophenylglycine (MPPG; 250 microM). 3. The group I and II mGlu agonist, 1S,3R-aminocyclopentanedicarboxylic acid (ACPD; 3-30 microM) also depressed the e.p.s.p. in a concentration-dependent manner. The effect of ACPD (10 microM) was reversed by (+)-alpha-methyl-4-carboxyphenylglycine (MCPG; 1 mM; 4 cells). This effect of ACPD was also partially antagonized (by 50.3+/-15.7%, 4 cells) by MPPG (250 microM). 4. The selective agonist at group I mGlu receptors, dihydroxyphenylglycine (DHPG; 100 microM), decreased e.p.s.p. amplitude by 27.1+/-8.2% (7 cells), as did the group II mGlu receptor-selective agonist (1S,1R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 1 microM) by 26.7+/-4.3% (5 cells). 5. DHPG (10-100 microM) caused a depolarization of the recorded cell, as did ACPD (3-30 microM), whereas no such postsynaptic effect of either L-AP4 or DCG-IV was observed. 6. These results provide evidence for the presence of presynaptic inhibitory metabotropic glutamate autoreceptors from the mGlu receptor groups II and III on descending glutamatergic inputs to midbrain dopamine neurones. Group I mGlu receptors mediate a postsynaptic depolarization, and can also depress glutamatergic transmission, but may not necessarily be localized presynaptically. These sites represent novel drug targets for treatment of schizophrenia and movement disorders of basal ganglia origin. PMID

  8. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro

    PubMed Central

    Wigmore, Mark A; Lacey, Michael G

    1998-01-01

    Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (e.p.s.ps.), evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain. The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01–30 μM) by up to 60% with an EC50 of 0.82 μM. The depression induced by L-AP4 (3 μM) was reversed by the group III preferring mGlu receptor antagonist, α-methyl-4-phosphonophenylglycine (MPPG; 250 μM). The group I and II mGlu agonist, 1S,3R-aminocyclopentanedicarboxylic acid (ACPD; 3–30 μM) also depressed the e.p.s.p. in a concentration-dependent manner. The effect of ACPD (10 μM) was reversed by (+)-α-methyl-4-carboxyphenylglycine (MCPG; 1 mM; 4 cells). This effect of ACPD was also partially antagonized (by 50.3±15.7%, 4 cells) by MPPG (250 μM). The selective agonist at group I mGlu receptors, dihydroxyphenylglycine (DHPG; 100 μM), decreased e.p.s.p. amplitude by 27.1±8.2% (7 cells), as did the group II mGlu receptor-selective agonist (1S,1′R,2′R,3′R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 1 μM) by 26.7±4.3% (5 cells). DHPG (10–100 μM) caused a depolarization of the recorded cell, as did ACPD (3–30 μM), whereas no such postsynaptic effect of either L-AP4 or DCG-IV was observed. These results provide evidence for the presence of presynaptic inhibitory metabotropic glutamate autoreceptors from the mGlu receptor groups II and III on descending glutamatergic inputs to midbrain dopamine neurones. Group I mGlu receptors mediate a postsynaptic depolarization, and can also depress glutamatergic transmission, but may not necessarily be localized presynaptically. These sites represent novel drug targets for treatment of schizophrenia and movement disorders of basal ganglia origin. PMID:9517386

  9. The cellular and Genomic response of rat dopaminergic neurons (N27) to coated nanosilver

    EPA Science Inventory

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5ppm) to a set of nanoAg of different sizes (10nm, 75nm) and coatings (PVP, citrate) and thei...

  10. Progressive degeneration of dopaminergic neurons through TRP channel-induced cell death.

    PubMed

    Nagarajan, Archana; Ning, Ye; Reisner, Kaja; Buraei, Zafir; Larsen, Jan Petter; Hobert, Oliver; Doitsidou, Maria

    2014-04-23

    Progressive neurodegenerative diseases are among the most frequently occurring aging-associated human pathologies. In a screen for Caenorhabditis elegans mutant animals that lack their normal complement of dopaminergic neurons, we identified two strains with progressive loss of dopaminergic neurons during postembryonic life. Through whole-genome sequencing we show that both strains harbor dominant (d), gain-of-function mutations in the Transient Receptor Potential (TRP) mechanosensory channel trp-4, a member of the invertebrate and vertebrate TRPN-type of the TRP family channels. Gain-of-function mutations in TRP channels have not been previously implicated in dopaminergic neuronal degeneration. We show that trp-4(d) induces cell death in dopamine neurons through a defined, calcium-related downstream pathway. PMID:24760834

  11. Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats

    PubMed Central

    2011-01-01

    Background Pleiotrophin is known to promote the survival and differentiation of dopaminergic neurons in vitro and is up-regulated in the substantia nigra of Parkinson's disease patients. To establish whether pleiotrophin has a trophic effect on nigrostriatal dopaminergic neurons in vivo, we injected a recombinant adenovirus expressing pleiotrophin in the substantia nigra of 6-hydroxydopamine lesioned rats. Results The viral vector induced pleiotrophin over-expression by astrocytes in the substantia nigra pars compacta, without modifying endogenous neuronal expression. The percentage of tyrosine hydroxylase-immunoreactive cells as well as the area of their projections in the lesioned striatum was higher in pleiotrophin-treated animals than in controls. Conclusions These results indicate that pleiotrophin over-expression partially rescues tyrosine hydroxylase-immunoreactive cell bodies and terminals of dopaminergic neurons undergoing 6-hydroxydopamine-induced degeneration. PMID:21649894

  12. Chemogenetic ablation of dopaminergic neurons leads to transient locomotor impairments in zebrafish larvae.

    PubMed

    Godoy, Rafael; Noble, Sandra; Yoon, Kevin; Anisman, Hymie; Ekker, Marc

    2015-10-01

    To determine the impact of a controlled loss of dopaminergic neurons on locomotor function, we generated transgenic zebrafish, Tg(dat:CFP-NTR), expressing a cyan fluorescent protein-nitroreductase fusion protein (CFP-NTR) under the control of dopamine transporter (dat) cis-regulatory elements. Embryonic and larval zebrafish express the transgene in several groups of dopaminergic neurons, notably in the olfactory bulb, telencephalon, diencephalon and caudal hypothalamus. Administration of the pro-drug metronidazole (Mtz) resulted in activation of caspase 3 in CFP-positive neurons and in a reduction in dat-positive cells by 5 days post-fertilization (dpf). Loss of neurons coincided with impairments in global locomotor parameters such as swimming distance, percentage of time spent moving, as well as changes in tail bend parameters such as time to maximal bend and angular velocity. Dopamine levels were transiently decreased following Mtz administration. Recovery of some of the locomotor parameters was observed by 7 dpf. However, the total numbers of dat-expressing neurons were still decreased at 7, 12, or 14 dpf, even though there was evidence for production of new dat-expressing cells. Tg(dat:CFP-NTR) zebrafish provide a model to correlate altered dopaminergic neuron numbers with locomotor function and to investigate factors influencing regeneration of dopaminergic neurons. PMID:26118896

  13. Opposing effects of APP/PS1 and TrkB.T1 genotypes on midbrain dopamine neurons and stimulated dopamine release in vivo.

    PubMed

    Kärkkäinen, E; Yavich, L; Miettinen, P O; Tanila, H

    2015-10-01

    Brain derived neurotrophic factor (BDNF) signaling disturbances in Alzheimer׳s disease (AD) have been demonstrated. BDNF levels fall in AD, but the ratio between truncated and full-length BDNF receptors TrkB.T1 and TrkB.TK, respectively, increases in brains of AD patients and APPswe/PS1dE9 (APP/PS1) AD model mice. Dopaminergic (DAergic) system disturbances in AD and detrimental effects of BDNF signaling deficits on DAergic system functions have also been indicated. Against this, we investigated changes in nigrostriatal dopamine (DA) system in mice carrying APP/PS1 and/or TrkB.T1 transgenes, the latter line modeling the TrkB.T1/TK ratio change in AD. Employing in vivo voltammetry, we found normal short-term DA release in caudate-putamen of mice carrying APP/PS1 or TrkB.T1 transgenes but impaired capacity to recruit more DA upon prolonged stimulation. However, mice carrying both transgenes did not differ from wild-type controls. Immunohistochemistry revealed normal density of tyrosine hydroxylase positive axon terminals in caudate-putamen in all genotypes and intact presynaptic machinery for DA release and reuptake, as shown by unchanged levels of SNAP-25, α-synuclein and DA transporter. However, we observed increased DAergic neurons in substantia nigra of TrkB.T1 mice resulting in decreased tyrosine hydroxylase per neuron in TrkB.T1 mice. The finding of unchanged nigral DAergic neurons in APP/PS1 mice largely confirms earlier reports, but the unexpected increase in midbrain DA neurons in TrkB.T1 mice is a novel finding. We suggest that both APP/PS1 and TrkB.T1 genotypes disrupt DAergic signaling, but via separate mechanisms. PMID:26168899

  14. Neonatal chlorpyrifos exposure induces loss of dopaminergic neurons in young adult rats.

    PubMed

    Zhang, Jie; Dai, Hongmei; Deng, Yuanying; Tian, Jing; Zhang, Chen; Hu, Zhiping; Bing, Guoying; Zhao, Lingling

    2015-10-01

    Increasing epidemiological and toxicological evidence suggests that pesticides and other environmental exposures may be associated with the development of Parkinson's disease (PD). Chlorpyrifos (CPF) is a widely used organophosphorous pesticide with developmental neurotoxicity. Its neurotoxicity, notably on the monoamine system, suggests that exposure of CPF may induce dopaminergic neuronal injury. We investigated whether neonatal exposure to CPF contributes to initiation and progression of dopaminergic neurotoxicity and explored the possible underlying mechanisms. The newborn rats were administrated 5 mg/kg CPF subcutaneously from postnatal day (PND) 11 to PND 14 daily. The effect of CPF on dopaminergic neurons, microglia, astrocyte, nuclear factor-κB (NF-κB) p. 65 and p. 38 mitogen-activated protein kinase (MAPK) signaling pathways was analyzed in the substantia nigra of rats at 12h, 24h, 72 h, 16d and 46 d after exposure. CPF-treated rats exhibited significant reduction of dopaminergic neurons at 16d and 46 d after exposure, and a significant increase in the expression of microglia and astrocytes in the substantia nigra after CPF exposure. Intense activation of NF-κB p. 65 and p. 38 MAPK inflammatory signaling pathways was observed. Our findings indicate that neonatal exposure to CPF may induce long-term dopaminergic neuronal damage in the substantia nigra mediated by the activation of inflammatory response via NF-κB p. 65 and p. 38 MAPK pathways in the nigrostriatal system. PMID:26215101

  15. Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys

    PubMed Central

    Bogenpohl, James W.; Alagille, David; Delevich, Kristen; Tamagnan, Gilles; Votaw, John R.; Wichmann, Thomas; Smith, Yoland

    2011-01-01

    Degeneration of the dopaminergic nigrostriatal system and of noradrenergic neurons in the locus coeruleus are important pathological features of Parkinson’s disease. There is an urgent need to develop therapies that slow down the progression of neurodegeneration in Parkinson’s disease. In the present study, we tested whether the highly specific metabotropic glutamate receptor 5 antagonist, 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine, reduces dopaminergic and noradrenergic neuronal loss in monkeys rendered parkinsonian by chronic treatment with low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Weekly intramuscular 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injections (0.2–0.5 mg/kg body weight), in combination with daily administration of 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine or vehicle, were performed until the development of parkinsonian motor symptoms in either of the two experimental groups (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine versus 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle). After 21 weeks of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment, all 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle-treated animals displayed parkinsonian symptoms, whereas none of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine-treated monkeys were significantly affected. These behavioural observations were consistent with in vivo positron emission tomography dopamine transporter imaging data, and with post-mortem stereological counts of midbrain dopaminergic neurons, as well as striatal intensity measurements of dopamine transporter and tyrosine hydroxylase immunoreactivity, which were all significantly higher in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine-treated animals than in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle-treated monkeys. The 3-[(2-methyl-1

  16. Directed Differentiation of Dopaminergic Neuronal Subtypes from Human Embryonic Stem Cells

    PubMed Central

    Yan, Yiping; Yang, Dali; Zarnowska, Ewa D.; Du, Zhongwei; Werbel, Brian; Valliere, Chuck; Pearce, Robert A.; Thomson, James A.; Zhang, Su-Chun

    2009-01-01

    How dopamine (DA) neuronal subtypes are specified remains unknown. In this study we show a robust generation of functional DA neurons from human embryonic stem cells (hESCs) through a specific sequence of application of fibroblast growth factor 8 (FGF8) and sonic hedgehog (SHH). Treatment of hESC-derived Sox1+ neuroepithelial cells with FGF8 and SHH resulted in production of tyrosine hydroxylase (TH)–positive neurons that were mostly bipolar cells, coexpression with γ-aminobutyric acid, and lack of midbrain marker engrailed 1 (En1) expression. However, FGF8 treatment of precursor cells before Sox1 expression led to the generation of a similar proportion of TH+ neurons characteristic of midbrain projection DA neurons with large cell bodies and complex processes and coexpression of En1. This suggests that one mechanism of generating neuronal subtypes is temporal availability of morphogens to a specific group of precursors. The in vitro–generated DA neurons were electrophysiologically active and released DA in an activity-dependent manner. They may thus provide a renewable source of functional human DA neurons for drug screening and development of sustainable therapeutics for disorders affecting the DA system. PMID:15917474

  17. Effects of GDF5 overexpression on embryonic rat dopaminergic neurones in vitro and in vivo.

    PubMed

    O'Sullivan, David B; Harrison, Patrick T; Sullivan, Aideen M

    2010-05-01

    Transplantation of embryonic dopaminergic neurones has shown promise for the treatment of Parkinson's disease (PD), but this approach is limited by the poor survival of the transplanted cells. Exogenous dopaminergic neurotrophic factors such as growth/differentiation factor 5 (GDF5) have been found to enhance the survival of transplanted dopaminergic neurones. However, this approach is limited by the rapid degradation of such factors in vivo; thus, methods for long-term delivery of these factors are under investigation. The present study shows, using optimised lipid-mediated transfection procedures, that overexpression of GDF5 significantly improves the survival of dopaminergic neurones in cultures of embryonic day (E) 13 rat ventral mesencephalon (VM) and protects them against 6-hydroxydopamine (6-OHDA)-induced toxicity. In another experiment, E13 VM cells were transfected with GDF5 after 1 day in vitro (DIV), then transplanted into 6-OHDA-lesioned adult rat striata after 2 DIV. The survival of these E13 VM dopaminergic neurones after transfection and transplantation was as least as high as that of freshly dissected E14 VM dopaminergic neurones, demonstrating that transfection was not detrimental to these cells. Furthermore, GDF5-overexpressing E13 VM transplants significantly reduced amphetamine-induced rotational asymmetry in the lesioned rats. This study shows that lipid-mediated transfection in vitro prior to transplantation is a valid approach for the introduction of neurotrophic proteins such as GDF5, as well as lending further support to the potential use of GDF5 in neuroprotective therapy for PD. PMID:20349094

  18. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells

    SciTech Connect

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-11-15

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles ({approx} 25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25-400 {mu}g/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase C{delta} (PKC{delta}), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. -- Highlights: Black-Right-Pointing-Pointer Mn nanoparticles

  19. A Stem Cell-Derived Platform for Studying Single Synaptic Vesicles in Dopaminergic Synapses

    PubMed Central

    Gu, Haigang; Lazarenko, Roman M.; Koktysh, Dmitry; Iacovitti, Lorraine

    2015-01-01

    The exocytotic release of dopamine is one of the most characteristic but also one of the least appreciated processes in dopaminergic neurotransmission. Fluorescence imaging has yielded rich information about the properties of synaptic vesicles and the release of neurotransmitters in excitatory and inhibitory neurons. In contrast, imaging-based studies for in-depth understanding of synaptic vesicle behavior in dopamine neurons are lagging largely because of a lack of suitable preparations. Midbrain culture has been one of the most valuable preparations for the subcellular investigation of dopaminergic transmission; however, the paucity and fragility of cultured dopaminergic neurons limits their use for live cell imaging. Recent developments in stem cell technology have led to the successful production of dopamine neurons from embryonic or induced pluripotent stem cells. Although the dopaminergic identity of these stem cell-derived neurons has been characterized in different ways, vesicle-mediated dopamine release from their axonal terminals has been barely assessed. We report a more efficient procedure to reliably generate dopamine neurons from embryonic stem cells, and it yields more dopamine neurons with more dopaminergic axon projections than midbrain culture does. Using a collection of functional measurements, we show that stem cell-derived dopamine neurons are indistinguishable from those in midbrain culture. Taking advantage of this new preparation, we simultaneously tracked the turnover of hundreds of synaptic vesicles individually using pH-sensitive quantum dots. By doing so, we revealed distinct fusion kinetics of the dopamine-secreting vesicles, which is consistent within both preparations. Significance For the use of stem cell-derived neurons in clinical applications, improved differentiation efficiency and more careful characterization of resultant cells are needed. A procedure has been refined for differentiation of mouse embryonic stem cells into

  20. Id2 IS REQUIRED FOR SPECIFICATION OF DOPAMINERGIC NEURONS DURING ADULT OLFACTORY NEUROGENESIS

    PubMed Central

    Havrda, Matthew C.; Harris, Brent T.; Mantani, Akio; Ward, Nora M.; Paolella, Brenton R.; Cuzon, Verginia C.; Yeh, Hermes H.; Israel, Mark A.

    2009-01-01

    Understanding the biology of adult neural stem cells has important implications for nervous system development and may contribute to our understanding of neurodegenerative disorders and their treatment. We have characterized the process of olfactory neurogenesis in adult mice lacking Inhibitor of DNA Binding 2 (Id2). We found a diminished olfactory bulb containing reduced numbers of granular and periglomerular neurons with a distinct paucity of dopaminergic periglomerular neurons. While no deficiency of the stem cell compartment was detectable, migrating neuroblasts in Id2−/− mutant mice prematurely undergo astroglial differentiation within a disorganized rostral migratory stream. Further, when evaluated in vitro loss of Id2 results in decreased proliferation of neural progenitors and decreased expression of the Hes1 and Mash1 transcription factors, known mediators of neuronal differentiation. These data support a novel role for sustained Id2 expression in migrating neural progenitors mediating olfactory dopaminergic neuronal differentiation in adult animals. PMID:19109490

  1. Degeneration of Dopaminergic Neurons Due to Metabolic Alterations and Parkinson’s Disease

    PubMed Central

    Song, Juhyun; Kim, Jongpil

    2016-01-01

    The rates of metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, and cardiovascular disease (CVD), markedly increase with age. In recent years, studies have reported an association between metabolic changes and various pathophysiological mechanisms in the central nervous system (CNS) in patients with metabolic diseases. Oxidative stress and hyperglycemia in metabolic diseases lead to adverse neurophysiological phenomena, including neuronal loss, synaptic dysfunction, and improper insulin signaling, resulting in Parkinson’s disease (PD). In addition, several lines of evidence suggest that alterations of CNS environments by metabolic changes influence the dopamine neuronal loss, eventually affecting the pathogenesis of PD. Thus, we reviewed recent findings relating to degeneration of dopaminergic neurons during metabolic diseases. We highlight the fact that using a metabolic approach to manipulate degeneration of dopaminergic neurons can serve as a therapeutic strategy to attenuate pathology of PD. PMID:27065205

  2. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  3. Phosphodiesterase 7 Inhibition Preserves Dopaminergic Neurons in Cellular and Rodent Models of Parkinson Disease

    PubMed Central

    Morales-Garcia, Jose A.; Redondo, Miriam; Alonso-Gil, Sandra; Gil, Carmen; Perez, Concepción; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2011-01-01

    Background Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions. Methodology/Principal Findings Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A. Conclusions/Significance Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease. PMID:21390306

  4. Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques.

    PubMed

    Hayashi, Takuya; Wakao, Shohei; Kitada, Masaaki; Ose, Takayuki; Watabe, Hiroshi; Kuroda, Yasumasa; Mitsunaga, Kanae; Matsuse, Dai; Shigemoto, Taeko; Ito, Akihito; Ikeda, Hironobu; Fukuyama, Hidenao; Onoe, Hirotaka; Tabata, Yasuhiko; Dezawa, Mari

    2013-01-01

    A cell-based therapy for the replacement of dopaminergic neurons has been a long-term goal in Parkinson's disease research. Here, we show that autologous engraftment of A9 dopaminergic neuron-like cells induced from mesenchymal stem cells (MSCs) leads to long-term survival of the cells and restoration of motor function in hemiparkinsonian macaques. Differentiated MSCs expressed markers of A9 dopaminergic neurons and released dopamine after depolarization in vitro. The differentiated autologous cells were engrafted in the affected portion of the striatum. Animals that received transplants showed modest and gradual improvements in motor behaviors. Positron emission tomography (PET) using [11C]-CFT, a ligand for the dopamine transporter (DAT), revealed a dramatic increase in DAT expression, with a subsequent exponential decline over a period of 7 months. Kinetic analysis of the PET findings revealed that DAT expression remained above baseline levels for over 7 months. Immunohistochemical evaluations at 9 months consistently demonstrated the existence of cells positive for DAT and other A9 dopaminergic neuron markers in the engrafted striatum. These data suggest that transplantation of differentiated autologous MSCs may represent a safe and effective cell therapy for Parkinson's disease. PMID:23202734

  5. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    PubMed Central

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-01-01

    ABSTRACT Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. PMID:26912775

  6. Biochanin A protects dopaminergic neurons against lipopolysaccharide-induced damage and oxidative stress in a rat model of Parkinson's disease.

    PubMed

    Wang, Jun; He, Can; Wu, Wang-Yang; Chen, Feng; Wu, Yang-Yang; Li, Wei-Zu; Chen, Han-Qing; Yin, Yan-Yan

    2015-11-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Accumulated evidences have suggested that oxidative stress is closely associated with the dopaminergic neurodegeneration of PD that can be protected by antioxidants. Biochanin A that is an O-methylated isoflavone in chickpea is investigated to explore its protective mechanism on dopaminergic neurons of the unilateral lipopolysaccharide (LPS)-injected rat. The results showed that biochanin A significantly improved the animal model's behavioral symptoms, prevented the loss of dopaminergic neurons and inhibited the deleterious microglia activation in the LPS-induced rats. Moreover, biochanin A inhibited nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) activation and malondialdehyde (MDA) production, increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in the rat brain. These results suggested that biochanin A might be a natural candidate with protective properties on dopaminergic neurons against the PD. PMID:26394281

  7. Species-specificity of temporal processing in the auditory midbrain of gray treefrogs: interval-counting neurons.

    PubMed

    Rose, Gary J; Hanson, Jessica L; Leary, Christopher J; Graham, Jalina A; Alluri, Rishi K; Vasquez-Opazo, Gustavo A

    2015-05-01

    Interval-counting neurons (ICNs) respond after a threshold number of sound pulses have occurred with specific intervals; a single aberrant interval can reset the counting process. Female gray treefrogs, Hyla chrysoscelis and H. versicolor, discriminate against synthetic 'calls' possessing a single interpulse interval 2-3 three times the optimal value, suggesting that ICNs are important for call recognition. The calls of H. versicolor consist of pulses that are longer in duration, rise more slowly in amplitude and are repeated at a slower rate than those of H. chrysoscelis. Results of recordings from midbrain auditory neurons in these species include: (1) ICNs were found in both species and their temporal selectivity appeared to result from interplay between excitation and inhibition; (2) band-pass cells in H. versicolor were tuned to slower pulse rates than those in H. chrysoscelis; (3) ICNs that were selective for slow-rise pulse shape were found almost exclusively in H. versicolor, but fast-rise-selective neurons were found in both species, and (4) band-suppression ICNs in H. versicolor showed response minima at higher pulse rates than those in H. chrysoscelis. Selectivity of midbrain ICNs for pulse rise time and repetition rate thus correlate well with discriminatory abilities of these species that promote reproductive isolation. PMID:25764308

  8. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells

    PubMed Central

    Liu, Xinjian; Li, Fang; Stubblefield, Elizabeth A; Blanchard, Barbara; Richards, Toni L; Larson, Gaynor A; He, Yujun; Huang, Qian; Tan, Aik-Choon; Zhang, Dabing; Benke, Timothy A; Sladek, John R; Zahniser, Nancy R; Li, Chuan-Yuan

    2012-01-01

    Transplantation of exogenous dopaminergic neuron (DA neurons) is a promising approach for treating Parkinson's disease (PD). However, a major stumbling block has been the lack of a reliable source of donor DA neurons. Here we show that a combination of five transcriptional factors Mash1, Ngn2, Sox2, Nurr1, and Pitx3 can directly and effectively reprogram human fibroblasts into DA neuron-like cells. The reprogrammed cells stained positive for various markers for DA neurons. They also showed characteristic DA uptake and production properties. Moreover, they exhibited DA neuron-specific electrophysiological profiles. Finally, they provided symptomatic relief in a rat PD model. Therefore, our directly reprogrammed DA neuron-like cells are a promising source of cell-replacement therapy for PD. PMID:22105488

  9. Dopaminergic Neuronal Differentiation from the Forebrain-Derived Human Neural Stem Cells Induced in Cultures by Using a Combination of BMP-7 and Pramipexole with Growth Factors

    PubMed Central

    Yang, HongNa; Wang, Jing; Wang, Feng; Liu, XiaoDun; Chen, Heng; Duan, WeiMing; Qu, TingYu

    2016-01-01

    Transplantation of dopaminergic (DA) neurons is considered to be the most promising therapeutic strategy for replacing degenerated dopamine cells in the midbrain of Parkinson's disease (PD), thereby restoring normal neural circuit function and slow clinical progression of the disease. Human neural stem cells (hNSCs) derived from fetal forebrain are thought to be the important cell sources for producing DA neurons because of their multipotency for differentiation and long-term expansion property in cultures. However, low DA differentiation of the forebrain-derived hNSCs limited their therapeutic potential in PD. In the current study, we explored a combined application of Pramipexole (PRX), bone morphogenetic proteins 7 (BMP-7), and growth factors, including acidic fibroblast factor (aFGF), forskolin, and phorbol-12-myristae-13-acetate (TPA), to induce differentiation of forebrain-derived hNSCs toward DA neurons in cultures. We found that DA neuron-associated genes, including Nurr1, Neurogenin2 (Ngn2), and tyrosine hydroxylase (TH) were significantly increased after 24 h of differentiation by RT-PCR analysis (p < 0.01). Fluorescent examination showed that about 25% of cells became TH-positive neurons at 24 h, about 5% of cells became VMAT2 (vascular monoamine transporter 2)-positive neurons, and less than 5% of cells became DAT (dopamine transporter)-positive neurons at 72 h following differentiation in cultures. Importantly, these TH-, VMAT2-, and DAT-expressing neurons were able to release dopamine into cultures under both of the basal and evoked conditions. Dopamine levels released by DA neurons produced using our protocol were significantly higher compared to the control groups (P < 0.01), as examined by ELISA. Our results demonstrated that the combination of PRX, BMP-7, and growth factors was able to greatly promote differentiation of the forebrain-derived hNSCs into DA-releasing neurons. PMID:27147976

  10. Dopaminergic Neuronal Differentiation from the Forebrain-Derived Human Neural Stem Cells Induced in Cultures by Using a Combination of BMP-7 and Pramipexole with Growth Factors.

    PubMed

    Yang, HongNa; Wang, Jing; Wang, Feng; Liu, XiaoDun; Chen, Heng; Duan, WeiMing; Qu, TingYu

    2016-01-01

    Transplantation of dopaminergic (DA) neurons is considered to be the most promising therapeutic strategy for replacing degenerated dopamine cells in the midbrain of Parkinson's disease (PD), thereby restoring normal neural circuit function and slow clinical progression of the disease. Human neural stem cells (hNSCs) derived from fetal forebrain are thought to be the important cell sources for producing DA neurons because of their multipotency for differentiation and long-term expansion property in cultures. However, low DA differentiation of the forebrain-derived hNSCs limited their therapeutic potential in PD. In the current study, we explored a combined application of Pramipexole (PRX), bone morphogenetic proteins 7 (BMP-7), and growth factors, including acidic fibroblast factor (aFGF), forskolin, and phorbol-12-myristae-13-acetate (TPA), to induce differentiation of forebrain-derived hNSCs toward DA neurons in cultures. We found that DA neuron-associated genes, including Nurr1, Neurogenin2 (Ngn2), and tyrosine hydroxylase (TH) were significantly increased after 24 h of differentiation by RT-PCR analysis (p < 0.01). Fluorescent examination showed that about 25% of cells became TH-positive neurons at 24 h, about 5% of cells became VMAT2 (vascular monoamine transporter 2)-positive neurons, and less than 5% of cells became DAT (dopamine transporter)-positive neurons at 72 h following differentiation in cultures. Importantly, these TH-, VMAT2-, and DAT-expressing neurons were able to release dopamine into cultures under both of the basal and evoked conditions. Dopamine levels released by DA neurons produced using our protocol were significantly higher compared to the control groups (P < 0.01), as examined by ELISA. Our results demonstrated that the combination of PRX, BMP-7, and growth factors was able to greatly promote differentiation of the forebrain-derived hNSCs into DA-releasing neurons. PMID:27147976

  11. Dopamine midbrain neurons in health and Parkinson's disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels.

    PubMed

    Dragicevic, E; Schiemann, J; Liss, B

    2015-01-22

    Dopamine (DA) releasing midbrain neurons are essential for multiple brain functions, such as voluntary movement, working memory, emotion and cognition. DA midbrain neurons within the substantia nigra (SN) and the ventral tegmental area (VTA) exhibit a variety of distinct axonal projections and cellular properties, and are differentially affected in diseases like schizophrenia, attention deficit hyperactivity disorder, and Parkinson's disease (PD). Apart from having diverse functions in health and disease states, DA midbrain neurons display distinct electrical activity patterns, crucial for DA release. These activity patterns are generated and modulated by specific sets of ion channels. Recently, two ion channels have been identified, not only contributing to these activity patterns and to functional properties of DA midbrain neurons, but also seem to render SN DA neurons particularly vulnerable to degeneration in PD and its animal models: L-type calcium channels (LTCCs) and ATP-sensitive potassium channels (K-ATPs). In this review, we focus on the emerging physiological and pathophysiological roles of these two ion channels (and their complex interplay with other ion channels), particularly in highly vulnerable SN DA neurons, as selective degeneration of these neurons causes the major motor symptoms of PD. PMID:25450964

  12. Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration

    PubMed Central

    Meka, Durga Praveen; Müller-Rischart, Anne Kathrin; Nidadavolu, Prakash; Mohammadi, Behnam; Motori, Elisa; Ponna, Srinivas Kumar; Aboutalebi, Helia; Bassal, Mahmoud; Annamneedi, Anil; Finckh, Barbara; Miesbauer, Margit; Rotermund, Natalie; Lohr, Christian; Tatzelt, Jörg; Winklhofer, Konstanze F.; Kramer, Edgar R.

    2015-01-01

    Parkin and the glial cell line–derived neurotrophic factor (GDNF) receptor RET have both been independently linked to the dopaminergic neuron degeneration that underlies Parkinson’s disease (PD). In the present study, we demonstrate that there is genetic crosstalk between parkin and the receptor tyrosine kinase RET in two different mouse models of PD. Mice lacking both parkin and RET exhibited accelerated dopaminergic cell and axonal loss compared with parkin-deficient animals, which showed none, and RET-deficient mice, in which we found moderate degeneration. Transgenic expression of parkin protected the dopaminergic systems of aged RET-deficient mice. Downregulation of either parkin or RET in neuronal cells impaired mitochondrial function and morphology. Parkin expression restored mitochondrial function in GDNF/RET-deficient cells, while GDNF stimulation rescued mitochondrial defects in parkin-deficient cells. In both cases, improved mitochondrial function was the result of activation of the prosurvival NF-κB pathway, which was mediated by RET through the phosphoinositide-3-kinase (PI3K) pathway. Taken together, these observations indicate that parkin and the RET signaling cascade converge to control mitochondrial integrity and thereby properly maintain substantia nigra pars compacta dopaminergic neurons and their innervation in the striatum. The demonstration of crosstalk between parkin and RET highlights the interplay in the protein network that is altered in PD and suggests potential therapeutic targets and strategies to treat PD. PMID:25822020

  13. Dopaminergic neurons inhibit striatal output via non-canonical release of GABA

    PubMed Central

    Tritsch, Nicolas X.; Ding, Jun B.; Sabatini, Bernardo L.

    2012-01-01

    The substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) contain the two largest populations of dopamine (DA)-releasing neurons in the mammalian brain. These neurons extend elaborate projections in striatum, a large subcortical structure implicated in motor planning and reward-based learning. Phasic activation of dopaminergic neurons in response to salient or reward-predicting stimuli is thought to modulate striatal output via the release of DA to promote and reinforce motor action1–4. Here we show that activation of DA neurons in striatal slices rapidly inhibits action potential firing in both direct-and indirect-pathway striatal projection neurons (SPNs) through vesicular release of the inhibitory transmitter γ-aminobutyric acid (GABA). GABA is released directly from dopaminergic axons but in a manner that is independent of the vesicular GABA transporter VGAT. Instead GABA release requires activity of the vesicular monoamine transporter VMAT2, which is the vesicular transporter for DA. Furthermore, VMAT2 expression in GABAergic neurons lacking VGAT is sufficient to sustain GABA release. Thus, these findings expand the repertoire of synaptic mechanisms employed by DA neurons to influence basal ganglia circuits, reveal a novel substrate whose transport is dependent on VMAT2, and demonstrate that GABA can function as a bona fide co-transmitter in monoaminergic neurons. PMID:23034651

  14. Postnatal changes in the distribution and morphology of rat substantia nigra dopaminergic neurons.

    PubMed

    Tepper, J M; Damlama, M; Trent, F

    1994-05-01

    Significant changes in the neurophysiology and neuropharmacology of nigral dopaminergic neurons take place in the first postnatal month. In order to correlate these changes with the postnatal development of dopaminergic neuron morphology and substantia nigra cytoarchitecture, brains from Sprague-Dawley rat pups of age postnatal days 1, 7, 14, 21 and 28 and adult rats were sectioned and processed for tyrosine hydroxylase immunocytochemistry. At postnatal day 1, pars compacta and pars reticulata were not clearly delineated; tyrosine hydroxylase positive neurons and a dense plexus of fibers were scattered throughout the substantia nigra. By day 7 the density of tyrosine hydroxylase positive neurons decreased markedly in ventral substantia nigra, and a dopaminergic pars compacta and a non-dopaminergic pars reticulata could be more clearly distinguished. By day 14 the substantia nigra appeared essentially as it does in the adult. Cell counts during development revealed that the number of tyrosine hydroxylase positive neurons/section in both pars compacta and pars reticulata decreased significantly from postnatal day 1 to postnatal day 14, while those in pars lateralis did not change. Tyrosine hydroxylase-positive somatic size increased modestly but significantly from postnatal day 1 to day 14 as did the diameter of the proximal and distal dendrites. However, even at day 1, the morphology of tyrosine hydroxylase positive neurons appeared essentially the same as in adults. Dendritic arborizations were well developed. The dendrites were non-varicose and modestly branched, with some of the longer ventrally directed dendrites passing through pars reticulata into the crus cerebri.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7915412

  15. Noggin Over-Expressing Mouse Embryonic Fibroblasts and MS5 Stromal Cells Enhance Directed Differentiation of Dopaminergic Neurons from Human Embryonic Stem Cells

    PubMed Central

    Lim, Mi-Sun; Shin, Min-Seop; Lee, Soo Young; Minn, Yang-Ki; Hoh, Jeong-Kyu; Cho, Youl-Hee; Kim, Dong-Wook; Lee, Sang-Hun; Kim, Chun-Hyung; Park, Chang-Hwan

    2015-01-01

    Directed methods for differentiating human embryonic stem cells (hESCs) into dopaminergic (DA) precursor cells using stromal cells co-culture systems are already well established. However, not all of the hESCs differentiate into DA precursors using these methods. HSF6, H1, H7, and H9 cells differentiate well into DA precursors, but CHA13 and CHA15 cells hardly differentiate. To overcome this problem, we modified the differentiation system to include a co-culturing step that exposes the cells to noggin early in the differentiation process. This was done using γ-irradiated noggin-overexpressing CF1-mouse embryonic fibroblasts (MEF-noggin) and MS5 stromal cells (MS5-noggin and MS5-sonic hedgehog). After directed differentiation, RT-PCR analyses revealed that engrailed-1 (En-1), Lmx1b, and Nurr1, which are midbrain DA markers, were expressed regardless of differentiation stage. Moreover, tyrosine hydroxylase (Th) and an A9 midbrain-specific DA marker (Girk2) were expressed during differentiation, whereas levels of Oct3/4, an undifferentiated marker, decreased. Immunocytochemical analyses revealed that protein levels of the neuronal markers TH and TuJ1 increased during the final differentiation stage. These results demonstrate that early noggin exposure may play a specific role in the directed differentiation of DA cells from human embryonic stem cells. PMID:26383864

  16. Neuroprotection with methylaminochroman and lazaroid of embryonic ventral mesencephalic tegmental dopaminergic neurons in cold storage.

    PubMed

    Thajeb, Peterus; Kuo, Jon-Son; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2006-05-01

    Embryonic ventral mesencephalic tegmental (EVMT) neurons die off over time in cold storage at 4 degrees C in hibernation buffers (HB). Manipulation of HB conditions may improve the survival of neurons in cold storage. We examined the effect of lipid peroxidation inhibitors, a methylaminochroman (U83836E) and a lazaroid (U74389G) on the viability and survival of embryonic dopaminergic neurons in the co-culture system of embryonic striatal target (EST) cells and EVMT neurons that had been stored for 3 days at 4 degrees C in HB with or without U83836E or U74389G. One-way analysis of variance (ANOVA) was used for analysis of data. The density of tyrosine hydroxylase immunoreactive (THIR)-positive neurons was significantly higher in the groups stored in supplemented HB than in the control (HB alone; P < 0.001). The neuroprotective effect was concentration-dependent. We conclude that either U83836E or U74389G-conditioned HB exerted a concentration-dependent neuroprotective effect on embryonic dopaminergic neurons in cold storage for 3 days. Supplementation of U83836E and U74389G or other methylaminochromans and lazaroids in HB may be important for cold storage of donor neuronal cells. PMID:16678726

  17. Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb.

    PubMed

    Lazarini, Françoise; Gabellec, Marie-Madeleine; Moigneu, Carine; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lledo, Pierre-Marie

    2014-10-22

    Subventricular zone (SVZ) neurogenesis continuously provides new GABA- and dopamine (DA)-containing interneurons for the olfactory bulb (OB) in most adult mammals. DAergic interneurons are located in the glomerular layer (GL) where they participate in the processing of sensory inputs. To examine whether adult neurogenesis might contribute to regeneration after circuit injury in mice, we induce DAergic neuronal loss by injecting 6-hydroxydopamine (6-OHDA) in the dorsal GL or in the right substantia nigra pars compacta. We found that a 6-OHDA treatment of the OB produces olfactory deficits and local inflammation and partially decreases the number of neurons expressing the enzyme tyrosine hydroxylase (TH) near the injected site. Blockade of inflammation by minocycline treatment immediately after the 6-OHDA administration rescued neither TH(+) interneuron number nor the olfactory deficits, suggesting that the olfactory impairments are most likely linked to TH(+) cell death and not to microglial activation. TH(+) interneuron number was restored 1 month later. This rescue resulted at least in part from enhanced recruitment of immature neurons targeting the lesioned GL area. Seven days after 6-OHDA lesion in the OB, we found that the integration of lentivirus-labeled adult-born neurons was biased: newly formed neurons were preferentially incorporated into glomerular circuits of the lesioned area. Behavioral rehabilitation occurs 2 months after lesion. This study establishes a new model into which loss of DAergic cells could be compensated by recruiting newly formed neurons. We propose that adult neurogenesis not only replenishes the population of DAergic bulbar neurons but that it also restores olfactory sensory processing. PMID:25339754

  18. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    PubMed Central

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model. PMID:27517912

  19. Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease via mitochondrial stabilization.

    PubMed

    Lee, Yujeong; Park, Hee Ra; Chun, Hye Jeong; Lee, Jaewon

    2015-05-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the selective loss of dopaminergic neurons in the nigrostriatal pathway. The lipophile 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can cross the blood-brain barrier and is subsequently metabolized into toxic1-methyl-4-phenylpyridine (MPP(+) ), which causes mitochondrial dysfunction and the selective cell death of dopaminergic neurons. The present article reports the neuroprotective effects of silibinin in a murine MPTP model of PD. The flavonoid silibinin is the major active constituent of silymarin, an extract of milk thistle seeds, and is known to have hepatoprotective, anticancer, antioxidative, and neuroprotective effects. In the present study, silibinin effectively attenuated motor deficit and dopaminergic neuronal loss caused by MPTP. Furthermore, in vitro study confirmed that silibinin protects primary cultured neurons against MPP(+) -induced cell death and mitochondrial membrane disruption. The findings of the present study indicate that silibinin has neuroprotective effects in MPTP-induced models of PD rather than antioxidative or anti-inflammatory effects and that the neuroprotection afforded might be mediated by the stabilization of mitochondrial membrane potential. Furthermore, these findings suggest that silibinin protects mitochondria in MPTP-induced PD models and that it offers a starting point for the development of treatments that ameliorate the symptoms of PD. PMID:25677261

  20. Quantification of dopaminergic neuron differentiation and neurotoxicity via a genetic reporter

    PubMed Central

    Cui, Jun; Rothstein, Megan; Bennett, Theo; Zhang, Pengbo; Xia, Ninuo; Reijo Pera, Renee A.

    2016-01-01

    Human pluripotent stem cells provide a powerful human-genome based system for modeling human diseases in vitro and for potentially identifying novel treatments. Directed differentiation of pluripotent stem cells produces many specific cell types including dopaminergic neurons. Here, we generated a genetic reporter assay in pluripotent stem cells using newly-developed genome editing technologies in order to monitor differentiation efficiency and compare dopaminergic neuron survival under different conditions. We show that insertion of a luciferase reporter gene into the endogenous tyrosine hydroxylase (TH) locus enables rapid and easy quantification of dopaminergic neurons in cell culture throughout the entire differentiation process. Moreover, we demonstrate that the cellular assay is effective in assessing neuron response to different cytotoxic chemicals and is able to be scaled for high throughput applications. These results suggest that stem cell-derived terminal cell types can provide an alternative to traditional immortal cell lines or primary cells as a quantitative cellular model for toxin evaluation and drug discovery. PMID:27121904

  1. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model.

    PubMed

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE's ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model. PMID:27517912

  2. Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice

    PubMed Central

    2012-01-01

    Background The striato-nigral projecting pathway contains the highest concentrations of dynorphin in the brain. The functional role of this opioid peptide in the regulation of mesencephalic dopaminergic (DAergic) neurons is not clear. We reported previously that exogenous dynorphin exerts potent neuroprotective effects against inflammation-induced dopaminergic neurodegeneration in vitro. The present study was performed to investigate whether endogenous dynorphin has neuroprotective roles in vivo. Methods 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (MA), two commonly used neurotoxins in rodent models of Parkinson’s disease, were administered to wild-type (Dyn+/+) and prodynorphin-deficient mice (Dyn−/−). We examined dopaminergic neurotoxicity by using an automated video tracking system, HPLC, immunocytochemistry, and reverse transcription and polymerase chain reaction (RT-PCR). Results Treatment with MPTP resulted in behavioral impairments in both strains. However, these impairments were more pronounced in Dyn-l- than in Dyn+/+. Dyn−/− showed more severe MPTP-induced dopaminergic neuronal loss in the substantia nigra and striatum than Dyn+/+. Similarly, the levels of dopamine and its metabolites in the striatum were depleted to a greater extent in Dyn−/− than in Dyn+/+. Additional mechanistic studies revealed that MPTP treatment caused a higher degree of microglial activation and M1 phenotype differentiation in Dyn−/− than in Dyn+/+. Consistent with these observations, prodynorphin deficiency also exacerbated neurotoxic effects induced by MA, although this effect was less pronounced than that of MPTP. Conclusions The in vivo results presented here extend our previous in vitro findings and further indicate that endogenous dynorphin plays a critical role in protecting dopaminergic neurons through its anti-inflammatory effects. PMID:22695044

  3. Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in C. elegans

    PubMed Central

    Masoudi, Neda; Holmes, Alexander; Gartner, Anton

    2014-01-01

    Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling. PMID:25474638

  4. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease.

    PubMed

    Ojha, Shreesh; Javed, Hayate; Azimullah, Sheikh; Haque, M Emdadul

    2016-07-01

    Parkinson disease (PD) is a neurodegenerative disease characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta (SNc) area. The present study was undertaken to evaluate the neuroprotective effect of β-caryophyllene (BCP) against rotenone-induced oxidative stress and neuroinflammation in a rat model of PD. In the present study, BCP was administered once daily for 4 weeks at a dose of 50 mg/kg body weight prior to a rotenone (2.5 mg/kg body weight) challenge to mimic the progressive neurodegenerative nature of PD. Rotenone administration results in oxidative stress as evidenced by decreased activities of superoxide dismutase, catalase, and depletion of glutathione with a concomitant rise in lipid peroxidation product, malondialdehyde. Rotenone also significantly increased pro-inflammatory cytokines in the midbrain region and elevated the inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Further, immunohistochemical analysis revealed loss of dopaminergic neurons in the SNc area and enhanced expression of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP), indicators of microglia activation, and astrocyte hypertrophy, respectively, as an index of inflammation. However, treatment with BCP rescued dopaminergic neurons and decreased microglia and astrocyte activation evidenced by reduced Iba-1 and GFAP expression. BCP in addition to attenuation of pro-inflammatory cytokines and inflammatory mediators such as COX-2 and iNOS, also restored antioxidant enzymes and inhibited lipid peroxidation as well as glutathione depletion. The findings demonstrate that BCP provides neuroprotection against rotenone-induced PD and the neuroprotective effects can be ascribed to its potent antioxidant and anti-inflammatory activities. PMID:27316720

  5. Differential regulation of action potential- and metabotropic glutamate receptor-induced Ca2+ signals by inositol 1,4,5-trisphosphate in dopaminergic neurons.

    PubMed

    Cui, Guohong; Bernier, Brian E; Harnett, Mark T; Morikawa, Hitoshi

    2007-04-25

    Ca2+ signals associated with action potentials (APs) and metabotropic glutamate receptor (mGluR) activation exert distinct influences on neuronal activity and synaptic plasticity. However, it is not clear how these two types of Ca2+ signals are differentially regulated by neurotransmitter inputs in a single neuron. We investigated this issue in dopaminergic neurons of the ventral midbrain using brain slices. Intracellular Ca2+ was assessed by measuring Ca2+-sensitive K+ currents or imaging the fluorescence of Ca2+ indicator dyes. Tonic activation of metabotropic neurotransmitter receptors (mGluRs, alpha1 adrenergic receptors, and muscarinic acetylcholine receptors), attained by superfusion of agonists or weak, sustained (approximately 1 s) synaptic stimulation, augmented AP-induced Ca2+ transients. In contrast, Ca2+ signals elicited by strong, transient (50-200 ms) activation of mGluRs with aspartate iontophoresis were suppressed by superfusion of agonists. These opposing effects on Ca2+ signals were both mediated by an increase in intracellular inositol 1,4,5-trisphosphate (IP3) levels, because they were blocked by heparin, an IP3 receptor antagonist, and reproduced by photolytic application of IP3. Evoking APs repetitively at low frequency (2 Hz) caused inactivation of IP3 receptors and abolished IP3 facilitation of single AP-induced Ca2+ signals, whereas facilitation of Ca2+ signals triggered by bursts of APs (five at 20 Hz) was attenuated by less than half. We further obtained evidence suggesting that the psychostimulant amphetamine may augment burst-induced Ca2+ signals via both depression of basal firing and production of IP3. We propose that intracellular IP3 tone provides a mechanism to selectively amplify burst-induced Ca2+ signals in dopaminergic neurons. PMID:17460090

  6. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale.

    PubMed

    Cho, Myung-Soo; Hwang, Dong-Youn; Kim, Dong-Wook

    2008-01-01

    Cell-replacement therapy using human embryonic stem cells (hESCs) holds great promise in treating Parkinson's disease. We have recently reported a highly efficient method to generate functional dopaminergic (DA) neurons from hESCs. Our method includes a unique step, the formation of spherical neural masses (SNMs), and offers the highest yield of DA neurons ever achieved so far. In this report, we describe our method step by step, covering not only how to differentiate hESCs into DA neurons at a high yield, but also how to amplify, freeze and thaw the SNMs, which are the key structures that make our protocol unique and advantageous. Although the whole process of generation of DA neurons from hESCs takes about 2 months, only 14 d are needed to derive DA neurons from the SNMs. PMID:19008875

  7. Age and duration of inflammatory environment differentially affect the neuroimmune response and catecholaminergic neurons in the midbrain and brainstem.

    PubMed

    Bardou, Isabelle; Kaercher, Roxanne M; Brothers, Holly M; Hopp, Sarah C; Royer, Sarah; Wenk, Gary L

    2014-05-01

    Neuroinflammation and degeneration of ascending catecholaminergic systems occur early in the neurodegenerative process. Age and the duration of a pro-inflammatory environment induced by continuous intraventricular lipopolysaccharide (LPS) differentially affect the expression profile of pro- and anti-inflammatory genes and proteins as well as the number of activated microglia (express major histocompatibility complex II; MHC II) and the integrity and density of ascending catecholaminergic neural systems originating from the locus coeruleus (LC) and substantia nigra pars compacta (SNpc) in rats. LPS infusion increased gene expression and/or protein levels for both pro- and anti-inflammatory biomarkers. Although LPS infusion stimulated a robust increase in IL-1ß gene and protein expression, this increase was blunted with age. LPS infusion also increased the density of activated microglia cells throughout the midbrain and brainstem. Corresponding to the development of a pro-inflammatory environment, LC and SNpc neurons immunopositive for tyrosine-hydroxylase (the rate-limiting synthetic enzyme for dopamine and norepinephrine) decreased in number, along with a decrease in tyrosine-hydroxylase gene expression in the midbrain and/or brainstem region. Our data support the concept that continuous exposure to a pro-inflammatory environment drives exaggerated changes in the production and release of inflammatory mediators that interact with age to impair functional capacity of the SNpc and LC. PMID:24315728

  8. The Sensory Impact of Nicotine on Noradrenergic and Dopaminergic Neurons of the Nicotine Reward - Addiction Neurocircuitry

    PubMed Central

    Rose, Jed E; Dehkordi, Ozra; Manaye, Kebreten F; Millis, Richard M; Cianaki, Salman Ameri; Jayam-Trouth, Annapurni

    2016-01-01

    The sensory experience of smoking is a key component of nicotine addiction known to result, in part, from stimulation of nicotinic acetylcholine receptors (nAChRs) at peripheral sensory nerve endings. Such stimulation of nAChRs is followed by activation of neurons at multiple sites in the mesocorticolimbic reward pathways. However, the neurochemical profiles of CNS cells that mediate the peripheral sensory impact of nicotine remain unknown. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by nicotine (NIC, 40 μg/kg, IP) and by a peripherally-acting analog of nicotine, nicotine pyrrolidine methiodide (NIC-PM, 30 μg/kg, IP). Sequential double-labelling was then performed to determine whether noradrenergic and dopaminergic neurons of the nicotine reward-addiction circuitry were primary targets of NIC and NIC-PM. Double-labelling of NIC and/or NIC-PM activated c-Fos immunoreactive cells with tyrosine hydroxylase (TH) showed no apparent c-Fos expression by the dopaminergic cells of the ventral tegmental area (VTA). With the exception of sparse numbers of TH immunoreactive D11 cells, dopamine-containing neurons in other areas of the reward-addiction circuitry, namely periaqueductal gray, and dorsal raphe, were also devoid of c-Fos immunoreactivity. Noradrenergic neurons of locus coeruleus (LC), known to innervate VTA, were activated by both NIC and NIC-PM. These results demonstrate that noradrenergic neurons of LC are among the first structures that are stimulated by single acute IP injection of NIC and NIC-PM. Dopaminergic neurons of VTA and other CNS sites, did not respond to acute IP administration of NIC or NIC-PM by induction of c-Fos. PMID:27347434

  9. Pramipexole protects dopaminergic neurons through paraplegin against 6-hydroxydopamine.

    PubMed

    Kim, Mun Ki; Park, Hyeon Soo; Cho, Jea Hyeon; Kim, Gon Sup; Won, Chungkil

    2015-01-21

    The neurotransmitter dopamine (DA) regulates various physiological and psychological functions, such as movement, motivation, behavior, and learning. DA exerts its function through DA receptors and a series of studies have reported the role of DAergic receptors in preventing DAergic neuronal degeneration. Here, we studied the DA receptor-mediated neuroprotective effect of the D2-like receptor agonists against 6-hydroxydopamine (6-OHDA)-induced DAergic neurodegeneration. D2-like receptor agonists were administered in the substantia nigra in vivo and to primary cultured neurons. Treatment of 6-OHDA decreased tyrosine hydroxylase (TH) and paraplegin (mitochondrial regulation protein) immunoreactivity, whereas pretreatment with quinpirole (a full D2-like receptor agonist) preserved TH and paraplegin reactivity. This led us to test which DA receptors were necessary for the neuroprotective effect and whether paraplegin can be regulated by D2 or D3 receptor agonists. Pretreatment with the D2 receptor selective agonist, sumanirole, did not preserve TH and paraplegin reactivity from 6-OHDA. However, the D3 receptor agonist, pramipexole, protected TH reactivity and restored paraplegin expression to the control level in the presence of 6-OHDA. Interestingly, pretreatment with the D3 receptor antagonist GR103691 reduced TH and paraplegin expression levels. These results suggest that the D3 receptor agonist may protect DA neurons from the effect of 6-OHDA through the modulation of the mitochondrial regulation protein paraplegin. PMID:25514384

  10. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb.

    PubMed

    Grier, Bryce D; Belluscio, Leonardo; Cheetham, Claire E J

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  11. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb

    PubMed Central

    Grier, Bryce D.; Belluscio, Leonardo; Cheetham, Claire E. J.

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  12. Long-term health of dopaminergic neuron transplants in Parkinson's disease patients.

    PubMed

    Hallett, Penelope J; Cooper, Oliver; Sadi, Damaso; Robertson, Harold; Mendez, Ivar; Isacson, Ole

    2014-06-26

    To determine the long-term health and function of transplanted dopamine neurons in Parkinson's disease (PD) patients, the expression of dopamine transporters (DATs) and mitochondrial morphology were examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and nonatrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and α-synuclein showed a typical cellular pathology in the patients' own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy for the long term in PD patients, consistent with clinical findings that fetal dopamine neuron transplants maintain function for up to 15-18 years in patients. These findings are critically important for the rational development of stem-cell-based dopamine neuronal replacement therapies for PD. PMID:24910427

  13. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake.

    PubMed

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction. PMID:27378852

  14. Social Isolation Blunted the Response of Mesocortical Dopaminergic Neurons to Chronic Ethanol Voluntary Intake

    PubMed Central

    Lallai, Valeria; Manca, Letizia; Dazzi, Laura

    2016-01-01

    Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction. PMID:27378852

  15. Relative contributions of severe dopaminergic neuron ablation and dopamine depletion to cognitive impairment.

    PubMed

    Morgan, R Garrett; Gibbs, Jeffrey T; Melief, Erica J; Postupna, Nadia O; Sherfield, Emily E; Wilson, Angela; Keene, C Dirk; Montine, Thomas J; Palmiter, Richard D; Darvas, Martin

    2015-09-01

    Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons and produces a movement disorder and cognitive impairment that becomes more extensive with the duration of the disease. To what extent cognitive impairment in advanced PD can be attributed to severe loss of dopamine (DA) signaling is not well understood. Furthermore, it is unclear if the loss of DA neurons contributes to the cognitive impairment caused by the reduction in DA signaling. We generated genetic mouse models with equally severe chronic loss of DA achieved by either extensive ablation of DA neurons or inactivation of DA synthesis from preserved neurons and compared their motor and cognitive performance. Motor behaviors were equally blunted in both models, but we observed that DA neuron ablation caused more severe cognitive deficits than DA depletion. Both models had marked deficits in cue-discrimination learning. Yet, deficits in cue-discrimination learning were more severe in mice with DA neuron ablation and only mice with DA neuron ablation had drastically impaired performance in spatial learning, spatial memory and object memory tests. These results indicate that while a severe reduction in DA signaling results in motor and cognitive impairments, the loss of DA neurons promotes more extensive cognitive deficits and suggest that a loss of additional factors that depend on DA neurons may participate in the progressive cognitive decline found in patients with PD. PMID:26079646

  16. HIV Subtypes B and C gp120 and Methamphetamine Interaction: Dopaminergic System Implicates Differential Neuronal Toxicity.

    PubMed

    Samikkannu, Thangavel; Rao, Kurapati V K; Salam, Abdul Ajees Abdul; Atluri, Venkata S R; Kaftanovskaya, Elena M; Agudelo, Marisela; Perez, Suray; Yoo, Changwon; Raymond, Andrea D; Ding, Hong; Nair, Madhavan P N

    2015-01-01

    HIV subtypes or clades differentially induce HIV-associated neurocognitive disorders (HAND) and substance abuse is known to accelerate HIV disease progression. The HIV-1 envelope protein gp120 plays a major role in binding and budding in the central nervous system (CNS) and impacts dopaminergic functions. However, the mechanisms utilized by HIV-1 clades to exert differential effects and the methamphetamine (METH)-associated dopaminergic dysfunction are poorly understood. We hypothesized that clade B and C gp120 structural sequences, modeling based analysis, dopaminergic effect, and METH potentiate neuronal toxicity in astrocytes. We evaluated the effect of clade B and C gp120 and/or METH on the DRD-2, DAT, CaMKs and CREBP transcription. Both the structural sequence and modeling studies demonstrated that clade B gp120 in V1-V4, α -2 and N-glycosylated sites are distinct from clade C gp120. The distinct structure and sequence variation of clade B gp120 differentially impact DRD-2, DAT, CaMK II and CaMK IV mRNA, protein and intracellular expression compared to clade C gp120. However, CREB transcription is upregulated by both clade B and C gp120, and METH co-treatment potentiated these effects. In conclusion, distinct structural sequences of HIV-1 clade B and C gp120 differentially regulate the dopaminergic pathway and METH potentiates neurotoxicity. PMID:26057350

  17. Recent Advances in Imaging of Dopaminergic Neurons for Evaluation of Neuropsychiatric Disorders

    PubMed Central

    Shen, Lie-Hang; Liao, Mei-Hsiu; Tseng, Yu-Chin

    2012-01-01

    Dopamine is the most intensely studied monoaminergic neurotransmitter. Dopaminergic neurotransmission plays an important role in regulating several aspects of basic brain function, including motor, behavior, motivation, and working memory. To date, there are numerous positron emission tomography (PET) and single photon emission computed tomography (SPECT) radiotracers available for targeting different steps in the process of dopaminergic neurotransmission, which permits us to quantify dopaminergic activity in the living human brain. Degeneration of the nigrostriatal dopamine system causes Parkinson's disease (PD) and related Parkinsonism. Dopamine is the neurotransmitter that has been classically associated with the reinforcing effects of drug abuse. Abnormalities within the dopamine system in the brain are involved in the pathophysiology of attention deficit hyperactivity disorder (ADHD). Dopamine receptors play an important role in schizophrenia and the effect of neuroleptics is through blockage of dopamine D2 receptors. This review will concentrate on the radiotracers that have been developed for imaging dopaminergic neurons, describe the clinical aspects in the assessment of neuropsychiatric disorders, and suggest future directions in the diagnosis and management of such disorders. PMID:22570524

  18. HIV Subtypes B and C gp120 and Methamphetamine Interaction: Dopaminergic System Implicates Differential Neuronal Toxicity

    PubMed Central

    Samikkannu, Thangavel; Rao, Kurapati V. K.; Salam, Abdul Ajees Abdul; Atluri, Venkata S. R.; Kaftanovskaya, Elena M.; Agudelo, Marisela; Perez, Suray; Yoo, Changwon; Raymond, Andrea D.; Ding, Hong; Nair, Madhavan P. N.

    2015-01-01

    HIV subtypes or clades differentially induce HIV-associated neurocognitive disorders (HAND) and substance abuse is known to accelerate HIV disease progression. The HIV-1 envelope protein gp120 plays a major role in binding and budding in the central nervous system (CNS) and impacts dopaminergic functions. However, the mechanisms utilized by HIV-1 clades to exert differential effects and the methamphetamine (METH)-associated dopaminergic dysfunction are poorly understood. We hypothesized that clade B and C gp120 structural sequences, modeling based analysis, dopaminergic effect, and METH potentiate neuronal toxicity in astrocytes. We evaluated the effect of clade B and C gp120 and/or METH on the DRD-2, DAT, CaMKs and CREBP transcription. Both the structural sequence and modeling studies demonstrated that clade B gp120 in V1-V4, α -2 and N-glycosylated sites are distinct from clade C gp120. The distinct structure and sequence variation of clade B gp120 differentially impact DRD-2, DAT, CaMK II and CaMK IV mRNA, protein and intracellular expression compared to clade C gp120. However, CREB transcription is upregulated by both clade B and C gp120, and METH co-treatment potentiated these effects. In conclusion, distinct structural sequences of HIV-1 clade B and C gp120 differentially regulate the dopaminergic pathway and METH potentiates neurotoxicity. PMID:26057350

  19. GABAergic Afferents activate both GABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo

    PubMed Central

    Brazhnik, Elena; Shah, Fulva; Tepper, James M.

    2008-01-01

    Most in vivo electrophysiological studies of substantia nigra have employed rats. With the recent proliferation of the use of mice for in vitro neurophysiological studies due to the availability of various genetically modified strains to identify the roles of various channels and proteins in neuronal function, it is crucial to obtain data on in vivo responses in mice to verify that the in vitro results reflect functioning of systems comparable to those that have been well studied in rat. Inhibitory responses of rat nigral dopaminergic neurons by stimulation of afferents from striatum, globus pallidus or pars reticulata have been shown to be mediated predominantly or exclusively by GABAA receptors. This is puzzling given the substantial expression of GABAB receptors and the ubiquitous appearance of GABAB synaptic responses in rat dopaminergic neurons in vitro. In the present study we studied electrically evoked GABAergic inhibition in nigral dopaminergic neurons in C57BL/6J mice. Stimulation of the three major GABAergic inputs elicited stronger and longer lasting inhibitory responses than those seen in rats. The early inhibition was GABAA mediated, whereas the later component, absent in rats, was GABAB mediated and selectively enhanced by GABA uptake inhibition. Striatal-evoked inhibition exhibited a slower onset and a weaker initial component compared to inhibition from globus pallidus or substantia nigra pars reticulata. These results are discussed with respect to differences in the size and neuronal density of the rat and mouse brain, and the different sites of synaptic contact of the synapses from the three GABAergic afferents. PMID:18842898

  20. Obesity attenuates D2 autoreceptor‐mediated inhibition of putative ventral tegmental area dopaminergic neurons

    PubMed Central

    Koyama, Susumu; Mori, Masayoshi; Kanamaru, Syohei; Sazawa, Takuya; Miyazaki, Ayano; Terai, Hiroki; Hirose, Shinichi

    2014-01-01

    Abstract The ventral tegmental area (VTA) in the midbrain is important for food reward. High‐fat containing palatable foods have reinforcing effects and accelerate obesity. We have previously reported that diet‐induced obesity selectively decreased the spontaneous activity of VTA GABA neurons, but not dopamine neurons. The spontaneous activity of VTA dopamine neurons is regulated by D2 autoreceptors. In this study, we hypothesized that obesity would affect the excitability of VTA dopamine neurons via D2 autoreceptors. To examine this hypothesis, we compared D2 receptor‐mediated responses of VTA dopamine neurons between lean and obese mice. Mice fed on a high‐fat (45%) diet and mice fed on a standard diet were used as obese and lean models, respectively. Brain slice preparations were made from these two groups. Spontaneous activity of VTA neurons was recorded by extracellular recording. Putative VTA dopamine neurons were identified by firing inhibition with a D2 receptor agonist quinpirole, and electrophysiological criteria (firing frequency <5 Hz and action potential current duration >1.2 msec). Single‐dose application of quinpirole (3−100 nmol/L) exhibited similar firing inhibition of putative VTA dopamine neurons between lean and obese mice. In stepwise application by increasing quinpirole concentrations of 3, 10, 30, and 100 nmol/L subsequently, quinpirole‐induced inhibition of firing decreased in putative VTA dopamine neurons of obese mice compared with those of lean mice. In conclusion, high‐fat diet‐induced obesity attenuated D2 receptor‐mediated inhibition of putative VTA dopamine neurons due to the acceleration of D2 receptor desensitization. PMID:24793981

  1. Auditory Distance Coding in Rabbit Midbrain Neurons and Human Perception: Monaural Amplitude Modulation Depth as a Cue

    PubMed Central

    Zahorik, Pavel; Carney, Laurel H.; Bishop, Brian B.; Kuwada, Shigeyuki

    2015-01-01

    Mechanisms underlying sound source distance localization are not well understood. Here we tested the hypothesis that a novel mechanism can create monaural distance sensitivity: a combination of auditory midbrain neurons' sensitivity to amplitude modulation (AM) depth and distance-dependent loss of AM in reverberation. We used virtual auditory space (VAS) methods for sounds at various distances in anechoic and reverberant environments. Stimulus level was constant across distance. With increasing modulation depth, some rabbit inferior colliculus neurons increased firing rates whereas others decreased. These neurons exhibited monotonic relationships between firing rates and distance for monaurally presented noise when two conditions were met: (1) the sound had AM, and (2) the environment was reverberant. The firing rates as a function of distance remained approximately constant without AM in either environment and, in an anechoic condition, even with AM. We corroborated this finding by reproducing the distance sensitivity using a neural model. We also conducted a human psychophysical study using similar methods. Normal-hearing listeners reported perceived distance in response to monaural 1 octave 4 kHz noise source sounds presented at distances of 35–200 cm. We found parallels between the rabbit neural and human responses. In both, sound distance could be discriminated only if the monaural sound in reverberation had AM. These observations support the hypothesis. When other cues are available (e.g., in binaural hearing), how much the auditory system actually uses the AM as a distance cue remains to be determined. PMID:25834060

  2. Auditory distance coding in rabbit midbrain neurons and human perception: monaural amplitude modulation depth as a cue.

    PubMed

    Kim, Duck O; Zahorik, Pavel; Carney, Laurel H; Bishop, Brian B; Kuwada, Shigeyuki

    2015-04-01

    Mechanisms underlying sound source distance localization are not well understood. Here we tested the hypothesis that a novel mechanism can create monaural distance sensitivity: a combination of auditory midbrain neurons' sensitivity to amplitude modulation (AM) depth and distance-dependent loss of AM in reverberation. We used virtual auditory space (VAS) methods for sounds at various distances in anechoic and reverberant environments. Stimulus level was constant across distance. With increasing modulation depth, some rabbit inferior colliculus neurons increased firing rates whereas others decreased. These neurons exhibited monotonic relationships between firing rates and distance for monaurally presented noise when two conditions were met: (1) the sound had AM, and (2) the environment was reverberant. The firing rates as a function of distance remained approximately constant without AM in either environment and, in an anechoic condition, even with AM. We corroborated this finding by reproducing the distance sensitivity using a neural model. We also conducted a human psychophysical study using similar methods. Normal-hearing listeners reported perceived distance in response to monaural 1 octave 4 kHz noise source sounds presented at distances of 35-200 cm. We found parallels between the rabbit neural and human responses. In both, sound distance could be discriminated only if the monaural sound in reverberation had AM. These observations support the hypothesis. When other cues are available (e.g., in binaural hearing), how much the auditory system actually uses the AM as a distance cue remains to be determined. PMID:25834060

  3. The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea.

    PubMed

    Huot, Philippe; Lévesque, Martin; Parent, André

    2007-01-01

    The striatum harbours a population of dopaminergic neurons that is thought to act as a local source of dopamine (DA). This neuronal population increases in size in animal models of Parkinson's disease, where striatal DA levels are low, but its fate in idiopathic Parkinson's disease and Huntington's chorea is poorly known. In this study, we used antibodies raised against the enzyme tyrosine hydroxylase (TH), a faithful marker of dopaminergic neurons, to compare, by means of stereological counting methods, the number of striatal TH+ neurons on post-mortem brain sections from Parkinson's disease patients, Huntington's disease patients and age-matched controls. Propidium iodide nuclear staining was also performed to avoid counting short TH+ axonal segments that bear a large swollen varicosity and resemble small bipolar neurons. In normal subjects, TH+ neurons were scattered throughout the striatum, but they abounded preferentially in the ventral portion of the structure and were more numerous in the putamen than in the caudate nucleus. They displayed a multipolar cell body of medium size (10-20 mum in diameter) that emitted 3-5 smooth dendrites, a typical characteristic of striatal interneurons. These TH+ cells were rarely found in the small TH-poor striosomes, most of them being embedded in the large TH-rich extrastriosomal matrix. The number of striatal TH+ neurons was also found to vary according to an inverse relation with the age of the subjects. In pathological brains, the morphological characteristics of the striatal TH+ neurons were relatively unaltered, but the number of such neurons was markedly reduced compared with controls. The striatum of Parkinson's disease patients was found to contain six times less TH+ neurons than that of controls, whereas the striatum of Huntington's disease patients was largely devoid of such neurons. These findings are at odds with the results obtained in rodent and monkey models of Parkinson's disease, in which the number of

  4. Progressive loss of nigrostriatal dopaminergic neurons induced by inflammatory responses to fipronil.

    PubMed

    Park, Jae Hyeon; Park, Youn Sun; Koh, Hyun Chul

    2016-09-01

    Inflammatory responses are involved in mechanisms of neuronal cell damage in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). We investigated the mechanisms whereby inflammatory responses contribute to loss of dopaminergic neurons in fipronil (FPN)-treated rats. After stereotaxic injection of FPN in the substantia nigra (SN), the number of tyrosine hydroxylase (TH)-positive neurons and the levels of TH expression in the SN decreased at 7days, and a significant decrease was observed at 14days with a subsequent reduction in striatal TH expression. Decreases in dopamine (DA) levels, however, began at 3days post-injection, preceding the changes in TH expression. In contrast, glial fibrillary acidic protein (GFAP) expression was significantly increased at 3days and persisted for up to 14days post-lesion; these changes in GFAP expression appeared to be inversely correlated with TH expression. Furthermore, we found that FPN administration induced an inflammatory response characterized by increased levels of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α), which was mediated by activated microglia following infusion of FPN unilaterally into the SN. Intranigral injection of FPN underwent an inflammatory response with a resultant ongoing loss of dopaminergic neurons, indicating that pesticides may have important implication for the study of PD. PMID:27313094

  5. Age-related changes in dopamine transporters and accumulation of 3-nitrotyrosine in rhesus monkey midbrain dopamine neurons: Relevance in selective neuronal vulnerability to degeneration

    PubMed Central

    Kanaan, N. M.; Kordower, J. H.; Collier, T. J.

    2012-01-01

    Aging is the strongest risk factor for developing Parkinson’s disease (PD). There is a preferential loss of dopamine (DA) neurons in the ventral tier of the substantia nigra (vtSN) compared to the dorsal tier and ventral tegmental area (VTA) in PD. Examining age-related and region-specific differences in DA neurons represents a means of identifying factors potentially involved in vulnerability or resistance to degeneration. Nitrative stress is among the factors potentially underlying DA neuron degeneration. We studied the relationship between 3-nitrotyrosine (3NT; a marker of nitrative damage) and DA transporters [DA transporter (DAT) and vesicular monoamine transporter-2 (VMAT)] during aging in DA subregions of rhesus monkeys. The percentage of DA neurons containing 3NT increased significantly only in the vtSN with advancing age, and the vtSN had a greater percentage of 3NT-positive neurons when compared to the VTA. The relationship between 3NT and DA transporters was determined by measuring fluorescence intensity of 3NT, DAT and VMAT staining. 3NT intensity increased with advancing age in the vtSN. Increased DAT, VMAT and DAT/VMAT ratios were associated with increased 3NT in individual DA neurons. These results suggest nitrative damage accumulates in midbrain DA neurons with advancing age, an effect exacerbated in the vulnerable vtSN. The capacity of a DA neuron to accumulate more cytosolic DA, as inferred from DA transporter expression, is related to accumulation of nitrative damage. These findings are consistent with a role for aging-related accrual of nitrative damage in the selective vulnerability of vtSN neurons to degeneration in PD. PMID:18598263

  6. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation

    PubMed Central

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-01-01

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD. PMID:26499517

  7. Functional Interplay between Dopaminergic and Serotonergic Neuronal Systems during Development and Adulthood

    PubMed Central

    Dymecki, Susan M.

    2016-01-01

    The complex integration of neurotransmitter signals in the nervous system contributes to the shaping of behavioral and emotional constitutions throughout development. Imbalance among these signals may result in pathological behaviors and psychiatric illnesses. Therefore, a better understanding of the interplay between neurotransmitter systems holds potential to facilitate therapeutic development. Of particular clinical interest are the dopaminergic and serotonergic systems, as both modulate a broad array of behaviors and emotions and have been implicated in a wide range of affective disorders. Here we review evidence speaking to an interaction between the dopaminergic and serotonergic neuronal systems across development. We highlight data stemming from developmental, functional, and clinical studies, reflecting the importance of this transmonoaminergic interplay. PMID:25747116

  8. Histone Hyperacetylation Up-regulates Protein Kinase Cδ in Dopaminergic Neurons to Induce Cell Death

    PubMed Central

    Jin, Huajun; Kanthasamy, Arthi; Harischandra, Dilshan S.; Kondru, Naveen; Ghosh, Anamitra; Panicker, Nikhil; Anantharam, Vellareddy; Rana, Ajay; Kanthasamy, Anumantha G.

    2014-01-01

    The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease. PMID:25342743

  9. Activity-dependent regulation of NMDA receptors in substantia nigra dopaminergic neurones.

    PubMed

    Wild, Angela R; Jones, Susan; Gibb, Alasdair J

    2014-02-15

    N-Methyl-d-aspartate receptors (NMDARs) are Ca(2+)-permeable glutamate receptors that play a critical role in synaptic plasticity and promoting cell survival. However, overactive NMDARs can trigger cell death signalling pathways and have been implicated in substantia nigra pars compacta (SNc) pathology in Parkinson's disease. Calcium ion influx through NMDARs recruits Ca(2+)-dependent proteins that can regulate NMDAR activity. The surface density of NMDARs can also be regulated dynamically in response to receptor activity via Ca(2+)-independent mechanisms. We have investigated the activity-dependent regulation of NMDARs in SNc dopaminergic neurones. Repeated whole-cell agonist applications resulted in a decline in the amplitude of NMDAR currents (current run-down) that was use dependent and not readily reversible. Run-down was reduced by increasing intracellular Ca(2+) buffering or by reducing Ca(2+) influx but did not appear to be mediated by the same regulatory proteins that cause Ca(2+)-dependent run-down in hippocampal neurones. The NMDAR current run-down may be mediated in part by a Ca(2+)-independent mechanism, because intracellular dialysis with a dynamin-inhibitory peptide reduced run-down, suggesting a role for clathrin-mediated endocytosis in the regulation of the surface density of receptors. Synaptic NMDARs were also subject to current run-down during repeated low-frequency synaptic stimulation in a Ca(2+)-dependent but dynamin-independent manner. Thus, we report, for the first time, regulation of NMDARs in SNc dopaminergic neurones by changes in intracellular Ca(2+) at both synaptic and extrasynaptic sites and provide evidence for activity-dependent changes in receptor trafficking. These mechanisms may contribute to intracellular Ca(2+) homeostasis in dopaminergic neurones by limiting Ca(2+) influx through the NMDAR. PMID:24344168

  10. A High-content screen identifies compounds promoting the neuronal differentiation and the midbrain dopamine neuron specification of human neural progenitor cells.

    PubMed

    Rhim, Ji Heon; Luo, Xiangjian; Xu, Xiaoyun; Gao, Dongbing; Zhou, Tieling; Li, Fuhai; Qin, Lidong; Wang, Ping; Xia, Xiaofeng; Wong, Stephen T C

    2015-01-01

    Small molecule compounds promoting the neuronal differentiation of stem/progenitor cells are of pivotal importance to regenerative medicine. We carried out a high-content screen to systematically characterize known bioactive compounds, on their effects on the neuronal differentiation and the midbrain dopamine (mDA) neuron specification of neural progenitor cells (NPCs) derived from the ventral mesencephalon of human fetal brain. Among the promoting compounds three major pharmacological classes were identified including the statins, TGF-βRI inhibitors, and GSK-3 inhibitors. The function of each class was also shown to be distinct, either to promote both the neuronal differentiation and mDA neuron specification, or selectively the latter, or promote the former but suppress the latter. We then carried out initial investigation on the possible mechanisms underlying, and demonstrated their applications on NPCs derived from human pluripotent stem cells (PSCs). Our study revealed the potential of several small molecule compounds for use in the directed differentiation of human NPCs. The screening result also provided insight into the signaling network regulating the differentiation of human NPCs. PMID:26542303

  11. A High-content screen identifies compounds promoting the neuronal differentiation and the midbrain dopamine neuron specification of human neural progenitor cells

    PubMed Central

    Rhim, Ji heon; Luo, Xiangjian; Xu, Xiaoyun; Gao, Dongbing; Zhou, Tieling; Li, Fuhai; Qin, Lidong; Wang, Ping; Xia, Xiaofeng; Wong, Stephen T. C.

    2015-01-01

    Small molecule compounds promoting the neuronal differentiation of stem/progenitor cells are of pivotal importance to regenerative medicine. We carried out a high-content screen to systematically characterize known bioactive compounds, on their effects on the neuronal differentiation and the midbrain dopamine (mDA) neuron specification of neural progenitor cells (NPCs) derived from the ventral mesencephalon of human fetal brain. Among the promoting compounds three major pharmacological classes were identified including the statins, TGF-βRI inhibitors, and GSK-3 inhibitors. The function of each class was also shown to be distinct, either to promote both the neuronal differentiation and mDA neuron specification, or selectively the latter, or promote the former but suppress the latter. We then carried out initial investigation on the possible mechanisms underlying, and demonstrated their applications on NPCs derived from human pluripotent stem cells (PSCs). Our study revealed the potential of several small molecule compounds for use in the directed differentiation of human NPCs. The screening result also provided insight into the signaling network regulating the differentiation of human NPCs. PMID:26542303

  12. Effect of Cell Adhesion Molecules on the Neurite Outgrowth of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons.

    PubMed

    Peng, Su-Ping; Schachner, Melitta; Boddeke, Erik; Copray, Sjef

    2016-04-01

    Intrastriatal transplantation of dopaminergic neurons has been shown to be a potentially very effective therapeutic approach for the treatment of Parkinson's disease (PD). With the detection of induced pluripotent stem cells (iPSCs), an unlimited source of autologous dopaminergic (DA) neurons became available. Although the iPSC-derived dopaminergic neurons exhibited most of the fundamental dopaminergic characteristics, detailed analysis and comparison with primary DA neurons have shown some aberrations in the expression of genes involved in neuronal development and neurite outgrowth. The limited outgrowth of the iPSC-derived DA neurons may hamper their potential application in cell transplantation therapy for PD. In the present study, we examined whether the forced expression of L1 cell adhesion molecule (L1CAM) and polysialylated neuronal cell adhesion molecule (PSA-NCAM), via gene transduction, can promote the neurite formation and outgrowth of iPSC-derived DA neurons. In cultures on astrocyte layers, both adhesion factors significantly increased neurite formation of the adhesion factor overexpressing iPSC-derived DA neurons in comparison to control iPSC-derived DA neurons. The same tendency was observed when the DA neurons were plated on postnatal organotypic striatal slices; however, this effect did not reach statistical significance. Next, we examined the neurite outgrowth of the L1CAM- or PSA-NCAM-overexpressing iPSC-derived DA neurons after implantation in the striatum of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats, the animal model for PD. Like the outgrowth on the organotypic striatal slices, no significant L1CAM- and PSA-NCAM-enforced neurite outgrowth of the implanted DA neurons was observed. Apparently, induced expression of L1CAM or PSA-NCAM in the iPSC-derived DA neurons cannot completely restore the neurite outgrowth potential that was reduced in these DA neurons as a consequence of epigenetic aberrations resulting from the i

  13. Activation of CNTF/CNTFRα signaling pathway by hRheb(S16H) transduction of dopaminergic neurons in vivo.

    PubMed

    Jeong, Kyoung Hoon; Nam, Jin Han; Jin, Byung Kwan; Kim, Sang Ryong

    2015-01-01

    Ciliary neurotrophic factor (CNTF) is one of representative neurotrophic factors for the survival of dopaminergic neurons. Its effects are primarily mediated via CNTF receptor α (CNTFRα). It is still unclear whether the levels of CNTFRα change in the substantia nigra of Parkinson's disease (PD) patients, but CNTF expression shows the remarkable decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc), suggesting that the support of CNTF/CNTFRα signaling pathway may be a useful neuroprotective strategy for the nigrostriatal dopaminergic projection in the adult brain. Here, we report that transduction of rat SNpc dopaminergic neurons by adeno-associated virus with a gene encoding human ras homolog enriched in brain (hRheb), with an S16H mutation [hRheb(S16H)], significantly upregulated the levels of both CNTF and CNTFRα in dopaminergic neurons. Moreover, the hRheb(S16H)-activated CNTF/CNTFRα signaling pathway was protective against 1-methyl-4-phenylpyridinium-induced neurotoxicity in the nigrostriatal dopaminergic projections. These results suggest that activation of CNTF/CNTFRα signaling pathway by specific gene delivery such as hRheb(S16H) may have therapeutic potential in the treatment of PD. PMID:25799580

  14. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons.

    PubMed

    Jensen, P; Ducray, A D; Widmer, H R; Meyer, M

    2015-12-01

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be

  15. Assessing neurodegenerative phenotypes in Drosophila dopaminergic neurons by climbing assays and whole brain immunostaining.

    PubMed

    Barone, Maria Cecilia; Bohmann, Dirk

    2013-01-01

    Drosophila melanogaster is a valuable model organism to study aging and pathological degenerative processes in the nervous system. The advantages of the fly as an experimental system include its genetic tractability, short life span and the possibility to observe and quantitatively analyze complex behaviors. The expression of disease-linked genes in specific neuronal populations of the Drosophila brain, can be used to model human neurodegenerative diseases such as Parkinson's and Alzheimer's (5). Dopaminergic (DA) neurons are among the most vulnerable neuronal populations in the aging human brain. In Parkinson's disease (PD), the most common neurodegenerative movement disorder, the accelerated loss of DA neurons leads to a progressive and irreversible decline in locomotor function. In addition to age and exposure to environmental toxins, loss of DA neurons is exacerbated by specific mutations in the coding or promoter regions of several genes. The identification of such PD-associated alleles provides the experimental basis for the use of Drosophila as a model to study neurodegeneration of DA neurons in vivo. For example, the expression of the PD-linked human α-synuclein gene in Drosophila DA neurons recapitulates some features of the human disease, e.g. progressive loss of DA neurons and declining locomotor function (2). Accordingly, this model has been successfully used to identify potential therapeutic targets in PD (8). Here we describe two assays that have commonly been used to study age-dependent neurodegeneration of DA neurons in Drosophila: a climbing assay based on the startle-induced negative geotaxis response and tyrosine hydroxylase immunostaining of whole adult brain mounts to monitor the number of DA neurons at different ages. In both cases, in vivo expression of UAS transgenes specifically in DA neurons can be achieved by using a tyrosine hydroxylase (TH) promoter-Gal4 driver line (3, 10). PMID:23644755

  16. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    ERIC Educational Resources Information Center

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  17. Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease.

    PubMed

    Herrera, Andrea; Muñoz, Patricia; Paris, Irmgard; Díaz-Veliz, Gabriela; Mora, Sergio; Inzunza, Jose; Hultenby, Kjell; Cardenas, Cesar; Jaña, Fabián; Raisman-Vozari, Rita; Gysling, Katia; Abarca, Jorge; Steinbusch, Harry W M; Segura-Aguilar, Juan

    2016-09-01

    L-Dopa continues to be the gold drug in Parkinson's disease (PD) treatment from 1967. The failure to translate successful results from preclinical to clinical studies can be explained by the use of preclinical models which do not reflect what happens in the disease since these induce a rapid and extensive degeneration; for example, MPTP induces a severe Parkinsonism in only 3 days in humans contrasting with the slow degeneration and progression of PD. This study presents a new anatomy and develops preclinical model based on aminochrome which induces a slow and progressive dysfunction of dopaminergic neurons. The unilateral injection of aminochrome into rat striatum resulted in (1) contralateral rotation when the animals are stimulated with apomorphine; (2) absence of significant loss of tyrosine hydroxylase-positive neuronal elements both in substantia nigra and striatum; (3) cell shrinkage; (4) significant reduction of dopamine release; (5) significant increase in GABA release; (6) significant decrease in the number of monoaminergic presynaptic vesicles; (7) significant increase of dopamine concentration inside of monoaminergic vesicles; (8) significant increase of damaged mitochondria; (9) significant decrease of ATP level in the striatum (10) significant decrease in basal and maximal mitochondrial respiration. These results suggest that aminochrome induces dysfunction of dopaminergic neurons where the contralateral behavior can be explained by aminochrome-induced ATP decrease required both for anterograde transport of synaptic vesicles and dopamine release. Aminochrome could be implemented as a new model neurotoxin to study Parkinson's disease. PMID:27001668

  18. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    PubMed

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease. PMID:26839468

  19. A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress

    PubMed Central

    Bou Dib, Peter; Gnägi, Bettina; Daly, Fiona; Sabado, Virginie; Tas, Damla; Glauser, Dominique A.; Meister, Peter; Nagoshi, Emi

    2014-01-01

    Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival. PMID:25340742

  20. Zdhhc15b Regulates Differentiation of Diencephalic Dopaminergic Neurons in zebrafish.

    PubMed

    Wang, Fen; Chen, Xueran; Shi, Wei; Yao, Linli; Gao, Ming; Yang, Yang; Hao, Aijun

    2015-12-01

    The aspartate-histidine-histidine-cysteine (DHHC) protein family shares a 50-amino acid cysteine-rich domain with a conserved DHHC signature motif. DHHC proteins play a critical role in several biological processes. Several DHHC family members have been implicated in neuronal differentiation and synaptic plasticity. And disruptions to their function can lead to disease in the nervous system. Here, we investigate the role of Zdhhc15b, a DHHC family member, in neuro development in zebrafish. Whole-mount in situ hybridization (WISH) revealed that zdhhc15b, an ortholog to human ZDHHC15, is abundant in zebrafish (Danio rerio) forebrain, especially in the diencephalon. Downregulation of zdhhc15b resulted in a smaller diencephalon and a reduction in mature dopaminergic neurons (DA neurons). In the meanshile, mutant zdhhc15b zebrafish was associated with poor learning behavior as detected by T-maze testing. The expression of zdhhc15b was upregulated during DA neuronal differentiation whereas knock-down of zdhhc15b diminished DA neuronal differentiation. Tyrosine hydroxylase (TH) immunofluorescence of cultured DA neurons in vitro also showed that DA neurons were immature following zdhhc15b knock-down. Consistent with the decreased number of DA neurons following knock-down of zdhhc15b, the expression of fate determination-related transcription factors such as nurr1, foxA2, and lmx1a were also reduced in morphant zebrafish. Our results reveal that zdhhc15b controls DA neuronal fate decisions by regulating differentiation but not progenitor cell proliferation or DA neuronal survival. PMID:26095893

  1. Sigma-1 receptor deficiency reduces MPTP-induced parkinsonism and death of dopaminergic neurons

    PubMed Central

    Hong, J; Sha, S; Zhou, L; Wang, C; Yin, J; Chen, L

    2015-01-01

    Sigma-1 receptor (σ1R) has been reported to be decreased in nigrostriatal motor system of Parkinson's disease patients. Using heterozygous and homozygous σ1R knockout (σ1R+/− and σ1R−/−) mice, we investigated the influence of σ1R deficiency on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-impaired nigrostriatal motor system. The injection of MPTP for 5 weeks in wild-type mice (MPTP-WT mice), but not in σ1R+/− or σ1R−/− mice (MPTP-σ1R+/− or MPTP-σ1R−/− mice), caused motor deficits and ~40% death of dopaminergic neurons in substantia nigra pars compacta with an elevation of N-methyl-d-aspartate receptor (NMDAr) NR2B phosphorylation. The σ1R antagonist NE100 or the NR2B inhibitor Ro25-6981 could alleviate the motor deficits and the death of dopaminergic neurons in MPTP-WT mice. By contrast, MPTP-σ1R+/− mice treated with the σ1R agonist PRE084 or MPTP-σ1R−/− mice treated with the NMDAr agonist NMDA appeared to have similar motor deficits and loss of dopaminergic neurons as MPTP-WT mice. The pharmacological or genetic inactivation of σ1R suppressed the expression of dopamine transporter (DAT) in substantia nigra, which was corrected by NMDA. The activation of σ1R by PRE084 enhanced the DAT expression in WT mice or σ1R+/− mice. By contrast, the level of vesicular monoamine transporter 2 (VMAT2) in σ1R+/− mice or σ1R−/− mice had no difference from WT mice. Interestingly, MPTP-WT mice showed the reduction in the levels of DAT and VMAT2, but MPTP-σ1R−/− mice did not. The inactivation of σ1R by NE100 could prevent the reduction of VMAT2 in MPTP-WT mice. In addition, the activation of microglia cells in substantia nigra was equally enhanced in MPTP-WT mice and MPTP-σ1R−/− mice. The number of activated astrocytes in MPTP-σ1R−/− mice was less than that in MPTP-WT mice. The findings indicate that the σ1R deficiency through suppressing NMDAr function and DAT expression can reduce MPTP-induced death of

  2. Maneb-induced dopaminergic neuronal death is not affected by loss of mitochondrial complex I activity: Results from primary mesencephalic dopaminergic neurons cultured from individual Ndufs4+/+ and Ndufs4-/- mouse embryos

    PubMed Central

    Choi, Won-Seok; Xia, Zhengui

    2014-01-01

    Primary cultures from embryonic mouse ventral mesencephalon are widely used for investigating the mechanisms of dopaminergic neuronal death in Parkinson's disease models. Specifically, single mouse or embryo cultures from littermates can be very useful for comparative studies involving transgenic mice when the neuron cultures are to be prepared before genotyping. However, preparing single mouse embryo culture is technically challenging because of the small number of cells present in the mesencephalon of each embryo (150,000-300,000), of which only 0.5-5% are tyrosine hydroxylase (TH) -positive, dopaminergic neurons. In this study, we optimized the procedure for preparing primary mesencephalic neuron cultures from individual mouse embryos. Mesencephalic neurons that are dissociated delicately, plated on Aclar film coverslips, and incubated in DMEM supplemented with FBS for 5 days and then N2 supplement for 1 day resulted in the best survival of dopaminergic neurons from each embryo. Using this optimized method, we prepared mesencephalic neuron cultures from single Ndufs4+/+ or Ndufs4-/- embryos, and investigated the role of mitochondrial complex I in maneb-induced dopamine neuron death. Our results suggest that maneb toxicity to dopamine neurons is not affected by loss of mitochondrial complex I activity in Ndufs4-/- cultures. PMID:25275677

  3. Neuroprotective effects of pyrroloquinoline quinone against rotenone injury in primary cultured midbrain neurons and in a rat model of Parkinson's disease.

    PubMed

    Zhang, Qi; Chen, Shuhua; Yu, Shu; Qin, Jiaojiao; Zhang, Jingjing; Cheng, Qiong; Ke, Kaifu; Ding, Fei

    2016-09-01

    Mitochondrial dysfunction and oxidative stress have been implicated in the pathogenesis of Parkinson's disease (PD). Pyrroloquinoline quinone (PQQ), a redox cofactor in the mitochondrial respiratory chain, has been reported to protect SH-SY5Y cells from cytotoxicity induced by rotenone, a mitochondrial complex I inhibitor. In this study, we aimed to investigate the neuroprotective effects of PQQ against rotenone injury in primary cultured midbrain neurons and in a rat model of Parkinson's disease. Pre-treatment with PQQ prevented cultured midbrain neurons from rotenone-induced apoptosis, restored mitochondrial membrane potential, inhibited intracellular reactive oxygen species (ROS) production, and affected microtubule depolymerization. On the other hand, intraperitoneal administration of PQQ exerted protective effects on rats that had received rotenone injection into the medial forebrain bundle through decreasing the apomorphine-evoked rotation, inhibiting neuronal loss and TH down-regulation in SNc, increasing the antioxidative ability, and regulating intracellular expressions of Ndufs1 and Ndufs 4. Silencing of Ndufs1 or Ndufs4 in cultured SH-SY5Y cells or midbrain neurons reduced the neuroprotective effects of PQQ. Overall, our results suggest that PQQ neuroprotection may be mediated by the inhibition of mitochondrial dysfunction and oxidative stress as well as by the gene modulation of Ndufs1 and Ndufs4. PMID:27108097

  4. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and

  5. Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson's disease.

    PubMed

    O'Keeffe, Fiona E; Scott, Sarah A; Tyers, Pam; O'Keeffe, Gerard W; Dalley, Jeffrey W; Zufferey, Romain; Caldwell, Maeve A

    2008-03-01

    Neural stem cells (NSCs) are widely endorsed as a cell source for replacement strategies in neurodegenerative disease. However, their usefulness is currently limited by the inability to induce specific neurotransmitter phenotypes in these cells. In order to direct dopaminergic neuronal fate, we overexpressed Pitx3 in NSCs that were then exposed to E11 developing ventral mesencephalon (VM) in explant culture. This resulted in a significant potentiation of dopaminergic differentiation of the cells. When transplanted into the 6-hydroxydopamine lesioned Parkinsonian rats, these cografts of VM and Pitx3 overexpressing NSCs resulted in a significant restitution of motor function. In addition, there were greater numbers of Girk2 positive A9 neurons in the periphery of the transplants that were NSC derived. This demonstrates that given the correct signals, NSCs can be induced to become dopaminergic neurons that can differentiate into the correct nigrastriatal phenotype required for the treatment of Parkinson's disease. PMID:18202103

  6. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice

    PubMed Central

    Zhang, Hai-Ying; Gao, Ming; Liu, Qing-Rong; Bi, Guo-Hua; Li, Xia; Yang, Hong-Ju; Gardner, Eliot L.; Wu, Jie

    2014-01-01

    Cannabinoid CB2 receptors (CB2Rs) have been recently reported to modulate brain dopamine (DA)-related behaviors; however, the cellular mechanisms underlying these actions are unclear. Here we report that CB2Rs are expressed in ventral tegmental area (VTA) DA neurons and functionally modulate DA neuronal excitability and DA-related behavior. In situ hybridization and immunohistochemical assays detected CB2 mRNA and CB2R immunostaining in VTA DA neurons. Electrophysiological studies demonstrated that activation of CB2Rs by JWH133 or other CB2R agonists inhibited VTA DA neuronal firing in vivo and ex vivo, whereas microinjections of JWH133 into the VTA inhibited cocaine self-administration. Importantly, all of the above findings observed in WT or CB1−/− mice are blocked by CB2R antagonist and absent in CB2−/− mice. These data suggest that CB2R-mediated reduction of VTA DA neuronal activity may underlie JWH133's modulation of DA-regulated behaviors. PMID:25368177

  7. Opposing Dopaminergic and GABAergic Neurons Control the Duration and Persistence of Copulation in Drosophila

    PubMed Central

    Crickmore, Michael A.; Vosshall, Leslie B.

    2014-01-01

    SUMMARY Behavioral persistence is a major factor in determiningwhen and under which circumstances animals will terminate their current activity and transition into more profitable, appropriate, or urgent behavior. We show that, for the first 5 min of copulation in Drosophila, stressful stimuli do not interrupt mating, whereas 10 min later, even minor perturbations are sufficient to terminate copulation. This decline in persistence occurs as the probability of successful mating increases and is promoted by approximately eight sexually dimorphic, GABAergic interneurons of the male abdominal ganglion. When these interneurons were silenced, persistence increased and males copulated far longer than required for successful mating. When these interneurons were stimulated, persistence decreased and copulations were shortened. In contrast, dopaminergic neurons of the ventral nerve cord promote copulation persistence and extend copulation duration. Thus, copulation duration in Drosophila is a product of gradually declining persistence controlled by opposing neuronal populations using conserved neurotransmission systems. PMID:24209625

  8. Myricitrin Ameliorates 6-Hydroxydopamine-Induced Dopaminergic Neuronal Loss in the Substantia Nigra of Mouse Brain.

    PubMed

    Kim, Heung Deok; Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong

    2016-04-01

    Parkinson's disease (PD) is a chronic and progressive movement disorder, resulting from the degeneration of the nigrostriatal dopaminergic (DA) pathway. The cause of DA neuronal loss in PD is still unclear; however, accumulating evidence suggests that treatment with certain flavonoids can induce neuroprotective properties, such as activation of mammalian target of rapamycin complex 1 (mTORC1) and anti-inflammatory activities in animal models of PD. The bioflavonoid myricitrin is well known for its anti-inflammatory and antioxidant properties. However, it is unclear whether systemic treatment with myricitrin can protect neurons against neurotoxin-induced DA degeneration in vivo via the preservation of tyrosine hydroxylase (TH) activity and the induction of mTORC1 activation. Our results found no significant neuroprotective effect of 30 mg/kg myricitrin on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in the substantia nigra (SN) of mice. However, myricitrin treatment with 60 mg/kg protected DA neurons against 6-OHDA-induced neurotoxicity. Moreover, myricitrin treatment preserved TH enzyme activity and mTORC1 activation in nigral DA neurons in the SN of 6-OHDA-treated mice, and its treatment suppressed an increase in tumor necrosis factor-α expression in activated microglia. These results suggest that myricitrin may have neuroprotective properties linked to mTORC1 activation, preservation of TH enzyme activity, and anti-neuroinflammation for preventing DA neuronal degeneration in vivo. PMID:26991235

  9. Alcohol consumption induces global gene expression changes in VTA dopaminergic neurons.

    PubMed

    Marballi, K; Genabai, N K; Blednov, Y A; Harris, R A; Ponomarev, I

    2016-03-01

    Alcoholism is associated with dysregulation in the neural circuitry that mediates motivated and goal-directed behaviors. The dopaminergic (DA) connection between the ventral tegmental area (VTA) and the nucleus accumbens is viewed as a critical component of the neurocircuitry mediating alcohol's rewarding and behavioral effects. We sought to determine the effects of binge alcohol drinking on global gene expression in VTA DA neurons. Alcohol-preferring C57BL/6J × FVB/NJ F1 hybrid female mice were exposed to a modified drinking in the dark (DID) procedure for 3 weeks, while control animals had access to water only. Global gene expression of laser-captured tyrosine hydroxylase (TH)-positive VTA DA neurons was measured using microarrays. A total of 644 transcripts were differentially expressed between the drinking and nondrinking mice, and 930 transcripts correlated with alcohol intake during the last 2 days of drinking in the alcohol group. Bioinformatics analysis of alcohol-responsive genes identified molecular pathways and networks perturbed in DA neurons by alcohol consumption, which included neuroimmune and epigenetic functions, alcohol metabolism and brain disorders. The majority of genes with high and specific expression in DA neurons were downregulated by or negatively correlated with alcohol consumption, suggesting a decreased activity of DA neurons in high drinking animals. These changes in the DA transcriptome provide a foundation for alcohol-induced neuroadaptations that may play a crucial role in the transition to addiction. PMID:26482798

  10. Non-linear developmental trajectory of electrical phenotype in rat substantia nigra pars compacta dopaminergic neurons

    PubMed Central

    Dufour, Martial A; Woodhouse, Adele; Amendola, Julien; Goaillard, Jean-Marc

    2014-01-01

    Neurons have complex electrophysiological properties, however, it is often difficult to determine which properties are the most relevant to neuronal function. By combining current-clamp measurements of electrophysiological properties with multi-variate analysis (hierarchical clustering, principal component analysis), we were able to characterize the postnatal development of substantia nigra dopaminergic neurons' electrical phenotype in an unbiased manner, such that subtle changes in phenotype could be analyzed. We show that the intrinsic electrical phenotype of these neurons follows a non-linear trajectory reaching maturity by postnatal day 14, with two developmental transitions occurring between postnatal days 3–5 and 9–11. This approach also predicted which parameters play a critical role in phenotypic variation, enabling us to determine (using pharmacology, dynamic-clamp) that changes in the leak, sodium and calcium-activated potassium currents are central to these two developmental transitions. This analysis enables an unbiased definition of neuronal type/phenotype that is applicable to a range of research questions. DOI: http://dx.doi.org/10.7554/eLife.04059.001 PMID:25329344