Science.gov

Sample records for milk protein synthesis

  1. MATERNAL PROTEIN HOMEOSTASIS AND MILK PROTEIN SYNTHESIS DURING FEEDING AND FASTING IN HUMANS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about amino acid (aa) and protein metabolism in lactating women. We hypothesized: 1) aa sources other than the plasma acid pool provide substrate for milk protein synthesis in humans; and 2) if albumin was one such source, then albumin fractional synthesis rate (FSR) is higher in th...

  2. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise

    PubMed Central

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-01-01

    Whey protein (WP) is characterized as a “fast” protein and caseinate (CA) as a “slow” protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP. PMID:27271661

  3. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

    PubMed

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-01-01

    Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP. PMID:27271661

  4. Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland.

    PubMed

    Menzies, Karensa K; Lefèvre, Christophe; Macmillan, Keith L; Nicholas, Kevin R

    2009-05-01

    The role of insulin in milk protein synthesis is unresolved in the bovine mammary gland. This study examined the potential role of insulin in the presence of two lactogenic hormones, hydrocortisone and prolactin, in milk protein synthesis. Insulin was shown to stimulate milk protein gene expression, casein synthesis and (14)C-lysine uptake in mammary explants from late pregnant cows. A global assessment of changes in gene expression in mammary explants in response to insulin was undertaken using Affymetrix microarray. The resulting data provided insight into the molecular mechanisms stimulated by insulin and showed that the hormone stimulated the expression of 28 genes directly involved in protein synthesis. These genes included the milk protein transcription factor, ELF5, translation factors, the folate metabolism genes, FOLR1 and MTHFR, as well as several genes encoding enzymes involved in catabolism of essential amino acids and biosynthesis of non-essential amino acids. These data show that insulin is not only essential for milk protein gene expression, but stimulates milk protein synthesis at multiple levels within bovine mammary epithelial cells. PMID:19107532

  5. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men

    PubMed Central

    Mitchell, Cameron J.; McGregor, Robin A.; D’Souza, Randall F.; Thorstensen, Eric B.; Markworth, James F.; Fanning, Aaron C.; Poppitt, Sally D.; Cameron-Smith, David

    2015-01-01

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring 13C6 phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h−1 in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p < 0.001) to 0.057% ± 0.018% and 0.052% ± 0.024% h−1 in the milk and whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein. PMID:26506377

  6. Effects of phenylalanine and threonine oligopeptides on milk protein synthesis in cultured bovine mammary epithelial cells.

    PubMed

    Zhou, M M; Wu, Y M; Liu, H Y; Liu, J X

    2015-04-01

    This study was conducted to investigate the effects of phenylalanine (Phe) and threonine (Thr) oligopeptides on αs1 casein gene expression and milk protein synthesis in bovine mammary epithelial cells. Primary mammary epithelial cells were obtained from Holstein dairy cows and incubated in Dulbecco's modified Eagle's medium-F12 medium (DMEM/F12) containing lactogenic hormones (prolactin and glucocorticoids). Free Phe (117 μg/ml) was substituted partly with peptide-bound Phe (phenylalanylphenylalanine, phenylalanyl threonine, threonyl-phenylalanyl-phenylalanine) in the experimental media. After incubation with experimental medium, cells were collected for gene expression analysis and medium was collected for milk protein or amino acid determination. The results showed that peptide-bound Phe at 10% (11.7 μg/ml) significantly enhanced αs1 casein gene expression and milk protein synthesis as compared with equivalent amount of free Phe. When 10% Phe was replaced by phenylalanylphenylalanine, the disappearance of most essential amino acids increased significantly, and gene expression of peptide transporter 2 and some amino acid transporters was significantly enhanced. These results indicate that the Phe and Thr oligopeptides are important for milk protein synthesis, and peptide-bound amino acids could be utilised more efficiently in milk protein synthesis than the equivalent amount of free amino acids. PMID:25199802

  7. Synthesis of milk specific fatty acids and proteins by dispersed goat mammary-gland epithelial cells.

    PubMed Central

    Hansen, H O; Tornehave, D; Knudsen, J

    1986-01-01

    The method now described for preparation of dispersed lactating goat mammary-gland cells gives a high yield of morphologically and functionally normal mammary cells. The cells synthesize specific goat milk fatty acids in the right proportions, and they respond to hormones by increased protein synthesis. The cells can be frozen and thawed without losing the above properties, which makes them an excellent tool for metabolic and hormonal studies. Images Fig. 1. Fig. 2. PMID:3800930

  8. The Homeodomain Protein Ladybird Late Regulates Synthesis of Milk Proteins during Pregnancy in the Tsetse Fly (Glossina morsitans)

    PubMed Central

    Attardo, Geoffrey M.; Benoit, Joshua B.; Michalkova, Veronika; Patrick, Kevin R.; Krause, Tyler B.; Aksoy, Serap

    2014-01-01

    Regulation of tissue and development specific gene expression patterns underlies the functional specialization of organs in multi-cellular organisms. In the viviparous tsetse fly (Glossina), the female accessory gland is specialized to generate nutrients in the form of a milk-like secretion to support growth of intrauterine larva. Multiple milk protein genes are expressed specifically in the female accessory gland and are tightly linked with larval development. Disruption of milk protein synthesis deprives developing larvae of nutrients and results in extended larval development and/or in abortion. The ability to cause such a disruption could be utilized as a tsetse control strategy. Here we identify and delineate the regulatory sequence of a major milk protein gene (milk gland protein 1:mgp1) by utilizing a combination of molecular techniques in tsetse, Drosophila transgenics, transcriptomics and in silico sequence analyses. The function of this promoter is conserved between tsetse and Drosophila. In transgenic Drosophila the mgp1 promoter directs reporter gene expression in a tissue and stage specific manner orthologous to that of Glossina. Analysis of the minimal required regulatory region of mgp1, and the regulatory regions of other Glossina milk proteins identified putative homeodomain protein binding sites as the sole common feature. Annotation and expression analysis of Glossina homeodomain proteins identified ladybird late (lbl) as being accessory gland/fat body specific and differentially expressed between lactating/non-lactating flies. Knockdown of lbl in tsetse resulted in a significant reduction in transcript abundance of multiple milk protein genes and in a significant loss of fecundity. The role of Lbl in adult reproductive physiology is previously unknown. These results suggest that Lbl is part of a conserved reproductive regulatory system that could have implications beyond tsetse to other vector insects such as mosquitoes. This system is critical

  9. Effect of dietary protein quality and feeding level on milk secretion and mammary protein synthesis in the rat

    SciTech Connect

    Sampson, D.A.; Jansen, G.R.

    1985-04-01

    Protein synthesis was studied in mammary tissue of rats fed diets deficient in protein quality and/or restricted in food intake throughout gestation and lactation. Diets containing 25% wheat gluten (WG), wheat gluten plus lysine and threonine (WGLT), or casein (C) were pair-fed from conception until day 15 of lactation at 100% or 85% of WG ad libitum consumption (PF100 and PF85, respectively). A seventh group was fed C ad libitum. Rates of protein synthesis were measured in vivo at day 15 of lactation from incorporation of (3-/sup 3/H)phenylalanine. At both PF100 and PF85, fractional and absolute rates of mammary gland protein synthesis were two- to three-fold higher in rats fed C than in those fed WG. Pup weights showed similar treatment effects. Both mammary protein synthesis rates and pup weights were significantly higher in rats fed C at PF85 than rats fed WG ad libitum. Food restriction from PF100 to PF85 depressed pup weights and mammary protein synthesis rates in rats fed WGLT, but had no effect in rats fed WG. These results demonstrate that when food intake is restricted, improvement of protein quality of the maternal diet increases milk output in the rat in association with increased rates of mammary protein synthesis.

  10. Alpha-ketoglutarate enhances milk protein synthesis by porcine mammary epithelial cells.

    PubMed

    Jiang, Qian; He, Liuqin; Hou, Yongqing; Chen, Jiashun; Duan, Yehui; Deng, Dun; Wu, Guoyao; Yin, Yulong; Yao, Kang

    2016-09-01

    Alpha-ketoglutarate (AKG), a key intermediate in the Krebs cycle, has been reported to promote protein synthesis through activating mechanistic targeting of rapamycin (mTOR) in enterocytes. The study tested the hypothesis that AKG may enhance growth and milk protein synthesis in porcine mammary epithelial cells (PMECs). PMECs were cultured for 96 h in Dulbecco's modified Eagle's-F12 Ham medium (DMEM-F12) containing prolactin (2 µg/ml) and AKG (0 or 1.5 mM). At the end of 96-h culture, the abundance of apoptosis-related proteins (caspase-3, caspase-9), milk-specific proteins (α-lactalbumin and β-casein), mTOR signaling proteins (mTOR, p-mTOR, PERK, p-PERK, eIF2a, P70S6K and p-P70S6K), and endoplasmic reticulum stress (ERS)-associated proteins (BiP and CHOP) in PMEC were determined. Addition of AKG dose-dependently enhanced cell viability in the absence or presence of prolactin, with optimal concentrations of AKG being at 1.0 and 1.5 mM, respectively. In the presence of prolactin, addition of 1.5 mM AKG: (1) decreased (P < 0.05) the abundance of caspase-3 and caspase-9 by 21 and 39 %; (2) enhanced (P < 0.05) the phosphorylation of p-mTOR and p-P70S6K by 39 and 89 %, respectively; (3) increased (P < 0.05) the production of β-casein and α-lactalbumin by 16 and 20 %, respectively; (4) attenuated (P < 0.05) the expression of CHOP by 34 % but promoted (P < 0.05) the expression of BiP by 46 %; (5) increased (P < 0.05) the secretion of lactose by 15 %, when compared to the 0 mM AKG group. Rapamycin (50 nM; an inhibitor of mTOR) attenuated (P < 0.05) the stimulatory effect of AKG on mTOR signaling and syntheses of milk protein and lactose, while relieving (P < 0.05) an inhibitory effect of AKG on expression of proteins related to ERS. Collectively, our results indicate that AKG enhances milk protein production by modulating mTOR and ERS signaling pathways in PMECs. PMID:27188418

  11. [Cow's milk protein allergy through human milk].

    PubMed

    Denis, M; Loras-Duclaux, I; Lachaux, A

    2012-03-01

    Cow's milk protein allergy (CMPA) is the first allergy that affects infants. In this population, the incidence rate reaches 7.5%. The multiplicity and aspecificity of the symptoms makes its diagnosis sometimes complicated, especially in the delayed type (gastrointestinal, dermatological, and cutaneous). CMPA symptoms can develop in exclusively breastfed infants with an incidence rate of 0.5%. It, therefore, raises questions about sensitization to cow's milk proteins through breast milk. Transfer of native bovine proteins such as β-lactoglobulin into the breast milk is controversial: some authors have found bovine proteins in human milk but others point to cross-reactivity between human milk proteins and cow's milk proteins. However, it seems that a small percentage of dietary proteins can resist digestion and become potentially allergenic. Moreover, some authors suspect the transfer of some of these dietary proteins from the maternal bloodstream to breast milk, but the mechanisms governing sensitization are still being studied. Theoretically, CMPA diagnosis is based on clinical observations, prick-test or patch-test results, and cow's milk-specific IgE antibody concentration. A positive food challenge test usually confirms the diagnosis. No laboratory test is available to make a certain diagnosis, but the detection of eosinophil cationic protein (ECP) in the mother's milk, for example, seems to be advantageous since it is linked to CMA. Excluding cow's milk from the mother's diet is the only cure when she still wants to breastfeed. Usually, cow's milk proteins are reintroduced after 6 months of exclusion. Indeed, the prognosis for infants is very good: 80% acquire a tolerance before the age of 3 or 4 years. Mothers should not avoid dairy products during pregnancy and breastfeeding as preventive measures against allergy. PMID:22226014

  12. Effect of dietary energy source and level on nutrient digestibility, rumen microbial protein synthesis, and milk performance in lactating dairy cows.

    PubMed

    Zhou, X Q; Zhang, Y D; Zhao, M; Zhang, T; Zhu, D; Bu, D P; Wang, J Q

    2015-10-01

    This study was conducted to examine the effects of dietary energy source and level on intake, digestion, rumen microbial protein synthesis, and milk production in lactating dairy cows, using corn stover as a forage source. Eight multiparous Holstein cows, 4 of which were fitted with rumen cannulas, were evaluated in a replicated 4 × 4 Latin square design, with each period lasting 21 d. The cows were randomly assigned into 4 treatment groups: low-energy (LE) ground corn (GC), LE steam-flaked corn (SFC), high-energy (HE) GC, and HE SFC. Changes to ruminal energy degradation rates were induced by feeding the cows diets of either finely ground corn or SFC as components of diets with the same total energy level. Milk yield, milk protein content and yield, and milk lactose yield all increased in response to higher levels of dietary energy, whereas contents of milk fat and lactose were unaffected. Cows fed HE diets had a higher crude microbial protein yield and total-tract apparent digestibility than those receiving LE diets. Milk yield, milk protein yield, and microbial protein yield were also higher when SFC replaced GC as the main energy source for lactating cows fed LE diets. These results suggest that an increased dietary energy level and ruminal degradation rate are beneficial to milk protein production, which we suggest is due to increased yields of microbial proteins, when cows are fed corn stover as a dietary forage source. PMID:26254527

  13. Short communication: Altered expression of specificity protein 1 impairs milk fat synthesis in goat mammary epithelial cells.

    PubMed

    Zhu, J J; Luo, J; Xu, H F; Wang, H; Loor, J J

    2016-06-01

    Specificity protein 1 (encoded by SP1) is a novel transcription factor important for the regulation of lipid metabolism and the normal function of various hormones in model organisms. Its potential role, if any, on ruminant milk fat is unknown. Despite the lower expression of the lipolysis-related gene ATGL (by 44 and 37% respectively), both the adenoviral overexpression and the silencing of SP1 [via short interfering (si)RNA] markedly reduced cellular triacylglycerol (TAG) content (by 28 and 25%, respectively), at least in part by decreasing the expression of DGAT1 (-36% in adenovirus treatment) and DGAT2 (-81 and -87%, respectively) that are involved in TAG synthesis. Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47 by 19 and 32%, and ADFP by 25 and 25%, respectively), cellular lipid droplet content was also decreased sharply, by 9 and 8.5%, respectively, after adenoviral overexpression of SP1 or its silencing via siRNA. Overall, the results underscored a potentially important role of SP1 in maintaining milk-fat droplet synthesis in goat mammary epithelial cells. PMID:26995134

  14. Cow's milk proteins in human milk.

    PubMed

    Coscia, A; Orrù, S; Di Nicola, P; Giuliani, F; Rovelli, I; Peila, C; Martano, C; Chiale, F; Bertino, E

    2012-01-01

    Cow's milk proteins (CMPs) are among the best characterized food allergens. Cow's milk contains more than twenty five different proteins, but only whey proteins alpha-lactalbumin, beta-lactoglobulin, bovine serum albumin (BSA), and lactoferrin, as well as the four caseins, have been identified as allergens. Aim of this study was to investigate by proteomics techniques cow's milk allergens in human colostrum of term and preterm newborns' mothers, not previously detected, in order to understand if such allergens could be cause of sensitization during lactation. Term colostrum samples from 62 healthy mothers and preterm colostrum samples from 11 healthy mothers were collected for this purpose. The most relevant finding was the detection of the intact bovine alpha-S1-casein in both term and preterm colostrum. Using this method, which allows direct proteins identification, beta-lactoglobulin was not detected in any of colostrum samples. According to our results bovine alpha 1 casein that is considered a major cow's milk allergen is readily secreted in human milk: further investigations are needed in order to clarify if alpha-1-casein has a major role in sensitization or tolerance to cow's milk of exclusively breastfed predisposed infants. PMID:23158513

  15. Arginine Supplementation Recovered the IFN-γ-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2α Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells

    PubMed Central

    Xia, Xiaojing; Che, Yanyi; Gao, Yuanyuan; Zhao, Shuang; Ao, Changjin; Yang, Hongjian; Liu, Juxiong; Liu, Guowen; Han, Wenyu; Wang, Yuping; Lei, Liancheng

    2016-01-01

    During the lactation cycle of the bovine mammary gland, autophagy is induced in bovine mammary epithelial cells (BMECs) as a cellular homeostasis and survival mechanism. Interferon gamma (IFN-γ) is an important antiproliferative and apoptogenic factor that has been shown to induce autophagy in multiple cell lines in vitro. However, it remains unclear whether IFN-γ can induce autophagy and whether autophagy affects milk synthesis in BMECs. To understand whether IFN-γ affects milk synthesis, we isolated and purified primary BMECs and investigated the effect of IFN-γ on milk synthesis in primary BMECs in vitro. The results showed that IFN-γ significantly inhibits milk synthesis and that autophagy was clearly induced in primary BMECs in vitro within 24 h. Interestingly, autophagy was observed following IFN-γ treatment, and the inhibition of autophagy can improve milk protein and milk fat synthesis. Conversely, upregulation of autophagy decreased milk synthesis. Furthermore, mechanistic analysis confirmed that IFN-γ mediated autophagy by depleting arginine and inhibiting the general control nonderepressible-2 kinase (GCN2)/eukaryotic initiation factor 2α (eIF2α) signaling pathway in BMECs. Then, it was found that arginine supplementation could attenuate IFN-γ-induced autophagy and recover milk synthesis to some extent. These findings may not only provide a novel measure for preventing the IFN-γ-induced decrease in milk quality but also a useful therapeutic approach for IFN-γ-associated breast diseases in other animals and humans. PMID:27025389

  16. Arginine Supplementation Recovered the IFN-γ-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2α Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells.

    PubMed

    Xia, Xiaojing; Che, Yanyi; Gao, Yuanyuan; Zhao, Shuang; Ao, Changjin; Yang, Hongjian; Liu, Juxiong; Liu, Guowen; Han, Wenyu; Wang, Yuping; Lei, Liancheng

    2016-05-31

    During the lactation cycle of the bovine mammary gland, autophagy is induced in bovine mammary epithelial cells (BMECs) as a cellular homeostasis and survival mechanism. Interferon gamma (IFN-γ) is an important antiproliferative and apoptogenic factor that has been shown to induce autophagy in multiple cell lines in vitro. However, it remains unclear whether IFN-γ can induce autophagy and whether autophagy affects milk synthesis in BMECs. To understand whether IFN-γ affects milk synthesis, we isolated and purified primary BMECs and investigated the effect of IFN-γ on milk synthesis in primary BMECs in vitro. The results showed that IFN-γ significantly inhibits milk synthesis and that autophagy was clearly induced in primary BMECs in vitro within 24 h. Interestingly, autophagy was observed following IFN-γ treatment, and the inhibition of autophagy can improve milk protein and milk fat synthesis. Conversely, upregulation of autophagy decreased milk synthesis. Furthermore, mechanistic analysis confirmed that IFN-γ mediated autophagy by depleting arginine and inhibiting the general control nonderepressible-2 kinase (GCN2)/eukaryotic initiation factor 2α (eIF2α) signaling pathway in BMECs. Then, it was found that arginine supplementation could attenuate IFN-γ-induced autophagy and recover milk synthesis to some extent. These findings may not only provide a novel measure for preventing the IFN-γ-induced decrease in milk quality but also a useful therapeutic approach for IFN-γ-associated breast diseases in other animals and humans. PMID:27025389

  17. Synthesis and characterization of functionalized CNTs using soya and milk protein

    NASA Astrophysics Data System (ADS)

    saxena, Sanjay; ranu, Rachana; Hait, Chandan; Priya, Shruti

    2014-10-01

    Nanotechnology is the study of the phenomenon and manipulation of matter at atomic and molecular scale to enhance their older property and generate several new properties. Carbon nanotubes (CNTs) are one of the most commonly mentioned building blocks of nanotechnology. CNTs are very prevalent in today's world of medical research and are being highly researched in the fields of efficient drug delivery and bio sensing methods for disease treatment and health monitoring. There are number of methods for synthesizing CNTs. This is a biological method for synthesis of CNTs in which protein is used as carbon source and amino acids present in protein form complex with metal salt. The CNTs synthesized are then characterized and functionalized using techniques such as transmission electron microscopy, Fourier transform infra-red, nuclear magnetic resonance, ultra-violet visible spectroscopy, X-ray diffraction, etc. The properties of the synthesized CNTs are studied with the help of techniques such as thermo-gravimetric analysis, differential thermal analysis, and vibrating sample magnetometer, etc.

  18. Optimization and characterization of an in vitro bovine mammary cell culture system to study regulation of milk protein synthesis and mammary differentiation

    SciTech Connect

    Talhouk, R.S.

    1988-01-01

    A long term bovine mammary cell culture system that maintains normal mammary cell function was established and optimized to study milk protein synthesis and secretion and mammary differentiation. This culture system used bovine mammary acini isolated from developing or lactating mammary gland by enzymatic dissociation, and cryopreserved until thawed and plated for growth in vitro for these studies. Cells in M199 with lactogenic hormones {plus minus} fetal calf serum (FCS) were cultured on plastic, 100ul and 500ul type I collagen, and Matrigel, or embedded within type I collagen. Cell morphology, cell number, and total TCA-precipitable {sup 35}S-labelled proteins were monitored. Milk protein ({alpha}{sub s,1}-casein, lactoferrin (LF), {alpha}-lactalbumin, and {beta}-lactoglobulin) secretion and intracellular levels were determined by an ELISA assay.

  19. The effect of heat stress on gene expression and synthesis of heat-shock and milk proteins in bovine mammary epithelial cells.

    PubMed

    Hu, Han; Zhang, Yangdong; Zheng, Nan; Cheng, Jianbo; Wang, Jiaqi

    2016-01-01

    In this study, bovine mammary epithelial cells were used to study stress responses after cells were exposed to 42°C for 0.5, 1, 3, 5, 8 or 12 h, and 38°C as control. The transcription of the genes (HSP27, HSP70 and HSP90) of heat shock protein (Hsp) was significantly enhanced under heat stress (HS). The peak transcription of HSP70 was 14 times the control at 1 h. Expression of proteins Hsp27 and Hsp70 was gradually increased under HS, with rapid deposition of Hsp70 in epithelial cells. The major milk protein genes of β-casein (CSN2) and butyrophilin (BTN1A1) were down-regulated and the synthesis of total caseins was decreased. After the cells were under HS (42°C) for 1 or 5 h, the cells were cultured at 38°C for 1, 6, 12 or 24 h for recovery. When the cells were cultured at 38°C for 24 h after HS for 1 h, the transcription of HSP70, HSP90, CSN2 and BTN reached normal levels. Our results suggest that HS initiated Hsp synthesis and decreased the milk protein synthesis. Hsp70 is extremely sensitive to HS and mainly responsible for mammary cell protection from HS. PMID:26467738

  20. Leucine and histidine independently regulate milk protein synthesis in bovine mammary epithelial cells via mTOR signaling pathway*

    PubMed Central

    Gao, Hai-na; Hu, Han; Zheng, Nan; Wang, Jia-qi

    2015-01-01

    The aim of this study is to investigate the effects of leucine (Leu) and histidine (His) on the expression of both the mammalian target of rapamycin (mTOR) signaling pathway-related proteins and caseins in immortalized bovine mammary epithelial cells (CMEC-H), using a single supplement through Western blotting. The Earle’s balanced salt solution (EBSS) was set as the control group and other treatment groups, based on the EBSS, were added with different concentrations of Leu or His, respectively. The results showed that, compared with the control group, the expression of caseins and the phosphorylation of mTOR (Ser2481), Raptor (Ser792), eIF4E (Ser209), and eEF2 (Thr56) increased with the Leu concentrations ranging from 0.45 to 10.80 mmol/L (P<0.01). The P-4EBP1 (Thr37) at 10.80 mmol/L Leu, and P-RPS6 (Ser235/236) at 5.40 to 10.80 mmol/L Leu all decreased. Similarly, the His supplementation from 0.15 to 9.60 mmol/L increased the expression of αs2-casein, β-casein, κ-casein, P-mTOR (Ser2481), P-Raptor (Ser792), P-S6K1 (Thr389), P-4EBP1 (Thr37), P-eIF4E (Ser209), and P-eEF2 (Thr56) (P<0.01) in CMEC-H, whereas the αs1-casein expression was only reduced at 9.60 mmol/L His, G protein β subunit-like protein (GβL) at 0.15 and 9.60 mmol/L His, and P-RPS6 at 4.80 to 9.60 mmol/L His. Our linear regression model assay suggested that the αs1-casein expression was positively correlated with P-mTOR (P<0.01), P-S6K1 (P<0.01), and P-eEF2 (P<0.01) for the addition of Leu, while the expressions of β-casein (P<0.01) and κ-casein (P<0.01) were positively correlated with P-eEF2 for the addition of His. In conclusion, the milk protein synthesis was up-regulated through activation of the mTOR pathway with the addition of Leu and His in CMEC-H. PMID:26055918

  1. WISP3 (CCN6) Regulates Milk Protein Synthesis and Cell Growth Through mTOR Signaling in Dairy Cow Mammary Epithelial Cells.

    PubMed

    Jiang, Nan; Wang, Yu; Yu, Zhiqiang; Hu, Lijun; Liu, Chaonan; Gao, Xueli; Zheng, Shimin

    2015-08-01

    The mTOR/S6K1 signaling pathway is the primary regulator of milk protein synthesis. While mTOR is known to be regulated at the translational level by amino acids, the mechanism by which mTOR accepts the amino acid signal is not yet clear. In this study, we describe the discovery of WISP3 as a potentially novel signaling factor that connects mTOR and amino acids. Treatment of dairy cow mammary epithelial cells with amino acids (lysine or methionine) increased both cell growth and the expression of β-casein (CSN2), WISP3, mTOR, and phospho-mTOR (p-mTOR). Notably, overexpressing WISP3 in these cells also increased both cell growth and the expression of CSN2, mTOR, and p-mTOR and decreased the expression of glycogen synthase kinase 3β (GSK3β), while repressing WISP3 had the opposite effect. The increase of the expression of CSN2, mTOR, and p-mTOR mediated by amino acid could be inhibited by repressing WISP3. The increase of the expression of CSN2, mTOR, and p-mTOR mediated by WISP3 overexpression could be inhibited by overexpressing GSK3β, and vice versa. Taken together, these results reveal that through its amino acid-mediated regulation of the mTOR pathway, WISP3 is an important regulatory factor involved in the amino acid-mediated regulation of milk protein synthesis and cell growth. PMID:26061139

  2. Protein Evolution of Human Milk.

    PubMed

    Thakkar, Sagar K; Giuffrida, Francesca; Bertschy, Emmanuelle; De Castro, Antonio; Destaillats, Frédéric; Lee, Le Ye

    2016-01-01

    Given the documented short- and long-term advantages of breastfeeding, human milk (HM) as a sole source of nutrition for the first few months of newborn life is considered a normative standard. Each macroconstituent of HM plays a crucial role in the growth and development of the baby. Lipids are largely responsible for providing more than 50% of the energy as well as providing essential fatty acids and minor lipids that are integral to all cell membranes. Carbohydrates can be broadly divided into lactose and oligosaccharides, which are a readily digestible source of glucose and indigestible nonnutritive components, respectively. Proteins in HM provide essential amino acids indispensable for the growth of infants. What is more interesting is that protein concentration profoundly changes from colostrum to mature milk. In this report, we share data from an observatory, single-center, longitudinal trial assessing the constituents of HM collected 30, 60 and 120 days postpartum from 50 mothers (singleton deliveries: 25 male and 25 female infants). The protein content decreased with evolving stages of lactation from an average of 1.45 to 1.38 g/100 ml. The data did not show any gender differences as it was reported for lipid content at 120 days postpartum by our group. Additionally, we also share consolidated literature data on protein evolution of HM during the first year of lactation. PMID:27336906

  3. Effects of extruding wheat dried distillers grains with solubles with peas or canola meal on ruminal fermentation, microbial protein synthesis, nutrient digestion, and milk production in dairy cows.

    PubMed

    Claassen, R M; Christensen, D A; Mutsvangwa, T

    2016-09-01

    Our objective was to examine the effects of feeding coextruded and nonextruded supplements consisting of wheat dried distillers grains with solubles with peas (WDDGS-peas) or canola meal (WDDGS-CM) on ruminal fermentation, omasal flow, and production performance in Holstein cows. Eight cows (4 ruminally cannulated) were used in a replicated 4×4 Latin square with 28-d periods and a 2×2 factorial arrangement of dietary treatments. Dietary treatments were coextruded or nonextruded mixtures of WDDGS-peas and WDDGS-CM that were included in total mixed rations at 15.1% [dry matter (DM) basis]. Diet had no effect on DM intake. Milk yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk fat content was greater in cows fed nonextruded diets compared with those fed coextruded diets, but milk fat yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk yield tended to be greater and milk protein yield was greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Cows fed nonextruded diets had a greater milk urea-N concentration compared with those fed coextruded diets. Cows fed coextruded diets had greater ruminal digestion of DM and tended to have greater ruminal digestion of organic matter compared with those fed nonextruded diets. Total-tract digestibilities of organic matter, crude protein, ether extract, and starch were greater, whereas that of acid detergent fiber and neutral detergent fiber tended to be greater in cows fed coextruded compared with those fed nonextruded diets. Total-tract digestibility of ether extract was lower whereas that of starch was greater and that of crude protein tended to be greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Total N excretion and milk N efficiency were unaffected by diet. Ruminal NH3-N concentration tended to be greater in cows fed WDDGS-CM compared with those fed WDDGS-peas. Ruminal propionate concentration was greater whereas

  4. [Dietetic treatment of cow's milk protein allergy].

    PubMed

    Dupont, C; Chouraqui, J-P; de Boissieu, D; Bocquet, A; Bresson, J-L; Briend, A; Darmaun, D; Frelut, M-L; Ghisolfi, J; Girardet, J-P; Goulet, O; Hankard, R; Rieu, D; Rigo, J; Vidailhet, M; Turck, D

    2011-01-01

    New data on food allergy has recently changed the management of children with cow's milk protein allergy (CMPA). The diagnosis of CMPA first requires the elimination of cow's milk proteins and then an oral provocation test following a standard diagnostic procedure for food allergy, without which the elimination diet is unjustified and sometimes harmful. Once the diagnosis is made, the elimination diet is strict, at least until the age of 9-12 months. If the child is not breastfed or the mother cannot or no longer wishes to breastfeed, the first choice is a formula based on extensive hydrolyzate of cow's milk (eHF), provided that its effectiveness has been demonstrated. When eHF fails, a formula based on amino acids is warranted. eHF based on rice protein hydrolysates is an alternative to cow's milk eHF. Infant formulas based on soy protein can be used after the age of 6 months, after verification of good clinical tolerance to soy. Most commonly, CMPA disappears within 2 or 3 years of life. However, the age of recovery varies depending on the child and the type of CMPA, and whether or not it is IgE-mediated, the first being more sustainable. When the child grows, a hospital oral provocation test evaluates the development of tolerance and, if possible, authorizes continuing the reintroduction of milk proteins at home. Some children with CMPA will tolerate only a limited daily amount of cow's milk proteins. The current therapeutic options are designed to accelerate the acquisition of tolerance, which seems facilitated by regular exposure to cow's milk proteins. PMID:21115329

  5. Flavor and stability of milk proteins.

    PubMed

    Smith, T J; Campbell, R E; Jo, Y; Drake, M A

    2016-06-01

    A greater understanding of the nature and source of dried milk protein ingredient flavor(s) is required to characterize flavor stability and identify the sources of flavors. The objective of this study was to characterize the flavor and flavor chemistry of milk protein concentrates (MPC 70, 80, 85), isolates (MPI), acid and rennet caseins, and micellar casein concentrate (MCC) and to determine the effect of storage on flavor and functionality of milk protein concentrates using instrumental and sensory techniques. Spray-dried milk protein ingredients (MPC, MPI, caseins, MCC) were collected in duplicate from 5 commercial suppliers or manufactured at North Carolina State University. Powders were rehydrated and evaluated in duplicate by descriptive sensory analysis. Volatile compounds were extracted by solid phase microextraction followed by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry. Compounds were identified by comparison of retention indices, odor properties, and mass spectra against reference standards. A subset of samples was selected for further analysis using direct solvent extraction with solvent-assisted flavor extraction, and aroma extract dilution analysis. External standard curves were created to quantify select volatile compounds. Pilot plant manufactured MPC were stored at 3, 25, and 40°C (44% relative humidity). Solubility, furosine, sensory properties, and volatile compound analyses were performed at 0, 1, 3, 6, and 12 mo. Milk proteins and caseins were diverse in flavor and exhibited sweet aromatic and cooked/milky flavors as well as cardboard, brothy, tortilla, soapy, and fatty flavors. Key aroma active compounds in milk proteins and caseins were 2-aminoacetophenone, nonanal, 1-octen-3-one, dimethyl trisulfide, 2-acetyl-1-pyrroline, heptanal, methional, 1-hexen-3-one, hexanal, dimethyl disulfide, butanoic acid, and acetic acid. Stored milk proteins developed animal and burnt sugar flavors over time. Solubility of

  6. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk

    PubMed Central

    Kippenberger, Stefan; Zöller, Nadja; Kleemann, Johannes; Müller, Jutta; Kaufmann, Roland; Hofmann, Matthias; Bernd, August; Meissner, Markus; Valesky, Eva

    2015-01-01

    Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk) without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk) and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids. PMID:26134630

  7. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk.

    PubMed

    Kippenberger, Stefan; Zöller, Nadja; Kleemann, Johannes; Müller, Jutta; Kaufmann, Roland; Hofmann, Matthias; Bernd, August; Meissner, Markus; Valesky, Eva

    2015-01-01

    Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk) without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk) and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids. PMID:26134630

  8. ALMOND MILK: A POTENTIAL THERAPEUTIC WEAPON AGAINST COW’S MILK PROTEIN ALLERGY.

    PubMed

    Cuppari, C; Manti, S; Salpietro, A; Dugo, G; Gitto, E; Arrigo, T; Sturiale, M; Salpietro, C

    2015-01-01

    Food allergy is defined as an adverse health effect arising from a specific immune response that occurs reproducibly following exposure to a given food. Cow’s milk protein allergy results from an immunological reaction to one or more milk proteins. The principle key in the treatment of cow’s milk protein allergy is the dietary elimination of cow’s milk protein. Although hydrolyzed and elemental formulas are appropriate replacements, other milk products, including almond milk adequately integrated, could be administered. Here, in the light of encouraging results from our study, we focused on the anti-inflammatory and anti-oxidant properties of almond milk and we also believe that almond milk might be considered as a potential alternative in cow’s milk protein allergy treatment. PMID:26634581

  9. Milk metabolome relates enteric methane emission to milk synthesis and energy metabolism pathways.

    PubMed

    Antunes-Fernandes, E C; van Gastelen, S; Dijkstra, J; Hettinga, K A; Vervoort, J

    2016-08-01

    Methane (CH4) emission of dairy cows contributes significantly to the carbon footprint of the dairy chain; therefore, a better understanding of CH4 formation is urgently needed. The present study explored the milk metabolome by gas chromatography-mass spectrometry (milk volatile metabolites) and nuclear magnetic resonance (milk nonvolatile metabolites) to better understand the biological pathways involved in CH4 emission in dairy cattle. Data were used from a randomized block design experiment with 32 multiparous Holstein-Friesian cows and 4 diets. All diets had a roughage:concentrate ratio of 80:20 (dry matter basis) and the roughage was grass silage (GS), corn silage (CS), or a mixture of both (67% GS, 33% CS; 33% GS, 67% CS). Methane emission was measured in climate respiration chambers and expressed as CH4 yield (per unit of dry matter intake) and CH4 intensity (per unit of fat- and protein-corrected milk; FPCM). No volatile or nonvolatile metabolite was positively related to CH4 yield, and acetone (measured as a volatile and as a nonvolatile metabolite) was negatively related to CH4 yield. The volatile metabolites 1-heptanol-decanol, 3-nonanone, ethanol, and tetrahydrofuran were positively related to CH4 intensity. None of the volatile metabolites was negatively related to CH4 intensity. The nonvolatile metabolites acetoacetate, creatinine, ethanol, formate, methylmalonate, and N-acetylsugar A were positively related to CH4 intensity, and uridine diphosphate (UDP)-hexose B and citrate were negatively related to CH4 intensity. Several volatile and nonvolatile metabolites that were correlated with CH4 intensity also were correlated with FPCM and not significantly related to CH4 intensity anymore when FPCM was included as covariate. This suggests that changes in these milk metabolites may be related to changes in milk yield or metabolic processes involved in milk synthesis. The UDP-hexose B was correlated with FPCM, whereas citrate was not. Both metabolites were

  10. Molecular aspects of viviparous reproductive biology of the tsetse fly (Glossina morsitans morsitans): Regulation of yolk and milk gland protein synthesis

    PubMed Central

    Attardo, Geoffrey M.; Guz, Nurper; Strickler-Dinglasan, Patricia; Aksoy, Serap

    2006-01-01

    Tsetse fly (Diptera: Glossinidae) viviparous reproductive physiology remains to be explored at the molecular level. Adult females carry their young in utero for the duration of embryonic and larval development, all the while supplying their offspring with nutrients in the form of a “milk” substance secreted from a modified accessory gland. Flies give birth to fully developed third instar larvae that pupariate shortly after birth. Here, we describe the spatial and temporal expression dynamics of two reproduction-associated genes and their products synthesized during the first and second gonotrophic cycles. The proteins studied include a putative yolk protein, Glossina morsitans morsitans yolk protein 1 (GmmYP1) and the major protein found in tsetse “milk” secretions (Glossina morsitans morsitans milk gland protein, GmmMGP). Developmental stage and tissue-specific expression of GmmYP1 show its presence exclusively in the reproductive tract of the fly during oogenesis, suggesting that GmmYP1 acts as a vitellogenic protein. Transcripts for GmmMGP are present only in the milk gland tissue and increase in coordination with the process of larvigenesis. Similarly, GmmMGP can be detected at the onset of larvigenesis in the milk gland, and is present during the full duration of pregnancy. Expression of GmmMGP is restricted to the adult stage and is not detected in the immature developmental stages. These phenomena indicate that the protein is transferred from mother to larvae as nourishment during its development. These results demonstrate that both GmmYP1 and GmmMGP are involved in tsetse reproductive biology, the former associated with the process of oogenesis and the latter with larvigenesis. PMID:17046784

  11. [Immune stimulative potency of milk proteins].

    PubMed

    Ambroziak, Adam; Cichosz, Grazyna

    2014-02-01

    Milk proteins are characterized by the highest immune stimulative potency from among all the proteins present in human diet. Whey proteins and numerous growth factors that regulate insulin secretion, differentiation of intestine epithelium cells, and also tissue restoration, are priceless in stimulation the immune system. Lactoferrin shows the most comprehensive pro-health properties: antioxidative, anticancer, immune stimulative and even chemopreventive. Also peptides and amino acids formed from casein and whey proteins possess immune stimulative activity. The most valuable proteins, i.e. lactoferrin, immune globulins, lactoperoxidase and lisozyme, together with bioactive peptides, are resistant to pepsin and trypsin activity. This is why they maintain their exceptional biological activity within human organism. Properly high consumption of milk proteins conditions correct function of immune system, especially at children and elderly persons. PMID:24720113

  12. Measures of de novo synthesis of milk components from propionate in lactating goats

    SciTech Connect

    Emmanuel, B.; Kennelly, J.J.

    1985-02-01

    Possible direct contributions of propionate to de novo synthesis of milk components by the mammary gland of lactating goats fed a concentrate-roughage diet have been studied in vivo by primed constant infusion of (1-carbon-14)propionate into the right mammary artery. Specific radioactivities of milk galactose, fatty acids, and protein were higher in the infused than in the uninfused half of the mammary gland, suggesting de novo synthesis of these compounds in the udder. Specific radioactivities of milk glucose in both udder halves were identical, ruling out any possibility of mammary gland-derived glucose from propionate of blood plasma under the experimental conditions. Of milk galactose, .8% was derived from propionate of blood plasma, and of milk glucose, 98% was derived from glucose of blood plasma. After intraruminal infusion of unlabeled propionic acid at 11 g/h, concentration of propionate in blood plasma was doubled, its contribution to milk galactose was increased to 1.5%, and proportions of milk odd-numbered fatty acids were increased. Propionate was incorporated largely into milk odd-numbered fatty acids. The authors conclude that small amounts of propionate can be incorporated into principal components of milk in the mammary gland of lactating goats.

  13. Treatment of Cow's Milk Protein Allergy

    PubMed Central

    De Greef, Elisabeth; Devreker, Thierry

    2014-01-01

    The diagnosis and treatment of cow's milk protein allergy (CMPA) is still a challenge. A systematic literature search was performed using Embase, Medline, The Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Clinical Trials for the diagnosis and treatment of cow's milk allergy (CMA). Since none of the symptoms of CMPA is specific and since there is no sensitive diagnostic test (except a challenge test), the diagnosis of CMPA remains difficult. A "symptom-based score" is useful in children with symptoms involving different organ systems. The recommended dietary treatment is an extensive cow milk based hydrolysate. Amino acid based formula is recommended in the most severe cases. However, soy infant formula and hydrolysates from other protein sources (rice) are gaining popularity, as they taste better and are cheaper than the extensive cow's milk based hydrolysates. Recent meta-analyses confirmed the safety of soy and estimate that not more than 10-15% of CMPA-infants become allergic to soy. An accurate diagnosis of CMA is still difficult. The revival of soy and the development of rice hydrolysates challenge the extensive cow's milk based extensive hydrolysates as first option and amino acid formula. PMID:24749081

  14. Proteins of human milk. I. Identification of major components

    SciTech Connect

    Anderson, N.G.; Powers, M.T.; Tollaksen, S.L.

    1982-04-01

    Traditionally, human milk proteins are identified largely by reference to bovine milk. Hence, to identify the major proteins in human milk, we subjected human and bovine milk, in parallel, to high-resolution two-dimensional electrophoresis. Isoelectric precipitation at pH 4.6 was our criterion for distinguishing whey proteins from those of the casein complex. The ..cap alpha..- and..beta..-caseins were identified on the basis of relative abundance, relative molecular mass, and relative isoelectric points. No protein disappeared from ISO-DALT patterns of human milk after rennin treatment, and no new protein comparable to bovine para K-casein appeared in the BASO-DALT patterns; this suggests that K-casein is absent from human milk. The proteins identified in human milk patterns include the ..cap alpha.. and ..beta.. casein families, lactalbumin, albumin, transferrin, IgA, and lactoferrin. Numerous additional proteins seen in patterns for human milk remain to be identified.

  15. Transcriptional enhancer from milk protein genes

    SciTech Connect

    Casperson, G.F.; Schmidhauser, C.T.; Bissell, M.J.

    1999-12-21

    The invention relates to novel enhancer nucleotide sequences which stimulate transcription of heterologous DNA in cells in culture. The enhancers are derived from major milk protein genes by the process of deletion mapping and functional analysis. The invention also relates to expression vectors containing the novel enhancers.

  16. Transcriptional enhancer from milk protein genes

    SciTech Connect

    Casperson, Gerald F.; Schmidhauser, Christian T.; Bissell, Mina J.

    1999-01-01

    The invention relates to novel enhancer nucleotide sequences which stimulate transcription of heterologous DNA in cells in culture. The enhancers are derived from major milk protein genes by the process of deletion mapping and functional analysis. The invention also relates to expression vectors containing the novel enhancers.

  17. Mild protein hydrolysation of lactose-free milk further reduces milk-related gastrointestinal symptoms.

    PubMed

    Turpeinen, Anu; Kautiainen, Hanna; Tikkanen, Marja-Leena; Sibakov, Timo; Tossavainen, Olli; Myllyluoma, Eveliina

    2016-05-01

    Gastrointestinal symptoms associated with milk are common. Besides lactose, milk proteins may cause symptoms in sensitive individuals. We have developed a method for mild enzymatic hydrolysation of milk proteins and studied the effects of hydrolysed milk on gastrointestinal symptoms in adults with a self-diagnosed sensitive stomach. In a double blind, randomised placebo-controlled study, 97 subjects consumed protein-hydrolysed lactose-free milk or commercially available lactose-free milk for 10 d. Frequency of gastrointestinal symptoms during the study period was reported and a symptom score was calculated. Rumbling and flatulence decreased significantly in the hydrolysed milk group (P < 0·05). Also, the total symptom score was lower in subjects who consumed hydrolysed milk (P < 0·05). No difference between groups was seen in abdominal pain (P = 0·47) or bloating (P = 0·076). The results suggest that mild enzymatic protein hydrolysation may decrease gastrointestinal symptoms in adults with a sensitive stomach. PMID:27034058

  18. A novel preparation of milk protein/polyethylene terephthalate fabric

    NASA Astrophysics Data System (ADS)

    Zhou, J. F.; Zheng, D. D.; Zhong, L.; Zhang, F. X.; Zhang, G. X.

    2016-07-01

    In this work, -NH2 groups were introduced to polyethylene terephthalate (PET) fibers by nitration and reduction method, and then milk protein was grafted on the nitrated and reduced PET (NR PET) fibers by sucrose glycidyl ether crosslinking agent. FTIR suggested the milk protein was successfully grafted on PET fiber surface. SEM images showed a layer of substance covered on the PET fiber surface. DSC demonstrated an excellent thermal stability of milk protein/PET fiber. The moisture regain was improved by milk protein/PET fiber. Moreover, the crease recovery angle and stiffness were retained by the milk protein/PET fabric.

  19. DIETARY PROTEIN AND LACTOSE INCREASE TRANSLATION INITIATION FACTOR ACTIVATION AND TISSUE PROTEIN SYNTHESIS IN NEONATAL PIGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein synthesis and eukaryotic initiation factor (eIF) activation are increased in muscle and liver of pigs parenterally infused with amino acids and insulin. To examine the effects of enteral protein and carbohydrate on protein synthesis, pigs (n = 42, 1.7 kg body wt) were fed isocaloric milk die...

  20. Water sorption by proteins: milk and whey proteins.

    PubMed

    Kinsella, J E; Fox, P F

    1986-01-01

    The content and physical state of water in foods influence their physical, chemical, quality, safety, and functional behavior. Information concerning the sorption behavior of dairy proteins, in the water activity (Aw) range 0 to 0.9, is collated in this paper. The sorption behavior of proteins in general, the kinetics of absorption, factors affecting water binding, the phenomenon of desorption hysteresis, and the chemical and physical nature of water/protein interactions are reviewed in general terms. This is followed by a discussion of thermodynamic aspects of sorption phenomena and the adequacy of the various equations for describing sorption isotherms of proteins. After a discussion of the methods available for measuring sorption by milk proteins, the sorption behavior of various milk protein preparations, i.e., nonfat dry milk, whey proteins, caseins, and milk powders is summarized. Finally, the water activity of cheese and its relationship to solute mobility and solvent water are discussed. Some of the unique features of protein behavior, i.e., conformational changes, swelling, and solubilization are cited as possible sources of disparities between various reports. PMID:3527564

  1. Commercial Milk Enzyme-Linked Immunosorbent Assay (ELISA) Kit Reactivities to Purified Milk Proteins and Milk-Derived Ingredients.

    PubMed

    Ivens, Katherine O; Baumert, Joseph L; Taylor, Steve L

    2016-07-01

    Numerous commercial enzyme-linked immunosorbent assay (ELISA) kits exist to quantitatively detect bovine milk residues in foods. Milk contains many proteins that can serve as ELISA targets including caseins (α-, β-, or κ-casein) and whey proteins (α-lactalbumin or β-lactoglobulin). Nine commercially-available milk ELISA kits were selected to compare the specificity and sensitivity with 5 purified milk proteins and 3 milk-derived ingredients. All of the milk kits were capable of quantifying nonfat dry milk (NFDM), but did not necessarily detect all individual protein fractions. While milk-derived ingredients were detected by the kits, their quantitation may be inaccurate due to the use of different calibrators, reference materials, and antibodies in kit development. The establishment of a standard reference material for the calibration of milk ELISA kits is increasingly important. The appropriate selection and understanding of milk ELISA kits for food analysis is critical to accurate quantification of milk residues and informed risk management decisions. PMID:27272960

  2. Donkey milk-based formula: A substitute for patients with cow’s milk protein allergy

    PubMed Central

    Osman Swar, Mohammed

    2011-01-01

    Cow’s milk protein allergy affects 2-7% of children using cow’s milk formulae. Fifty to eighty percent of them develop allergy to other food items and substitutes. On the search for a safe and affordable substitute, we reviewed the composition of milks of the domestic mammals in close contact with man. Milk constituents studied included fat, protein, lactose, minerals, water, pH, specific gravity and caloric value. Compared to others, donkey milk was found to be closest to breast milk when the amount of 16ml of sunflower is added to one liter of this milk. To our knowledge, no allergy to donkey milk has been reported yet.

  3. Peptides from milk proteins and their properties.

    PubMed

    Kilara, Arun; Panyam, Dinakar

    2003-01-01

    This review has attempted to study the literature pertaining to peptides derived from milk proteins. Hydrolysis of milk proteins to generate peptides has been practiced for a long time and it was recognized early on in this process that the taste of hydrolyzates might hinder use of these products in food formulations. Modification of protein is necessary to form a more acceptable or utilizable product, to form a product that is less susceptible to deteriorative reactions and to form a product that is of higher nutritionall quality. Modifications may be achieved by a number of chemical and enzymatic means. This review has considered only enzymatic modification of dairy proteins. Modified proteins contain peptides and some of these peptides have been purified and their functionalities have been compared with unmodified proteins. This paper has examined the literature pertaining to improvement in functionality of enzyme-modified proteins. Improvements in solubility, emulsification, foaming and gelation were examined. There is limited information available on the sequence of the peptides necessary to improve the functional characteristics of proteins. Knowing the sequences of desirable functional peptides can lead to genetic alteration of proteins to improve functionality. Addition of synthetic peptides to intact proteins may be another way in which the functionality of proteins can be augmented. Some of the peptides in milk proteins are capable of affecting biological functions of an organism. These effects can be antimicrobial and probiotic, i.e., prevent the growth and proliferation of undesirable and pathogenic organisms, or they may promote the growth of desirable bacteria in the digestive tract of humans and animals. Peptides derived from milk protein have been shown to exert digestive and metabolic effects as well. They may also influence the immune system. These biological effects may play an important role in the development of medical foods that treat or

  4. Short-term administration of rhGH increases markers of cellular proliferation, but not milk protein gene expression in normal lactating women.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained fro...

  5. Protein degradation in bovine milk caused by Streptococcus agalactiae.

    PubMed

    Åkerstedt, Maria; Wredle, Ewa; Lam, Vo; Johansson, Monika

    2012-08-01

    Streptococcus (Str.) agalactiae is a contagious mastitis bacterium, often associated with cases of subclinical mastitis. Different mastitis bacteria have been evaluated previously from a diagnostic point of view, but there is a lack of knowledge concerning their effect on milk composition. Protein composition is important in achieving optimal yield and texture when milk is processed to fermented products, such as cheese and yoghurt, and is thus of great economic value. The aim of this in vitro study was to evaluate protein degradation mainly caused by exogenous proteases originating from naturally occurring Str. agalactiae. The samples were incubated at 37°C to imitate degradation caused by the bacteria in the udder. Protein degradation caused by different strains of Str. agalactiae was also investigated. Protein degradation was observed to occur when Str. agalactiae was added to milk, but there were variations between strains of the bacteria. Caseins, the most economically important proteins in milk, were degraded up to 75% in milk inoculated with Str. agalactiae in relation to sterile ultra-high temperature (UHT) milk, used as control milk. The major whey proteins, α-lactalbumin and β-lactoglobulin, were degraded up to 21% in relation to the sterile control milk. These results suggest that different mastitis bacteria but also different strains of mastitis bacteria should be evaluated from a milk quality perspective to gain knowledge about their ability to degrade the economically important proteins in milk. PMID:22850579

  6. Derivation of factors to estimate daily fat, protein, and somatic cell score from one milking of cows milked twice daily

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to derive factors to predict daily fat (F) and protein (P) yield or somatic cell score (SCS) when milk is sampled once for cows milked twice per d. Milk samples were collected for each milking on test-day by Dairy Herd Improvement personnel from herds recording milking times and m...

  7. Comparative aspects of milk fat synthesis.

    PubMed

    Dils, R R

    1986-03-01

    This general review attempts to capture the interest of nonspecialists, especially those whose main interest is the dairy cow, in the extraordinary diversity of milk fats synthesized and secreted by different mammalian species. The review compares differences in the gross proportions of fats in the milk of various species and discusses different strategies for providing the suckling young with sufficient energy as fat. Despite the constancy of the gross chemical composition of the milk fat globule and its membrane produced by mammals, there are striking differences among species in the fatty acid composition of milk triacylglycerols (triglycerides). The origins of the short-, medium-, and long-chain fatty acids of milk triacylglycerols are reviewed with emphasis on differences between ruminants and nonruminants. Because there appears to be less difference among mammals in the mechanisms of fatty acid desaturation, chain elongation, and esterification by the mammary gland, these topics are only briefly reviewed. PMID:3711414

  8. Role of milk protein-based products in some quality attributes of goat milk yogurt.

    PubMed

    Gursel, A; Gursoy, A; Anli, E A K; Budak, S O; Aydemir, S; Durlu-Ozkaya, F

    2016-04-01

    Goat milk yogurts were manufactured with the fortification of 2% (wt/vol) skim goat milk powder (SGMP), sodium caseinate (NaCn), whey protein concentrate (WPC), whey protein isolate (WPI), or yogurt texture improver (YTI). Yogurts were characterized based on compositional, microbiological, and textural properties; volatile flavor components (with gas chromatography); and sensory analyses during storage (21d at 5 °C). Compared with goat milk yogurt made by using SGMP, the other goat milk yogurt variants had higher protein content and lower acidity values. Goat milk yogurts with NaCn and WPC, in particular, had better physical characteristics. Using WPI caused the hardest structure in yogurt, leading to higher syneresis values. Acetaldehyde and ethanol formation increased with the incorporation of WPI, WPC, or YTI to yogurt milk. The tyrosine value especially was higher in the samples with NaCn and YTI than in the samples with WPC and WPI. Counts of Streptococcus thermophilus were higher than the counts of Lactobacillus delbrueckii ssp. bulgaricus, possibly due to a stimulatory effect of milk protein-based ingredients other than SGMP on the growth of S. thermophilus. Yogurt with NaCn was the best accepted among the yogurts. For the parameters used, milk protein-based products such as NaCn or WPC have promising features as suitable ingredients for goat milk yogurt manufacture. PMID:26874417

  9. Milk protein responses in dairy cows to changes in postruminal supplies of arginine, isoleucine, and valine.

    PubMed

    Haque, M N; Rulquin, H; Lemosquet, S

    2013-01-01

    An ideal profile of essential AA (EAA) can improve the efficiency of metabolizable protein (or PDIE, the equivalent in the INRA feeding system) utilization in dairy cows. Compared with other EAA, existing recommendations for the requirements of Arg, Ile, and Val are few and inconsistent. Four multiparous Holstein dairy cows at 22±6 wk of lactation received 4 treatments (duodenal infusions of 445±22.4 g/d of an EAA mixture complementing a low-protein diet in a 4×4 Latin square design with a period length of 1 wk). The control treatment provided a balanced supply (in % of PDIE) of 5.1% Arg, 5.2% Ile, and 5.9% Val, whereas in the 3 subsequent treatments of -Arg, -Ile, and -Val, the concentrations of these 3 EAA were reduced to 3.5, 4.1, and 4.5%, respectively. All treatments were made isonitrogenous and were balanced to provide 7 other EAA (Lys, Met, His, Leu, Phe, Thr, and Trp), according to the recommendations described in the literature. Combined, the diet and the infusions provided 14.3±0.1% crude protein on a dry matter basis, and 66.0±1.2 g of PDIE/Mcal of net energy for lactation. Neither dry matter intake (19.2 kg/d) nor milk yield (30.4±0.4 kg/d) was affected by treatments. The -Arg and -Ile treatments did not modify milk protein synthesis or the efficiency of N utilization. However, the -Val treatment decreased milk protein content by 4.9% and milk crude protein content by 4.3%, and tended to decrease the efficiency of N use for milk protein yield by 3.7% (compared with the control). These effects of Val were related to a decrease in the plasma concentration of Val as well as a trend toward decreasing plasma concentrations of Met, His, and the sum of all EAA and nonessential AA in the -Val treatment, which indicates a different utilization of all AA in response to the Val deficit. The deletion of Ile, compared with the deletion of Val, tended to decrease the milk protein-to-fat ratio by 3.8%. In conclusion, the supply of Arg at 3.5% of PDIE was not

  10. The effect of short-term hyperammonaemia on milk synthesis in dairy cows.

    PubMed

    Purdie, Norm G; Trout, Donald R; Cieslar, Scott R L; Madsen, Torben G; Poppi, Dennis P; Cant, John P

    2009-02-01

    To test the hypothesis that ammonia detoxification in ruminants consumes amino acids to the detriment of milk protein production, we infused four lactating dairy cows with ammonium acetate or sodium acetate in switchback experiments. Plasma ammonia concentrations increased to 411 microm within 1 h of the start of infusion of ammonium acetate at 567 mmol/h. The rate constant for ammonia clearance from plasma was 0 x 054/min and the half-life was 12 x 9 min. Infusion at 567 mmol/h for 1 h followed by 1 h without infusion, repeated four times between am- and pm-milking, caused a decrease in feed intake. Compared with sodium acetate, continuous infusion of ammonium acetate at 360 mmol/h throughout an entire 10-h milking interval increased plasma ammonia concentrations to 193 microm and caused a 20% decrease in milk, protein and lactose production with no effect on percentage composition of milk or the yield of milk fat. Arterial concentrations of glucose and non-esterified fatty acids tended to increase; there was no effect on arterial acetate, beta-hydroxybutyrate or triacylglcerol, and branched-chain amino acids, Lys and Thr decreased. Mammary plasma flow, estimated by assuming 100% uptake/output of Phe+Tyr, was significantly correlated with milk yield. Mammary uptakes of acetate tended to be reduced by hyperammonaemia, but uptakes of other energy metabolites and amino acids were not affected. Thus, while an increase in amino acid consumption during hyperammonaemia was apparent from the drop in circulating concentrations of Leu, Ile, Val, Lys and Thr, there was no evidence to support the hypothesis that milk yield is affected by the lower concentrations. An ammonia-induced depression in feed intake may have caused the decrease in milk synthesis. PMID:18922195

  11. Binding of drugs in milk: the role of casein in milk protein binding.

    PubMed

    Stebler, T; Guentert, T W

    1990-06-01

    Unbound fractions of 14C-labeled diazepam and tenoxicam in skimmed milk of various species (man, horse, goat, cow, sheep, dog, rabbit) with different milk compositions were determined. Furthermore, the protein binding of five 14C-labeled benzodiazepines differing in their lipophilicity (bromazepam, clonazepam, diazepam, flumazenil, and flunitrazepam) were measured in human milk and in artificially prepared solutions of individual milk proteins (lactoferrin, 2.4 g/liter; alpha-lactalbumin, 2.1 g/liter; albumin, 0.4 g/liter; and casein--2.1, 3.4, and 13.3 g/liter). The extent of binding was determined by equilibrium dialysis of protein solution against 1/15 M phosphate buffer, made isocryoscopic with lactose. The results showed that the casein fraction is a major binding component in milk for all tested drugs. The extent of binding of diazepam and tenoxicam in the milk of various species was independent of the whey protein concentration. In human milk the fraction of bromazepam, clonazepam, diazepam, and flunitrazepam bound to casein was higher than that bound to any other of the milk proteins tested. Albumin contributed little to the overall binding of these benzodiazepines, and lactoferrin and alpha-lactalbumin did not account for significant binding. The benzodiazepine antagonist flumazenil showed the lowest overall binding in milk and in casein solution. As the casein concentration is highest in colostral milk and drops during the course of lactation, it is expected that M/P ratios of drugs strongly bound to casein are higher during the first days postpartum than in later phases of lactation. PMID:2367331

  12. Synthesis of Lipidated Proteins.

    PubMed

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented. PMID:27444727

  13. Tudor-SN Regulates Milk Synthesis and Proliferation of Bovine Mammary Epithelial Cells

    PubMed Central

    Ao, Jinxia; Wei, Chengjie; Si, Yu; Luo, Chaochao; Lv, Wei; Lin, Ye; Cui, Yingjun; Gao, Xuejun

    2015-01-01

    Tudor staphylococcal nuclease (Tudor-SN) is a highly conserved and ubiquitously expressed multifunctional protein, related to multiple and diverse cell type- and species-specific cellular processes. Studies have shown that Tudor-SN is mainly expressed in secretory cells, however knowledge of its role is limited. In our previous work, we found that the protein level of Tudor-SN was upregulated in the nucleus of bovine mammary epithelial cells (BMEC). In this study, we assessed the role of Tudor-SN in milk synthesis and cell proliferation of BMEC. We exploited gene overexpression and silencing methods, and found that Tudor-SN positively regulates milk synthesis and proliferation via Stat5a activation. Both amino acids (methionine) and estrogen triggered NFκB1 to bind to the gene promoters of Tudor-SN and Stat5a, and this enhanced the protein level and nuclear localization of Tudor-SN and p-Stat5a. Taken together, these results suggest the key role of Tudor-SN in the transcriptional regulation of milk synthesis and proliferation of BMEC under the stimulation of amino acids and hormones. PMID:26694361

  14. Short-term administration of rhGH increases markers of cellular proliferation but not milk protein gene expression in normal lactating women.

    PubMed

    Maningat, Patricia D; Sen, Partha; Rijnkels, Monique; Hadsell, Darryl L; Bray, Molly S; Haymond, Morey W

    2011-04-27

    Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained from five normal lactating women. Following 24 h of baseline milk and blood sampling, rhGH (0.1 mg/kg/day) was administered subcutaneously once daily for 3 days. Gene expression changes were determined by microarray studies utilizing milk fat globule RNA isolated from each milk sample. Following rhGH administration, DNA synthesis and cell cycle genes were induced, while no significant changes were observed in the expression of milk synthesis genes. Expression of glycolysis and citric acid cycle genes were increased by day 4 compared with day 1, while lipid synthesis genes displayed a circadian-like pattern. Cell cycle gene upregulation occurred after a lag of ∼2 days, likely explaining the failure to increase milk production after only 3 days of rhGH treatment. We conclude that rhGH induces expression of cellular proliferation and metabolism genes but does not induce milk protein gene expression, as potential mechanisms for increasing milk production and could account for the known effect of rhGH to increase milk production following 7-10 days. PMID:21205870

  15. Short-term administration of rhGH increases markers of cellular proliferation but not milk protein gene expression in normal lactating women

    PubMed Central

    Maningat, Patricia D.; Sen, Partha; Rijnkels, Monique; Hadsell, Darryl L.; Bray, Molly S.

    2011-01-01

    Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained from five normal lactating women. Following 24 h of baseline milk and blood sampling, rhGH (0.1 mg/kg/day) was administered subcutaneously once daily for 3 days. Gene expression changes were determined by microarray studies utilizing milk fat globule RNA isolated from each milk sample. Following rhGH administration, DNA synthesis and cell cycle genes were induced, while no significant changes were observed in the expression of milk synthesis genes. Expression of glycolysis and citric acid cycle genes were increased by day 4 compared with day 1, while lipid synthesis genes displayed a circadian-like pattern. Cell cycle gene upregulation occurred after a lag of ∼2 days, likely explaining the failure to increase milk production after only 3 days of rhGH treatment. We conclude that rhGH induces expression of cellular proliferation and metabolism genes but does not induce milk protein gene expression, as potential mechanisms for increasing milk production and could account for the known effect of rhGH to increase milk production following 7–10 days. PMID:21205870

  16. Milk protein IgG and IgA: The association with milk-induced gastrointestinal symptoms in adults

    PubMed Central

    Anthoni, Sari; Savilahti, Erkki; Rautelin, Hilpi; Kolho, Kaija-Leena

    2009-01-01

    AIM: To study the association between serum levels of milk protein IgG and IgA antibodies and milk-related gastrointestinal symptoms in adults. METHODS: Milk protein IgG and IgA antibodies were determined in serum samples of 400 subjects from five outpatient clinics in Southern Finland. Subjects were randomly selected from a total of 1900 adults undergoing laboratory investigations in primary care. All 400 participants had completed a questionnaire on abdominal symptoms and dairy consumption while waiting for the laboratory visit. The questionnaire covered the nature and frequency of gastrointestinal problems, the provoking food items, family history and allergies. Twelve serum samples were disqualified due to insufficient amount of sera. The levels of specific milk protein IgG and IgA were measured by using the ELISA technique. The association of the milk protein-specific antibody level was studied in relation to the milk-related gastrointestinal symptoms and dairy consumption. RESULTS: Subjects drinking milk (n = 265) had higher levels of milk protein IgG in their sera than non-milk drinkers (n = 123, P < 0.001). Subjects with gastrointestinal problems related to milk drinking (n = 119) consumed less milk but had higher milk protein IgG levels than those with no milk-related gastrointestinal symptoms (n = 198, P = 0.02). Among the symptomatic subjects, those reporting dyspeptic symptoms had lower milk protein IgG levels than non-dyspeptics (P < 0.05). However, dyspepsia was not associated with milk drinking (P = 0.5). The association of high milk protein IgG levels with constipation was close to the level of statistical significance. Diarrhea had no association with milk protein IgG level (P = 0.5). With regard to minor symptoms, flatulence and bloating (P = 0.8), were not associated with milk protein IgG level. Milk protein IgA levels did not show any association with milk drinking or abdominal symptoms. The levels of milk protein IgA and IgG declined as the age

  17. Protein composition affects variation in coagulation properties of buffalo milk.

    PubMed

    Bonfatti, V; Gervaso, M; Rostellato, R; Coletta, A; Carnier, P

    2013-07-01

    The aim of this study was to investigate the effects exerted by the content of casein and whey protein fractions on variation of pH, rennet-coagulation time (RCT), curd-firming time (K20), and curd firmness of Mediterranean buffalo individual milk. Measures of milk protein composition and assessment of genotypes at CSN1S1 and CSN3 were obtained by reversed-phase HPLC analysis of 621 individual milk samples. Increased content of αS1-casein (CN) was associated with delayed coagulation onset and increased K20, whereas average pH, RCT, and K20 decreased when β-CN content increased. Milk with low κ-CN content exhibited low pH and RCT relative to milk with high content of κ-CN. Increased content of glycosylated κ-CN was associated with unfavorable effects on RCT. Effects of milk protein composition on curd firmness were less important than those on pH, RCT, and K20. Likely, this occurred as a consequence of the very short RCT of buffalo milk, which guaranteed a complete strengthening of the curd even in the restricted 31 min time of analysis of coagulation properties and for samples initially showing soft curds. Effects of CSN1S1-CSN3 genotypes on coagulation properties were not to be entirely ascribed to existing variation in milk protein composition associated with polymorphisms at CSN1S1 and CSN3 genes. Although the role of detailed milk protein composition in variation of cheese yield needs to be further investigated, findings of this study suggest that modification of the relative content of specific CN fractions can relevantly influence the behavior of buffalo milk during processing. PMID:23684020

  18. Innovative uses of milk protein concentrates in product development.

    PubMed

    Agarwal, Shantanu; Beausire, Robert L W; Patel, Sonia; Patel, Hasmukh

    2015-03-01

    Milk protein concentrates (MPCs) are complete dairy proteins (containing both caseins and whey proteins) that are available in protein concentrations ranging from 42% to 85%. As the protein content of MPCs increases, the lactose levels decrease. MPCs are produced by ultrafiltration or by blending different dairy ingredients. Although ultrafiltration is the preferred method for producing MPCs, they also can be produced by precipitating the proteins out of milk or by dry-blending the milk proteins with other milk components. MPCs are used for their nutritional and functional properties. For example, MPC is high in protein content and averages approximately 365 kcal/100 g. Higher-protein MPCs provide protein enhancement and a clean dairy flavor without adding significant amounts of lactose to food and beverage formulations. MPCs also contribute valuable minerals, such as calcium, magnesium, and phosphorus, to formulations, which may reduce the need for additional sources of these minerals. MPCs are multifunctional ingredients and provide benefits, such as water binding, gelling, foaming, emulsification, and heat stability. This article will review the development of MPCs and milk protein isolates including their composition, production, development, functional benefits, and ongoing research. The nutritional and functional attributes of MPCs are discussed in some detail in relation to their application as ingredients in major food categories. PMID:25757895

  19. Methionine sulfoxide profiling of milk proteins to assess the influence of lipids on protein oxidation in milk.

    PubMed

    Wüst, Johannes; Pischetsrieder, Monika

    2016-06-15

    Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk. PMID:26927981

  20. Chronic food protein-induced enterocolitis syndrome caused by cow's milk proteins passed through breast milk.

    PubMed

    Miceli Sopo, Stefano; Monaco, Serena; Greco, Monica; Scala, Guglielmo

    2014-01-01

    We describe 2 cases of food protein-induced enterocolitis syndrome (FPIES) caused by cow's milk (CM) passed through breast milk. The onset in both cases was characterized by chronic symptoms (regurgitation, colic, diarrhea, failure to thrive); in one patient, two acute episodes due to the direct consumption of CM formula by the infant were also reported. The diagnosis of FPIES through breast milk can be easily overlooked, especially in milder cases. We also discuss some important issues concerning the general management of the disease. In conclusion, (1) the diagnosis of chronic FPIES should be taken into account even in exclusively breast-fed infants who present suggestive symptoms such as persistent regurgitation, small amounts of vomiting, lethargy, failure to thrive, dehydration, diarrhea (sometimes bloody) and abdominal distention. A 2-week maternal elimination diet should be considered even in apparently mild cases. (2) CM seems to be the most frequently reported culprit food. (3) In those cases in which acute FPIES is elicited by the direct consumption of the culprit food in breast-fed infants, maternal diet may be unrestricted. PMID:25034379

  1. Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals.

    PubMed

    Kimpel, Florian; Schmitt, Joachim J

    2015-11-01

    Milk proteins and milk protein aggregates are among the most important nanovehicles in food technology. Milk proteins have various functional properties that facilitate their ability to carry hydrophobic nutraceutical substances. The main functional transport properties that were examined in the reviewed studies are binding of molecules or ions, surface activity, aggregation, gelation, and interaction with other polymers. Hydrophobic binding has been investigated using caseins and isolated β-casein as well as whey proteins. Surface activity of caseins has been used to create emulsion-based carrier systems. Furthermore, caseins are able to self-assemble into micelles, which can incorporate molecules. Gelation and interaction with other polymers can be used to encapsulate molecules into protein networks. The release of transported substances mainly depends on pH and swelling behavior of the proteins. The targeted use of nanocarrier systems requires specific knowledge about the binding mechanisms between the proteins and the carried substances in a certain food matrix. PMID:26467442

  2. Increased milk protein synthesis in response to exogenous growth hormone is associated with changes in mechanistic (mammalian) target of rapamycin (mTOR)C1-dependent and independent cell signaling.

    PubMed

    Sciascia, Q; Pacheco, D; McCoard, S A

    2013-04-01

    The objective of this study was to determine if increased milk protein synthesis observed in lactating dairy cows treated with growth hormone (GH) was associated with mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1) regulation of downstream factors controlling nucleocytoplasmic export and translation of mRNA. To address this objective, biochemical indices of mammary growth and secretory activity and the abundance and phosphorylation status of mTORC1 pathway factors were measured in mammary tissues harvested from nonpregnant lactating dairy cows 6 d after treatment with a slow-release formulation of GH or saline (n=4/group). Treatment with GH increased mammary parenchymal weight and total protein content and tended to increase ribosome number and cell size, whereas protein synthetic efficiency, capacity, and cell number were unchanged. Cellular abundance of the mTORC1 components mTOR and (phosphorylated) mTOR(Ser2448) increased, as did complex eukaryotic initiation factor 4E:eukaryotic initiation factor 4E binding protein 1 (eIF4E:4EBP1), whereas no change was observed for mTORC1-downstream targets 4EBP1, 4EBP1(Ser65), p70/p85(S6K) and p70(S6K)Thre389/p85(S6K)Thre412. Changes in activation were not observed for any of the targets measured. These results indicate that GH treatment influences signaling to mTORC1 but not downstream targets involved in the nucleocytoplasmic export and translation of mRNA. Increased eIF4E:4EBP1 complex formation indicates involvement of the mitogen-activated protein kinase (MAPK) pathway. Abundance of MAPK pathway components eIF4E, eIF4E(Ser209), eIF4E:eIF4G complex, MAP kinase-interacting serine/threonine-protein kinase 1 (MKNK1), MKNK1(Thr197202), and ribosomal protein S6 kinase, 90kDa, polypeptide 1 (RPS6KA1) increased significantly in response to GH, whereas relative activation of the proteins was unchanged. Expression of IGFBP3 and IGFBP5 increased, that of IGF1R decreased, and that of IGF1 remained unchanged in

  3. Early post parturient changes in milk acute phase proteins.

    PubMed

    Thomas, Funmilola C; Waterston, Mary; Hastie, Peter; Haining, Hayley; Eckersall, P David

    2016-08-01

    The periparturient period is one of the most critical periods in the productive life of a dairy cow, and is the period when dairy cows are most susceptible to developing new intramammary infections (IMI) leading to mastitis. Acute phase proteins (APP) such as haptoglobin (Hp), mammary associated serum amyloid A3 (M-SAA3) and C-reactive protein (CRP) have been detected in milk during mastitis but their presence in colostrum and milk in the immediate postpartum period has had limited investigation. The hypothesis was tested that APP are a constituent of colostrum and milk during this period. Enzyme linked immunosorbent assays (ELISAs) were used to determine each APP's concentration in colostrum and milk collected daily from the first to tenth day following calving in 22 Holstein-Friesian dairy cows. Haptoglobin was assessed in individual quarters and composite milk samples while M-SAA3 and CRP concentration were determined in composite milk samples. Change in Hp in relation to the high abundance proteins during the transition from colostrum to milk were evaluated by 1 and 2 dimension electrophoresis and western blot. In 80% of the cows all APPs were detected in colostrum on the first day following parturition at moderately high levels but gradually decreased to minimal values in the milk by the 6th day after calving. The remaining cows (20%) showed different patterns in the daily milk APP concentrations and when an elevated level is detected could reflect the presence of IMI. Demonstration that APP are present in colostrum and milk following parturition but fall to low levels within 4 days means that elevated APP after this time could be biomarkers of post parturient mastitis allowing early intervention to reduce disease on dairy farms. PMID:27600971

  4. Hydrolysis by Alcalase Improves Hypoallergenic Properties of Goat Milk Protein.

    PubMed

    Jung, Tae-Hwan; Yun, Sung-Seob; Lee, Won-Jae; Kim, Jin-Wook; Ha, Ho-Kyung; Yoo, Michelle; Hwang, Hyo-Jeong; Jeon, Woo-Min; Han, Kyoung-Sik

    2016-01-01

    Goat milk is highly nutritious and is consumed in many countries, but the development of functional foods from goat milk has been slow compared to that for other types of milk. The aim of this study was to develop a goat milk protein hydrolysate (GMPH) with enhanced digestibility and better hypoallergenic properties in comparison with other protein sources such as ovalbumin and soy protein. Goat milk protein was digested with four commercial food-grade proteases (separately) under various conditions to achieve the best hydrolysis of αs -casein and β-lactoglobulin. It was shown that treatment with alcalase (0.4%, 60℃ for 30 min) effectively degraded these two proteins, as determined by SDS-PAGE, measurement of nonprotein nitrogen content, and reverse-phase high-performance liquid chromatography. Hydrolysis with alcalase resulted in a significant decrease in β-lactoglobulin concentration (almost to nil) and a ~40% reduction in the level of αs-casein. Quantification of histamine and TNF-α released from HMC-1 cells (human mast cell line) showed that the GMPH did not induce an allergic response when compared to the control. Hence, the GMPH may be useful for development of novel foods for infants, the elderly, and convalescent patients, to replace cow milk. PMID:27621693

  5. Hydrolysis by Alcalase Improves Hypoallergenic Properties of Goat Milk Protein

    PubMed Central

    Yun, Sung-Seob; Lee, Won-Jae; Kim, Jin-Wook; Ha, Ho-Kyung; Yoo, Michelle

    2016-01-01

    Goat milk is highly nutritious and is consumed in many countries, but the development of functional foods from goat milk has been slow compared to that for other types of milk. The aim of this study was to develop a goat milk protein hydrolysate (GMPH) with enhanced digestibility and better hypoallergenic properties in comparison with other protein sources such as ovalbumin and soy protein. Goat milk protein was digested with four commercial food-grade proteases (separately) under various conditions to achieve the best hydrolysis of αs -casein and β-lactoglobulin. It was shown that treatment with alcalase (0.4%, 60℃ for 30 min) effectively degraded these two proteins, as determined by SDS-PAGE, measurement of nonprotein nitrogen content, and reverse-phase high-performance liquid chromatography. Hydrolysis with alcalase resulted in a significant decrease in β-lactoglobulin concentration (almost to nil) and a ~40% reduction in the level of αs-casein. Quantification of histamine and TNF-α released from HMC-1 cells (human mast cell line) showed that the GMPH did not induce an allergic response when compared to the control. Hence, the GMPH may be useful for development of novel foods for infants, the elderly, and convalescent patients, to replace cow milk. PMID:27621693

  6. Correlation between skin prick test using commercial extract of cow's milk protein and fresh milk and food challenges.

    PubMed

    Calvani, Mauro; Mauro, Calvani; Alessandri, Claudia; Claudia, Alessandri; Frediani, Tullio; Tullio, Frediani; Lucarelli, Sandra; Sandra, Lucarelli; Miceli Sopo, Stefano; Stefano, Miceli Sopo; Panetta, Valentina; Valentina, Panetta; Zappalã, Daniela; Daniela, Zappala'; Zicari, Anna Maria; Maria, Zicari Anna

    2007-11-01

    The skin prick test (SPT) is regarded as an important diagnostic measure in the diagnostic work-up of cow's milk protein allergy. It is not known whether commercial extracts have any advantage over fresh milk. The aims of the study were to (i) compare the diagnostic capacity of SPTs for the three main cow's milk proteins (alpha-lactalbumin, casein and beta-lactoglobulin) with fresh milk and (ii) determine a cut-off that discriminates between allergic and tolerant children in a controlled food challenge. A study was carried out on 104 children consecutively attending two paediatric allergy clinics for suspected cow's milk allergy. A clinical history, SPTs with fresh cow's milk and commercial extracts of its three main proteins and a challenge test were performed on all the children. A study of the validity of the prick test was also performed by taking different cut-off points for fresh milk and its proteins. Twenty-eight of 104 challenge tests (26.9%) were positive. At a cut-off point of 3 mm, fresh milk showed the greatest negative predictive value (98%), whereas casein showed the greatest positive predictive value (PPV, 85%). Calculation of 95% predicted probabilities using logistic regression revealed predictive decision points of 12 mm for lactalbumin, 9 mm for casein, 10 mm for beta-lactoglobulin and 15 mm for fresh cow's milk. We found that the greater the number of positive SPTs for milk proteins, the more likely the positive response to challenge. Having a positive SPT for all three milk proteins had PPV of 92.3% and would seem more clinically useful than any cut-off. Both fresh milk and cow's milk extract of the three main proteins could be useful in the diagnostic work-up of cow's milk allergy. Finding positivity to all three cow's milk proteins seems to be a simpler and more useful way of avoiding oral food challenges. PMID:18001429

  7. Assessment of the effect of methionine supplementation and inclusion of hydrolyzed wheat protein in milk protein-based milk replacers on the performance of intensively fed Holstein calves.

    PubMed

    Castro, J J; Hwang, G H; Saito, A; Vermeire, D A; Drackley, J K

    2016-08-01

    The objectives of this study were to compare 2 milk replacers containing only milk proteins with or without supplemental Met, and to compare a milk replacer containing hydrolyzed wheat protein at 4.5% of dry matter (DM) and supplemental Lys and Met against the 2 all-milk-protein formulas, by assessing their effect on the growth performance, efficiency, and plasma urea nitrogen of pre-weaning Holstein calves. Thus, 57 Holstein calves were allotted to the following 3 treatments: (1) a skim milk plus whey protein concentrate-based milk replacer (SMWP) containing about 2.6% Lys and 0.6% Met on a DM basis; (2) SMWP + M based on skim milk and whey proteins, containing about 2.6% Lys, and supplemental Met to reach 0.9% on a DM basis; and (3) a skim milk plus whey protein concentrate plus 4.5% of the DM as hydrolyzed wheat protein based milk replacer (HWP + LM) where the wheat protein replaced 50% of the whey protein concentrate, and also contained supplemental Lys and Met to match the profile of SMWP + M (i.e., Lys 2.6 and Met 0.9% on DM basis). No difference in any of the responses was observed by supplementing the milk protein based formula with Met or when hydrolyzed wheat protein was added to the formula. Results indicate that (1) a milk replacer based on skim milk protein and whey protein with a Lys concentration of ~2.6% does not benefit from Met supplementation, and (2) milk replacer containing 4.5% of the DM as hydrolyzed wheat protein and supplemented with Lys and Met can support the same growth performance as milk protein-based formulas. PMID:27179863

  8. Rapid fingerprinting of milk thermal processing history by intact protein mass spectrometry with nondenaturing chromatography.

    PubMed

    Johnson, Phil; Philo, Mark; Watson, Andrew; Mills, E N Clare

    2011-12-14

    Thermal processing of foods results in proteins undergoing conformational changes, aggregation, and chemical modification notably with sugars via the Maillard reaction. This can impact their functional, nutritional, and allergenic properties. Native size-exclusion chromatography with online electrospray mass spectrometry (SEC-ESI-MS) was used to characterize processing-induced changes in milk proteins in a range of milk products. Milk products could be readily grouped into either pasteurized liquid milks, heavily processed milks, or milk powders by SEC behavior, particularly by aggregation of whey proteins by thermal processing. Maillard modification of all major milk proteins by lactose was observed by MS and was primarily present in milk powders. The method developed is a rapid tool for fingerprinting the processing history of milk and has potential as a quality control method for food ingredient manufacture. The method described here can profile milk protein oligomeric state, aggregation, and Maillard modification in a single shot, rapid analysis. PMID:22007861

  9. OMICS-rooted studies of milk proteins, oligosaccharides and lipids.

    PubMed

    Casado, Begoña; Affolter, Michael; Kussmann, Martin

    2009-12-01

    Milk has co-evolved with mammals and mankind to nourish their offspring and is a biological fluid of unique complexity and richness. It contains all necessary nutrients for the growth and development of the newborn. Structure and function of biomolecules in milk such as the macronutrients (glyco-) proteins, lipids, and oligosaccharides are central topics in nutritional research. Omics disciplines such as proteomics, glycomics, glycoproteomics, and lipidomics enable comprehensive analysis of these biomolecule components in food science and industry. Mass spectrometry has largely expanded our knowledge on these milk bioactives as it enables identification, quantification and characterization of milk proteins, carbohydrates, and lipids. In this article, we describe the biological importance of milk macronutrients and review the application of proteomics, glycomics, glycoproteomics, and lipidomics to the analysis of milk. Proteomics is a central platform among the Omics tools that have more recently been adapted and applied to nutrition and health research in order to deliver biomarkers for health and comfort as well as to discover beneficial food bioactives. PMID:19793547

  10. Growth and metabolic responses in low-birth-weight infants fed human milk fortified with human milk protein or with a bovine milk protein preparation.

    PubMed

    Moro, G E; Minoli, I; Fulconis, F; Clementi, M; Räihä, N C

    1991-08-01

    Unfortified human milk does not normally provide enough protein to secure maximal growth in low-body-weight (LBW) infants. Due to the practical difficulties in obtaining human milk protein (HMP), a bovine milk protein preparation (BMP) was designed by computer calculation to contain as close as possible the amino acid composition of the nutritionally available human milk proteins. Twenty-one AGA, LBW infants (BW of 1,180 to 1,600 g, GA of 27 to 33 weeks) were randomly assigned to be fed HM enriched either with HMP (9 infants) or BMP (12 infants). When full volume intake (170 ml/kg/day) was reached, the protein intakes were 3.6 +/- 0.5 and 3.3 +/- 0.3 g/kg/day, respectively, in the two diet groups. During the study period of 24 days, the infants achieved intrauterine or better weight gains: 32.9 +/- 3.3 g/day (17.7 +/- 1.9 g/kg/day) in the HMP group and 34.7 +/- 7.3 g/day (18.3 +/- 3.5 g/kg/day) in the BMP group. Serum urea nitrogen, acid-base status, and albumin values were normal and similar in both groups of infants. Plasma concentrations of total essential and total amino acids at the end of the study were 3,999 and 1,539 mumol/L and 3,899 and 1,422 mumol/L in the HMP and the BMP groups, respectively. The concentrations of all individual plasma amino acids were similar in both feeding groups. These results show that feeding human milk fortified with a modified bovine milk protein preparation produces satisfactory growth and a plasma amino acid profile similar to that found in LBW infants fed exclusively human milk protein at similar intakes. PMID:1941407

  11. Short communication: interaction of bovine milk protein with chlorpyrifos.

    PubMed

    Lv, Ying; Li, Xuefen; Wang, Zongyi; Zheng, Han; Zhang, Qi; Huo, Ran; Chen, Xiangning; Han, Tao

    2014-01-01

    Dairy products are considered as nutrient-dense foods and consumed by many people in western countries, as well as an increasing number of Asian people. Excessive and frequent application of pesticides on vegetables and fruits leads to a potential health hazard to consumers. The organophosphate insecticide chlorpyrifos has been reported to bind with human and bovine serum albumin. Thus, it is necessary to explore the interaction between food protein and chlorpyrifos. In this study, equilibrium dialysis and fluorescence spectra were used to demonstrate binding of milk proteins to chlorpyrifos. The amount of milk protein bound was 0.03±0.01mg/g. Moreover, the milk protein-chlorpyrifos complexes were stable at pH 3.5to 9.5 and ion concentrations from 0.1 to 1.0M. The amount of chlorpyrifos bound to milk proteins decreased to 50% after being in vitro digested by pepsin and trypsin. The results showed that the interaction between food proteins and the pesticide might partially remove the insecticide and reduce the concentration of pesticide absorbed into the blood and, thus, alleviate the corresponding toxicity. PMID:24534502

  12. Severe cow's milk protein allergy in a Chinese neonate.

    PubMed

    Siu, L Y; Tse, K; Lui, Y S

    2001-12-01

    Cow's milk protein allergy is a growing problem in developed countries. We report the case of a Chinese infant, born at term, who presented on day 28 with severe growth failure, chronic diarrhoea, and metabolic acidosis. Investigations supported a diagnosis of cow's milk protein allergy. This was confirmed by withdrawing and reintroducing the relevant infant formula under controlled clinical conditions. Both acidosis and diarrhoea were seen to resolve, and 'catch-up' growth was evident after introduction of an elemental infant formula. Early recognition of this problem leads to a rapid 'cure', as seen in this case. However, later presentation with other atopic conditions has been reported. PMID:11773683

  13. In vitro digestibility and immunoreactivity of bovine milk proteins.

    PubMed

    Do, Andrew B; Williams, Kristina; Toomer, Ondulla T

    2016-01-01

    Current models of digestibility solely utilize pepsin stability to assess the safety of allergenic food proteins. However, in vivo complete protein digestion requires acid denaturation and pepsin, trypsin, and/or chymotrypsin cleavage. This study aimed to identify the immunoreactivity and allergenicity of stable bovine milk proteins, using an improved digestibility model to simulate physiological gastric and intestinal conditions in vitro. Gel electrophoresis and immunoblot analysis were used to determine protein stability and immunoreactivity, respectively. Immunoreactivity of bovine milk proteins, β-lactoglobulin (β-LG) and casein (CN) was greatly diminished with gastric simulation (0-60 min), but some proteins were stable and immunoreactive with simulated intestinal digestive conditions (0-60 min). This study demonstrates the need for improved digestibility models for more accurate assessment of the behavior of food allergens in vivo. PMID:26213013

  14. Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk.

    PubMed

    Sharma, Pankaj; Oey, Indrawati; Everett, David W

    2016-09-15

    Thermodynamics of milk components (milk fat, xanthine oxidase, caseins and whey proteins) in pulsed electric field (PEF)-treated milk were compared with thermally treated milk (63 °C for 30 min and 73 °C for 15s). PEF treatments were applied at 20 or 26 kV cm(-1) for 34 μs with or without pre-heating of milk (55 °C for 24s), using bipolar square wave pulses in a continuous mode of operation. PEF treatments did not affect the final temperatures of fat melting (Tmelting) or xanthine oxidase denaturation (Tdenaturation), whereas thermal treatments increased both the Tmelting of milk fat and the Tdenaturation for xanthine oxidase by 2-3 °C. Xanthine oxidase denaturation was ∼13% less after PEF treatments compared with the thermal treatments. The enthalpy change (ΔH of denaturation) of whey proteins decreased in the treated-milk, and denaturation increased with the treatment intensity. New endothermic peaks in the calorimetric thermograms of treated milk revealed the formation of complexes due to interactions between MFGM (milk fat globule membrane) proteins and skim milk proteins. Evidence for the adsorption of complexes onto the MFGM surface was obtained from the increase in surface hydrophobicity of proteins, revealing the presence of unfolded hydrophobic regions. PMID:27080877

  15. The use of radiolabelled milk proteins to study thermally-induced interactions in milk systems

    SciTech Connect

    Noh, B.

    1988-01-01

    Heat induced complexes between milk proteins are of considerable importance in determining the heat stability and rennin clottability of milk products. Thiol-disulfide interchange reactions have been suggested as the principal reaction mechanism for complex formation. Studies to data have not adequately established the mechanism and stoichiometry of complex formation in situ in total milk system. Tracer amounts of {sup 14}C-{beta}-lactoglobulin and {alpha}-lactalbumin were heated under various conditions. After clotting with rennet, radioactivity retained in the curd was counted to estimate extent of interaction of {beta}-lactoglobulin with casein. {sup 14}C- and {sup 3}H-Methyl labelled proteins were used for the preparation of radiolabelled artificial casein micelles. These micelles with radiolabelled whey proteins were heated and heat-induced complexes were separated on Sephacryl S-300 eluting with 6 M guanidine hydrochloride to break all non-covalent bonds. Further separation of the protein complexes was obtained using CPG-10 or Sephacryl S-1000. The ratios of {sup 3}H to {sup 14}C labelled proteins in the protein complexes suggested that the stoichiometries of k-, {alpha}{sub s2}-casein, {beta}-lactoglobulin and {alpha}-lactalbumin in the heat-induced complexes varied as a function of the heat treatment.

  16. Rapid turbidimetric detection of milk powder adulteration with plant proteins.

    PubMed

    Scholl, Peter F; Farris, Samantha M; Mossoba, Magdi M

    2014-02-19

    Development of assays to screen milk for economically motivated adulteration with foreign proteins has been stalled since 2008 due to strong international reactions to the melamine poisoning incident in China and the surveillance emphasis placed on low molecular weight nitrogen-rich adulterants. New screening assays are still needed to detect high molecular weight foreign protein adulterants and characterize this understudied potential risk. A rapid turbidimetric method was developed to screen milk powder for adulteration with insoluble plant proteins. Milk powder samples spiked with 0.03-3% by weight of soy, pea, rice, and wheat protein isolates were extracted in 96-well plates, and resuspended pellet solution absorbance was measured. Limits of detection ranged from 100 to 200 μg, or 0.1-0.2% of the sample weight, and adulterant pellets were visually apparent even at ∼0.1%. Extraction recoveries ranged from 25 to 100%. Assay sensitivity and simplicity indicate that it would be ideally suitable to rapidly screen milk samples in resource poor environments where adulteration with plant protein is suspected. PMID:24484379

  17. Water Stress and Protein Synthesis

    PubMed Central

    Dhindsa, R. S.; Cleland, R. E.

    1975-01-01

    Water stress causes a reduction in hydrostatic pressure and can cause an increase in abscisic acid in plant tissues. To assess the possible role of abscisic acid and hydrostatic pressure in water stress effects, we have compared the effects of water stress, abscisic acid, and an imposed hydrostatic pressure on the rate and pattern of protein synthesis in Avena coleoptiles. Water stress reduces the rate and changes the pattern of protein synthesis as judged by a double labeling ratio technique, Abscisic acid reduces the rate but does not alter the pattern of protein synthesis. Gibberellic acid reverses the abscisic acid-induced but not the stress-induced inhibition of protein synthesis. The effect of hydrostatic pressure depends on the gas used. With a 19: 1 N2-air mixture, the rate of protein synthesis is increased in stressed but not in turgid tissues. An imposed hydrostatic pressure alters the pattern of synthesis in stressed tissues, but does not restore the pattern to that found in turgid tissues. Because of the differences in response, we conclude that water stress does not affect protein synthesis via abscisic acid or reduced hydrostatic pressure. PMID:16659167

  18. Growth of an extracellular proteinase-deficient strain of Pseudomonas fluorescens on milk and milk proteins.

    PubMed

    Torrie, J P; Cholette, H; Froehlich, D A; McKellar, R C

    1983-08-01

    An extracellular proteinase-and lipase-deficient mutant of a psychrotroph, Pseudomonas fluorescens strain 32A, has been isolated and the absence of the proteinase enzyme confirmed by growth on differential media, enzyme assay and polyacrylamide gel electrophoresis. Competition between the parent and the mutant was observed when equal numbers of the 2 strains were inoculated together into raw skim-milk at 6 degrees C. Bitterness was detected at 6 degrees C in pasteurized skim-milk inoculated with the parent cells concurrent with the detection of proteolytic activity. In the case of the mutant, slight bitterness which did not increase with increasing cell numbers was detected in the absence of proteolysis. Mutant cells failed to grow on Na caseinate as the sole source of carbon. It was concluded that the extracellular proteinase, while not essential for growth in milk, does provide a selective advantage to the producer organism. This enzyme is, however, essential for growth on milk proteins and contributes to the development of bitterness in pasteurized milk. PMID:6413562

  19. Proteomic analysis of cow, yak, buffalo, goat and camel milk whey proteins: quantitative differential expression patterns.

    PubMed

    Yang, Yongxin; Bu, Dengpan; Zhao, Xiaowei; Sun, Peng; Wang, Jiaqi; Zhou, Lingyun

    2013-04-01

    To aid in unraveling diverse genetic and biological unknowns, a proteomic approach was used to analyze the whey proteome in cow, yak, buffalo, goat, and camel milk based on the isobaric tag for relative and absolute quantification (iTRAQ) techniques. This analysis is the first to produce proteomic data for the milk from the above-mentioned animal species: 211 proteins have been identified and 113 proteins have been categorized according to molecular function, cellular components, and biological processes based on gene ontology annotation. The results of principal component analysis showed significant differences in proteomic patterns among goat, camel, cow, buffalo, and yak milk. Furthermore, 177 differentially expressed proteins were submitted to advanced hierarchical clustering. The resulting clustering pattern included three major sample clusters: (1) cow, buffalo, and yak milk; (2) goat, cow, buffalo, and yak milk; and (3) camel milk. Certain proteins were chosen as characterization traits for a given species: whey acidic protein and quinone oxidoreductase for camel milk, biglycan for goat milk, uncharacterized protein (Accession Number: F1MK50 ) for yak milk, clusterin for buffalo milk, and primary amine oxidase for cow milk. These results help reveal the quantitative milk whey proteome pattern for analyzed species. This provides information for evaluating adulteration of specific specie milk and may provide potential directions for application of specific milk protein production based on physiological differences among animal species. PMID:23464874

  20. Comparison of Milk Fat Globule Membrane (MFGM) Proteins of Chianina and Holstein Cattle Breed Milk Samples Through Proteomics Methods

    PubMed Central

    Murgiano, Leonardo; Timperio, Anna Maria; Zolla, Lello; Bongiorni, Silvia; Valentini, Alessio; Pariset, Lorraine

    2009-01-01

    Identification of proteins involved in milk production is important to understand the biology of lactation. Many studies have advanced the understanding of mammary function and milk secretion, but the critical molecular mechanisms implicated in milk fat secretion is still incomplete. Milk Fat Globules are secreted from the apical surface of the mammary cells, surrounded by a thin membrane bilayer, the Milk Fat Globule Membrane (MFGM), formed by proteins which have been suggested to be cholesterolemia-lowering factors, inhibitors of cancer cell growth, vitamin binders, bactericidal, suppressors of multiple sclerosis. Using a proteomic approach, we compared MFGM from milk samples of individuals belonging to two different cattle breeds, Chianina and Holstein, representative of selection for milk and meat traits, respectively. We were able to isolate some of the major MFGM proteins in the examined samples and to identify differences between the protein fractions of the two breeds. We detected differences in the amount of proteins linked to mammary gland development and lipid droplets formation, as well as host defence mechanisms. We have shown that proteomics is a suitable, unbiased method for the study of milk fractions proteins and a powerful tool in nutritional genomics. PMID:22253986

  1. Differentiating Milk and Non-milk Proteins by UPLC Amino Acid Fingerprints Combined with Chemometric Data Analysis Techniques.

    PubMed

    Lu, Weiying; Lv, Xiaxia; Gao, Boyan; Shi, Haiming; Yu, Liangli Lucy

    2015-04-22

    Amino acid fingerprinting combined with chemometric data analysis was used to differentiate milk and non-milk proteins in this study. Microwave-assisted hydrolysis and ultraperformance liquid chromatography (UPLC) were used to obtain the amino acid fingerprints. Both univariate and multivariate chemometrics methods were applied for differentiation. The confidence boundary of amino acid concentration, principal component analysis (PCA), and partial least-squares-discriminant analysis (PLS-DA) of the amino acid fingerprints demonstrated that there were significant differences between milk proteins and inexpensive non-milk protein powders from other biological sources including whey, peanut, corn, soy, fish, egg yolk, beef extract, collagen, and cattle bone. The results indicate that the amino acid compositions with the chemometric techniques could be applied for the detection of potential protein adulterants in milk. PMID:25835028

  2. Deciphering the Genetic Blueprint behind Holstein Milk Proteins and Production

    PubMed Central

    Lee, Hyun-Jeong; Kim, Jaemin; Lee, Taeheon; Son, Jun Kyu; Yoon, Ho-Baek; Baek, Kwang-Soo; Jeong, Jin Young; Cho, Yong-Min; Lee, Kyung-Tai; Yang, Byoung-Chul; Lim, Hyun-Joo; Cho, Kwanghyeon; Kim, Tae-Hun; Kwon, Eung Gi; Nam, Jungrye; Kwak, Woori; Cho, Seoae; Kim, Heebal

    2014-01-01

    Holstein is known to provide higher milk yields than most other cattle breeds, and the dominant position of Holstein today is the result of various selection pressures. Holstein cattle have undergone intensive selection for milk production in recent decades, which has left genome-wide footprints of domestication. To further characterize the bovine genome, we performed whole-genome resequencing analysis of 10 Holstein and 11 Hanwoo cattle to identify regions containing genes as outliers in Holstein, including CSN1S1, CSN2, CSN3, and KIT whose products are likely involved in the yield and proteins of milk and their distinctive black-and-white markings. In addition, genes indicative of positive selection were associated with cardiovascular disease, which is related to simultaneous propagation of genetic defects, also known as inbreeding depression in Holstein. PMID:24920005

  3. Proteome Analysis of Streptococcus thermophilus Grown in Milk Reveals Pyruvate Formate-Lyase as the Major Upregulated Protein

    PubMed Central

    Derzelle, Sylviane; Bolotin, Alexander; Mistou, Michel-Yves; Rul, Françoise

    2005-01-01

    We investigated the adaptation to milk of Streptococcus thermophilus LMG18311 using a proteomic approach. Two-dimensional electrophoresis of cytosolic proteins were performed after growth in M17 medium or in milk. A major modification of the proteome concerned proteins involved in the supply of amino acids, like the peptidase PepX, and several enzymes involved in amino acid biosynthesis. In parallel, we observed the upregulation of the synthesis of seven enzymes directly involved in the synthesis of purines, as well as formyl-tetrahydrofolate (THF) synthetase and serine hydroxy-methyl transferase, two enzymes responsible for the synthesis of compounds (THF and glycine, respectively) feeding the purine biosynthetic pathway. The analysis also revealed a massive increase in the synthesis of pyruvate formate-lyase (PFL), the enzyme which converts pyruvate into acetyl coenzyme A and formate. PFL has been essentially studied for its role in mixed-acid product formation in lactic acid bacteria during anaerobic fermentation. However, formate is an important methyl group donor for anabolic pathway through the formation of folate derivates. We hypothesized that PFL was involved in purine biosynthesis during growth in milk. We showed that PFL expression was regulated at the transcriptional level and that pfl transcription occurred during the exponential growth phase in milk. The complementation of milk with formate or purine bases was shown to reduce pfl expression, to suppress PFL synthesis, and to stimulate growth of S. thermophilus. These results show a novel regulatory mechanism controlling the synthesis of PFL and suggest an unrecognized physiological role for PFL as a formate supplier for anabolic purposes. PMID:16332852

  4. Protein-Linked Glycan Degradation in Infants Fed Human Milk

    PubMed Central

    Dallas, David C.; Sela, David; Underwood, Mark A.; German, J. Bruce; Lebrilla, Carlito

    2014-01-01

    Many human milk proteins are glycosylated. Glycosylation is important in protecting bioactive proteins and peptide fragments from digestion. Protein-linked glycans have a variety of functions; however, there is a paucity of information on protein-linked glycan degradation in either the infant or the adult digestive system. Human digestive enzymes can break down dietary disaccharides and starches, but most of the digestive enzymes required for complex protein-linked glycan degradation are absent from both human digestive secretions and the external brush border membrane of the intestinal lining. Indeed, complex carbohydrates remain intact throughout their transit through the stomach and small intestine, and are undegraded by in vitro incubation with either adult pancreatic secretions or intact intestinal brush border membranes. Human gastrointestinal bacteria, however, produce a wide variety of glycosidases with regio- and anomeric specificities matching those of protein-linked glycan structures. These bacteria degrade a wide array of complex carbohydrates including various protein-linked glycans. That bacteria possess glycan degradation capabilities, whereas the human digestive system, perse, does not, suggests that most dietary protein-linked glycan breakdown will be of bacterial origin. In addition to providing a food source for specific bacteria in the colon, protein-linked glycans from human milk may act as decoys for pathogenic bacteria to prevent invasion and infection of the host. The composition of the intestinal microbiome may be particularly important in the most vulnerable humans-the elderly, the immunocompromised, and infants (particularly premature infants). PMID:24533224

  5. The effect of long term under- and over-feeding on the expression of six major milk protein genes in the mammary tissue of sheep.

    PubMed

    Tsiplakou, Eleni; Flemetakis, Emmanouil; Kouri, Evangelia-Diamanto; Karalias, George; Sotirakoglou, Kyriaki; Zervas, George

    2015-08-01

    Milk protein synthesis in the mammary gland involves expression of six major milk protein genes whose nutritional regulation remains poorly defined. In this study, the effect of long term under- and over-feeding on the expression of αs1-casein: CSN1S1, αs2-casein: CSN1S2, β-casein: CSN2, κ-casein: CSN3, α-lactalbumin: LALBA and β-lactoglobulin: BLG gene in sheep mammary tissue (MT) was examined. Twenty-four lactating dairy sheep, at 90-98 d in milk, were divided into three groups and fed the same ration, for 60 d, in quantities which met 70% (underfeeding), 100% (control) and 130% (overfeeding) of their energy and crude protein requirements. The results showed a significant reduction on mRNA of CSN1S1, CSN1S2, CSN2 and BLG gene in the MT of underfed sheep compared with the overfed ones and a significant reduction in CSN3 and LALBA gene expression compared with the respective control animals. Significant positive correlations were observed between the mRNA levels of milk proteins' genes with the milk protein yield and milk yield respectively. In conclusion, the feeding level and consequently the nutrients availability, affected the milk protein yield and milk volume by altering the CSN1S1, CSN1S2, CSN2, CSN3, LALBA and BLG gene expression involved in their metabolic pathways. PMID:26130072

  6. Prolactin receptor and signal transduction to milk protein genes

    SciTech Connect

    Djiane, J.; Daniel, N.; Bignon, C.

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  7. Functional Characteristics of Milk Protein Concentrates and Their Modification.

    PubMed

    Uluko, Hankie; Liu, Lu; Lv, Jia-Ping; Zhang, Shu-Wen

    2016-05-18

    A major deterrent to the usage of milk protein concentrate (MPC), a high-protein milk product with increasing demand as a food and sports drink ingredient, has been its poor functional characteristics when compared with other milk protein products such as whey protein concentrate and sodium caseinates. This review discusses the recent research on functional properties of MPC, focusing on factors that may contribute to the poor functional characteristics before, during, and after production. Current research, methods employed, and new understanding on the causes of poor solubility of MPC at mild temperatures (about 20°C) has been presented, including loss of solubility during storage as these areas have received unprecedented attention over the past decade, and also affects other useful functional properties of MPC, such as emulsifying properties, gelation, and foaming. Processing methods, which include heat treatment, high-pressure application, microwave heating, ultrasound application, and enzyme and salts modification, have been used or have potential to modify or improve the functional properties of MPCs. Future research on the effects of these processing methods on the functional properties, including effects of enzyme hydrolysis on bitterness and bioactivity, has also been discussed. PMID:26048645

  8. Milk-derived proteins and peptides in clinical trials.

    PubMed

    Artym, Jolanta; Zimecki, Michał

    2013-01-01

    Clinical trials are reviewed, involving proteins and peptides derived from milk (predominantly bovine), with the exception of lactoferrin, which will be the subject of another article. The most explored milk fraction is α-lactalbumin (LA), which is often applied with glycomacropeptide (GMP) - a casein degradation product. These milk constituents are used in health-promoting infant and adult formulae as well as in a modified form (HAMLET) to treat cancer. Lactoperoxidase (LCP) is used as an additive to mouth hygiene products and as a salivary substitute. Casein derivatives are applied, in addition, in the dry mouth syndrome. On the other hand, casein hydrolysates, containing active tripeptides, found application in hypertension and in type 2 diabetes. Lysozyme is routinely used for food conservation and in pharmaceutical products. It was successfully used in premature infants with concomitant diseases to improve health parameters. When used as prophylaxis in patients with scheduled surgery, it significantly reduced the incidence of hepatitis resulting from blood transfusion. Lysozyme was also used in infected children as an antimicrobial agent showing synergistic effects in combination with different antibiotics. Proline-rich polypeptide (PRP) was introduced to therapy of Alzheimer's disease patients. The therapeutic value of PRP was proved in several clinical trials and supported by studies on its mechanism of action. Concentrated immunoglobulin preparations from colostrum and milk of hyperimmunized cows showed efficacy in prevention of infections by bacteria, viruses and protozoa. A nutrition formula with milk-derived TGF-β2 (Modulen IBD®) found application in treatment of pediatric Crohn's disease. In conclusion, the preparations containing milk-derived products are safe and effective measures in prevention and treatment of infections as well as autoimmune and neoplastic diseases. PMID:24018446

  9. Variation in the bovine FABP4 gene affects milk yield and milk protein content in dairy cows

    PubMed Central

    Zhou, H.; Cheng, L.; Azimu, W.; Hodge, S.; Edwards, G. R.; Hickford, J. G. H.

    2015-01-01

    Fatty acid binding proteins (FABPs) bind long-chain fatty acids and are involved in their intracellular transport. Of the known bovine FABP genes, FABP4 has been mapped to a region on chromosome 14 that contains quantitative trait loci for milk traits. This study investigated the association of FABP4 haplotypes with milk production traits in 719 Holstein-Friesian × Jersey cows. Polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) analysis of a variable region of the gene revealed three haplotypes (A, B and C). Five single nucleotide polymorphisms (SNPs) were identified: two in exon 3 and three in intron 3. A was associated (P = 0.032) with increased milk protein percentage (present: 4.00 ± 0.02%; absent: 3.95 ± 0.02%) and B was associated (P = 0.009) with increased milk yield (present: 23.81 ± 0.23 kg/d; absent: 23.06 ± 0.21 kg/d), but tended to be associated with a decrease in protein percentage and an increase in protein yield. Cows with genotypes AA, AB and AC produced less milk, but with a higher protein percentage than BC cows. This suggest that FABP4 affects milk yield and milk protein content, both economically important traits, and that further study of this gene is warranted. PMID:26067182

  10. Considerations in meeting protein needs of the human milk-fed preterm infant.

    PubMed

    Wagner, Julie; Hanson, Corrine; Anderson-Berry, Ann

    2014-08-01

    Preterm infants provided with sufficient nutrition to achieve intrauterine growth rates have the greatest potential for optimal neurodevelopment. Although human milk is the preferred feeding for preterm infants, unfortified human milk provides insufficient nutrition for the very low-birth-weight infant. Even after fortification with human milk fortifier, human milk often fails to meet the high protein needs of the smallest preterm infants, and additional protein supplementation must be provided. Although substantial evidence exists to support quantitative protein goals for human milk-fed preterm infants, the optimal type of protein for use in human milk fortification remains uncertain. This question was addressed through a PubMed literature search of prospective clinical trials conducted since 1990 in preterm or low-birth-weight infant populations. The following 3 different aspects of protein quality were evaluated: whey-to-casein ratio, hydrolyzed versus intact protein, and bovine milk protein versus human milk protein. Because of a scarcity of current studies conducted with fortified human milk, studies examining protein quality using preterm infant formulas were included to address certain components of the clinical question. Twenty-six studies were included in the review study. No definite advantage was found for any specific whey-to-casein ratio. Protein hydrolyzate products with appropriate formulations can support adequate growth and biochemical indicators of nutrition status and may reduce gastrointestinal transit time, gastroesophageal reflux events, and later incidence of atopic dermatitis in some infants. Plasma amino acid levels similar to those of infants fed exclusive human milk-based diets can be achieved with products composed of a mixture of bovine proteins, peptides, and amino acids formulated to replicate the amino acid composition of human milk. Growth and biochemical indicators of nutrition status are similar for infants fed human milk

  11. Identification of major milk fat globule membrane proteins from pony mare milk highlights the molecular diversity of lactadherin across species.

    PubMed

    Cebo, C; Rebours, E; Henry, C; Makhzami, S; Cosette, P; Martin, P

    2012-03-01

    Although several studies have been devoted to the colloidal and soluble protein fractions of mare milk (caseins and whey proteins), to date little is known about the milk fat globule membrane (MFGM) protein fraction from mare milk. The objective of this study was thus to describe MFGM proteins from Equidae milk and to compare those proteins to already described MFGM proteins from cow and goat milk. Major MFGM proteins (namely, xanthine oxidase, butyrophilin, lactadherin, and adipophilin) already described in cow or goat milk were identified in mare milk using mass spectrometry. However, species-specific peculiarities were observed for 2 MFGM proteins: butyrophilin and lactadherin. A highly glycosylated 70-kDa protein was characterized for equine butyrophilin, whereas proteins of 64 and 67 kDa were characterized for cow and goat butyrophilin, respectively. Prominent differences across species were highlighted for lactadherin. Indeed, whereas 1 or 2 polypeptide chains were identified, respectively, by peptide mass fingerprinting matrix-assisted laser desorption/ionization-time of flight analysis for caprine and bovine lactadherin, 4 isoforms (60, 57, 48, and 45 kDa) for lactadherin from mare milk were identified by 10% sodium dodecyl sulfate-PAGE. Polymerase chain reaction experiments on lactadherin transcripts isolated from milk fat globules revealed the existence of 2 distinct lactadherin transcripts in the horse mammary gland. Cloning and sequencing of both transcripts encoding lactadherin showed an alternative use of a cryptic splice site located at the end of intron 5 of the equine lactadherin-encoding gene. This event results in the occurrence of an additional alanine (A) residue in the protein that disrupts a putative atypical N-glycosylation site (VNGC/VNAGC) described in human lactadherin. Liquid chromatography coupled with tandem mass spectrometry analyses confirmed the existence of both lactadherin variants in mare MFGM. We show here that lactadherin from

  12. Towards proteomic analysis of milk proteins in historical building materials

    NASA Astrophysics Data System (ADS)

    Kuckova, S.; Crhova, M.; Vankova, L.; Hnizda, A.; Hynek, R.; Kodicek, M.

    2009-07-01

    The addition of proteinaceous binders to mortars and plasters has a long tradition. The protein additions were identified in many sacral and secular historical buildings. For this method of peptide mass mapping, three model mortar samples with protein additives were prepared. These samples were analysed fresh (1-2 weeks old) and after 9 months of natural ageing. The optimal duration of tryptic cleavage (2 h) and the lowest amount of material needed for relevant analysis of fresh and weathered samples were found; the sufficient amounts of weathered and fresh mortars were set to 0.05 and 0.005 g. The list of main tryptic peptides coming from milk additives (bovine milk, curd, and whey), their relative intensities and theoretical amino acid sequences assignment is presented. Several sequences have been "de novo" confirmed by mass spectrometry.

  13. Claudins, dietary milk proteins, and intestinal barrier regulation.

    PubMed

    Kotler, Belinda M; Kerstetter, Jane E; Insogna, Karl L

    2013-01-01

    The family of claudin proteins plays an important role in regulating the intestinal barrier by modulating the permeability of tight junctions. The impact of dietary protein on claudin biology has not been studied extensively. Whey proteins have been reported to improve intestinal barrier function, but their mechanism of action is not clear. Recent studies, however, have demonstrated increased intestinal claudin expression in response to milk protein components. Reviewed here are new findings suggesting that whey-protein-derived transforming growth factor β transcriptionally upregulates claudin-4 expression via a Smad-4-dependent pathway. These and other data, including limited clinical studies, are summarized below and, in the aggregate, suggest a therapeutic role for whey protein in diseases of intestinal barrier dysfunction, perhaps, in part, by regulating claudin expression. PMID:23282252

  14. Effect of protein supplementation on milk production and metabolism of dairy cows grazing tropical grass.

    PubMed

    Danes, M A C; Chagas, L J; Pedroso, A M; Santos, F A P

    2013-01-01

    The objectives of this study were to determine if midlactation dairy cows (Bos taurus L.) grazing intensively managed elephantgrass would have their protein requirement met exclusively with the pasture and an energy concentrate, making the use of protein ingredients unnecessary, as well as to determine the dietary crude protein (CP) content that would optimize the efficiency of N utilization (ENU). Thirty-three Holstein and crossbred (Holstein × Jersey) midlactation dairy cows, producing approximately 20 kg/d, were grouped within breed into 11 blocks according to milk yield and days in milk. Within blocks, cows were randomly assigned to 1 of 3 treatments and remained in the study for 11 wk. The control treatment contained only finely ground corn, minerals, and vitamins, and it was formulated to be 8.7% CP. Two higher levels of CP (formulated to be 13.4 and 18.1%) were achieved by replacing corn with solvent-extracted soybean meal (SSBM). Pasture was fertilized with 50 kg of N/ha after each grazing cycle and averaged 18.5% CP (dry matter basis). No differences were observed in milk yield or milk fat, protein, and casein content or casein yield. In addition, pasture intake was not different among treatments. Milk urea N increased linearly as the concentrate CP content increased. Cows fed the 8.7% CP concentrate had higher ENU. In another experiment, 4 ruminally cannulated Holstein dry cows were used in a metabolism trial designed in a 4×4 Latin square. Cows were fed the same treatments described as well as a fourth treatment with 13.4% CP in the concentrate, in which urea replaced SSBM as the main N source. Ruminal volatile fatty acid concentration and microbial synthesis were not affected by levels or sources of N in the concentrate. Ruminal NH(3)N content increased as the concentrate CP content increased. Inclusion of SSBM in the concentrate did not increase production and decreased the ENU of midlactation dairy cows grazing on tropical forage. Supplementation of

  15. Does protein intake alter the precursors for synthesis of lactose and non-essential amino acids by the mammary glands of lactating mice?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aims were to: 1) develop a [U-13C]glucose tracer approach to establish the pathways of and substrates used for milk lactose and casein synthesis in the mouse mammary gland and 2) determine the influence of protein intake on this partition and use for milk synthesis. In Study 1, we determined th...

  16. The Future of Milk Protein Texturization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion processing and texturization of soy and other vegetable proteins developed in the 1970’s paved the way for the benefits the food industry is reaping now in their ability to deliver multi-functional products such as meat and seafood analogues. Our work at the USDA Agricultural Research Ser...

  17. The regulation of glucose on milk fat synthesis is mediated by the ubiquitin-proteasome system in bovine mammary epithelial cells.

    PubMed

    Liu, Lily; Jiang, Li; Ding, Xiang-dong; Liu, Jian-feng; Zhang, Qin

    2015-09-11

    Glucose as one of the nutrition factors plays a vital role in the regulation of milk fat synthesis. Ubiquitin-proteasome system (UPS) is a vital proteolytic pathway in all eukaryotic cells through timely marking, recognizing and degrading the poly-ubiquitinated protein substrates. Previous studies indicated that UPS plays a considerable role in controlling the triglyceride (TG) synthesis. Therefore, the aim of this study is to confirm the link between high-glucose and UPS and its regulation mechanism on milk fat synthesis in BMEC (bovine mammary epithelial cells). We incubated BMEC with normal (17.5 mm/L) and high-glucose (25 mm/L) with and without proteasome inhibitor epoxomicin and found that, compared with the control (normal glucose and without proteasome inhibitor), both high-glucose concentration and proteasome inhibitor epoxomicin could increase the accumulation of TG and poly-ubiquitinated proteins, and reduce significantly three proteasome activities (chymotrypsin-like, caspase-like, and trypsin-like). In addition, high-glucose concentration combined with proteasome inhibitor further enhanced the increase of the poly-ubiquitinated protein level and the decrease of proteasome activities. Our results suggest that the regulation of high-glucose on milk fat synthesis is mediated by UPS in BMEC, and high-glucose exposure could lead to a hypersensitization of BMEC to UPS inhibition which in turn results in increased milk fat synthesis. PMID:26231798

  18. Derivation of factors to estimate daily, fat, protein, and somatic cell score from one milking of cows milked three times daily

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to derive factors to predict daily fat (F) and protein (P) yield and somatic cell score (SCS) when milk is sampled once per d for cows milked three times (3x) per d. Daily milk weights were recorded automatically and samples were collected from 8 herds for each milking on test-day ...

  19. Effect of Asparagus racemosus (shatavari) extract on physicochemical and functional properties of milk and its interaction with milk proteins.

    PubMed

    Veena, N; Arora, Sumit; Singh, R R B; Katara, Antariksh; Rastogi, Subha; Rawat, A K S

    2015-02-01

    The effects of interaction of Asparagus racemosus (shatavari) with milk constituents and physico-chemical and functional characteristics of milk was studied. Addition of freeze dried aqueous shatavari extract at a concentration of 1 g /100 ml of milk showed a decrease in pH, rennet coagulation time and an increase in acidity, viscosity and heat stability at maximum. The extract also imparted brown colour to milk and showed an increase in a* (redness) and b* (yellowness) values but a decrease in L* (lightness) value. Proteins in milk were modified by reaction with shatavari extract. The derivatives formed were characterized in terms of SDS-PAGE. Electrophoretic pattern of sodium caseinate and whey containing 1% shatavari herb extract did not show any difference in band pattern i.e. there was no difference in mobility based on size of the proteins, but the intensity (width) of bands differed. PMID:25694736

  20. Chloroplast ribosomes and protein synthesis.

    PubMed Central

    Harris, E H; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival. PMID:7854253

  1. Dietary carbohydrate composition modifies the milk N efficiency in late lactation cows fed low crude protein diets.

    PubMed

    Cantalapiedra-Hijar, G; Peyraud, J L; Lemosquet, S; Molina-Alcaide, E; Boudra, H; Nozière, P; Ortigues-Marty, I

    2014-02-01

    Nitrogen emissions from dairy cows can be readily decreased by lowering the dietary CP concentration. The main objective of this work was to test whether the milk protein yield reduction associated with low N intakes could be partially compensated for by modifying the dietary carbohydrate composition (CHO). The effects of CHO on digestion, milk N efficiency (milk N/N intake; MNE) and animal performance were studied in four Jersey cows fed 100% or 80% of the recommended protein requirements using a 4×4 Latin square design. Four iso-energetic diets were formulated to two different CHO sources (starch diets with starch content of 34.3% and NDF at 32.5%, and fiber diets with starch content of 5.5% and NDF at 49.1%) and two CP levels (Low=12.0% and Normal=16.5%). The apparent digestible organic matter intake (DOMI) and the protein supply (protein digestible in the small intestine; PDIE) were similar between starch and fiber diets. As planned, microbial N flow (MNF) to the duodenum, estimated from the urinary purine derivatives (PD) excretion, was similar between Low and Normal CP diets. However, the MNF and the efficiency of microbial synthesis (g of microbial N/kg apparently DOMI) were higher for starch v. fiber diets. Milk and milk N fractions (CP, true protein, non-protein N (NPN)) yield were higher for starch compared with fiber diets and for Normal v. Low CP diets. Fecal N excretion was similar across dietary treatments. Despite a higher milk N ouput with starch v. fiber diets, the CHO modified neither the urinary N excretion nor the milk urea-N (MUN) concentration. The milk protein yield relative to both N and PDIE intakes was improved with starch compared with fiber diets. Concentrations of β-hydroxybutyrate, urea and Glu increased and those of glucose and Ala decreased in plasma of cows fed starch v. fiber diets. On the other hand, plasma concentration of albumin, urea, insulin and His increased in cows fed Normal compared with Low CP diets. This study showed

  2. Association between milk protein gene variants and protein composition traits in dairy cattle.

    PubMed

    Huang, W; Peñagaricano, F; Ahmad, K R; Lucey, J A; Weigel, K A; Khatib, H

    2012-01-01

    The objective of this study was to identify DNA markers in the 4 casein genes (CSN1S1, CSN1S2, CSN2, and CSN3) and the 2 major whey protein genes (LALBA and LGB) that show associations with milk protein profile measured by reverse-phase HPLC. Fifty-three single nucleotide polymorphisms (SNP) were genotyped for cows in a unique resource population consisting of purebred Holstein and (Holstein × Jersey) × Holstein crossbred animals. Seven traits were analyzed, including concentrations of α(S)-casein (CN), β-CN, κ-CN, α-lactalbumin, β-lactoglobulin, and 2 additional secondary traits, the total concentration of the above 5 milk proteins and the α(S)-CN to β-CN ratio. A substantial fraction of phenotypic variation could be explained by the additive genetic component for the 7 milk protein composition traits studied. Moreover, several SNP were significantly associated with all examined traits at an experiment-wise error rate of 0.05, except for α-lactalbumin. Importantly, the significant SNP explained a large proportion of the phenotypic variation of milk protein composition. Our findings could be used for selecting animals that produce milk with desired composition or desired processing and manufacturing properties. PMID:22192223

  3. 14-3-3γ regulates cell viability and milk fat synthesis in lipopolysaccharide-induced dairy cow mammary epithelial cells

    PubMed Central

    LIU, LIXIN; ZHANG, LI; LIN, YE; BIAN, YANJIE; GAO, XUEJUN; QU, BO; LI, QINGZHANG

    2016-01-01

    Our previous study demonstrated that 14-3-3γ overexpression was able to inhibit the production of lipopolysaccharide (LPS)-induced cytokines in dairy cow mammary epithelial cells (DCMECs) by inhibiting the activation of nuclear factor-κB (NF-κB) signaling pathways. However, the association between 14-3-3γ overexpression and milk fat synthesis in LPS-induced DCMECs remains unclear. Therefore, the present study investigated the effect of 14-3-3γ on cell viability and milk fat synthesis in LPS-induced DCMECs. The results of the MTT assay and lactate dehydrogenase activity assay demonstrated that 14-3-3γ overexpression was able to attenuate LPS-induced cytotoxicity in DCMECs, and increase the viability of the cells. In addition, the results of reverse transcription-quantitative polymerase chain reaction suggested that mRNA expression levels of genes associated with milk fat synthesis, including sterol regulatory element binding protein (SREBP1), peroxisome proliferator-activated receptor-γ (PPARG), cluster of differentiation 36, acetyl-coA carboxylase (ACC), fatty acid synthase (FAS) and fatty acid binding protein-3, were significantly upregulated in cells overexpressing the 14-3-3γ protein. In addition, as compared with the LPS-treated group, the activities of FAS and ACC were significantly increased. Furthermore, western blotting demonstrated that 14-3-3γ overexpression enhanced the protein expression levels of phosphorylated SREBP1 and PPARG. These results suggested that high levels of 14-3-3γ protein were able to attenuate LPS-induced cell damage and promote milk fat synthesis in LPS-induced DCMECs by increasing the cell viability and upregulating the expression levels of transcription factors associated with milk fat synthesis. PMID:27073437

  4. Enhancement of RNA Synthesis, Protein Synthesis, and Abscission by Ethylene

    PubMed Central

    Abeles, F. B.; Holm, R. E.

    1966-01-01

    Ethylene stimulated RNA and protein synthesis in bean (Phaseolus vulgaris L. var. Red Kidney) abscission zone explants prior to abscission. The effect of ethylene on RNA synthesis and abscission was blocked by actinomycin D. Carbon dioxide, which inhibits the effect of ethylene on abscission, also inhibited the influence of ethylene on protein synthesis. An aging period appears to be essential before bean explants respond to ethylene. Stimulation of protein synthesis by ethylene occurred only in receptive or senescent explants. Treatment of juvenile explants with ethylene, which has no effect on abscission also has no effect on protein synthesis. Evidence in favor of a hormonal role for ethylene during abscission is discussed. PMID:16656405

  5. Reducing dietary protein in dairy cow diets: implications for nitrogen utilization, milk production, welfare and fertility.

    PubMed

    Sinclair, K D; Garnsworthy, P C; Mann, G E; Sinclair, L A

    2014-02-01

    In light of increasing global protein prices and with the need to reduce environmental impact of contemporary systems of milk production, the current review seeks to assess the feasibility of reducing levels of dietary CP in dairy cow diets. At CP levels between 140 and 220 g/kg DM there is a strong positive relationship between CP concentration and dry matter intake (DMI). However, such effects are modest and reductions in DMI when dietary CP is below 180 g/kg DM can be at least partially offset by improving the digestibility and amino acid profile of the undegradable protein (UDP) component of the diet or by increasing rumen fermentable energy. Level and balance of intestinally absorbable amino acids, in particular methionine and lysine, may become limiting at lower CP concentrations. In general the amino acid composition of microbial protein is superior to that of UDP, so that dietary strategies that aim to promote microbial protein synthesis in the rumen may go some way to correcting for amino acid imbalances in low CP diets. For example, reducing the level of NDF, while increasing the proportion of starch, can lead to improvements in nitrogen (N) utilisation as great as that achieved by reducing dietary CP to below 150 g/kg. A systematic review and meta-analysis of responses to rumen protected forms of methionine and lysine was conducted for early/mid lactation cows fed diets containing ⩽150 g CP/kg DM. This analysis revealed a small but significant (P=0.002) increase in milk protein yield when cows were supplemented with these rumen protected amino acids. Variation in milk and milk protein yield responses between studies was not random but due to differences in diet composition between studies. Cows fed low CP diets can respond to supplemental methionine and lysine so long as DMI is not limiting, metabolisable protein (MP) is not grossly deficient and other amino acids such as histidine and leucine do not become rate limiting. Whereas excess dietary protein

  6. Metabolic effects of milk protein intake strongly depend on pre-existing metabolic and exercise status.

    PubMed

    Melnik, Bodo C; Schmitz, Gerd; John, Swen; Carrera-Bastos, Pedro; Lindeberg, Staffan; Cordain, Loren

    2013-01-01

    Milk protein intake has recently been suggested to improve metabolic health. This Perspective provides evidence that metabolic effects of milk protein intake have to be regarded in the context of the individual's pre-existing metabolic and exercise status. Milk proteins provide abundant branched-chain amino acids (BCAAs) and glutamine. Plasma BCAAs and glutamine are increased in obesity and insulin resistance, but decrease after gastric bypass surgery resulting in weight loss and improved insulin sensitivity. Milk protein consumption results in postprandial hyperinsulinemia in obese subjects, increases body weight of overweight adolescents and may thus deteriorate pre-existing metabolic disturbances of obese, insulin resistant individuals. PMID:24225036

  7. Metabolic effects of milk protein intake strongly depend on pre-existing metabolic and exercise status

    PubMed Central

    2013-01-01

    Milk protein intake has recently been suggested to improve metabolic health. This Perspective provides evidence that metabolic effects of milk protein intake have to be regarded in the context of the individual’s pre-existing metabolic and exercise status. Milk proteins provide abundant branched-chain amino acids (BCAAs) and glutamine. Plasma BCAAs and glutamine are increased in obesity and insulin resistance, but decrease after gastric bypass surgery resulting in weight loss and improved insulin sensitivity. Milk protein consumption results in postprandial hyperinsulinemia in obese subjects, increases body weight of overweight adolescents and may thus deteriorate pre-existing metabolic disturbances of obese, insulin resistant individuals. PMID:24225036

  8. Effect of microparticulated whey proteins on milk coagulation properties.

    PubMed

    Sturaro, A; Penasa, M; Cassandro, M; Varotto, A; De Marchi, M

    2014-11-01

    The enhancement of milk coagulation properties (MCP) and the reuse of whey produced by the dairy industry are of great interest to improve the efficiency of the cheese-making process. Native whey proteins (WP) can be aggregated and denatured to obtain colloidal microparticulated WP (MWP). The objective of this study was to assess the effect of MWP on MCP; namely, rennet coagulation time (RCT), curd-firming time, and curd firmness 30 min after rennet addition. Six concentrations of MWP (vol/vol; 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0%) were added to 3 bulk milk samples (collected and analyzed during 3 d), and a sample without MWP was used as control. Within each day of analysis, 6 replicates of MCP for each treatment were obtained, changing the position of the treatment in the rack. For control samples, 2 replicates per day were performed. In addition to MCP, WP fractions were measured on each treatment during the 3 d of analysis. Milk coagulation properties were measured on 144 samples by using a Formagraph (Foss Electric, Hillerød, Denmark). Increasing the amount of MWP added to milk led to a longer RCT. In particular, significant differences were found between RCT of the control samples (13.5 min) and RCT of samples with 3.0% (14.6 min) or more MWP. A similar trend was observed for curd-firming time, which was shortest in the control samples and longest in samples with 9.0% MWP (21.4 min). No significant differences were detected for curd firmness at 30 min across concentrations of MWP. Adjustments in cheese processing should be made when recycling MWP, in particular during the coagulation process, by prolonging the time of rennet activity before cutting the curd. PMID:25151883

  9. The aggregation behavior and interactions of yak milk protein under thermal treatment.

    PubMed

    Wang, T T; Guo, Z W; Liu, Z P; Feng, Q Y; Wang, X L; Tian, Q; Ren, F Z; Mao, X Y

    2016-08-01

    The aggregation behavior and interactions of yak milk protein were investigated after heat treatments. Skim yak milk was heated at temperatures in the range of 65 to 95°C for 10 min. The results showed that the whey proteins in yak milk were denatured after heat treatment, especially at temperatures higher than 85°C. Sodium dodecyl sulfate-PAGE analysis indicated that heat treatment induced milk protein denaturation accompanied with aggregation to a certain extent. When the heating temperature was 75 and 85°C, the aggregation behavior of yak milk proteins was almost completely due to the formation of disulfide bonds, whereas denatured α-lactalbumin and β-lactoglobulin interacted with κ-casein. When yak milk was heated at 85 and 95°C, other noncovalent interactions were found between proteins including hydrophobic interactions. The particle size distributions and microstructures demonstrated that the heat stability of yak milk proteins was significantly lowered by heat treatment. When yak milk was heated at 65 and 75°C, no obvious changes were found in the particle size distribution and microstructures in yak milk. When the temperature was 85 and 95°C, the particle size distribution shifted to larger size trend and aggregates were visible in the heated yak milk. PMID:27209140

  10. Antioxidant activity of whey protein hydrolysates in milk beverage system.

    PubMed

    Mann, Bimlesh; Kumari, Anuradha; Kumar, Rajesh; Sharma, Rajan; Prajapati, Kishore; Mahboob, Shaik; Athira, S

    2015-06-01

    The aim of the present study was to evaluate the antioxidant activity of flavoured milk enriched with antioxidative whey protein hydrolysates (WPHs) by radical scavenging method. Whey protein concentrate (WPC) was hydrolyzed by using three commercial proteases; flavouzyme, alcalase and corolase PP and these WPHs were analyzed for degree of hydrolysis and antioxidant activity. The antioxidant activities of these WPHs were evaluated using ABTS method. Trolox equivalent antioxidant activity of all the hydrolysates i.e. flavourzyme (0.81 ± 0.04), alcalase (1.16 ± 0.05) and corolase (1.42 ± 0.12) was higher than the WPC (0.19 ± 0.01). Among these, whey protein hydrolysates prepared using corolase showed maximum antioxidant activity. Total 15 β-lactoglobulin, 1 α-lactoalbumin, and 6 β-casein derived peptide fragments were identified in the WPHs by LC-MS/MS. Due to their size and characteristic amino acid composition, all the identified peptides may contribute for the antioxidant activity. The strawberry and chocolate flavoured milk was supplemented with WPC and WPHs and 2 % addition has shown increase in antioxidant activity upto 42 %. The result suggests that WPH could be used as natural biofunctional ingredients in enhancing antioxidant properties of food products. PMID:26028704

  11. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  12. Combining proteomic tools to characterize the protein fraction of llama (Lama glama) milk.

    PubMed

    Saadaoui, Besma; Bianchi, Leonardo; Henry, Céline; Miranda, Guy; Martin, Patrice; Cebo, Christelle

    2014-05-01

    Llamas belong to the Camelidae family along with camels. While dromedary camel milk has been broadly characterized, data on llama milk proteins are scarce. The objective of this study was thus to investigate the protein composition of llama milk. Skimmed llama milk proteins were first characterized by a 2D separation technique coupling RP-HPLC in the first dimension with SDS-PAGE in the second dimension (RP-HPLC/SDS-PAGE). Llama milk proteins, namely caseins (αs1 -, αs2 -, β-, and κ-caseins), α-lactalbumin, lactoferrin, and serum albumin, were identified using PMF. Llama milk proteins were also characterized by online LC-ESI-MS analysis. This approach allowed attributing precise molecular masses for most of the previously MS-identified llama milk proteins. Interestingly, α-lactalbumin exhibits distinct chromatographic behaviors between llama and dromedary camel milk. De novo sequencing of the llama α-lactalbumin protein by LC coupled with MS/MS (LC-MS/MS) showed the occurrence of two amino acid substitutions (R62L/I and K89L/I) that partly explained the higher hydrophobicity of llama α-lactalbumin compared with its dromedary counterpart. Taken together, these results provide for the first time a thorough description of the protein fraction of Lama glama milk. PMID:24519815

  13. Comparative proteomics of milk fat globule membrane in goat colostrum and mature milk.

    PubMed

    Lu, Jing; Liu, Lu; Pang, Xiaoyang; Zhang, Shuwen; Jia, Zhenhu; Ma, Changlu; Zhao, Lili; Lv, Jiaping

    2016-10-15

    As an important nutrient source in large area of world, the composition and nutritional value of goat milk are not well deliberated. Detailed annotation of protein composition is essential to address the physiological and nutritional value of goat milk. In the present study, 423 colostrum and mature goat milk fat globule membrane (MFGM) proteins were identified. The abundance of 189 proteins was significantly different between colostrums and mature milk MFGM. The acute phase proteins were higher in colostrums MFGM than those in mature milk MFGM which protected newborns at the beginning of life. Proteins related to synthesis and secretion were conserved through lactation to ensure the milk production. Of note, long term depression (LTD) proteins were observed in colostrum and mature milk MFGM. Milk LTD proteins could be potential biomarkers for diagnosis of lactation related depressive syndromes and should be taken into considerations of their effects on newborns. PMID:27173528

  14. Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk.

    PubMed

    Hinz, Katharina; O'Connor, Paula M; Huppertz, Thom; Ross, R Paul; Kelly, Alan L

    2012-05-01

    Proteomic analysis of bovine, caprine, buffalo, equine and camel milk highlighted significant interspecies differences. Camel milk was found to be devoid of β-lactoglobulin, whereas β-lactoglobulin was the major whey protein in bovine, buffalo, caprine, and equine milk. Five different isoforms of κ-casein were found in camel milk, analogous to the micro-heterogeneity observed for bovine κ-casein. Several spots observed in 2D-electrophoretograms of milk of all species could tentatively be identified as polypeptides arising from the enzymatic hydrolysis of caseins. The understanding gained from the proteomic comparison of these milks may be of relevance both in terms of identifying sources of hypoallergenic alternatives to bovine milk and detection of adulteration of milk samples and products. PMID:22365180

  15. Gene regulation of UDP-galactose synthesis and transport: Potential rate limiting processes in initiation of milk production in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactose synthesis is believed to be rate-limiting for milk production. However, understanding the molecular events controlling lactose synthesis in humans is still rudimentary. We have utilized our established model of the RNA isolated from breast milk fat globule from 7 healthy exclusively breastfe...

  16. Invited review: milk protein polymorphisms in cattle: effect on animal breeding and human nutrition.

    PubMed

    Caroli, A M; Chessa, S; Erhardt, G J

    2009-11-01

    The 6 main milk proteins in cattle are encoded by highly polymorphic genes characterized by several nonsynonymous and synonymous mutations, with up to 47 protein variants identified. Such an extensive variation was used for linkage analysis with the description of the casein cluster more than 30 yr ago and has been applied to animal breeding for several years. Casein haplotype effects on productive traits have been investigated considering information on the whole casein complex. Moreover, mutations within the noncoding sequences have been shown to affect the specific protein expression and, as a consequence, milk composition and cheesemaking. Milk protein variants are also a useful tool for breed characterization, diversity, and phylogenetic studies. In addition, they are involved in various aspects of human nutrition. First, the occurrence of alleles associated with a reduced content of different caseins might be exploited for the production of milk with particular nutritional qualities; that is, hypoallergenic milk. On the other hand, the frequency of these alleles can be decreased by selection of sires using simple DNA tests, thereby increasing the casein content in milk used for cheesemaking. Furthermore, the biological activity of peptides released from milk protein digestion can be affected by amino acid exchanges or deletions resulting from gene mutations. Finally, the gene-culture coevolution between cattle milk protein genes and human lactase genes, which has been recently highlighted, is impressive proof of the nonrandom occurrence of milk protein genetic variation over the centuries. PMID:19841193

  17. De novo synthesis of milk triglycerides in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary gland (MG) de novo lipogenesis contributes significantly to milk fat in animals but little is known in humans. Objective: To test the hypothesis that the incorporation of 13C carbons from [U-13C]glucose into fatty acids (FA) and glycerol in triglycerides (TG) will be greater: 1) in milk tha...

  18. Postruminal synthesis modifies the odd- and branched-chain fatty acid profile from the duodenum to milk.

    PubMed

    Vlaeminck, B; Gervais, R; Rahman, M M; Gadeyne, F; Gorniak, M; Doreau, M; Fievez, V

    2015-07-01

    Milk odd- and branched-chain fatty acids (OBCFA) have been suggested as potential biomarkers for rumen function. The potential of milk OBCFA as a biomarker depends on whether their profile reflects the profile observed in the duodenum. The objective of this study was to evaluate whether the OBCFA profile in duodenum samples is reflected in plasma and milk. For this, 2 dairy cattle experiments were used. In experiment 1, 4 Holstein cows fitted with rumen and proximal duodenum cannulas were used in a 4×4 Latin square design. The treatments consisted of 2 nitrogen levels (143 vs. 110g of crude protein/kg of dry matter for high and low N, respectively) combined with either 1 of the 2 energy sources (i.e., starch from barley, corn, and wheat or fiber from soybean hulls and dehydrated beet pulp). In experiment 2, 4 Holstein cows fitted with rumen and proximal duodenum cannulas were used in a 3×3 Latin square design, with the treatments consisting of 3 diets: (1) RNB-, a diet with a crude protein content of 122g/kg of dry matter, predicted to provide protein digested in the small intestine according to the requirement of the animals, but with a shortage of rumen degradable protein; (2) RNB- to which 6g/d of niacin was added through inclusion in the mineral and vitamin premix, and (3) RNB- to which urea was added to balance rumen degradable N supply resulting in a CP content of 156g/kg of dry matter. In both experiments, samples of duodenal digesta, plasma, and milk were collected and analyzed for fatty acids. Additionally, lipids in plasma samples were separated in lipid classes and analyzed for fatty acids. The OBCFA profile in milk was enriched in 15:0, iso-17:0, anteiso-17:0, and cis-9-17:1 as compared with duodenal samples, and milk secretions even exceeded duodenal flows, which suggests occurrence of postruminal synthesis, such as de novo synthesis, desaturation, and elongation. The postruminal modification of the OBCFA profile might hamper the application of OBCFA

  19. Identification of short peptide sequences in complex milk protein hydrolysates.

    PubMed

    O'Keeffe, Martina B; FitzGerald, Richard J

    2015-10-01

    Numerous low molecular mass bioactive peptides (BAPs) can be generated during the hydrolysis of bovine milk proteins. Low molecular mass BAP sequences are less likely to be broken down by digestive enzymes and are thus more likely to be active in vivo. However, the identification of short peptides remains a challenge during mass spectrometry (MS) analysis due to issues with the transfer and over-fragmentation of low molecular mass ions. A method is described herein using time-of-flight ESI-MS/MS to effectively fragment and identify short peptides. This includes (a) short synthetic peptides, (b) short peptides within a defined hydrolysate sample, i.e. a prolyl endoproteinase hydrolysate of β-casein and (c) short peptides within a complex hydrolysate, i.e. a Corolase PP digest of sodium caseinate. The methodology may find widespread utilisation in the efficient identification of low molecular mass peptide sequences in food protein hydrolysates. PMID:25872436

  20. Analysis of polymorphisms in milk proteins from cloned and sexually reproduced goats.

    PubMed

    Xing, H; Shao, B; Gu, Y Y; Yuan, Y G; Zhang, T; Zang, J; Cheng, Y

    2015-01-01

    This study evaluates the relationship between the genotype and milk protein components in goats. Milk samples were collected from cloned goats and normal white goats during different postpartum (or abortion) phases. Two cloned goats, originated from the same somatic line of goat mammary gland epithelial cells, and three sexually reproduced normal white goats with no genetic relationships were used as the control. The goats were phylogenetically analyzed by polymerase chain reaction-restriction fragment length polymorphism. The milk protein components were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results indicated that despite the genetic fingerprints being identical, the milk protein composition differed between the two cloned goats. The casein content of cloned goat C-50 was significantly higher than that of cloned goat C-4. Conversely, although the genetic fingerprints of the normal white goats N-1, N-2, and N-3 were not identical, the milk protein profiles did not differ significantly in their milk samples (obtained on postpartum day 15, 20, 25, 30, and 150). These results indicated an association between milk protein phenotypes and genetic polymorphisms, epigenetic regulation, and/or non-chromosomal factors. This study extends the knowledge of goat milk protein polymorphisms, and provides new strategies for the breeding of high milk-yielding goats. PMID:26662412

  1. Effect of various protein kinase inhibitors on the induction of milk protein gene expression by prolactin.

    PubMed

    Bayat-Sarmadi, M; Houdebine, L M

    1993-03-01

    Prolactin has many known functions and one of them is to induce the expression of milk protein gene expression in the mammary gland. Specific membrane receptors have been recently characterized but the transduction mechanism involved in the transfer of the prolactin signal to milk protein genes remains unknown. In the present work, it is shown that several protein kinase inhibitors block prolactin action on milk protein genes. Primary rabbit mammary cells were cultured for several days on floating collagen gel in a serum-free medium. Prolactin and the inhibitors of protein kinase were then added to the culture medium. After 1 day, the concentration of alpha s1-casein in the culture medium was measured using a specific radioimmunoassay. The concentration of several mRNAs in cell extracts was also evaluated using Northern blot analysis. alpha s1-Casein secretion and alpha s1-casein mRNA accumulation were induced by prolactin. This induction was blocked by staurosporine, sphingosine, quercetin, genistein and to some extent by o-hydroxyphenyl acetate, but not by H7, polymyxin B, benzylsuccinate and lavendustin A. The concentration of the mRNA coding for transferrin, which is abundantly secreted in rabbit milk independently of prolactin action, was only moderately altered by the inhibitors. The concentration of two house-keeping mRNAs, beta-actin and glyceraldehyde 3-phosphate dehydrogenase, was lowered only by genistein after 1 day but not after 4 h of culture. These data show for the first time that a Ser/Thre kinase, which is not kinase C, and possibly a tyrosine kinase is involved in the transduction of the prolactin message from the receptor to the milk protein genes. PMID:8472863

  2. Purification and characterization of the major whey proteins from the milks of the bottlenose dolphin (Tursiops truncatus), the Florida manatee (Trichechus manatus latirostris), and the beagle (Canis familiaris).

    PubMed

    Pervaiz, S; Brew, K

    1986-05-01

    The major whey proteins of the milks of the dolphin, manatee, and beagle were purified by gel filtration and ion exchange chromatography and characterized and identified by molecular weight determination, amino acid analysis, N-terminal sequencing, and activity measurements. The major whey protein components from all three species were found to be monomeric beta-lactoglobulins. These proteins were all active in binding retinol. Dolphin milk contained two beta-lactoglobulins (designated 1 and 2) which showed a slight difference in molecular weight and considerably divergent N-terminal sequences, whereas the other milks only contained a single form of beta-lactoglobulin. alpha-Lactalbumins were purified from dolphin and dog milks and were active in promoting lactose synthesis by bovine galactosyltransferase. The dolphin protein had an N-terminal sequence more similar to ruminant alpha-lactalbumins than to those known from other species. Although alpha-lactalbumin activity has been detected in manatee milk at low levels, the corresponding protein was not isolated. In addition, dog milk was found to contain high levels of lysozyme (greater than 1.0 mg/ml), which were identified by activity and sequencing. The functional and evolutionary implications of these results are discussed. PMID:3707136

  3. Intestinal threonine utilization for protein and mucin synthesis is decreased in formula-fed preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Threonine is an essential amino acid necessary for synthesis of intestinal (glyco)proteins such as mucin (MUC2) to maintain adequate gut barrier function. In premature infants, reduced barrier function may contribute to the development of necrotizing enterocolitis (NEC). Human milk protects against ...

  4. Rapid separation and quantification of major caseins and whey proteins of bovine milk by capillary electrophoresis.

    PubMed

    Vallejo-Cordoba, B

    1997-01-01

    A rapid capillary zone electrophoresis (CZE) method was established for separating and quantifying major casein and whey proteins in milk. Optimum sample preparation and electrophoretic conditions in a coated capillary maintained at 40 degrees C allowed accurate and reproducible quantification of milk proteins in a single analysis. Sample and run buffer allowed caseins to be maintained in solution by using a combination of urea and a nonionic detergent in phosphate buffer at pH 2.5. Quantitative CZE protein data were derived by calculating percentages and concentrations (mg/mL) of alpha-casein, beta-casein, alpha-lactalbumin, and beta-lactoglobulin. Calibration curves followed linear relationships with highly significant (p < 0.1) correlation coefficients. Relative standard deviations of less than 0.82 (%) for migration times and 2.18 (%) for percent protein indicated that the technique was reproducible. Electrophoretic protein profiles of fresh bovine milk and rehydrated dry milk showed marked quantitative differences in whey protein concentrations. Whey protein represented 12.37 +/- 0.07% beta-lactoglobulin and 3.05 +/- 0.08% alpha-lactalbumin of total protein in typical fresh milk, while only 1.90 +/- 0.16% beta-lactoglobulin and 0.86 +/- 0.04% alpha-lactalbumin of total protein were detected in a commercial rehydrated milk powder. By quantifying these differences, the established technique may allow the detection of substitution of fresh milk with rehydrated milk powder. The accuracy and reproducibility of the technique permitted the quantitation of individual protein concentrations in milk samples, which agreed with ranges reported in the literature. CZE may be well suited for routine use by dairies and regulatory agencies, since it allows the determination of milk proteins in less than 60 min. PMID:9725120

  5. Cows' milk protein-sensitive enteropathy. Combined clinical and histological criteria for diagnosis.

    PubMed Central

    Iyngkaran, N; Robinson, M J; Prathap, K; Sumithran, E; Yadav, M

    1978-01-01

    Cows' milk protein enteropathy is recognised as a significant cause of persistent diarrhoea and malabsorption in young infants, but there are as yet no generally accepted diagnostic criteria. A combined clinical and histological approach to the diagnosis of cows' milk protein-sensitive enteropathy has been used in 15 patients, and the following set of criteria are proposed. (1) Clinical disease (diarrhoea with or without vomiting) while receiving cows' milk protein. (2) Clinical improvement on a diet free of cows' milk protein. (3) Normal or mildly abnormal histology of jejunal mucosa when taken 6-8 weeks after symptoms subside. (4) Histological relapse, with or without clinical relapse, after re-exposure to cows' milk protein. Images Fig. 1 Fig. 2 PMID:564668

  6. Effects of enzymatic dephosphorylation on infant in vitro gastrointestinal digestibility of milk protein concentrate.

    PubMed

    Liu, Dasong; Wang, Yuanyuan; Yu, Yun; Hu, Jinhua; Lu, Naiyan; Regenstein, Joe M; Wang, Miao; Zhou, Peng

    2016-04-15

    This study investigated the effects of dephosphorylation extent on infant in vitro gastric clotting property and gastrointestinal digestibility of milk protein concentrate. Dephosphorylation was affected by phosphatase type and incubation pH. A series of milk protein concentrate with 0-69% dephosphorylation were obtained by incubation with calf intestinal alkaline phosphatase at pH 6.5 for 0-420 min. Both β- and αs1-caseins in the modified milk protein concentrate showed multiply dephosphorylated isoforms with different numbers of phosphate groups depending on the extent of dephosphorylation. With increased dephosphorylation of milk protein concentrate, the gastric clotting extent decreased and the gastrointestinal digestibility increased under infant in vitro conditions. These results suggested the potential of developing a dephosphorylated milk protein concentrate, with improved gastric clotting property and gastrointestinal digestibility, to simulate the multiply phosphorylated patterns of human casein and hence to further the humanization of infant formula on a molecular level. PMID:26617031

  7. Effect of summer season on milk protein fractions in Holstein cows.

    PubMed

    Bernabucci, U; Basiricò, L; Morera, P; Dipasquale, D; Vitali, A; Piccioli Cappelli, F; Calamari, L

    2015-03-01

    Milk characteristics are affected by heat stress, but very little information is available on changes of milk protein fractions and their relationship with cheesemaking properties of milk. The main objective of the study was to evaluate the effect of hot season on milk protein fractions and cheesemaking properties of milk for Grana Padano cheese production. The study was carried out in a dairy farm with a cheese factory for transforming the milk to Grana Padano cheese. The study was carried out from June 2012 to May 2013. Temperature and relative humidity of the inside barn were recorded daily during the study period using 8 electronic data loggers programmed to record every 30 min. Constant managerial conditions were maintained during the experimental periods. During the experimental period, feed and diet characteristics, milk yield, and milk characteristics were recorded in summer (from June 29 to July 27, 2012), winter (from January 25 to March 8, 2013), and spring (from May 17 to May 31, 2013). Milk yield was recorded and individual milk samples were taken from 25 cows selected in each season during the p.m. milking. Content of fat, proteins, caseins (CN), lactose and somatic cell count (SCC), titratable acidity, and milk rennet coagulation properties were determined on fresh samples. Milk protein fraction concentrations were determined by the sodium dodecyl sulfate-PAGE. Data were tested for nonnormality by the Shapiro-Wilk test. In case of nonnormality, parameters were normalized by log or exponential transformation. The data were analyzed with repeated measures ANOVA using a mixed model procedure. For all the main milk components (fat, protein, total solids, and solids-not-fat), the lowest values were observed in the summer and the greatest values were observed in the winter. Casein fractions, with the exception of γ-CN, showed the lowest values in the summer and the greatest values in the winter. The content of IgG and serum albumin was greater in summer

  8. Milk protein profiles in response to Streptococcus agalactiae subclinical mastitis in dairy cows.

    PubMed

    Pongthaisong, Pongphol; Katawatin, Suporn; Thamrongyoswittayakul, Chaiyapas; Roytrakul, Sittiruk

    2016-01-01

    The objective of this study was to investigate the milk protein profiles of normal milk and those of milk during the course of subclinical mastitis, caused by natural Streptococcus agalactiae infection. Two-dimensional gel electrophoresis and liquid chromatography mass spectrometry were used to assess protein profiles and to identify the proteins. The results showed that S. agalactiae subclinical mastitis altered the protein profiles of milk. Following Mascot database matching, 11 and 12 protein types were identified in the milk collected from healthy and S. agalactiae subclinical mastitic udders, respectively. The distinct presence of the antibacterial protein cathelicidin-1 was detected in infected milk samples, which in turn was highly correlated to the severity of subclinical mastitis as represented by the milk somatic cell count (r = 0.616), but not the bacterial count. The protein profile of milk reveals changes in the host response to S. agalactiae intramammary infection; cathelicidin-1 could therefore serve as a biomarker for the detection of subclinical mastitis in dairy cows. PMID:26632331

  9. A proteomic perspective on the changes in milk proteins due to high somatic cell count.

    PubMed

    Zhang, L; Boeren, S; van Hooijdonk, A C M; Vervoort, J M; Hettinga, K A

    2015-08-01

    Although cows with subclinical mastitis have no difference in the appearance of their milk, milk composition and milk quality are altered because of the inflammation. To know the changes in milk quality with different somatic cell count (SCC) levels, 5 pooled bovine milk samples with SCC from 10(5) to 10(6) cells/mL were analyzed qualitatively and quantitatively using both one-dimension sodium dodecyl sulfate PAGE and filter-aided sample preparation coupled with dimethyl labeling, both followed by liquid chromatography tandem mass spectrometry. Minor differences were found on the qualitative level in the proteome from milk with different SCC levels, whereas the concentration of milk proteins showed remarkable changes. Not only immune-related proteins (cathelicidins, IGK protein, CD59 molecule, complement regulatory protein, lactadherin), but also proteins with other biological functions (e.g., lipid metabolism: platelet glycoprotein 4, butyrophilin subfamily 1 member A1, perilipin-2) were significantly different in milk from cows with high SCC level compared with low SCC level. The increased concentration of protease inhibitors in the milk with higher SCC levels may suggest a protective role in the mammary gland against protease activity. Prostaglandin-H2 D-isomerase showed a linear relation with SCC, which was confirmed with an ELISA. However, the correlation coefficient was lower in individual cows compared with bulk milk. These results indicate that prostaglandin-H2 D-isomerase may be used as an indicator to evaluate bulk milk quality and thereby reduce the economic loss in the dairy industry. The results from this study reflect the biological phenomena occurring during subclinical mastitis and in addition provide a potential indicator for the detection of bulk milk with high SCC. PMID:26094216

  10. The protein and lipid composition of the membrane of milk fat globules depends on their size.

    PubMed

    Lu, Jing; Argov-Argaman, Nurit; Anggrek, Jeni; Boeren, Sjef; van Hooijdonk, Toon; Vervoort, Jacques; Hettinga, Kasper Arthur

    2016-06-01

    In bovine milk, fat globules (MFG) have a heterogeneous size distribution with diameters ranging from 0.1 to 15 µm. Although efforts have been made to explain differences in lipid composition, little is known about the protein composition of MFG membranes (MFGM) in different sizes of MFG. In this study, protein and lipid analyses were combined to study MFG formation and secretion. Two different sized MFG fractions (7.6±0.9 µm and 3.3±1.2 µm) were obtained by centrifugation. The protein composition of MFGM in the large and small MFG fractions was compared using mass-spectrometry-based proteomics techniques. The lipid composition and fatty acid composition of MFG was determined using HPLC-evaporative light-scattering detector and gas chromatography, respectively. Two frequently studied proteins in lipid droplet biogenesis, perilipin-2 and TIP47, were increased in the large and small MFG fractions, respectively. In the large MFG fraction, besides perilipin-2, cytoplasmic vesicle proteins (heat shock proteins, 14-3-3 proteins, and Rabs), microfilaments and intermediate filament-related proteins (actin and vimentin), host defense proteins (cathelicidins), and phosphatidylinositol were higher in concentration. On the other hand, cholesterol synthesis enzymes [lanosterol synthase and sterol-4-α-carboxylate 3-dehydrogenase (decarboxylating)], cholesterol, unsaturated fatty acids, and phosphatidylethanolamine were, besides TIP47, higher in concentration in the small MFG fraction. These results suggest that vesicle proteins, microfilaments and intermediate filaments, cholesterol, and specific phospholipids play an important role in lipid droplet growth, secretion, or both. The observations from this study clearly demonstrated the difference in protein and lipid composition between small and large MFG fractions. Studying the role of these components in more detail in future experiments may lead to a better understanding of fat globule formation and secretion. PMID

  11. Breast milk jaundice: in vitro inhibition of rat liver bilirubin-uridine diphosphate glucuronyltransferase activity and Z protein-bromosulfophthalein binding by human breast milk.

    PubMed

    Foliot, A; Ploussard, J P; Housset, E; Christoforov

    1976-06-01

    Twenty-four samples of breast milk from nine mothers of infants suffering from breast milk jaundice were studied. Eight samples of milk from mothers of nonjaundiced infants, along with five formula milks enriched with polyunsaturated fatty acids, served as controls. Milks from mothers with jaundiced infants had no inhibitory effect when assayed immediately after thawing. However, after these milk samples were stores at 4 degrees, they strongly inhibited bilirubin conjugation (80.3% inhibition of uridine diphosphate glucuronyltransferase (UDPGT) activity) and bromosulfophthalein (BSP) binding to cytoplasmic Z protein (dye binding inhibited 82.1%). There was no effect on BSP binding to Y protein (see Table 1). Heating the milk to 56 degrees modified the results in the following manner; when the milk was heated immediately after thawing, no inhibitory effect was seen, even after storage for 96 hr. On the other hand, when the milk was first stored at 96 hr and then heated, it had the same inhibitory effects as the milks which were stored without heating. The present study shows that pathologic breast milk will inhibit BSP-Z protein binding only when stored under conditions that also cause the appearance of the capacity to inhibit bilirubin conjugation in vitro, as well as causing the liberation of nonesterified fatty acids. Thus, the appearance of this inhibitory capacity in vitro seems linked to the lipolytic activity particular to pathologic milks. PMID:818610

  12. Starch/carrageenan/milk proteins interactions studied using multiple staining and Confocal Laser Scanning Microscopy.

    PubMed

    Matignon, A; Moulin, G; Barey, P; Desprairies, M; Mauduit, S; Sieffermann, J M; Michon, C

    2014-01-01

    This study focused on the effects of the interactions between modified waxy maize starch, kappa carrageenan and skim milk on the microstructure of their mixed systems using Confocal Laser Scanning Microscopy (CLSM). A multiple staining of the components was set up with a view to improving starch covalent staining. In starch/carrageenan pasted mixtures, carrageenan was found to adsorb on and penetrate slightly into the starch granules, whereas no interactions were observed between starch and milk proteins. In ternary mixtures, interactions between starch granules and carrageenan were no longer observed, even when milk proteins were added after starch swelling in the carrageenan solution, thus showing preferential interactions between carrageenan/milk proteins in comparison to carrageenan/starch granules. Modifying the blending order of the components led to microstructure differences depending on several parameters such as starch/carrageenan interactions, carrageenan/milk proteins network structure, level of starch granules disruption and amylopectin contribution to the microstructure. PMID:24274517

  13. Compositional analysis of protein content in milk with near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Yang, Xiaoli; Li, Chao; Liu, Haiying

    2006-02-01

    A fast analytical method was introduced based on near-infrared (NIR) technology in this paper. The protein content was measured in short order using the near-infrared transmission spectroscopy (1000-1700nm) of milk. There were several waves of milk's NIR spectroscopy selected. By correlating the spectrum data of the waves selected and the protein content in milk, a calibration model was established. The protein content could be measured by importing the spectrum data to the calibration model. In this model there were several parameters, which were the spectrum data of the waves selected. Then, the method how to select the waves best was introduced and the characteristic waves of milk were selected by utilizing genetic algorithm. A partial least squares (PLS) regression model between the spectroscopy and the protein content was presented for milk samples, and the predictive repeatability was also researched.

  14. The effect of long-term under- and overfeeding on the expression of six major milk proteins' genes in the mammary tissue of goats.

    PubMed

    Tsiplakou, E; Flemetakis, E; Kouri, E-D; Karalias, G; Sotirakoglou, K; Zervas, G

    2016-06-01

    Milk protein synthesis in the mammary gland involves expression of six major milk proteins' genes whose nutritional regulation remains poorly defined. In this study, the effect of long-term under- and overfeeding on the expression of as1-casein: CSN1S1, as2-casein: CSN1S2, β-casein: CSN2, κ-casein: CSN3, α-lactalbumin: LALBA and β-lactoglobulin: BLG gene in goat mammary tissue (MT) was examined. Twenty-four lactating dairy goat, at 90-98 days in milk, were divided into three homogenous subgroups and fed the same ration, for 60 days, in quantities which met 70% (underfeeding), 100% (control) and 130% (overfeeding) of their energy and crude protein requirements. The results showed a significant decrease in mRNA of CSN1S2, CSN2, CSN3 and LALBA genes in the MT of underfed goats compared with the overfed and on the CSN1S1 and BLG gene expressions in the MT of underfed goats compared with the respective control and overfed. CSN2 was the most abundant transcript in goat MT relative to the other milk proteins' genes. Significantly positive correlations were observed between the mRNA levels of caseins' and BLG genes with the milk yield. Moreover, a significant correlation was found between the mRNA levels of CSN1S2 with the milk protein, lactose content and lactose yield and also between the LALBA gene expression with the lactose content and lactose yield respectively. In conclusion, the feeding level and consequently the nutrients availability affected the milk lactose content, protein and lactose yield as well as the milk volume by altering the CSN1S1, CSN1S2, CSN2, CSN3, LALBA and BLG gene expression involved in their metabolic pathways. PMID:26613803

  15. Milk protein composition and stability changes affected by iron in water sources.

    PubMed

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct

  16. Protein Synthesis--An Interactive Game.

    ERIC Educational Resources Information Center

    Clements, Lee Ann J.; Jackson, Karen E.

    1998-01-01

    Describes an interactive game designed to help students see and understand the dynamic relationship between DNA, RNA, and proteins. Appropriate for either a class or laboratory setting, following a lecture session about protein synthesis. (DDR)

  17. Changes in the physical properties, solubility, and heat stability of milk protein concentrates prepared from partially acidified milk.

    PubMed

    Eshpari, H; Tong, P S; Corredig, M

    2014-12-01

    A limiting factor in using milk protein concentrates (MPC) as a high-quality protein source for different food applications is their poor reconstitutability. Solubilization of colloidal calcium phosphate (CCP) from casein micelles during membrane filtration (e.g., through acidification) may affect the structural organization of these protein particles and consequently the rehydration and functional properties of the resulting MPC powder. The main objective of this study was to investigate the effects of acidification of milk by glucono-δ-lactone (GDL) before ultrafiltration (UF) on the composition, physical properties, solubility, and thermal stability (after reconstitution) of MPC powders. The MPC samples were manufactured in duplicate, either by UF (65% protein, MPC65) or by UF followed by diafiltration (80% protein, MPC80), using pasteurized skim milk, at either the native milk pH (~pH 6.6) or at pH 6.0 after addition of GDL, followed by spray drying. Samples of different treatments were reconstituted at 5% (wt/wt) protein to compare their solubility and thermal stability. Powders were tested in duplicate for basic composition, calcium content, reconstitutability, particle size, particle density, and microstructure. Acidification of milk did not have any significant effect on the proximate composition, particle size, particle density, or surface morphology of the MPC powders; however, the total calcium content of MPC80 decreased significantly with acidification (from 1.84 ± 0.03 to 1.59 ± 0.03 g/100 g of powder). Calcium-depleted MPC80 powders were also more soluble than the control powders. Diafiltered dispersions were significantly less heat stable (at 120°C) than UF samples when dissolved at 5% solids. The present work contributes to a better understanding of the differences in MPC commonly observed during processing. PMID:25459904

  18. Effect of dietary protein level and rumen-protected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows.

    PubMed

    Lee, C; Giallongo, F; Hristov, A N; Lapierre, H; Cassidy, T W; Heyler, K S; Varga, G A; Parys, C

    2015-03-01

    This study investigated the effect of metabolizable protein (MP) supply and rumen-protected (RP) Lys and Met supplementation on productivity, nutrient digestibility, urinary N losses, apparent total-tract digestibility of dietary AA, and the efficiency of AA utilization for milk protein synthesis in dairy cows. The experiment was conducted with 8 ruminally cannulated Holstein cows in a replicated 4×4 Latin square design trial with 21-d periods. Treatments were (1) MP-adequate diet (AMP; MP balance of -24 g/d); (2) MP-deficient diet (DMP; MP balance of -281 g/d); (3) DMP supplemented with 100 g of RPLys/cow per day (estimated digestible Lys supply=24 g/d; DMPL; MP balance of -305g/d); and (4) DMPL supplemented with 24 g of RPMet/cow per day (estimated digestible Met supply=15 g/d; DMPLM; MP balance of -256g/d). Diet had no effect on total-tract nutrient digestibility, milk production, and milk composition, but the DMP diets decreased urinary N excretion and the ammonia emitting potential of manure. Plasma Met concentration was increased by DMPLM compared with AMP. Supplementation with RPLys had no effect on plasma Lys. Concentration of most AA in milk protein was increased or tended to be increased by DMPLM compared with DMPL. Except for the AA supplemented as RPAA (i.e., Met and Lys), apparent total-tract digestibility of all dietary AA was generally greater for the DMP diets and ranged from 33% (Arg, AMP diet) to 67% (Thr, DMPL diet). Apparent recovery of dietary AA in milk protein followed the same trends, being greater for the DMP diets than AMP and generally lower for Lys and Met with the RPAA-supplemented diets versus AMP and DMP. The RPAA were apparently not used for milk protein synthesis in the conditions of this experiment. The AA recoveries in milk protein varied from around 17% (Ala) to 70% (Pro). Milk protein recoveries of essential AA (EAA) were around 54% for the DMP diet and 49% for AMP. The estimated efficiency of utilization of digestible EAA for

  19. Interlaboratory Study of ELISA Kits for the Detection of Egg and Milk Protein in Processed Foods.

    PubMed

    Kato, Shigeki; Yagi, Takahiro; Kato, Ayako; Yamamoto, Shunsuke; Akimoto, Masanobu; Arihara, Keizo

    2015-01-01

    The labeling of seven specific allergenic ingredients (egg, milk, wheat, buckwheat, peanut, shrimp, and crab) is mandatory in Japan. To ensure proper labeling, two kinds of ELISA kits using polyclonal antibodies have been developed. However, we developed two novel ELISA kits using monoclonal antibodies with improved specificity, the Allergeneye ELISA Egg (AE-Egg) and Allergeneye ELISA Milk (AE-Milk) Kits, to detect egg and milk proteins in processed foods, respectively. Five types of processed food containing 10 mg/kg of egg or milk soluble protein were prepared for an interlaboratory study of the performance of these kits. The kits showed a relatively high reproducibility level of interlaboratory precision (AE-Egg RSDR, 3.7-5.7%; AE-Milk RSDR, 6.8-10.5%) and satisfied the recovery rate stipulated by Japanese guidelines (AE-Egg, 61.6-89.3%; AE-Milk, 52.1-67%) for all processed foods. Our results suggest that the AE-Egg and AE-Milk Kits are precise and reliable tools for detecting egg or milk proteins in processed foods. PMID:26086260

  20. Quest for the chemical synthesis of proteins.

    PubMed

    Engelhard, Martin

    2016-05-01

    The chemical synthesis of proteins has been the wish of chemists since the early 19th century. There were decisive methodological steps necessary to accomplish this aim. Cornerstones were the introduction of the Z-protecting group of Bergmann and Zervas, the development of Solid-phase Peptide Synthesis of Merrifield, and the establishment of Native Chemical Ligation by Kent. Chemical synthesis of proteins has now become generally applicable technique for the synthesis of proteins with tailor made properties which can be applied not only in vitro but also in vivo .Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27114253

  1. Blood-derived proteins in milk at start of lactation: Indicators of active or passive transfer.

    PubMed

    Wall, Samantha K; Gross, Josef J; Kessler, Evelyne C; Villez, Kris; Bruckmaier, Rupert M

    2015-11-01

    Colostrum has a different composition compared with milk in established lactation. This difference is in part due to the partially open blood-milk barrier, which, when closed, is designed to prevent the interdiffusion of blood and milk components. In the first days of lactation, α-lactalbumin (α-LA), a milk protein, is typically present in blood and several blood-derived proteins are also present in milk, such as IgG1, IgG2, serum albumin (SA), and lactate dehydrogenase (LDH). With the exception of IgG1, which is known to be transferred by active transcellular transport, the other proteins are thought to pass paracellularly through the temporarily open barrier. Along with an exchange of blood and milk components, somatic cell count (SCC) is typically high in colostrum. The decline of these proteins and SCC can be used as indicators to determine transcellular or paracellular transport. Two hypotheses were tested. The first hypothesis was that the decline curve for a protein or SCC would be the same as IgG1, indicating transcellular transport, or the decline curve would be different than IgG1, indicating paracellular transport. The second hypothesis was that the decline curves of SCC and all proteins that are thought to have paracellular transport would be the same. Ten Holstein cows were milked at 4 h after parturition, the next 5 consecutive milkings, and the afternoon milking on d 5, 8, 10, and 14 of lactation for a total of 10 milking time points, and sequential jugular blood samples were also taken. Blood and milk samples were analyzed for the concentrations of LDH, SA, IgG1, IgG2, and α-LA and milk samples were measured for SCC. Protein concentration and SCC curves were generated from all 10 time points and were evaluated using the tau time constant model to determine the rate of decline of the slope of each protein. When examining the first hypothesis, the concentration of IgG1 declined significantly faster in the milk than the proteins IgG2 and LDH, but

  2. The Most Common Cow's Milk Allergenic Proteins with Respect to Allergic Symptoms in Iranian Patients.

    PubMed

    Shokouhi Shoormasti, Raheleh; Fazlollahi, Mohammad Reza; Barzegar, Saeedeh; Teymourpour, Pegah; Yazdanyar, Zahra; Lebaschi, Zahra; Nourizadeh, Maryam; Tazesh, Behnaz; Movahedi, Masoud; Kashani, Homa; Pourpak, Zahra; Moin, Mostafa

    2016-04-01

    Cow's milk allergy (CMA) is an immunological response to cow's milk proteins such as casein, α-lactalbumin and β lactoglobulin. The aim of this study was to determine the most common cow's milk allergenic proteins in patients with CMA and identify the most effective proteins in different allergic symptoms. Eighty seven patients (≤18 years) with allergy to cow's milk from 2006 to 2013 entered this study. They had a positive history of allergic reactions to cow's milk and a positive specific IgE test to whole cow's milk. The patients' symptoms were divided into four groups. Serum specific IgEs against four different main proteins of cow's milk were measured using RIDA Allergy Screen. Among 87 patients, 53 (60.5%) were male and the median age was 2.5 years. The frequency of respiratory, skin, gastrointestinal symptoms, and anaphylaxis were 63.3%, 55.7%, 20.3%, and 13.4%, respectively. Specific IgEs to total cow's milk protein (n=75, 89.3%), and the main Cow's Milk Proteins including α-lactalbumin (n=65, 77.4%), casein (n=64, 75.3%), β-lactoglobulin (n=52, 62.7%), and bovine serum albumin (n=35, 44.9%) were detected. Specific IgE tests to β-lactoglobulin were positive in 90% of the patients with anaphylaxis. Moreover, significant relationship was found between specific IgE to β-lactoglobulin and anaphylaxis (p=0.04). Although it is presumed that α-lactalbumin and casein are the most common allergenic proteins of cow's milk, in this study there is a significant relationship between the anaphylaxis and the presence of β-lactoglobulin-specific IgE. Therefore, more precautions are recommended due to possible anaphylactic reactions in patients with a positive test history for β-lactoglobulin specific IgE. PMID:27090370

  3. Detection and characterisation of Complement protein activity in bovine milk by bactericidal sequestration assay.

    PubMed

    Maye, Susan; Stanton, Catherine; Fitzgerald, Gerald F; Kelly, Philip M

    2015-08-01

    While the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6.20 and 6.06 log CFU/ml, for raw bovine and human milks, respectively - the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer. PMID:26119290

  4. Dataset of milk whey proteins of two indigenous greek goat breeds.

    PubMed

    Anagnostopoulos, Athanasios K; Katsafadou, Angeliki I; Pierros, Vasileios; Kontopodis, Evangelos; Fthenakis, George C; Arsenos, George; Karkabounas, Spyridon Ch; Tzora, Athina; Skoufos, Ioannis; Tsangaris, George Th

    2016-09-01

    Due to its rarity and unique biological traits, as well as its growing financial value, milk of dairy Greek small ruminants is continuously attracting interest from both the scientific community and industry. For the construction of the present dataset, cutting-edge proteomics methodologies were employed, in order to investigate and characterize, for the first time, the milk whey proteome from the two indigenous Greek goat breeds, Capra prisca and Skopelos. In total 822 protein groups were identified in milk whey of the two breeds, The present data are further discussed in the research article "Milk of Greek sheep and goat breeds; characterization by means of proteomics" [1]. PMID:27508219

  5. Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective.

    PubMed

    Horner, Katy; Drummond, Elaine; Brennan, Lorraine

    2016-06-01

    Milk protein-derived peptides have been reported to have potential benefits for reducing the risk of type 2 diabetes. However, what the active components are and whether intact peptides exert this bioactivity has received little investigation in human subjects. Furthermore, potentially useful bioactive peptides can be limited by low bioavailability. Various peptides have been identified in the gastrointestinal tract and bloodstream after milk-protein ingestion, providing valuable insights into their potential bioavailability. However, these studies are currently limited and the structure and sequence of milk peptides exerting bioactivity for glycaemic management has received little investigation in human subjects. The present article reviews the bioavailability of milk protein-derived peptides in human studies to date, and examines the evidence on milk proteins and glycaemic management, including potential mechanisms of action. Areas in need of advancement are identified. Only by establishing the bioavailability of milk protein-derived peptides, the active components and the mechanistic pathways involved can the benefits of milk proteins for the prevention or management of type 2 diabetes be fully realised in future. PMID:27109024

  6. Bioactive Proteins in Human Milk: Health, Nutrition, and Implications for Infant Formulas.

    PubMed

    Lönnerdal, Bo

    2016-06-01

    Breast milk confers many benefits to the newborn and developing infant. There is substantial support for better long-term outcomes, such as less obesity, diabetes, and cardiovascular disease, in breastfed compared with formula-fed infants. More short-term outcomes, such as incidence and duration of illness, nutrient status, and cognitive development during the first year of life also demonstrate benefits of breastfeeding. Several proteins in breast milk, including lactoferrin, α-lactalbumin, milk fat globule membrane proteins, and osteopontin, have been shown to have bioactivities that range from involvement in the protection against infection to the acquisition of nutrients from breast milk. In some cases, bovine counterparts of these proteins exert similar bioactivities. It is possible by dairy technology to add protein fractions highly enriched in these proteins to infant formula. PMID:27234410

  7. Effects of continuous milking during a field trial on productivity, milk protein yield and health in dairy cows.

    PubMed

    Köpf, M; Gellrich, K; Küchenhoff, H; Meyer, H H D; Kliem, H

    2014-07-01

    The objective of this field study with an automatic milking system was to evaluate the effects of omitting the dry period on health and productivity during the subsequent lactation in dairy cows. A total of 98 German Simmental cows of six Southern German farms were assigned randomly to two experimental groups: The first group was dried-off 56 days before calving (D for dried-off, n=49), and the second group was milked continuously during this period until calving (CM for continuous milking, n=49). From the latter a third group emerged, including cows that dried-off themselves spontaneously (DS for dried-off spontaneously, n=14). Blood serum values of glucose, β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFA) and IGF-1 showed most pronounced fluctuations in D cows. Over the entire study period, the concentrations of BHBA and NEFA were markedly lower in the CM and DS groups. Furthermore, IGF-1 concentration was lowest for D cows and also decrease in back fat thickness was more pronounced. Mean concentration of milk protein was markedly higher in CM and DS cows (3.70% and 3.71%) compared with D cows (3.38%). Owing to the lower 305-day milk yield (-15.6%) and the lower total milk yield (-3.1%), the total amount of produced protein in the subsequent lactation was 2.5% (6.8 kg) lower, although the additional protein amount in CM cows from week -8 to calving was 35.7 kg. The greatest benefit resulted from positive effects on fertility and the lower incidence of diseases: CM cows had their first oestrus 1 week earlier compared with D cows, they also conceived earlier and showed a significantly lower risk of developing hypocalcaemia, ketosis and puerperal disorders. The present study showed that the costs of medical treatment and milk losses were twice as high in D cows, compared with CM and DS cows, and thus the reduced costs because of the more stable health outweighed the financial losses of milk yield by +18.49 € per cow and lactation. PMID:26263029

  8. Storage Protein Synthesis in Maize

    PubMed Central

    Larkins, Brian A.; Bracker, Charles E.; Tsai, C. Y.

    1976-01-01

    Undegraded free and membrane-bound polysomes were isolated from developing kernels of Zea mays L. frozen in liquid nitrogen. Freezing in liquid nitrogen was a prerequisite for preserving polysome structure in stored kernels. Membrane-bound polysomes from 22-day post-pollination kernels ground in high pH buffers containing 50 mm Mg2+ contained unique classes of large polysomes. These large polysomes were sensitive to ribonuclease, and electron micrographs verified that they were not formed by aggregation. The membrane-bound polysomes were the principal site of zein synthesis, since the major protein synthesized in vitro was similar to purified zein in its ethanol solubility and mobility on sodium dodecyl sulfate polyacrylamide gels. Images PMID:16659563

  9. Microstructural Changes in High-Protein Nutrition Bars Formulated with Extruded or Toasted Milk Protein Concentrate.

    PubMed

    Banach, J C; Clark, S; Lamsal, B P

    2016-02-01

    Milk protein concentrates with more than 80% protein (that is, MPC80) are underutilized as the primary protein source in high-protein nutrition bars as they impart crumbliness and cause hardening during storage. High-protein nutrition bar texture changes are often associated with internal protein aggregations and macronutrient phase separation. These changes were investigated in model high-protein nutrition bars formulated with MPC80 and physically modified MPC80s. High-protein nutrition bars formulated with extruded MPC80s hardened slower than those formulated with toasted or unmodified MPC80. Extruded MPC80 had reduced free sulfhydryl group exposure, whereas measurable increases were seen in the toasted MPC80. High-protein nutrition bar textural performance may be related to the number of exposed free sulfhydryl groups in MPC80. Protein aggregations resulting from ingredient modification and high-protein nutrition bar storage were studied with sodium dodecyl sulfate polyacrylamide gel electrophoresis. Disulfide-based protein aggregations and changes in free sulfhydryl concentration were not consistently relatable to high-protein nutrition bar texture change. However, the high-protein nutrition bars formulated with extruded MPC80 were less prone to phase separations, as depicted by confocal laser scanning microscopy, and underwent less texture change during storage than those formulated with toasted or unmodified MPC80. PMID:26748454

  10. T-2 mycotoxin inhibits mitochondrial protein synthesis

    SciTech Connect

    Pace, J.G.; Watts, M.R.; Canterbury, W.J.

    1988-01-01

    The authors investigated the effect of T-2 toxin on rat liver mitochondrial protein synthesis. Isolated rat liver mitochondria were supplemented with an S-100 supernatant from rat liver and an external ATP-generating system. An in-vitro assay employing cycloheximide, and inhibitor of cytoplasmic protein synthesis, and chloramphenicol, and inhibitor of mitochondrial protein synthesis, to distinguish mitochondrial protein synthesis from the cytoplasmic process. Amino acid incorporation into mitochondria was dependent on the concentration of mitochondria and was inhibited by chloramphenicol. The rate of uptake of tritium leucine into mitochondrial protein was unaffected by the addition of T-2 toxin and was not a rate-limiting step in incorporation. However, 0.02 micrograms/ml of T-2 toxin decreased the rate of protein synthesis inhibition correlated with the amount of T-2 toxin taken up by the mitochondria. While T-2 toxin is known to inhibit eukaryotic protein synthesis, this is the first time T-2 was shown to inhibit mitochondrial protein synthesis.

  11. Consuming Transgenic Goats' Milk Containing the Antimicrobial Protein Lysozyme Helps Resolve Diarrhea in Young Pigs

    PubMed Central

    Cooper, Caitlin A.; Garas Klobas, Lydia C.; Maga, Elizabeth A.; Murray, James D.

    2013-01-01

    Childhood diarrhea is a significant problem in many developing countries and E. coli is a main causative agent of diarrhea in young children. Lysozyme is an antimicrobial protein highly expressed in human milk, but not ruminant milk, and is thought to help protect breastfeeding children against diarrheal diseases. We hypothesized that consumption of milk from transgenic goats which produce human lysozyme (hLZ-milk) in their milk would accelerate recovery from bacterial-induced diarrhea. Young pigs were used as a model for children and infected with enterotoxigenic E. coli. Once clinical signs of diarrhea developed, pigs were fed hLZ-milk or non-transgenic control goat milk three times a day for two days. Clinical observations and complete blood counts (CBC) were performed. Animals were euthanized and samples collected to assess differences in histology, cytokine expression and bacterial translocation into the mesenteric lymph node. Pigs consuming hLZ-milk recovered from clinical signs of infection faster than pigs consuming control milk, with significantly improved fecal consistency (p = 0.0190) and activity level (p = 0.0350). The CBC analysis showed circulating monocytes (p = 0.0413), neutrophils (p = 0.0219), and lymphocytes (p = 0.0222) returned faster to pre-infection proportions in hLZ-milk fed pigs, while control-fed pigs had significantly higher hematocrit (p = 0.027), indicating continuing dehydration. In the ileum, pigs fed hLZ-milk had significantly lower expression of pro-inflammatory cytokine IL-8 (p = 0.0271), longer intestinal villi (p<0.0001), deeper crypts (p = 0.0053), and a thinner lamina propria (p = 0.0004). These data demonstrate that consumption of hLZ-milk helped pigs recover from infection faster, making hLZ-milk an effective treatment of E. coli-induced diarrhea. PMID:23516474

  12. Expression of Active Fluorophore Proteins in the Milk of Transgenic Pigs Bypassing the Secretory Pathway.

    PubMed

    Mukherjee, Ayan; Garrels, Wiebke; Talluri, Thirumala R; Tiedemann, Daniela; Bősze, Zsuzsanna; Ivics, Zoltán; Kues, Wilfried A

    2016-01-01

    We describe the expression of recombinant fluorescent proteins in the milk of two lines of transgenic pigs generated by Sleeping Beauty transposon-mediated genetic engineering. The Sleeping Beauty transposon consisted of an ubiquitously active CAGGS promoter driving a fluorophore cDNA, encoding either Venus or mCherry. Importantly, the fluorophore cDNAs did not encode for a signal peptide for the secretory pathway, and in previous studies of the transgenic animals a cytoplasmic localization of the fluorophore proteins was found. Unexpectedly, milk samples from lactating sows contained high levels of bioactive Venus or mCherry fluorophores. A detailed analysis suggested that exfoliated cells of the mammary epithelium carried the recombinant proteins passively into the milk. This is the first description of reporter fluorophore expression in the milk of livestock, and the findings may contribute to the development of an alternative concept for the production of bioactive recombinant proteins in the udder. PMID:27086548

  13. NIRS and MIRS technique for the determination of protein and fat content in milk powder

    NASA Astrophysics Data System (ADS)

    Wu, Di; Feng, Shuijuan; He, Chao; He, Yong

    2008-03-01

    It is very important to detect the protein and fat content in milk powder fast and non-destructively. Near-infrared (NIR) and mid-infrared(MIR) spectroscopy techniques have been compared and evaluated for the determination of the protein and fat content in milk powder with the use of Least-squares support vector machines (LS-SVM). LS-SVM models have been developed by using both NIR and MIR spectra. Both methods have shown good correlations between infrared transmission values and two nutrition contents. MIRS provided better prediction performance over NIRS. It is concluded that infrared spectroscopy technique can quantify of the protein and fat content in milk powder fast and nondestructively. The process is simple and easy to operate than chemistry methods. The results can be beneficial for designing a simple and non-destructive instrument with MIRS or NIRS spectral sensor for the determination of the protein fat content in milk powder.

  14. Expression of Active Fluorophore Proteins in the Milk of Transgenic Pigs Bypassing the Secretory Pathway

    PubMed Central

    Mukherjee, Ayan; Garrels, Wiebke; Talluri, Thirumala R.; Tiedemann, Daniela; Bősze, Zsuzsanna; Ivics, Zoltán; Kues, Wilfried A.

    2016-01-01

    We describe the expression of recombinant fluorescent proteins in the milk of two lines of transgenic pigs generated by Sleeping Beauty transposon-mediated genetic engineering. The Sleeping Beauty transposon consisted of an ubiquitously active CAGGS promoter driving a fluorophore cDNA, encoding either Venus or mCherry. Importantly, the fluorophore cDNAs did not encode for a signal peptide for the secretory pathway, and in previous studies of the transgenic animals a cytoplasmic localization of the fluorophore proteins was found. Unexpectedly, milk samples from lactating sows contained high levels of bioactive Venus or mCherry fluorophores. A detailed analysis suggested that exfoliated cells of the mammary epithelium carried the recombinant proteins passively into the milk. This is the first description of reporter fluorophore expression in the milk of livestock, and the findings may contribute to the development of an alternative concept for the production of bioactive recombinant proteins in the udder. PMID:27086548

  15. Prediction of individual milk proteins including free amino acids in bovine milk using mid-infrared spectroscopy and their correlations with milk processing characteristics.

    PubMed

    McDermott, A; Visentin, G; De Marchi, M; Berry, D P; Fenelon, M A; O'Connor, P M; Kenny, O A; McParland, S

    2016-04-01

    The aim of this study was to evaluate the effectiveness of mid-infrared spectroscopy in predicting milk protein and free amino acid (FAA) composition in bovine milk. Milk samples were collected from 7 Irish research herds and represented cows from a range of breeds, parities, and stages of lactation. Mid-infrared spectral data in the range of 900 to 5,000 cm(-1) were available for 730 milk samples; gold standard methods were used to quantify individual protein fractions and FAA of these samples with a view to predicting these gold standard protein fractions and FAA levels with available mid-infrared spectroscopy data. Separate prediction equations were developed for each trait using partial least squares regression; accuracy of prediction was assessed using both cross validation on a calibration data set (n=400 to 591 samples) and external validation on an independent data set (n=143 to 294 samples). The accuracy of prediction in external validation was the same irrespective of whether undertaken on the entire external validation data set or just within the Holstein-Friesian breed. The strongest coefficient of correlation obtained for protein fractions in external validation was 0.74, 0.69, and 0.67 for total casein, total β-lactoglobulin, and β-casein, respectively. Total proteins (i.e., total casein, total whey, and total lactoglobulin) were predicted with greater accuracy then their respective component traits; prediction accuracy using the infrared spectrum was superior to prediction using just milk protein concentration. Weak to moderate prediction accuracies were observed for FAA. The greatest coefficient of correlation in both cross validation and external validation was for Gly (0.75), indicating a moderate accuracy of prediction. Overall, the FAA prediction models overpredicted the gold standard values. Near-unity correlations existed between total casein and β-casein irrespective of whether the traits were based on the gold standard (0.92) or mid

  16. Plant proteins in milk replacers for rearing buffalo calves. I. Effect of replacing half of the milk proteins by plant proteins on the preweaning performance of buffalo calves.

    PubMed

    el-Ashry, M A; el-Serafy, A M; Zaki, A A; Soliman, H

    1988-01-01

    In an experiment, 12 female and 8 male buffalo calves aged 3 to 4 weeks with an average of 65.2 kg live body weight were divided into 4 equal groups. Group 1 received dried skim milk plus non-milk fat. In groups 2, 3, and 4, 50% of the milk protein were replaced by American soybean flour, Egyptian soya meal, or corn glutine. Scouring occurred in all groups during the first three weeks. Death losses occurred in group 2 (2 calves) and 4 (1 calf). During the first three experimental weeks the calves consumed on average 828, 868, 847, 696 g dry matter (DM) as liquids. The average daily gain (ADG) was 229, 215, 252, 48 g/d, respectively. The energy consumption reached 4.1, 4.6, 3.8, 16.6 TDN/kg ADG. During the second period, the calves consumed 1.57, 1.45, 1.55, 1.65 kg DM as liquid and solid feedstuff. Up to a live body weight of 90 kg they had a daily increase of 695, 611, 593, 600 g. The energy used amounted to 1.98, 2.08, 2.28, 2.40 TDN/kg ADG. The apparent digestibility of the crude protein was 95, 92, 91, 92% during the first period and 81, 77, 76, 73% during the second period. PMID:3395319

  17. Comparative Proteomics of Milk Fat Globule Membrane Proteins from Transgenic Cloned Cattle

    PubMed Central

    Wang, Jianwu; Zhang, Ran; Guo, Chengdong; Yu, Tian; Li, Ning

    2014-01-01

    The use of transgenic livestock is providing new methods for obtaining pharmaceutically useful proteins. However, the protein expression profiles of the transgenic animals, including expression of milk fat globule membrane (MFGM) proteins, have not been well characterized. In this study, we compared the MFGM protein expression profile of the colostrum and mature milk from three lines of transgenic cloned (TC) cattle, i.e., expressing recombinant human α-lactalbumin (TC-LA), lactoferrin (TC-LF) or lysozyme (TC-LZ) in the mammary gland, with those from cloned non-transgenic (C) and conventionally bred normal animals (N). We identified 1, 225 proteins in milk MFGM, 166 of which were specifically expressed only in the TC-LA group, 265 only in the TC-LF group, and 184 only in the TC-LZ group. There were 43 proteins expressed only in the transgenic cloned animals, but the concentrations of these proteins were below the detection limit of silver staining. Functional analysis also showed that the 43 proteins had no obvious influence on the bovine mammary gland. Quantitative comparison revealed that MFGM proteins were up- or down-regulated more than twofold in the TC and C groups compared to N group: 126 in colostrum and 77 in mature milk of the TC-LA group; 157 in colostrum and 222 in mature milk of the TC-LF group; 49 in colostrum and 98 in mature milk of the TC-LZ group; 98 in colostrum and 132 in mature milk in the C group. These up- and down-regulated proteins in the transgenic animals were not associated with a particular biological function or pathway, which appears that expression of certain exogenous proteins has no general deleterious effects on the cattle mammary gland. PMID:25133402

  18. The immunopathogenesis of cow's milk protein allergy (CMPA).

    PubMed

    Vitaliti, Giovanna; Giovanna, Vitaliti; Cimino, Carla; Carla, Cimino; Coco, Alfina; Alfina, Coco; Praticò, Andrea Domenico; Domenico, Praticò Andrea; Lionetti, Elena; Elena, Lionetti

    2012-01-01

    The most frequent symptoms among the manifestations of cow milk protein allergy (CMPA) are gastrointestinal. CMPA pathogenesis involves immunological mechanisms with participation of immunocompetent cells and production of immunoglobulin E (IgE). Nevertheless, recent studies have been focused on the description of other forms of CMPA, not-mediated by IgE reactions, mostly involving the T lymphocite immune system. Thus, in this field it is important to note how different kind of cells are involved in the immunopathogenesis of CMPA, such as antigen-specific T cells, T regulatory cells, cytokines secreted by the different T lymphocite subsets, B lymphocytes, antingen-presenting cells, mast cells, that together orchestrate the complex mechanism leading to the phenotipic expression of CMPA.The progress in the diagnosis of immunologic disorders allowed the recent literature to develop new models for immuno-mediate disorders, involving new cells (such as Treg cells) and thus allowing the acquisition of a new vision of the pathogenesis of atopic diseases.The aim of this review is to describe the immunopathogenetic aspects of CMPA in view of these new discoveries in the immunologic field, considering the immunologic pathway at the basis of both IgE- and not-IgE mediated CMPA. PMID:22824011

  19. The immunopathogenesis of cow’s milk protein allergy (CMPA)

    PubMed Central

    2012-01-01

    The most frequent symptoms among the manifestations of cow milk protein allergy (CMPA) are gastrointestinal. CMPA pathogenesis involves immunological mechanisms with participation of immunocompetent cells and production of immunoglobulin E (IgE). Nevertheless, recent studies have been focused on the description of other forms of CMPA, not-mediated by IgE reactions, mostly involving the T lymphocite immune system. Thus, in this field it is important to note how different kind of cells are involved in the immunopathogenesis of CMPA, such as antigen-specific T cells, T regulatory cells, cytokines secreted by the different T lymphocite subsets, B lymphocytes, antingen-presenting cells, mast cells, that together orchestrate the complex mechanism leading to the phenotipic expression of CMPA. The progress in the diagnosis of immunologic disorders allowed the recent literature to develop new models for immuno-mediate disorders, involving new cells (such as Treg cells) and thus allowing the acquisition of a new vision of the pathogenesis of atopic diseases. The aim of this review is to describe the immunopathogenetic aspects of CMPA in view of these new discoveries in the immunologic field, considering the immunologic pathway at the basis of both IgE- and not-IgE mediated CMPA. PMID:22824011

  20. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns.

    PubMed

    Chatterton, Dereck E W; Nguyen, Duc Ninh; Bering, Stine Brandt; Sangild, Per Torp

    2013-08-01

    The human newborn infant is susceptible to gut inflammatory disorders. In particular, growth-restricted infants or infants born prematurely may develop a severe form of intestinal inflammation known as necrotizing enterocolitis (NEC), which has a high mortality. Milk provides a multitude of proteins with anti-inflammatory properties and in this review we gather together some recent significant advances regarding the isolation and proteomic identification of these minor constituents of both human and bovine milk. We introduce the process of inflammation, with a focus on the immature gut, and describe how a multitude of milk proteins act against the inflammatory process according to both in vitro and in vivo studies. We highlight the effects of milk proteins such as caseins, and of whey proteins such as alpha-lactalbumin, beta-lactoglobulin, lactoferrin, osteopontin, immunoglobulins, trefoil factors, lactoperoxidase, superoxide dismutase, platelet-activating factor acetylhydrolase, alkaline phosphatase, and growth factors (TGF-β, IGF-I and IGF-II, EGF, HB-EGF). The effects of milk fat globule proteins, such as TLR-2, TLR-4, sCD14 and MFG-E8/lactadherin, are also discussed. Finally, we indicate how milk proteins could be useful for the prophylaxis and therapy of intestinal inflammation in infants and children. PMID:23660296

  1. Molecular characterization of two novel milk proteins in the tsetse fly (Glossina morsitans morsitans)

    PubMed Central

    Yang, Guangxiao; Attardo, Geoffrey M.; Lohs, Claudia; Aksoy, Serap

    2009-01-01

    Tsetse reproduction is unique among insects due to the small numbers of offspring the flies produce and because the female fly carries and nourishes her offspring for their entire immature development. Larval nourishment is supplied by the female as a “milk” substance synthesized by a specialized accessory gland. The milk consists of ~50% fat and ~50% protein. Two milk proteins were identified as the Major Milk gland Protein (GmmMGP) and Transferrin (GmmTsf). Here we describe the identification of two novel gene transcripts (gmmmgp2 and gmmmgp3) produced by the milk gland tissue. These putative secretory products bear no homology to known proteins in the NCBI nr database. Transcripts for these genes can only be detected in the milk gland and their temporal expression correlates with larval development. Functional analysis of these products by RNA interference (RNAi) knockdown analysis shows that GmmMGP2 is critical to reproductive function. The protein appears to affect ovulation, suggesting that it may play a regulatory role in the tsetse reproductive cycle. GmmMGP3 knockdown lacks a phenotype, suggesting its function as a milk protein is possibly redundant. PMID:20136662

  2. Minor milk constituents are affected by protein concentration and forage digestibility in the feed ration.

    PubMed

    Larsen, Torben; Alstrup, Lene; Weisbjerg, Martin Riis

    2016-02-01

    The present study was conducted in order to investigate if selected minor milk components would be indicative for the nutritional situation of the cow. Forty-eight dairy cows were offered a high digestible ration vs. a lower digestible ration combined with 2 protein levels in a 4 × 4 Latin square design. Milk glucose, glucose-6-phosphate, cholesterol, triacylglycerides (TAG), uric acid and β-hydroxybutyrate (BHBA) were measured and correlated mutually and towards other milking parameters (yield, h since last milking, days in milk (DIM), urea, etc). The variation range of the suggested variables were broad, a fact that may support their utilisation as predictive parameters. The content of milk metabolites was significantly affected by the change in rations as milk glucose, glucose-6-phosphate, uric acid, and the ratio cholesterol: triacylglycerides increased with higher energy intake while BHBA and TAG decreased. The content of some of the milk metabolites changed during 24 h day/night periods: BHBA, cholesterol, uric acid and TAG increased whereas free glucose decreased in the night period. Certain associations between milk metabolites and calculated energy parameters like ECM, body condition score (BCS), and body weight gain were found, however, these associations were to some extent explained by an interaction with DIM, just as changes in milk metabolites during a 24 h period seems to interfere. It is concluded that the practical use of the suggested milk variables should be based on more than one metabolite and that stage of lactation and possibly time of the day where the milk is collected should be incorporated in predictive models. PMID:26869107

  3. Comparison of an extender containing defined milk protein fractions with a skim milk-based extender for storage of equine semen at 5 degrees C.

    PubMed

    Pagl, Roland; Aurich, Jörg E; Müller-Schlösser, Frank; Kankofer, Marta; Aurich, Christine

    2006-09-15

    A problem of semen extenders based on milk or egg yolk is the fact that these biological products consist of a variety of substances. Extenders containing only components with clearly protective effects on spermatozoa would thus be an advantage. In this study, we have compared the effects of an extender containing defined caseinates and whey proteins only (EquiPro, defined milk protein extender) with skim milk extender on equine spermatozoa during cooled storage. The defined milk protein extender was used with and without the antioxidant N-acetyl cysteine (NAC). In a second experiment, semen was diluted with PBS or defined milk protein extender and was either stored directly or 90% of seminal plasma was removed by centrifugation and replaced by defined milk protein extender before storage. In both experiments, eight stallions were available for semen collections. Motility, velocity and membrane integrity of spermatozoa were determined by CASA immediately after semen processing and after 24, 48 and 72 h of storage at 5 degrees C. Total motility after 24 h of storage was lowest in semen diluted with PBS (p<0.05 versus all extenders). At 48 and 72 h, motility of spermatozoa in defined milk protein extender was significantly (p<0.05) higher than in PBS or skim milk extender. Velocity of spermatozoa after storage was highest in defined milk protein extender. Membrane integrity after storage was significantly (p<0.05) lower in semen diluted with PBS than in semen diluted with both extenders. Addition of NAC was without effect on the examined parameters. Centrifugation further increased the percentage of motile and membrane-intact spermatozoa in the defined milk protein extender (p<0.05). Velocity of spermatozoa in this extender was not negatively affected by centrifugation. PMID:16620943

  4. Characterization of milk proteins-lutein complexes and the impact on lutein chemical stability.

    PubMed

    Yi, Jiang; Fan, Yuting; Yokoyama, Wallace; Zhang, Yuzhu; Zhao, Liqing

    2016-06-01

    In this study, the interaction of WPI (whey protein isolate) and SC (sodium caseinate) with hydrophobic lutein was investigated through UV-vis spectroscopy and circular dichroism (CD) as well as fluorescence. The effects on lutein's chemical stability were also examined. The decrease of turbidity of lutein suggested that lutein's aqueous solubility was improved after binding with milk proteins. CD analysis indicated lutein had little impact on the secondary structures of both proteins. Different preparation methods have significant impacts on the binding constant. Fluorescence results indicated that WPI and SC interact with lutein by hydrophobic contacts. Milk proteins have protective effects on lutein against oxidation and decomposition, and SC showed better capability in protecting lutein from oxidation than WPI during 16 days storage. The lutein's chemical stability was increased with increasing of proteins concentration. The results indicated that milk proteins may act as effective carriers for lipophilic nutraceuticals. PMID:26830565

  5. Comparison of heat and pressure treatments of skim milk, fortified with whey protein concentrate, for set yogurt preparation: effects on milk proteins and gel structure.

    PubMed

    Needs, E C; Capellas, M; Bland, A P; Manoj, P; MacDougal, D; Paul, G

    2000-08-01

    Heat (85 degrees C for 20 min) and pressure (600 MPa for 15 min) treatments were applied to skim milk fortified by addition of whey protein concentrate. Both treatments caused > 90 % denaturation of beta-lactoglobulin. During heat treatment this denaturation took place in the presence of intact casein micelles; during pressure treatment it occurred while the micelles were in a highly dissociated state. As a result micelle structure and the distribution of beta-lactoglobulin were different in the two milks. Electron microscopy and immunolabelling techniques were used to examine the milks after processing and during their transition to yogurt gels. The disruption of micelles by high pressure caused a significant change in the appearance of the milk which was quantified by measurement of the colour values L*, a* and b*. Heat treatment also affected these characteristics. Casein micelles are dynamic structures, influenced by changes to their environment. This was clearly demonstrated by the transition from the clusters of small irregularly shaped micelle fragments present in cold pressure-treated milk to round, separate and compact micelles formed on warming the milk to 43 degrees C. The effect of this transition was observed as significant changes in the colour indicators. During yogurt gel formation, further changes in micelle structure, occurring in both pressure and heat-treated samples, resulted in a convergence of colour values. However, the microstructure of the gels and their rheological properties were very different. Pressure-treated milk yogurt had a much higher storage modulus but yielded more readily to large deformation than the heated milk yogurt. These changes in micelle structure during processing and yogurt preparation are discussed in terms of a recently published micelle model. PMID:11037230

  6. Production and properties of health-promoting proteins and peptides from bovine colostrum and milk.

    PubMed

    Korhonen, H J

    2013-01-01

    The high nutritive value and diverse functional properties of milk proteins are well known. Beyond these qualities, milk proteins have attracted growing scientific and commercial interest as a source of biologically active molecules. Such proteins are found in abundance in colostrum which is the initial milk secreted by mammalian species during late pregnancy and the first few days after birth of the offspring. The best characterized colostrum-based bioactive proteins include alpha-lactalbumin, beta-lactoglobulin, immunoglobulins, lactoferrin, lactoperoxidase and growth factors. All of them can nowadays be enriched and purified on an industrial scale from bovine colostral whey or cheese whey. These native proteins exhibit a wide range of biological activities that are known to affect the digestive function, metabolic responses to absorbed nutrients, growth and development of organs and disease resistance. Also, some of these proteins may prove beneficial in reduction of the risks of chronic human diseases reflected by the metabolic syndrome. It is speculated that such potentially beneficial effects are partially attributed to bioactive peptides derived from intact proteins. These peptides can be liberated during gastrointestinal digestion or fermentation of milk by starter cultures. The efficacy of a few peptides has been established in animal and human studies and the number of commercial products supplemented with specific milk peptides is envisaged to increase on global markets. Bovine colostrum appears as a highly potential source of biologically active native proteins and peptide fractions for inclusion as health-promoting ingredients in various food applications. PMID:24200017

  7. Dataset of milk whey proteins of three indigenous Greek sheep breeds.

    PubMed

    Anagnostopoulos, Athanasios K; Katsafadou, Angeliki I; Pierros, Vasileios; Kontopodis, Evangelos; Fthenakis, George C; Arsenos, George; Karkabounas, Spyridon Ch; Tzora, Athina; Skoufos, Ioannis; Tsangaris, George Th

    2016-09-01

    The importance and unique biological traits, as well as the growing financial value, of milk from small Greek ruminants is continuously attracting interest from both the scientific community and industry. In this regard the construction of a reference dataset of the milk of the Greek sheep breeds is of great interest. In order to obtain such a dataset we employed cutting-edge proteomics methodologies to investigate and characterize, the proteome of milk from the three indigenous Greek sheep breeds Mpoutsko, Karagouniko and Chios. In total, more than 1300 protein groups were identified in milk whey from these breeds, reporting for the first time the most detailed proteome dataset of this precious biological material. The present results are further discussed in the research paper "Milk of Greek sheep and goat breeds; characterization by means of proteomics" (Anagnostopoulos et al. 2016) [1]. PMID:27508236

  8. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis.

    PubMed

    Chilliard, Y; Ferlay, A; Rouel, J; Lamberet, G

    2003-05-01

    Although the effect of lactation stage is similar, the responses of milk yield and composition (fat and protein contents) to different types of lipid supplements differ greatly between goats and cows. Milk fat content increases with almost all studied fat supplements in goats but not in cows. However, the response of milk fatty acid (FA) composition is similar, at least for major FA, including conjugated linoleic acid (CLA) in goats and cows supplemented with either protected or unprotected lipid supplements. Goat milk CLA content increases sharply after either vegetable oil supplementation or fresh grass feeding, but does not change markedly when goats receive whole untreated oilseeds. Important interactions are observed between the nature of forages and of oil supplements on trans-10 and trans-11 C18:1 and CLA. Peculiarities of goat milk FA composition and lipolytic system play an important role in the development of either goat flavor (release of branched, medium-chain FA) or rancidity (excessive release of butyric acid). The lipoprotein lipase (LPL) activity, although lower in goat than in cow milk, is more bound to the fat globules and better correlated to spontaneous lipolysis in goat milk. The regulation of spontaneous lipolysis differs widely between goats and cows. Goat milk lipolysis and LPL activity vary considerably and in parallel across goat breeds or genotypes, and are low during early and late lactation, as well as when animals are underfed or receive a diet supplemented with protected or unprotected vegetable oils. This could contribute to decreases in the specific flavor of goat dairy products with diets rich in fat. PMID:12778586

  9. Plant protein in milk replacers for rearing buffalo calves. II. Effect of replacing 75% of the milk proteins by plant proteins on the preweaning performance of buffalo calves.

    PubMed

    el-Ashry, M A; el-Serafy, A M; Zaki, A A

    1988-01-01

    In an experiment, 9 female and 6 male buffalo calves at the age of 3 to 4 weeks were divided into 3 groups. The animals were given milk replacers in which 75% of the dried skim milk protein had been replaced by American soybean flour (ASP), Egyptian soya meal (ESP), or corn glutine (GP). Scouring occurred in all groups during the first 3 weeks of the experiment, continuing up to the fourth week in groups ESP and GP. In groups ESP and GP one calf each died. During the first 3 weeks of the experiment, the calves consumed on average 747, 631, 787 g dry matter (DM) as liquids. They achieved live weight gains of 314, 83, -286 g/d, with significant differences between the groups. The digestibility of the crude protein was 73, 74, 70%. During the second period--up to 70 or 62.5 kg live body weight--only groups ASP and ESP were investigated. The calves consumed 1.64 or 1.66 kg DM/d as liquid and dry feedstuff. The average daily weight gain was 3.87 or 3.50 TDN/kg ADG. During this period, the crude protein was digested by 76 or 73%. PMID:3202820

  10. Effects of wheat protein in milk replacers on abomasal emptying rate in calves.

    PubMed

    Wittek, T; Ernstberger, M; Muckenhuber, M; Flöck, M

    2016-04-01

    Diarrhoea is a condition with tremendous impact on calf health. Infectious agents play a dominant role; however, non-infective factors may also contribute to pathogenesis of diarrhoea. One factor, the abomasal emptying rate, is mainly influenced by the composition of feed. The aim of the study was to assess the influence of different protein sources in milk replacers on abomasal emptying rate and clinical parameters. The effect of increasing age of the calves on abomasal emptying was also evaluated. The study compared abomasal emptying rates and clinical parameters in calves, which were fed either milk replacer containing only whey protein or one which partially contained wheat protein. Abomasal emptying rate was estimated by ultrasonography. Ten calves were used in the study over 18 days, and each calf was fed 3 periods of 3 days length using different milk replacers in an alternating crossover design. The abomasum was emptied significantly faster when the wheat protein containing milk replacer was fed (half-emptying time wheat protein 49.1 ± 4.1 min, half-emptying time milk protein 59.1 ± 7.4 min); however, clinical parameters and weight gain did not differ between the feeding regimes. Age did not significantly influence abomasal emptying rate. As milk replacers containing wheat proteins increased abomasal emptying rate, they may have a higher potential to initiate diarrhoea, especially if high volumes are fed. Thus, the feeding regimes are likely to be even more important when such milk replacers are used. PMID:26189821

  11. Unusual shift from IgE-mediated milk allergy to food protein-induced enterocolitis syndrome.

    PubMed

    Banzato, C; Piacentini, G L; Comberiati, P; Mazzei, F; Boner, A L; Peroni, D G

    2013-12-01

    Food protein-induced enterocolitis syndrome (FPIES) is a potentially severe non-IgE-mediated food allergy usually caused by cow's milk or soy, and more rarely by solid foods such as rice, oats, barley, chicken, turkey, egg white, green peas and peanuts. In children with FPIES, the presence of specific IgE antibodies to the causative food, either at presentation or during follow-up, defines an "atypical form" of FPIES characterized by a lesser probability of developing tolerance and a potential progression to typical IgE-mediated hypersensitivity. Although it is uncommon, the shift from non-IgE-mediated milk-protein induced enterocolitis syndrome to IgE-mediated milk allergy has recently been described. We report the first case, to our knowledge, of a shift from IgE-mediated cow's milk allergy to pure non-IgE-mediated FPIES, in a 4-month-old male infant. PMID:24619083

  12. Nutritional stimulation of milk protein yield of cows is associated with changes in phosphorylation of mammary eukaryotic initiation factor 2 and ribosomal s6 kinase 1.

    PubMed

    Toerien, Chanelle A; Trout, Donald R; Cant, John P

    2010-02-01

    Production of protein by the lactating mammary gland is stimulated by intake of dietary energy and protein. Mass-action effects of essential amino acids (EAA) cannot explain all of the nutritional response. Protein synthesis in tissues of growing animals is regulated by nutrients through the mammalian target of rapamycin (mTOR) and integrated stress response (ISR) networks. To explore if nutrients signal through the mTOR and ISR networks in the mammary gland in vivo, lactating cows were feed-deprived for 22 h and then infused i.v. for 9 h with EAA+ glucose (Glc), Glc only, l-Met+l-Lys, l-His, or l-Leu. Milk protein yield was increased 33 and 27% by EAA+Glc and Glc infusions, respectively. Infusions of Met+Lys and His generated 35 and 41%, respectively, of the EAA+Glc response. Infusion of EAA+Glc reduced phosphorylation of the ISR target, eukaryotic initiation factor(eIF) 2, in mammary tissue and increased phosphorylation of the mTOR targets, ribosomal S6 kinase 1 (S6K1) and S6. Both responses are stimulatory to protein synthesis. Glucose did not significantly increase mammary S6K1 phosphorylation but reduced eIF2 phosphorylation by 62%, which implicates the ISR network in the stimulation of milk protein yield. In contrast, the EAA infusions increased (P < 0.05) or tended to increase (P < 0.1) mammary mTOR activity and only His, like Glc, decreased eIF2 phosphorylation by 62%. Despite activation of these protein synthesis signals to between 83 and 127% of the EAA+Glc response, EAA infusions produced less than one-half of the milk protein yield response generated by EAA+Glc, indicating that ISR and mTOR networks exert only a portion of the control over protein yield. PMID:20032484

  13. Proteomic profiling of microbial transglutaminase-induced polymerization of milk proteins.

    PubMed

    Hsieh, J F; Pan, P H

    2012-02-01

    Microbial transglutaminase (MTGase)-induced polymerization of individual milk proteins during incubation was investigated using a proteomics-based approach. The addition of MTGase (0.25-2.0 units/mL) caused the milk proteins to polymerize after a 3-h incubation period. Sodium dodecyl sulfate-PAGE analysis showed that the total intensities of the protein bands that corresponded to α(S)-casein, β-casein, and κ-casein decreased from 8,245.6, 6,677.2, and 586.6 arbitrary units to 1,911.7, 0.0, and 66.2 arbitrary units, respectively. Components with higher molecular weights were observed, and the intensity of these proteins increased after 3h of incubation. These results support that inter- or intramolecular crosslinking occurred in the casein proteins of MTGase-treated milk. Two-dimensional electrophoresis analysis indicated that isomers of β-casein, κ-casein, a fraction of serum albumin, α(S1)-casein, α(S2)-casein, β-lactoglobulin, and α-lactalbumin in the milk were polymerized following incubation with MTGase. In addition, MTGase-induced polymerization occurred earlier for β-casein and κ-casein isomers than for other milk proteins. PMID:22281322

  14. Monotreme Lactation Protein Is Highly Expressed in Monotreme Milk and Provides Antimicrobial Protection

    PubMed Central

    Enjapoori, Ashwantha Kumar; Grant, Tom R.; Nicol, Stewart C.; Lefèvre, Christophe M.; Nicholas, Kevin R.; Sharp, Julie A.

    2014-01-01

    Monotremes (platypus and echidna) are the descendants of the oldest ancestor of all extant mammals distinguished from other mammals by mode of reproduction. Monotremes lay eggs following a short gestation period and after an even briefer incubation period, altricial hatchlings are nourished over a long lactation period with milk secreted by nipple-less mammary patches located on the female’s abdomen. Milk is the sole source of nutrition and immune protection for the developing young until weaning. Using transcriptome and mass spectrometry analysis of milk cells and milk proteins, respectively, a novel Monotreme Lactation Protein (MLP) was identified as a major secreted protein in milk. We show that platypus and short-beaked echidna MLP genes show significant homology and are unique to monotremes. The MLP transcript was shown to be expressed in a variety of tissues; however, highest expression was observed in milk cells and was expressed constitutively from early to late lactation. Analysis of recombinant MLP showed that it is an N-linked glycosylated protein and biophysical studies predicted that MLP is an amphipathic, α-helical protein, a typical feature of antimicrobial proteins. Functional analysis revealed MLP antibacterial activity against both opportunistic pathogenic Staphylococcus aureus and commensal Enterococcus faecalis bacteria but showed no effect on Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Salmonella enterica. Our data suggest that MLP is an evolutionarily ancient component of milk-mediated innate immunity absent in other mammals. We propose that MLP evolved specifically in the monotreme lineage supporting the evolution of lactation in these species to provide bacterial protection, at a time when mammals lacked nipples. PMID:25245409

  15. Monotreme lactation protein is highly expressed in monotreme milk and provides antimicrobial protection.

    PubMed

    Enjapoori, Ashwantha Kumar; Grant, Tom R; Nicol, Stewart C; Lefèvre, Christophe M; Nicholas, Kevin R; Sharp, Julie A

    2014-10-01

    Monotremes (platypus and echidna) are the descendants of the oldest ancestor of all extant mammals distinguished from other mammals by mode of reproduction. Monotremes lay eggs following a short gestation period and after an even briefer incubation period, altricial hatchlings are nourished over a long lactation period with milk secreted by nipple-less mammary patches located on the female's abdomen. Milk is the sole source of nutrition and immune protection for the developing young until weaning. Using transcriptome and mass spectrometry analysis of milk cells and milk proteins, respectively, a novel Monotreme Lactation Protein (MLP) was identified as a major secreted protein in milk. We show that platypus and short-beaked echidna MLP genes show significant homology and are unique to monotremes. The MLP transcript was shown to be expressed in a variety of tissues; however, highest expression was observed in milk cells and was expressed constitutively from early to late lactation. Analysis of recombinant MLP showed that it is an N-linked glycosylated protein and biophysical studies predicted that MLP is an amphipathic, α-helical protein, a typical feature of antimicrobial proteins. Functional analysis revealed MLP antibacterial activity against both opportunistic pathogenic Staphylococcus aureus and commensal Enterococcus faecalis bacteria but showed no effect on Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Salmonella enterica. Our data suggest that MLP is an evolutionarily ancient component of milk-mediated innate immunity absent in other mammals. We propose that MLP evolved specifically in the monotreme lineage supporting the evolution of lactation in these species to provide bacterial protection, at a time when mammals lacked nipples. PMID:25245409

  16. Milk Proteins, Peptides, and Oligosaccharides: Effects against the 21st Century Disorders

    PubMed Central

    Hsieh, Chia-Chien; Hernández-Ledesma, Blanca; Fernández-Tomé, Samuel; Weinborn, Valerie; Barile, Daniela; de Moura Bell, Juliana María Leite Nobrega

    2015-01-01

    Milk is the most complete food for mammals, as it supplies all the energy and nutrients needed for the proper growth and development of the neonate. Milk is a source of many bioactive components, which not only help meeting the nutritional requirements of the consumers, but also play a relevant role in preventing various disorders. Milk-derived proteins and peptides have the potential to act as coadjuvants in conventional therapies, addressing cardiovascular diseases, metabolic disorders, intestinal health, and chemopreventive properties. In addition to being a source of proteins and peptides, milk contains complex oligosaccharides that possess important functions related to the newborn's development and health. Some of the health benefits attributed to milk oligosaccharides include prebiotic probifidogenic effects, antiadherence of pathogenic bacteria, and immunomodulation. This review focuses on recent findings demonstrating the biological activities of milk peptides, proteins, and oligosaccharides towards the prevention of diseases of the 21st century. Processing challenges hindering large-scale production and commercialization of those bioactive compounds have been also addressed. PMID:25789308

  17. Bioactive Functions of Milk Proteins: a Comparative Genomics Approach.

    PubMed

    Sharp, Julie A; Modepalli, Vengama; Enjapoori, Ashwanth Kumar; Bisana, Swathi; Abud, Helen E; Lefevre, Christophe; Nicholas, Kevin R

    2014-12-01

    The composition of milk includes factors required to provide appropriate nutrition for the growth of the neonate. However, it is now clear that milk has many functions and comprises bioactive molecules that play a central role in regulating developmental processes in the young while providing a protective function for both the suckled young and the mammary gland during the lactation cycle. Identifying these bioactives and their physiological function in eutherians can be difficult and requires extensive screening of milk components that may function to improve well-being and options for prevention and treatment of disease. New animal models with unique reproductive strategies are now becoming increasingly relevant to search for these factors. PMID:26115887

  18. New Milk Protein-Derived Peptides with Potential Antimicrobial Activity: An Approach Based on Bioinformatic Studies

    PubMed Central

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins. PMID:25141106

  19. Effect of high hydrostatic pressure processing on in vitro digestion of milk proteins and fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of high hydrostatic pressure processing (HPP) is increasing in popularity in the food industry. Its ability to modify milk proteins and fats suggests that it may be useful in creating foods that suppress appetite; however, its effect on the digestibility of proteins and fats is unclear. The...

  20. Protein synthesis in geostimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  1. Free Maillard Reaction Products in Milk Reflect Nutritional Intake of Glycated Proteins and Can Be Used to Distinguish "Organic" and "Conventionally" Produced Milk.

    PubMed

    Schwarzenbolz, Uwe; Hofmann, Thomas; Sparmann, Nina; Henle, Thomas

    2016-06-22

    Using LC-MS/MS and isotopically labeled standard substances, quantitation of free Maillard reaction products (MRPs), namely, N(ε)-(carboxymethyl)lysine (CML), 5-(hydroxymethyl)-1H-pyrrole-2-carbaldehyde (pyrraline, PYR), N(δ)-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H), and N(ε)-fructosyllysine (FL), in bovine milk was achieved. Considerable variations in the amounts of the individual MRPs were found, most likely as a consequence of the nutritional uptake of glycated proteins. When comparing commercial milk samples labeled as originating from "organic" or "conventional" farming, respectively, significant differences in the content of free PYR (organic milk, 20-300 pmol/mL; conventional milk, 400-1000 pmol/mL) were observed. An analysis of feed samples indicated that rapeseed and sugar beet are the main sources for MRPs in conventional farming. Furthermore, milk of different dairy animals (cow, buffalo, donkey, goat, ewe, mare, camel) as well as for the first time human milk was analyzed for free MRPs. The distribution of their concentrations, with FL and PYR as the most abundant in human milk and with a high individual variability, also points to a nutritional influence. As the components of concentrated feed do not belong to the natural food sources of ruminants and equidae, free MRPs in milk might serve as indicators for an adequate animal feeding in near-natural farming and can be suitable parameters to distinguish between an "organic" and "conventional" production method of milk. PMID:27213835

  2. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.

    PubMed

    Arakawa, K; Matsunaga, K; Takihiro, S; Moritoki, A; Ryuto, S; Kawai, Y; Masuda, T; Miyamoto, T

    2015-03-01

    Lactobacillus gasseri is a widespread commensal lactic acid bacterium inhabiting human mucosal niches and has many beneficial effects as a probiotic. However, L. gasseri is difficult to grow in milk, which hurts usability for the food industry. It had been previously reported that supplementation with yeast extract or proteose peptone, including peptides, enables L. gasseri to grow well in milk. In this study, our objective was to confirm peptide requirement of L. gasseri and evaluate efficacy of peptide release by enzymatic proteolysis on growth of L. gassei in milk. Three strains of L. gasseri did not grow well in modified DeMan, Rogosa, Sharpe broth without any nitrogen sources (MRS-N), but addition of a casein-derived peptide mixture, tryptone, promoted growth. In contrast, little effect was observed after adding casein or a casein-derived amino acid mixture, casamino acids. These results indicate that L. gasseri requires peptides, not proteins or free amino acids, among milk-derived nitrogen sources for growth. Lactobacillus gasseri JCM 1131T hardly had growth capacity in 6 kinds of milk-based media: bovine milk, human milk, skim milk, cheese whey, modified MRS-N (MRSL-N) supplemented with acid whey, and MRSL-N supplemented with casein. Moreover, treatment with digestive proteases, particularly pepsin, to release peptides made it grow well in each milk-based medium. The pepsin treatment was the most effective for growth of strain JCM 1131T in skim milk among the tested food-grade proteases such as trypsin, α-chymotrypsin, calf rennet, ficin, bromelain, and papain. As well as strain JCM 1131T, pepsinolysis of milk improved growth of other L. gasseri strains and some strains of enteric lactobacilli such as Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri. These results suggest that some relatives of L. gasseri also use peptides as desirable nitrogen sources, and that milk may be a good supplier of nutritious

  3. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis

    PubMed Central

    He, J.; Cooper, H. M.; Reyes, A.; Di Re, M.; Sembongi, H.; Litwin, T. R.; Gao, J.; Neuman, K. C.; Fearnley, I. M.; Spinazzola, A.; Walker, J. E.; Holt, I. J.

    2012-01-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion. PMID:22453275

  4. Effect of Milk Proteins on Adhesion of Bacteria to Stainless Steel Surfaces

    PubMed Central

    Barnes, L.-M.; Lo, M. F.; Adams, M. R.; Chamberlain, A. H. L.

    1999-01-01

    Stainless steel coupons were treated with skim milk and subsequently challenged with individual bacterial suspensions of Staphylococcus aureus, Pseudomonas fragi, Escherichia coli, Listeria monocytogenes, and Serratia marcescens. The numbers of attached bacteria were determined by direct epifluorescence microscopy and compared with the attachment levels on clean stainless steel with two different surface finishes. Skim milk was found to reduce adhesion of S. aureus, L. monocytogenes, and S. marcescens. P. fragi and E. coli attached in very small numbers to the clear surfaces, making the effect of any adsorbed protein layer difficult to assess. Individual milk proteins α-casein, β-casein, κ-casein, and α-lactalbumin were also found to reduce the adhesion of S. aureus and L. monocytogenes. The adhesion of bacteria to samples treated with milk dilutions up to 0.001% was investigated. X-ray photoelectron spectroscopy was used to determine the proportion of nitrogen in the adsorbed films. Attached bacterial numbers were inversely related to the relative atomic percentage of nitrogen on the surface. A comparison of two types of stainless steel surface, a 2B and a no. 8 mirror finish, indicated that the difference in these levels of surface roughness did not greatly affect bacterial attachment, and reduction in adhesion to a milk-treated surface was still observed. Cross-linking of adsorbed proteins partially reversed the inhibition of bacterial attachment, indicating that protein chain mobility and steric exclusion may be important in this phenomenon. PMID:10508087

  5. Studies of composition and major protein level in milk and colostrum of mares.

    PubMed

    Pecka, Ewa; Dobrzański, Zbigniew; Zachwieja, Andrzej; Szulc, Tadeusz; Czyż, Katarzyna

    2012-02-01

    The aim of the study was to determine the changes in composition and physicochemical features (pH, density, thermostability and acidity) of mare colostrum and milk, and of protein fraction contribution (serum albumin, β-casein, γ-casein, α-lactalbumin, G class immunoglobulins) depending on lactation stage. The research material was colostrum and milk samples from 12 Arabian mares. Colostrum samples were collected within 2 h after parturition and milk samples were collected twice, in the 3rd and 6th weeks of lactation. The level of basic milk components decreased significantly (only lactose content increased) as compared to colostrum. Total bacteria count and somatic cell count decreased significantly with an increase in resistance and urea level. The changes observed were connected to differentiated contribution of particular protein fractions and their relative proportions. Lower levels of γ-casein (P ≤ 0.05), β-casein, serum albumin as well as α-lactalbumin were observed in colostrum as compared to those in milk. Any relationship between lactation stage and β-casein content was observed. Serum albumin and α-lactalbumin content increased in subsequent milkings. The level of G class immunoglobulins decreased significantly and its highest level was noted in colostrum. Any significant differences between the 3rd and 6th lactation weeks were obtained. PMID:22339698

  6. The Measurement of Protein in Powdered Milk Products and Infant Formulas: A Review and Recent Developments.

    PubMed

    Elgar, Dave; Evers, Jaap M; Holroyd, Stephen E; Johnson, Richard; Rowan, Angela

    2016-01-01

    Proteins are a key nutritional component of both powdered milk and infant formula types of product, and reliable methods for their determination are important for manufacturing and international trade. In this review, we distinguish between methods used for determining protein quality for nutrition purposes and those used for determining chemically defined protein. The former methods cover the ability of a dietary protein source to meet human nutritional requirements for the indispensable amino acids. The latter are chemical methods for the determination of total protein and can be divided into three broad types: total nitrogen determination, direct protein determination, and indirect protein determination. Current techniques and recent developments in each are reviewed. PMID:26823162

  7. Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows.

    PubMed

    Colmenero, J J Olmos; Broderick, G A

    2006-05-01

    Forty lactating Holstein cows, including 10 with ruminal cannulas, were blocked by days in milk into 8 groups and then randomly assigned to 1 of 8 incomplete 5 x 5 Latin squares to assess the effects of 5 levels of dietary crude protein (CP) on milk production and N use. Diets contained 25% alfalfa silage, 25% corn silage, and 50% concentrate, on a dry matter (DM) basis. Rolled high-moisture shelled corn was replaced with solvent-extracted soybean meal to increase CP from 13.5 to 15.0, 16.5, 17.9, and 19.4% of DM. Each of the 4 experimental periods lasted 28 d, with 14 d for adaptation and 14 d for data collection. Spot sampling of ruminal digesta, blood, urine, and feces was conducted on d 21 of each period. Intake of DM was not affected by diet but milk fat content as well as ruminal acetate, NH3, and branched-chain volatile fatty acids, urinary allantoin, and blood and milk urea all increased linearly with increasing CP. Milk and protein yield showed trends for quadratic responses to dietary CP and were, respectively, 38.3 and 1.18 kg/d at 16.5% CP. As a proportion of N intake, urinary N excretion increased from 23.8 to 36.2%, whereas N secreted in milk decreased from 36.5 to 25.4%, as dietary protein increased from 13.5 to 19.4%. Under the conditions of this study, yield of milk and protein were not increased by feeding more than 16.5% CP. The linear increase in urinary N excretion resulted from a sharp decline in N efficiency as dietary CP content increased. PMID:16606741

  8. Technical note: A portable on-chip assay system for absorbance and plasmonic detection of protein hormone in milk.

    PubMed

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2015-07-01

    This paper reports a portable device and method to extract and detect protein hormone in milk samples. Recombinant protein hormone spiked into milk samples was extracted by solid-phase extraction, and detection was carried out using the plasmonic property of gold nanoislands deposited on a glass substrate. Trace levels of hormone spiked in milk were analyzed by their optical absorbance property using a microfluidic chip. We built a portable assay system using disposable lab-on-chip devices. The proposed method is able to detect spiked recombinant protein hormone in milk at concentrations as low as 5ng/mL. PMID:25497819

  9. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    SciTech Connect

    Karen S. Browning

    2009-06-15

    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  10. [Inversion of True Protein Content in Milk Based on Hyperspectral Data].

    PubMed

    Zhang, Qian-qian; Tan, Kun

    2015-12-01

    As an indispensable drink of people's daily life, milk's quality has been also increasingly concerned by consumers. Rapid and accurate detection of milk and its products is the indispensable step for improving the quality of milk and daily products in production. However, traditional methods cannot meet the need. In this paper, rapid quantitative detection of true protein in pure milk was studied by using visible/near-infrared (VIS/NIR) reflectance spectroscopy (350-2500 nm). The spectral data and the protein content data of the pure milk samples were collected by ASD spectrometer and CEM rapid protein analyzer, respectively. Based on the analysis and comparison of different spectrum preprocessing methods and band selection methods, the feature bands were determined. Finally, using the Principle Component Regression (PCR) and Least Squares Support Vector Machine (LS-SVM) model, the regression models between the reflectance spectroscopy and the protein content in milk were presented for pure milk samples and the predictive ability was also analyzed. In this way, the optimal inversion model for true protein content in milk was established. The results were shown as follows: (1) In the process of spectral pretreatment, the combination of multiple scatter correction and second derivative achieved a better result; (2) Compared with the modeling of whole spectral, appropriate variable optimization models had the ability to improve the accuracy of the inversion results and reduce the modeling time; (3) The analysis results between PCR model and LS-SVM model demonstrated that the prediction accuracy of LS-SVM model was better than PCR model. The coefficient of determination (R(P)²) of PCR and LS-SVM were 0.952 2 and 0.958 0 respectively, and the root mean square error of prediction (RMSEP) of PCR and LS-SVM were 0.048 7 and 0.048 2 respectively. The result of this research is expected to provide a novel method for nondestructive and rapid detection of true protein in milk

  11. Chlorolissoclimides: New inhibitors of eukaryotic protein synthesis

    PubMed Central

    Robert, Francis; Gao, Hong Qing; Donia, Marwa; Merrick, William C.; Hamann, Mark T.; Pelletier, Jerry

    2006-01-01

    Lissoclimides are cytotoxic compounds produced by shell-less molluscs through chemical secretions to deter predators. Chlorinated lissoclimides were identified as the active component of a marine extract from Pleurobranchus forskalii found during a high-throughput screening campaign to characterize new protein synthesis inhibitors. It was demonstrated that these compounds inhibit protein synthesis in vitro, in extracts prepared from mammalian and plant cells, as well as in vivo against mammalian cells. Our results suggest that they block translation elongation by inhibiting translocation, leading to an accumulation of ribosomes on mRNA. These data provide a rationale for the cytotoxic nature of this class of small molecule natural products. PMID:16540697

  12. Proteomic profiling of camel and cow milk proteins under heat treatment.

    PubMed

    Felfoul, Imène; Jardin, Julien; Gaucheron, Frédéric; Attia, Hamadi; Ayadi, M A

    2017-02-01

    Cow and camel milk proteins before and after heat treatment at 80°C for 60min were identified using LC/MS and LC-MS/MS following monodimensional electrophoresis. The database used for the identification of camel and cow proteins was set from http://www.uniprot.org/. The obtained results showed that, after heating, camel milk at 80°C for 60min, camel α-lactalbumin (α-la) and peptidoglycan recognition protein (PGRP) were not detected while camel serum albumin (CSA) was significantly diminished. When heating cow milk at 80°C for 60min, α-lactalbumin (α-la) and β-lactoglobulin (β-lg) were not significantly detected. Moreover, 19 protein bands from SDS-PAGE were analyzed and a total of 45 different proteins were identified by LC-MS/MS. Casein fractions were kept intact under a heat treatment of 80°C during 60min of both camel and cow milks. Camel and bovine whey proteins were affected by a heat treatment of 80°C for 60min. PMID:27596405

  13. Potential clinical applications of multi-functional milk proteins and peptides in cancer management.

    PubMed

    Chen, H Y F; Mollstedt, O; Tsai, Men-Hwei; Kreider, R B

    2014-01-01

    The progression of cancer involves multiple changes that alter intracellular signaling to promote cell proliferation. Subsequent remodeling of the tumor microenvironment enhances metastasis by manipulating the immune system. Research in the past decade has shown that milk proteins and peptides are often multi-functional, exerting activities such as anti-microbial, immunomodulatory, cancer cell apoptosis, anti-metastasis, and antioxidant effects. Several milk-derived biologics, such as HAMLET (human α-lactalbumin made lethal to tumor cells) and the human recombinant form of lactoferrin, already demonstrated promising results in clinical trials. Lactoferricin peptide analogs are in early clinical development as antimicrobial agents and cancer immunotherapies. In addition, milk proteins and peptides are well tolerated and many exhibit oral bioavailability; thus they may complement standard therapies to boost overall success in cancer treatments. Lactoferrin, colostrum, and specific milk-derived peptide fractions are currently being developed as clinical nutrition for cancer prevention and chemotherapy protection. This review highlights the potential applications of milk proteins and peptides as pharmaceutical drug candidates and clinical nutrition in the overall management of cancer. PMID:24524762

  14. EFFECT OF ABOMASAL INFUSION OF FORMATE ON MILK PROTEIN OF COWS FED A METHIONINE-DEFICIENT DIET

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon from formate is transferred to the methyl group of Met in milk protein via the folate cycle. We hypothesized that post-ruminal formate infusion to dairy cows would partially compensate for dietary Met deficiency and enhance milk protein production. Six midlactation cows were used in a balance...

  15. EFFECT OF ANTIBIOTICS AND INHIBITORS ON M PROTEIN SYNTHESIS

    PubMed Central

    Brock, Thomas D.

    1963-01-01

    Brock, Thomas D. (Western Reserve University, Cleveland, Ohio). Effect of antibiotics and inhibitors on M protein synthesis. J. Bacteriol. 85:527–531. 1963.—This work extends the observations of Fox and Krampitz on M protein synthesis in nongrowing cells of streptococci. A survey of a large number of antibiotics and other potential inhibitors was made. Some substances bring about inhibition of fermentation and inhibit M protein synthesis because they deprive the cell of the energy needed for this process. A second group of substances inhibit growth at concentrations tenfold or more lower than they inhibit M protein synthesis. These are the antibiotics which inhibit synthesis of cell wall or other structures in growing cells, but do not affect protein synthesis. A third group of substances inhibit growth and M protein synthesis at the same concentration. These substances probably inhibit growth because they inhibit general protein synthesis, and are therefore specific inhibitors of protein synthesis. In this class are chloramphenicol, erythromycin, and the tetracyclines. Several other antibiotics of previously unknown mode of action are in this class. A fourth group of substances had no effect on M protein synthesis. No substances were found which inhibited M protein synthesis at a lower concentration than that which inhibited growth. M protein synthesis in nongrowing cells may be a useful model system for obtaining a detailed understanding of protein synthesis. PMID:14042928

  16. Origins of the protein synthesis cycle

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    Largely derived from experiments in molecular evolution, a theory of protein synthesis cycles has been constructed. The sequence begins with ordered thermal proteins resulting from the self-sequencing of mixed amino acids. Ordered thermal proteins then aggregate to cell-like structures. When they contained proteinoids sufficiently rich in lysine, the structures were able to synthesize offspring peptides. Since lysine-rich proteinoid (LRP) also catalyzes the polymerization of nucleoside triphosphate to polynucleotides, the same microspheres containing LRP could have synthesized both original cellular proteins and cellular nucleic acids. The LRP within protocells would have provided proximity advantageous for the origin and evolution of the genetic code.

  17. Application of mass spectrometry for the detection of glycation and oxidation products in milk proteins.

    PubMed

    Meltretter, Jasmin; Pischetsrieder, Monika

    2008-04-01

    Protein mass spectometry techniques, such as electrospray ionization mass spectrometry or matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), are effective methods to screen for protein modifications derived from the Maillard reaction. The analysis of the intact proteins reveals the major modification, most commonly the Amadori product, whereas partial enzymatic hydrolysis prior to mass spectrometry additionally allows the detection of minor adducts. Therefore, a mass spectrometric method was developed for the analysis of whey protein modifications occurring during heat treatment. The two main whey proteins, alpha-lactalbumin and beta-lactoglobulin, were incubated with lactose in a milk model and modifications were recorded using MALDI-TOF-MS. The analysis of the intact proteins revealed protein species with 0-4 lactulosyl residues. Partial enzymatic hydrolysis with endoproteinase AspN prior to mass spectrometric analysis enabled the detection of further modifications and their localization in the amino acid sequence. Detected modifications were lactulosyllysine, N epsilon-(carboxymethyl)lysine, lysine aldehyde, methionine sulfoxide, cyclization of N-terminal glutamic acid to a pyrrolidone, and oxidation of cysteine or tryptophan. Protein modifications in heated milk and commercially available dairy products can be analyzed after the separation of the milk proteins using one-dimensional SDS-PAGE. PMID:18448807

  18. Mapping quantitative trait loci for milk production and genetic polymorphisms of milk proteins in dairy sheep

    PubMed Central

    2005-01-01

    In this paper, we present recent advances in the molecular dissection of complex traits in dairy sheep and discuss their possible impact on breeding schemes. In the first step, we review the literature data on genetic polymorphisms and the effects of sheep αs1-casein and β-lactoglobulin loci. It is concluded that the results are rather inconsistent and cannot be used in dairy sheep selection. In a second step, we describe the strategy implemented in France, Italy and Spain taking advantage of the genetic maps for QTL detection. These studies were part of a European project, called "genesheepsafety", which investigated both milk production and functional traits. Preliminary QTL results are presented for production traits. PMID:15601591

  19. Freeze-drying of "pearl milk tea": A general strategy for controllable synthesis of porous materials.

    PubMed

    Zhou, Yingke; Tian, Xiaohui; Wang, Pengcheng; Hu, Min; Du, Guodong

    2016-01-01

    Porous materials have been widely used in many fields, but the large-scale synthesis of materials with controlled pore sizes, pore volumes, and wall thicknesses remains a considerable challenge. Thus, the controllable synthesis of porous materials is of key general importance. Herein, we demonstrate the "pearl milk tea" freeze-drying method to form porous materials with controllable pore characteristics, which is realized by rapidly freezing the uniformly distributed template-containing precursor solution, followed by freeze-drying and suitable calcination. This general and convenient method has been successfully applied to synthesize various porous phosphate and oxide materials using different templates. The method is promising for the development of tunable porous materials for numerous applications of energy, environment, and catalysis, etc. PMID:27193866

  20. Electrolyte-free milk protein solution influences sodium and fluid retention in rats.

    PubMed

    Ishihara, Kengo; Kato, Yoshiho; Usami, Ayako; Yamada, Mari; Yamamura, Asuka; Fushiki, Tohru; Seyama, Yousuke

    2013-01-01

    Milk is an effective post-exercise rehydration drink that maintains the net positive fluid balance. However, it is unclear which components are responsible for this effect. We assessed the effect of milk protein solution (MPS) obtained by dialysis on body fluid retention. Milk, MPS, milk electrolyte solution (MES), sports drink and water were administered to male Wistar rats at a dose of 6 ml/rat after treadmill exercise. Total body fluid retention was assessed by urine volume 4 h after administration of hydrating liquids. The rate of gastric emptying was evaluated by a tracer method using (13)C-labelled acetate. Plasma osmolality, Na and K levels, and urinary Na and K were measured by HPLC and osmometry, respectively. The gastric emptying rate was not delayed by MPS. During 4 h of rehydration, cumulative urine volumes differed significantly between treatment groups (P < 0·05) with 4·9, 2·2 and 3·4 ml from water-, milk- and MPS-fed rats, respectively. Thus, MPS elicited 50 % of the total body fluid retention of milk. Plasma aldosterone levels were significantly higher in MPS- and milk-fed rats compared with water-fed rats. Plasma osmolality was maintained at higher levels in MPS-fed rats than in water- and MES-fed rats (P < 0·05). Cumulative urine Na excretion was also suppressed in the milk- and MPS-fed groups compared with the MES-fed group. Our results demonstrate that MPS obtained by dialysis clearly affects net body water balance without affecting gastric emptying after exercise. This effect was attributed to retention of Na and water, and maintenance of plasma osmolality. PMID:25191594

  1. Postnatal ontogeny of skeletal muscle protein synthesis in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The neonatal period is characterized by rapid growth and elevated rates of synthesis and accretion of skeletal muscle proteins. The fractional rate of muscle protein synthesis is very high at birth and declines rapidly with age. The elevated capacity for muscle protein synthesis in the neonatal pig ...

  2. Postnatal ontogeny of skeletal muscle protein synthesis in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The neonatal period is characterized by rapid growth and elevated rates of synthesis and accretion of skeletal muscle proteins. The fractional rate of muscle protein synthesis is very high at birth and declines rapidly with development. The elevated capacity for muscle protein synthesis in the neo...

  3. Severe Food Protein-Induced Enterocolitis Syndrome to Cow’s Milk in Infants

    PubMed Central

    Yang, Min; Geng, Lanlan; Xu, Zhaohui; Chen, Peiyu; Friesen, Craig A.; Gong, Sitang; Li, Ding-You

    2015-01-01

    Cow’s milk is the most common cause of food-protein-induced enterocolitis syndrome (FPIES). The aim of this study was to examine the clinical features and treatment outcomes of infants with severe FPIES to cow’s milk. We reviewed all infants ≤12 months of age who were hospitalized and diagnosed with severe FPIES to cow’s milk between 1 January 2011 and 31 August 2014 in a tertiary Children’s Medical Center in China. Patients’ clinical features, feeding patterns, laboratory tests, and treatment outcomes were reviewed. A total of 12 infants met the inclusion criteria. All infants presented with diarrhea, edema, and hypoalbuminemia. Other main clinical manifestations included regurgitation/vomiting, skin rashes, low-grade fever, bloody and/or mucous stools, abdominal distention, and failure to thrive. They had clinical remission with resolution of diarrhea and significant increase of serum albumin after elimination of cow’s milk protein (CMP) from the diet. The majority of infants developed tolerance to the CMP challenge test after 12 months of avoidance. In conclusion, we reported the clinical experience of 12 infants with severe FPIES to cow’s milk, which resulted in malnutrition, hypoproteinemia, and failure to thrive. Prompt treatment with CMP-free formula is effective and leads to clinical remission of FPIES in infants. PMID:26703722

  4. Severe Food Protein-Induced Enterocolitis Syndrome to Cow's Milk in Infants.

    PubMed

    Yang, Min; Geng, Lanlan; Xu, Zhaohui; Chen, Peiyu; Friesen, Craig A; Gong, Sitang; Li, Ding-You

    2016-01-01

    Cow's milk is the most common cause of food-protein-induced enterocolitis syndrome (FPIES). The aim of this study was to examine the clinical features and treatment outcomes of infants with severe FPIES to cow's milk. We reviewed all infants ≤ 12 months of age who were hospitalized and diagnosed with severe FPIES to cow's milk between 1 January 2011 and 31 August 2014 in a tertiary Children's Medical Center in China. Patients' clinical features, feeding patterns, laboratory tests, and treatment outcomes were reviewed. A total of 12 infants met the inclusion criteria. All infants presented with diarrhea, edema, and hypoalbuminemia. Other main clinical manifestations included regurgitation/vomiting, skin rashes, low-grade fever, bloody and/or mucous stools, abdominal distention, and failure to thrive. They had clinical remission with resolution of diarrhea and significant increase of serum albumin after elimination of cow's milk protein (CMP) from the diet. The majority of infants developed tolerance to the CMP challenge test after 12 months of avoidance. In conclusion, we reported the clinical experience of 12 infants with severe FPIES to cow's milk, which resulted in malnutrition, hypoproteinemia, and failure to thrive. Prompt treatment with CMP-free formula is effective and leads to clinical remission of FPIES in infants. PMID:26703722

  5. Maternal protein reserves and their influence on lactational performance in rats. 3. The effects of dietary protein restriction and stage of lactation on milk composition.

    PubMed

    Pine, A P; Jessop, N S; Oldham, J D

    1994-12-01

    The effects of severe protein restriction following parturition on the changes in rat milk composition during lactation were investigated using multiparous female Sprague-Dawley rats caged individually following mating and offered a high-protein diet (H; 215 g crude protein (N x 6.25; CP)/kg dry matter (DM)) ad lib. until parturition. Following parturition, half the females continued to receive diet H, whilst the remainder were offered a diet low in protein (L; 90 g CP/kg DM) ad lib. On days 2, 4, 8 and 12 of lactation groups of females from both dietary treatments were used to provide a milk sample. Milk samples were analysed for their lactose (enzymically), protein (binding to Coomassie blue), lipid (gravimetrically) and mineral (spectrophotometrically) contents. The milk lactose concentration of group H increased with stage of lactation (r2 0.85, P < 0.001). Such an increase was prevented by diet L, and from day 8 of lactation the milk lactose of group L was lower (P < 0.05) than in group H. Group H milk protein concentration did not change during lactation and averaged 90.7 mg/g. Dietary protein restriction reduced the milk protein concentration of group L so that on days 2, 4 and 12 of lactation it was lower (P < 0.05) than that of group H. On day 8 of lactation the milk protein concentration of group L had increased (P < 0.05) and was comparable with that of group H. For group H, milk lipid averaged 166.8 mg/g and was generally unchanged during lactation. Diet L increased (P < 0.01) the milk lipid concentration (205.5 mg/g) compared with diet H and this was also significant on days 4 and 8 of lactation (P < 0.05). Group L milk lipid concentration also increased between days 4 and 8 of lactation (P < 0.05). Milk Na concentration declined during lactation in both dietary groups (P < 0.01) but was unaffected by dietary treatment. Both milk Ca and P concentrations increased (P < 0.01) during lactation in both dietary groups, whilst protein restriction also

  6. Effects of dietary cottonseed oil and tannin supplements on protein and fatty acid composition of bovine milk.

    PubMed

    Aprianita, Aprianita; Donkor, Osaana N; Moate, Peter J; Williams, S Richard O; Auldist, Martin J; Greenwood, Jae S; Hannah, Murray C; Wales, William J; Vasiljevic, Todor

    2014-05-01

    This experiment was conducted to determine the effects of diets supplemented with cottonseed oil, Acacia mearnsii-condensed tannin extract, and a combination of both on composition of bovine milk. Treatment diets included addition of cottonseed oil (800 g/d; CSO), condensed tannin from Acacia mearnsii (400 g/d; TAN) or a combination of cottonseed oil (800 g/d) and condensed tannin (400 g/d; CPT) with a diet consisting of 6·0 kg dry matter (DM) of concentrates and alfalfa hay ad libitum, which also served as the control diet (CON). Relative to the CON diet, feeding CSO and CPT diets had a minor impact on feed intake and yield of lactose in milk. These diets increased yields of milk and protein in milk. In contrast to the TAN diet, the CSO and CPT diets significantly decreased milk fat concentration and altered milk fatty acid composition by decreasing the proportion of saturated fatty acids but increasing proportions of monounsaturated and polyunsaturated fatty acids. The CPT diet had a similar effect to the CSO diet in modifying fatty acid profile. Overall, reduction in milk fat concentration and changes in milk fatty acid profile were probably due to supplementation of linoleic acid-rich cottonseed oil. The TAN diet had no effect on feed intake, milk yield and milk protein concentration. However, a reduction in the yields of protein and lactose occurred when cows were fed this diet. Supplemented tannin had no significant effect on fat concentration and changes in fatty acid profile in milk. All supplemented diets did not affect protein concentration or composition, nitrogen concentration, or casein to total protein ratio of the resulting milk. PMID:24594257

  7. Amaltheys: A fluorescence-based analyzer to assess cheese milk denatured whey proteins.

    PubMed

    Lacotte, Pierre; Gomez, Franck; Bardeau, Floriane; Muller, Sabine; Acharid, Abdelhaq; Quervel, Xavier; Trossat, Philippe; Birlouez-Aragon, Inès

    2015-10-01

    The cheese industry faces many challenges to optimize cheese yield and quality. A very precise standardization of the cheese milk is needed, which is achieved by a fine control of the process and milk composition. Thorough analysis of protein composition is important to determine the amount of protein that will be retained in the curd or lost in the whey. The fluorescence-based Amaltheys analyzer (Spectralys Innovation, Romainville, France) was developed to assess pH 4.6-soluble heat-sensitive whey proteins (sWP*) in 5 min. These proteins are those that can be denatured upon heat-treatment and further retained in the curd after coagulation. Monitoring of sWP* in milk and subsequent adaptation of the process is a reliable solution to achieve stable cheese yield and quality. Performance of the method was evaluated by an accredited laboratory on a 0 to 7 g/L range. Accuracy compared with the reference Kjeldahl method is also provided with a standard error of 0.25 g/L. Finally, a 4-mo industrial trial in a cheese plant is described, where Amaltheys was used as a process analytical technology to monitor sWP* content in ingredients and final cheese milk. Calibration models over quality parameters of final cheese were also built from near-infrared and fluorescence spectroscopic data. The Amaltheys analyzer was found to be a rapid, compact, and accurate device to help implementation of standardization procedures in the dairy industry. PMID:26210276

  8. Effects of Different Protein Supplements on Milk Production and Nutrient Utilization in Lactating Dairy Cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixteen (8 ruminally cannulated) multiparous and 8 primiparous lactating Holstein cows were used in 6 replicated 4 x 4 Latin squares to test the effects of feeding supplemental protein as urea, solvent soybean meal (SSBM), cottonseed meal (CSM), or canola meal (CM) on milk production, nutrient utili...

  9. Low levels of aflatoxin B1, ricin and milk enhance recombinant protein production in mammalian cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changing the optimal tissue culture medium by adding low levels of environmental stress such as 1 µM of the fungal toxin aflatoxin B1 (AFB1), 1 ng of the castor bean protein toxin ricin in transduced mammalian cells or 1% reconstituted milk enhances transcription and increases production of the foll...

  10. Proteolytic activity of Enterococcus faecalis VB63F for reduction of allergenicity of bovine milk proteins.

    PubMed

    Biscola, V; Tulini, F L; Choiset, Y; Rabesona, H; Ivanova, I; Chobert, J-M; Todorov, S D; Haertlé, T; Franco, B D G M

    2016-07-01

    With the aim of screening proteolytic strains of lactic acid bacteria to evaluate their potential for the reduction of allergenicity of the major bovine milk proteins, we isolated a new proteolytic strain of Enterococcus faecalis (Ent. faecalis VB63F) from raw bovine milk. The proteases produced by this strain had strong activity against caseins (αS1-, αS2-, and β-casein), in both skim milk and sodium caseinate. However, only partial hydrolysis of whey proteins was observed. Proteolysis of Na-caseinate and whey proteins, observed after sodium dodecyl sulfate-PAGE, was confirmed by analysis of peptide profiles by reversed-phase HPLC. Inhibition of proteolysis with EDTA indicated that the proteases produced by Ent. faecalis VB63F belonged to the group of metalloproteases. The optimal conditions for their activity were 42°C and pH 6.5. The majority of assessed virulence genes were absent in Ent. faecalis VB63F. The obtained results suggest that Ent. faecalis VB63F could be efficient in reducing the immunoreactivity of bovine milk proteins. PMID:27179865

  11. Factors affecting application of milk allantoin as an estimator of microbial protein flow to the duodenum under commercial conditions.

    PubMed

    Schager, W M; Harrison, J H; Gaskins, C T; Davidson, D

    2003-05-01

    Three experiments were conducted to determine the effect of diet change, milk sampling technique, and bovine somatotropin (bST) on allantoin output in milk and the use of allantoin as a practical, noninvasive method for estimating microbial protein flow in dairy cattle. In experiment 1, four lactating Holstein cows were used in a 2 x 2 Latin square design with two treatments (ratio of forage to concentrate) and two periods. In experiment 2, six Holstein cows were used in a completely randomized design, and milk was collected by 1) a strip sample collected immediately before milking, 2) a strip sample collected 3 min from start of milking, and 3) a composite sample taken with an autosampler. In experiment three, 10 cows were used in a randomized block design to determine the effect of bST on milk allantoin. Milk samples were taken daily for 21 d, 7 d before, and 14 d after bST administration. In experiment 1, allantoin output (mmol/d) was significantly greater for cows fed the higher ratio of concentrate to forage, and there was a significant change in the amount of allantoin in milk 12 h (first subsequent milking) after a diet change. There was no difference in milk yield or dry matter intake between treatments. In experiment 2, no difference was detected in milk allantoin concentration among the three sampling methods. In experiment 3, milk yield, allantoin concentration, and total allantoin output was significantly increased after bST administration even though dry matter intake (DMI) remained unchanged. During the first 14 d following bST administration, estimates of microbial protein production derived from milk allantoin may be inaccurate due to increased milk production without an increase in DMI. PMID:12778582

  12. Milk digesta and milk protein fractions influence the adherence of Lactobacillus gasseri R and Lactobacillus casei FMP to human cultured cells.

    PubMed

    Volstatova, Tereza; Havlik, Jaroslav; Potuckova, Miroslava; Geigerova, Martina

    2016-08-10

    Adhesion to the intestinal epithelium is considered an important feature of probiotic bacteria, which may increase their persistence in the intestine, allowing them to exert their beneficial health effect or promote the colonisation process. However, this feature might be largely dependent on the host specificity or diet. In the present study, we investigated the effect of selected milks and milk protein fractions on the ability of selected lactobacilli to adhere to the cells of an intestinal model based on co-culture Caco-2/HT29-MTX cell lines. Most milk digesta did not significantly affect bacterial adhesion except for UHT-treated milk and sheep milk. The presence of UHT-treated milk digesta reduced the adhesion of Lactobacillus gasseri R by 61% but not that of Lactobacillus casei FMP. However, sheep milk significantly increased the adherence of L. casei FMP (P < 0.05) but not of L. gasseri R. Among the protein fractions, rennet casein (RCN) and bovine serum albumin (BSA) showed reproducible patterns and strain-specific effects on bacterial adherence. While RCN reduced the adherence of L. gasseri R to <50% compared to the control, it did not have a significant effect on L. casei FMP. In contrast, BSA reduced L. casei FMP adherence to a higher extent than that of L. gasseri R. Whey protein (WH) tended to increase the adherence of both strains by 130%-180%. Recently, interactions between the host diet and its microbiota have attracted considerable interest. Our results may explain one of the aspects of the role of milk in the development of microbiota or support of probiotic supplements. Based on our data, we conclude that the persistence of probiotic strains supplemented as part of dairy food or constitutional microbiota in the gut might be affected negatively or positively by the food matrix through complex strain or concentration dependent effects. PMID:27435508

  13. Cow's milk and goat's milk.

    PubMed

    Turck, Dominique

    2013-01-01

    Cow's milk is increasingly suggested to play a role in the development of chronic degenerative, non-communicable disorders whereas goat's milk is advocated as having several health benefits. Cow's milk is a rich and cheap source of protein and calcium, and a valuable food for bone health. Despite their high content in saturated fats, consumption of full-fat dairy products does not seem to cause significant changes in cardiovascular disease risk variables. Early introduction of cow's milk is a strong negative determinant of iron status. Unmodified cow's milk does not meet nutritional requirements of infants although it is acceptable to add small volumes of cow's milk to complementary foods. Cow's milk protein allergy has a prevalence ranging from 2 to 7%, and the age of recovery is usually around 2-3 years. The evidence linking cow's milk intake to a later risk of type 1 diabetes or chronic degenerative, non-communicable disorders (obesity, metabolic syndrome, type 2 diabetes, hypertension) is not convincing. Milk probably protects against colorectal cancer, diets high in calcium are a probable cause of prostate cancer, and there is limited evidence suggesting that high consumption of milk and dairy products increases the risk for prostate cancer. There is no evidence to support the use of a cow's milk-free diet as a primary treatment for individuals with autistic spectrum disorders. Unmodified goat's milk is not suitable for infants because of the high protein and minerals content and of a low folate content. Goat's milk has no clear nutritional advantage over cow's milk and is not less allergenic. The European Food Safety Authority recently stated that proteins from goat's milk can be suitable as a protein source for infant and follow-on formula, provided the final product complies with the compositional criteria laid down in Directive 2006/141/EC. PMID:24029787

  14. Cumulative Muscle Protein Synthesis and Protein Intake Requirements.

    PubMed

    Simmons, Erin; Fluckey, James D; Riechman, Steven E

    2016-07-17

    Muscle protein synthesis (MPS) fluctuates widely over the course of a day and is influenced by many factors. The time course of MPS responses to exercise and the influence of training and nutrition can only be pieced together from several different investigations and methods, many of which create unnatural experimental conditions. Measurements of cumulative MPS, the sum synthesis over an extended period, using deuterium oxide have been shown to accurately reflect muscle responses and may allow investigations of the response to exercise, total protein intake requirements, and interaction with protein timing in free-living experimental conditions; these factors have yet to be carefully integrated. Such studies could include clinical and athletic populations to integrate nutritional and exercise recommendations and help guide their revisions to optimize the skeletal muscle function that is so important to overall health. PMID:27215586

  15. Study of the protein-bound fraction of calcium, iron, magnesium and zinc in bovine milk

    NASA Astrophysics Data System (ADS)

    Silva, Fernando V.; Lopes, Gisele S.; Nóbrega, Joaquim A.; Souza, Gilberto B.; Nogueira, Ana Rita A.

    2001-10-01

    Two approaches were used to study the interaction of Ca, Fe, Mg and Zn with bovine milk proteins by inductively coupled plasma optical emission spectrometry (ICPOES). Selective separations in bovine milk samples were accomplished employing an acid protein precipitation using 100 g l -1 trichloroacetic acid (TCA), and an enzymatic protein hydrolysis using 50 g l -1 pepsin (PEP) solution, respectively. The results were compared with total mineral contents determined after microwave-assisted acid digestion. The results obtained by enzymatic and acid precipitation evidenced the different interaction forms of Ca, Fe, Mg and Zn in the system formed by milk components. Iron was not solubilized by the TCA treatment, but was recovered completely after the enzymatic treatment. Quantitative recoveries of Ca, Mg and Zn were obtained using both approaches, showing that these analytes were bound to milk compounds affected by either treatment. Calcium, Mg and Zn are mainly associated with colloidal calcium phosphate and Fe is bound to the backbone of the casein polypeptide chain, cleaved by pepsin enzyme. The proposed approaches could be used to assess the complexity of these chemical interactions.

  16. Increased Milk Protein Concentration in a Rehydration Drink Enhances Fluid Retention Caused by Water Reabsorption in Rats.

    PubMed

    Ito, Kentaro; Saito, Yuri; Ashida, Kinya; Yamaji, Taketo; Itoh, Hiroyuki; Oda, Munehiro

    2015-01-01

    A fluid-retention effect is required for beverages that are designed to prevent dehydration. That is, fluid absorbed from the intestines should not be excreted quickly; long-term retention is desirable. Here, we focused on the effect of milk protein on fluid retention, and propose a new effective oral rehydration method that can be used daily for preventing dehydration. We first evaluated the effects of different concentrations of milk protein on fluid retention by measuring the urinary volumes of rats fed fluid containing milk protein at concentrations of 1, 5, and 10%. We next compared the fluid-retention effect of milk protein-enriched drink (MPD) with those of distilled water (DW) and a sports drink (SD) by the same method. Third, to investigate the mechanism of fluid retention, we measured plasma insulin changes in rats after ingesting these three drinks. We found that the addition of milk protein at 5 or 10% reduced urinary volume in a dose-dependent manner. Ingestion of the MPD containing 4.6% milk protein resulted in lower urinary volumes than DW and SD. MPD also showed a higher water reabsorption rate in the kidneys and higher concentrations of plasma insulin than DW and SD. These results suggest that increasing milk protein concentration in a beverage enhances fluid retention, which may allow the possibility to develop rehydration beverages that are more effective than SDs. In addition, insulin-modifying renal water reabsorption may contribute to the fluid-retention effect of MPD. PMID:26235579

  17. Chemical characteristics and enhanced hepatoprotective activities of Maillard reaction products derived from milk protein-sugar system.

    PubMed

    Oh, Nam Su; Young Lee, Ji; Lee, Hyun Ah; Joung, Jae Yeon; Shin, Yong Kook; Kim, Sae Hun; Kim, Younghoon; Lee, Kwang Won

    2016-02-01

    The objective of this study was to investigate the characteristics, antioxidative properties, and hepatoprotective effects of Maillard reaction products (MRP) from milk protein reacted with sugars. The MRP were obtained from milk protein, whey protein concentrates and sodium caseinate, using 2 types of sugars, lactose and glucose, by heating the mixture at 55°C for 7d in a sodium phosphate buffer (pH 7.4). Changes in the chemical modification of the milk protein were monitored by measuring the protein-bound carbonyls and PAGE protein profiles. The results showed that the amount of protein-bound carbonyls increased after Maillard reaction (MR). In addition, sodium dodecyl sulfate-PAGE analysis indicated a formation of high-molecular weight complexes through MR. The modification sites induced by MR of milk protein were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of tryptic-digested gel spots of MRP. As a result, modification and their localization in AA sequence of MRP was identified. Also, the MRP showed higher antioxidant activities than the intact milk protein, and they reduced intracellular reactive oxygen species production and inhibited the depletion of the reduced glutathione concentrations in the HepG2 cells. In particular, glucose-sodium caseinate MRP showed the highest biological activities among all MRP. Therefore, these results suggest that the MRP from milk protein reacting with sugars possess effective antioxidant activity and have a protective ability against oxidative damage. PMID:26627852

  18. Functional properties and applications of edible films made of milk proteins.

    PubMed

    Chen, H

    1995-11-01

    Edible films and coatings based on milk proteins have been developed to be used as a protective layer on foods or between food components. The most important functionalities of an edible film or coating include control of mass transfers, mechanical protection, and sensory appeal. Control of mass transfers involves preventing foods from desiccation, regulating microenvironments of gases around foods, and controlling migration of ingredients and additives in the food systems. Adequate mechanical strength of an edible film is necessary to protect the integrity of packaging throughout distribution. The sensory properties of an edible coating or film are a key factor for acceptance of final products. Simple milk protein films are good barriers to gas transfers because of their complex intermolecular bindings. Lipid is frequently incorporated into protein films to improve their properties as barriers to moisture vapor. Protein films are distinctly different in mechanical profiles from those films made of other materials. Approaches traditionally used in material sciences have been adapted and modified for studying the functionality of edible films. Potential uses of innovative processing technologies in film making to alter the film functionality are briefly discussed. A survey of potential applications of edible film based on milk protein is presented. PMID:8747343

  19. Effect of protein provision via milk replacer or solid feed on protein metabolism in veal calves.

    PubMed

    Berends, H; van den Borne, J J G C; Røjen, B A; Hendriks, W H; Gerrits, W J J

    2015-02-01

    The current study evaluated the effects of protein provision to calves fed a combination of solid feed (SF) and milk replacer (MR) at equal total N intake on urea recycling and N retention. Nitrogen balance traits and [(15)N2]urea kinetics were measured in 30 calves (23 wk of age, 180±3.7kg of body weight), after being exposed to the following experimental treatments for 11 wk: a low level of SF with a low N content (SF providing 12% of total N intake), a high level of SF with a low N content (SF providing 22% of total N intake), or a high level of SF with a high N content (SF providing 36% of total N intake). The SF mixture consisted of 50% concentrates, 25% corn silage, and 25% straw on a dry matter basis. Total N intake was equalized to 1.8g of N·kg of BW(-0.75)·d(-1) by adjusting N intake via MR. All calves were housed individually on metabolic cages to allow for quantification of a N balance of calves for 5 d, and for the assessment of urea recycling from [(15)N2]urea kinetics. Increasing low-N SF intake at equal total N intake resulted in a shift from urinary to fecal N excretion but did not affect protein retention (0.71g of N·kg of BW(-0.75)·d(-1)). Increasing low-N SF intake increased urea recycling but urea reused for anabolism remained unaffected. Total-tract neutral detergent fiber digestibility decreased (-9%) with increasing low-N SF intake, indicating reduced rumen fermentation. Increasing the N content of SF at equal total N intake resulted in decreased urea production, excretion, and return to ornithine cycle, and increased protein retention by 17%. This increase was likely related to an effect of energy availability on protein retention due to an increase in total-tract neutral detergent fiber digestion (>10%) and due to an increased energy supply via the MR. In conclusion, increasing low-N SF intake at the expense of N intake from MR, did not affect protein retention efficiency in calves. Increasing the N content of SF at equal total N

  20. Fast and selective determination of total protein in milk powder via titration of moving reaction boundary electrophoresis.

    PubMed

    Guo, Cheng-ye; Wang, Hou-yu; Liu, Xiao-ping; Fan, Liu-yin; Zhang, Lei; Cao, Cheng-xi

    2013-05-01

    In this paper, moving reaction boundary titration (MRBT) was developed for rapid and accurate quantification of total protein in infant milk powder, from the concept of moving reaction boundary (MRB) electrophoresis. In the method, the MRB was formed by the hydroxide ions and the acidic residues of milk proteins immobilized via cross-linked polyacrylamide gel (PAG), an acid-base indicator was used to denote the boundary motion. As a proof of concept, we chose five brands of infant milk powders to study the feasibility of MRBT method. The calibration curve of MRB velocity versus logarithmic total protein content of infant milk powder sample was established based on the visual signal of MRB motion as a function of logarithmic milk protein content. Weak influence of nonprotein nitrogen (NPN) reagents (e.g., melamine and urea) on MRBT method was observed, due to the fact that MRB was formed with hydroxide ions and the acidic residues of captured milk proteins, rather than the alkaline residues or the NPN reagents added. The total protein contents in infant milk powder samples detected via the MRBT method were in good agreement with those achieved by the classic Kjeldahl method. In addition, the developed method had much faster measuring speed compared with the Kjeldahl method. PMID:23483553

  1. Redox proteomics of fat globules unveils broad protein lactosylation and compositional changes in milk samples subjected to various technological procedures.

    PubMed

    Arena, Simona; Renzone, Giovanni; Novi, Gianfranco; Scaloni, Andrea

    2011-10-19

    The Maillard reaction between lactose and proteins occurs during thermal treatment of milk and lactosylated β-lactoglobulin, α-lactalbumin and caseins have widely been used to monitor the quality of dairy products. We recently demonstrated that a number of other whey milk proteins essential for nutrient delivery, defense against bacteria/virus and cellular proliferation become lactosylated during milk processing. The extent of their modification is associated with the harshness of product manufacturing. Since fat globule proteins are also highly important for the health-beneficial properties of milk, an evaluation of their lactosylation is crucial for a complete understanding of aliment nutritional characteristics. This is more important when milk is the unique dietary source, as in the infant diet. To this purpose, a sequential proteomic procedure involving an optimized milk fat globule (MFG) preparation/electrophoretic resolution, shot-gun analysis of gel portions for protein identification, selective trapping of lactosylated peptides by phenylboronate chromatography and their analysis by nanoLC-ESI-electron transfer dissociation (ETD) tandem MS was used for systematic characterization of fat globule proteins in milk samples subjected to various manufacturing procedures. Significant MFG protein compositional changes were observed between samples, highlighting the progressive adsorption of caseins and whey proteins on the fat globule surface as result of the technological process used. A significant lactosylation of MFG proteins was observed in ultra-high temperature sterilized and powdered for infant nutrition milk preparations, which well paralleled with the harshness of thermal treatment. Globally, this study allowed the identification of novel 157 non-redundant modification sites and 35 MFG proteins never reported so far as being lactosylated, in addition to the 153 ones ascertained here as present on other 21 MFG-adsorbed proteins whose nature was already

  2. Utilization of supercritical carbon dioxide to produce milk protein fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nutritional, functional and bioactive properties of the individual whey proteins are appreciated by health-conscious consumers, yet few methods have been developed to produce these proteins to satisfy demand. The methods that are available are relatively new technologies that have not been prove...

  3. Protein Synthesis in Relation to Ripening of Pome Fruits 1

    PubMed Central

    Frenkel, Chaim; Klein, Isaac; Dilley, D. R.

    1968-01-01

    Protein synthesis by intact Bartlett pear fruits was studied with ripening as measured by flesh softening, chlorophyll degradation, respiration, ethylene synthesis, and malic enzyme activity. Protein synthesis is required for normal ripening, and the proteins synthesized early in the ripening process are, in fact, enzymes required for ripening. 14C-Phenylalanine is differentially incorporated into fruit proteins separated by acrylamide gel electrophoresis of pome fruits taken at successive ripening stages. Capacity for malic enzyme synthesis increases during the early stage of ripening. Fruit ripening and ethylene synthesis are inhibited when protein synthesis is blocked by treatment with cycloheximide at the early-climacteric stage. Cycloheximide became less effective as the climacteric developed. Ethylene did not overcome inhibition of ripening by cycloheximide. The respiratory climacteric is not inhibited by cycloheximide. It is concluded that normal ripening of pome fruits is a highly coordinated process of biochemical differentiation involving directed protein synthesis. PMID:16656897

  4. SDS-PAGE Analysis of Soluble Proteins in Reconstituted Milk Exposed to Different Heat Treatments

    PubMed Central

    Jovanovic, Snezana; Barac, Miroljub; Macej, Ognjen; Vucic, Tanja; Lacnjevac, Caslav

    2007-01-01

    This paper deals with the investigation of the impact of the heat treatment of reconstituted skim milk conducted at different temperatures, and the adding of demineralized whey on the protein solubility, soluble protein composition and interactions involved between proteins in a chemical complex. Commercial skim milk has been reconstituted and heat treated at 75°C, 85°C and 90°C for 20 minutes. Demineralized whey has been added in concentrations of 0.5%, 1.0 and 2.0%. The soluble protein composition has been determined by the polyacrilamide gel electrophoresis (SDS-PAGE) and by the densitometric analysis. Due to the different changes occurred during treatments at different temperatures, proteins of heat-treated samples containing added demineralized whey have had significantly different solubility. At lower temperatures (75°C and 85°C) the adding of demineralized whey decreased the protein solubility by 5.28%-26.41%, while the addition of demineralized whey performed at 90°C increased the soluble protein content by 5.61%-28.89%. Heat treatments, as well as the addition of demineralized whey, have induced high molecular weight complex formation. β-Lg, α-La and κ-casein are involved in high molecular weight complexes. The disulfide interactions between denatured molecules of these proteins are mostly responsible for the formation of coaggregates. The level of their interactions and the soluble protein composition are determined by the degree of temperature.

  5. Technical note: comparing calibration methods for determination of protein in goat milk by ultraviolet spectroscopy.

    PubMed

    Rukke, E O; Olsen, E F; Devold, T; Vegarud, G; Isaksson, T

    2010-07-01

    A rapid spectroscopic method to determine total protein in bovine and buffalo milk using UV spectra of guanidine-hydrochloride mixed milk has previously been reported and validated. The method was based on mixed calibration samples and univariate calibrations of fourth derivative (4D) spectra. In this study the same method was compared and tested for determination of total protein in goat milk. Calculations based on multivariate calibration (partial least squares regression) on full spectra of goat milk were used. The method was tested on 2 UV instruments. The comparison resulted in a significantly more robust (i.e., better) transferability between UV instruments for the partial least squares regression method on full spectra compared with previous univariate calibration of 4D spectra. Local (1 instrument) calibrations gave similar, significantly not different (chi-squared test) cross-validated prediction error results for the 2 methods. It can be concluded that there is no need for fourth derivation. Partial least squares regression on full spectra was equal or superior to using the 4D spectra. PMID:20630209

  6. Protein synthesis inhibitor from potato tuber

    SciTech Connect

    Romaen, R. )

    1989-04-01

    A protein fraction capable of inhibit in vitro protein synthesis was found in potato tubers in fresh and wounded tissue. Inhibitor activity from fresh tissue decays with wounding. Inhibition activity was detected absorbed to ribsomal fraction and cytosol of potato tuber tissue by a partially reconstituted in vitro system from potato tuber and wheat germ. Adsorbed ribosomal fraction was more suitable of purification. This fraction was washed from ribosomes with 0.3M KCl, concentrated with ammonium sulfate precipitation and purified through sephadex G100 and sephadex G-75 columns chromatography. After 61 fold purification adsorbed protein fraction can inhibit germination of maize, wheat and sesame seeds, as well as {sup 3}H-leucine incorporation into protein by imbibed maize embryos. Inhibition activity was lost by temperature, alkali and protease-K hydrolysis. Preliminar analysis could not show presence of reductor sugars. Physiological role of this inhibitor in relation to rest and active tissue remains to be studied.

  7. Thermostable β-galactosidases for the synthesis of human milk oligosaccharides.

    PubMed

    Zeuner, Birgitte; Nyffenegger, Christian; Mikkelsen, Jørn Dalgaard; Meyer, Anne S

    2016-05-25

    Human milk oligosaccharides (HMOs) designate a unique family of bioactive lactose-based molecules present in human breast milk. Using lactose as a cheap donor, some β-galactosidases (EC 3.2.1.23) can catalyze transgalactosylation to form the human milk oligosaccharide lacto-N-neotetraose (LNnT; Gal-β(1,4)-GlcNAc-β(1,3)-Gal-β(1,4)-Glc). In order to reduce reaction times and be able to work at temperatures, which are less welcoming to microbial growth, the current study investigates the possibility of using thermostable β-galactosidases for synthesis of LNnT and N-acetyllactosamine (LacNAc; Gal-β(1,4)-GlcNAc), the latter being a core structure in HMOs. Two hyperthermostable GH 1 β-galactosidases, Ttβ-gly from Thermus thermophilus HB27 and CelB from Pyrococcus furiosus, were codon-optimized for expression in Escherichia coli along with BgaD-D, a truncated version of the GH 42 β-galactosidase from Bacillus circulans showing high transgalactosylation activity at low substrate concentrations. The three β-galactosidases were compared in the current study in terms of their transgalactosylation activity in the formation of LacNAc and LNnT. In all cases, BgaD-D was the most potent transgalactosidase, but both thermostable GH 1 β-galactosidases could catalyze formation of LNnT and LacNAc, with Ttβ-gly giving higher yields than CelB. The thermal stability of the three β-galactosidases was elucidated and the results were used to optimize the reaction efficiency in the formation of LacNAc, resulting in 5-6 times higher reaction yields and significantly shorter reaction times. PMID:26802542

  8. Effect of prior dietary exposure to cows' milk protein on antigen-specific and nonspecific cellular proliferation in mice.

    PubMed

    Brix, Susanne; Magyar, Orit H; Barkholt, Vibeke; Frøkiaer, Hanne

    2005-05-01

    The impact of dietary components on the immune system is gaining increased attention in the effort to develop safe food products, some even with health-promoting potential, as well as to improve the basic understanding of the immunomodulatory potential of common food components. In such studies, which are mainly based on experiments in vitro, it is important to be able to differentiate nonspecific activation of immune cells induced by dietary components from ex vivo restimulation of antigen-specific cells that might be present in cell cultures owing to prior dietary exposure to the antigens in cell donors. Focusing on the immunostimulatory potential of cows' milk proteins and peptides, we studied the impact of prior dietary exposure to cows' milk on proliferation of murine immune cells upon ex vivo stimulation with bovine milk proteins. Nonspecific proliferation induced by beta-casein peptides was further assessed on cells from mice bred on a cows'-milk-free diet. Regarding the dietary effect, we found that prior oral intake of cows' milk proteins affected cell proliferation induced by culturing with cows' milk proteins in vitro, as spleen cells from mice fed a milk-containing diet showed a significantly greater proliferative response than did cells from mice bred on a cows'-milk-free diet. Studies of immune enhancing potentials of beta-casein peptides showed that some peptides stimulate proliferation of immune cells nonspecifically. In conclusion, these findings stress the importance of employing immune cells from mice unexposed to cows' milk for studies of the immunomodulating capacity of cows' milk proteins and peptides, in order to rule out the interference caused by antigen-specific immune responses. By using such cells, we here show that some beta-casein peptides possess the potential to induce proliferation in immune cells in a nonspecific manner. PMID:15909688

  9. Human Milk Oligosaccharides (HMOS): Structure, Function, and Enzyme-Catalyzed Synthesis.

    PubMed

    Chen, Xi

    2015-01-01

    The important roles played by human milk oligosaccharides (HMOS), the third major component of human milk, in the health of breast-fed infants have been increasingly recognized, as the structures of more than 100 different HMOS have now been elucidated. Despite the recognition of the various functions of HMOS as prebiotics, antiadhesive antimicrobials, and immunomodulators, the roles and the applications of individual HMOS species are less clear. This is mainly due to the limited accessibility to large amounts of individual HMOS in their pure forms. Current advances in the development of enzymatic, chemoenzymatic, whole-cell, and living-cell systems allow for the production of a growing number of HMOS in increasing amounts. This effort will greatly facilitate the elucidation of the important roles of HMOS and allow exploration into the applications of HMOS both as individual compounds and as mixtures of defined structures with desired functions. The structures, functions, and enzyme-catalyzed synthesis of HMOS are briefly surveyed to provide a general picture about the current progress on these aspects. Future efforts should be devoted to elucidating the structures of more complex HMOS, synthesizing more complex HMOS including those with branched structures, and developing HMOS-based or HMOS-inspired prebiotics, additives, and therapeutics. PMID:26613816

  10. Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone

    PubMed Central

    Ludwig, Susann K. J.; Tokarski, Christian; Lang, Stefan N.; van Ginkel, Leendert A.; Zhu, Hongying; Ozcan, Aydogan; Nielen, Michel W. F.

    2015-01-01

    Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD) depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST) in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1). Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this ‘protein microarray on a smartphone’-concept for on-site testing, e.g., in food safety, environment and health monitoring. PMID:26308444

  11. Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone.

    PubMed

    Ludwig, Susann K J; Tokarski, Christian; Lang, Stefan N; van Ginkel, Leendert A; Zhu, Hongying; Ozcan, Aydogan; Nielen, Michel W F

    2015-01-01

    Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD) depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST) in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1). Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this 'protein microarray on a smartphone'-concept for on-site testing, e.g., in food safety, environment and health monitoring. PMID:26308444

  12. Transgenic rabbits for the production of biologically-active recombinant proteins in the milk.

    PubMed

    Castro, F O; Limonta, J; Rodriguez, A; Aguirre, A; de la Fuente, J; Aguilar, A; Ramos, B; Hayes, O

    1999-11-01

    The use of live bioreactors for the expression of human genes in the mammary gland of transgenic animals is one of the most cost-effective ways for the production of valuable recombinant therapeutic proteins. Among the transgenic species used so far, rabbits are good candidates for the expression of tens to hundreds of grams of complex proteins in the milk during lactation. The lactating mammary gland of rabbits has proven to be effective in the processing of complex proteins. In this work. the potential use of rabbits as bioreactors is discussed based on our results and the published data. PMID:10596760

  13. Influence of casein as a percentage of true protein and protein level on color and texture of milks containing 1 and 2% fat.

    PubMed

    Misawa, Noriko; Barbano, David M; Drake, MaryAnne

    2016-07-01

    Combinations of fresh liquid microfiltration retentate of skim milk, ultrafiltered retentate and permeate produced from microfiltration permeate, cream, and dried lactose monohydrate were used to produce a matrix of 20 milks. The milks contained 5 levels of casein as a percentage of true protein of about 5, 25, 50, 75, and 80% and 4 levels of true protein of 3.0, 3.76, 4.34, and 5.0% with constant lactose percentage of 5%. The experiment was replicated twice and repeated for both 1 and 2% fat content. Hunter color measurements, relative viscosity, and fat globule size distribution were measured, and a trained panel documented appearance and texture attributes on all milks. Overall, casein as a percentage of true protein had stronger effects than level of true protein on Hunter L, a, b values, relative viscosity, and fat globule size when using fresh liquid micellar casein concentrates and milk serum protein concentrates produced by a combination of microfiltration and ultrafiltration. As casein as a percentage of true protein increased, the milks became more white (higher L value), less green (lower negative a value), and less yellow (lower b value). Relative viscosity increased and d(0.9) generally decreased with increasing casein as a percentage of true protein. Panelists perceived milks with increasing casein as a percentage of true protein as more white, more opaque, and less yellow. Panelists were able to detect increased throat cling and mouthcoating with increased casein as a percentage of true protein in 2% milks, even when differences in appearance among milks were masked. PMID:27157580

  14. Protein oxidative changes in whole and skim milk after ultraviolet or fluorescent light exposure.

    PubMed

    Scheidegger, D; Pecora, R P; Radici, P M; Kivatinitz, S C

    2010-11-01

    We investigated how protein changes occur, at the primary or higher structural levels, when proteins are exposed to UV or fluorescent (FL) light while in the complex matrix, milk. Whole milk (WM) or skim milk (SM) samples were exposed to FL or UV light from 0 to 24h at 4°C. Protein oxidation was evaluated by the formation of protein carbonyls (PC), dityrosine bond (DiTyr), and changes in molecular weight (protein fragmentation and polymerization). Oxidative changes in AA residues were measured by PC. Dityrosine and N'-formylkynurenine (NFK), a carbonylation derivative of Trp, were measured by fluorometry. Protein carbonyls increased as a function of irradiation time for both WM and SM. The initial rate for PC formation by exposure to FL light (0.25 or 0.27 nmol/h for WM and SM, respectively) was slower than that following exposure to UV light (1.95 or 1.20 nmol/h, respectively). The time course of NFK formation resembled that of PC. After 24h of UV exposure, SM had significantly higher levels of NFK than did WM. In contrast, WM samples irradiated with UV had higher levels of DiTyr than did SM samples, indicating different molecular pathways. The formation of intra- or intermolecular DiTyr bonds could be indicative of changes in the tertiary structure or oligomerization of proteins. The existence of NFK suggests the occurrence of protein fragmentation. Thus, proteolysis and oligomerization were analyzed by sodium dodecyl sulfate-PAGE. After 24h of exposing WM to UV or FL light, all the proteins were affected by both types of light, as evidenced by loss of material in most of the bands. Aggregates were produced only by UV irradiation. Hydrolysis by pepsin and enzyme-induced coagulation by rennet were performed to evaluate altered biological properties of the oxidized proteins. No effect on pepsin digestion or rennet coagulation was found in irradiated SM or WM. The oxidative status of proteins in milk and dairy products is of interest to the dairy industry and

  15. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1977-01-01

    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  16. Detection and identification of a soy protein component that cross-reacts with caseins from cow's milk

    PubMed Central

    ROZENFELD, P; DOCENA, G H; AÑÓN, M C; FOSSATI, C A

    2002-01-01

    Soy-based formulas are the most employed cow's milk substitutes in the treatment of cow's milk allergy in our country. Since adverse reactions have been reported in allergic patients as a consequence of exposure to soy proteins, we have investigated the possible cross-reactivity between components from soybean and cow's milk. A cow's milk specific polyclonal antiserum and casein specific monoclonal antibodies were used in immunoblotting and competitive ELISA studies to identify a 30-kD component from soybean that cross-reacts with cow's milk caseins. Its IgE binding capacity was tested by EAST, employing sera from cow's milk allergic patients, not previously exposed to soy proteins. The 30 kD protein was isolated and partially sequenced. It is constituted by two polypeptides (A5 and B3) linked by a disulphide bond. The protein's capacity to bind to the different antibodies relies on the B3 poly-peptide. These results indicate that soy-based formula, which contains the A5-B3 glycinin molecule, could be involved in allergic reactions observed in cow's milk allergic patients exposed to soy-containing foods. PMID:12296853

  17. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle.

    PubMed

    Boerman, J P; Lock, A L

    2014-11-01

    Increased rumen unsaturated fatty acid (FA) load is a risk factor for milk fat depression. This study evaluated if increasing the amount of unsaturated FA in the diet as triglycerides or free FA affected feed intake, yield of milk and milk components, and feed efficiency. Eighteen Holstein cows (132 ± 75 d in milk) were used in a replicated 3 × 3 Latin square design. Treatments were a control (CON) diet, or 1 of 2 unsaturated FA (UFA) treatments supplemented with either soybean oil (FA present as triglycerides; TAG treatment) or soybean FA distillate (FA present as free FA; FFA treatment). The soybean oil contained a higher concentration of cis-9 C18:1 (26.0 vs. 11.8 g/100g of FA) and lower concentrations of C16:0 (9.6 vs. 15.0 g/100g of FA) and cis-9,cis-12 C18:2 (50.5 vs. 59.1g/100g of FA) than the soybean FA distillate. The soybean oil and soybean FA distillate were included in the diet at 2% dry matter (DM) to replace soyhulls in the CON diet. Treatment periods were 21 d, with the final 4 d used for sample and data collection. The corn silage- and alfalfa silage-based diets contained 23% forage neutral detergent fiber and 17% crude protein. Total dietary FA were 2.6, 4.2, and 4.3% of diet DM for CON, FFA, and TAG treatments, respectively. Total FA intake was increased 57% for UFA treatments and was similar between FFA and TAG. The intakes of individual FA were similar, with the exception of a 24 g/d lower intake of C16:0 and a 64 g/d greater intake of cis-9 C18:1 for the TAG compared with the FFA treatment. Compared with CON, the UFA treatments decreased DM intake (1.0 kg/d) but increased milk yield (2.2 kg/d) and milk lactose concentration and yield. The UFA treatments reduced milk fat concentration, averaging 3.30, 3.18, and 3.11% for CON, FFA, and TAG treatments, respectively. Yield of milk fat, milk protein, and 3.5% fat-corrected milk remained unchanged when comparing CON with the UFA treatments. No differences existed in the yield of milk or milk

  18. Combined effects of soy isoflavones and milk basic protein on bone mineral density in hind-limb unloaded mice

    PubMed Central

    Matsumoto, Yu; Tousen, Yuko; Nishide, Yoriko; Tadaishi, Miki; Kato, Ken; Ishimi, Yoshiko

    2016-01-01

    We examined whether the combination of isoflavone and milk basic protein both are reported to be effective for bone metabolism, prevents bone loss induced by skeletal hind-limb unloading in mice. Female ddY strain mice, aged 8 weeks, were divided into six groups (n = 6–8 each): (1) normally housed group, (2) loading group, (3) hind-limb unloading group fed a control diet, (4) hind-limb unloading group fed a 0.2% isoflavone conjugates diet, (5) hind-limb unloading group fed a 1.0% milk basic protein diet, and (6) hind-limb unloading group fed a 0.2% isoflavone conjugates and 1.0% milk basic protein diet. After 3 weeks, femoral bone mineral density was markedly reduced in unloading mice. The combination of isoflavone and milk basic protein showed cooperative effects in preventing bone loss and milk basic protein inhibited the increased expression of osteogenic genes in bone marrow cells in unloading mice. These results suggest that the combination of soy isoflavone and milk basic protein may be useful for bone health in subjects with disabling conditions as well as astronauts. PMID:27013781

  19. Combined effects of soy isoflavones and milk basic protein on bone mineral density in hind-limb unloaded mice.

    PubMed

    Matsumoto, Yu; Tousen, Yuko; Nishide, Yoriko; Tadaishi, Miki; Kato, Ken; Ishimi, Yoshiko

    2016-03-01

    We examined whether the combination of isoflavone and milk basic protein both are reported to be effective for bone metabolism, prevents bone loss induced by skeletal hind-limb unloading in mice. Female ddY strain mice, aged 8 weeks, were divided into six groups (n = 6-8 each): (1) normally housed group, (2) loading group, (3) hind-limb unloading group fed a control diet, (4) hind-limb unloading group fed a 0.2% isoflavone conjugates diet, (5) hind-limb unloading group fed a 1.0% milk basic protein diet, and (6) hind-limb unloading group fed a 0.2% isoflavone conjugates and 1.0% milk basic protein diet. After 3 weeks, femoral bone mineral density was markedly reduced in unloading mice. The combination of isoflavone and milk basic protein showed cooperative effects in preventing bone loss and milk basic protein inhibited the increased expression of osteogenic genes in bone marrow cells in unloading mice. These results suggest that the combination of soy isoflavone and milk basic protein may be useful for bone health in subjects with disabling conditions as well as astronauts. PMID:27013781

  20. Cows' milk protein-sensitive enteropathy. An important factor in prolonging diarrhoea of acute infective enteritis in early infancy.

    PubMed Central

    Iyngkaran, N; Robinson, M J; Sumithran, E; Lam, S K; Puthucheary, S D; Yadav, M

    1978-01-01

    The possible role of cows' milk protein in prolonging diarrhoea in very young infants with acute infective enteritis was studied in 14 infants, 9 under the age of 2 months and 5 older than 6 months. Bacterial pathogens were isolated from the stools of 4 infants from the younger age group. After appropriate initial treatment the infants were maintained on a cows' milk protein-free formula. 6 weeks later jejunal biopsies were performed before and 24 hours after challenge with a low lactose cows' milk protein formula. The immunoglobulin and complement levels in the serum and duodenal juice were also estimated at these times. Attempts to isolate bacterial and viral pathogens in stools were again made in all patients. The 5 older infants clinically tolerated cows' milk protein and their pre- and postchallenge jejunal biopsies were within normal limits. However, significant histological changes were observed in the postchallenge jejunal biopsies of all 9 infants under 2 months of age. In addition, 5 of these infants developed diarrhoea. This suggests that the jejunal mucosa of very young infants previously fed a cows' milk protein-based formula and who contract infective enteritis suffers damage when rechallenged with cows' milk protein. PMID:646417

  1. Variations in protein and fat contents and their fractions in milk from two species fed different forages.

    PubMed

    Kholif, S M; El-Shewy, A A; Morsy, T A; Abd El-Rahman, H H

    2015-02-01

    This study aimed at determining the variations in milk constituents which could be varied by feed and animal species. To achieve this goal, two groups of homoparity Baladi cows and Egyptian buffaloes (n = 20 per species) were used. Each group was divided into two subgroups (n = 10): subgroup I received legume forage (Egyptian clover) and subgroup II received grass forage (sorghum forage). All experimental animals were fed the diet consisting of concentrate, forage and rice straw as 50, 25 and 25% of dry matter intake respectively. Milk samples were taken for analysis. The trial lasted until the 3rd month of parturition. The main results indicated that lactating cattle fed legume forage significantly (p ≤ 0.01) had more content of casein nitrogen (513 mg/100 ml milk), lower content of glutamic acid (23.56 g/100 g milk protein) and more content of cis-9, trans-11 18:2 conjugated linoleic acid (CLA) (0.77 g/100 g milk fat) compared with 433, 26.67 and 0.53, respectively, for cattle fed grass forage. With regard to the species effect, results showed that buffalo milk appeared to contain significantly higher (p ≤ 0.01) contents of casein nitrogen, phenylalanine, glutamic and arachidonic acid compared with cow's milk. However, the latter was significantly (p ≤ 0.01) more in the cis-9, trans-11CLA (0.59 g/100 g milk fat) than that in buffalo milk (0.47 g/100 g milk fat). The results revealed that not only forage type played a critical role in determining the variations of milk nitrogen distribution, milk amino acids and fatty acids but also animal species had a significant effect on these parameters. PMID:25040448

  2. Short communication: The effect of feeding high protein distillers dried grains on milk production of Holstein cows.

    PubMed

    Hubbard, K J; Kononoff, P J; Gehman, A M; Kelzer, J M; Karges, K; Gibson, M L

    2009-06-01

    The objectives of this study were to evaluate the effects of feeding high-protein distillers dried grains (HPDDG) on rumen degradability, dry matter intake, milk production, and milk composition. Sixteen lactating Holstein cows (12 multiparous and 4 primiparous) averaging 80 +/- 14 d in milk were randomly assigned to 1 of 2 dietary treatments in a 2 x 2 crossover design. A portion of forage and all soy-based protein in the control diet were replaced by HPDDG (20% dry matter). Milk production and dry matter intake were recorded daily and averaged for d 19 to 21 of each 21-d period. Milk samples were collected on d 20 to 21 of each period. Milk yield increased with the inclusion of HPDDG (33.4 vs. 31.6 +/- 2.13 kg/d), and 3.5% FCM was higher for the ration containing HPDDG (36.3 vs. 33.1 +/- 2.24 kg/d). Percentage protein was not affected by treatment (average 3.04 +/- 0.08%), but protein yield increased with inclusion of HPDDG (0.95 to 1.00 +/- 0.05 kg/d). Milk fat concentration was not different between treatments (average 3.95 +/- 0.20%), but fat yield increased for the ration containing HPDDG (1.35 vs. 1.21 +/- 0.09 kg/d). Dry matter intake was not affected and averaged 21.9 +/- 0.80 kg across treatments. Because of greater milk production, feed conversion was improved by the inclusion of HPDDG (1.47 to 1.73 +/- 0.09). Milk urea N was greater for the HPDDG ration than the control (14.5 vs. 12.8 +/- 0.67 mg/dL). This research suggests that HPDDG may effectively replace soy-based protein in lactating dairy cow diets. PMID:19448023

  3. Mitochondrial Protein Synthesis, Import, and Assembly

    PubMed Central

    Fox, Thomas D.

    2012-01-01

    The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes. PMID:23212899

  4. Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs.

    PubMed

    Columbus, Daniel A; Steinhoff-Wagner, Julia; Suryawan, Agus; Nguyen, Hanh V; Hernandez-Garcia, Adriana; Fiorotto, Marta L; Davis, Teresa A

    2015-09-15

    Most low-birth weight infants experience extrauterine growth failure due to reduced nutrient intake as a result of feeding intolerance. The objective of this study was to determine whether prolonged enteral leucine supplementation improves lean growth in neonatal pigs fed a restricted protein diet. Neonatal pigs (n = 14-16/diet, 5 days old, 1.8 ± 0.3 kg) were fed by gastric catheter a whey-based milk replacement diet with either a high protein (HP) or restricted protein (RP) content or RP supplemented with leucine to the same level as in the HP diet (RPL). Pigs were fed 40 ml·kg body wt(-1)·meal(-1) every 4 h for 21 days. Feeding the HP diet resulted in greater total body weight and lean body mass compared with RP-fed pigs (P < 0.05). Masses of the longissimus dorsi muscle, heart, and kidneys were greater in the HP- than RP-fed pigs (P < 0.05). Body weight, lean body mass, and masses of the longissimus dorsi, heart, and kidneys in pigs fed the RPL diet were intermediate to RP- and HP-fed pigs. Protein synthesis and mTOR signaling were increased in all muscles with feeding (P < 0.05); leucine supplementation increased mTOR signaling and protein synthesis rate in the longissimus dorsi (P < 0.05). There was no effect of diet on indices of protein degradation signaling in any tissue (P > 0.05). Thus, when protein intake is chronically restricted, the capacity for leucine supplementation to enhance muscle protein accretion in neonatal pigs that are meal-fed milk protein-based diets is limited. PMID:26374843

  5. Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis.

    PubMed

    Saben, Jessica L; Bales, Elise S; Jackman, Matthew R; Orlicky, David; MacLean, Paul S; McManaman, James L

    2014-01-01

    Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis. PMID:24849657

  6. Maternal Obesity Reduces Milk Lipid Production in Lactating Mice by Inhibiting Acetyl-CoA Carboxylase and Impairing Fatty Acid Synthesis

    PubMed Central

    Saben, Jessica L.; Bales, Elise S.; Jackman, Matthew R.; Orlicky, David; MacLean, Paul S.; McManaman, James L.

    2014-01-01

    Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis. PMID:24849657

  7. Disorder in Milk Proteins: α -Lactalbumin. Part A. Structural Properties and Conformational Behavior.

    PubMed

    Permyakov, Eugene A; Permyakov, Serge E; Breydo, Leonid; Redwan, Elrashdy M; Almehdar, Hussein A; Uversky, Vladimir N

    2016-01-01

    This is a first part of the two-part article that continues a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. We introduce here α-lactalbumin, a small (Mr 14 200), simple, acidic (pI 4-5), Ca(2+)-binding protein that might constitute up to 20% of total milk protein. Although function (it is one of the two components of lactose synthase that catalyzes the final step of the lactose biosynthesis in the lactating mammary gland), structure (protein has two domains, a large α -helical domain and a small β -sheet domain connected by a calcium binding loop), and folding mechanisms (α-lactalbumin is well-known as a classic example of the molten globule state) of this model globular protein are relatively well understood, α-lactalbumin continues to surprise researchers and clearly continues to have high discovery potential. The goal of this review is to summarize some recent advances in the field of α-lactalbumin research and to analyze the peculiarities of the "intrinsic disorder code" of this protein. PMID:26956441

  8. Tools for Characterizing Bacterial Protein Synthesis Inhibitors

    PubMed Central

    Orelle, Cédric; Carlson, Skylar; Kaushal, Bindiya; Almutairi, Mashal M.; Liu, Haipeng; Ochabowicz, Anna; Quan, Selwyn; Pham, Van Cuong; Squires, Catherine L.; Murphy, Brian T.

    2013-01-01

    Many antibiotics inhibit the growth of sensitive bacteria by interfering with ribosome function. However, discovery of new protein synthesis inhibitors is curbed by the lack of facile techniques capable of readily identifying antibiotic target sites and modes of action. Furthermore, the frequent rediscovery of known antibiotic scaffolds, especially in natural product extracts, is time-consuming and expensive and diverts resources that could be used toward the isolation of novel lead molecules. In order to avoid these pitfalls and improve the process of dereplication of chemically complex extracts, we designed a two-pronged approach for the characterization of inhibitors of protein synthesis (ChIPS) that is suitable for the rapid identification of the site and mode of action on the bacterial ribosome. First, we engineered antibiotic-hypersensitive Escherichia coli strains that contain only one rRNA operon. These strains are used for the rapid isolation of resistance mutants in which rRNA mutations identify the site of the antibiotic action. Second, we show that patterns of drug-induced ribosome stalling on mRNA, monitored by primer extension, can be used to elucidate the mode of antibiotic action. These analyses can be performed within a few days and provide a rapid and efficient approach for identifying the site and mode of action of translation inhibitors targeting the bacterial ribosome. Both techniques were validated using a bacterial strain whose culture extract, composed of unknown metabolites, exhibited protein synthesis inhibitory activity; we were able to rapidly detect the presence of the antibiotic chloramphenicol. PMID:24041905

  9. A nine-country study of the protein content and amino acid composition of mature human milk

    PubMed Central

    Feng, Ping; Gao, Ming; Burgher, Anita; Zhou, Tian Hui; Pramuk, Kathryn

    2016-01-01

    Background Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. Objective Evaluate the protein and amino acid composition of mature (≥30 days) human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. Design Using a single, centralized laboratory, human milk samples from 220 women (30–188 days postpartum) from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. Results Mean total protein from individual countries (standard deviation [SD]) ranged from 1,133 (125.5) to 1,366 (341.4) mg/dL; the mean across all countries (SD) was 1,192 (200.9) mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids) did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. Conclusions Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support the validity and

  10. Preparation of iron bound succinylated milk protein concentrate and evaluation of its stability.

    PubMed

    Shilpashree, B G; Arora, Sumit; Sharma, Vivek; Bajaj, Rajesh Kumar; Tomar, S K

    2016-04-01

    Major problems associated with the fortification of soluble iron salts include chemical reactivity and incompatibility with other components. Milk protein concentrate (MPC) are able to bind significant amount of iron due to the presence of both casein and whey protein. MPC in its native state possess very poor solubility, therefore, succinylated derivatives of MPC (succ. MPC) were also used for the preparation of protein-iron complex. Preparation of the complex involved centrifugation (to remove insoluble iron), ultrafiltration (to remove unbound iron) and lyophilisation (to attain in dry form). Iron binding ability of MPC enhanced significantly (P<0.05) upon succinylation. Stability of bound iron from both varieties of complexes was monitored under different conditions encountered during processing. Higher stability (P<0.05) of bound iron was observed in succ. MPC-iron complex than native protein complex. This method could be adopted for the production of stable iron enriched protein, an organic iron source. PMID:26593557