Science.gov

Sample records for mindboggle automated brain

  1. 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol

    PubMed Central

    Klein, Arno; Tourville, Jason

    2012-01-01

    We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001

  2. Automated brain segmentation using neural networks

    NASA Astrophysics Data System (ADS)

    Powell, Stephanie; Magnotta, Vincent; Johnson, Hans; Andreasen, Nancy

    2006-03-01

    Automated methods to delineate brain structures of interest are required to analyze large amounts of imaging data like that being collected in several on going multi-center studies. We have previously reported on using artificial neural networks (ANN) to define subcortical brain structures such as the thalamus (0.825), caudate (0.745), and putamen (0.755). One of the inputs into the ANN is the apriori probability of a structure existing at a given location. In this previous work, the apriori probability information was generated in Talairach space using a piecewise linear registration. In this work we have increased the dimensionality of this registration using Thirion's demons registration algorithm. The input vector consisted of apriori probability, spherical coordinates, and an iris of surrounding signal intensity values. The output of the neural network determined if the voxel was defined as one of the N regions used for training. Training was performed using a standard back propagation algorithm. The ANN was trained on a set of 15 images for 750,000,000 iterations. The resulting ANN weights were then applied to 6 test images not part of the training set. Relative overlap calculated for each structure was 0.875 for the thalamus, 0.845 for the caudate, and 0.814 for the putamen. With the modifications on the neural net algorithm and the use of multi-dimensional registration, we found substantial improvement in the automated segmentation method. The resulting segmented structures are as reliable as manual raters and the output of the neural network can be used without additional rater intervention.

  3. "BRAIN": Baruch Retrieval of Automated Information for Negotiations.

    ERIC Educational Resources Information Center

    Levenstein, Aaron, Ed.

    1981-01-01

    A data processing program that can be used as a research and collective bargaining aid for colleges is briefly described and the fields of the system are outlined. The system, known as BRAIN (Baruch Retrieval of Automated Information for Negotiations), is designed primarily as an instrument for quantitative and qualitative analysis. BRAIN consists…

  4. Automated analysis of fundamental features of brain structures.

    PubMed

    Lancaster, Jack L; McKay, D Reese; Cykowski, Matthew D; Martinez, Michael J; Tan, Xi; Valaparla, Sunil; Zhang, Yi; Fox, Peter T

    2011-12-01

    Automated image analysis of the brain should include measures of fundamental structural features such as size and shape. We used principal axes (P-A) measurements to measure overall size and shape of brain structures segmented from MR brain images. The rationale was that quantitative volumetric studies of brain structures would benefit from shape standardization as had been shown for whole brain studies. P-A analysis software was extended to include controls for variability in position and orientation to support individual structure spatial normalization (ISSN). The rationale was that ISSN would provide a bias-free means to remove elementary sources of a structure's spatial variability in preparation for more detailed analyses. We studied nine brain structures (whole brain, cerebral hemispheres, cerebellum, brainstem, caudate, putamen, hippocampus, inferior frontal gyrus, and precuneus) from the 40-brain LPBA40 atlas. This paper provides the first report of anatomical positions and principal axes orientations within a standard reference frame, in addition to "shape/size related" principal axes measures, for the nine brain structures from the LPBA40 atlas. Analysis showed that overall size (mean volume) for internal brain structures was preserved using shape standardization while variance was reduced by more than 50%. Shape standardization provides increased statistical power for between-group volumetric studies of brain structures compared to volumetric studies that control only for whole brain size. To test ISSN's ability to control for spatial variability of brain structures we evaluated the overlap of 40 regions of interest (ROIs) in a standard reference frame for the nine different brain structures before and after processing. Standardizations of orientation or shape were ineffective when not combined with position standardization. The greatest reduction in spatial variability was seen for combined standardizations of position, orientation and shape. These

  5. Automated delineation of stroke lesions using brain CT images

    PubMed Central

    Gillebert, Céline R.; Humphreys, Glyn W.; Mantini, Dante

    2014-01-01

    Computed tomographic (CT) images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner. PMID:24818079

  6. BRAIN initiative: transcranial magnetic stimulation automation and calibration.

    PubMed

    Todd, Garth D; Abdellatif, Ahmed; Sabouni, Abas

    2014-01-01

    In this paper, we introduced an automated TMS system with robot control and optical sensor combined with neuronavigation software. By using the robot, the TMS coil can be accurately positioned over any preselected brain region. The neuronavigation system provides an accurate positioning of a magnetic coil in order to induce a specific cortical excitation. An infrared optical measurement device is also used in order to detect and compensate for head movements of the patient. This procedure was simulated using a PC based robotic simulation program. The proposed automated robot system is integrated with TMS numerical solver and allows users to actually see the depth, location, and shape of the induced eddy current on the computer monitor. PMID:25570006

  7. Brain MAPS: an automated, accurate and robust brain extraction technique using a template library

    PubMed Central

    Leung, Kelvin K.; Barnes, Josephine; Modat, Marc; Ridgway, Gerard R.; Bartlett, Jonathan W.; Fox, Nick C.; Ourselin, Sébastien

    2011-01-01

    Whole brain extraction is an important pre-processing step in neuro-image analysis. Manual or semi-automated brain delineations are labour-intensive and thus not desirable in large studies, meaning that automated techniques are preferable. The accuracy and robustness of automated methods are crucial because human expertise may be required to correct any sub-optimal results, which can be very time consuming. We compared the accuracy of four automated brain extraction methods: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), Hybrid Watershed Algorithm (HWA) and a Multi-Atlas Propagation and Segmentation (MAPS) technique we have previously developed for hippocampal segmentation. The four methods were applied to extract whole brains from 682 1.5T and 157 3T T1-weighted MR baseline images from the Alzheimer’s Disease Neuroimaging Initiative database. Semi-automated brain segmentations with manual editing and checking were used as the gold-standard to compare with the results. The median Jaccard index of MAPS was higher than HWA, BET and BSE in 1.5T and 3T scans (p < 0.05, all tests), and the 1st-99th centile range of the Jaccard index of MAPS was smaller than HWA, BET and BSE in 1.5T and 3T scans (p < 0.05, all tests). HWA and MAPS were found to be best at including all brain tissues (median false negative rate ≤ 0.010% for 1.5T scans and ≤ 0.019% for 3T scans, both methods). The median Jaccard index of MAPS were similar in both 1.5T and 3T scans, whereas those of BET, BSE and HWA were higher in 1.5T scans than 3T scans (p < 0.05, all tests). We found that the diagnostic group had a small effect on the median Jaccard index of all four methods. In conclusion, MAPS had relatively high accuracy and low variability compared to HWA, BET and BSE in MR scans with and without atrophy. PMID:21195780

  8. Automated population-based planning for whole brain radiation therapy.

    PubMed

    Schreibmann, Eduard; Fox, Tim; Curran, Walter; Shu, Hui-Kuo; Crocker, Ian

    2015-01-01

    Treatment planning for whole-brain radiation treatment is technically a simple process, but in practice it takes valuable clinical time of repetitive and tedious tasks. This report presents a method that automatically segments the relevant target and normal tissues, and creates a treatment plan in only a few minutes after patient simulation. Segmentation of target and critical structures is performed automatically through morphological operations on the soft tissue and was validated by comparing with manual clinical segmentation using the Dice coefficient and Hausdorff distance. The treatment plan is generated by searching a database of previous cases for patients with similar anatomy. In this search, each database case is ranked in terms of similarity using a customized metric designed for sensitivity by including only geometrical changes that affect the dose distribution. The database case with the best match is automatically modified to replace relevant patient info and isocenter position while maintaining original beam and MLC settings. Fifteen patients with marginally acceptable treatment plans were used to validate the method. In each of these cases the anatomy was accurately segmented, but the beams and MLC settings led to a suboptimal treatment plan by either underdosing the brain or excessively irradiating critical normal tissues. For each case, the anatomy was automatically segmented with the proposed method, and the automated and anual segmentations were then compared. The mean Dice coefficient was 0.97, with a standard deviation of 0.008 for the brain, 0.85 ± 0.009 for the eyes, and 0.67 ± 0.11 for the lens. The mean Euclidian distance was 0.13 ± 0.13 mm for the brain, 0.27± 0.31 for the eye, and 2.34 ± 7.23 for the lens. Each case was then subsequently matched against a database of 70 validated treatment plans and the best matching plan (termed autoplanned), was compared retrospectively with the clinical plans in terms of brain coverage and

  9. Fast whole-brain optical tomography capable of automated slice-collection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Jiang, Tao; Deng, Lei; Long, Beng; Peng, Jie; Luo, Qingming; Gong, Hui

    2016-03-01

    Acquiring brain-wide composite information of neuroanatomical and molecular phenotyping is crucial to understand brain functions. However, current whole-brain imaging methods based on mechnical sectioning haven't achieved brain-wide acquisition of both neuroanatomical and molecular phenotyping due to the lack of appropriate whole-brain immunostaining of embedded samples. Here, we present a novel strategy of acquiring brain-wide structural and molecular maps in the same brain, combining whole-brain imaging and subsequent immunostaining of automated-collected slices. We developed a whole-brain imaging system capable of automatically imaging and then collecting imaged tissue slices in order. The system contains three parts: structured illumination microscopy for high-throughput optical sectioning, vibratome for high-precision sectioning and slice-collection device for automated collecting of tissue slices. Through our system, we could acquire a whole-brain dataset of agarose-embedded mouse brain at lateral resolution of 0.33 µm with z-interval sampling of 100 µm in 9 h, and automatically collect the imaged slices in sequence. Subsequently, we performed immunohistochemistry of the collected slices in the routine way. We acquired mouse whole-brain imaging datasets of multiple specific types of neurons, proteins and gene expression profiles. We believe our method could accelerate systematic analysis of brain anatomical structure with specific proteins or genes expression information and understanding how the brain processes information and generates behavior.

  10. Functional MRI Preprocessing in Lesioned Brains: Manual Versus Automated Region of Interest Analysis

    PubMed Central

    Garrison, Kathleen A.; Rogalsky, Corianne; Sheng, Tong; Liu, Brent; Damasio, Hanna; Winstein, Carolee J.; Aziz-Zadeh, Lisa S.

    2015-01-01

    Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A commonly used automated approach to ROI analysis is to spatially normalize each participant’s structural brain image to a template brain image and define ROIs using an atlas. However, in studies of individuals with structural brain lesions, such as stroke, the gold standard approach may be to manually hand-draw ROIs on each participant’s non-normalized structural brain image. Automated approaches to ROI analysis are faster and more standardized, yet are susceptible to preprocessing error (e.g., normalization error) that can be greater in lesioned brains. The manual approach to ROI analysis has high demand for time and expertise, but may provide a more accurate estimate of brain response. In this study, commonly used automated and manual approaches to ROI analysis were directly compared by reanalyzing data from a previously published hypothesis-driven cognitive fMRI study, involving individuals with stroke. The ROI evaluated is the pars opercularis of the inferior frontal gyrus. Significant differences were identified in task-related effect size and percent-activated voxels in this ROI between the automated and manual approaches to ROI analysis. Task interactions, however, were consistent across ROI analysis approaches. These findings support the use of automated approaches to ROI analysis in studies of lesioned brains, provided they employ a task interaction design. PMID:26441816

  11. Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging

    PubMed Central

    Ragan, Timothy; Kadiri, Lolahon R.; Venkataraju, Kannan Umadevi; Bahlmann, Karsten; Sutin, Jason; Taranda, Julian; Arganda-Carreras, Ignacio; Kim, Yongsoo; Seung, H. Sebastian

    2011-01-01

    Here we describe an automated method, which we call serial two-photon (STP) tomography, that achieves high-throughput fluorescence imaging of mouse brains by integrating two-photon microscopy and tissue sectioning. STP tomography generates high-resolution datasets that are free of distortions and can be readily warped in 3D, for example, for comparing multiple anatomical tracings. This method opens the door to routine systematic studies of neuroanatomy in mouse models of human brain disorders. PMID:22245809

  12. Semi-Automated Atlas-based Analysis of Brain Histological Sections

    PubMed Central

    Kopec, Charles D.; Bowers, Amanda C.; Pai, Shraddha; Brody, Carlos D.

    2011-01-01

    Quantifying the location and/or number of features in a histological section of the brain currently requires one to first, manually register a corresponding section from a tissue atlas onto the experimental section and second, count the features. No automated method exists for the first process (registering), and most automated methods for the second process (feature counting) operate reliably only in a high signal-to-noise regime. To reduce experimenter bias and inconsistencies and increase the speed of these analyses, we developed Atlas Fitter, a semi-automated, open-source MatLab-based software package that assists in rapidly registering atlas panels onto histological sections. We also developed CellCounter, a novel fully-automated cell counting algorithm that is designed to operate on images with non-uniform background intensities and low signal-to-noise ratios. PMID:21194546

  13. Evaluation of automated brain MR image segmentation and volumetry methods.

    PubMed

    Klauschen, Frederick; Goldman, Aaron; Barra, Vincent; Meyer-Lindenberg, Andreas; Lundervold, Arvid

    2009-04-01

    We compare three widely used brain volumetry methods available in the software packages FSL, SPM5, and FreeSurfer and evaluate their performance using simulated and real MR brain data sets. We analyze the accuracy of gray and white matter volume measurements and their robustness against changes of image quality using the BrainWeb MRI database. These images are based on "gold-standard" reference brain templates. This allows us to assess between- (same data set, different method) and also within-segmenter (same method, variation of image quality) comparability, for both of which we find pronounced variations in segmentation results for gray and white matter volumes. The calculated volumes deviate up to >10% from the reference values for gray and white matter depending on method and image quality. Sensitivity is best for SPM5, volumetric accuracy for gray and white matter was similar in SPM5 and FSL and better than in FreeSurfer. FSL showed the highest stability for white (<5%), FreeSurfer (6.2%) for gray matter for constant image quality BrainWeb data. Between-segmenter comparisons show discrepancies of up to >20% for the simulated data and 24% on average for the real data sets, whereas within-method performance analysis uncovered volume differences of up to >15%. Since the discrepancies between results reach the same order of magnitude as volume changes observed in disease, these effects limit the usability of the segmentation methods for following volume changes in individual patients over time and should be taken into account during the planning and analysis of brain volume studies. PMID:18537111

  14. Automated detection of periventricular veins on 7 T brain MRI

    NASA Astrophysics Data System (ADS)

    Kuijf, Hugo J.; Bouvy, Willem H.; Zwanenburg, Jaco J. M.; Viergever, Max A.; Biessels, Geert Jan; Vincken, Koen L.

    2015-03-01

    Cerebral small vessel disease is common in elderly persons and a leading cause of cognitive decline, dementia, and acute stroke. With the introduction of ultra-high field strength 7.0T MRI, it is possible to visualize small vessels in the brain. In this work, a proof-of-principle study is conducted to assess the feasibility of automatically detecting periventricular veins. Periventricular veins are organized in a fan-pattern and drain venous blood from the brain towards the caudate vein of Schlesinger, which is situated along the lateral ventricles. Just outside this vein, a region-of- interest (ROI) through which all periventricular veins must cross is defined. Within this ROI, a combination of the vesselness filter, tubular tracking, and hysteresis thresholding is applied to locate periventricular veins. All detected locations were evaluated by an expert human observer. The results showed a positive predictive value of 88% and a sensitivity of 95% for detecting periventricular veins. The proposed method shows good results in detecting periventricular veins in the brain on 7.0T MR images. Compared to previous works, that only use a 1D or 2D ROI and limited image processing, our work presents a more comprehensive definition of the ROI, advanced image processing techniques to detect periventricular veins, and a quantitative analysis of the performance. The results of this proof-of-principle study are promising and will be used to assess periventricular veins on 7.0T brain MRI.

  15. Simple Fully Automated Group Classification on Brain fMRI

    SciTech Connect

    Honorio, J.; Goldstein, R.; Honorio, J.; Samaras, D.; Tomasi, D.; Goldstein, R.Z.

    2010-04-14

    We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statistical theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.

  16. FORCe: Fully Online and Automated Artifact Removal for Brain-Computer Interfacing.

    PubMed

    Daly, Ian; Scherer, Reinhold; Billinger, Martin; Müller-Putz, Gernot

    2015-09-01

    A fully automated and online artifact removal method for the electroencephalogram (EEG) is developed for use in brain-computer interfacing (BCI). The method (FORCe) is based upon a novel combination of wavelet decomposition, independent component analysis, and thresholding. FORCe is able to operate on a small channel set during online EEG acquisition and does not require additional signals (e.g., electrooculogram signals). Evaluation of FORCe is performed offline on EEG recorded from 13 BCI particpants with cerebral palsy (CP) and online with three healthy participants. The method outperforms the state-of the-art automated artifact removal methods Lagged Auto-Mutual Information Clustering (LAMIC) and Fully Automated Statistical Thresholding for EEG artifact Rejection (FASTER), and is able to remove a wide range of artifact types including blink, electromyogram (EMG), and electrooculogram (EOG) artifacts. PMID:25134085

  17. Automated monitoring of early neurobehavioral changes in mice following traumatic brain injury.

    PubMed

    Qu, Wenrui; Liu, Nai-Kui; Xie, Xin-Min Simon; Li, Rui; Xu, Xiao-Ming

    2016-02-01

    Traumatic brain injury often causes a variety of behavioral and emotional impairments that can develop into chronic disorders. Therefore, there is a need to shift towards identifying early symptoms that can aid in the prediction of traumatic brain injury outcomes and behavioral endpoints in patients with traumatic brain injury after early interventions. In this study, we used the SmartCage system, an automated quantitative approach to assess behavior alterations in mice during an early phase of traumatic brain injury in their home cages. Female C57BL/6 adult mice were subjected to moderate controlled cortical impact (CCI) injury. The mice then received a battery of behavioral assessments including neurological score, locomotor activity, sleep/wake states, and anxiety-like behaviors on days 1, 2, and 7 after CCI. Histological analysis was performed on day 7 after the last assessment. Spontaneous activities on days 1 and 2 after injury were significantly decreased in the CCI group. The average percentage of sleep time spent in both dark and light cycles were significantly higher in the CCI group than in the sham group. For anxiety-like behaviors, the time spent in a light compartment and the number of transitions between the dark/light compartments were all significantly reduced in the CCI group than in the sham group. In addition, the mice suffering from CCI exhibited a preference of staying in the dark compartment of a dark/light cage. The CCI mice showed reduced neurological score and histological abnormalities, which are well correlated to the automated behavioral assessments. Our findings demonstrate that the automated SmartCage system provides sensitive and objective measures for early behavior changes in mice following traumatic brain injury. PMID:27073377

  18. Automated monitoring of early neurobehavioral changes in mice following traumatic brain injury

    PubMed Central

    Qu, Wenrui; Liu, Nai-kui; Xie, Xin-min (Simon); Li, Rui; Xu, Xiao-ming

    2016-01-01

    Traumatic brain injury often causes a variety of behavioral and emotional impairments that can develop into chronic disorders. Therefore, there is a need to shift towards identifying early symptoms that can aid in the prediction of traumatic brain injury outcomes and behavioral endpoints in patients with traumatic brain injury after early interventions. In this study, we used the SmartCage system, an automated quantitative approach to assess behavior alterations in mice during an early phase of traumatic brain injury in their home cages. Female C57BL/6 adult mice were subjected to moderate controlled cortical impact (CCI) injury. The mice then received a battery of behavioral assessments including neurological score, locomotor activity, sleep/wake states, and anxiety-like behaviors on days 1, 2, and 7 after CCI. Histological analysis was performed on day 7 after the last assessment. Spontaneous activities on days 1 and 2 after injury were significantly decreased in the CCI group. The average percentage of sleep time spent in both dark and light cycles were significantly higher in the CCI group than in the sham group. For anxiety-like behaviors, the time spent in a light compartment and the number of transitions between the dark/light compartments were all significantly reduced in the CCI group than in the sham group. In addition, the mice suffering from CCI exhibited a preference of staying in the dark compartment of a dark/light cage. The CCI mice showed reduced neurological score and histological abnormalities, which are well correlated to the automated behavioral assessments. Our findings demonstrate that the automated SmartCage system provides sensitive and objective measures for early behavior changes in mice following traumatic brain injury. PMID:27073377

  19. Automated EEG signal analysis for identification of epilepsy seizures and brain tumour.

    PubMed

    Sharanreddy, M; Kulkarni, P K

    2013-11-01

    Abstract Electroencephalography (EEG) is a clinical test which records neuro-electrical activities generated by brain structures. EEG test results used to monitor brain diseases such as epilepsy seizure, brain tumours, toxic encephalopathies infections and cerebrovascular disorders. Due to the extreme variation in the EEG morphologies, manual analysis of the EEG signal is laborious, time consuming and requires skilled interpreters, who by the nature of the task are prone to subjective judegment and error. Further, manual analysis of the EEG results often fails to detect and uncover subtle features. This paper proposes an automated EEG analysis method by combining digital signal processing and neural network techniques, which will remove error and subjectivity associated with manual analysis and identifies the existence of epilepsy seizure and brain tumour diseases. The system uses multi-wavelet transform for feature extraction in which an input EEG signal is decomposed in a sub-signal. Irregularities and unpredictable fluctuations present in the decomposed signal are measured using approximate entropy. A feed-forward neural network is used to classify the EEG signal as a normal, epilepsy or brain tumour signal. The proposed technique is implemented and tested on data of 500 EEG signals for each disease. Results are promising, with classification accuracy of 98% for normal, 93% for epilepsy and 87% for brain tumour. Along with classification, the paper also highlights the EEG abnormalities associated with brain tumour and epilepsy seizure. PMID:24116656

  20. Automated Brain Tissue Segmentation Based on Fractional Signal Mapping from Inversion Recovery Look-Locker Acquisition

    PubMed Central

    Shin, Wanyong; Geng, Xiujuan; Gu, Hong; Zhan, Wang; Zou, Qihong; Yang, Yihong

    2010-01-01

    Most current automated segmentation methods are performed on T1- or T2-weighted MR images, relying on relative image intensity that is dependent on other MR parameters and sensitive to B1 magnetic field inhomogeneity. Here, we propose an image segmentation method based on quantitative longitudinal magnetization relaxation time (T1) of brain tissues. Considering the partial volume effect, fractional volume maps of brain tissues (white matter, gray matter, and cerebrospinal fluid) were obtained by fitting the observed signal in an inversion recovery procedure to a linear combination of three exponential functions, which represents the relaxations of each of the tissue types. A Look-Locker acquisition was employed to accelerate the acquisition process. The feasibility and efficacy of this proposed method were evaluated using simulations and experiments. The potential applications of this method in the study of neurological disease as well as normal brain development and aging are discussed. PMID:20452444

  1. Evaluation of Cross-Protocol Stability of a Fully Automated Brain Multi-Atlas Parcellation Tool

    PubMed Central

    Liang, Zifei; He, Xiaohai; Ceritoglu, Can; Tang, Xiaoying; Li, Yue; Kutten, Kwame S.; Oishi, Kenichi; Miller, Michael I.; Mori, Susumu; Faria, Andreia V.

    2015-01-01

    Brain parcellation tools based on multiple-atlas algorithms have recently emerged as a promising method with which to accurately define brain structures. When dealing with data from various sources, it is crucial that these tools are robust for many different imaging protocols. In this study, we tested the robustness of a multiple-atlas, likelihood fusion algorithm using Alzheimer’s Disease Neuroimaging Initiative (ADNI) data with six different protocols, comprising three manufacturers and two magnetic field strengths. The entire brain was parceled into five different levels of granularity. In each level, which defines a set of brain structures, ranging from eight to 286 regions, we evaluated the variability of brain volumes related to the protocol, age, and diagnosis (healthy or Alzheimer’s disease). Our results indicated that, with proper pre-processing steps, the impact of different protocols is minor compared to biological effects, such as age and pathology. A precise knowledge of the sources of data variation enables sufficient statistical power and ensures the reliability of an anatomical analysis when using this automated brain parcellation tool on datasets from various imaging protocols, such as clinical databases. PMID:26208327

  2. Semi-Automated Trajectory Analysis of Deep Ballistic Penetrating Brain Injury

    PubMed Central

    Folio, Les; Solomon, Jeffrey; Biassou, Nadia; Fischer, Tatjana; Dworzak, Jenny; Raymont, Vanessa; Sinaii, Ninet; Wassermann, Eric M.; Grafman, Jordan

    2016-01-01

    Background Penetrating head injuries (PHIs) are common in combat operations and most have visible wound paths on computed tomography (CT). Objective We assess agreement between an automated trajectory analysis-based assessment of brain injury and manual tracings of encephalomalacia on CT. Methods We analyzed 80 head CTs with ballistic PHI from the Institutional Review Board approved Vietnam head injury registry. Anatomic reports were generated from spatial coordinates of projectile entrance and terminal fragment location. These were compared to manual tracings of the regions of encephalomalacia. Dice’s similarity coefficients, kappa, sensitivities, and specificities were calculated to assess agreement. Times required for case analysis were also compared. Results Results show high specificity of anatomic regions identified on CT with semiautomated anatomical estimates and manual tracings of tissue damage. Radiologist’s and medical students’ anatomic region reports were similar (Kappa 0.8, t-test p < 0.001). Region of probable injury modeling of involved brain structures was sensitive (0.7) and specific (0.9) compared with manually traced structures. Semiautomated analysis was 9-fold faster than manual tracings. Conclusion Our region of probable injury spatial model approximates anatomical regions of encephalomalacia from ballistic PHI with time-saving over manual methods. Results show potential for automated anatomical reporting as an adjunct to current practice of radiologist/neurosurgical review of brain injury by penetrating projectiles. PMID:23707123

  3. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling

    PubMed Central

    Valverde, Sergi; Oliver, Arnau; Roura, Eloy; Pareto, Deborah; Vilanova, Joan C.; Ramió-Torrentà, Lluís; Sastre-Garriga, Jaume; Montalban, Xavier; Rovira, Àlex; Lladó, Xavier

    2015-01-01

    Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS) lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM) and white matter (WM) using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations. PMID:26740917

  4. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes.

    PubMed

    Renier, Nicolas; Adams, Eliza L; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E; Kadiri, Lolahon; Umadevi Venkataraju, Kannan; Zhou, Yu; Wang, Victoria X; Tang, Cheuk Y; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-06-16

    Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization, and quantification of the activity of all neurons across the entire brain, which has not, to date, been achieved in the mammalian brain. We introduce a pipeline for high-speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Last, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. PMID:27238021

  5. New tissue priors for improved automated classification of subcortical brain structures on MRI.

    PubMed

    Lorio, S; Fresard, S; Adaszewski, S; Kherif, F; Chowdhury, R; Frackowiak, R S; Ashburner, J; Helms, G; Weiskopf, N; Lutti, A; Draganski, B

    2016-04-15

    Despite the constant improvement of algorithms for automated brain tissue classification, the accurate delineation of subcortical structures using magnetic resonance images (MRI) data remains challenging. The main difficulties arise from the low gray-white matter contrast of iron rich areas in T1-weighted (T1w) MRI data and from the lack of adequate priors for basal ganglia and thalamus. The most recent attempts to obtain such priors were based on cohorts with limited size that included subjects in a narrow age range, failing to account for age-related gray-white matter contrast changes. Aiming to improve the anatomical plausibility of automated brain tissue classification from T1w data, we have created new tissue probability maps for subcortical gray matter regions. Supported by atlas-derived spatial information, raters manually labeled subcortical structures in a cohort of healthy subjects using magnetization transfer saturation and R2* MRI maps, which feature optimal gray-white matter contrast in these areas. After assessment of inter-rater variability, the new tissue priors were tested on T1w data within the framework of voxel-based morphometry. The automated detection of gray matter in subcortical areas with our new probability maps was more anatomically plausible compared to the one derived with currently available priors. We provide evidence that the improved delineation compensates age-related bias in the segmentation of iron rich subcortical regions. The new tissue priors, allowing robust detection of basal ganglia and thalamus, have the potential to enhance the sensitivity of voxel-based morphometry in both healthy and diseased brains. PMID:26854557

  6. New tissue priors for improved automated classification of subcortical brain structures on MRI☆

    PubMed Central

    Lorio, S.; Fresard, S.; Adaszewski, S.; Kherif, F.; Chowdhury, R.; Frackowiak, R.S.; Ashburner, J.; Helms, G.; Weiskopf, N.; Lutti, A.; Draganski, B.

    2016-01-01

    Despite the constant improvement of algorithms for automated brain tissue classification, the accurate delineation of subcortical structures using magnetic resonance images (MRI) data remains challenging. The main difficulties arise from the low gray-white matter contrast of iron rich areas in T1-weighted (T1w) MRI data and from the lack of adequate priors for basal ganglia and thalamus. The most recent attempts to obtain such priors were based on cohorts with limited size that included subjects in a narrow age range, failing to account for age-related gray-white matter contrast changes. Aiming to improve the anatomical plausibility of automated brain tissue classification from T1w data, we have created new tissue probability maps for subcortical gray matter regions. Supported by atlas-derived spatial information, raters manually labeled subcortical structures in a cohort of healthy subjects using magnetization transfer saturation and R2* MRI maps, which feature optimal gray-white matter contrast in these areas. After assessment of inter-rater variability, the new tissue priors were tested on T1w data within the framework of voxel-based morphometry. The automated detection of gray matter in subcortical areas with our new probability maps was more anatomically plausible compared to the one derived with currently available priors. We provide evidence that the improved delineation compensates age-related bias in the segmentation of iron rich subcortical regions. The new tissue priors, allowing robust detection of basal ganglia and thalamus, have the potential to enhance the sensitivity of voxel-based morphometry in both healthy and diseased brains. PMID:26854557

  7. Fully automated and adaptive detection of amyloid plaques in stained brain sections of Alzheimer transgenic mice.

    PubMed

    Feki, Abdelmonem; Teboul, Olivier; Dubois, Albertine; Bozon, Bruno; Faure, Alexis; Hantraye, Philippe; Dhenain, Marc; Delatour, Benoit; Delzescaux, Thierry

    2007-01-01

    Automated detection of amyloid plaques (AP) in post mortem brain sections of patients with Alzheimer disease (AD) or in mouse models of the disease is a major issue to improve quantitative, standardized and accurate assessment of neuropathological lesions as well as of their modulation by treatment. We propose a new segmentation method to automatically detect amyloid plaques in Congo Red stained sections based on adaptive thresholds and a dedicated amyloid plaque/tissue modelling. A set of histological sections focusing on anatomical structures was used to validate the method in comparison to expert segmentation. Original information concerning global amyloid load have been derived from 6 mouse brains which opens new perspectives for the extensive analysis of such a data in 3-D and the possibility to integrate in vivo-post mortem information for diagnosis purposes. PMID:18044661

  8. Automated model-based bias field correction of MR images of the brain.

    PubMed

    Van Leemput, K; Maes, F; Vandermeulen, D; Suetens, P

    1999-10-01

    We propose a model-based method for fully automated bias field correction of MR brain images. The MR signal is modeled as a realization of a random process with a parametric probability distribution that is corrupted by a smooth polynomial inhomogeneity or bias field. The method we propose applies an iterative expectation-maximization (EM) strategy that interleaves pixel classification with estimation of class distribution and bias field parameters, improving the likelihood of the model parameters at each iteration. The algorithm, which can handle multichannel data and slice-by-slice constant intensity offsets, is initialized with information from a digital brain atlas about the a priori expected location of tissue classes. This allows full automation of the method without need for user interaction, yielding more objective and reproducible results. We have validated the bias correction algorithm on simulated data and we illustrate its performance on various MR images with important field inhomogeneities. We also relate the proposed algorithm to other bias correction algorithms. PMID:10628948

  9. Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks.

    PubMed

    Reddick, W E; Glass, J O; Cook, E N; Elkin, T D; Deaton, R J

    1997-12-01

    We present a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; seven male, seven female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (ri) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in five volunteers imaged five times each demonstrated high intrasubject reproducibility with a significance of at least p < 0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability. PMID:9533591

  10. A Comparison of a Brain-Based Adaptive System and a Manual Adaptable System for Invoking Automation

    NASA Technical Reports Server (NTRS)

    Bailey, Nathan R.; Scerbo, Mark W.; Freeman, Frederick G.; Mikulka, Peter J.; Scott, Lorissa A.

    2004-01-01

    Two experiments are presented that examine alternative methods for invoking automation. In each experiment, participants were asked to perform simultaneously a monitoring task and a resource management task as well as a tracking task that changed between automatic and manual modes. The monitoring task required participants to detect failures of an automated system to correct aberrant conditions under either high or low system reliability. Performance on each task was assessed as well as situation awareness and subjective workload. In the first experiment, half of the participants worked with a brain-based system that used their EEG signals to switch the tracking task between automatic and manual modes. The remaining participants were yoked to participants from the adaptive condition and received the same schedule of mode switches, but their EEG had no effect on the automation. Within each group, half of the participants were assigned to either the low or high reliability monitoring task. In addition, within each combination of automation invocation and system reliability, participants were separated into high and low complacency potential groups. The results revealed no significant effects of automation invocation on the performance measures; however, the high complacency individuals demonstrated better situation awareness when working with the adaptive automation system. The second experiment was the same as the first with one important exception. Automation was invoked manually. Thus, half of the participants pressed a button to invoke automation for 10 s. The remaining participants were yoked to participants from the adaptable condition and received the same schedule of mode switches, but they had no control over the automation. The results showed that participants who could invoke automation performed more poorly on the resource management task and reported higher levels of subjective workload. Further, those who invoked automation more frequently performed

  11. Automated segmentation of brain ventricles in unenhanced CT of patients with ischemic stroke

    NASA Astrophysics Data System (ADS)

    Qian, Xiaohua; Wang, Jiahui; Li, Qiang

    2013-02-01

    We are developing an automated method for detection and quantification of ischemic stroke in computed tomography (CT). Ischemic stroke often connects to brain ventricle, therefore, ventricular segmentation is an important and difficult task when stroke is present, and is the topic of this study. We first corrected inclination angle of brain by aligning midline of brain with the vertical centerline of a slice. We then estimated the intensity range of the ventricles by use of the k-means method. Two segmentation of the ventricle were obtained by use of thresholding technique. One segmentation contains ventricle and nearby stroke. The other mainly contains ventricle. Therefore, the stroke regions can be extracted and removed using image difference technique. An adaptive template-matching algorithm was employed to identify objects in the fore-mentioned segmentation. The largest connected component was identified and considered as the ventricle. We applied our method to 25 unenhanced CT scans with stroke. Our method achieved average Dice index, sensitivity, and specificity of 95.1%, 97.0%, and 99.8% for the entire ventricular regions. The experimental results demonstrated that the proposed method has great potential in detection and quantification of stroke and other neurologic diseases.

  12. A framework to support automated classification and labeling of brain electromagnetic patterns.

    PubMed

    Frishkoff, Gwen A; Frank, Robert M; Rong, Jiawei; Dou, Dejing; Dien, Joseph; Halderman, Laura K

    2007-01-01

    This paper describes a framework for automated classification and labeling of patterns in electroencephalographic (EEG) and magnetoencephalographic (MEG) data. We describe recent progress on four goals: 1) specification of rules and concepts that capture expert knowledge of event-related potentials (ERP) patterns in visual word recognition; 2) implementation of rules in an automated data processing and labeling stream; 3) data mining techniques that lead to refinement of rules; and 4) iterative steps towards system evaluation and optimization. This process combines top-down, or knowledge-driven, methods with bottom-up, or data-driven, methods. As illustrated here, these methods are complementary and can lead to development of tools for pattern classification and labeling that are robust and conceptually transparent to researchers. The present application focuses on patterns in averaged EEG (ERP) data. We also describe efforts to extend our methods to represent patterns in MEG data, as well as EM patterns in source (anatomical) space. The broader aim of this work is to design an ontology-based system to support cross-laboratory, cross-paradigm, and cross-modal integration of brain functional data. Tools developed for this project are implemented in MATLAB and are freely available on request. PMID:18301711

  13. Automated Detection of Brain Abnormalities in Neonatal Hypoxia Ischemic Injury from MR Images

    PubMed Central

    Ghosh, Nirmalya; Sun, Yu; Bhanu, Bir; Ashwal, Stephen; Obenaus, Andre

    2014-01-01

    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HII). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to check the temporal efficacy of our computational approaches. Sensitivity, specificity, similarity were used as performance metrics based on manual (‘gold standard’) injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while HRS for 33% data. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects. PMID:25000294

  14. Automated segmentation of in vivo and ex vivo mouse brain magnetic resonance images.

    PubMed

    Scheenstra, Alize E H; van de Ven, Rob C G; van der Weerd, Louise; van den Maagdenberg, Arn M J M; Dijkstra, Jouke; Reiber, Johan H C

    2009-01-01

    Segmentation of magnetic resonance imaging (MRI) data is required for many applications, such as the comparison of different structures or time points, and for annotation purposes. Currently, the gold standard for automated image segmentation is nonlinear atlas-based segmentation. However, these methods are either not sufficient or highly time consuming for mouse brains, owing to the low signal to noise ratio and low contrast between structures compared with other applications. We present a novel generic approach to reduce processing time for segmentation of various structures of mouse brains, in vivo and ex vivo. The segmentation consists of a rough affine registration to a template followed by a clustering approach to refine the rough segmentation near the edges. Compared with manual segmentations, the presented segmentation method has an average kappa index of 0.7 for 7 of 12 structures in in vivo MRI and 11 of 12 structures in ex vivo MRI. Furthermore, we found that these results were equal to the performance of a nonlinear segmentation method, but with the advantage of being 8 times faster. The presented automatic segmentation method is quick and intuitive and can be used for image registration, volume quantification of structures, and annotation. PMID:19344574

  15. A Multi-Atlas Based Method for Automated Anatomical Rat Brain MRI Segmentation and Extraction of PET Activity

    PubMed Central

    Lancelot, Sophie; Roche, Roxane; Slimen, Afifa; Bouillot, Caroline; Levigoureux, Elise; Langlois, Jean-Baptiste; Zimmer, Luc; Costes, Nicolas

    2014-01-01

    Introduction Preclinical in vivo imaging requires precise and reproducible delineation of brain structures. Manual segmentation is time consuming and operator dependent. Automated segmentation as usually performed via single atlas registration fails to account for anatomo-physiological variability. We present, evaluate, and make available a multi-atlas approach for automatically segmenting rat brain MRI and extracting PET activies. Methods High-resolution 7T 2DT2 MR images of 12 Sprague-Dawley rat brains were manually segmented into 27-VOI label volumes using detailed protocols. Automated methods were developed with 7/12 atlas datasets, i.e. the MRIs and their associated label volumes. MRIs were registered to a common space, where an MRI template and a maximum probability atlas were created. Three automated methods were tested: 1/registering individual MRIs to the template, and using a single atlas (SA), 2/using the maximum probability atlas (MP), and 3/registering the MRIs from the multi-atlas dataset to an individual MRI, propagating the label volumes and fusing them in individual MRI space (propagation & fusion, PF). Evaluation was performed on the five remaining rats which additionally underwent [18F]FDG PET. Automated and manual segmentations were compared for morphometric performance (assessed by comparing volume bias and Dice overlap index) and functional performance (evaluated by comparing extracted PET measures). Results Only the SA method showed volume bias. Dice indices were significantly different between methods (PF>MP>SA). PET regional measures were more accurate with multi-atlas methods than with SA method. Conclusions Multi-atlas methods outperform SA for automated anatomical brain segmentation and PET measure’s extraction. They perform comparably to manual segmentation for FDG-PET quantification. Multi-atlas methods are suitable for rapid reproducible VOI analyses. PMID:25330005

  16. Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI.

    PubMed

    Alexander-Bloch, Aaron; Clasen, Liv; Stockman, Michael; Ronan, Lisa; Lalonde, Francois; Giedd, Jay; Raznahan, Armin

    2016-07-01

    While the potential for small amounts of motion in functional magnetic resonance imaging (fMRI) scans to bias the results of functional neuroimaging studies is well appreciated, the impact of in-scanner motion on morphological analysis of structural MRI is relatively under-studied. Even among "good quality" structural scans, there may be systematic effects of motion on measures of brain morphometry. In the present study, the subjects' tendency to move during fMRI scans, acquired in the same scanning sessions as their structural scans, yielded a reliable, continuous estimate of in-scanner motion. Using this approach within a sample of 127 children, adolescents, and young adults, significant relationships were found between this measure and estimates of cortical gray matter volume and mean curvature, as well as trend-level relationships with cortical thickness. Specifically, cortical volume and thickness decreased with greater motion, and mean curvature increased. These effects of subtle motion were anatomically heterogeneous, were present across different automated imaging pipelines, showed convergent validity with effects of frank motion assessed in a separate sample of 274 scans, and could be demonstrated in both pediatric and adult populations. Thus, using different motion assays in two large non-overlapping sets of structural MRI scans, convergent evidence showed that in-scanner motion-even at levels which do not manifest in visible motion artifact-can lead to systematic and regionally specific biases in anatomical estimation. These findings have special relevance to structural neuroimaging in developmental and clinical datasets, and inform ongoing efforts to optimize neuroanatomical analysis of existing and future structural MRI datasets in non-sedated humans. Hum Brain Mapp 37:2385-2397, 2016. © 2016 Wiley Periodicals, Inc. PMID:27004471

  17. Automated Classification to Predict the Progression of Alzheimer's Disease Using Whole-Brain Volumetry and DTI

    PubMed Central

    Jung, Won Beom; Lee, Young Min; Kim, Young Hoon

    2015-01-01

    Objective This study proposes an automated diagnostic method to classify patients with Alzheimer's disease (AD) of degenerative etiology using magnetic resonance imaging (MRI) markers. Methods Twenty-seven patients with subjective memory impairment (SMI), 18 patients with mild cognitive impairment (MCI), and 27 patients with AD participated. MRI protocols included three dimensional brain structural imaging and diffusion tensor imaging to assess the cortical thickness, subcortical volume and white matter integrity. Recursive feature elimination based on support vector machine (SVM) was conducted to determine the most relevant features for classifying abnormal regions and imaging parameters, and then a factor analysis for the top-ranked factors was performed. Subjects were classified using nonlinear SVM. Results Medial temporal regions in AD patients were dominantly detected with cortical thinning and volume atrophy compared with SMI and MCI patients. Damage to white matter integrity was also accredited with decreased fractional anisotropy and increased mean diffusivity (MD) across the three groups. The microscopic damage in the subcortical gray matter was reflected in increased MD. Classification accuracy between pairs of groups (SMI vs. MCI, MCI vs. AD, SMI vs. AD) and among all three groups were 84.4% (±13.8), 86.9% (±10.5), 96.3% (±4.6), and 70.5% (±11.5), respectively. Conclusion This proposed method may be a potential tool to diagnose AD pathology with the current clinical criteria. PMID:25670951

  18. SU-D-BRD-06: Automated Population-Based Planning for Whole Brain Radiation Therapy

    SciTech Connect

    Schreibmann, E; Fox, T; Crocker, I; Shu, H

    2014-06-01

    Purpose: Treatment planning for whole brain radiation treatment is technically a simple process but in practice it takes valuable clinical time of repetitive and tedious tasks. This report presents a method that automatically segments the relevant target and normal tissues and creates a treatment plan in only a few minutes after patient simulation. Methods: Segmentation is performed automatically through morphological operations on the soft tissue. The treatment plan is generated by searching a database of previous cases for patients with similar anatomy. In this search, each database case is ranked in terms of similarity using a customized metric designed for sensitivity by including only geometrical changes that affect the dose distribution. The database case with the best match is automatically modified to replace relevant patient info and isocenter position while maintaining original beam and MLC settings. Results: Fifteen patients were used to validate the method. In each of these cases the anatomy was accurately segmented to mean Dice coefficients of 0.970 ± 0.008 for the brain, 0.846 ± 0.009 for the eyes and 0.672 ± 0.111 for the lens as compared to clinical segmentations. Each case was then subsequently matched against a database of 70 validated treatment plans and the best matching plan (termed auto-planned), was compared retrospectively with the clinical plans in terms of brain coverage and maximum doses to critical structures. Maximum doses were reduced by a maximum of 20.809 Gy for the left eye (mean 3.533), by 13.352 (1.311) for the right eye, and by 27.471 (4.856), 25.218 (6.315) for the left and right lens. Time from simulation to auto-plan was 3-4 minutes. Conclusion: Automated database- based matching is an alternative to classical treatment planning that improves quality while providing a cost—effective solution to planning through modifying previous validated plans to match a current patient's anatomy.

  19. Precise Anatomic Localization of Accumulated Lipids in Mfp2 Deficient Murine Brains Through Automated Registration of SIMS Images to the Allen Brain Atlas

    NASA Astrophysics Data System (ADS)

    Škrášková, Karolina; Khmelinskii, Artem; Abdelmoula, Walid M.; De Munter, Stephanie; Baes, Myriam; McDonnell, Liam; Dijkstra, Jouke; Heeren, Ron M. A.

    2015-06-01

    Mass spectrometry imaging (MSI) is a powerful tool for the molecular characterization of specific tissue regions. Histochemical staining provides anatomic information complementary to MSI data. The combination of both modalities has been proven to be beneficial. However, direct comparison of histology based and mass spectrometry-based molecular images can become problematic because of potential tissue damages or changes caused by different sample preparation. Curated atlases such as the Allen Brain Atlas (ABA) offer a collection of highly detailed and standardized anatomic information. Direct comparison of MSI brain data to the ABA allows for conclusions to be drawn on precise anatomic localization of the molecular signal. Here we applied secondary ion mass spectrometry imaging at high spatial resolution to study brains of knock-out mouse models with impaired peroxisomal β-oxidation. Murine models were lacking D-multifunctional protein (MFP2), which is involved in degradation of very long chain fatty acids. SIMS imaging revealed deposits of fatty acids within distinct brain regions. Manual comparison of the MSI data with the histologic stains did not allow for an unequivocal anatomic identification of the fatty acids rich regions. We further employed an automated pipeline for co-registration of the SIMS data to the ABA. The registration enabled precise anatomic annotation of the brain structures with the revealed lipid deposits. The precise anatomic localization allowed for a deeper insight into the pathology of Mfp2 deficient mouse models.

  20. Associative image analysis: a method for automated quantification of 3D multi-parameter images of brain tissue

    PubMed Central

    Bjornsson, Christopher S; Lin, Gang; Al-Kofahi, Yousef; Narayanaswamy, Arunachalam; Smith, Karen L; Shain, William; Roysam, Badrinath

    2009-01-01

    Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic ‘divide and conquer’ methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick (~100 μm) slices of rat brain tissue were labeled using 3 – 5 fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81–92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system. PMID:18294697

  1. Automated data processing of { 1H-decoupled} 13C MR spectra acquired from human brain in vivo

    NASA Astrophysics Data System (ADS)

    Shic, Frederick; Ross, Brian

    2003-06-01

    In clinical 13C infusion studies, broadband excitation of 200 ppm of the human brain yields 13C MR spectra with a time resolution of 2-5 min and generates up to 2000 metabolite peaks over 2 h. We describe a fast, automated, observer-independent technique for processing { 1H-decoupled} 13C spectra. Quantified 13C spectroscopic signals, before and after the administration of [1- 13C]glucose and/or [1- 13C]acetate in human subjects are determined. Stepwise improvements of data processing are illustrated by examples of normal and pathological results. Variation in analysis of individual 13C resonances ranged between 2 and 14%. Using this method it is possible to reliably identify subtle metabolic effects of brain disease including Alzheimer's disease and epilepsy.

  2. Implementation of talairach atlas based automated brain segmentation for radiation therapy dosimetry.

    PubMed

    Popple, R A; Griffith, H R; Sawrie, S M; Fiveash, J B; Brezovich, I A

    2006-02-01

    Radiotherapy for brain cancer inevitably results in irradiation of uninvolved brain. While it has been demonstrated that irradiation of the brain can result in cognitive deficits, dose-volume relationships are not well established. There is little work correlating a particular cognitive deficit with dose received by the region of the brain responsible for the specific cognitive function. One obstacle to such studies is that identification of brain anatomy is both labor intensive and dependent on the individual performing the segmentation. Automatic segmentation has the potential to be both efficient and consistent. Brains2 is a software package developed by the University of Iowa for MRI volumetric studies. It utilizes MR images, the Talairach atlas, and an artificial neural network (ANN) to segment brain images into substructures in a standardized manner. We have developed a software package, Brains2DICOM, that converts the regions of interest identified by Brains2 into a DICOM radiotherapy structure set. The structure set can be imported into a treatment planning system for dosimetry. We demonstrated the utility of Brains2DICOM using a test case, a 34-year-old man with diffuse astrocytoma treated with three-dimensional conformal radiotherapy. Brains2 successfully applied the Talairach atlas to identify the right and left frontal, parietal, temporal, occipital, subcortical, and cerebellum regions. Brains2 was not successful in applying the ANN to identify small structures, such as the hippocampus and caudate. Further work is necessary to revise the ANN or to develop new methods for identification of small structures in the presence of disease and radiation induced changes. The segmented regions-of-interest were transferred to our commercial treatment planning system using DICOM and dose-volume histograms were constructed. This method will facilitate the acquisition of data necessary for the development of normal tissue complication probability (NTCP) models that

  3. Brain-Wide Mapping of Axonal Connections: Workflow for Automated Detection and Spatial Analysis of Labeling in Microscopic Sections

    PubMed Central

    Papp, Eszter A.; Leergaard, Trygve B.; Csucs, Gergely; Bjaalie, Jan G.

    2016-01-01

    Axonal tracing techniques are powerful tools for exploring the structural organization of neuronal connections. Tracers such as biotinylated dextran amine (BDA) and Phaseolus vulgaris leucoagglutinin (Pha-L) allow brain-wide mapping of connections through analysis of large series of histological section images. We present a workflow for efficient collection and analysis of tract-tracing datasets with a focus on newly developed modules for image processing and assignment of anatomical location to tracing data. New functionality includes automatic detection of neuronal labeling in large image series, alignment of images to a volumetric brain atlas, and analytical tools for measuring the position and extent of labeling. To evaluate the workflow, we used high-resolution microscopic images from axonal tracing experiments in which different parts of the rat primary somatosensory cortex had been injected with BDA or Pha-L. Parameters from a set of representative images were used to automate detection of labeling in image series covering the entire brain, resulting in binary maps of the distribution of labeling. For high to medium labeling densities, automatic detection was found to provide reliable results when compared to manual analysis, whereas weak labeling required manual curation for optimal detection. To identify brain regions corresponding to labeled areas, section images were aligned to the Waxholm Space (WHS) atlas of the Sprague Dawley rat brain (v2) by custom-angle slicing of the MRI template to match individual sections. Based on the alignment, WHS coordinates were obtained for labeled elements and transformed to stereotaxic coordinates. The new workflow modules increase the efficiency and reliability of labeling detection in large series of images from histological sections, and enable anchoring to anatomical atlases for further spatial analysis and comparison with other data. PMID:27148038

  4. Brain-Wide Mapping of Axonal Connections: Workflow for Automated Detection and Spatial Analysis of Labeling in Microscopic Sections.

    PubMed

    Papp, Eszter A; Leergaard, Trygve B; Csucs, Gergely; Bjaalie, Jan G

    2016-01-01

    Axonal tracing techniques are powerful tools for exploring the structural organization of neuronal connections. Tracers such as biotinylated dextran amine (BDA) and Phaseolus vulgaris leucoagglutinin (Pha-L) allow brain-wide mapping of connections through analysis of large series of histological section images. We present a workflow for efficient collection and analysis of tract-tracing datasets with a focus on newly developed modules for image processing and assignment of anatomical location to tracing data. New functionality includes automatic detection of neuronal labeling in large image series, alignment of images to a volumetric brain atlas, and analytical tools for measuring the position and extent of labeling. To evaluate the workflow, we used high-resolution microscopic images from axonal tracing experiments in which different parts of the rat primary somatosensory cortex had been injected with BDA or Pha-L. Parameters from a set of representative images were used to automate detection of labeling in image series covering the entire brain, resulting in binary maps of the distribution of labeling. For high to medium labeling densities, automatic detection was found to provide reliable results when compared to manual analysis, whereas weak labeling required manual curation for optimal detection. To identify brain regions corresponding to labeled areas, section images were aligned to the Waxholm Space (WHS) atlas of the Sprague Dawley rat brain (v2) by custom-angle slicing of the MRI template to match individual sections. Based on the alignment, WHS coordinates were obtained for labeled elements and transformed to stereotaxic coordinates. The new workflow modules increase the efficiency and reliability of labeling detection in large series of images from histological sections, and enable anchoring to anatomical atlases for further spatial analysis and comparison with other data. PMID:27148038

  5. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.

    PubMed

    Zhang, Rui; Li, Yuanqing; Yan, Yongyong; Zhang, Hao; Wu, Shaoyu; Yu, Tianyou; Gu, Zhenghui

    2016-01-01

    The concept of controlling a wheelchair using brain signals is promising. However, the continuous control of a wheelchair based on unstable and noisy electroencephalogram signals is unreliable and generates a significant mental burden for the user. A feasible solution is to integrate a brain-computer interface (BCI) with automated navigation techniques. This paper presents a brain-controlled intelligent wheelchair with the capability of automatic navigation. Using an autonomous navigation system, candidate destinations and waypoints are automatically generated based on the existing environment. The user selects a destination using a motor imagery (MI)-based or P300-based BCI. According to the determined destination, the navigation system plans a short and safe path and navigates the wheelchair to the destination. During the movement of the wheelchair, the user can issue a stop command with the BCI. Using our system, the mental burden of the user can be substantially alleviated. Furthermore, our system can adapt to changes in the environment. Two experiments based on MI and P300 were conducted to demonstrate the effectiveness of our system. PMID:26054072

  6. A rat brain MRI template with digital stereotaxic atlas of fine anatomical delineations in paxinos space and its automated application in voxel-wise analysis.

    PubMed

    Nie, Binbin; Chen, Kewei; Zhao, Shujun; Liu, Junhua; Gu, Xiaochun; Yao, Qunli; Hui, Jiaojie; Zhang, Zhijun; Teng, Gaojun; Zhao, Chunjie; Shan, Baoci

    2013-06-01

    This study constructs a rat brain T2 -weighted magnetic resonance imaging template including olfactory bulb and a compatible digital atlas. The atlas contains 624 carefully delineated brain structures based on the newest (2005) edition of rat brain atlas by Paxinos and Watson. An automated procedure, as an SPM toolbox, was introduced for spatially normalizing individual rat brains, conducting statistical analysis and visually localizing the results in the Atlas coordinate space. The brain template/atlas and the procedure were evaluated using functional images between rats with the right side middle cerebral artery occlusion (MCAO) and normal controls. The result shows that the brain region with significant signal decline in the MCAO rats was consistent with the occlusion position. PMID:22287270

  7. Quantification of Human Brain Metabolites from in Vivo1H NMR Magnitude Spectra Using Automated Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Hiltunen, Yrjö; Kaartinen, Jouni; Pulkkinen, Juhani; Häkkinen, Anna-Maija; Lundbom, Nina; Kauppinen, Risto A.

    2002-01-01

    Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.

  8. Towards fully automated closed-loop Deep Brain Stimulation in Parkinson's disease patients: A LAMSTAR-based tremor predictor.

    PubMed

    Khobragade, Nivedita; Graupe, Daniel; Tuninetti, Daniela

    2015-08-01

    This paper describes the application of the LAMSTAR (LArge Memory STorage and Retrieval) neural network for prediction of onset of tremor in Parkinson's disease (PD) patients to allow for on-off adaptive control of Deep Brain Stimulation (DBS). Currently, the therapeutic treatment of PD by DBS is an open-loop system where continuous stimulation is applied to a target area in the brain. This work demonstrates a fully automated closed-loop DBS system so that stimulation can be applied on-demand only when needed to treat PD symptoms. The proposed LAMSTAR network uses spectral, entropy and recurrence rate parameters for prediction of the advent of tremor after the DBS stimulation is switched off. These parameters are extracted from non-invasively collected surface electromyography and accelerometry signals. The LAMSTAR network has useful characteristics, such as fast retrieval of patterns and ability to handle large amount of data of different types, which make it attractive for medical applications. Out of 21 trials blue from one subject, the average ratio of delay in prediction of tremor to the actual delay in observed tremor from the time stimulation was switched off achieved by the proposed LAMSTAR network is 0.77. Moreover, sensitivity of 100% and overall performance better than previously proposed Back Propagation neural networks is obtained. PMID:26736828

  9. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease

    PubMed Central

    Plant, Claudia; Teipel, Stefan J.; Oswald, Annahita; Böhm, Christian; Meindl, Thomas; Mourao-Miranda, Janaina; Bokde, Arun W.; Hampel, Harald; Ewers, Michael

    2010-01-01

    Subjects with mild cognitive impairment (MCI) have an increased risk to develop Alzheimer's disease (AD). Voxel-based MRI studies have demonstrated that widely distributed cortical and subcortical brain areas show atrophic changes in MCI, preceding the onset of AD-type dementia. Here we developed a novel data mining framework in combination with three different classifiers including support vector machine (SVM), Bayes statistics, and voting feature intervals (VFI) to derive a quantitative index of pattern matching for the prediction of the conversion from MCI to AD. MRI was collected in 32 AD patients, 24 MCI subjects and 18 healthy controls (HC). Nine out of 24 MCI subjects converted to AD after an average follow-up interval of 2.5 years. Using feature selection algorithms, brain regions showing the highest accuracy for the discrimination between AD and HC were identified, reaching a classification accuracy of up to 92%. The extracted AD clusters were used as a search region to extract those brain areas that are predictive of conversion to AD within MCI subjects. The most predictive brain areas included the anterior cingulate gyrus and orbitofrontal cortex. The best prediction accuracy, which was cross-validated via train-and-test, was 75% for the prediction of the conversion from MCI to AD. The present results suggest that novel multivariate methods of pattern matching reach a clinically relevant accuracy for the a priori prediction of the progression from MCI to AD. PMID:19961938

  10. Colorization and Automated Segmentation of Human T2 MR Brain Images for Characterization of Soft Tissues

    PubMed Central

    Attique, Muhammad; Gilanie, Ghulam; Hafeez-Ullah; Mehmood, Malik S.; Naweed, Muhammad S.; Ikram, Masroor; Kamran, Javed A.; Vitkin, Alex

    2012-01-01

    Characterization of tissues like brain by using magnetic resonance (MR) images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i) a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii) a segmentation method (both hard and soft segmentation) to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using prior anatomical knowledge). Results have been successfully validated on human T2-weighted (T2) brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described. PMID:22479421

  11. An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.

    PubMed

    Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan

    2015-01-01

    A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the

  12. An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification

    PubMed Central

    Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan

    2015-01-01

    A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients’ benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the

  13. Fully Automated Segmentation of the Pons and Midbrain Using Human T1 MR Brain Images

    PubMed Central

    Nigro, Salvatore; Cerasa, Antonio; Zito, Giancarlo; Perrotta, Paolo; Chiaravalloti, Francesco; Donzuso, Giulia; Fera, Franceso; Bilotta, Eleonora; Pantano, Pietro; Quattrone, Aldo

    2014-01-01

    Purpose This paper describes a novel method to automatically segment the human brainstem into midbrain and pons, called LABS: Landmark-based Automated Brainstem Segmentation. LABS processes high-resolution structural magnetic resonance images (MRIs) according to a revised landmark-based approach integrated with a thresholding method, without manual interaction. Methods This method was first tested on morphological T1-weighted MRIs of 30 healthy subjects. Its reliability was further confirmed by including neurological patients (with Alzheimer's Disease) from the ADNI repository, in whom the presence of volumetric loss within the brainstem had been previously described. Segmentation accuracies were evaluated against expert-drawn manual delineation. To evaluate the quality of LABS segmentation we used volumetric, spatial overlap and distance-based metrics. Results The comparison between the quantitative measurements provided by LABS against manual segmentations revealed excellent results in healthy controls when considering either the midbrain (DICE measures higher that 0.9; Volume ratio around 1 and Hausdorff distance around 3) or the pons (DICE measures around 0.93; Volume ratio ranging 1.024–1.05 and Hausdorff distance around 2). Similar performances were detected for AD patients considering segmentation of the pons (DICE measures higher that 0.93; Volume ratio ranging from 0.97–0.98 and Hausdorff distance ranging 1.07–1.33), while LABS performed lower for the midbrain (DICE measures ranging 0.86–0.88; Volume ratio around 0.95 and Hausdorff distance ranging 1.71–2.15). Conclusions Our study represents the first attempt to validate a new fully automated method for in vivo segmentation of two anatomically complex brainstem subregions. We retain that our method might represent a useful tool for future applications in clinical practice. PMID:24489664

  14. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain.

    PubMed

    Avants, B B; Epstein, C L; Grossman, M; Gee, J C

    2008-02-01

    One of the most challenging problems in modern neuroimaging is detailed characterization of neurodegeneration. Quantifying spatial and longitudinal atrophy patterns is an important component of this process. These spatiotemporal signals will aid in discriminating between related diseases, such as frontotemporal dementia (FTD) and Alzheimer's disease (AD), which manifest themselves in the same at-risk population. Here, we develop a novel symmetric image normalization method (SyN) for maximizing the cross-correlation within the space of diffeomorphic maps and provide the Euler-Lagrange equations necessary for this optimization. We then turn to a careful evaluation of our method. Our evaluation uses gold standard, human cortical segmentation to contrast SyN's performance with a related elastic method and with the standard ITK implementation of Thirion's Demons algorithm. The new method compares favorably with both approaches, in particular when the distance between the template brain and the target brain is large. We then report the correlation of volumes gained by algorithmic cortical labelings of FTD and control subjects with those gained by the manual rater. This comparison shows that, of the three methods tested, SyN's volume measurements are the most strongly correlated with volume measurements gained by expert labeling. This study indicates that SyN, with cross-correlation, is a reliable method for normalizing and making anatomical measurements in volumetric MRI of patients and at-risk elderly individuals. PMID:17659998

  15. Automated cortical projection of head-surface locations for transcranial functional brain mapping.

    PubMed

    Okamoto, Masako; Dan, Ippeita

    2005-05-15

    Recent advancements in two noninvasive transcranial neuroimaging techniques, near-infrared spectroscopy (NIRS) and transcranial magnetic stimulation (TMS), signify the increasing importance of establishing structural compatibility between transcranial methods and conventional tomographic methods, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). The transcranial data obtained from the head surface should be projected onto the cortical surface to present the transcranial brain-mapping data on the same platform as tomographic methods. Thus, we developed two transcranial projection algorithms that project given head-surface points onto the cortical surface in structural images, and computer programs based on them. The convex-hull algorithm features geometric handling of the cortical surface, while the balloon-inflation algorithm is faster, and better reflects the local cortical structure. The automatic cortical projection methods proved to be as effective as the manual projection method described in our previous study. These methods achieved perfect correspondence between any given point on the head surface or a related nearby point in space, and its cortical projection point. Moreover, we developed a neighbor-reference method that enables transcranial cortical projection of a given head-surface point in reference to three neighboring points and one additional standard point, even when no structural image of the subject is available. We also calculated an error factor associated with these probabilistic estimations. The current study presents a close topological link between transcranial and tomographic brain-mapping modalities, which could contribute to inter-modal data standardization. PMID:15862201

  16. [An automated detection of lacunar infarct regions in brain MR images: preliminary study].

    PubMed

    Yokoyama, Ryujiro; Lee, Yongbum; Hara, Takeshi; Fujita, Hiroshi; Asano, Takahiko; Hoshi, Hiroaki; Iwama, Toru; Sakai, Noboru

    2002-03-01

    The purpose of this study is to develop a technique to detect lacunar infarct regions automatically in brain MR images. Our detection method is based on the definition of lacunar infarcts. After inputted images were binarized, we used feature values such as area, circularities and the center of gravity of candidate regions to extract isolated lacunar infarct regions. We also developed and used a new filter to enhance the signals of lacunar infarcts adjacent to some high intensity regions. 10 cases involving 81 sectional images were applied to our experiment. As a result, the sensitivity was 100% with approximately 1.77 false-positives per image. Our results are promising on the first stage, although it remains to improve on problems that to eliminate false-positives and automatically establish threshold value. PMID:12522348

  17. Automated Protein Localization of Blood Brain Barrier Vasculature in Brightfield IHC Images.

    PubMed

    Soans, Rajath E; Lim, Diane C; Keenan, Brendan T; Pack, Allan I; Shackleford, James A

    2016-01-01

    In this paper, we present an objective method for localization of proteins in blood brain barrier (BBB) vasculature using standard immunohistochemistry (IHC) techniques and bright-field microscopy. Images from the hippocampal region at the BBB are acquired using bright-field microscopy and subjected to our segmentation pipeline which is designed to automatically identify and segment microvessels containing the protein glucose transporter 1 (GLUT1). Gabor filtering and k-means clustering are employed to isolate potential vascular structures within cryosectioned slabs of the hippocampus, which are subsequently subjected to feature extraction followed by classification via decision forest. The false positive rate (FPR) of microvessel classification is characterized using synthetic and non-synthetic IHC image data for image entropies ranging between 3 and 8 bits. The average FPR for synthetic and non-synthetic IHC image data was found to be 5.48% and 5.04%, respectively. PMID:26828723

  18. Automated Protein Localization of Blood Brain Barrier Vasculature in Brightfield IHC Images

    PubMed Central

    Keenan, Brendan T.; Pack, Allan I.; Shackleford, James A.

    2016-01-01

    In this paper, we present an objective method for localization of proteins in blood brain barrier (BBB) vasculature using standard immunohistochemistry (IHC) techniques and bright-field microscopy. Images from the hippocampal region at the BBB are acquired using bright-field microscopy and subjected to our segmentation pipeline which is designed to automatically identify and segment microvessels containing the protein glucose transporter 1 (GLUT1). Gabor filtering and k-means clustering are employed to isolate potential vascular structures within cryosectioned slabs of the hippocampus, which are subsequently subjected to feature extraction followed by classification via decision forest. The false positive rate (FPR) of microvessel classification is characterized using synthetic and non-synthetic IHC image data for image entropies ranging between 3 and 8 bits. The average FPR for synthetic and non-synthetic IHC image data was found to be 5.48% and 5.04%, respectively. PMID:26828723

  19. Automated brain volumetrics in multiple sclerosis: a step closer to clinical application

    PubMed Central

    Beadnall, H N; Hatton, S N; Bader, G; Tomic, D; Silva, D G

    2016-01-01

    Background Whole brain volume (WBV) estimates in patients with multiple sclerosis (MS) correlate more robustly with clinical disability than traditional, lesion-based metrics. Numerous algorithms to measure WBV have been developed over the past two decades. We compare Structural Image Evaluation using Normalisation of Atrophy-Cross-sectional (SIENAX) to NeuroQuant and MSmetrix, for assessment of cross-sectional WBV in patients with MS. Methods MRIs from 61 patients with relapsing-remitting MS and 2 patients with clinically isolated syndrome were analysed. WBV measurements were calculated using SIENAX, NeuroQuant and MSmetrix. Statistical agreement between the methods was evaluated using linear regression and Bland-Altman plots. Precision and accuracy of WBV measurement was calculated for (1) NeuroQuant versus SIENAX and (2) MSmetrix versus SIENAX. Results Precision (Pearson's r) of WBV estimation for NeuroQuant and MSmetrix versus SIENAX was 0.983 and 0.992, respectively. Accuracy (Cb) was 0.871 and 0.994, respectively. NeuroQuant and MSmetrix showed a 5.5% and 1.0% volume difference compared with SIENAX, respectively, that was consistent across low and high values. Conclusions In the analysed population, NeuroQuant and MSmetrix both quantified cross-sectional WBV with comparable statistical agreement to SIENAX, a well-validated cross-sectional tool that has been used extensively in MS clinical studies. PMID:27071647

  20. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  1. An automated approach towards detecting complex behaviours in deep brain oscillations.

    PubMed

    Mace, Michael; Yousif, Nada; Naushahi, Mohammad; Abdullah-Al-Mamun, Khondaker; Wang, Shouyan; Nandi, Dipankar; Vaidyanathan, Ravi

    2014-03-15

    Extracting event-related potentials (ERPs) from neurological rhythms is of fundamental importance in neuroscience research. Standard ERP techniques typically require the associated ERP waveform to have low variance, be shape and latency invariant and require many repeated trials. Additionally, the non-ERP part of the signal needs to be sampled from an uncorrelated Gaussian process. This limits methods of analysis to quantifying simple behaviours and movements only when multi-trial data-sets are available. We introduce a method for automatically detecting events associated with complex or large-scale behaviours, where the ERP need not conform to the aforementioned requirements. The algorithm is based on the calculation of a detection contour and adaptive threshold. These are combined using logical operations to produce a binary signal indicating the presence (or absence) of an event with the associated detection parameters tuned using a multi-objective genetic algorithm. To validate the proposed methodology, deep brain signals were recorded from implanted electrodes in patients with Parkinson's disease as they participated in a large movement-based behavioural paradigm. The experiment involved bilateral recordings of local field potentials from the sub-thalamic nucleus (STN) and pedunculopontine nucleus (PPN) during an orientation task. After tuning, the algorithm is able to extract events achieving training set sensitivities and specificities of [87.5 ± 6.5, 76.7 ± 12.8, 90.0 ± 4.1] and [92.6 ± 6.3, 86.0 ± 9.0, 29.8 ± 12.3] (mean ± 1 std) for the three subjects, averaged across the four neural sites. Furthermore, the methodology has the potential for utility in real-time applications as only a single-trial ERP is required. PMID:24370598

  2. Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles.

    PubMed

    Barker, Jocelyn; Hoogi, Assaf; Depeursinge, Adrien; Rubin, Daniel L

    2016-05-01

    Computerized analysis of digital pathology images offers the potential of improving clinical care (e.g. automated diagnosis) and catalyzing research (e.g. discovering disease subtypes). There are two key challenges thwarting computerized analysis of digital pathology images: first, whole slide pathology images are massive, making computerized analysis inefficient, and second, diverse tissue regions in whole slide images that are not directly relevant to the disease may mislead computerized diagnosis algorithms. We propose a method to overcome both of these challenges that utilizes a coarse-to-fine analysis of the localized characteristics in pathology images. An initial surveying stage analyzes the diversity of coarse regions in the whole slide image. This includes extraction of spatially localized features of shape, color and texture from tiled regions covering the slide. Dimensionality reduction of the features assesses the image diversity in the tiled regions and clustering creates representative groups. A second stage provides a detailed analysis of a single representative tile from each group. An Elastic Net classifier produces a diagnostic decision value for each representative tile. A weighted voting scheme aggregates the decision values from these tiles to obtain a diagnosis at the whole slide level. We evaluated our method by automatically classifying 302 brain cancer cases into two possible diagnoses (glioblastoma multiforme (N = 182) versus lower grade glioma (N = 120)) with an accuracy of 93.1 % (p < 0.001). We also evaluated our method in the dataset provided for the 2014 MICCAI Pathology Classification Challenge, in which our method, trained and tested using 5-fold cross validation, produced a classification accuracy of 100% (p < 0.001). Our method showed high stability and robustness to parameter variation, with accuracy varying between 95.5% and 100% when evaluated for a wide range of parameters. Our approach may be useful to automatically

  3. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

    PubMed

    Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri

    2014-01-01

    In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries. PMID:24808857

  4. A Method for Automated Classification of Parkinson's Disease Diagnosis Using an Ensemble Average Propagator Template Brain Map Estimated from Diffusion MRI.

    PubMed

    Banerjee, Monami; Okun, Michael S; Vaillancourt, David E; Vemuri, Baba C

    2016-01-01

    Parkinson's disease (PD) is a common and debilitating neurodegenerative disorder that affects patients in all countries and of all nationalities. Magnetic resonance imaging (MRI) is currently one of the most widely used diagnostic imaging techniques utilized for detection of neurologic diseases. Changes in structural biomarkers will likely play an important future role in assessing progression of many neurological diseases inclusive of PD. In this paper, we derived structural biomarkers from diffusion MRI (dMRI), a structural modality that allows for non-invasive inference of neuronal fiber connectivity patterns. The structural biomarker we use is the ensemble average propagator (EAP), a probability density function fully characterizing the diffusion locally at a voxel level. To assess changes with respect to a normal anatomy, we construct an unbiased template brain map from the EAP fields of a control population. Use of an EAP captures both orientation and shape information of the diffusion process at each voxel in the dMRI data, and this feature can be a powerful representation to achieve enhanced PD brain mapping. This template brain map construction method is applicable to small animal models as well as to human brains. The differences between the control template brain map and novel patient data can then be assessed via a nonrigid warping algorithm that transforms the novel data into correspondence with the template brain map, thereby capturing the amount of elastic deformation needed to achieve this correspondence. We present the use of a manifold-valued feature called the Cauchy deformation tensor (CDT), which facilitates morphometric analysis and automated classification of a PD versus a control population. Finally, we present preliminary results of automated discrimination between a group of 22 controls and 46 PD patients using CDT. This method may be possibly applied to larger population sizes and other parkinsonian syndromes in the near future. PMID

  5. A Method for Automated Classification of Parkinson’s Disease Diagnosis Using an Ensemble Average Propagator Template Brain Map Estimated from Diffusion MRI

    PubMed Central

    Banerjee, Monami; Okun, Michael S.; Vaillancourt, David E.; Vemuri, Baba C.

    2016-01-01

    Parkinson’s disease (PD) is a common and debilitating neurodegenerative disorder that affects patients in all countries and of all nationalities. Magnetic resonance imaging (MRI) is currently one of the most widely used diagnostic imaging techniques utilized for detection of neurologic diseases. Changes in structural biomarkers will likely play an important future role in assessing progression of many neurological diseases inclusive of PD. In this paper, we derived structural biomarkers from diffusion MRI (dMRI), a structural modality that allows for non-invasive inference of neuronal fiber connectivity patterns. The structural biomarker we use is the ensemble average propagator (EAP), a probability density function fully characterizing the diffusion locally at a voxel level. To assess changes with respect to a normal anatomy, we construct an unbiased template brain map from the EAP fields of a control population. Use of an EAP captures both orientation and shape information of the diffusion process at each voxel in the dMRI data, and this feature can be a powerful representation to achieve enhanced PD brain mapping. This template brain map construction method is applicable to small animal models as well as to human brains. The differences between the control template brain map and novel patient data can then be assessed via a nonrigid warping algorithm that transforms the novel data into correspondence with the template brain map, thereby capturing the amount of elastic deformation needed to achieve this correspondence. We present the use of a manifold-valued feature called the Cauchy deformation tensor (CDT), which facilitates morphometric analysis and automated classification of a PD versus a control population. Finally, we present preliminary results of automated discrimination between a group of 22 controls and 46 PD patients using CDT. This method may be possibly applied to larger population sizes and other parkinsonian syndromes in the near future. PMID

  6. Automated Spatial Brain Normalization and Hindbrain White Matter Reference Tissue Give Improved [18F]-Florbetaben PET Quantitation in Alzheimer's Model Mice

    PubMed Central

    Overhoff, Felix; Brendel, Matthias; Jaworska, Anna; Korzhova, Viktoria; Delker, Andreas; Probst, Federico; Focke, Carola; Gildehaus, Franz-Josef; Carlsen, Janette; Baumann, Karlheinz; Haass, Christian; Bartenstein, Peter; Herms, Jochen; Rominger, Axel

    2016-01-01

    Preclinical PET studies of β-amyloid (Aβ) accumulation are of growing importance, but comparisons between research sites require standardized and optimized methods for quantitation. Therefore, we aimed to evaluate systematically the (1) impact of an automated algorithm for spatial brain normalization, and (2) intensity scaling methods of different reference regions for Aβ-PET in a large dataset of transgenic mice. PS2APP mice in a 6 week longitudinal setting (N = 37) and another set of PS2APP mice at a histologically assessed narrow range of Aβ burden (N = 40) were investigated by [18F]-florbetaben PET. Manual spatial normalization by three readers at different training levels was performed prior to application of an automated brain spatial normalization and inter-reader agreement was assessed by Fleiss Kappa (κ). For this method the impact of templates at different pathology stages was investigated. Four different reference regions on brain uptake normalization were used to calculate frontal cortical standardized uptake value ratios (SUVRCTX∕REF), relative to raw SUVCTX. Results were compared on the basis of longitudinal stability (Cohen's d), and in reference to gold standard histopathological quantitation (Pearson's R). Application of an automated brain spatial normalization resulted in nearly perfect agreement (all κ≥0.99) between different readers, with constant or improved correlation with histology. Templates based on inappropriate pathology stage resulted in up to 2.9% systematic bias for SUVRCTX∕REF. All SUVRCTX∕REF methods performed better than SUVCTX both with regard to longitudinal stability (d≥1.21 vs. d = 0.23) and histological gold standard agreement (R≥0.66 vs. R≥0.31). Voxel-wise analysis suggested a physiologically implausible longitudinal decrease by global mean scaling. The hindbrain white matter reference (Rmean = 0.75) was slightly superior to the brainstem (Rmean = 0.74) and the cerebellum (Rmean = 0.73). Automated brain

  7. Effect of pretreatment with a tyrosine kinase inhibitor (PP1) on brain oedema and neurological function in an automated cortical cryoinjury model in mice.

    PubMed

    Turel, Mazda K; Moorthy, Ranjith K; Sam, Gift Ajay; Samuel, Prasanna; Murthy, Muthukumar; Babu, K Srinivas; Rajshekhar, Vedantam

    2013-04-01

    Cerebral oedema is a significant cause of morbidity in neurosurgical practice. To our knowledge, there is no ideal drug for prevention or treatment of brain oedema. Based on the current understanding of the pathogenesis of brain oedema, tyrosine kinase inhibitors could have a role in reducing brain oedema but preclinical studies are needed to assess their effectiveness. We evaluated the role of pretreatment with 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine (PP1), an Src tyrosine kinase inhibitor, in reducing cerebral oedema and preserving neurological function measured 24hours after an automated cortical cryoinjury in mice. Sixteen adult male Swiss albino mice were subjected to an automated cortical cryoinjury using a dry ice-acetone mixture. The experimental group (n=8) received an intraperitoneal injection of PP1 dissolved in dimethyl sulfoxide (DMSO) at a dose of 1.5mg/kg body weight 45minutes prior to the injury. The control group (n=8) received an intraperitoneal injection of DMSO alone. A further eight mice underwent sham injury. The animals were evaluated using the neurological severity score (NSS) at 24hours post-injury, after which the animals were sacrificed and their brains removed, weighed, dehydrated for 48hours and weighed again. The percentage of brain water content was calculated as: {[(wet weight - dry weight)/wet weight] × 100}. The mean (standard deviation, SD) NSS was 11.7 (1.8) in the experimental group and 10.5 (1.3) in the control group (p=0.15). The mean (SD) percentage water content of the brain was 78.6% (1.3%) in the experimental group and 77.2% (1.1%) in the control group (p=0.03). The percentage water content in the experimental and control groups were both significantly higher than in the sham injury group. The immediate pre-injury administration of PP1 neither reduced cerebral oedema (water content %) nor preserved neurological function (NSS) when compared to a control group in this model of cortical cryoinjury

  8. Sensitivity analysis and automation for intraoperative implementation of the atlas-based method for brain shift correction

    NASA Astrophysics Data System (ADS)

    Chen, Ishita; Simpson, Amber L.; Sun, Kay; Thompson, Reid C.; Miga, Michael I.

    2013-03-01

    The use of biomechanical models to correct the misregistration due to deformation in image guided neurosurgical systems has been a growing area of investigation. In previous work, an atlas-based inverse model was developed to account for soft-tissue deformations during image-guided surgery. Central to that methodology is a considerable amount of pre-computation and planning. The goal of this work is to evaluate techniques that could potentially reduce that burden. Distinct from previous manual techniques, an automated segmentation technique is described for the cerebrum and dural septa. The shift correction results using this automated segmentation method were compared to those using the manual methods. In addition, the extent and distribution of the surgical parameters associated with the deformation atlas were investigated by a sensitivity analysis using simulation experiments and clinical data. The shift correction results did not change significantly using the automated method (correction of 73+/-13% ) as compared to the semi-automated method from previous work (correction of 76+/-13%). The results of the sensitivity analysis show that the atlas could be constructed by coarser sampling (six fold reduction) without substantial degradation in the shift reconstruction, a decrease in preoperative computational time from 13.1+/-3.5 hours to 2.2+/-0.6 hours. The automated segmentation technique and the findings of the sensitivity study have significant impact on the reduction of pre-operative computational time, improving the utility of the atlas-based method. The work in this paper suggests that the atlas-based technique can become a `time of surgery' setup procedure rather than a pre-operative computing strategy.

  9. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures

    PubMed Central

    Lim, Issel Anne L.; Faria, Andreia V.; Li, Xu; Hsu, Johnny T.C.; Airan, Raag D.; Mori, Susumu; van Zijl, Peter C. M.

    2013-01-01

    The purpose of this paper is to extend the single-subject Eve atlas from Johns Hopkins University, which currently contains diffusion tensor and T1-weighted anatomical maps, by including contrast based on quantitative susceptibility mapping. The new atlas combines a “deep gray matter parcellation map” (DGMPM) derived from a single-subject quantitative susceptibility map with the previously established “white matter parcellation map” (WMPM) from the same subject’s T1-weighted and diffusion tensor imaging data into an MNI coordinate map named the “Everything Parcellation Map in Eve Space,” also known as the “EvePM.” It allows automated segmentation of gray matter and white matter structures. Quantitative susceptibility maps from five healthy male volunteers (30 to 33 years of age) were coregistered to the Eve Atlas with AIR and Large Deformation Diffeomorphic Metric Mapping (LDDMM), and the transformation matrices were applied to the EvePM to produce automated parcellation in subject space. Parcellation accuracy was measured with a kappa analysis for the left and right structures of six deep gray matter regions. For multi-orientation QSM images, the Kappa statistic was 0.85 between automated and manual segmentation, with the inter-rater reproducibility Kappa being 0.89 for the human raters, suggesting “almost perfect” agreement between all segmentation methods. Segmentation seemed slightly more difficult for human raters on single-orientation QSM images, with the Kappa statistic being 0.88 between automated and manual segmentation, and 0.85 and 0.86 between human raters. Overall, this atlas provides a time-efficient tool for automated coregistration and segmentation of quantitative susceptibility data to analyze many regions of interest. These data were used to establish a baseline for normal magnetic susceptibility measurements for over 60 brain structures of 30- to 33-year-old males. Correlating the average susceptibility with age-based iron

  10. Automated Quantification of Human Brain Metabolites by Artificial Neural Network Analysis from in VivoSingle-Voxel 1H NMR Spectra

    NASA Astrophysics Data System (ADS)

    Kaartinen, Jouni; Mierisová, Šarka; Oja, Joni M. E.; Usenius, Jukka-Pekka; Kauppinen, Risto A.; Hiltunen, Yrjö

    1998-09-01

    A real-time automated way of quantifying metabolites fromin vivoNMR spectra using an artificial neural network (ANN) analysis is presented. The spectral training and test sets for ANN containing peaks at the chemical shift ranges resembling long echo time proton NMR spectra from human brain were simulated. The performance of the ANN constructed was compared with an established lineshape fitting (LF) analysis using both simulated and experimental spectral data as inputs. The correspondence between the ANN and LF analyses showed correlation coefficients of order of 0.915-0.997 for spectra with large variations in both signal-to-noise and peak areas. Water suppressed1H NMR spectra from 24 healthy subjects were collected and choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) were quantified with both methods. The ANN quantified these spectra with an accuracy similar to LF analysis (correlation coefficients of 0.915-0.951). These results show that LF and ANN are equally good quantifiers; however, the ANN analyses are more easily automated than LF analyses.

  11. Shape-based multifeature brain parcellation

    NASA Astrophysics Data System (ADS)

    Nadeem, Saad; Kaufman, Arie

    2016-03-01

    We present a novel approach to parcellate - delineate the anatomical feature (folds, gyri, sulci) boundaries - the brain cortex. Our approach is based on extracting the 3D brain cortical surface mesh from magnetic resonance (MR) images, computing the shape measures (area, mean curvature, geodesic, and travel depths) for this mesh, and delineating the anatomical feature boundaries using these measures. We use angle-area preserving mapping of the cortical surface mesh to a simpler topology (disk or rectangle) to aid in the visualization and delineation of these boundaries. Contrary to commonly used generic 2D brain image atlas-based approaches, we use 3D surface mesh data extracted from a given brain MR imaging data and its specific shape measures for the parcellation. Our method does not require any non-linear registration of a given brain dataset to a generic atlas and hence, does away with the structure similarity assumption critical to the atlas-based approaches. We evaluate our approach using Mindboggle manually labeled brain datasets and achieve the following accuracies: 72.4% for gyri, 78.5% for major sulci, and 98.4% for folds. These results warrant further investigation of this approach as an alternative or as an initialization to the atlas-based approaches.

  12. Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching

    PubMed Central

    Chen, Wenan; Smith, Rebecca; Ji, Soo-Yeon; Ward, Kevin R; Najarian, Kayvan

    2009-01-01

    Background Accurate analysis of CT brain scans is vital for diagnosis and treatment of Traumatic Brain Injuries (TBI). Automatic processing of these CT brain scans could speed up the decision making process, lower the cost of healthcare, and reduce the chance of human error. In this paper, we focus on automatic processing of CT brain images to segment and identify the ventricular systems. The segmentation of ventricles provides quantitative measures on the changes of ventricles in the brain that form vital diagnosis information. Methods First all CT slices are aligned by detecting the ideal midlines in all images. The initial estimation of the ideal midline of the brain is found based on skull symmetry and then the initial estimate is further refined using detected anatomical features. Then a two-step method is used for ventricle segmentation. First a low-level segmentation on each pixel is applied on the CT images. For this step, both Iterated Conditional Mode (ICM) and Maximum A Posteriori Spatial Probability (MASP) are evaluated and compared. The second step applies template matching algorithm to identify objects in the initial low-level segmentation as ventricles. Experiments for ventricle segmentation are conducted using a relatively large CT dataset containing mild and severe TBI cases. Results Experiments show that the acceptable rate of the ideal midline detection is over 95%. Two measurements are defined to evaluate ventricle recognition results. The first measure is a sensitivity-like measure and the second is a false positive-like measure. For the first measurement, the rate is 100% indicating that all ventricles are identified in all slices. The false positives-like measurement is 8.59%. We also point out the similarities and differences between ICM and MASP algorithms through both mathematically relationships and segmentation results on CT images. Conclusion The experiments show the reliability of the proposed algorithms. The novelty of the proposed

  13. Fully automated rodent brain MR image processing pipeline on a Midas server: from acquired images to region-based statistics

    PubMed Central

    Budin, Francois; Hoogstoel, Marion; Reynolds, Patrick; Grauer, Michael; O'Leary-Moore, Shonagh K.; Oguz, Ipek

    2013-01-01

    Magnetic resonance imaging (MRI) of rodent brains enables study of the development and the integrity of the brain under certain conditions (alcohol, drugs etc.). However, these images are difficult to analyze for biomedical researchers with limited image processing experience. In this paper we present an image processing pipeline running on a Midas server, a web-based data storage system. It is composed of the following steps: rigid registration, skull-stripping, average computation, average parcellation, parcellation propagation to individual subjects, and computation of region-based statistics on each image. The pipeline is easy to configure and requires very little image processing knowledge. We present results obtained by processing a data set using this pipeline and demonstrate how this pipeline can be used to find differences between populations. PMID:23964234

  14. Fully automated rodent brain MR image processing pipeline on a Midas server: from acquired images to region-based statistics.

    PubMed

    Budin, Francois; Hoogstoel, Marion; Reynolds, Patrick; Grauer, Michael; O'Leary-Moore, Shonagh K; Oguz, Ipek

    2013-01-01

    Magnetic resonance imaging (MRI) of rodent brains enables study of the development and the integrity of the brain under certain conditions (alcohol, drugs etc.). However, these images are difficult to analyze for biomedical researchers with limited image processing experience. In this paper we present an image processing pipeline running on a Midas server, a web-based data storage system. It is composed of the following steps: rigid registration, skull-stripping, average computation, average parcellation, parcellation propagation to individual subjects, and computation of region-based statistics on each image. The pipeline is easy to configure and requires very little image processing knowledge. We present results obtained by processing a data set using this pipeline and demonstrate how this pipeline can be used to find differences between populations. PMID:23964234

  15. Automated classification of human brain tumours by neural network analysis using in vivo 1H magnetic resonance spectroscopic metabolite phenotypes.

    PubMed

    Usenius, J P; Tuohimetsä, S; Vainio, P; Ala-Korpela, M; Hiltunen, Y; Kauppinen, R A

    1996-07-01

    We present a novel method to integrate in vivo nuclear magnetic resonance spectroscopy (MRS) information into the clinical diagnosis of brain tumours. Water-suppressed 1H MRS data were collected from 33 patients with brain tumours and 28 healthy controls in vivo. The data were treated in the time domain for removal of residual water and a region from the frequency domain (from 3.4 to 0.3 p.p.m.) together with the unsuppressed water signal were used as inputs for artificial neural network (ANN) analysis. The ANN distinguished tumour and normal tissue in each case and was able to classify benign and malignant gliomas as well as other brain tumours to match histology in a clinically useful manner with an accuracy of 82%. Thus the present data indicate existence of tumour tissue-specific metabolite phenotypes that can be detected by in vivo 1H MRS. We believe that a user-independent ANN analysis may provide an alternative method for tumour classification in clinical practice. PMID:8904763

  16. Quantitative mapping of hemodynamics in the lung, brain, and dorsal window chamber-grown tumors using a novel, automated algorithm

    PubMed Central

    Fontanella, Andrew N.; Schroeder, Thies; Hochman, Daryl W.; Chen, Raymond E.; Hanna, Gabi; Haglund, Michael M.; Secomb, Timothy W.; Palmer, Gregory M.; Dewhirst, Mark W.

    2013-01-01

    Hemodynamic properties of vascular beds are of great interest in a variety of clinical and laboratory settings. However, there presently exists no automated, accurate, technically simple method for generating blood velocity maps of complex microvessel networks. Here we present a novel algorithm that addresses this problem by applying pixel-by-pixel cross-correlation to video data. Temporal signals at every spatial coordinate are compared with signals at neighboring points, generating a series of correlation maps from which speed and direction are calculated. User assisted definition of vessel geometries is not required, and sequential data are analyzed automatically, without user bias. Velocity measurements are validated against the dual-slit method and against capillary flow with known velocities. The algorithm is tested in three different biological models. Along with simultaneously acquired hemoglobin saturation and vascular geometry information, the hemodynamic maps presented here demonstrate an accurate, quantitative method of analyzing dynamic vascular systems. PMID:23781901

  17. Development of a Highly Automated and Multiplexed Targeted Proteome Pipeline and Assay for 112 Rat Brain Synaptic Proteins

    PubMed Central

    Colangelo, Christopher M.; Ivosev, Gordana; Chung, Lisa; Abbott, Thomas; Shifman, Mark; Sakaue, Fumika; Cox, David; Kitchen, Rob R.; Burton, Lyle; Tate, Stephen A; Gulcicek, Erol; Bonner, Ron; Rinehart, Jesse; Nairn, Angus C.; Williams, Kenneth R.

    2015-01-01

    We present a comprehensive workflow for large scale (>1000 transitions/run) label-free LC-MRM proteome assays. Innovations include automated MRM transition selection, intelligent retention time scheduling (xMRM) that improves Signal/Noise by >2-fold, and automatic peak modeling. Improvements to data analysis include a novel Q/C metric, Normalized Group Area Ratio (NGAR), MLR normalization, weighted regression analysis, and data dissemination through the Yale Protein Expression Database. As a proof of principle we developed a robust 90 minute LC-MRM assay for Mouse/Rat Post-Synaptic Density (PSD) fractions which resulted in the routine quantification of 337 peptides from 112 proteins based on 15 observations per protein. Parallel analyses with stable isotope dilution peptide standards (SIS), demonstrate very high correlation in retention time (1.0) and protein fold change (0.94) between the label-free and SIS analyses. Overall, our first method achieved a technical CV of 11.4% with >97.5% of the 1697 transitions being quantified without user intervention, resulting in a highly efficient, robust, and single injection LC-MRM assay. PMID:25476245

  18. Automated pipeline for atlas-based annotation of gene expresssion patterns: application to postnatal day 7 mouse brain

    SciTech Connect

    Carson, James P.; Ju, Tao; Bello, Musodiq; Thaller, Christina; Warren, Joe; Kakadiaris, Ioannis; Chiu, Wah; Eichele, Gregor

    2010-02-01

    Abstract As bio-medical images and volumes are being collected at an increasing speed, there is a growing demand for efficient means to organize spatial information for comparative analysis. In many scenarios, such as determining gene expression patterns by in situ hybridization, the images are collected from multiple subjects over a common anatomical region, such as the brain. A fundamental challenge in comparing spatial data from different images is how to account for the shape variations among subjects, which makes direct image-to-image comparison meaningless. In this paper, we describe subdivision meshes as a geometric means to efficiently organize 2D images and 3D volumes collected from different subjects for comparison. The key advantages of a subdivision mesh for this purpose are its light-weight geometric structure and its explicit modeling of anatomical boundaries, which enable efficient and accurate registration. The multi-resolution structure of a subdivision mesh also allows development of fast comparison algorithms among registered images and volumes.

  19. Early Experience of Automated Intraventricular Type Intracranial Pressure Monitoring (LiquoGuard®) for Severe Traumatic Brain Injury Patients

    PubMed Central

    Kwon, Young Sub; Lee, Yun Ho

    2016-01-01

    Objective The LiquoGuard® system is a new ventricular-type monitoring device that facilitates intracranial pressure (ICP)-controlled or volume-controlled drainage of cerebrospinal fluid (CSF). The purpose of this study is to report the authors' experience with the LiquoGuard® ICP monitoring system, as well as the clinical safety, usefulness, and limitations of this device in the management of patients with traumatic brain injury (TBI). Methods Intraventricular ICP monitoring was performed on 10 patients with TBI using the LiquoGuard® monitoring system. ICP measurements, volume of drained CSF, and clinical outcomes were analyzed and discussed. Results ICP monitoring was performed on 10 patients for a mean duration of 6.9 days. With a mean 82,718 records per patient, the mean initial ICP was 16.4 mm Hg and the average ICP across the total duration of monitoring was 15.5 mm Hg. The mean volume of drained CSF was 29.2 cc/day, with no CSF drained in 4 patients. Seven of 10 patients showed 1 or 2 episodes of abnormal ICP measurements. No patient exhibited complications associated with ICP monitoring. Conclusion The LiquoGuard® system is a versatile tool in the management of TBI patients. Its use is both reliable and feasible for ICP monitoring and therapeutic drainage of CSF. However, episodes of abnormal ICP measurements were frequently observed in patients with slit ventricles, and further study may be needed to overcome this issue. PMID:27182499

  20. Automation or De-automation

    NASA Astrophysics Data System (ADS)

    Gorlach, Igor; Wessel, Oliver

    2008-09-01

    In the global automotive industry, for decades, vehicle manufacturers have continually increased the level of automation of production systems in order to be competitive. However, there is a new trend to decrease the level of automation, especially in final car assembly, for reasons of economy and flexibility. In this research, the final car assembly lines at three production sites of Volkswagen are analysed in order to determine the best level of automation for each, in terms of manufacturing costs, productivity, quality and flexibility. The case study is based on the methodology proposed by the Fraunhofer Institute. The results of the analysis indicate that fully automated assembly systems are not necessarily the best option in terms of cost, productivity and quality combined, which is attributed to high complexity of final car assembly systems; some de-automation is therefore recommended. On the other hand, the analysis shows that low automation can result in poor product quality due to reasons related to plant location, such as inadequate workers' skills, motivation, etc. Hence, the automation strategy should be formulated on the basis of analysis of all relevant aspects of the manufacturing process, such as costs, quality, productivity and flexibility in relation to the local context. A more balanced combination of automated and manual assembly operations provides better utilisation of equipment, reduces production costs and improves throughput.

  1. Process automation

    SciTech Connect

    Moser, D.R.

    1986-01-01

    Process automation technology has been pursued in the chemical processing industries and to a very limited extent in nuclear fuel reprocessing. Its effective use has been restricted in the past by the lack of diverse and reliable process instrumentation and the unavailability of sophisticated software designed for process control. The Integrated Equipment Test (IET) facility was developed by the Consolidated Fuel Reprocessing Program (CFRP) in part to demonstrate new concepts for control of advanced nuclear fuel reprocessing plants. A demonstration of fuel reprocessing equipment automation using advanced instrumentation and a modern, microprocessor-based control system is nearing completion in the facility. This facility provides for the synergistic testing of all chemical process features of a prototypical fuel reprocessing plant that can be attained with unirradiated uranium-bearing feed materials. The unique equipment and mission of the IET facility make it an ideal test bed for automation studies. This effort will provide for the demonstration of the plant automation concept and for the development of techniques for similar applications in a full-scale plant. A set of preliminary recommendations for implementing process automation has been compiled. Some of these concepts are not generally recognized or accepted. The automation work now under way in the IET facility should be useful to others in helping avoid costly mistakes because of the underutilization or misapplication of process automation. 6 figs.

  2. Assessment of the Molecular Expression and Structure of Gangliosides in Brain Metastasis of Lung Adenocarcinoma by an Advanced Approach Based on Fully Automated Chip-Nanoelectrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zamfir, Alina D.; Serb, Alina; Vukeli, Željka; Flangea, Corina; Schiopu, Catalin; Fabris, Dragana; Kalanj-Bognar, Svjetlana; Capitan, Florina; Sisu, Eugen

    2011-12-01

    Gangliosides (GGs), sialic acid-containing glycosphingolipids, are known to be involved in the invasive/metastatic behavior of brain tumor cells. Development of modern methods for determination of the variations in GG expression and structure during neoplastic cell transformation is a priority in the field of biomedical analysis. In this context, we report here on the first optimization and application of chip-based nanoelectrospray (NanoMate robot) mass spectrometry (MS) for the investigation of gangliosides in a secondary brain tumor. In our work a native GG mixture extracted and purified from brain metastasis of lung adenocarcinoma was screened by NanoMate robot coupled to a quadrupole time-of-flight MS. A native GG mixture from an age-matched healthy brain tissue, sampled and analyzed under identical conditions, served as a control. Comparative MS analysis demonstrated an evident dissimilarity in GG expression in the two tissue types. Brain metastasis is characterized by many species having a reduced N-acetylneuraminic acid (Neu5Ac) content, however, modified by fucosylation or O-acetylation such as Fuc-GM4, Fuc-GM3, di- O-Ac-GM1, O-Ac-GM3. In contrast, healthy brain tissue is dominated by longer structures exhibiting from mono- to hexasialylated sugar chains. Also, significant differences in ceramide composition were discovered. By tandem MS using collision-induced dissociation at low energies, brain metastasis-associated GD3 (d18:1/18:0) species as well as an uncommon Fuc-GM1 (d18:1/18:0) detected in the normal brain tissue could be structurally characterized. The novel protocol was able to provide a reliable compositional and structural characterization with high analysis pace and at a sensitivity situated in the fmol range.

  3. Automation pilot

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An important concept of the Action Information Management System (AIMS) approach is to evaluate office automation technology in the context of hands on use by technical program managers in the conduct of human acceptance difficulties which may accompany the transition to a significantly changing work environment. The improved productivity and communications which result from application of office automation technology are already well established for general office environments, but benefits unique to NASA are anticipated and these will be explored in detail.

  4. Automated Urinalysis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Information from NASA Tech Briefs assisted DiaSys Corporation in the development of the R/S 2000 which automates urinalysis, eliminating most manual procedures. An automatic aspirator is inserted into a standard specimen tube, the "Sample" button is pressed, and within three seconds a consistent amount of urine sediment is transferred to a microscope. The instrument speeds up, standardizes, automates and makes urine analysis safer. Additional products based on the same technology are anticipated.

  5. Chiral analysis of methadone and its main metabolite, EDDP, in postmortem brain and blood by automated SPE and liquid chromatography-mass spectrometry.

    PubMed

    Holm, Karen Marie Dollerup; Linnet, Kristian

    2012-09-01

    We developed a method based on liquid chromatography coupled with tandem mass spectrometry to quantify individual enantiomers of methadone and its primary metabolite, R/S-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium (EDDP), in postmortem blood and brain tissue. Samples were prepared with a Tecan Evo robotic system. Precipitation was followed by solid-phase extraction, evaporation and reconstitution in the mobile phase. Enantiomers were fully separated with liquid chromatography on a chiral α(1)-acid glycoprotein column. A Quattro micro mass spectrometer was used for detection in the positive ion mode with an electrospray source. The lower limit of quantification in brain tissue was 0.005 mg/kg for methadone and 0.001 mg/kg for EDDP enantiomers; the maximum precision was 17% for both compounds; accuracy ranged from 94 to 101%. In blood, the limit of quantification was 0.001 mg/kg for all compounds, the total relative standard deviation was <15%, and the accuracy varied from 95 to 109%. Brain (n = 11) and blood (n = 15) samples were analyzed with intermediate precision that varied from 7.5 to 15% at 0.005 mg/kg and from 6.8 to 11.3% at 0.25 mg/kg for all compounds. Method development focused on producing a clean extract, particularly from brain samples. The method was tested on authentic brain and femoral blood samples. PMID:22778199

  6. Habitat automation

    NASA Technical Reports Server (NTRS)

    Swab, Rodney E.

    1992-01-01

    A habitat, on either the surface of the Moon or Mars, will be designed and built with the proven technologies of that day. These technologies will be mature and readily available to the habitat designer. We believe an acceleration of the normal pace of automation would allow a habitat to be safer and more easily maintained than would be the case otherwise. This document examines the operation of a habitat and describes elements of that operation which may benefit from an increased use of automation. Research topics within the automation realm are then defined and discussed with respect to the role they can have in the design of the habitat. Problems associated with the integration of advanced technologies into real-world projects at NASA are also addressed.

  7. Automating Finance

    ERIC Educational Resources Information Center

    Moore, John

    2007-01-01

    In past years, higher education's financial management side has been riddled with manual processes and aging mainframe applications. This article discusses schools which had taken advantage of an array of technologies that automate billing, payment processing, and refund processing in the case of overpayment. The investments are well worth it:…

  8. Automated dispenser

    SciTech Connect

    Hollen, R.M.; Stalnaker, N.D.

    1989-04-06

    An automated dispenser having a conventional pipette attached to an actuating cylinder through a flexible cable for delivering precise quantities of a liquid through commands from remotely located computer software. The travel of the flexible cable is controlled by adjustable stops and a locking shaft. The pipette can be positioned manually or by the hands of a robot. 1 fig.

  9. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    NASA Astrophysics Data System (ADS)

    Valotassiou, V.; Papatriantafyllou, J.; Sifakis, N.; Karageorgiou, C.; Tsougos, I.; Tzavara, C.; Zerva, C.; Georgoulias, P.

    2009-05-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  10. The Brain Is Faster than the Hand in Split-Second Intentions to Respond to an Impending Hazard: A Simulation of Neuroadaptive Automation to Speed Recovery to Perturbation in Flight Attitude

    PubMed Central

    Callan, Daniel E.; Terzibas, Cengiz; Cassel, Daniel B.; Sato, Masa-aki; Parasuraman, Raja

    2016-01-01

    The goal of this research is to test the potential for neuroadaptive automation to improve response speed to a hazardous event by using a brain-computer interface (BCI) to decode perceptual-motor intention. Seven participants underwent four experimental sessions while measuring brain activity with magnetoencephalograpy. The first three sessions were of a simple constrained task in which the participant was to pull back on the control stick to recover from a perturbation in attitude in one condition and to passively observe the perturbation in the other condition. The fourth session consisted of having to recover from a perturbation in attitude while piloting the plane through the Grand Canyon constantly maneuvering to track over the river below. Independent component analysis was used on the first two sessions to extract artifacts and find an event related component associated with the onset of the perturbation. These two sessions were used to train a decoder to classify trials in which the participant recovered from the perturbation (motor intention) vs. just passively viewing the perturbation. The BCI-decoder was tested on the third session of the same simple task and found to be able to significantly distinguish motor intention trials from passive viewing trials (mean = 69.8%). The same BCI-decoder was then used to test the fourth session on the complex task. The BCI-decoder significantly classified perturbation from no perturbation trials (73.3%) with a significant time savings of 72.3 ms (Original response time of 425.0–352.7 ms for BCI-decoder). The BCI-decoder model of the best subject was shown to generalize for both performance and time savings to the other subjects. The results of our off-line open loop simulation demonstrate that BCI based neuroadaptive automation has the potential to decode motor intention faster than manual control in response to a hazardous perturbation in flight attitude while ignoring ongoing motor and visual induced activity

  11. The Brain Is Faster than the Hand in Split-Second Intentions to Respond to an Impending Hazard: A Simulation of Neuroadaptive Automation to Speed Recovery to Perturbation in Flight Attitude.

    PubMed

    Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Sato, Masa-Aki; Parasuraman, Raja

    2016-01-01

    The goal of this research is to test the potential for neuroadaptive automation to improve response speed to a hazardous event by using a brain-computer interface (BCI) to decode perceptual-motor intention. Seven participants underwent four experimental sessions while measuring brain activity with magnetoencephalograpy. The first three sessions were of a simple constrained task in which the participant was to pull back on the control stick to recover from a perturbation in attitude in one condition and to passively observe the perturbation in the other condition. The fourth session consisted of having to recover from a perturbation in attitude while piloting the plane through the Grand Canyon constantly maneuvering to track over the river below. Independent component analysis was used on the first two sessions to extract artifacts and find an event related component associated with the onset of the perturbation. These two sessions were used to train a decoder to classify trials in which the participant recovered from the perturbation (motor intention) vs. just passively viewing the perturbation. The BCI-decoder was tested on the third session of the same simple task and found to be able to significantly distinguish motor intention trials from passive viewing trials (mean = 69.8%). The same BCI-decoder was then used to test the fourth session on the complex task. The BCI-decoder significantly classified perturbation from no perturbation trials (73.3%) with a significant time savings of 72.3 ms (Original response time of 425.0-352.7 ms for BCI-decoder). The BCI-decoder model of the best subject was shown to generalize for both performance and time savings to the other subjects. The results of our off-line open loop simulation demonstrate that BCI based neuroadaptive automation has the potential to decode motor intention faster than manual control in response to a hazardous perturbation in flight attitude while ignoring ongoing motor and visual induced activity

  12. Automated lithocell

    NASA Astrophysics Data System (ADS)

    Englisch, Andreas; Deuter, Armin

    1990-06-01

    Integration and automation have gained more and more ground in modern IC-manufacturing. It is difficult to make a direct calculation of the profit these investments yield. On the other hand, the demands to man, machine and technology have increased enormously of late; it is not difficult to see that only by means of integration and automation can these demands be coped with. Here are some salient points: U the complexity and costs incurred by the equipment and processes have got significantly higher . owing to the reduction of all dimensions, the tolerances within which the various process steps have to be carried out have got smaller and smaller and the adherence to these tolerances more and more difficult U the cycle time has become more and more important both for the development and control of new processes and, to a great extent, for a rapid and reliable supply to the customer. In order that the products be competitive under these conditions, all sort of costs have to be reduced and the yield has to be maximized. Therefore, the computer-aided control of the equipment and the process combined with an automatic data collection and a real-time SPC (statistical process control) has become absolutely necessary for successful IC-manufacturing. Human errors must be eliminated from the execution of the various process steps by automation. The work time set free in this way makes it possible for the human creativity to be employed on a larger scale in stabilizing the processes. Besides, a computer-aided equipment control can ensure the optimal utilization of the equipment round the clock.

  13. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration

    PubMed Central

    Klein, Arno; Andersson, Jesper; Ardekani, Babak A.; Ashburner, John; Avants, Brian; Chiang, Ming-Chang; Christensen, Gary E.; Collins, D. Louis; Gee, James; Hellier, Pierre; Song, Joo Hyun; Jenkinson, Mark; Lepage, Claude; Rueckert, Daniel; Thompson, Paul; Vercauteren, Tom; Woods, Roger P.; Mann, J. John; Parsey, Ramin V.

    2009-01-01

    All fields of neuroscience that employ brain imaging need to communicate their results with reference to anatomical regions. In particular, comparative morphometry and group analysis of functional and physiological data require coregistration of brains to establish correspondences across brain structures. It is well established that linear registration of one brain to another is inadequate for aligning brain structures, so numerous algorithms have emerged to nonlinearly register brains to one another. This study is the largest evaluation of nonlinear deformation algorithms applied to brain image registration ever conducted. Fourteen algorithms from laboratories around the world are evaluated using 8 different error measures. More than 45,000 registrations between 80 manually labeled brains were performed by algorithms including: AIR, ANIMAL, ART, Diffeomorphic Demons, FNIRT, IRTK, JRD-fluid, ROMEO, SICLE, SyN, and four different SPM5 algorithms (“SPM2-type” and regular Normalization, Unified Segmentation, and the DARTEL Toolbox). All of these registrations were preceded by linear registration between the same image pairs using FLIRT. One of the most significant findings of this study is that the relative performances of the registration methods under comparison appear to be little affected by the choice of subject population, labeling protocol, and type of overlap measure. This is important because it suggests that the findings are generalizable to new subject populations that are labeled or evaluated using different labeling protocols. Furthermore, we ranked the 14 methods according to three completely independent analyses (permutation tests, one-way ANOVA tests, and indifference-zone ranking) and derived three almost identical top rankings of the methods. ART, SyN, IRTK, and SPM's DARTEL Toolbox gave the best results according to overlap and distance measures, with ART and SyN delivering the most consistently high accuracy across subjects and label sets

  14. Automated blood sampling systems for positron emission tomography

    SciTech Connect

    Eriksson, L.; Holte, S.; Bohm, C.; Kesselberg, M.; Hovander, B.

    1988-02-01

    An automated blood sampling system has been constructed and evaluated. Two different detector units in the blood sampling system are compared. Results from studies of blood-brain barrier transfer of a C-11 labelled receptor antagonist will be discussed.

  15. Both Automation and Paper.

    ERIC Educational Resources Information Center

    Purcell, Royal

    1988-01-01

    Discusses the concept of a paperless society and the current situation in library automation. Various applications of automation and telecommunications are addressed, and future library automation is considered. Automation at the Monroe County Public Library in Bloomington, Indiana, is described as an example. (MES)

  16. Automated cognome construction and semi-automated hypothesis generation.

    PubMed

    Voytek, Jessica B; Voytek, Bradley

    2012-06-30

    Modern neuroscientific research stands on the shoulders of countless giants. PubMed alone contains more than 21 million peer-reviewed articles with 40-50,000 more published every month. Understanding the human brain, cognition, and disease will require integrating facts from dozens of scientific fields spread amongst millions of studies locked away in static documents, making any such integration daunting, at best. The future of scientific progress will be aided by bridging the gap between the millions of published research articles and modern databases such as the Allen brain atlas (ABA). To that end, we have analyzed the text of over 3.5 million scientific abstracts to find associations between neuroscientific concepts. From the literature alone, we show that we can blindly and algorithmically extract a "cognome": relationships between brain structure, function, and disease. We demonstrate the potential of data-mining and cross-platform data-integration with the ABA by introducing two methods for semi-automated hypothesis generation. By analyzing statistical "holes" and discrepancies in the literature we can find understudied or overlooked research paths. That is, we have added a layer of semi-automation to a part of the scientific process itself. This is an important step toward fundamentally incorporating data-mining algorithms into the scientific method in a manner that is generalizable to any scientific or medical field. PMID:22584238

  17. Path Planning for Semi-automated Simulated Robotic Neurosurgery

    PubMed Central

    Hu, Danying; Gong, Yuanzheng; Hannaford, Blake; Seibel, Eric J.

    2015-01-01

    This paper considers the semi-automated robotic surgical procedure for removing the brain tumor margins, where the manual operation is a tedious and time-consuming task for surgeons. We present robust path planning methods for robotic ablation of tumor residues in various shapes, which are represented in point-clouds instead of analytical geometry. Along with the path plans, corresponding metrics are also delivered to the surgeon for selecting the optimal candidate in the automated robotic ablation. The selected path plan is then executed and tested on RAVEN™ II surgical robot platform as part of the semi-automated robotic brain tumor ablation surgery in a simulated tissue phantom. PMID:26705501

  18. Automated segmentation of the canine corpus callosum for the measurement of diffusion tensor imaging.

    PubMed

    Peterson, David E; Chen, Steven D; Calabrese, Evan; White, Leonard E; Provenzale, James M

    2016-02-01

    The goal of this study was to apply image registration-based automated segmentation methods to measure diffusion tensor imaging (DTI) metrics within the canine brain. Specifically, we hypothesized that this method could measure DTI metrics within the canine brain with greater reproducibility than with hand-drawn region of interest (ROI) methods. We performed high-resolution post-mortem DTI imaging on two canine brains on a 7 T MR scanner. We designated the two brains as brain 1 and brain 2. We measured DTI metrics within the corpus callosum of brain 1 using a hand-drawn ROI method and an automated segmentation method in which ROIs from brain 2 were transformed into the space of brain 1. We repeated both methods in order to measure their reliability. Mean differences between the two sets of hand-drawn ROIs ranged from 4% to 10%. Mean differences between the hand-drawn ROIs and the automated ROIs were less than 3%. The mean differences between the first and second automated ROIs were all less than 0.25%. Our findings indicate that the image registration-based automated segmentation method was clearly the more reproducible method. These results provide the groundwork for using image registration-based automated segmentation methods to measure DTI metrics within the canine brain. Such methods will facilitate the study of white matter pathology in canine models of neurologic disease. PMID:26577603

  19. Automated External Defibrillator

    MedlinePlus

    ... from the NHLBI on Twitter. What Is an Automated External Defibrillator? An automated external defibrillator (AED) is a portable device that ... Institutes of Health Department of Health and Human Services USA.gov

  20. Workflow automation architecture standard

    SciTech Connect

    Moshofsky, R.P.; Rohen, W.T.

    1994-11-14

    This document presents an architectural standard for application of workflow automation technology. The standard includes a functional architecture, process for developing an automated workflow system for a work group, functional and collateral specifications for workflow automation, and results of a proof of concept prototype.

  1. Automation of industrial bioprocesses.

    PubMed

    Beyeler, W; DaPra, E; Schneider, K

    2000-01-01

    The dramatic development of new electronic devices within the last 25 years has had a substantial influence on the control and automation of industrial bioprocesses. Within this short period of time the method of controlling industrial bioprocesses has changed completely. In this paper, the authors will use a practical approach focusing on the industrial applications of automation systems. From the early attempts to use computers for the automation of biotechnological processes up to the modern process automation systems some milestones are highlighted. Special attention is given to the influence of Standards and Guidelines on the development of automation systems. PMID:11092132

  2. Automation in Clinical Microbiology

    PubMed Central

    Ledeboer, Nathan A.

    2013-01-01

    Historically, the trend toward automation in clinical pathology laboratories has largely bypassed the clinical microbiology laboratory. In this article, we review the historical impediments to automation in the microbiology laboratory and offer insight into the reasons why we believe that we are on the cusp of a dramatic change that will sweep a wave of automation into clinical microbiology laboratories. We review the currently available specimen-processing instruments as well as the total laboratory automation solutions. Lastly, we outline the types of studies that will need to be performed to fully assess the benefits of automation in microbiology laboratories. PMID:23515547

  3. Brain Science, Brain Fiction.

    ERIC Educational Resources Information Center

    Bruer, John T.

    1998-01-01

    Three big ideas from brain science have arisen during the past 20 to 30 years: neural connections form rapidly early in life; critical periods occur in development; and enriched environments profoundly affect brain development during the early years. Current brain research has little to offer educational practice or policy. (10 references) (MLH)

  4. Comparison of automated and manual segmentation of hippocampus MR images

    NASA Astrophysics Data System (ADS)

    Haller, John W.; Christensen, Gary E.; Miller, Michael I.; Joshi, Sarang C.; Gado, Mokhtar; Csernansky, John G.; Vannier, Michael W.

    1995-05-01

    The precision and accuracy of area estimates from magnetic resonance (MR) brain images and using manual and automated segmentation methods are determined. Areas of the human hippocampus were measured to compare a new automatic method of segmentation with regions of interest drawn by an expert. MR images of nine normal subjects and nine schizophrenic patients were acquired with a 1.5-T unit (Siemens Medical Systems, Inc., Iselin, New Jersey). From each individual MPRAGE 3D volume image a single comparable 2-D slice (matrix equals 256 X 256) was chosen which corresponds to the same coronal slice of the hippocampus. The hippocampus was first manually segmented, then segmented using high dimensional transformations of a digital brain atlas to individual brain MR images. The repeatability of a trained rater was assessed by comparing two measurements from each individual subject. Variability was also compared within and between subject groups of schizophrenics and normal subjects. Finally, the precision and accuracy of automated segmentation of hippocampal areas were determined by comparing automated measurements to manual segmentation measurements made by the trained rater on MR and brain slice images. The results demonstrate the high repeatability of area measurement from MR images of the human hippocampus. Automated segmentation using high dimensional transformations from a digital brain atlas provides repeatability superior to that of manual segmentation. Furthermore, the validity of automated measurements was demonstrated by a high correlation with manual segmentation measurements made by a trained rater. Quantitative morphometry of brain substructures (e.g. hippocampus) is feasible by use of a high dimensional transformation of a digital brain atlas to an individual MR image. This method automates the search for neuromorphological correlates of schizophrenia by a new mathematically robust method with unprecedented sensitivity to small local and regional differences.

  5. Automated DNA Sequencing System

    SciTech Connect

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  6. Automated Cognome Construction and Semi-automated Hypothesis Generation

    PubMed Central

    Voytek, Jessica B.; Voytek, Bradley

    2012-01-01

    Modern neuroscientific research stands on the shoulders of countless giants. PubMed alone contains more than 21 million peer-reviewed articles with 40–50,000 more published every month. Understanding the human brain, cognition, and disease will require integrating facts from dozens of scientific fields spread amongst millions of studies locked away in static documents, making any such integration daunting, at best. The future of scientific progress will be aided by bridging the gap between the millions of published research articles and modern databases such as the Allen Brain Atlas (ABA). To that end, we have analyzed the text of over 3.5 million scientific abstracts to find associations between neuroscientific concepts. From the literature alone, we show that we can blindly and algorithmically extract a “cognome”: relationships between brain structure, function, and disease. We demonstrate the potential of data-mining and cross-platform data-integration with the ABA by introducing two methods for semiautomated hypothesis generation. By analyzing statistical “holes” and discrepancies in the literature we can find understudied or overlooked research paths. That is, we have added a layer of semi-automation to a part of the scientific process itself. This is an important step toward fundamentally incorporating data-mining algorithms into the scientific method in a manner that is generalizable to any scientific or medical field. PMID:22584238

  7. Brain herniation

    MedlinePlus

    ... herniation; Uncal herniation; Subfalcine herniation; Tonsillar herniation; Herniation - brain ... Brain herniation occurs when something inside the skull produces pressure that moves brain tissues. This is most ...

  8. Quantitative analysis of brain pathology based on MRI and brain atlases--applications for cerebral palsy.

    PubMed

    Faria, Andreia V; Hoon, Alexander; Stashinko, Elaine; Li, Xin; Jiang, Hangyi; Mashayekh, Ameneh; Akhter, Kazi; Hsu, John; Oishi, Kenichi; Zhang, Jiangyang; Miller, Michael I; van Zijl, Peter C M; Mori, Susumu

    2011-02-01

    We have developed a new method to provide a comprehensive quantitative analysis of brain anatomy in cerebral palsy patients, which makes use of two techniques: diffusion tensor imaging and automated 3D whole brain segmentation based on our brain atlas and a nonlinear normalization technique (large-deformation diffeomorphic metric mapping). This method was applied to 13 patients and normal controls. The reliability of the automated segmentation revealed close agreement with the manual segmentation. We illustrate some potential applications for individual characterization and group comparison. This technique also provides a framework for determining the impact of various neuroanatomic features on brain functions. PMID:20920589

  9. Quantitative Analysis of Brain Pathology Based on MRI and Brain Atlases - Applications for Cerebral Palsy

    PubMed Central

    Faria, Andreia V.; Hoon, Alexander; Stachinko, Elaine; Li, Xin; Jiang, Hangyi; Mashayekh, Ameneh; Akhter, Kazi; Hsu, John; Oishi, Kenichi; Zhang, Jiangyang; Miller, Michael I.; van Zijl, Peter C.M.; Mori, Susumu

    2010-01-01

    We have developed a new method to provide a comprehensive quantitative analysis of brain anatomy in cerebral palsy patients, which makes use of two techniques: diffusion tensor imaging and automated 3D whole brain segmentation based on our brain atlas and a nonlinear normalization technique (large-deformation diffeomorphic metric mapping). This method was applied to 13 patients and normal controls. The reliability of the automated segmentation revealed close agreement with the manual segmentation. We illustrate some potential applications for individual characterization and group comparison. This technique also provides a framework for determining the impact of various neuroanatomic features on brain functions. PMID:20920589

  10. Laboratory Automation and Middleware.

    PubMed

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. PMID:26065792

  11. Management Planning for Workplace Automation.

    ERIC Educational Resources Information Center

    McDole, Thomas L.

    Several factors must be considered when implementing office automation. Included among these are whether or not to automate at all, the effects of automation on employees, requirements imposed by automation on the physical environment, effects of automation on the total organization, and effects on clientele. The reasons behind the success or…

  12. BrainPrint: A Discriminative Characterization of Brain Morphology

    PubMed Central

    Wachinger, Christian; Golland, Polina; Kremen, William; Fischl, Bruce; Reuter, Martin

    2015-01-01

    We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace-Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets. PMID:25613439

  13. Automation, Manpower, and Education.

    ERIC Educational Resources Information Center

    Rosenberg, Jerry M.

    Each group in our population will be affected by automation and other forms of technological advancement. This book seeks to identify the needs of these various groups, and to present ways in which educators can best meet them. The author corrects certain prevalent misconceptions concerning manpower utilization and automation. Based on the…

  14. Planning for Office Automation.

    ERIC Educational Resources Information Center

    Sherron, Gene T.

    1982-01-01

    The steps taken toward office automation by the University of Maryland are described. Office automation is defined and some types of word processing systems are described. Policies developed in the writing of a campus plan are listed, followed by a section on procedures adopted to implement the plan. (Author/MLW)

  15. The Automated Office.

    ERIC Educational Resources Information Center

    Naclerio, Nick

    1979-01-01

    Clerical personnel may be able to climb career ladders as a result of office automation and expanded job opportunities in the word processing area. Suggests opportunities in an automated office system and lists books and periodicals on word processing for counselors and teachers. (MF)

  16. Work and Programmable Automation.

    ERIC Educational Resources Information Center

    DeVore, Paul W.

    A new industrial era based on electronics and the microprocessor has arrived, an era that is being called intelligent automation. Intelligent automation, in the form of robots, replaces workers, and the new products, using microelectronic devices, require significantly less labor to produce than the goods they replace. The microprocessor thus…

  17. Automated drilling draws interest

    SciTech Connect

    Not Available

    1985-05-01

    Interest in subsea technology includes recent purchase of both a British yard and Subsea Technology, a Houston-based BOP manufacturer. In France, key personnel from the former Comex Industries have been acquired and a base reinstalled in Marseille. ACB is also investing heavily, with the Norwegians, in automated drilling programs. These automated drilling programs are discussed.

  18. Library Automation Style Guide.

    ERIC Educational Resources Information Center

    Gaylord Bros., Liverpool, NY.

    This library automation style guide lists specific terms and names often used in the library automation industry. The terms and/or acronyms are listed alphabetically and each is followed by a brief definition. The guide refers to the "Chicago Manual of Style" for general rules, and a notes section is included for the convenience of individual…

  19. Automation and Cataloging.

    ERIC Educational Resources Information Center

    Furuta, Kenneth; And Others

    1990-01-01

    These three articles address issues in library cataloging that are affected by automation: (1) the impact of automation and bibliographic utilities on professional catalogers; (2) the effect of the LASS microcomputer software on the cost of authority work in cataloging at the University of Arizona; and (3) online subject heading and classification…

  20. Automation in Immunohematology

    PubMed Central

    Bajpai, Meenu; Kaur, Ravneet; Gupta, Ekta

    2012-01-01

    There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process. PMID:22988378

  1. Advances in inspection automation

    NASA Astrophysics Data System (ADS)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion; Lombardi, Luciano

    2013-01-01

    This new session at QNDE reflects the growing interest in inspection automation. Our paper describes a newly developed platform that makes the complex NDE automation possible without the need for software programmers. Inspection tasks that are tedious, error-prone or impossible for humans to perform can now be automated using a form of drag and drop visual scripting. Our work attempts to rectify the problem that NDE is not keeping pace with the rest of factory automation. Outside of NDE, robots routinely and autonomously machine parts, assemble components, weld structures and report progress to corporate databases. By contrast, components arriving in the NDT department typically require manual part handling, calibrations and analysis. The automation examples in this paper cover the development of robotic thickness gauging and the use of adaptive contour following on the NRU reactor inspection at Chalk River.

  2. Optimized Brain Extraction for Pathological Brains (optiBET)

    PubMed Central

    Lutkenhoff, Evan S.; Rosenberg, Matthew; Chiang, Jeffrey; Zhang, Kunyu; Pickard, John D.; Owen, Adrian M.; Monti, Martin M.

    2014-01-01

    The study of structural and functional magnetic resonance imaging data has greatly benefitted from the development of sophisticated and efficient algorithms aimed at automating and optimizing the analysis of brain data. We address, in the context of the segmentation of brain from non-brain tissue (i.e., brain extraction, also known as skull-stripping), the tension between the increased theoretical and clinical interest in patient data, and the difficulty of conventional algorithms to function optimally in the presence of gross brain pathology. Indeed, because of the reliance of many algorithms on priors derived from healthy volunteers, images with gross pathology can severely affect their ability to correctly trace the boundaries between brain and non-brain tissue, potentially biasing subsequent analysis. We describe and make available an optimized brain extraction script for the pathological brain (optiBET) robust to the presence of pathology. Rather than attempting to trace the boundary between tissues, optiBET performs brain extraction by (i) calculating an initial approximate brain extraction; (ii) employing linear and non-linear registration to project the approximate extraction into the MNI template space; (iii) back-projecting a standard brain-only mask from template space to the subject’s original space; and (iv) employing the back-projected brain-only mask to mask-out non-brain tissue. The script results in up to 94% improvement of the quality of extractions over those obtained with conventional software across a large set of severely pathological brains. Since optiBET makes use of freely available algorithms included in FSL, it should be readily employable by anyone having access to such tools. PMID:25514672

  3. Systematic review automation technologies

    PubMed Central

    2014-01-01

    Systematic reviews, a cornerstone of evidence-based medicine, are not produced quickly enough to support clinical practice. The cost of production, availability of the requisite expertise and timeliness are often quoted as major contributors for the delay. This detailed survey of the state of the art of information systems designed to support or automate individual tasks in the systematic review, and in particular systematic reviews of randomized controlled clinical trials, reveals trends that see the convergence of several parallel research projects. We surveyed literature describing informatics systems that support or automate the processes of systematic review or each of the tasks of the systematic review. Several projects focus on automating, simplifying and/or streamlining specific tasks of the systematic review. Some tasks are already fully automated while others are still largely manual. In this review, we describe each task and the effect that its automation would have on the entire systematic review process, summarize the existing information system support for each task, and highlight where further research is needed for realizing automation for the task. Integration of the systems that automate systematic review tasks may lead to a revised systematic review workflow. We envisage the optimized workflow will lead to system in which each systematic review is described as a computer program that automatically retrieves relevant trials, appraises them, extracts and synthesizes data, evaluates the risk of bias, performs meta-analysis calculations, and produces a report in real time. PMID:25005128

  4. BrainPrint: Identifying Subjects by Their Brain

    PubMed Central

    Wachinger, Christian; Golland, Polina; Reuter, Martin

    2014-01-01

    Introducing BrainPrint, a compact and discriminative representation of anatomical structures in the brain. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the 2D and 3D Laplace-Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. We derive a robust classifier for this representation that identifies the subject in a new scan, based on a database of brain scans. In an example dataset containing over 3000 MRI scans, we show that BrainPrint captures unique information about the subject’s anatomy and permits to correctly classify a scan with an accuracy of over 99.8%. All processing steps for obtaining the compact representation are fully automated making this processing framework particularly attractive for handling large datasets. PMID:25320780

  5. Brain Tumors

    MedlinePlus

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  6. Planning for Office Automation.

    ERIC Educational Resources Information Center

    Mick, Colin K.

    1983-01-01

    Outlines a practical approach to planning for office automation termed the "Focused Process Approach" (the "what" phase, "how" phase, "doing" phase) which is a synthesis of the problem-solving and participatory planning approaches. Thirteen references are provided. (EJS)

  7. Space station automation II

    SciTech Connect

    Chiou, W.C.

    1986-01-01

    This book contains the proceedings of a conference on space station automation. Topics include the following: distributed artificial intelligence for space station energy management systems and computer architecture for tolerobots in earth orbit.

  8. Shielded cells transfer automation

    SciTech Connect

    Fisher, J J

    1984-01-01

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures.

  9. Automated Lattice Perturbation Theory

    SciTech Connect

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  10. Automated data analysis.

    NASA Astrophysics Data System (ADS)

    Teuber, D.

    Automated data analysis assists the astronomer in the decision making processes applied for extracting astronomical information from data. Automated data analysis is the step between image processing and model interpretation. Tools developed in AI are applied (classification, expert system). Programming languages and computers are chosen to fulfil the increasing requirements. Expert systems have begun in astronomy. Data banks permit the astronomical community to share the large body of resulting information.

  11. Automated Pilot Advisory System

    NASA Technical Reports Server (NTRS)

    Parks, J. L., Jr.; Haidt, J. G.

    1981-01-01

    An Automated Pilot Advisory System (APAS) was developed and operationally tested to demonstrate the concept that low cost automated systems can provide air traffic and aviation weather advisory information at high density uncontrolled airports. The system was designed to enhance the see and be seen rule of flight, and pilots who used the system preferred it over the self announcement system presently used at uncontrolled airports.

  12. Automated Status Notification System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA Lewis Research Center's Automated Status Notification System (ASNS) was born out of need. To prevent "hacker attacks," Lewis' telephone system needed to monitor communications activities 24 hr a day, 7 days a week. With decreasing staff resources, this continuous monitoring had to be automated. By utilizing existing communications hardware, a UNIX workstation, and NAWK (a pattern scanning and processing language), we implemented a continuous monitoring system.

  13. Automated imagery orthorectification pilot

    NASA Astrophysics Data System (ADS)

    Slonecker, E. Terrence; Johnson, Brad; McMahon, Joe

    2009-10-01

    Automated orthorectification of raw image products is now possible based on the comprehensive metadata collected by Global Positioning Systems and Inertial Measurement Unit technology aboard aircraft and satellite digital imaging systems, and based on emerging pattern-matching and automated image-to-image and control point selection capabilities in many advanced image processing systems. Automated orthorectification of standard aerial photography is also possible if a camera calibration report and sufficient metadata is available. Orthorectification of historical imagery, for which only limited metadata was available, was also attempted and found to require some user input, creating a semi-automated process that still has significant potential to reduce processing time and expense for the conversion of archival historical imagery into geospatially enabled, digital formats, facilitating preservation and utilization of a vast archive of historical imagery. Over 90 percent of the frames of historical aerial photos used in this experiment were successfully orthorectified to the accuracy of the USGS 100K base map series utilized for the geospatial reference of the archive. The accuracy standard for the 100K series maps is approximately 167 feet (51 meters). The main problems associated with orthorectification failure were cloud cover, shadow and historical landscape change which confused automated image-to-image matching processes. Further research is recommended to optimize automated orthorectification methods and enable broad operational use, especially as related to historical imagery archives.

  14. Automated Groundwater Screening

    SciTech Connect

    Taylor, Glenn A.; Collard, Leonard, B.

    2005-10-31

    The Automated Intruder Analysis has been extended to include an Automated Ground Water Screening option. This option screens 825 radionuclides while rigorously applying the National Council on Radiation Protection (NCRP) methodology. An extension to that methodology is presented to give a more realistic screening factor for those radionuclides which have significant daughters. The extension has the promise of reducing the number of radionuclides which must be tracked by the customer. By combining the Automated Intruder Analysis with the Automated Groundwater Screening a consistent set of assumptions and databases is used. A method is proposed to eliminate trigger values by performing rigorous calculation of the screening factor thereby reducing the number of radionuclides sent to further analysis. Using the same problem definitions as in previous groundwater screenings, the automated groundwater screening found one additional nuclide, Ge-68, which failed the screening. It also found that 18 of the 57 radionuclides contained in NCRP Table 3.1 failed the screening. This report describes the automated groundwater screening computer application.

  15. Brain components

    MedlinePlus Videos and Cool Tools

    The brain is composed of more than a thousand billion neurons. Specific groups of them, working in concert, provide ... of information. The 3 major components of the brain are the cerebrum, cerebellum, and brain stem. The ...

  16. Brain surgery

    MedlinePlus

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... cut depends on where the problem in the brain is located. The surgeon creates a hole in ...

  17. Brain Malformations

    MedlinePlus

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  18. Brain abscess

    MedlinePlus

    Brain abscesses commonly occur when bacteria or fungi infect part of the brain. As a result, swelling and irritation (inflammation) develop. Infected brain cells, white blood cells, live and dead bacteria, ...

  19. Brain Tumors

    MedlinePlus

    ... brain. Brain tumors can be benign, with no cancer cells, or malignant, with cancer cells that grow quickly. Some are primary brain ... targeted therapy. Targeted therapy uses substances that attack cancer cells without harming normal cells. Many people get ...

  20. Mapping brain circuitry with a light microscope

    PubMed Central

    Osten, Pavel; Margrie, Troy W.

    2014-01-01

    The beginning of the 21st century has seen a renaissance in light microscopy and anatomical tract tracing that together are rapidly advancing our understanding of the form and function of neuronal circuits. The introduction of instruments for automated imaging of whole mouse brains, new cell type-specific and transsynaptic tracers, and computational methods for handling the whole-brain datasets has opened the door to neuroanatomical studies at an unprecedented scale. We present an overview of the state of play and future opportunities in charting long-range and local connectivity in the entire mouse brain and in linking brain circuits to function. PMID:23722211

  1. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  2. Automated telescope scheduling

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.

    1988-08-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  3. Automated Camera Calibration

    NASA Technical Reports Server (NTRS)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  4. Power subsystem automation study

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Moser, R. L.; Veatch, M.

    1983-01-01

    Generic power-system elements and their potential faults are identified. Automation functions and their resulting benefits are defined and automation functions between power subsystem, central spacecraft computer, and ground flight-support personnel are partitioned. All automation activities were categorized as data handling, monitoring, routine control, fault handling, planning and operations, or anomaly handling. Incorporation of all these classes of tasks, except for anomaly handling, in power subsystem hardware and software was concluded to be mandatory to meet the design and operational requirements of the space station. The key drivers are long mission lifetime, modular growth, high-performance flexibility, a need to accommodate different electrical user-load equipment, onorbit assembly/maintenance/servicing, and potentially large number of power subsystem components. A significant effort in algorithm development and validation is essential in meeting the 1987 technology readiness date for the space station.

  5. Automated Factor Slice Sampling.

    PubMed

    Tibbits, Matthew M; Groendyke, Chris; Haran, Murali; Liechty, John C

    2014-01-01

    Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution, can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the "factor slice sampler", a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters in order to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. PMID:24955002

  6. Automated Factor Slice Sampling

    PubMed Central

    Tibbits, Matthew M.; Groendyke, Chris; Haran, Murali; Liechty, John C.

    2013-01-01

    Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution, can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the “factor slice sampler”, a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters in order to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. PMID:24955002

  7. Automation of analytical isotachophoresis

    NASA Technical Reports Server (NTRS)

    Thormann, Wolfgang

    1985-01-01

    The basic features of automation of analytical isotachophoresis (ITP) are reviewed. Experimental setups consisting of narrow bore tubes which are self-stabilized against thermal convection are considered. Sample detection in free solution is discussed, listing the detector systems presently used or expected to be of potential use in the near future. The combination of a universal detector measuring the evolution of ITP zone structures with detector systems specific to desired components is proposed as a concept of an automated chemical analyzer based on ITP. Possible miniaturization of such an instrument by means of microlithographic techniques is discussed.

  8. Automated software development workstation

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engineering software development was automated using an expert system (rule-based) approach. The use of this technology offers benefits not available from current software development and maintenance methodologies. A workstation was built with a library or program data base with methods for browsing the designs stored; a system for graphical specification of designs including a capability for hierarchical refinement and definition in a graphical design system; and an automated code generation capability in FORTRAN. The workstation was then used in a demonstration with examples from an attitude control subsystem design for the space station. Documentation and recommendations are presented.

  9. Automated knowledge generation

    NASA Technical Reports Server (NTRS)

    Myler, Harley R.; Gonzalez, Avelino J.

    1988-01-01

    The general objectives of the NASA/UCF Automated Knowledge Generation Project were the development of an intelligent software system that could access CAD design data bases, interpret them, and generate a diagnostic knowledge base in the form of a system model. The initial area of concentration is in the diagnosis of the process control system using the Knowledge-based Autonomous Test Engineer (KATE) diagnostic system. A secondary objective was the study of general problems of automated knowledge generation. A prototype was developed, based on object-oriented language (Flavors).

  10. Automated gas chromatography

    DOEpatents

    Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.

    1999-01-01

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  11. Automating the CMS DAQ

    SciTech Connect

    Bauer, G.; et al.

    2014-01-01

    We present the automation mechanisms that have been added to the Data Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to maintain a data taking efficiency above 90% and to even improve it to 95% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics at high LHC luminosity.

  12. Human Factors In Aircraft Automation

    NASA Technical Reports Server (NTRS)

    Billings, Charles

    1995-01-01

    Report presents survey of state of art in human factors in automation of aircraft operation. Presents examination of aircraft automation and effects on flight crews in relation to human error and aircraft accidents.

  13. Differentiation of sCJD and vCJD forms by automated analysis of basal ganglia intensity distribution in multisequence MRI of the brain--definition and evaluation of new MRI-based ratios.

    PubMed

    Linguraru, Marius George; Ayache, Nicholas; Bardinet, Eric; Ballester, Miguel Angel González; Galanaud, Damien; Haïk, Stéphane; Faucheux, Baptiste; Hauw, Jean-Jacques; Cozzone, Patrick; Dormont, Didier; Brandel, Jean-Philippe

    2006-08-01

    We present a method for the analysis of basal ganglia (including the thalamus) for accurate detection of human spongiform encephalopathy in multisequence magnetic resonance imaging (MRI) of the brain. One common feature of most forms of prion protein diseases is the appearance of hyperintensities in the deep grey matter area of the brain in T2-weighted magnetic resonance (MR) images. We employ T1, T2, and Flair-T2 MR sequences for the detection of intensity deviations in the internal nuclei. First, the MR data are registered to a probabilistic atlas and normalized in intensity. Then smoothing is applied with edge enhancement. The segmentation of hyperintensities is performed using a model of the human visual system. For more accurate results, a priori anatomical data from a segmented atlas are employed to refine the registration and remove false positives. The results are robust over the patient data and in accordance with the clinical ground truth. Our method further allows the quantification of intensity distributions in basal ganglia. The caudate nuclei are highlighted as main areas of diagnosis of sporadic Creutzfeldt-Jakob Disease (sCJD), in agreement with the histological data. The algorithm permitted the classification of the intensities of abnormal signals in sCJD patient FLAIR images with a higher hypersignal in caudate nuclei (10/10) and putamen (6/10) than in thalami. Defining normalized MRI measures of the intensity relations between the internal grey nuclei of patients, we robustly differentiate sCJD and variant CJD (vCJD) patients, in an attempt to create an automatic classification tool of human spongiform encephalopathies. PMID:16894998

  14. Validating Automated Speaking Tests

    ERIC Educational Resources Information Center

    Bernstein, Jared; Van Moere, Alistair; Cheng, Jian

    2010-01-01

    This paper presents evidence that supports the valid use of scores from fully automatic tests of spoken language ability to indicate a person's effectiveness in spoken communication. The paper reviews the constructs, scoring, and the concurrent validity evidence of "facility-in-L2" tests, a family of automated spoken language tests in Spanish,…

  15. Automated conflict resolution issues

    NASA Technical Reports Server (NTRS)

    Wike, Jeffrey S.

    1991-01-01

    A discussion is presented of how conflicts for Space Network resources should be resolved in the ATDRSS era. The following topics are presented: a description of how resource conflicts are currently resolved; a description of issues associated with automated conflict resolution; present conflict resolution strategies; and topics for further discussion.

  16. Mining Your Automated System.

    ERIC Educational Resources Information Center

    Larsen, Patricia M., Ed.; And Others

    1996-01-01

    Four articles address issues of collecting, compiling, reporting, and interpreting statistics generated by automated library systems for administrative decision making. Topics include using a management information system to forecast growth and assess areas for downsizing; statistics for collection development and analysis; and online system…

  17. Automated galaxy recognition

    NASA Astrophysics Data System (ADS)

    Rappaport, Barry; Anderson, Kurt

    Previous approaches to automated image processing have used both deterministic and nondeterministic techniques. These have not used any form of conceptual learning nor have they employed artificial intelligence techniques. Addition of such techniques to the task of image processing may significantly enhance the efficiencies and accuracies of the recognition and classification processes. In our application, the objects to be recognized and classified are galaxies.

  18. Automated Administrative Data Bases

    NASA Technical Reports Server (NTRS)

    Marrie, M. D.; Jarrett, J. R.; Reising, S. A.; Hodge, J. E.

    1984-01-01

    Improved productivity and more effective response to information requirements for internal management, NASA Centers, and Headquarters resulted from using automated techniques. Modules developed to provide information on manpower, RTOPS, full time equivalency, and physical space reduced duplication, increased communication, and saved time. There is potential for greater savings by sharing and integrating with those who have the same requirements.

  19. Automating Food Service.

    ERIC Educational Resources Information Center

    Kavulla, Timothy A.

    1986-01-01

    The Wichita, Kansas, Public Schools' Food Service Department Project Reduction in Paperwork (RIP) is designed to automate certain paperwork functions, thus reducing cost and flow of paper. This article addresses how RIP manages free/reduced meal applications and meets the objectives of reducing paper and increasing accuracy, timeliness, and…

  20. Program automated documentation methods

    NASA Technical Reports Server (NTRS)

    Lanzano, B. C.

    1970-01-01

    The mission analysis and trajectory simulation program is summarized; it provides an understanding of the size and complexity of one simulation for which documentation is mandatory. Programs for automating documentation of subroutines, flow charts, and internal cross reference information are also included.

  1. Automated Geospatial Watershed Assessment

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) tool is a Geographic Information Systems (GIS) interface jointly developed by the U.S. Environmental Protection Agency, the U.S. Department of Agriculture (USDA) Agricultural Research Service, and the University of Arizona to a...

  2. ATC automation concepts

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    1990-01-01

    Information on the design of human-centered tools for terminal area air traffic control (ATC) is given in viewgraph form. Information is given on payoffs and products, guidelines, ATC as a team process, automation tools for ATF, and the traffic management advisor.

  3. Building Automation Systems.

    ERIC Educational Resources Information Center

    Honeywell, Inc., Minneapolis, Minn.

    A number of different automation systems for use in monitoring and controlling building equipment are described in this brochure. The system functions include--(1) collection of information, (2) processing and display of data at a central panel, and (3) taking corrective action by sounding alarms, making adjustments, or automatically starting and…

  4. Automated Student Model Improvement

    ERIC Educational Resources Information Center

    Koedinger, Kenneth R.; McLaughlin, Elizabeth A.; Stamper, John C.

    2012-01-01

    Student modeling plays a critical role in developing and improving instruction and instructional technologies. We present a technique for automated improvement of student models that leverages the DataShop repository, crowd sourcing, and a version of the Learning Factors Analysis algorithm. We demonstrate this method on eleven educational…

  5. Automated Management Of Documents

    NASA Technical Reports Server (NTRS)

    Boy, Guy

    1995-01-01

    Report presents main technical issues involved in computer-integrated documentation. Problems associated with automation of management and maintenance of documents analyzed from perspectives of artificial intelligence and human factors. Technologies that may prove useful in computer-integrated documentation reviewed: these include conventional approaches to indexing and retrieval of information, use of hypertext, and knowledge-based artificial-intelligence systems.

  6. Automating Small Libraries.

    ERIC Educational Resources Information Center

    Swan, James

    1996-01-01

    Presents a four-phase plan for small libraries strategizing for automation: inventory and weeding, data conversion, implementation, and enhancements. Other topics include selecting a system, MARC records, compatibility, ease of use, industry standards, searching capabilities, support services, system security, screen displays, circulation modules,…

  7. Automated solvent concentrator

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.; Stuart, J. L.

    1976-01-01

    Designed for automated drug identification system (AUDRI), device increases concentration by 100. Sample is first filtered, removing particulate contaminants and reducing water content of sample. Sample is extracted from filtered residue by specific solvent. Concentrator provides input material to analysis subsystem.

  8. Automated Essay Scoring

    ERIC Educational Resources Information Center

    Dikli, Semire

    2006-01-01

    The impacts of computers on writing have been widely studied for three decades. Even basic computers functions, i.e. word processing, have been of great assistance to writers in modifying their essays. The research on Automated Essay Scoring (AES) has revealed that computers have the capacity to function as a more effective cognitive tool (Attali,…

  9. Automation in haemostasis.

    PubMed

    Huber, A R; Méndez, A; Brunner-Agten, S

    2013-01-01

    Automatia, an ancient Greece goddess of luck who makes things happen by themselves and on her own will without human engagement, is present in our daily life in the medical laboratory. Automation has been introduced and perfected by clinical chemistry and since then expanded into other fields such as haematology, immunology, molecular biology and also coagulation testing. The initial small and relatively simple standalone instruments have been replaced by more complex systems that allow for multitasking. Integration of automated coagulation testing into total laboratory automation has become possible in the most recent years. Automation has many strengths and opportunities if weaknesses and threats are respected. On the positive side, standardization, reduction of errors, reduction of cost and increase of throughput are clearly beneficial. Dependence on manufacturers, high initiation cost and somewhat expensive maintenance are less favourable factors. The modern lab and especially the todays lab technicians and academic personnel in the laboratory do not add value for the doctor and his patients by spending lots of time behind the machines. In the future the lab needs to contribute at the bedside suggesting laboratory testing and providing support and interpretation of the obtained results. The human factor will continue to play an important role in testing in haemostasis yet under different circumstances. PMID:23460141

  10. Staff Reactions to Automation.

    ERIC Educational Resources Information Center

    Winstead, Elizabeth B.

    1994-01-01

    Describes two surveys of three libraries on a university campus, one conducted in 1987 and one in 1993, that investigated how library staff reacted to the library automation process. The hypotheses that were tested are discussed, and results are compared to a similar survey conducted in 1985. (LRW)

  11. Automation in Libraries.

    ERIC Educational Resources Information Center

    Canadian Library Association, Ottawa (Ontario).

    The fourth Canadian Association of College and University Libraries (CACUL) Conference on Library Automation was held in Hamilton, June 20-21, 1970, as a pre-conference workshop of the Canadian Library Association (CLA). The purpose of the conference was to present papers on current projects and to discuss the continuing need for this type of…

  12. Microcontroller for automation application

    NASA Technical Reports Server (NTRS)

    Cooper, H. W.

    1975-01-01

    The description of a microcontroller currently being developed for automation application was given. It is basically an 8-bit microcomputer with a 40K byte random access memory/read only memory, and can control a maximum of 12 devices through standard 15-line interface ports.

  13. Automated CCTV Tester

    Energy Science and Technology Software Center (ESTSC)

    2000-09-13

    The purpose of an automated CCTV tester is to automatically and continuously monitor multiple perimeter security cameras for changes in a camera's measured resolution and alignment (camera looking at the proper area). It shall track and record the image quality and position of each camera and produce an alarm when a camera is out of specification.

  14. Automated EEG acquisition

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Hillman, C. E., Jr.

    1977-01-01

    Automated self-contained portable device can be used by technicians with minimal training. Data acquired from patient at remote site are transmitted to centralized interpretation center using conventional telephone equipment. There, diagnostic information is analyzed, and results are relayed back to remote site.

  15. Automating spectral measurements

    NASA Astrophysics Data System (ADS)

    Goldstein, Fred T.

    2008-09-01

    This paper discusses the architecture of software utilized in spectroscopic measurements. As optical coatings become more sophisticated, there is mounting need to automate data acquisition (DAQ) from spectrophotometers. Such need is exacerbated when 100% inspection is required, ancillary devices are utilized, cost reduction is crucial, or security is vital. While instrument manufacturers normally provide point-and-click DAQ software, an application programming interface (API) may be missing. In such cases automation is impossible or expensive. An API is typically provided in libraries (*.dll, *.ocx) which may be embedded in user-developed applications. Users can thereby implement DAQ automation in several Windows languages. Another possibility, developed by FTG as an alternative to instrument manufacturers' software, is the ActiveX application (*.exe). ActiveX, a component of many Windows applications, provides means for programming and interoperability. This architecture permits a point-and-click program to act as automation client and server. Excel, for example, can control and be controlled by DAQ applications. Most importantly, ActiveX permits ancillary devices such as barcode readers and XY-stages to be easily and economically integrated into scanning procedures. Since an ActiveX application has its own user-interface, it can be independently tested. The ActiveX application then runs (visibly or invisibly) under DAQ software control. Automation capabilities are accessed via a built-in spectro-BASIC language with industry-standard (VBA-compatible) syntax. Supplementing ActiveX, spectro-BASIC also includes auxiliary serial port commands for interfacing programmable logic controllers (PLC). A typical application is automatic filter handling.

  16. Brain Diseases

    MedlinePlus

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  17. Brain surgery

    MedlinePlus

    Craniotomy; Surgery - brain; Neurosurgery; Craniectomy; Stereotactic craniotomy; Stereotactic brain biopsy; Endoscopic craniotomy ... Before surgery, the hair on part of the scalp is shaved and the area is cleaned. The doctor makes ...

  18. Brain abscess

    MedlinePlus

    ... with certain heart disorders, may receive antibiotics before dental or other procedures to help reduce the risk of infection. Alternative Names Abscess - brain; Cerebral abscess; CNS abscess Images Amebic brain ...

  19. Brain Health

    MedlinePlus

    ... exercise, diet and nutrition, cognitive activity, and social engagement — can help keep your body and brain ... Stay Mentally Active > Mentally challenging activities and social engagement may support brain health. Learn More Plan ahead ...

  20. Brain Aneurysm

    MedlinePlus

    A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...

  1. The Brain.

    ERIC Educational Resources Information Center

    Hubel, David H.

    1979-01-01

    This article on the brain is part of an entire issue about neurobiology and the question of how the human brain works. The brain as an intricate tissue composed of cells is discussed based on the current knowledge and understanding of its composition and structure. (SA)

  2. Left Brain. Right Brain. Whole Brain

    ERIC Educational Resources Information Center

    Farmer, Lesley S. J.

    2004-01-01

    As the United States student population is becoming more diverse, library media specialists need to find ways to address these distinctive needs. However, some of these differences transcend culture, touching on variations in the brain itself. Most people have a dominant side of the brain, which can affect their personality and learning style.…

  3. Automated campaign system

    NASA Astrophysics Data System (ADS)

    Vondran, Gary; Chao, Hui; Lin, Xiaofan; Beyer, Dirk; Joshi, Parag; Atkins, Brian; Obrador, Pere

    2006-02-01

    To run a targeted campaign involves coordination and management across numerous organizations and complex process flows. Everything from market analytics on customer databases, acquiring content and images, composing the materials, meeting the sponsoring enterprise brand standards, driving through production and fulfillment, and evaluating results; all processes are currently performed by experienced highly trained staff. Presented is a developed solution that not only brings together technologies that automate each process, but also automates the entire flow so that a novice user could easily run a successful campaign from their desktop. This paper presents the technologies, structure, and process flows used to bring this system together. Highlighted will be how the complexity of running a targeted campaign is hidden from the user through technologies, all while providing the benefits of a professionally managed campaign.

  4. Automated assembly in space

    NASA Technical Reports Server (NTRS)

    Srivastava, Sandanand; Dwivedi, Suren N.; Soon, Toh Teck; Bandi, Reddy; Banerjee, Soumen; Hughes, Cecilia

    1989-01-01

    The installation of robots and their use of assembly in space will create an exciting and promising future for the U.S. Space Program. The concept of assembly in space is very complicated and error prone and it is not possible unless the various parts and modules are suitably designed for automation. Certain guidelines are developed for part designing and for an easy precision assembly. Major design problems associated with automated assembly are considered and solutions to resolve these problems are evaluated in the guidelines format. Methods for gripping and methods for part feeding are developed with regard to the absence of gravity in space. The guidelines for part orientation, adjustments, compliances and various assembly construction are discussed. Design modifications of various fasteners and fastening methods are also investigated.

  5. Automated Pollution Control

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Patterned after the Cassini Resource Exchange (CRE), Sholtz and Associates established the Automated Credit Exchange (ACE), an Internet-based concept that automates the auctioning of "pollution credits" in Southern California. An early challenge of the Jet Propulsion Laboratory's Cassini mission was allocating the spacecraft's resources. To support the decision-making process, the CRE was developed. The system removes the need for the science instrument manager to know the individual instruments' requirements for the spacecraft resources. Instead, by utilizing principles of exchange, the CRE induces the instrument teams to reveal their requirements. In doing so, they arrive at an efficient allocation of spacecraft resources by trading among themselves. A Southern California RECLAIM air pollution credit trading market has been set up using same bartering methods utilized in the Cassini mission in order to help companies keep pollution and costs down.

  6. Automated macromolecular crystallization screening

    DOEpatents

    Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.

    2005-03-01

    An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.

  7. Automated Assembly Center (AAC)

    NASA Technical Reports Server (NTRS)

    Stauffer, Robert J.

    1993-01-01

    The objectives of this project are as follows: to integrate advanced assembly and assembly support technology under a comprehensive architecture; to implement automated assembly technologies in the production of high-visibility DOD weapon systems; and to document the improved cost, quality, and lead time. This will enhance the production of DOD weapon systems by utilizing the latest commercially available technologies combined into a flexible system that will be able to readily incorporate new technologies as they emerge. Automated assembly encompasses the following areas: product data, process planning, information management policies and framework, three schema architecture, open systems communications, intelligent robots, flexible multi-ability end effectors, knowledge-based/expert systems, intelligent workstations, intelligent sensor systems, and PDES/PDDI data standards.

  8. Automated breeder fuel fabrication

    SciTech Connect

    Goldmann, L.H.; Frederickson, J.R.

    1983-09-01

    The objective of the Secure Automated Fabrication (SAF) Project is to develop remotely operated equipment for the processing and manufacturing of breeder reactor fuel pins. The SAF line will be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at the Department of Energy's (DOE) Hanford site near Richland, Washington, and is operated by the Westinghouse Hanford Company (WHC). The fabrication and support systems of the SAF line are designed for computer-controlled operation from a centralized control room. Remote and automated fuel fabriction operations will result in: reduced radiation exposure to workers; enhanced safeguards; improved product quality; near real-time accountability, and increased productivity. The present schedule calls for installation of SAF line equipment in the FMEF beginning in 1984, with qualifying runs starting in 1986 and production commencing in 1987. 5 figures.

  9. Terminal automation system maintenance

    SciTech Connect

    Coffelt, D.; Hewitt, J.

    1997-01-01

    Nothing has improved petroleum product loading in recent years more than terminal automation systems. The presence of terminal automation systems (TAS) at loading racks has increased operational efficiency and safety and enhanced their accounting and management capabilities. However, like all finite systems, they occasionally malfunction or fail. Proper servicing and maintenance can minimize this. And in the unlikely event a TAS breakdown does occur, prompt and effective troubleshooting can reduce its impact on terminal productivity. To accommodate around-the-clock loading at racks, increasingly unattended by terminal personnel, TAS maintenance, servicing and troubleshooting has become increasingly demanding. It has also become increasingly important. After 15 years of trial and error at petroleum and petrochemical storage and transfer terminals, a number of successful troubleshooting programs have been developed. These include 24-hour {open_quotes}help hotlines,{close_quotes} internal (terminal company) and external (supplier) support staff, and {open_quotes}layered{close_quotes} support. These programs are described.

  10. Automated gas chromatography

    DOEpatents

    Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

    1999-07-13

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

  11. Cavendish Balance Automation

    NASA Technical Reports Server (NTRS)

    Thompson, Bryan

    2000-01-01

    This is the final report for a project carried out to modify a manual commercial Cavendish Balance for automated use in cryostat. The scope of this project was to modify an off-the-shelf manually operated Cavendish Balance to allow for automated operation for periods of hours or days in cryostat. The purpose of this modification was to allow the balance to be used in the study of effects of superconducting materials on the local gravitational field strength to determine if the strength of gravitational fields can be reduced. A Cavendish Balance was chosen because it is a fairly simple piece of equipment for measuring gravity, one the least accurately known and least understood physical constants. The principle activities that occurred under this purchase order were: (1) All the components necessary to hold and automate the Cavendish Balance in a cryostat were designed. Engineering drawings were made of custom parts to be fabricated, other off-the-shelf parts were procured; (2) Software was written in LabView to control the automation process via a stepper motor controller and stepper motor, and to collect data from the balance during testing; (3)Software was written to take the data collected from the Cavendish Balance and reduce it to give a value for the gravitational constant; (4) The components of the system were assembled and fitted to a cryostat. Also the LabView hardware including the control computer, stepper motor driver, data collection boards, and necessary cabling were assembled; and (5) The system was operated for a number of periods, data collected, and reduced to give an average value for the gravitational constant.

  12. Automated Microbial Metabolism Laboratory

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the automated microbial metabolism laboratory (AMML) concept is reported. The focus of effort of AMML was on the advanced labeled release experiment. Labeled substrates, inhibitors, and temperatures were investigated to establish a comparative biochemical profile. Profiles at three time intervals on soil and pure cultures of bacteria isolated from soil were prepared to establish a complete library. The development of a strategy for the return of a soil sample from Mars is also reported.

  13. Automated Cooperative Trajectories

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Pahle, Joseph; Brown, Nelson

    2015-01-01

    This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.

  14. Automated RTOP Management System

    NASA Technical Reports Server (NTRS)

    Hayes, P.

    1984-01-01

    The structure of NASA's Office of Aeronautics and Space Technology electronic information system network from 1983 to 1985 is illustrated. The RTOP automated system takes advantage of existing hardware, software, and expertise, and provides: (1) computerized cover sheet and resources forms; (2) electronic signature and transmission; (3) a data-based information system; (4) graphics; (5) intercenter communications; (6) management information; and (7) text editing. The system is coordinated with Headquarters efforts in codes R,E, and T.

  15. Automated Testing System

    Energy Science and Technology Software Center (ESTSC)

    2006-05-09

    ATS is a Python-language program for automating test suites for software programs that do not interact with thier users, such as scripted scientific simulations. ATS features a decentralized approach especially suited to larger projects. In its multinode mode it can utilize many nodes of a cluster in order to do many test in parallel. It has features for submitting longer-running tests to a batch system and would have to be customized for use elsewhere.

  16. Power subsystem automation study

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Sewy, D.; Pickering, C.; Sauers, R.

    1984-01-01

    The purpose of the phase 2 of the power subsystem automation study was to demonstrate the feasibility of using computer software to manage an aspect of the electrical power subsystem on a space station. The state of the art in expert systems software was investigated in this study. This effort resulted in the demonstration of prototype expert system software for managing one aspect of a simulated space station power subsystem.

  17. Components for automated microscopy

    NASA Astrophysics Data System (ADS)

    Determann, H.; Hartmann, H.; Schade, K. H.; Stankewitz, H. W.

    1980-12-01

    A number of devices, aiming at automated analysis of microscopic objects as regards their morphometrical parameters or their photometrical values, were developed. These comprise: (1) a device for automatic focusing tuned on maximum contrast; (2) a feedback system for automatic optimization of microscope illumination; and (3) microscope lenses with adjustable pupil distances for usage in the two previous devices. An extensive test program on histological and zytological applications proves the wide application possibilities of the autofocusing device.

  18. Brain Basics: Know Your Brain

    MedlinePlus

    ... fact sheet is a basic introduction to the human brain. It may help you understand how the healthy ... largest and most highly developed part of the human brain: it consists primarily of the cerebrum ( 2 ) and ...

  19. Autonomy, Automation, and Systems

    NASA Astrophysics Data System (ADS)

    Turner, Philip R.

    1987-02-01

    Aerospace industry interest in autonomy and automation, given fresh impetus by the national goal of establishing a Space Station, is becoming a major item of research and technology development. The promise of new technology arising from research in Artificial Intelligence (AI) has focused much attention on its potential in autonomy and automation. These technologies can improve performance in autonomous control functions that involve planning, scheduling, and fault diagnosis of complex systems. There are, however, many aspects of system and subsystem design in an autonomous system that impact AI applications, but do not directly involve AI technology. Development of a system control architecture, establishment of an operating system within the design, providing command and sensory data collection features appropriate to automated operation, and the use of design analysis tools to support system engineering are specific examples of major design issues. Aspects such as these must also receive attention and technology development support if we are to implement complex autonomous systems within the realistic limitations of mass, power, cost, and available flight-qualified technology that are all-important to a flight project.

  20. Automation in biological crystallization

    PubMed Central

    Shaw Stewart, Patrick; Mueller-Dieckmann, Jochen

    2014-01-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given. PMID:24915074

  1. The Brains Behind the Brain.

    ERIC Educational Resources Information Center

    D'Arcangelo, Marcia

    1998-01-01

    Interviews with five neuroscientists--Martin Diamond, Pat Wolfe, Robert Sylwester, Geoffrey Caine, and Eric Jensen--disclose brain-research findings of practical interest to educators. Topics include brain physiology, environmental enrichment, memorization, windows of learning opportunity, brain learning capacity, attention span, student interest,…

  2. AUTOMATED INADVERTENT INTRUDER APPLICATION

    SciTech Connect

    Koffman, L; Patricia Lee, P; Jim Cook, J; Elmer Wilhite, E

    2007-05-29

    The Environmental Analysis and Performance Modeling group of Savannah River National Laboratory (SRNL) conducts performance assessments of the Savannah River Site (SRS) low-level waste facilities to meet the requirements of DOE Order 435.1. These performance assessments, which result in limits on the amounts of radiological substances that can be placed in the waste disposal facilities, consider numerous potential exposure pathways that could occur in the future. One set of exposure scenarios, known as inadvertent intruder analysis, considers the impact on hypothetical individuals who are assumed to inadvertently intrude onto the waste disposal site. Inadvertent intruder analysis considers three distinct scenarios for exposure referred to as the agriculture scenario, the resident scenario, and the post-drilling scenario. Each of these scenarios has specific exposure pathways that contribute to the overall dose for the scenario. For the inadvertent intruder analysis, the calculation of dose for the exposure pathways is a relatively straightforward algebraic calculation that utilizes dose conversion factors. Prior to 2004, these calculations were performed using an Excel spreadsheet. However, design checks of the spreadsheet calculations revealed that errors could be introduced inadvertently when copying spreadsheet formulas cell by cell and finding these errors was tedious and time consuming. This weakness led to the specification of functional requirements to create a software application that would automate the calculations for inadvertent intruder analysis using a controlled source of input parameters. This software application, named the Automated Inadvertent Intruder Application, has undergone rigorous testing of the internal calculations and meets software QA requirements. The Automated Inadvertent Intruder Application was intended to replace the previous spreadsheet analyses with an automated application that was verified to produce the same calculations and

  3. Automated Proactive Fault Isolation: A Key to Automated Commissioning

    SciTech Connect

    Katipamula, Srinivas; Brambley, Michael R.

    2007-07-31

    In this paper, we present a generic model for automated continuous commissioing and then delve in detail into one of the processes, proactive testing for fault isolation, which is key to automating commissioning. The automated commissioining process uses passive observation-based fault detction and diagnostic techniques, followed by automated proactive testing for fault isolation, automated fault evaluation, and automated reconfiguration of controls together to continuously keep equipment controlled and running as intended. Only when hard failures occur or a physical replacement is required does the process require human intervention, and then sufficient information is provided by the automated commissioning system to target manual maintenance where it is needed. We then focus on fault isolation by presenting detailed logic that can be used to automatically isolate faults in valves, a common component in HVAC systems, as an example of how automated proactive fault isolation can be accomplished. We conclude the paper with a discussion of how this approach to isolating faults can be applied to other common HVAC components and their automated commmissioning and a summary of key conclusions of the paper.

  4. AUTOMATION FOR THE SYNTHESIS AND APPLICATION OF PET RADIOPHARMACEUTICALS.

    SciTech Connect

    Alexoff, D.L.

    2001-09-21

    The development of automated systems supporting the production and application of PET radiopharmaceuticals has been an important focus of researchers since the first successes of using carbon-11 (Comar et al., 1979) and fluorine-18 (Reivich et al., 1979) labeled compounds to visualize functional activity of the human brain. These initial successes of imaging the human brain soon led to applications in the human heart (Schelbert et al., 1980), and quickly radiochemists began to see the importance of automation to support PET studies in humans (Lambrecht, 1982; Langstrom et al., 1983). Driven by the necessity of controlling processes emanating high fluxes of 511 KeV photons, and by the tedium of repetitive syntheses for carrying out these human PET investigations, academic and government scientists have designed, developed and tested many useful and novel automated systems in the past twenty years. These systems, originally designed primarily by radiochemists, not only carry out effectively the tasks they were designed for, but also demonstrate significant engineering innovation in the field of laboratory automation.

  5. Automation in organizations: Eternal conflict

    NASA Technical Reports Server (NTRS)

    Dieterly, D. L.

    1981-01-01

    Some ideas on and insights into the problems associated with automation in organizations are presented with emphasis on the concept of automation, its relationship to the individual, and its impact on system performance. An analogy is drawn, based on an American folk hero, to emphasize the extent of the problems encountered when dealing with automation within an organization. A model is proposed to focus attention on a set of appropriate dimensions. The function allocation process becomes a prominent aspect of the model. The current state of automation research is mentioned in relation to the ideas introduced. Proposed directions for an improved understanding of automation's effect on the individual's efficiency are discussed. The importance of understanding the individual's perception of the system in terms of the degree of automation is highlighted.

  6. Closed-loop, ultraprecise, automated craniotomies

    PubMed Central

    Pak, Nikita; Siegle, Joshua H.; Kinney, Justin P.; Denman, Daniel J.; Blanche, Timothy J.

    2015-01-01

    A large array of neuroscientific techniques, including in vivo electrophysiology, two-photon imaging, optogenetics, lesions, and microdialysis, require access to the brain through the skull. Ideally, the necessary craniotomies could be performed in a repeatable and automated fashion, without damaging the underlying brain tissue. Here we report that when drilling through the skull a stereotypical increase in conductance can be observed when the drill bit passes through the skull base. We present an architecture for a robotic device that can perform this algorithm, along with two implementations—one based on homebuilt hardware and one based on commercially available hardware—that can automatically detect such changes and create large numbers of precise craniotomies, even in a single skull. We also show that this technique can be adapted to automatically drill cranial windows several millimeters in diameter. Such robots will not only be useful for helping neuroscientists perform both small and large craniotomies more reliably but can also be used to create precisely aligned arrays of craniotomies with stereotaxic registration to standard brain atlases that would be difficult to drill by hand. PMID:25855700

  7. Closed-loop, ultraprecise, automated craniotomies.

    PubMed

    Pak, Nikita; Siegle, Joshua H; Kinney, Justin P; Denman, Daniel J; Blanche, Timothy J; Boyden, Edward S

    2015-06-01

    A large array of neuroscientific techniques, including in vivo electrophysiology, two-photon imaging, optogenetics, lesions, and microdialysis, require access to the brain through the skull. Ideally, the necessary craniotomies could be performed in a repeatable and automated fashion, without damaging the underlying brain tissue. Here we report that when drilling through the skull a stereotypical increase in conductance can be observed when the drill bit passes through the skull base. We present an architecture for a robotic device that can perform this algorithm, along with two implementations--one based on homebuilt hardware and one based on commercially available hardware--that can automatically detect such changes and create large numbers of precise craniotomies, even in a single skull. We also show that this technique can be adapted to automatically drill cranial windows several millimeters in diameter. Such robots will not only be useful for helping neuroscientists perform both small and large craniotomies more reliably but can also be used to create precisely aligned arrays of craniotomies with stereotaxic registration to standard brain atlases that would be difficult to drill by hand. PMID:25855700

  8. 78 FR 66039 - Modification of National Customs Automation Program Test Concerning Automated Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Concerning Automated Commercial Environment (ACE) Cargo Release (Formerly Known as Simplified Entry) AGENCY... Automated Commercial Environment (ACE). Originally, the test was known as the Simplified Entry Test because...'s (CBP's) National Customs Automation Program (NCAP) test concerning Automated...

  9. 77 FR 48527 - National Customs Automation Program (NCAP) Test Concerning Automated Commercial Environment (ACE...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Automated Commercial Environment (ACE) Simplified Entry: Modification of Participant Selection Criteria and... (NCAP) test concerning the simplified entry functionality in the Automated Commercial Environment (ACE...) National Customs Automation Program (NCAP) test concerning Automated Commercial Environment...

  10. Virtual director: automating a webcast

    NASA Astrophysics Data System (ADS)

    Machnicki, Erik; Rowe, Lawrence A.

    2001-12-01

    This paper presents a system designed to automate the production of webcasts, the Virtual Director. It automates simple tasks such as control of recording equipment, stream broadcasting, and camera control. It also automates content decisions, such as which camera view to broadcast. Directors can specify the content decisions using an automation specification language. The Virtual Director also uses a question monitor service to automatically identify questions and move the cameras to show the audience member asking the question. We discuss the implementation of the Virtual Director and present the results of its use in the production of a university seminar series.

  11. Automating CPM-GOMS

    NASA Technical Reports Server (NTRS)

    John, Bonnie; Vera, Alonso; Matessa, Michael; Freed, Michael; Remington, Roger

    2002-01-01

    CPM-GOMS is a modeling method that combines the task decomposition of a GOMS analysis with a model of human resource usage at the level of cognitive, perceptual, and motor operations. CPM-GOMS models have made accurate predictions about skilled user behavior in routine tasks, but developing such models is tedious and error-prone. We describe a process for automatically generating CPM-GOMS models from a hierarchical task decomposition expressed in a cognitive modeling tool called Apex. Resource scheduling in Apex automates the difficult task of interleaving the cognitive, perceptual, and motor resources underlying common task operators (e.g. mouse move-and-click). Apex's UI automatically generates PERT charts, which allow modelers to visualize a model's complex parallel behavior. Because interleaving and visualization is now automated, it is feasible to construct arbitrarily long sequences of behavior. To demonstrate the process, we present a model of automated teller interactions in Apex and discuss implications for user modeling. available to model human users, the Goals, Operators, Methods, and Selection (GOMS) method [6, 21] has been the most widely used, providing accurate, often zero-parameter, predictions of the routine performance of skilled users in a wide range of procedural tasks [6, 13, 15, 27, 28]. GOMS is meant to model routine behavior. The user is assumed to have methods that apply sequences of operators and to achieve a goal. Selection rules are applied when there is more than one method to achieve a goal. Many routine tasks lend themselves well to such decomposition. Decomposition produces a representation of the task as a set of nested goal states that include an initial state and a final state. The iterative decomposition into goals and nested subgoals can terminate in primitives of any desired granularity, the choice of level of detail dependent on the predictions required. Although GOMS has proven useful in HCI, tools to support the

  12. AUTOMATING SHALLOW SEISMIC IMAGING

    SciTech Connect

    Steeples, Don W.

    2003-09-14

    The current project is a continuation of an effort to develop ultrashallow seismic imaging as a cost-effective method potentially applicable to DOE facilities. The objective of the present research is to develop and demonstrate the use of a cost-effective, automated method of conducting shallow seismic surveys, an approach that represents a significant departure from conventional seismic-survey field procedures. Initial testing of a mechanical geophone-planting device suggests that large numbers of geophones can be placed both quickly and automatically. The development of such a device could make the application of SSR considerably more efficient and less expensive. The imaging results obtained using automated seismic methods will be compared with results obtained using classical seismic techniques. Although this research falls primarily into the field of seismology, for comparison and quality-control purposes, some GPR data will be collected as well. In the final year of th e research, demonstration surveys at one or more DOE facilities will be performed. An automated geophone-planting device of the type under development would not necessarily be limited to the use of shallow seismic reflection methods; it also would be capable of collecting data for seismic-refraction and possibly for surface-wave studies. Another element of our research plan involves monitoring the cone of depression of a pumping well that is being used as a proxy site for fluid-flow at a contaminated site. Our next data set will be collected at a well site where drawdown equilibrium has been reached. Noninvasive, in-situ methods such as placing geophones automatically and using near-surface seismic methods to identify and characterize the hydrologic flow regimes at contaminated sites support the prospect of developing effective, cost-conscious cleanup strategies for DOE and others.

  13. Brain tumors.

    PubMed Central

    Black, K. L.; Mazziotta, J. C.; Becker, D. P.

    1991-01-01

    Recent advances in experimental tumor biology are being applied to critical clinical problems of primary brain tumors. The expression of peripheral benzodiazepine receptors, which are sparse in normal brain, is increased as much as 20-fold in brain tumors. Experimental studies show promise in using labeled ligands to these receptors to identify the outer margins of malignant brain tumors. Whereas positron emission tomography has improved the dynamic understanding of tumors, the labeled selective tumor receptors with positron emitters will enhance the ability to specifically diagnose and greatly aid in the pretreatment planning for tumors. Modulation of these receptors will also affect tumor growth and metabolism. Novel methods to deliver antitumor agents to the brain and new approaches using biologic response modifiers also hold promise to further improve the management of brain tumors. Images PMID:1848735

  14. World-wide distribution automation systems

    SciTech Connect

    Devaney, T.M.

    1994-12-31

    A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems.

  15. Automated fiber pigtailing machine

    DOEpatents

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  16. Automated Propellant Blending

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl W. (Inventor); Harrington, Douglas W. (Inventor); Dutton, Maureen L. (Inventor); Tipton, Billy Charles, Jr. (Inventor); Bacak, James W. (Inventor); Salazar, Frank (Inventor)

    2000-01-01

    An automated propellant blending apparatus and method that uses closely metered addition of countersolvent to a binder solution with propellant particles dispersed therein to precisely control binder precipitation and particle aggregation is discussed. A profile of binder precipitation versus countersolvent-solvent ratio is established empirically and used in a computer algorithm to establish countersolvent addition parameters near the cloud point for controlling the transition of properties of the binder during agglomeration and finishing of the propellant composition particles. The system is remotely operated by computer for safety, reliability and improved product properties, and also increases product output.

  17. Automated Propellant Blending

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl W. (Inventor); Harrington, Douglas W. (Inventor); Dutton, Maureen L. (Inventor); Tipton, Billy Charles, Jr. (Inventor); Bacak, James W. (Inventor); Salazar, Frank (Inventor)

    1999-01-01

    An automated propellant blending apparatus and method uses closely metered addition of countersolvent to a binder solution with propellant particles dispersed therein to precisely control binder precipitation and particle aggregation. A profile of binder precipitation versus countersolvent-solvent ratio is established empirically and used in a computer algorithm to establish countersolvent addition parameters near the cloud point for controlling the transition of properties of the binder during agglomeration and finishing of the propellant composition particles. The system is remotely operated by computer for safety, reliability and improved product properties, and also increases product output.

  18. Methods for Multisweep Automation

    SciTech Connect

    SHEPHERD,JASON F.; MITCHELL,SCOTT A.; KNUPP,PATRICK; WHITE,DAVID R.

    2000-09-14

    Sweeping has become the workhorse algorithm for creating conforming hexahedral meshes of complex models. This paper describes progress on the automatic, robust generation of MultiSwept meshes in CUBIT. MultiSweeping extends the class of volumes that may be swept to include those with multiple source and multiple target surfaces. While not yet perfect, CUBIT's MultiSweeping has recently become more reliable, and been extended to assemblies of volumes. Sweep Forging automates the process of making a volume (multi) sweepable: Sweep Verification takes the given source and target surfaces, and automatically classifies curve and vertex types so that sweep layers are well formed and progress from sources to targets.

  19. Automated Hazard Analysis

    Energy Science and Technology Software Center (ESTSC)

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control andmore » job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the work planning process.« less

  20. [Automated anesthesia record system].

    PubMed

    Zhu, Tao; Liu, Jin

    2005-12-01

    Based on Client/Server architecture, a software of automated anesthesia record system running under Windows operation system and networks has been developed and programmed with Microsoft Visual C++ 6.0, Visual Basic 6.0 and SQL Server. The system can deal with patient's information throughout the anesthesia. It can collect and integrate the data from several kinds of medical equipment such as monitor, infusion pump and anesthesia machine automatically and real-time. After that, the system presents the anesthesia sheets automatically. The record system makes the anesthesia record more accurate and integral and can raise the anesthesiologist's working efficiency. PMID:16422117

  1. Automated fiber pigtailing machine

    DOEpatents

    Strand, Oliver T.; Lowry, Mark E.

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  2. Automated localization of periventricular and subcortical white matter lesions

    NASA Astrophysics Data System (ADS)

    van der Lijn, Fedde; Vernooij, Meike W.; Ikram, M. Arfan; Vrooman, Henri A.; Rueckert, Daniel; Hammers, Alexander; Breteler, Monique M. B.; Niessen, Wiro J.

    2007-03-01

    It is still unclear whether periventricular and subcortical white matter lesions (WMLs) differ in etiology or clinical consequences. Studies addressing this issue would benefit from automated segmentation and localization of WMLs. Several papers have been published on WML segmentation in MR images. Automated localization however, has not been investigated as much. This work presents and evaluates a novel method to label segmented WMLs as periventricular and subcortical. The proposed technique combines tissue classification and registration-based segmentation to outline the ventricles in MRI brain data. The segmented lesions can then be labeled into periventricular WMLs and subcortical WMLs by applying region growing and morphological operations. The technique was tested on scans of 20 elderly subjects in which neuro-anatomy experts manually segmented WMLs. Localization accuracy was evaluated by comparing the results of the automated method with a manual localization. Similarity indices and volumetric intraclass correlations between the automated and the manual localization were 0.89 and 0.95 for periventricular WMLs and 0.64 and 0.89 for subcortical WMLs, respectively. We conclude that this automated method for WML localization performs well to excellent in comparison to the gold standard.

  3. Automated System Marketplace 1995: The Changing Face of Automation.

    ERIC Educational Resources Information Center

    Barry, Jeff; And Others

    1995-01-01

    Discusses trends in the automated system marketplace with specific attention to online vendors and their customers: academic, public, school, and special libraries. Presents vendor profiles; tables and charts on computer systems and sales; and sidebars that include a vendor source list and the differing views on procuring an automated library…

  4. Janice VanCleave's Electricity: Mind-Boggling Experiments You Can Turn into Science Fair Projects.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    This book is designed to provide guidance and ideas for science projects to help students learn more about science as they search for answers to specific problems. The 20 topics on electricity in this book suggest many possible problems to solve. Each topic has one detailed experiment followed by a section that provides additional questions about…

  5. Automated office blood pressure.

    PubMed

    Myers, Martin G; Godwin, Marshall

    2012-05-01

    Manual blood pressure (BP) is gradually disappearing from clinical practice with the mercury sphygmomanometer now considered to be an environmental hazard. Manual BP is also subject to measurement error on the part of the physician/nurse and patient-related anxiety which can result in poor quality BP measurements and office-induced (white coat) hypertension. Automated office (AO) BP with devices such as the BpTRU (BpTRU Medical Devices, Coquitlam, BC) has already replaced conventional manual BP in many primary care practices in Canada and has also attracted interest in other countries where research studies using AOBP have been undertaken. The basic principles of AOBP include multiple readings taken with a fully automated recorder with the patient resting alone in a quiet room. When these principles are followed, office-induced hypertension is eliminated and AOBP exhibits a much stronger correlation with the awake ambulatory BP as compared with routine manual BP measurements. Unlike routine manual BP, AOBP correlates as well with left ventricular mass as does the awake ambulatory BP. AOBP also simplifies the definition of hypertension in that the cut point for a normal AOBP (< 135/85 mm Hg) is the same as for the awake ambulatory BP and home BP. This article summarizes the currently available evidence supporting the use of AOBP in routine clinical practice and proposes an algorithm in which AOBP replaces manual BP for the diagnosis and management of hypertension. PMID:22265230

  6. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  7. Maneuver Automation Software

    NASA Technical Reports Server (NTRS)

    Uffelman, Hal; Goodson, Troy; Pellegrin, Michael; Stavert, Lynn; Burk, Thomas; Beach, David; Signorelli, Joel; Jones, Jeremy; Hahn, Yungsun; Attiyah, Ahlam; Illsley, Jeannette

    2009-01-01

    The Maneuver Automation Software (MAS) automates the process of generating commands for maneuvers to keep the spacecraft of the Cassini-Huygens mission on a predetermined prime mission trajectory. Before MAS became available, a team of approximately 10 members had to work about two weeks to design, test, and implement each maneuver in a process that involved running many maneuver-related application programs and then serially handing off data products to other parts of the team. MAS enables a three-member team to design, test, and implement a maneuver in about one-half hour after Navigation has process-tracking data. MAS accepts more than 60 parameters and 22 files as input directly from users. MAS consists of Practical Extraction and Reporting Language (PERL) scripts that link, sequence, and execute the maneuver- related application programs: "Pushing a single button" on a graphical user interface causes MAS to run navigation programs that design a maneuver; programs that create sequences of commands to execute the maneuver on the spacecraft; and a program that generates predictions about maneuver performance and generates reports and other files that enable users to quickly review and verify the maneuver design. MAS can also generate presentation materials, initiate electronic command request forms, and archive all data products for future reference.

  8. Holton automates its longwall

    SciTech Connect

    Brezovec, D.

    1987-07-01

    Westmoreland Coal Co.'s underground mines in Virginia are putting automated longwalls to work, and have in the process boosted productivity from 16 to 20 clean tons per man-day in the last five years. The longwall face that was installed at Westmoreland's Holton mine on Aug.28, 1985, theoretically could operate with only three workers at the face, the shearer operator, a mechanic and the headgate operator. Advancing the shields and the face conveyor, a job that now occupies four workers on most longwall faces, would be accomplished entirely by remote control. The automated roof support advance system relies on a microprocessor located next to the stageloader. The microprocessor is programmed to coordinate the movement of the shields and face conveyor as the shearer passes. The article describes that a sensor-activated disc located at the end of the shearer's haulage motor shaft counts the rotations of the shearer and relays information on how far the shearer has moved and in what direction to the microprocessor through the trailing cable. The computer defines the location of the shearer and issues commands through a data transmission line that connects the microprocessor to control units located on the shields. The shields and face conveyor move in a sequence programmed into the microprocessor.

  9. Agile automated vision

    NASA Astrophysics Data System (ADS)

    Fandrich, Juergen; Schmitt, Lorenz A.

    1994-11-01

    The microelectronic industry is a protagonist in driving automated vision to new paradigms. Today semiconductor manufacturers use vision systems quite frequently in their fabs in the front-end process. In fact, the process depends on reliable image processing systems. In the back-end process, where ICs are assembled and packaged, today vision systems are only partly used. But in the next years automated vision will become compulsory for the back-end process as well. Vision will be fully integrated into every IC package production machine to increase yields and reduce costs. Modem high-speed material processing requires dedicated and efficient concepts in image processing. But the integration of various equipment in a production plant leads to unifying handling of data flow and interfaces. Only agile vision systems can act with these contradictions: fast, reliable, adaptable, scalable and comprehensive. A powerful hardware platform is a unneglectable requirement for the use of advanced and reliable, but unfortunately computing intensive image processing algorithms. The massively parallel SIMD hardware product LANTERN/VME supplies a powerful platform for existing and new functionality. LANTERN/VME is used with a new optical sensor for IC package lead inspection. This is done in 3D, including horizontal and coplanarity inspection. The appropriate software is designed for lead inspection, alignment and control tasks in IC package production and handling equipment, like Trim&Form, Tape&Reel and Pick&Place machines.

  10. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification.

    PubMed

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V; Robles, Montserrat; Aparici, F; Martí-Bonmatí, L; García-Gómez, Juan M

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation. PMID:25978453

  11. Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification

    PubMed Central

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V.; Robles, Montserrat; Aparici, F.; Martí-Bonmatí, L.; García-Gómez, Juan M.

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation. PMID:25978453

  12. Computer automated design and computer automated manufacture.

    PubMed

    Brncick, M

    2000-08-01

    The introduction of computer aided design and computer aided manufacturing into the field of prosthetics and orthotics did not arrive without concern. Many prosthetists feared that the computer would provide other allied health practitioners who had little or no experience in prosthetics the ability to fit and manage amputees. Technicians in the field felt their jobs may be jeopardized by automated fabrication techniques. This has not turned out to be the case. Prosthetists who use CAD-CAM techniques are finding they have more time for patient care and clinical assessment. CAD-CAM is another tool for them to provide better care for the patients/clients they serve. One of the factors that deterred the acceptance of CAD-CAM techniques in its early stages was that of cost. It took a significant investment in software and hardware for the prosthetists to begin to use the new systems. This new technique was not reimbursed by insurance coverage. Practitioners did not have enough information about this new technique to make a sound decision on their investment of time and money. Ironically, it is the need to hold health care costs down that may prove to be the catalyst for the increased use of CAD-CAM in the field. Providing orthoses and prostheses to patients who require them is a very labor intensive process. Practitioners are looking for better, faster, and more economical ways in which to provide their services under the pressure of managed care. CAD-CAM may be the answer. The author foresees shape sensing departments in hospitals where patients would be sent to be digitized, similar to someone going for radiograph or ultrasound. Afterwards, an orthosis or prosthesis could be provided from a central fabrication facility at a remote site, most likely on the same day. Not long ago, highly skilled practitioners with extensive technical ability would custom make almost every orthosis. One now practices in an atmosphere where off-the-shelf orthoses are the standard. This

  13. Opening up Library Automation Software

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2009-01-01

    Throughout the history of library automation, the author has seen a steady advancement toward more open systems. In the early days of library automation, when proprietary systems dominated, the need for standards was paramount since other means of inter-operability and data exchange weren't possible. Today's focus on Application Programming…

  14. Robotics/Automated Systems Technicians.

    ERIC Educational Resources Information Center

    Doty, Charles R.

    Major resources exist that can be used to develop or upgrade programs in community colleges and technical institutes that educate robotics/automated systems technicians. The first category of resources is Economic, Social, and Education Issues. The Office of Technology Assessment (OTA) report, "Automation and the Workplace," presents analyses of…

  15. Automation's Effect on Library Personnel.

    ERIC Educational Resources Information Center

    Dakshinamurti, Ganga

    1985-01-01

    Reports on survey studying the human-machine interface in Canadian university, public, and special libraries. Highlights include position category and educational background of 118 participants, participants' feelings toward automation, physical effects of automation, diffusion in decision making, interpersonal communication, future trends,…

  16. Suddenly Last Decade! Automation Arrives.

    ERIC Educational Resources Information Center

    Epstein, Susan Baerg

    1983-01-01

    Discusses concerns of librarians entering field of library automation emphasizing issues surrounding automated circulation control systems and online catalogs. Factors which have contributed to dramatic growth in these areas are enumerated: MARC II format, reduced computer costs, commercial vendors, scarce resources, and turnkey systems. (EJS)

  17. Automated Test-Form Generation

    ERIC Educational Resources Information Center

    van der Linden, Wim J.; Diao, Qi

    2011-01-01

    In automated test assembly (ATA), the methodology of mixed-integer programming is used to select test items from an item bank to meet the specifications for a desired test form and optimize its measurement accuracy. The same methodology can be used to automate the formatting of the set of selected items into the actual test form. Three different…

  18. Automated Circulation. SPEC Kit 43.

    ERIC Educational Resources Information Center

    Association of Research Libraries, Washington, DC. Office of Management Studies.

    Of the 64 libraries responding to a 1978 Association of Research Libraries (ARL) survey, 37 indicated that they used automated circulation systems; half of these were commercial systems, and most were batch-process or combination batch process and online. Nearly all libraries without automated systems cited lack of funding as the reason for not…

  19. Progress Toward Automated Cost Estimation

    NASA Technical Reports Server (NTRS)

    Brown, Joseph A.

    1992-01-01

    Report discusses efforts to develop standard system of automated cost estimation (ACE) and computer-aided design (CAD). Advantage of system is time saved and accuracy enhanced by automating extraction of quantities from design drawings, consultation of price lists, and application of cost and markup formulas.

  20. The Library Administrator's Automation Handbook.

    ERIC Educational Resources Information Center

    Boss, Richard W.

    One of the most significant decisions in a library administrator's career is the decision to automate one or more of a library's operations. This book describes the present state of local library automation; the planning, selection, and implementation process; and the library administrator's role in the process. The bulk of the text provides a…

  1. Brain Diseases

    MedlinePlus

    ... know what causes some brain diseases, such as Alzheimer's disease. The symptoms of brain diseases vary widely depending on the specific problem. In some cases, damage is permanent. In other cases, treatments such as surgery, medicines, or physical therapy can correct the source of the problem or ...

  2. Space station automation and autonomy

    SciTech Connect

    Carlisle, R.F.

    1984-08-01

    Mission definition and technology assessment studies support the necessity of incorporating increasing degrees of automation in a space station. As presently envisioned, a space station will evolve over 10-20 years. As the complexity of the space station grows, decision-making must be transferred from the crew to an on-board computer system in order to increase the productivity of the man/machine system. Thus, growth considerations require that provision be made for increasing degrees of automation as the space station evolves. Awareness by the planners and technologists of automated system interactions, of the functional role of automation and autonomy, and of design concepts that permit growth will significantly affect technology and system choices. The power system is an excellent case study for examining its possible evolution from manual to automated and continued evolution towards autonomous control. The purpose of this paper is to give an overview of the requirements for this evolution from the systems perspective.

  3. Automated design of aerospace structures

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Mccomb, H. G.

    1974-01-01

    The current state-of-the-art in structural analysis of aerospace vehicles is characterized, automated design technology is discussed, and an indication is given of the future direction of research in analysis and automated design. Representative computer programs for analysis typical of those in routine use in vehicle design activities are described, and results are shown for some selected analysis problems. Recent and planned advances in analysis capability are indicated. Techniques used to automate the more routine aspects of structural design are discussed, and some recently developed automated design computer programs are described. Finally, discussion is presented of early accomplishments in interdisciplinary automated design systems, and some indication of the future thrust of research in this field is given.

  4. Automated Desalting Apparatus

    NASA Technical Reports Server (NTRS)

    Spencer, Maegan K.; Liu, De-Ling; Kanik, Isik; Beegle, Luther

    2010-01-01

    Because salt and metals can mask the signature of a variety of organic molecules (like amino acids) in any given sample, an automated system to purify complex field samples has been created for the analytical techniques of electrospray ionization/ mass spectroscopy (ESI/MS), capillary electrophoresis (CE), and biological assays where unique identification requires at least some processing of complex samples. This development allows for automated sample preparation in the laboratory and analysis of complex samples in the field with multiple types of analytical instruments. Rather than using tedious, exacting protocols for desalting samples by hand, this innovation, called the Automated Sample Processing System (ASPS), takes analytes that have been extracted through high-temperature solvent extraction and introduces them into the desalting column. After 20 minutes, the eluent is produced. This clear liquid can then be directly analyzed by the techniques listed above. The current apparatus including the computer and power supplies is sturdy, has an approximate mass of 10 kg, and a volume of about 20 20 20 cm, and is undergoing further miniaturization. This system currently targets amino acids. For these molecules, a slurry of 1 g cation exchange resin in deionized water is packed into a column of the apparatus. Initial generation of the resin is done by flowing sequentially 2.3 bed volumes of 2N NaOH and 2N HCl (1 mL each) to rinse the resin, followed by .5 mL of deionized water. This makes the pH of the resin near neutral, and eliminates cross sample contamination. Afterward, 2.3 mL of extracted sample is then loaded into the column onto the top of the resin bed. Because the column is packed tightly, the sample can be applied without disturbing the resin bed. This is a vital step needed to ensure that the analytes adhere to the resin. After the sample is drained, oxalic acid (1 mL, pH 1.6-1.8, adjusted with NH4OH) is pumped into the column. Oxalic acid works as a

  5. Berkeley automated supernova search

    SciTech Connect

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  6. [From automation to robotics].

    PubMed

    1985-01-01

    The introduction of automation into the laboratory of biology seems to be unavoidable. But at which cost, if it is necessary to purchase a new machine for every new application? Fortunately the same image processing techniques, belonging to a theoretic framework called Mathematical Morphology, may be used in visual inspection tasks, both in car industry and in the biology lab. Since the market for industrial robotics applications is much higher than the market of biomedical applications, the price of image processing devices drops, and becomes sometimes less than the price of a complete microscope equipment. The power of the image processing methods of Mathematical Morphology will be illustrated by various examples, as automatic silver grain counting in autoradiography, determination of HLA genotype, electrophoretic gels analysis, automatic screening of cervical smears... Thus several heterogeneous applications may share the same image processing device, provided there is a separate and devoted work station for each of them. PMID:4091303

  7. Health care automation companies.

    PubMed

    1995-12-01

    Health care automation companies: card transaction processing/EFT/EDI-capable banks; claims auditing/analysis; claims processors/clearinghouses; coding products/services; computer hardware; computer networking/LAN/WAN; consultants; data processing/outsourcing; digital dictation/transcription; document imaging/optical disk storage; executive information systems; health information networks; hospital/health care information systems; interface engines; laboratory information systems; managed care information systems; patient identification/credit cards; pharmacy information systems; POS terminals; radiology information systems; software--claims related/computer-based patient records/home health care/materials management/supply ordering/physician practice management/translation/utilization review/outcomes; telecommunications products/services; telemedicine/teleradiology; value-added networks. PMID:10153839

  8. Automating Frame Analysis

    SciTech Connect

    Sanfilippo, Antonio P.; Franklin, Lyndsey; Tratz, Stephen C.; Danielson, Gary R.; Mileson, Nicholas D.; Riensche, Roderick M.; McGrath, Liam

    2008-04-01

    Frame Analysis has come to play an increasingly stronger role in the study of social movements in Sociology and Political Science. While significant steps have been made in providing a theory of frames and framing, a systematic characterization of the frame concept is still largely lacking and there are no rec-ognized criteria and methods that can be used to identify and marshal frame evi-dence reliably and in a time and cost effective manner. Consequently, current Frame Analysis work is still too reliant on manual annotation and subjective inter-pretation. The goal of this paper is to present an approach to the representation, acquisition and analysis of frame evidence which leverages Content Analysis, In-formation Extraction and Semantic Search methods to provide a systematic treat-ment of a Frame Analysis and automate frame annotation.

  9. Automated Defect Classification (ADC)

    Energy Science and Technology Software Center (ESTSC)

    1998-01-01

    The ADC Software System is designed to provide semiconductor defect feature analysis and defect classification capabilities. Defect classification is an important software method used by semiconductor wafer manufacturers to automate the analysis of defect data collected by a wide range of microscopy techniques in semiconductor wafer manufacturing today. These microscopies (e.g., optical bright and dark field, scanning electron microscopy, atomic force microscopy, etc.) generate images of anomalies that are induced or otherwise appear on wafermore » surfaces as a result of errant manufacturing processes or simple atmospheric contamination (e.g., airborne particles). This software provides methods for analyzing these images, extracting statistical features from the anomalous regions, and applying supervised classifiers to label the anomalies into user-defined categories.« less

  10. Automated satellite image navigation

    NASA Astrophysics Data System (ADS)

    Bassett, Robert M.

    1992-12-01

    The automated satellite image navigation method (Auto-Avian) developed and tested by Spaulding (1990) at the Naval Postgraduate School is investigated. The Auto-Avian method replaced the manual procedure of selecting Ground Control Points (GCP's) with an autocorrelation process that utilizes the World Vector Shoreline (WVS) provided by the Defense Mapping Agency (DMA) as a string of GCP's to rectify satellite images. The automatic cross-correlation of binary reference (WVS) and search (image) windows eliminated the subjective error associated with the manual selection of GCP's and produced accuracies comparable to the manual method. The scope of Spaulding's (1990) research was expanded. The worldwide application of the Auto-Avian method was demonstrated in three world regions (eastern North Pacific Ocean, eastern North Atlantic Ocean, and Persian Gulf). Using five case studies, the performance of the Auto-Avian method on 'less than optimum' images (i.e., islands, coastlines affected by lateral distortion and/or cloud cover) was investigated.