Science.gov

Sample records for mineral composition disrupted

  1. Dspp mutations disrupt mineralization homeostasis during odontoblast differentiation

    PubMed Central

    Jia, Jie; Bian, Zhuan; Song, Yaling

    2015-01-01

    The main pathological feature in isolated hereditary dentin disorders is the abnormality of dentin mineralization. Dentin sialophosphoprotein (DSPP) gene is the only identified causative gene for the disorders. The present study aims to explore the molecular association between Dspp mutations and the disrupted mineralization homeostasis during odontoblast differentiation. We generated lentivirus constructs with the mouse full-length wild type Dspp cDNA and 3 Dspp mutants and transfected them into mouse odontoblast-lineage cells (OLCs) which were then performed 21-day mineralization inducing differentiation. The formation of mineralized nodules was obviously fewer in mutants. Digital Gene Expression (DGE) showed that Dspp mutation affected the OLC differentiation in a degree. Further examination validated that Dspp (LV-Dspp) overexpressing OLCs possessed the ability to strictly orchestrate framework for mineralization inductors like Bmp2, Col1 and Runx2, and proliferative markers for mineralization like Alp and Ocn, as well as mineral homeostasis feedback regulators Mgp and Htra1. However, the missense mutation in Dspp signal peptide region (LV-M2) and the nonsense mutation (LV-M5) broke this orchestration. The results suggested that the mutant Dspp disrupt the dynamic homeostasis of mineralization during OLC differentiation. We are the first to use full-length mouse Dspp gene expression system to explore the mineralization mechanism by which inductors and inhibitors adjust each other during odontoblast differentiation. Our findings shed new light on association between Dspp and the dynamic homeostasis of mineralization inductors and inhibitors, and indicate the disruption of mineralization homeostasis might be a crucial reason for Dspp mutations resulting in dentin disorders. PMID:26807185

  2. Mineral oil soluble borate compositions

    SciTech Connect

    Dulat, J.

    1981-09-15

    Alkali metal borates are reacted with fatty acids or oils in the presence of a low hlb value surfactant to give a stable mineral oil-soluble product. Mineral oil containing the borate can be used as a cutting fluid.

  3. Mineral composition of some traditional Mexican teas.

    PubMed

    Laferriere, J E; Weber, C W; Kohlhepp, E A

    1991-07-01

    Teas of plant origin traditionally consumed by the Mountain Pima of Chihuahua, Mexico, were analyzed for mineral nutritional content. Fe, Cu, Zn, Ca, and Mg composition was determined for native teas made from shoots of Tagetes lucida, T. filifolia, Elytraria imbricata, and Holodiscus dumosus, and from root xylem of Ceanothus depressus and Phaseolus ritensis. Native uses of these teas are also described. PMID:1924192

  4. Feminism in Composition: Inclusion, Metonymy, and Disruption.

    ERIC Educational Resources Information Center

    Ritchie, Joy; Boardman, Kathleen

    1999-01-01

    Revisits the few articles and notes written from a feminist perspective that appeared in "College Composition and Communication,""College English," and "English Journal" in the early 1970s. Focuses on feminist retrospective accounts--re-visions of composition written since the mid-1980s. Speculates on the positive and negative potential of…

  5. Predicting the Mineral Composition of Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Perlwitz, J. P.; Perez, C.; Miller, R. L.; Rodriguez, S.

    2012-12-01

    Models of the soil (''mineral'') dust aerosol cycle, embedded in climate and Earth system models, are essential tools for understanding the causal relationships and feedbacks between dust and climate. Many soil dust schemes in Earth system models use a simplified representation of soil dust aerosols, where the soil dust is distinguished by size bins or size distribution modes, with a globally uniform representation of the mineralogical composition of the particles. Although models with such a simplified assumption about the properties of soil dust particles have already significantly contributed to the understanding of the role of soil dust aerosols in climate, this is a limitation for a number of reasons: 1. The response of clouds and the large-scale circulation depends on the radiative properties like the single scattering albedo, which should vary with the mineral composition of the source region; 2. Chemical processes at the surface of the soil dust particles that form sulfate and nitrate coatings depend on the dust mineral composition; 3. The availability of soil dust minerals as cloud condensation nuclei depends on their hygroscopicity, which in turn depends on the mineral composition; 4. Fertilization of phytoplankton with soluble iron, a process that influences ocean carbon uptake, depends upon mineral types. We present a new version of the soil dust scheme in the NASA GISS Earth System ModelE, which takes into account the mineral composition of the soil dust particles. Soil dust aerosols are represented as a mixture of externally and internally mixed minerals, such as Illite, Kaolinite, Smectite, Calcite, Iron(hydr)oxide, Quartz, Feldspar, and Gypsum, as well as aggregates between Iron(hydr)oxide and each of the minerals. We test two approaches to constrain the mineral composition of the soil dust particles against data from measurements published in literature as well as measurements from Izaña (Tenerife). The comparison between modeled and measured data

  6. Effects of Estrogens and Estrogenic Disrupting Compounds on Fish Mineralized Tissues

    PubMed Central

    Pinto, Patricia I. S.; Estêvão, Maria D.; Power, Deborah M.

    2014-01-01

    Estrogens play well-recognized roles in reproduction across vertebrates, but also intervene in a wide range of other physiological processes, including mineral homeostasis. Classical actions are triggered when estrogens bind and activate intracellular estrogen receptors (ERs), regulating the transcription of responsive genes, but rapid non-genomic actions initiated by binding to plasma membrane receptors were recently described. A wide range of structurally diverse compounds from natural and anthropogenic sources have been shown to interact with and disrupt the normal functions of the estrogen system, and fish are particularly vulnerable to endocrine disruption, as these compounds are frequently discharged or run-off into waterways. The effect of estrogen disruptors in fish has mainly been assessed in relation to reproductive endpoints, and relatively little attention has been given to other disruptive actions. This review will overview the actions of estrogens in fish, including ER isoforms, their expression, structure and mechanisms of action. The estrogen functions will be considered in relation to mineral homeostasis and actions on mineralized tissues. The impact of estrogenic endocrine disrupting compounds on fish mineralized tissues will be reviewed, and the potential adverse outcomes of exposure to such compounds will be discussed. Current lacunae in knowledge are highlighted along with future research priorities. PMID:25196834

  7. Forage herbs improve mineral composition of grassland herbage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies on plant mineral concentrations provided evidence of differences in mineral composition in plants species and their role in mineral supply to ruminants. We determined temporal differences in macro- and micromineral concentrations of grasses, legumes and herbs grown in a multi-species grassla...

  8. Boron isotopic compositions of some boron minerals

    NASA Astrophysics Data System (ADS)

    Oi, Takao; Nomura, Masao; Musashi, Masaaki; Ossaka, Tomoko; Okamoto, Makoto; Kakihana, Hidetake

    1989-12-01

    Boron minerals that have different structural formulae but are supposed to have the same geologic origin have been collected and analyzed for the 11B /10B isotopic ratio. It has been reconfirmed that minerals of marine origin have higher 11B /10B ratios than those of nonmarine origin. It has been found that the sequence of decreasing 11B /10B values among the minerals with the same geologic origin is; borax, tincal, kernite (Na borates) > ulexite ( Na/Ca borate) > colemanite, iyoite, meyerhofferite (Ca borates). This sequence is explainable on the basis of the difference in crystal structure among the minerals. That is, minerals with higher BO 3/BO 4 ratios, (the ratio of the number of the BO 3 triangle units to the number of the BO 4 tetrahedron units in the structural formula of a mineral) have higher 11B /10B ratios.

  9. Using Brittle Fragmentation Theory to represent Aerosol Mineral Composition

    NASA Astrophysics Data System (ADS)

    Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.

    2014-12-01

    Improved estimates of dust aerosol effects upon climate require the characterization of dust mineral and chemical composition. Regional variations in soil mineral composition lead to variations in dust aerosol composition. Yet, deriving aerosol mineral content also requires knowledge of the parent soil size distribution along with the fragmentation of soil particles and aggregates during the emission process. These processes modify the size distribution and mineral abundance of the emitted aerosols compared to the parent soil. An additional challenge for modeling is that global atlases of soil texture and composition are based on wet sieving, a technique that breaks the aggregates, particularly phyllosilicates, that are encountered in natural soils, drastically altering the original size distribution of the soil that is subject to wind erosion. We propose both a semi-empirical and theoretical method to constrain the size-resolved mineral composition of emitted dust aerosols based on global atlases of soil texture and composition. Our semi-empirical method re-aggregates clay phyllosilicate minerals into larger soil particle sizes and constrains the size distribution of each emitted mineral based on observed mineral distributions at the source. Our theoretical method extends Kok's brittle fragmentation theory to individual minerals. To this end we reconstruct the undisturbed size distribution for each mineral as a function of soil texture and soil type and calculate the emitted size distribution applying brittle fragmentation and assuming homogeneous fragmentation properties among the mineral aggregates. These approaches were tested within the NASA GISS Earth System ModelE. We discuss the improvements achieved and suggest future developments.

  10. Boron isotopic compositions of some boron minerals

    SciTech Connect

    Oi, Takao; Musashi, Masaaki; Ossaka, Tomoko; Kakihana, Hidetake ); Nomura, Masao; Okamoto, Makoto )

    1989-12-01

    Boron minerals that have different structural formulae but are supposed to have the same geologic origin have been collected and analyzed for the {sup 11}B/{sup 10}B isotopic ratio. It has been reconfirmed that minerals of marine origin have higher {sup 11}B/{sup 10}B ratios than those of nonmarine origin. It has been found that the sequence of decreasing {sup 11}B/{sup 10}B values among the minerals with the same geologic origin is; borax, tincal, kernite (Na borates) > ulexite (Na/Ca borate) > colemanite, iyoite, meyerhofferite (Ca borates). This sequence is explainable on the basis of the difference in crystal structure among the minerals. That is, minerals with high BO{sub 3}/BO{sub 4} ratios, (the ratio of the number of the BO{sub 3} triangle units to the number of the BO{sub 4} tetrahedron units in the structural formula of a mineral) have higher {sup 11}B/{sup 10}B ratios.

  11. Soybean mineral composition and glyphosate use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate has become the most widely used herbicide in soybeans, primarily because of its use in transgenic, glyphosate-resistant (GR) cultivars of this crop. There have been claims that glyphosate reduces the levels of certain minerals, especially Mn, in GR crops. The published literature related ...

  12. Mineral composition of organically grown tomato

    NASA Astrophysics Data System (ADS)

    Ghambashidze, Giorgi

    2014-05-01

    In recent years, consumer concerns on environmental and health issues related to food products have increased and, as a result, the demand for organically grown production has grown. Results indicate that consumers concerned about healthy diet and environmental degradation are the most likely to buy organic food, and are willing to pay a high premium. Therefore, it is important to ensure the quality of the produce, especially for highly consumed products. The tomato (Lycopersicon esculentum) is one of the most widely consumed fresh vegetables in the world. It is also widely used by the food industries as a raw material for the production of derived products such as purees or ketchup. Consequently, many investigations have addressed the impact of plant nutrition on the quality of tomato fruit. The concentrations of minerals (P, Na, K, Ca and Mg) and trace elements (Cu, Zn and Mn) were determined in tomatoes grown organically in East Georgia, Marneuli District. The contents of minerals and Mn seem to be in the range as shown in literature. Cu and Zn were found in considerably high amounts in comparison to maximum permissible values established in Georgia. Some correlations were observed between the minerals and trace elements studied. K and Mg were strongly correlated with Cu and Zn. Statistically significant difference have shown also P, K and Mg based between period of sampling.

  13. Stable isotopic composition of bottled mineral waters from Romania

    NASA Astrophysics Data System (ADS)

    Bădăluţă, Carmen; Nagavciuc, Viorica; Perșoiu, Aurel

    2015-04-01

    Romania has a high potential of mineral waters resources, featuring one of the largest mineral resources at European and global level. In the last decade, due to increased in consumption of bottled water, numerous brands have appeared on the market, with equally numerous and variable sources of provenance. In this study we have analyzed the isotopic composition of bottled mineral waters from Romania in order to determine their source and authenticity. We have analysed 32 carbonated and 24 non-carbonated mineral waters from Romania. and the results were analysed in comparison with stable isotope data from precipitation and river waters. Generally, the isotopic values of the mineral waters follow those in precipitation; however, differences occur in former volcanic regions (due to deep circulation of meteoric waters and increased exchange with host rock and volcanic CO2), as well as in mountainous regions, where high-altitude recharge occurs.

  14. Phylogenetic significance of composition and crystal morphology of magnetosome minerals

    PubMed Central

    Pósfai, Mihály; Lefèvre, Christopher T.; Trubitsyn, Denis; Bazylinski, Dennis A.; Frankel, Richard B.

    2013-01-01

    Magnetotactic bacteria (MTB) biomineralize magnetosomes, nano-scale crystals of magnetite or greigite in membrane enclosures that comprise a permanent magnetic dipole in each cell. MTB control the mineral composition, habit, size, and crystallographic orientation of the magnetosomes, as well as their arrangement within the cell. Studies involving magnetosomes that contain mineral and biological phases require multidisciplinary efforts. Here we use crystallographic, genomic and phylogenetic perspectives to review the correlations between magnetosome mineral habits and the phylogenetic affiliations of MTB, and show that these correlations have important implications for the evolution of magnetosome synthesis, and thus magnetotaxis. PMID:24324461

  15. Phylogenetic significance of composition and crystal morphology of magnetosome minerals.

    PubMed

    Pósfai, Mihály; Lefèvre, Christopher T; Trubitsyn, Denis; Bazylinski, Dennis A; Frankel, Richard B

    2013-01-01

    Magnetotactic bacteria (MTB) biomineralize magnetosomes, nano-scale crystals of magnetite or greigite in membrane enclosures that comprise a permanent magnetic dipole in each cell. MTB control the mineral composition, habit, size, and crystallographic orientation of the magnetosomes, as well as their arrangement within the cell. Studies involving magnetosomes that contain mineral and biological phases require multidisciplinary efforts. Here we use crystallographic, genomic and phylogenetic perspectives to review the correlations between magnetosome mineral habits and the phylogenetic affiliations of MTB, and show that these correlations have important implications for the evolution of magnetosome synthesis, and thus magnetotaxis. PMID:24324461

  16. The chemical composition of mineral trioxide aggregate

    PubMed Central

    Camilleri, Josette

    2008-01-01

    Mineral trioxide aggregate (MTA) is composed of Portland cement, with 4:1 addition of bismuth oxide added so that the material can be detected on a radiograph. The cement is made up of calcium, silicon and aluminium. The main constituent phases are tricalcium and dicalcium silicate and tricalcium aluminate. There are two commercial forms of MTA, namely the grey and the white. The difference between the grey and the white materials is the presence of iron in the grey material, which makes up the phase tetracalcium alumino-ferrite. This phase is absent in white MTA. Hydration of MTA occurs in two stages. The initial reaction between tricalcium aluminate and water in the presence of calcium sulphate results in the production of ettringite. Tricalcium and dicalcium silicate react with water to produce calcium silicate hydrate and calcium hydroxide, which is leached out of the cement with time. PMID:20351970

  17. Composition of Mineral Produced by Dental Mesenchymal Stem Cells

    PubMed Central

    Volponi, A.A.; Gentleman, E.; Fatscher, R.; Pang, Y.W.Y.; Gentleman, M.M.; Sharpe, P.T.

    2015-01-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. PMID:26253190

  18. Variation in coal composition. A computational approach to study the mineral composition of individual coal particles

    SciTech Connect

    Charon, O.; Kang, S.G.; Graham, K.; Sarofim, A.F.; Beer, J.M. )

    1989-01-01

    Mineral matter transformations, and therefore fly ash evolution, during pulverized coal combustion depend on the amount, composition and spatial distribution of the inorganic matter within individual pulverized coal particles. Thus, it is necessary to have information on the mineral composition of individual particles, as well as that of the raw pulverized coal. A model has been developed to predict the variation of individual coal particle compositions. It uses CCSEM data for a given raw coal as input and randomly distributes the mineral inclusions in the coal volume. By random selection of monosize coal particles, it is possible to generate distributions of mineral content for any particle size distribution of coal. The model has been checked by comparing computed results with data on the composition variations of narrowly size and density classified fractions of an Upper Freeport bituminous coal. The results for individual coal particle compositions are used to generate information on the variability of the composition of the fly ash generated during combustion.

  19. The eggshell: structure, composition and mineralization.

    PubMed

    Hincke, Maxwell T; Nys, Yves; Gautron, Joel; Mann, Karlheinz; Rodriguez-Navarro, Alejandro B; McKee, Marc D

    2012-01-01

    The calcareous egg is produced by all birds and most reptiles. Current understanding of eggshell formation and mineralization is mainly based on intensive studies of one species - the domesticated chicken Gallus gallus. The majority of constituents of the chicken eggshell have been identified. In this article we review eggshell microstructure and ultrastructure, and the results of recent genomic, transcriptomic and proteomic analyses of the chicken eggshell matrix to draw attention to areas of current uncertainty such as the potential role of amorphous calcium carbonate and the specific nature of the molecules that initiate (nucleate) mammillary cone formation and terminate palisade layer calcification. Comparative avian genomics and proteomics have only recently become possible with the publication of the Taeniopygia guttata (zebra finch) genome. Further rapid progress is highly anticipated with the soon-to-be-released genomes of turkey (Meleagris gallopavo) and duck (Anas platyrhynchos). These resources will allow rapid advances in comparative studies of the organic constituents of avian eggshell and their functional implications. PMID:22201802

  20. Characterizing regional soil mineral composition using spectroscopyand geostatistics

    USGS Publications Warehouse

    Mulder, V.L.; de Bruin, S.; Weyermann, J.; Kokaly, Raymond F.; Schaepman, M.E.

    2013-01-01

    This work aims at improving the mapping of major mineral variability at regional scale using scale-dependent spatial variability observed in remote sensing data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and statistical methods were combined with laboratory-based mineral characterization of field samples to create maps of the distributions of clay, mica and carbonate minerals and their abundances. The Material Identification and Characterization Algorithm (MICA) was used to identify the spectrally-dominant minerals in field samples; these results were combined with ASTER data using multinomial logistic regression to map mineral distributions. X-ray diffraction (XRD)was used to quantify mineral composition in field samples. XRD results were combined with ASTER data using multiple linear regression to map mineral abundances. We testedwhether smoothing of the ASTER data to match the scale of variability of the target sample would improve model correlations. Smoothing was donewith Fixed Rank Kriging (FRK) to represent the mediumand long-range spatial variability in the ASTER data. Stronger correlations resulted using the smoothed data compared to results obtained with the original data. Highest model accuracies came from using both medium and long-range scaled ASTER data as input to the statistical models. High correlation coefficients were obtained for the abundances of calcite and mica (R2 = 0.71 and 0.70, respectively). Moderately-high correlation coefficients were found for smectite and kaolinite (R2 = 0.57 and 0.45, respectively). Maps of mineral distributions, obtained by relating ASTER data to MICA analysis of field samples, were found to characterize major soil mineral variability (overall accuracies for mica, smectite and kaolinite were 76%, 89% and 86% respectively). The results of this study suggest that the distributions of minerals and their abundances derived using FRK-smoothed ASTER data more closely match the spatial

  1. Thermal assembly of a biomimetic mineral/collagen composite.

    PubMed

    Pederson, Aaron W; Ruberti, Jeffrey W; Messersmith, Phillip B

    2003-11-01

    A strategy is described for exploiting temperature driven self-assembly of collagen and thermally triggered liposome mineralization to form a mineralized collagen composite from an injectable precursor fluid. Optical density and rheological experiments demonstrated the formation of a collagen gel when acid-soluble type I collagen solutions (1-7 mg/ml) were heated to 24-30 degrees C. Scanning calorimetry experiments demonstrated that mixtures of calcium- and phosphate-loaded liposomes composed of dipalmitoylphosphatidylcholine (90 mol%) and dimyristoylphosphatidylcholine (10 mol%) were stable at room temperature but formed calcium phosphate mineral when heated above 35 degrees C, a consequence of the release of entrapped salts at the lipid chain melting transition. The formation of calcium phosphate mineral induced by triggered release of calcium and phosphate was detected as an endothermic transition (deltaH=6.2+/-1.1 kcal/mol lipid) near the lipid chain melting transition (Tm=37 degrees C). Combining an acid-soluble collagen solution with calcium- and phosphate-loaded liposomes resulted in a liposome/collagen precursor fluid, which when heated from room temperature to 37 degrees C formed a mineralized collagen gel. The dynamic storage modulus of the collagen scaffold increased upon mineralization, and direct nucleation of mineral from the collagen scaffold was detected by electron microscopy. PMID:14530086

  2. Proximate composition, nutritional attributes and mineral composition of Peperomia pellucida L. (Ketumpangan Air) grown in Malaysia.

    PubMed

    Ooi, Der-Jiun; Iqbal, Shahid; Ismail, Maznah

    2012-01-01

    This study presents the proximate and mineral composition of Peperomia pellucida L., an underexploited weed plant in Malaysia. Proximate analysis was performed using standard AOAC methods and mineral contents were determined using atomic absorption spectrometry. The results indicated Peperomia pellucida to be rich in crude protein, carbohydrate and total ash contents. The high amount of total ash (31.22%)suggests a high-value mineral composition comprising potassium, calcium and iron as the main elements. The present study inferred that Peperomia pellucida would serve as a good source of protein and energy as well as micronutrients in the form of a leafy vegetable for human consumption. PMID:22986924

  3. Soil type influences crop mineral composition in Malawi.

    PubMed

    Joy, Edward J M; Broadley, Martin R; Young, Scott D; Black, Colin R; Chilimba, Allan D C; Ander, E Louise; Barlow, Thomas S; Watts, Michael J

    2015-02-01

    Food supply and composition data can be combined to estimate micronutrient intakes and deficiency risks among populations. These estimates can be improved by using local crop composition data that can capture environmental influences including soil type. This study aimed to provide spatially resolved crop composition data for Malawi, where information is currently limited. Six hundred and fifty-two plant samples, representing 97 edible food items, were sampled from >150 sites in Malawi between 2011 and 2013. Samples were analysed by ICP-MS for up to 58 elements, including the essential minerals calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), selenium (Se) and zinc (Zn). Maize grain Ca, Cu, Fe, Mg, Se and Zn concentrations were greater from plants grown on calcareous soils than those from the more widespread low-pH soils. Leafy vegetables from calcareous soils had elevated leaf Ca, Cu, Fe and Se concentrations, but lower Zn concentrations. Several foods were found to accumulate high levels of Se, including the leaves of Moringa, a crop not previously been reported in East African food composition data sets. New estimates of national dietary mineral supplies were obtained for non-calcareous and calcareous soils. High risks of Ca (100%), Se (100%) and Zn (57%) dietary deficiencies are likely on non-calcareous soils. Deficiency risks on calcareous soils are high for Ca (97%), but lower for Se (34%) and Zn (31%). Risks of Cu, Fe and Mg deficiencies appear to be low on the basis of dietary supply levels. PMID:25461061

  4. Mineralized polymer composites as biogenic bone substitute material

    NASA Astrophysics Data System (ADS)

    Shah, Rushita; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-05-01

    Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bone-bonding potential of the inorganic phase with the porosity and interconnectivity of the three-dimensional construction. Aiming the advantages of ceramic-polymer composite scaffolds, the calcium carbonate (CaCO3) based biomineralized scaffold was prepared, where the PVP-CMC hydrogel was used as an extracellular matrix. This paper is reported about the morphology, swelling trend (in physiological solution) and viscoelastic behavior of (90 min mineralized) MPC. The dry MPC are off-white, coarse in texture, comparatively less flexible than the original PVP-CMC based hydrogel film, and the deposition of granular structures on the surface of the hydrogel film confirms about the development of biomineralized scaffold/polymer composites. Irrespective of thickness, the dry MPC shows higher values of swelling ratio within 30 min, which varies between 200-250 approximately. The dynamic viscoelastic nature of freshly prepared MPC was investigated applying 1% and 10% strain. At higher strain the viscoelastic moduli (G' and G") show significant change, and the nature of MPC turns from elastic to viscous. Based on the observed basic properties, the MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder.

  5. Mapping the mineralogical composition of mineral dust in Western Africa

    NASA Astrophysics Data System (ADS)

    Formenti, Paola; Caquineau, Sandrine; Desboeufs, Karine; Klaver, Anne; Chevaillier, Servanne; Journet, Emilie; Rajot, Jean Louis

    2014-05-01

    In the last few years, several ground-based and airborne field campaigns have allowed exploring the properties and impacts of mineral dust in Western Africa, one of the major emission and transport areas worldwide. In this paper, we explore the synthesis of these observations to provide with a large-scale quantitative view of the mineralogical composition and its variability with time after transport and source region. This work reveals that mineral dust in Western Africa can be represented as a mixture of illite, kaolinite, quartz, iron and titanium oxides, representing at least 92% of the dust mass. Calcite ranged between 0.3 and 8.4% of the dust mass depending on the origin. Our data do not show a systematic dependence of the dust composition with origin, likely as in most of the cases they represent the composition of the atmospheric burden after 1-2 days after emission, when air masses mix and give raise to a more uniform dust load. This has implications for the representation of the mineral dust composition in regional and global circulation models, and satellite retrievals. We estimate that iron oxides account for 58 ± 7% of the mass of elemental Fe, and between 2 and 5% of the dust mass. We provide with first time estimates of the partitioning of hematite and goethite in major dust sources such as the Bodélé and the South Algeria deserts. Goethite represents between 47 and 71% of the iron oxide mass. Likewise, we found that titanium oxides account for between 1 and 2% of the dust mass. On the basis of these compositional data, we provide with estimates of the complex refractive index relevant to the direct effect of mineral dust on the radiative budget. Data presented in this paper are provided in numerical form upon email request while they are being implemented as a public database, the Dust-Mapped Archived Properties (DUST-MAP), an open repository for compositional data from other source regions in Africa and worldwide.

  6. Magma mixing due to disruption of a compositional interface

    SciTech Connect

    Flood, T.P.; Schuraytz, B.C.; Vogel, T.A.

    1986-07-15

    The chemical compositions of glassy pumices are used to investigate the relationship between two ash-flow sheets that were erupted from the same volcanic center. The first ash-flow sheet, the large volume (>1200 km{sup 3}) Topopah Spring Member, represents an eruption from a magma body that contained a sharp compositional interface between a high-silica rhyolite and a lower-silica quartz latite. The second ash-flow sheet is the smaller volume (<40 km{sup 3}) Pah Canyon Member. It represents an eruption of a relatively homogenous magma that is intermediate in composition to the compositions of the Topopah Spring Member. Mixing of the quartz latite and rhyolite magmas to produce the Pah Canyon Member is evaluated using variation diagrams of the major and trace elements, ratio-ratio plots, and least-squares multiple linear regression. The latter includes two independent tests, one using the major elements, and the other using selected trace elements. Fractional crystallization of the quartz latite to produce the Pah Canyon Member is evaluated using multiple linear regression with both the major elements and selected trace elements.

  7. Sex Composition of Children and Marital Disruption in India.

    ERIC Educational Resources Information Center

    Bose, Sunita; South, Scott J.

    2003-01-01

    Using data from respondents to the Indian National Family Health Surveys, having at least one son is associated with a significantly lower risk of divorce or separation. Moreover, with few exceptions, the effect of children's sex composition on the risk of divorce holds for subgroups of Indian women across categories of education, religion,…

  8. Graphic Disruptions: Comics, Disability and De-Canonizing Composition

    ERIC Educational Resources Information Center

    Walters, Shannon

    2015-01-01

    The study of comics is an important part of the project of critiquing normative assumptions underlying multimodality and composition. Extending the efforts of the authors of "Multimodality in Motion"--which explains that "multimodality as it is commonly used implies an ableist understanding of the human composer" (Yergeau et…

  9. Elemental composition of extant microbialites: mineral and microbial carbon

    NASA Astrophysics Data System (ADS)

    Valdespino-Castillo, P. M.; Falcón, L. I.; Holman, H. Y. N.; Merino-Ibarra, M.; García-Guzmán, M.; López-Gómez, L. M. D. R.; Martínez, J.; Alcantara-Hernandez, R. J.; Beltran, Y.; Centeno, C.; Cerqueda-Garcia, D.; Pi-Puig, T.; Castillo, F. S.

    2015-12-01

    Microbialites are the modern analogues of ancient microbial consortia. Their existence extends from the Archaean (~3500 mya) until present and their lithified structure evidences the capacity of microbial communities to mediate mineral precipitation. Living microbialites are a useful study model to test the mechanisms involved in carbonates and other minerals precipitation. Here, we studied the chemical composition, the biomass and the microbial structure of extant microbialites. All of these were found in Mexico, in water systems of different and characteristic ionic firms. An elemental analysis (C:N) of microbial biomass was performed and total P was determined. To explore the chemical composition of microbialites as a whole, X-ray diffraction analyses were performed over dry microbialites. While overall inorganic carbon content (carbonates) represented >70% of the living layer, a protocol of inorganic carbon elimination was performed for each sample resulting in organic matter contents between 8 and 16% among microbialites. Stoichiometric ratios of C:N:P in microbialite biomass were different among samples, and the possibility of P limitation was suggested mainly for karstic microbialites, N limitation was suggested for all samples and, more intensively, for soda system microbialites. A differential capacity for biomass allocation among microbialites was observed. Microbialites showed, along the biogeographic gradient, a diverse arrangement of microbial assemblages within the mineral matrix. While environmental factors such as pH and nitrate concentration were the factors that defined the general structure and diversity of these assemblages, we intend to test if the abundance of major ions and trace metals are also defining microbialite characteristics (such as microbial structure and biomass). This work contributes to define a baseline of the chemical nature of extant microbial consortia actively participating in mineral precipitation processes.

  10. Proximate, mineral, and antinutrient compositions of indigenous Okra (Abelmoschus esculentus) pod accessions: implications for mineral bioavailability.

    PubMed

    Gemede, Habtamu Fekadu; Haki, Gulelat Desse; Beyene, Fekadu; Woldegiorgis, Ashagrie Z; Rakshit, Sudip Kumar

    2016-03-01

    The promotion and consumption of indigenous vegetables could help to mitigate food insecurity and alleviate malnutrition in developing countries. Nutrient and antinutrient compositions of eight accessions of Okra Pods were investigated. Molar ratios and mineral bioavailability of Okra pod accessions were also calculated and compared to the critical values to predict the implications for mineral bioavailability. Proximate and mineral composition of Okra pod accessions were determined using standard methods of Association of Official Analytical Chemists. The result of the study revealed that the proximate composition (g/100 g) in dry weight basis was significantly (P < 0.05) varied and ranged: moisture/dry matter 9.69-13.33, crude protein 10.25-26.16, crude fat 0.56-2.49, crude fiber 11.97-29.93, crude ash 5.37-11.30, utilizable carbohydrate 36.66-50.97, and gross energy 197.26-245.55 kcal/100 g. The mineral concentrations (mg/100 g) were also significantly (P < 0.05) varied and ranged: calcium (111.11-311.95), Iron (18.30-36.68), potassium (122.59-318.20), zinc (3.83-6.31), phosphorus (25.62-59.72), and sodium (3.33-8.31) on dry weight bases. The Okra Pods of "OPA#6" accession contained significantly higher amounts of crude protein, total ash, crude fat, calcium, iron, and zinc than all other accessions evaluated in this study. The results of antinutrients analysis showed that, except phytate, tannin, and oxalate contents of all the accessions were significantly (P < 0.05) varied. The range of phytate, tannin, and oxalate contents (mg/100 g) for Okra pod accessions studied were as follows: 0.83-0.87, 4.93-9.90, and 0.04-0.53, respectively. The calculated molar ratios of phytate: calcium, phytate: iron, phytate: zinc, oxalate: calcium and [Phytate][Calcium]/[Zinc] were below the critical value and this indicate that the bioavailability of calcium, iron, and zinc in these accessions could be high. The results of the study revealed that Okra pod contain

  11. Hair Mineral Analysis and Disruptive Behavior in Clinically Normal Young Men.

    ERIC Educational Resources Information Center

    Struempler, Richard E.; And Others

    1985-01-01

    Forty young navy recruits were selected for hair mineral analysis on the basis of three criteria: mental test scores, demerits during training, and premature discharge from the navy. Statistical analysis revealed several significant relationships between behavioral criteria and mineral measures. Findings confirmed, in a nonclinical sample, hair…

  12. Compressive strength of the mineral reinforced aluminium alloy composite

    NASA Astrophysics Data System (ADS)

    Arora, Rama; Sharma, Anju; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    This paper presents the results of quasi-static compressive strength of aluminium alloy reinforced with different concentration of rutile mineral particles. The reinforced material shows increase in compressive strength with 5wt% rutile concentration as compared to the base alloy. This increase in compressive strength of composite is attributed to direct strengthening due to transfer of load from lower stiffness matrix (LM13 alloy) to higher stiffness reinforcement (rutile particles). Indirect strengthening mechanisms like increase in dislocation density at the matrix-reinforcement interface, grain size refinement of the matrix and dispersion strengthening are also the contributing factors. The decrease in compressive strength of composite with the increased concentration of rutile concentration beyond 5 wt.% can be attributed to the increase in dislocation density due to the void formation at the matrix-reinforcement interface.

  13. Probable phase composition of the mineral in bone.

    PubMed

    Driessens, F C

    1980-01-01

    Formulas proposed for the mineral of bone were reviewed. Literature data were collected where Ca, P, Na, Mg and CO3 are determined in the same samples. These data were analyzed for their conformity to the above mentioned formulas. According to this analysis Mg is contained in a phase having the Ca/P of magnesium whitlockite within the limites of error. Na is contained in a carbonated calcium phosphate phase which is analogy with synthetic systems must have the apatite structure. The Ca/P ratio of the remaining "rest phase" is 2. This is based on the composition of 101 bone mineral samples taken from fishes, reptiles, amphibians, birds and mammals. The CO3 content of the bone samples agrees with the formula Ca8 (PO4)4 (CO3) (OH)2 . X H2O for the "rest phase" within the limits of experimental error. Such a compound has, however, not been found in synthetic systems. Human bone contains about 15% magnesium whitlockite, 25% of the Na and CO3 containing apatite and the rest is the carbonated calcium phosphate with Ca/P = 2. It is presumed that this compound has a structure similar to that of octo calcium phosphate and that most of the citrate ions which always occur in bone mineral samples are incorporated in that phase. PMID:6773257

  14. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including building bones, making ... regulating your heartbeat. There are two kinds of minerals: macrominerals and trace minerals. Macrominerals are minerals your ...

  15. Loss of Iroquois homeobox transcription factors 3 and 5 in osteoblasts disrupts cranial mineralization.

    PubMed

    Cain, Corey J; Gaborit, Nathalie; Lwin, Wint; Barruet, Emilie; Ho, Samantha; Bonnard, Carine; Hamamy, Hanan; Shboul, Mohammad; Reversade, Bruno; Kayserili, Hülya; Bruneau, Benoit G; Hsiao, Edward C

    2016-12-01

    Cranial malformations are a significant cause of perinatal morbidity and mortality. Iroquois homeobox transcription factors (IRX) are expressed early in bone tissue formation and facilitate patterning and mineralization of the skeleton. Mice lacking Irx5 appear grossly normal, suggesting that redundancy within the Iroquois family. However, global loss of both Irx3 and Irx5 in mice leads to significant skeletal malformations and embryonic lethality from cardiac defects. Here, we study the bone-specific functions of Irx3 and Irx5 using Osx-Cre to drive osteoblast lineage-specific deletion of Irx3 in Irx5(-/-) mice. Although we found that the Osx-Cre transgene alone could also affect craniofacial mineralization, newborn Irx3 (flox/flox) /Irx5(-/-)/Osx-Cre (+) mice displayed additional mineralization defects in parietal, interparietal, and frontal bones with enlarged sutures and reduced calvarial expression of osteogenic genes. Newborn endochondral long bones were largely unaffected, but we observed marked reductions in 3-4-week old bone mineral content of Irx3 (flox/flox) /Irx5(-/-)/Osx-Cre (+) mice. Our findings indicate that IRX3 and IRX5 can work together to regulate mineralization of specific cranial bones. Our results also provide insight into the causes of the skeletal changes and mineralization defects seen in Hamamy syndrome patients carrying mutations in IRX5. PMID:27453922

  16. Mineral composition of commonly consumed ethnic foods in Europe

    PubMed Central

    Khokhar, Santosh; Garduño-Diaz, Sara D.; Marletta, Luisa; Shahar, Danit R.; Ireland, Jane D.; Jansen-van der Vliet, Martine; de Henauw, Stefaan

    2012-01-01

    Background Ethnic foods are an integral part of food consumption in Europe contributing towards the overall nutrient intake of the population. Food composition data on these foods are crucial for assessing nutrient intake, providing dietary advice and preventing diseases. Objective To analyse selected minerals in authentic and modified ethnic foods commonly consumed in seven EU member states and Israel. Design A list of ethnic foods commonly consumed in selected European countries was generated, primary samples collected and composite sample prepared for each food, which were analysed for dietary minerals at accredited laboratories. Methods for sampling, analysis, data scrutiny and documentation were based on harmonised procedures. Results New data on 128 ethnic foods were generated for inclusion in the national databases of seven EU countries and Israel within the European Food Information Resource (EuroFIR), an EU Network of Excellence. The Na, K, Ca, P, Mg, Mn, Cl, Fe, Cu, Zn, Se and I contents of 39 foods is presented for the first time in this study. Conclusion The data will serve as an important tool in future national and international food consumption surveys, to target provision of dietary advice, facilitate implementation of policies and inform policymakers, health workers, food industry and researchers. PMID:22768018

  17. Unique biochemical and mineral composition of whale ear bones.

    PubMed

    Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T

    2014-01-01

    Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification. PMID:24940922

  18. [The mineral composition of the carbohydrate-electrolyte drinks, vitamin-mineral complexes and dietary supplements for athletes].

    PubMed

    Nikitiuk, D B; Novokshanova, A L; Abrosimova, S V; Gapparova, K M; Pozdniakov, A L

    2012-01-01

    In the article analyzes the macro- and trace element composition of sports drinks, vitamin-mineral complexes and biologically active additives (BAA). The estimation of the mineral collection of these products compared with the recommended standards. Established mineral composition many of the carbohydrate-electrolyte solutions, vitamin-mineral complexes and biologically active additives corresponds the physiology standards. However in some vitamin-mineral complexes and especially biologically active additives a number of minerals can be either unreasonably low or unreasonably high. Furthermore during labeling, mainly in the category D, a number of errors were revealed. Particularly there were lack of instructions about the number of declared ingredients, inaccuracies in the calculations of the daily requirement of mineral elements etc. Providing of an athlete organism with minerals should be carried out not only by carbohydrate-electrolyte solutions, vitamin-mineral complexes and specialized BAA, but mainly through basal ration. Utilising of carbohydrate-electrolyte solutions, vitamin-mineral complexes and biologically active additives can be justified only by the recommendations of experts. This is true not only in pro sports, but for the mass sports, as well as for individual physical training, in order to maintain physically fit. PMID:23156055

  19. Towards the ability to retrieve dust mineral composition from space

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Martynenko, D.; Holzer-Popp, T.

    2012-04-01

    In modern satellite aerosol retrieval algorithms mostly bulk optical properties of mineral dust samples with specific composition are used. Over- or underestimation of dust optical depth often reflects the unability to account for variations in optical properties of the airborne dust. Consequently also other dust properties like particle size or mass concentration cannot be retrieved with any good accuracy. The situation is even worse in the thermal infrared, where the use of different optical property databases has shown to give totally different results in terms of changes to the observed radiance. Although originally designed for sounding of atmospheric temperature and humidity profiles, thermal infrared instruments with high spectral resolution like the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI) or the newly launched Cross-track Infrared Sounder (CrIS) provide valuable information about dust extinction in the infrared window region. Extinction spectra of mineral dust components show highly variable extinction profiles in the infrared window between 830cm-1 and 1250cm-1. Differences in the shape of extinction functions can be used to estimate the optical fraction of the respective component to total dust extinction. For the current version of a IASI dust retrieval measured extinction spectra of six different dust components are used for estimating their relive contributions to the dust optical depth in the infrared. These components are quartz, anhydrite and feldspar as non-clay minerals and the clays illite, kaolinite, montmorillonite and chlorite. Unfortunately, iron oxides cannot be detected from infrared window observations as their spectral extinction variability is insufficient (this would be of large interest, as they are a major source of uncertainty for solar wavelength single-scattering albedo). In the current IASI algorithm singular vector decomposition is used to separate the contributions of

  20. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    A review is presented that mainly treats minerals in which the rare-earth elements are essential constituents, e.g., bastnaesite, monazite, xenotime, aeschynite, allanite. The chemical mechanisms and limits of REE substitution in some rock-forming minerals (zircon, apatite, titanite, garnet) are also derived. Vector representation of complex coupled substitutions in selected REE-bearing minerals is examined and some comments on REE-partitioning between minerals as related to acid-based tendencies and mineral stabilities are presented. As the same or analogous coupled substitutions involving the REE occur in a wide variety of mineral structures, they are discussed together.

  1. Quantitative determination of mineral composition by powder X-ray diffraction

    DOEpatents

    Pawloski, Gayle A.

    1986-01-01

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  2. Quantitative determination of mineral composition by powder x-ray diffraction

    DOEpatents

    Pawloski, G.A.

    1984-08-10

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  3. Evolution of major mineral compositions and trace element abundances during fractional crystallization of a model lunar composition

    NASA Technical Reports Server (NTRS)

    Drake, M. J.

    1976-01-01

    The evolution of major mineral compositions and trace element abundances during perfect fractional crystallization of a model lunar magma ocean was calculated. The minerals in the model lunar composition were olivine, orthopyroxene, clinopyroxene, and plagioclase. Lunar bulk composition data, major mineral/melt equilibria data, and trace element partition data were taken from published sources. The results show olivine beginning to crystallize at 1380 C. Approximately 50% of the system crystallizes as olivine. From 50 to 60% solidification, orthopyroxene crystallizes alone. During the final 40% solidification, Ca-rich clinopyroxene and plagioclase crystallize together. Various changes in composition of all these minerals are also noted during the process. Concomitant evolution of major element abundances in the melt is followed along with that of trace element abundances. Consequences of the results for constraints on some aspects of the composition of the lunar magma ocean and of the primitive moon are discussed.

  4. Composition and method for self-assembly and mineralization of peptide amphiphiles

    DOEpatents

    Stupp, Samuel I.; Beniash, Elia; Hartgerink, Jeffrey D.

    2009-06-30

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  5. Composition and method for self-assembly and mineralization of peptide-amphiphiles

    DOEpatents

    Stupp, Samuel I.; Beniash, Elia; Hartgerink, Jeffrey D.

    2012-02-28

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  6. Mineral Composition and Nutritive Value of Isotonic and Energy Drinks.

    PubMed

    Leśniewicz, Anna; Grzesiak, Magdalena; Żyrnicki, Wiesław; Borkowska-Burnecka, Jolanta

    2016-04-01

    Several very popular brands of isotonic and energy drinks consumed for fluid and electrolyte supplementation and stimulation of mental or physical alertness were chosen for investigation. Liquid beverages available in polyethylene bottles and aluminum cans as well as products in the form of tablets and powder in sachets were studied. The total concentrations of 21 elements (Ag, Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, Pb, Sr, Ti, V, and Zn), both essential and toxic, were simultaneously determined in preconcentrated drink samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) equipped with pneumatic and ultrasonic nebulizers. Differences between the mineral compositions of isotonic and energy drinks were evaluated and discussed. The highest content of Na was found in both isotonic and energy drinks, whereas quite high concentrations of Mg were found in isotonic drinks, and the highest amount of calcium was quantified in energy drinks. The concentrations of B, Co, Cu, Ni, and P were higher in isotonic drinks, but energy drinks contained greater quantities of Ag, Cr, Zn, Mn, and Mo and toxic elements, as Cd and Pb. A comparison of element contents with micronutrient intake and tolerable levels was performed to evaluate contribution of the investigated beverages to the daily diet. The consumption of 250 cm(3) of an isotonic drink provides from 0.32 % (for Mn) up to 14.8 % (for Na) of the recommended daily intake. For the energy drinks, the maximum recommended daily intake fulfillment ranged from 0.02 % (for V) to 19.4 or 19.8 % (for Mg and Na). PMID:26286964

  7. Minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish require the same minerals or inorganic elements as terrestrial animals for tissue formation, osmoregulation and various metabolic functions. Those required in large quantities are termed macro- or major minerals and those required in small quantities are called micro- or trace minerals. Fish ca...

  8. Statistical differentiation of bananas according to their mineral composition.

    PubMed

    Forster, Markus Paul; Rodríguez Rodríguez, Elena; Martín, Jacinto Darias; Díaz Romero, Carlos

    2002-10-01

    The concentrations of Na, K, Ca, Mg, Fe, Cu, Zn, and Mn were determined in banana cultivars Gran enana and Pequeña enana cultivated in Tenerife and in cv. Gran enana bananas from Ecuador. The mineral concentrations in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the mineral concentrations except in the case of Fe. Variations according to cultivation method (greenhouse and outdoors) and farming style (conventional and organic) in the mineral concentrations in the bananas from Tenerife were observed. The mineral concentrations in the internal part of the banana were higher than those in the middle and external parts. Representation of double log correlations K-Mg and Zn-Mn tended to separate the banana samples according to origin. Applying factor and cluster analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife, and therefore, these are useful tools for differentiating the origin of bananas. PMID:12358491

  9. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    NASA Technical Reports Server (NTRS)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  10. Bone mineral density and body composition of collegiate modern dancers.

    PubMed

    Friesen, Karlie J; Rozenek, Ralph; Clippinger, Karen; Gunter, Kathy; Russo, Albert C; Sklar, Susan E

    2011-03-01

    This study investigates body composition (BC), bone mineral density (BMD), eating behaviors, and menstrual dysfunction in collegiate modern dancers. Thirty-one female collegiate modern dance majors (D), 18 to 25 years of age, and 30 age-matched controls (C) participated in the study. BC and BMD were measured using dual energy x-ray absorptiometry (DXA). Upper and lower body strength was assessed by chest and leg press one-repetition maximum tests. Participants completed three-day food records, and the diet was analyzed using nutritional software. Menstrual dysfunction (MD) and history of eating disorder (ED) data were collected via questionnaires. BC and BMD variables were analyzed using MANCOVA and frequency of ED and MD by Chi-Square analysis. BMD was greater in D than C at the spine (1.302 ± 0.135 g/cm(2) vs. 1.245 ± 0.098 g/cm(2)), and both the right hip (1.163 ± 0.111 g/cm(2) vs. 1.099 ± 0.106 g/cm(2)) and left hip (1.160 ± 0.114 g/cm(2) vs. 1.101 ± 0.104 g/cm(2); p ≤ 0.05). Total body fat percentage was lower in D than C (25.9 ± 4.2% vs. 32.0 ± 5.9%; p ≤ 0.05), and percent of fat distributed in the android region was also lower in D than C (28.0 ± 6.2% vs. 37.6 ± 8.6%; p ≤ 0.05). With regard to diet composition, only percent fat intake was lower in D than C (27.54 ± 6.8% vs. 31.5 ± 7.4%, p ≤ 0.05). A greater incidence of ED was reported by D than C (12.9% vs. 0%; p ≤ 0.05), as well as a greater incidence of secondary amenorrhea (41.9% vs 13.3%; p ≤ 0.05). No differences were found for incidence of primary amenorrhea, oligomenorrhea, or use of birth control. Strength values were higher in D than C for both chest press (30.1 ± 0.9 kg vs. 28.4 ± 1.0 kg; p ≤ 0.05) and leg press (170.7 ± 4.2 kg vs.163.1 ± 3.9 kg; p ≤ 0.05). It is concluded that the dancers in our study had a healthy body weight, yet reported a higher incidence of eating disorders and menstrual dysfunction, than non-dancers. These dancers' higher BMD may be

  11. The mineral composition and enamel ultrastructure of hypocalcified amelogenesis imperfecta.

    PubMed

    Wright, J T; Duggal, M S; Robinson, C; Kirkham, J; Shore, R

    1993-01-01

    Hypocalcified amelogenesis imperfecta is characterized clinically by a yellow-brown colored enamel that is prone to severe attrition, often leading to rapid destruction of the crown. While the enamel is thought to be poorly mineralized few studies have evaluated the mineral content, or the histological or microradiographic features of this specific AI type. The purpose of this investigation was to examine teeth affected with autosomal dominant hypocalcified AI histologically using light microscopy (LM), scanning electron microscopy (SEM), and to evaluate the degree of enamel mineralization chemically and with microradiography. Four AI teeth were obtained from an affected individual for comparison with age-matched teeth from normal healthy individuals. Thin sections approximately 100 microns were cut with a diamond disc for examination by LM and microradiography. Using SEM, fractured enamel samples were examined either untreated or after removal of organic material using NaOCl or urea. Normal and AI enamel particles were dissected from thin sections to evaluate the mineral per volume and carbonate content. The enamel was not uniformly affected in all areas of the teeth with the lingual surfaces of the mandibular central incisors appearing clinically and histologically normal. The affected enamel was porous and appeared opaque with LM. Both SEM and LM showed the enamel to be prismatic with relatively normal prism morphology. However, the enamel crystallites were rough and granular compared with those of normal enamel. Extraction to remove organic material did not change the appearance of the crystallites indicating their granular appearance was due to mineral and not residual organic material such as enamel protein. Microradiography showed the enamel was less radiodense and therefore poorly mineralized compared with normal enamel. This was confirmed by chemical determination of the mineral per volume, which showed some areas of the AI enamel had as much as 30% less

  12. Nanoscale Imaging of Mineral Crystals inside Biological Composite Materials Using X-Ray Diffraction Microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Huaidong; Ramunno-Johnson, Damien; Song, Changyong; Amirbekian, Bagrat; Kohmura, Yoshiki; Nishino, Yoshinori; Takahashi, Yukio; Ishikawa, Tetsuya; Miao, Jianwei

    2008-01-01

    We for the first time applied x-ray diffraction microscopy to the imaging of mineral crystals inside biological composite materials—intramuscular fish bone—at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization. Based on the experimental results and biomineralization analyses, we suggested a dynamic model to account for the nucleation and growth of mineral crystals in the collagen matrix. The results obtained from this study not only further our understanding of the complex structure of bone, but also demonstrate that x-ray diffraction microscopy will become an important tool to study biological materials.

  13. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status

    PubMed Central

    Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  14. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status.

    PubMed

    Rodrigues Filho, Edil de Albuquerque; Santos, Marcos André Moura Dos; Silva, Amanda Tabosa Pereira da; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara E Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-03-01

    Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  15. Typology of exogenous organic matters based on chemical and biochemical composition to predict potential nitrogen mineralization.

    PubMed

    Lashermes, G; Nicolardot, B; Parnaudeau, V; Thuriès, L; Chaussod, R; Guillotin, M L; Linères, M; Mary, B; Metzger, L; Morvan, T; Tricaud, A; Villette, C; Houot, S

    2010-01-01

    Our aim was to develop a typology predicting potential N availability of exogenous organic matters (EOMs) in soil based on their chemical characteristics. A database of 273 EOMs was constructed including analytical data of biochemical fractionation, organic C and N, and results of N mineralization during incubation of soil-EOM mixtures in controlled conditions. Multiple factor analysis and hierarchical classification were performed to gather EOMs with similar composition and N mineralization behavior. A typology was then defined using composition criteria to predict potential N mineralization. Six classes of EOM potential N mineralization in soil were defined, from high potential N mineralization to risk of inducing N immobilization in soil after application. These classes were defined on the basis of EOM organic N content and soluble, cellulose-, and lignin-like fractions. A decision tree based on these variables was constructed in order to easily attribute any EOM to 1 of the 6 classes. PMID:19726180

  16. Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants.

    PubMed

    Le Noir, Mathieu; Plieva, Fatima; Hey, Tobias; Guieysse, Benoit; Mattiasson, Bo

    2007-06-22

    A new concept for the preparation of selective sorbents with high flow path properties is presented by embedding molecularly imprinted polymers (MIPs) into various macroporous gels (MGs). A MIP was first synthetized with 17beta-estradiol (E2) as template for the selective adsorption of this endocrine disrupter. The composite macroporous gel/MIP (MG/MIP) monoliths were then prepared at subzero temperatures. Complete recovery of E2 from a 2 microg/L aqueous solution was achieved using the polyvinyl alcohol (PVA) MG/MIP monoliths whereas only 49-74% was removed with non-imprinted polymers (when no template was used). The PVA MG/MIP monolith columns were operated at almost 10 times higher flow rate (50 mL/min) compared to the MIP columns with operation flow rate of 1-5 mL/min. The possibility for processing the particulate containing wastewater effluents at high flow rates with selectivity on E2 removal, as well as the easy preparation of the monoliths, make the macroporous MG/MIP systems attractive and robust sorbents for the clean up of water from endocrine disrupting trace contaminants. PMID:17449053

  17. Microgreens of brassicaceae: mineral composition and content of 30 varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to analyze the mineral content and concentration of 30 species of microgreens, representative 10 genera of the Brassicaceae family. Brassicaceae microgreens were assayed for concentrations of macroelements, including calcium (Ca), magnesium (Mg), phosphorous (P), sod...

  18. Mineral composition of some varieties of beans from Mediterranean and Tropical areas.

    PubMed

    Di Bella, Giuseppa; Naccari, Clara; Bua, Giuseppe Daniel; Rastrelli, Luca; Lo Turco, Vincenzo; Potortì, Angela Giorgia; Dugo, Giacomo

    2016-01-01

    In this study has been evaluated the mineral composition (Cd, Pb, As, Hg, Ba, Cr, Co, Ni, Se, Sb, V, Cu, Fe, Zn, Mo, Na, K, Ca, Mg) of some varieties of bean (Phaseolus vulgaris, Vigna unguiculata and V. angularis) from Mediterranean and Tropical areas of the world (Italy, Mexico, India, Japan, Ghana and Ivory Coast); the correlation between beans mineral composition in micro and macroelements and botanical and/or geographical origin; trace elements dietary intake by beans consumption. The results showed a correlation between beans mineral composition and their geographical origin, with higher values in Ivory Coast samples. Moreover, minerals content found confirmed the importance of these legumes in the diet for the significant content of essential micro and macroelements and a safe consumption of beans for the low residual levels of toxic metals. PMID:26940501

  19. Preparation of pHEMA-CP composites with high interfacial adhesionvia template-driven mineralization

    SciTech Connect

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R.

    2002-12-05

    We report a template-driven nucleation and mineral growth process for the high-affinity integration of calcium phosphate (CP) with a poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel scaffold. A mineralization technique was developed that exposes carboxylate groups on the surface of crosslinked pHEMA, promoting high-affinity nucleation and growth of calcium phosphate on the surface along with extensive calcification of the hydrogel interior. External factors such as the heating rate, the agitation of the mineral stock solution and the duration of the process that affect the outcome of the mineralization were investigated. This template-driven mineralization technique provides an efficient approach toward bonelike composites with high mineral-hydrogel interfacial adhesion strength.

  20. Soybean seed protein oil fatty acids and mineral composition as influenced by soybean-corn rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of crop rotation on soybean (Glycine max (L) Merr.) seed composition have yet to be thoroughly investigated. This study investigated the effects of soybean-corn (Zea mays L.) rotations on seed protein, oil, fatty acids, and mineral nutrient composition on soybean. The cultivar DBK 4651 was g...

  1. Evaluation of multi-scale mineralized collagen-polycaprolactone composites for bone tissue engineering.

    PubMed

    Weisgerber, D W; Erning, K; Flanagan, C L; Hollister, S J; Harley, B A C

    2016-08-01

    A particular challenge in biomaterial development for treating orthopedic injuries stems from the need to balance bioactive design criteria with the mechanical and geometric constraints governed by the physiological wound environment. Such trade-offs are of particular importance in large craniofacial bone defects which arise from both acute trauma and chronic conditions. Ongoing efforts in our laboratory have demonstrated a mineralized collagen biomaterial that can promote human mesenchymal stem cell osteogenesis in the absence of osteogenic media but that possesses suboptimal mechanical properties in regards to use in loaded wound sites. Here we demonstrate a multi-scale composite consisting of a highly bioactive mineralized collagen-glycosaminoglycan scaffold with micron-scale porosity and a polycaprolactone support frame (PCL) with millimeter-scale porosity. Fabrication of the composite was performed by impregnating the PCL support frame with the mineral scaffold precursor suspension prior to lyophilization. Here we evaluate the mechanical properties, permeability, and bioactivity of the resulting composite. Results indicated that the PCL support frame dominates the bulk mechanical response of the composite resulting in a 6000-fold increase in modulus compared to the mineral scaffold alone. Similarly, the incorporation of the mineral scaffold matrix into the composite resulted in a higher specific surface area compared to the PCL frame alone. The increased specific surface area in the collagen-PCL composite promoted increased initial attachment of porcine adipose derived stem cells versus the PCL construct. PMID:27104930

  2. Microstructure and mineral composition of dystrophic calcification associated with the idiopathic inflammatory myopathies

    PubMed Central

    2009-01-01

    Introduction Calcified deposits (CDs) in skin and muscles are common in juvenile dermatomyositis (DM), and less frequent in adult DM. Limited information exists about the microstructure and composition of these deposits, and no information is available on their elemental composition and contents, mineral density (MD) and stiffness. We determined the microstructure, chemical composition, MD and stiffness of CDs obtained from DM patients. Methods Surgically-removed calcinosis specimens were analyzed with fourier transform infrared microspectroscopy in reflectance mode (FTIR-RM) to map their spatial distribution and composition, and with scanning electron microscopy/silicon drift detector energy dispersive X-ray spectrometry (SEM/SDD-EDS) to obtain elemental maps. X-ray diffraction (XRD) identified their mineral structure, X-ray micro-computed tomography (μCT) mapped their internal structure and 3D distribution, quantitative backscattered electron (qBSE) imaging assessed their morphology and MD, nanoindentation measured their stiffness, and polarized light microscopy (PLM) evaluated the organic matrix composition. Results Some specimens were composed of continuous carbonate apatite containing small amounts of proteins with a mineral to protein ratio much higher than in bone, and other specimens contained scattered agglomerates of various sizes with similar composition (FTIR-RM). Continuous or fragmented mineralization was present across the entire specimens (μCT). The apatite was much more crystallized than bone and dentin, and closer to enamel (XRD) and its calcium/phophorous ratios were close to stoichiometric hydroxyapatite (SEM/SDD-EDS). The deposits also contained magnesium and sodium (SEM/SDD-EDS). The MD (qBSE) was closer to enamel than bone and dentin, as was the stiffness (nanoindentation) in the larger dense patches. Large mineralized areas were typically devoid of collagen; however, collagen was noted in some regions within the mineral or margins (PLM). q

  3. REMOTE RAMAN SPECTROSCOPY OF VARIOUS MIXED AND COMPOSITE MINERAL PHASES AT 7.2 m DISTANCE

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Misra, A. K.; Ismail, Syed; Singh, U. N.

    2006-01-01

    Remote Raman [e.g.,1-5] and micro-Raman spectroscopy [e.g., 6-10] are being evaluated on geological samples for their potential applications on Mars rover or lander. The Raman lines of minerals are sharp and distinct. The Raman finger-prints of minerals do not shift appreciably but remain distinct even in sub-micron grains and, therefore, can be used for mineral identification in fine-grained rocks [e.g., 4,7]. In this work we have evaluated the capability of a directly coupled remote Raman system (co-axial configuration) for distinguishing the mineralogy of multiple crystals in the exciting laser beam. We have measured the Raman spectra of minerals in the near vicinity of each other and excited with a laser beam (e.g. -quartz (Qz) and K-feldspar (Feld) plates, each 5 mm thick). The spectra of composite transparent mineral plates of 5 mm thickness of -quartz and gypsum over calcite crystal were measured with the composite samples perpendicular to the exciting laser beam. The measurements of remote Raman spectra of various bulk minerals, and mixed and composite minerals with our portable UH remote Raman system were carried out at the Langley Research Center in a fully illuminated laboratory.

  4. Microbial Mineralization of Soil Organic Matter: Role of Chemical Composition and Structural Organization

    NASA Astrophysics Data System (ADS)

    Khalaf, M. M. R.; Chilom, G.; Rice, J. A.

    2014-12-01

    The purpose of this study is to quantitatively assess the effect of organic matter self-assembly on its resistance to microbial mineralization. Humic acids isolated from leonardite, two peats and a mineral soil were used as organic matter samples because they provide a broad range of variability in terms of the origin and nature of their organic components. Using a solvent-based fractionation method, humic acid samples were disassembled into a humic-like component and a humic-lipid composite. The humic-lipid composite was further disassembled into an amphiphilic and a lipid component using an alkaline aqueous solution. Mixtures that reproduced the composition of self-assembled samples were prepared by mixing the solid individual fractions in the exact proportions that they were present in the original material. The original humic acids or their corresponding mixtures were added as the sole carbon source in separate aerobic cultures containing a microbial consortium isolated from a mineral soil. After incubation for 125 days mineralization of the self-assembled samples was shown to be higher by as much as 70% compared to their corresponding physical mixtures. The extent of mineralization of the self-assembled samples was not correlated to the material's chemical composition or hydrophobicity index obtained from their 13C solid-state NMR spectra. In contrast, mineralization of the physical mixtures and the individual fractions did vary with chemical composition and was accompanied by preferential mineralization of alkyl carbon. These results suggest the microbial mineralization of humic acids is related to their self-assembly.

  5. Minerals

    MedlinePlus

    ... your body needs in larger amounts. They include calcium, phosphorus, magnesium, sodium, potassium, chloride and sulfur. Your body needs just small amounts of trace minerals. These include iron, manganese, copper, iodine, zinc, cobalt, fluoride and selenium. The best way to ...

  6. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers.

    PubMed

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-12-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  7. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers

    PubMed Central

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-01-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  8. Optimization of Mineral Separator for Recovery of Total Heavy Minerals of Bay of Bengal using Central Composite Design

    NASA Astrophysics Data System (ADS)

    Routray, Sunita; Swain, Ranjita; Rao, Raghupatruni Bhima

    2016-01-01

    The present study is aimed at investigating the optimization of a mineral separator for processing of beach sand minerals of Bay of Bengal along Ganjam-Rushikulya coast. The central composite design matrix and response surface methodology were applied in designing the experiments to evaluate the interactive effects of the three most important operating variables, such as feed quantity, wash water rate and Shake amplitude of the deck. The predicted values were found to be in good agreement with the experimental values (R2 = 0.97 for grade and 0.98 for recovery). To understand the impact of each variable, three dimensional (3D) plots were also developed for the estimated responses.

  9. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    SciTech Connect

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-09-15

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm{sup 3}, which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm{sup 3}, requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm{sup 3}) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm{sup 3} and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0

  10. Mineral-Biochar Composites: Molecular Structure and Porosity.

    PubMed

    Rawal, Aditya; Joseph, Stephen D; Hook, James M; Chia, Chee H; Munroe, Paul R; Donne, Scott; Lin, Yun; Phelan, David; Mitchell, David R G; Pace, Ben; Horvat, Joseph; Webber, J Beau W

    2016-07-19

    Dramatic changes in molecular structure, degradation pathway, and porosity of biochar are observed at pyrolysis temperatures ranging from 250 to 550 °C when bamboo biomass is pretreated by iron-sulfate-clay slurries (iron-clay biochar), as compared to untreated bamboo biochar. Electron microscopy analysis of the biochar reveals the infusion of mineral species into the pores of the biochar and the formation of mineral nanostructures. Quantitative (13)C nuclear magnetic resonance (NMR) spectroscopy shows that the presence of the iron clay prevents degradation of the cellulosic fraction at pyrolysis temperatures of 250 °C, whereas at higher temperatures (350-550 °C), the clay promotes biomass degradation, resulting in an increase in both the concentrations of condensed aromatic, acidic, and phenolic carbon species. The porosity of the biochar, as measured by NMR cryoporosimetry, is altered by the iron-clay pretreatment. In the presence of the clay, at lower pyrolysis temperatures, the biochar develops a higher pore volume, while at higher temperature, the presence of clay causes a reduction in the biochar pore volume. The most dramatic reduction in pore volume is observed in the kaolinite-infiltrated biochar at 550 °C, which is attributed to the blocking of the mesopores (2-50 nm pore) by the nonporous metakaolinite formed from kaolinite. PMID:27284608

  11. COMPOSITION OF MINERALIZING INCISOR ENAMEL IN CFTR-DEFICIENT MICE

    PubMed Central

    Bronckers, ALJJ; Lyaruu, DM; Guo, J; Bijvelds, MJC; Bervoets, TJM; Zandieh-Doulabi, B; Medina, JF; Li, Z; Zhang, Y; DenBesten, PK

    2014-01-01

    Formation of crystals in the enamel space releases protons that need to be buffered to sustain mineral accretion. We hypothesized that apical Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in maturation ameloblasts transduces chloride into forming enamel as critical step to secrete bicarbonates. We tested this by determining the calcium, chloride and fluoride levels of developing enamel of Cftr-null mice by quantitative electron probe microanalysis. Maturation stage Cftr–null enamel contained less chloride and calcium than wild-type enamel, was more acidic when stained with pH dyes ex vivo and formed no fluorescent modulation bands after in vivo injection of the mice with calcein. To further acidify the enamel we exposed Cftr-null mice to fluoride in drinking water to stimulate proton release during formation of hypermineralized lines. In enamel of Cftr-deficient mice fluoride further lowered enamel calcium without further reducing chloride levels. The data support the view that apical Cftr in maturation ameloblasts transduces chloride into developing enamel as part of the machinery to buffer protons released during mineral accretion. PMID:25557910

  12. Predicting the Mineral Composition of Dust Aerosols. Part 1; Representing Key Processes

    NASA Technical Reports Server (NTRS)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wetsieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to

  13. Compositional variation in minerals of the chevkinite group

    USGS Publications Warehouse

    Macdonald, R.; Belkin, H.E.

    2002-01-01

    The composition of chevkinite and perrierite, the most common members of the chevkinite group, is closely expressed by the formula A4BC2D2Si4O22, where A = (La,Ce,Ca,Sr,Th), B = Fe2+, C = (Fe2+,Fe3+,Ti,Al,Zr,Nb) and D = Ti. The A site is dominated by a strong negative correlation between (Ca+Sr) and the REE. Chondrite-normalized REE patterns are very variable, e.g. in LREE/HREE and Eu/Eu*. The C site is dominated by Ti, Al and Fe2+, in very variable proportions. Most chevkinites and perrierites are close to stoichiometric, with cation sums between 12.9 and 13.5, compared to the theoretical 13. There is no single, generally applicable charge balancing substitution scheme in the group; however, the general relationship (Ca+Sr)A + TiC + REEA + M3C+2+ defines a linear array with r2 = 0.91. Chevkinite and perrierite are shown to be compositionally distinct on the basis of CaO, FeO* Al2O3 and Ce2O3 abundances. Chevkinite forms mainly in chemically evolved parageneses, such as syenites, rhyolites and fenites associated with carbonatite complexes. Perrierite is more commonly recorded from igneous rocks of mafic to intermediate composition. The compositional characteristics and possible structural formulae of other members of the chevkinite group are reviewed briefly.

  14. Mineral composition of cottonseed is affected by fertilization management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole cottonseed and its products can be used as human food, animal feed, and industrial raw material. Chemical composition is one of the critical parameters to evaluate cottonseed's quality and potential end use. Whereas there are reports on the improvement of cotton lint yield by poultry litter (P...

  15. Quantitative mineralogical composition of complex mineral wastes - Contribution of the Rietveld method

    SciTech Connect

    Mahieux, P.-Y.; Aubert, J.-E.; Cyr, M.; Coutand, M.; Husson, B.

    2010-03-15

    The objective of the work presented in this paper is the quantitative determination of the mineral composition of two complex mineral wastes: a sewage sludge ash (SSA) and a municipal solid waste incineration fly ash (MSWIFA). The mineral compositions were determined by two different methods: the first based on calculation using the qualitative mineralogical composition of the waste combined with physicochemical analyses; the second the Rietveld method, which uses only X-ray diffraction patterns. The results obtained are coherent, showing that it is possible to quantify the mineral compositions of complex mineral waste with such methods. The apparent simplicity of the Rietveld method (due principally to the availability of software packages implementing the method) facilitates its use. However, care should be taken since the crystal structure analysis based on powder diffraction data needs experience and a thorough understanding of crystallography. So the use of another, complementary, method such as the first one used in this study, may sometimes be needed to confirm the results.

  16. Importance of soil and vineyard management in the determination of grapevine mineral composition.

    PubMed

    Likar, M; Vogel-Mikuš, K; Potisek, M; Hančević, K; Radić, T; Nečemer, M; Regvar, M

    2015-02-01

    The spatial variability of the mineral composition of grapevines in production vineyards along the east Adriatic coast was determined and compared between conventional and sustainable vineyard management. Cluster analysis shows a high level of spatial variability even within the individual locations. Factor analysis reveals three factors with strong loading for the macronutrients K and P and the micronutrient Mn, which explain 67% of the total variance in the mineral composition. Here, 26% to 34% of the variance of these three elements can be explained by abiotic and biotic soil parameters, with soil concentrations of K, Fe and Cu, organic matter content, and vesicular colonisation showing the strongest effects on the mineral composition of the grapevines. In addition, analysis of the mineral composition data shows significant differences between differently managed vineyards, with increased bioaccumulation of P and K in sustainable vineyards, while Zn bioaccumulation was increased in conventional vineyards. Our data confirm the importance of soil and vineyard management in the concept of terroir, and demonstrate the effects of sustainable management practices on the mineral nutrition of grapevines that result from modified nutrient availability related to changes in the abiotic and biotic characteristics of the soil. PMID:25461075

  17. Acidity and mineral composition of precipitation in Moscow: Influence of deicing salts

    NASA Astrophysics Data System (ADS)

    Eremina, I. D.; Aloyan, A. E.; Arutyunyan, V. O.; Larin, I. K.; Chubarova, N. E.; Yermakov, A. N.

    2015-11-01

    Monitoring data and analysis of the variation in acidity and mineral composition of atmospheric precipitation in Moscow in 2012 are presented. We have found that the chloride anions in the precipitation are largely caused by chlorides of deicing salts. Here, the chloride anions, along with metal chlorides (components of deicing salts), are partly caused by dissolved hydrogen chloride. The appearance of hydrogen chloride in the atmosphere of Moscow has been shown to result from heterophase chemical reactions involving deicing salts. We have obtained preliminary estimates for the scales of the effect of these salts on the mineral composition and acidity of precipitations in Moscow.

  18. [Principal component analysis of mineral elements and fatty acids composition in flaxseed from ten different regions].

    PubMed

    Xing, Li; Zhao, Feng-Min; Cao, You-Fu; Wang, Mei; Mei, Shuai; Li, Shao-Ping; Cai, Zhi-Yong

    2014-09-01

    Flaxseed is a kind of biomass with high edible and medical value. It is rich in many kinds of nutrients and mineral elements. China is one of the important producing places of flaxseed. In order to explore the main characteristic constituents of mineral elements and fatty acids in flaxseed, the study of analyzing the mineral elements and fatty acid composition from 10 different regions was carried out. The contents of seventeen kinds of mineral elements in flaxseed were determined by inductively coupled plasma mass spectrometry (ICP-MS). The contents of fatty acids of the flaxseed oil obtained under the same conditions were determined by gas chromatography-mass spectrometer (GC-MS). The principal component analysis (PCA) method was applied to the study of analyzing the mineral elements and fatty acid compositions in flaxseeds. The difference in mineral elements and fatty acids of flaxseed from different regions were discussed. The main characteristic constituents of mineral elements and fatty acids were analyzed. The results showed that K, Sr, Mg, Ni, Co, Cr, Cd, Se, Zn and Cu were the main characteristic constituents of the mineral elements. At the same time, C16:0, C18:0, C18: 2, C18:3, C20:0 and C20:1 were the main characteristic constituents of the fatty acids. The combination of ICP-MS, GS-MS and PCA can reveal the characteristics and difference of mineral elements and fatty acids from different regions. The results would provide important theoretical basis for the reasonable and effective utilization of flaxseed. PMID:25532360

  19. Mineral contents and proximate composition of Pistacia vera kernels.

    PubMed

    Harmankaya, Mustafa; Ozcan, Mehmet Musa; Al Juhaimi, Fahad

    2014-07-01

    The mineral contents of Pistacia vera kernels were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The minimum and maximum values of K, P, Ca, Mg, and S elements ranged from 6,333 to 8,064 mg/kg, 3,630 to 5,228 mg/kg, 1,614 to 3,226 mg/kg, 1,716 to 2,402 mg/kg, and 1,417 to 1,825 mg/kg, respectively. In addition, the mean values of Fe, Zn, Cu, Mn, B, Mo, Cr and Ni elements were determined as 42.48, 20.52, 12.81, 7.48, 11.31, 0.106, 0.511 and 1.67 mg/kg, respectively. Ash levels of kernels were found between 2.28 % (Urfa) and 2.79 % (Halebi). In addition, crude oil and protein contents were determined between 48.8 % (Halebi) to 55.3 % (Siirt) and 23.33 % (Uzun) to 27.16 % (Halebi), respectively. PMID:24676991

  20. Composition of dust from Comet P/Halley: The mineral fraction

    NASA Technical Reports Server (NTRS)

    Langevin, Y.

    1989-01-01

    The composition of dust from Comet Halley was investigated in situ during the Vega 1, Vega 2, and Giotto encounters by the PIA/PUMA impact mass spectrometers. More than 5000 meaningful spectra of individual dust particles were obtained, most in a compressed mode. The interpretation of these spectra in terms of elemental and mineralogical composition will be discussed. Accounting for these difficulties, the following conclusions can be derived for the mineral fraction of dust particles: (1) the observed compositions are compatible with the full range of observed meteoritic minerals (in particular mafic silicates, plagioclases, sulfides, oxides); and (2) within each mineralogical class, the spread in composition appears much wider and more uniform than in meteorites. The low overall density and very large excess of light elements will be discussed. These first direct results on cometary dust considerably strengthen the case for a comet sample return mission.

  1. Composition of dust from Comet P/Halley: The mineral fraction

    NASA Astrophysics Data System (ADS)

    Langevin, Y.

    The composition of dust from Comet Halley was investigated in situ during the Vega 1, Vega 2, and Giotto encounters by the PIA/PUMA impact mass spectrometers. More than 5000 meaningful spectra of individual dust particles were obtained, most in a compressed mode. The interpretation of these spectra in terms of elemental and mineralogical composition will be discussed. Accounting for these difficulties, the following conclusions can be derived for the mineral fraction of dust particles: (1) the observed compositions are compatible with the full range of observed meteoritic minerals (in particular mafic silicates, plagioclases, sulfides, oxides); and (2) within each mineralogical class, the spread in composition appears much wider and more uniform than in meteorites. The low overall density and very large excess of light elements will be discussed. These first direct results on cometary dust considerably strengthen the case for a comet sample return mission.

  2. Mineral compositions of plutonic rocks from the Lewis Hills massif, Bay of Islands ophiolite

    NASA Technical Reports Server (NTRS)

    Smith, Susan E.; Elthon, Don

    1988-01-01

    Mineral compositions of residual and cumulate rocks from the Lewis Hills massif of the Bay of Islands ophiolite complex are reported and interpreted in the context of magnetic processes involved in the geochemical evolution of spatially associated diabase dikes. The mineral compositions reflect greater degrees of partial melting than most abyssal peridotites do and appear to represent the most depleted end of abyssal peridotite compositions. Subsolidus equilibration between Cr-Al spinal and olivine generally has occurred at temperatures of 700 to 900 C. The spinel variations agree with the overall fractionation of basaltic magmas producing spinels with progressively lower Cr numbers. The compositions of clinopyroxenes suggest that the fractionation of two different magma series produced the various cumulate rocks.

  3. Form and composition of secondary mineralization in fractures in Columbia River basalts

    SciTech Connect

    McKinley, J.P.; Rawson, S.A.; Horton, D.G.

    1986-05-01

    Examination of basalt alteration rinds suggests that pyroxene is altered, along with mesostasis, from the inception of hydrothermal alteration along cooling fractures in Columbia River basalts. The only phyllosilicate secondary mineral in fractures is trioctahedral smectite of Fe-saponite composition, throughout the examined thickness of the basalt column. This smectite is compositionally distinct from the minor amounts of mesostasis smectite found in otherwise unaltered outcrop samples of basalt.

  4. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels

    NASA Astrophysics Data System (ADS)

    Tan, Guoxin; Zhou, Lei; Ning, Chengyun; Tan, Ying; Ni, Guoxin; Liao, Jingwen; Yu, Peng; Chen, Xiaofeng

    2013-08-01

    Immobilizing organic-inorganic hybrid composites onto the implant surface is a promising strategy to improve host acceptance of the implant. The objective of this present study was to obtain a unique macroporous titanium-surface with the organic-mineral composite coatings consisting of gelatin methacrylate hydrogel (GelMA) and hydroxyapatite (HA). A 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) layer was first coated onto the titanium surface, and surface was then covalently functionalized with GelMA using a photochemical method. Mineralization of the GelMA coating on the titanium surface was subsequently carried out by a biomimetic method. After 3-day mineralization, a large number of mineral phases comprising spherical amorphous nanoparticles were found randomly deposited inside GelMA matrix. The resulting mineralized hydrogel composites exhibited a unique rough surface of macroporous structure. The structure of the prepared GelMA/HA composite coating was studied by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectra (EDS), attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Water contact angle measurement revealed the hydrophilicity properties of composite coatings. GelMA/HA on titanium after the TMSPMA treatment is very stable when tested in vitro with a PBS solution at 37 °C, due to the role of TMSPMA as a molecular bridge. It was expected that the macroporous GelMA/HA composite coatings might potentially promote and accelerate titanium (Ti)-based implants osseointegration for bone repair and regeneration.

  5. Variation of mineral composition in different parts of taro (Colocasia esculenta) corms.

    PubMed

    Mergedus, Andrej; Kristl, Janja; Ivancic, Anton; Sober, Andreja; Sustar, Vilma; Krizan, Tomaz; Lebot, Vincent

    2015-03-01

    Taro (Colocasia esculenta) is an important root crop in the humid tropics and a valuable source of essential mineral nutrients. In the presented study, we compared the mineral compositions of four main parts of taro corm: the upper, marginal, central and lower (basal) parts. The freeze-dried taro samples were analysed for eleven minerals (K, P, Mg, Ca, Zn, Fe, Mn, Cu, Cd, Pb and Cr). The upper part, which plays a critical role in vegetative propagation based on headsets, contained high levels of P, Mg, Zn, Fe, Mn, Cu and Cd. The central part, which is essential for human nutrition, was characterised by higher concentrations of K, P, Mg, Zn, Fe, Cu and Cd. Ca was concentrated in the lower and marginal parts. The effect of the genotype was significant for more than half of the analysed minerals (i.e., Mg, Ca, Zn, Fe, Mn). PMID:25306315

  6. Performance and application of far infrared rays emitted from rare earth mineral composite materials.

    PubMed

    Liang, Jinsheng; Zhu, Dongbin; Meng, Junping; Wang, Lijuan; Li, Fenping; Liu, Zhiguo; Ding, Yan; Liu, Lihua; Liang, Guangchuan

    2008-03-01

    Rare earth mineral composite materials were prepared using tourmaline and cerous nitrate as raw materials. Through characterization by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, dynamic contact angle meter and tensiometer, and Fourier transform infrared spectroscopy, it was found that the composite materials had a better far infrared emitting performance than tourmaline, which depended on many factors such as material composition, microstructure, and surface free energy. Based on the results of the flue gas analyzer and the water boiling test, it was found that the rare earth mineral composite materials could accelerate the combustion of liquefied petroleum gas and diesel oil. The results showed that the addition of Ce led to the improvement of far infrared emitting performance of tourmaline due to the decrease of cell volume caused by the oxidation of more Fe2+ ions and the increase of surface free energy. The application of rare earth mineral composite materials to diesel oil led to a decrease in surface tension and flash point, and the fuel saving ratio could reach 4.5%. When applied to liquefied petroleum gas, the composite materials led to the enhanced combustion, improved fuel consumption by 6.8%, and decreased concentration of CO and O2 in exhaust gases by 59.7% and 16.2%, respectively; but the temperature inside the flue increased by 10.3%. PMID:18468124

  7. Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals

    SciTech Connect

    Tailby, Jonathan; MacKenzie, Kenneth J.D.

    2010-05-15

    The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C{sub 3}S, beta-C{sub 2}S, C{sub 3}A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, {sup 29}Si and {sup 27}Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poor strength development is suggested to be due to the retarded development of C-S-H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC-geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC-geopolymer composite stronger than hydrated OPC paste alone.

  8. Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Caquineau, S.; Desboeufs, K.; Klaver, A.; Chevaillier, S.; Journet, E.; Rajot, J. L.

    2014-04-01

    In the last few years, several ground-based and airborne field campaigns have allowed exploring the properties and impacts of mineral dust in western Africa, one of the major emission and transport areas worldwide. In this paper, we explore the synthesis of these observations to provide with a large-scale quantitative view of the mineralogical composition and its variability with source region and time after transport. This work reveals that mineral dust in western Africa is a mixture of clays, quartz, iron and titanium oxides, representing at least 92% of the dust mass. Calcite ranged between 0.3 and 8.4% of the dust mass depending on the origin. Our data do not show a systematic dependence of the dust mineralogical composition with origin, likely as in most of the cases they represent the composition of the atmospheric burden after 1-2 days after emission, when air masses mix and give raise to a more uniform dust load. This has implications for the representation of the mineral dust composition in regional and global circulation models, and satellite retrievals. Iron oxides account for 58 ± 7% of the mass of elemental Fe, and between 2 and 5% of the dust mass. Most of them are composed of goethite, representing between 52 and 78% of the iron oxide mass. We estimate that titanium oxides account for 1-2% of the dust mass, depending on whether the dust is of Saharan or Sahelian origin. The mineralogical composition is a critical parameter to estimate the radiative and biogeochemical impact of mineral dust. The results on dust composition have been applied to estimate the optical properties as so as the iron fractional solubility of Saharan and Sahelian dust. Data presented in this paper are provided in numerical form upon email request while they are being implemented as a public database, the Dust-Mapped Archived Properties (DUST-MAP), an open repository for compositional data from other source regions in Africa and worldwide.

  9. An Approach to Calculate Mineralś Bulk Moduli KS from Chemical Composition and Density ρ

    NASA Astrophysics Data System (ADS)

    Breuer, S.; Schilling, F. R.; Mueller, B.; Drüppel, K.

    2015-12-01

    The elastic properties of minerals are fundamental parameters for technical and geotechnical applications and an important research topic towards a better understanding of the Eart&hacute;s interior. Published elastic properties, chemical composition, and density data of 86 minerals (total of 258 data including properties of minerals at various p, T conditions) were collected into a database. It was used to test different hypotheses about relationships between these properties (e.g. water content in minerals and their Poisson's ratio). Furthermore, a scheme to model the average elastic properties, i.e. the bulk modulus KS, based on mineral density and composition was developed. Birc&hacute;s law, a linearity between density ρ and wave velocity (e.g. vp.), is frequently used in seismic and seismology to derive density of the Eart&hacute;s interior from seismic velocities. Applying the compiled mineral data contradicts the use of a simple velocity-density relation (e.g. Gardneŕs relation, 1974). The presented model-approach to estimate the mineralś bulk moduli Ks (as Voigt-Reuss-Hill average) is based on the idea of pressure-temperature (p-T) dependent ionś bulk moduli. Using a multi-exponential regression to ascertain the ionś bulk moduli and by applying an exponential scaling with density ρ, their bulk moduli could be modelled. As a result, > 88 % of the 258 bulk moduli data are predicted with an uncertainty of < 20 % compared to published values. Compared to other models (e.g. Anderson et al. 1970 and Anderson & Nafe 1965), the here presented approach to model the bulk moduli only requires the density ρ and chemical composition of the mineral and is not limited to a specific group of minerals, composition, or structure. In addition to this, by using the pressure and temperature dependent density ρ(p, T), it is possible to predict bulk moduli for varying p-T conditions. References:Gardner, G.H.F, Gardner, L.W. and Gregory, A.R. (1974). Geophysics, 39, No. 6

  10. An Approach to Calculate Mineralś Bulk Moduli KS from Chemical Composition and Density ρ

    NASA Astrophysics Data System (ADS)

    Breuer, S.; Schilling, F. R.; Mueller, B.; Drüppel, K.

    2015-12-01

    The elastic properties of minerals are fundamental parameters for technical and geotechnical applications and an important research topic towards a better understanding of the Earth's interior. Published elastic properties, chemical composition, and density data of 86 minerals (total of 258 data including properties of minerals at various p, T conditions) were collected into a database. It was used to test different hypotheses about relationships between these properties (e.g. water content in minerals and their Poisson's ratio). Furthermore, a scheme to model the average elastic properties, i.e. the bulk modulus KS, based on mineral density and composition was developed. Birch's law, a linearity between density ρ and wave velocity (e.g. vp.), is frequently used in seismic and seismology to derive density of the Earth's interior from seismic velocities. Applying the compiled mineral data contradicts the use of a simple velocity-density relation (e.g. Gardneŕs relation, 1974). The presented model-approach to estimate the mineralś bulk moduli Ks (as Voigt-Reuss-Hill average) is based on the idea of pressure-temperature (p-T) dependent ionś bulk moduli. Using a multi-exponential regression to ascertain the ionś bulk moduli and by applying an exponential scaling with density ρ, their bulk moduli could be modelled. As a result, > 88 % of the 258 bulk moduli data are predicted with an uncertainty of < 20 % compared to published values. Compared to other models (e.g. Anderson et al. 1970 and Anderson & Nafe 1965), the here presented approach to model the bulk moduli only requires the density ρ and chemical composition of the mineral and is not limited to a specific group of minerals, composition, or structure. In addition to this, by using the pressure and temperature dependent density ρ(p, T), it is possible to predict bulk moduli for varying p-T conditions. References:Gardner, G.H.F, Gardner, L.W. and Gregory, A.R. (1974). Geophysics, 39, No. 6, 770

  11. Microelemental and mineral compositions of pathogenic biomineral concrements: SRXFA, X-ray powder diffraction and vibrational spectroscopy data

    NASA Astrophysics Data System (ADS)

    Moroz, T. N.; Palchik, N. A.; Dar'in, A. V.

    2009-05-01

    X-ray fluorescence analysis using synchrotron radiation (SRXRF), X-ray powder diffraction, infrared and Raman spectroscopy had been applied for determination of microelemental and mineral composition of the kidney stones, gallstones and salivalities from natives of Novosibirsk and Novosibirsk region, Russia. The relationship between mineral, organic and microelemental composition of pathogenic calcilus was shown.

  12. VNIR spectroscopy of rock forming minerals mixtures: a tool to interpret planetary igneous compositions.

    NASA Astrophysics Data System (ADS)

    Carli, C.; Serventi, G.; Ciarniello, M.; Capaccioni, F.; Sgavetti, M.

    Visible and Near Infrared (VNIR) spectroscopy is a powerful technique to investigate and map the mineralogical composition of a Solar System body. Laboratory activities, measuring and analyzing minerals and their mixtures, rock powders and slabs, varying the particle and grain sizes, permit to improve the confidence on the spectra.s interpretation. Here we summarized a set of activity on spectral mixtures between plagioclases and mafic materials at 63 125 and 125 250 mu m: illustrating the spectral variations due to the different intensity of the plagioclase absorption varying it Fe2+ content once mixed with orthopyroxene - clinopyroxene, orthopyroxene - olivine poor and - olivine rich materials (Serventi et al., 2013); an IMSA (Hapke, 1993) application to retrieve the endmember.s optical constants and to model the relative mineral abundances in intimate mixtures (Ciarniello et al., 2011) highlighting the influence of the mineral distribu- tions (Carli et al., 2014); a spectra deconvolution with Modified Gaussians (MGM, Sunshine et al., 1990) to define spectral parameters (Band Center, Depth and Width) trends respect to the mineralogical composition of endmembers (mineral chemis- try) and mixtures (mineral abundances). Also discussing the influence of the sizes (Serventi et al., 2015).

  13. Vesicular delivery of crystalline calcium minerals to ECM in biomineralized nanoclay composites

    NASA Astrophysics Data System (ADS)

    Katti, Kalpana S.; Ambre, Avinash H.; Payne, Scott; Katti, Dinesh R.

    2015-04-01

    The mechanisms of mineralization and new bone formation were explored in newly formed extracellular matrix in a nanoclay based composite. Nanoclay films were prepared by intercalating the clays with amino acids and using the amino acids for mineralization of hydroxyapatite. The biomineralized hydroxyapatite (HAP) inside nanoclay galleries or in situ HAP/clay was further used to make films (substrates) using polycaprolactone (PCL) that were seeded with mesenchymal stem cells in a two-stage seeding process. SEM imaging experiments performed on PCL/in situ HAPclay composite films seeded with human MSCs indicated formation of matrix vesicles. The vesicles appear to emerge from the cells that are adhered to the nanoclay HAP films and also deposited in the extracellular space. Vesicles are also observed to be embedded in the cells or under the surface of cells. Crystalline structures with Ca and P were found inside vesicles. The Ca/P ratios obtained using energy dispersive spectroscopy indicate values ranging from below 0.7 to the stoichiometric HAP value of 1.67. The Ca/P ratios were obtained to be closer to the stoichiometric value for single seeding experiments as compared to the double seeding experiments indicating more new bone formation in double seeding experiments. New bone formation with bone mimetic mineralization is thus observed on the in situ HAP nanoclay PCL samples. Hence the PCL/in situ HAPclay composites besides being osteoinductive are also capable of providing a favorable micro-environment for cell dependent processes involved in bone mineral formation.

  14. Recent progress in understanding the regional characteristics of mineral dust composition and identification of source regions

    NASA Astrophysics Data System (ADS)

    Formenti, P.

    2009-04-01

    The environmental and climatic impacts of mineral dust particles issued from arid and semi-arid regions of the globe strongly depend on their physico-chemical properties, that is, composition, size distribution, and shape. Mineral dust particles are mainly aggregates of silicates (quartz, clay minerals, feldspars) and carbonates (calcite, dolomite, gypsum) with diameters up to tenths of microns. Surface and bulk chemical compositions determine their optical properties regarding scattering and absorption of solar and terrestrial radiation, but also their role in supplying nutrient to the ocean water. The surface chemistry (hygroscopicity, coatings, etc) also determine their ability to act as cloud condensation- and ice nuclei, and thus affect cloud and precipitation formation. Finally, they offer reaction and adsorption surface for numerous organic and inorganic reactions of particulate matter and trace gases; therefore, playing an important role in the removal of atmospheric trace and pollution constituents. In this presentation we will focus on the regional variability of the elemental bulk composition of mineral dust which is needed to predict the variability of its impacts at the regional and continental scales. The current state of knowledge is mainly determined by numerous investigations from the Sahara and from the Chinese deserts. Many conclusions are based on measurements performed in surface air or in the lower boundary layer over the deserts and adjacent oceans. Compositional differences (elemental, mineral and isotopic) of desert aerosol are strong indicators for distinct major regions. Source apportionment seems to be possible using compositional data for a local and regional type of transport. During long-range transport, source characteristics can get lost when large scale mixing is taking place. Any final conclusion regarding the actual source requires additional application of tools like 3-D air mass trajectory analysis, use of satellite imagery etc

  15. Oscillation of mineral compositions in Core SG-1b, western Qaidam Basin, NE Tibetan Plateau.

    PubMed

    Fang, Xiaomin; Li, Minghui; Wang, Zhengrong; Wang, Jiuyi; Li, Jiao; Liu, Xiaoming; Zan, Jinbo

    2016-01-01

    Uplift of the Tibetan Plateau since the Late Miocene has greatly affected the nature of sediments deposited in the Qaidam Basin. However, due to the scarcity of continuously dated sediment records, we know little about how minerals responded to this uplift. In order to understand this response, we here present results from the high-resolution mineral profile from a borehole (7.3-1.6 Ma) in the Basin, which shows systematic oscillations of various evaporite and clay minerals that can be linked to the variation of regional climate and tectonic history. In particular, x-ray diffraction (XRD) analyses show that carbonate minerals consist mainly of calcite and aragonite, with minor ankerite and dolomite. Evaporates consist of gypsum, celesite and halite. Clay minerals are principally Fe-Mg illite, mixed layers of illite/smectite and chlorite, with minor kaolinite and smectite. Following implications can be drawn from the oscillations of these minerals phases: (a) the paleolake was brackish with high salinity after 7.3 Ma, while an abrupt change in the chemical composition of paleolake water (e.g. Mg/Ca ratio, SO4(2-) concentration, salinity) occurred at 3.3 Ma; (b) the three changes at ~6.0 Ma, 4.5-4.1 Ma and 3.3 Ma were in response to rapid erosions/uplift of the basin; PMID:27625177

  16. Effects of dietary zinc and iron supplementation on mineral excretion, body composition, and mineral status of nursery pigs.

    PubMed

    Rincker, M J; Hill, G M; Link, J E; Meyer, A M; Rowntree, J E

    2005-12-01

    Two experiments were conducted to evaluate the effects of dietary Zn and Fe supplementation on mineral excretion, body composition, and mineral status of nursery pigs. In Exp. 1 (n = 24; 6.5 kg; 16 to 20 d of age) and 2 (n = 24; 7.2 kg; 19 to 21 d of age), littermate crossbred barrows were weaned and allotted randomly by BW, within litter, to dietary treatments and housed individually in stainless steel pens. In Exp. 1, Phases 1 (d 0 to 7) and 2 (d 7 to 14) diets (as-fed basis) were: 1) NC (negative control, no added Zn source); 2) ZnO (NC + 2,000 mg/kg as Zn oxide); and 3) ZnM (NC + 2,000 mg/kg as Zn Met). In Exp. 2, diets for each phase (Phase 1 = d 0 to 7; Phase 2 = d 7 to 21; Phase 3 = d 21 to 35) were the basal diet supplemented with 0, 25, 50, 100, and 150 mg/kg Fe (as-fed basis) as ferrous sulfate. Orts, feces, and urine were collected daily in Exp. 1; whereas pigs had a 4-d adjustment period followed by a 3-d total collection period (Period 1 = d 5 to 7; Period 2 = d 12 to 14; Period 3 = d 26 to 28) during each phase in Exp. 2. Blood samples were obtained from pigs on d 0, 7, and 14 in Exp. 1 and d 0, 7, 21, and 35 in Exp. 2 to determine hemoglobin (Hb), hematocrit (Hct), and plasma Cu, (PCu), Fe (PFe), and Zn (PZn). Pigs in Exp. 1 were killed at d 14 (mean BW = 8.7 kg) to determine whole-body, liver, and kidney mineral concentrations. There were no differences in growth performance in Exp. 1 or 2. In Exp. 1, pigs fed ZnO or ZnM diets had greater (P < 0.001) dietary Zn intake during the 14-d study and greater fecal Zn excretion during Phase 2 compared with pigs fed the NC diet. Pigs fed 2,000 mg/kg, regardless of Zn source, had greater (P < 0.010) PZn on d 7 and 14 than pigs fed the NC diet. Whole-body Zn, liver Fe and Zn, and kidney Cu concentrations were greater (P < 0.010), whereas kidney Fe and Zn concentrations were less (P < 0.010) in pigs fed pharmacological Zn diets than pigs fed the NC diet. In Exp. 2, dietary Fe supplementation tended to increase

  17. Proximate composition and mineral content of two edible species of Cnidoscolus (tree spinach).

    PubMed

    Kuti, J O; Kuti, H O

    1999-01-01

    Proximate composition and mineral content of raw and cooked leaves of two edible tree spinach species (Cnidoscolus chayamansa and C. aconitifolius), known locally as 'chaya', were determined and compared with that of a traditional green vegetable, spinach (Spinicia oleraceae). Results of the study indicated that the edible leafy parts of the two chaya species contained significantly (p<0.05) greater amounts of crude protein, crude fiber, Ca, K, Fe, ascorbic acid and beta-carotene than the spinach leaf. However, no significant (p>0.05) differences were found in nutritional composition and mineral content between the chaya species, except minor differences in the relative composition of fatty acids, protein and amino acids. Cooking of chaya leaves slightly reduced nutritional composition of both chaya species. Cooking is essential prior to consumption to inactivate the toxic hydrocyanic glycosides present in chaya leaves. Based on the results of this study, the edible chaya leaves may be good dietary sources of minerals (Ca, K and Fe) and vitamins (ascorbic acid and beta-carotene). PMID:10540979

  18. Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications

    PubMed Central

    Song, Jie; Xu, Jianwen; Filion, Tera; Saiz, Eduardo; Tomsia, Antoni P.; Lian, Jane B.; Stein, Gary S.; Ayers, David C.; Bertozzi, Carolyn R.

    2009-01-01

    The design of synthetic bone grafts that mimic the structure and composition of bone and possess good surgical handling characteristics remains a major challenge. We report the development of poly(2-hydroxyethyl methacrylate) (pHEMA)-hydroxyapatite (HA) composites termed “FlexBone” that possess osteoconductive mineral content approximating that of human bone yet exhibit elastomeric properties enabling the press-fitting into a defect site. The approach involves crosslinking pHEMA hydrogel in the presence of HA using viscous ethylene glycol as a solvent. The composites exhibit excellent structural integration between the apatite mineral component and the hydroxylated hydrogel matrix. The stiffness of the composite and the ability to withstand compressive stress correlate with the microstructure and content of the mineral component. The incorporation of porous aggregates of HA nanocrystals rather than compact micrometer-sized calcined HA effectively improved the resistance of the composite to crack propagation under compression. Freeze-dried FlexBone containing 50 wt % porous HA nanocrystals could withstand hundreds-of-megapascals compressive stress and >80% compressive strain without exhibiting brittle fractures. Upon equilibration with water, FlexBone retained good structural integration and withstood repetitive moderate (megapascals) compressive stress at body temperature. When subcutaneously implanted in rats, FlexBone supported osteoblastic differentiation of the bone marrow stromal cells pre-seeded on FlexBone. Taken together, the combination of high osteoconductive mineral content, excellent organic-inorganic structural integration, elasticity, and the ability to support osteoblastic differentiation in vivo makes FlexBone a promising candidate for orthopedic applications. PMID:18546185

  19. Chemical and mineral composition of dust and its effect on the dielectric constant

    SciTech Connect

    Sharif, S.

    1995-03-01

    Chemical analysis is carried out for dust sample collected from central Sudan and the dust chemical constituents are obtained. The mineral composition of dust are identified by the X-ray diffraction techniques. The mineral quantities are obtained by a technique developed based on the chemical analytical methods. Analyses show that Quartz is the dominant mineral while the SiO{sub 2} is the dominant oxide. A simple model is derived for the dust chemical constituents. This model is used with models for predicting the mixture dielectric constant to estimate the dust dielectric constant; the results of which are seen to be in a good agreement with the measured values. The effects of the different constituents on the dust dielectric constant are studied and results are given.

  20. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity. PMID:27344855

  1. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves

    PubMed Central

    Abbas, Zahid Khorshid; Saggu, Shalini; Sakeran, Mohamed I.; Zidan, Nahla; Rehman, Hasibur; Ansari, Abid A.

    2014-01-01

    The phytochemical, antioxidant and mineral composition of hydroalcoholic extract of leaves of Cichorium intybus L., was determined. The leaves were found to possess comparatively higher values of total flavonoids, total phenolic acids. The phytochemical screening confirmed the presence of tannins, saponins, flavonoids, in the leaves of the plant. The leaf extract was found to show comparatively low value of IC50 for 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition. The IC50 value of chicory leaves extract was found to be 67.2 ± 2.6 μg/ml. The extracts were found to contain high amount of mineral elements especially Mg and Zn. Due to good phytochemical and antioxidant composition, C. intybus L., leaves would be an important candidate in pharmaceutical formulations and play an important role in improving the human health by participating in the antioxidant defense system against free radical generation. PMID:25972754

  2. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves.

    PubMed

    Abbas, Zahid Khorshid; Saggu, Shalini; Sakeran, Mohamed I; Zidan, Nahla; Rehman, Hasibur; Ansari, Abid A

    2015-05-01

    The phytochemical, antioxidant and mineral composition of hydroalcoholic extract of leaves of Cichorium intybus L., was determined. The leaves were found to possess comparatively higher values of total flavonoids, total phenolic acids. The phytochemical screening confirmed the presence of tannins, saponins, flavonoids, in the leaves of the plant. The leaf extract was found to show comparatively low value of IC50 for 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition. The IC50 value of chicory leaves extract was found to be 67.2 ± 2.6 μg/ml. The extracts were found to contain high amount of mineral elements especially Mg and Zn. Due to good phytochemical and antioxidant composition, C. intybus L., leaves would be an important candidate in pharmaceutical formulations and play an important role in improving the human health by participating in the antioxidant defense system against free radical generation. PMID:25972754

  3. Palaeoenvironmental significance of the clay mineral composition of Olduvai basin deposits, northern Tanzania

    NASA Astrophysics Data System (ADS)

    Mees, Florias; Segers, Stijn; Ranst, Eric Van

    2007-01-01

    Quaternary deposits in the southeastern part of the Olduvai basin, northern Tanzania, consist of lake margin deposits, followed by a series of fluvial sediments. The clay mineral fraction of the lake margin deposits (Bed I and lower part of Bed II) is composed of smectite and subordinate illite. All smectite is largely dioctahedral and shows indications for a limited degree of irregular interstratification by illite. In the overlying fluvial deposits (Beds II-IV), illite is the most abundant clay mineral. Smectite only occurs in lower parts of the fluvial deposits (up to the middle of Bed III), where it generally shows a high degree of irregular interstratification. Differences in clay mineral composition between the lake margin deposits and the fluvial deposits record differences in sediment source area and degree of alteration. Dioctahedral smectite in the lake margin deposits and the oldest fluvial deposits is derived from a region with volcanic material extending to the east and south of the basin, which also supplies a certain amount of illite. Illite in the fluvial deposits of Bed IV originates from an area with a metamorphic bedrock to the west and north. Alteration of detrital clay minerals resulted in Mg-enrichment of dioctahedral smectite in part of the lake margin deposits and partial illitization of smectite in the older fluvial deposits. Formation of clay minerals during diagenesis or soil development is not documented by analysis of the total clay fraction.

  4. Prediction of microdamage formation using a mineral-collagen composite model of bone

    PubMed Central

    Wang, Xiaodu; Qian, Chunjiang

    2007-01-01

    Age-related changes in bone quality are mainly manifested in the reduced toughness. Since the post-yield deformation of bone is realized through microdamage formation (e.g., microcracking and diffuse damage), it is necessary to understand the mechanism of microdamage formation in bone in order to elucidate underlying mechanisms of age-related bone fractures. In this study, a two-dimensional shear lag model was developed to predict stress concentration fields around an initial crack in a mineral-collagen composite. In this model, non-linear elasticity was assumed for the collagen phase, and linear elasticity for the mineral. Based on the pattern of the stress concentration fields, the condition for microdamage formation was discussed. The results of our analyses indicate that: (1) an initial crack formed in mineral phase may cause stress concentration in the adjacent mineral layers; (2) the pattern of stress concentration fields depends not only on the spatial but also mechanical properties of the collagen and mineral phases; (3) the pattern of the stress concentration fields could determine either coalescence or scattering of nano cracks around the initial crack. PMID:16439230

  5. Mineral and whole-rock compositions of seawater-dominated hydrothermal alteration at the Arctic volcanogenic massive sulfide prospect, Alaska

    USGS Publications Warehouse

    Schmidt, J.M.

    1988-01-01

    The Arctic volcanogenic massive sulfide prospect, located in the Ambler mineral district of northwestern Alaska, includes three types of hydrothermally altered rocks overlying, underlying, and interlayered with semimassive sulfide mineralization. Hydrothermal alteration of wall rocks and deposition of sulfide and gangue minerals were contemporaneous with Late Devonian of Early Mississippian basalt-rhyolite volcanism. Alteration developed asymmetrically around a linear fissure, suggesting fracture control of ore fluids rather than a point source. Microprobe analyses of phyllosilicates from the Arctic area indicate two discrete mineral populations. These differences in mineral chemistry are the result of differences in protolith composition caused by hydrothermal alteration-metasomatism. -from Author

  6. Analysis of the mineral composition of taro for determination of geographic origin.

    PubMed

    Kobayashi, Natsuko I; Tanoi, Keitaro; Hirose, Atsushi; Saito, Takayuki; Noda, Akihiko; Iwata, Naoko; Nakano, Akimasa; Nakamura, Satoru; Nakanishi, Tomoko M

    2011-05-11

    The mineral composition of taro ( Colocasia esculenta (L.) Schott) was analyzed to develop a method to distinguish taro produced in Japan and China. The concentrations of 15 elements (Al, Ca, Cl, Mg, Mn, Br, Co, Cr, Cs, Fe, K, Na, Rb, Sc, Zn) were assayed using instrumental neutron activation analysis. The concentrations of NO(3)(-), SO(4)(2-), H(2)PO(4)(-), Cl(-), malate, and oxalate were measured by ion chromatography. The mean concentrations of H(2)PO(4)(-), Co, Cr, and Na significantly differed (P < 0.01) between taro grown in Japan and that grown in China. Discriminant analysis was performed to identify the most efficient combination of elements and compounds to discriminate the taro geographic origin. The highest percentage of correct classification was achieved with a two-variable model including H(2)PO(4)(-) and Co (100% for Japanese, 93.75% for Chinese). Principal component analysis and cluster analysis using all of the assayed elements and compounds were also conducted to determine which elements significantly accounted for the variation of the taro mineral composition. We report on the potential of H(2)PO(4)(-) and Co concentrations to differentiate taro grown in China and Japan and discuss the sources of variability in the taro mineral composition of our samples. PMID:21425858

  7. Identification of mineral composition and weathering product of tuff using reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hyun, C.; Park, H.

    2009-12-01

    Tuff is intricately composed of various types of rock blocks and ash matrixes during volcanic formation processes. Qualitative identification and quantitative assessment of mineral composition of tuff usually have been done using manual inspection with naked-eyes and various chemical analyses. Those conventional methods are destructive to objects, time consuming and sometimes carry out biased results from subjective decision making. To overcome limits from conventional methods, assessment technique using reflectance spectroscopy was applied to tuff specimens. Reflectance spectroscopy measures electromagnetic reflectance on rock surface and can extract diagnostic absorption features originated from chemical composition and crystal structure of constituents in the reflectance curve so mineral species can be discriminated qualitatively. The intrinsic absorption feature from particular mineral can be converted to absorption depth representing relative coverage of the mineral in the measurement area by removing delineated convex hull from raw reflectance curve. The spectral measurements were performed with field spectrometer FieldSpec®3 of ASD Inc. and the wavelength range of measurement was form 350nm to 2500nm. Three types of tuff blocks, ash tuff, green lapilli tuff and red lapilli tuff, were sampled from Hwasun County in Korea and the types of tuffs. The differences between green tuff and red tuff are from the color of their matrixes. Ash tuff consists of feldspars and quartz and small amount of chalcedony, calcite, dolomite, epidote and basalt fragments. Green lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, sericite, chlorite, quartzite and basalt fragments. Red lapilli tuff consists of feldspar, quartz and muscovite and small amount of calcite, chalcedony, limonite, zircon, chlorite, quartzite and basalt fragments. The tuff rocks were coarsely crushed and blocks and matrixes were separated to measure standard

  8. Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Caquineau, S.; Desboeufs, K.; Klaver, A.; Chevaillier, S.; Journet, E.; Rajot, J. L.

    2014-10-01

    In the last few years, several ground-based and airborne field campaigns have allowed the exploration of the properties and impacts of mineral dust in western Africa, one of the major emission and transport areas worldwide. In this paper, we explore the synthesis of these observations to provide a large-scale quantitative view of the mineralogical composition and its variability according to source region and time after transport. This work reveals that mineral dust in western Africa is a mixture of clays, quartz, iron and titanium oxides, representing at least 92% of the dust mass. Calcite ranged between 0.3 and 8.4% of the dust mass, depending on the origin. Our data do not show a systematic dependence of the dust mineralogical composition on origin; this is to be the case as, in most of the instances, the data represent the composition of the atmospheric burden after 1-2 days after emission, when air masses mix and give rise to a more uniform dust load. This has implications for the representation of the mineral dust composition in regional and global circulation models and in satellite retrievals. Iron oxides account for 58 ± 7% of the mass of elemental Fe and for between 2 and 5% of the dust mass. Most of them are composed of goethite, representing between 52 and 78% of the iron oxide mass. We estimate that titanium oxides account for 1-2% of the dust mass, depending on whether the dust is of Saharan or Sahelian origin. The mineralogical composition is a critical parameter for estimating the radiative and biogeochemical impact of mineral dust. The results regarding dust composition have been used to estimate the optical properties as well as the iron fractional solubility of Saharan and Sahelian dust. Data presented in this paper are provided in numerical form upon email request while they are being turned into a public database, the Dust-Mapped Archived Properties (DUST-MAP), which is an open repository for compositional data from other source regions in

  9. Organic Matter Development and Turnover depending on Mineral Composition in an Artificial Soil Incubation Experiment

    NASA Astrophysics Data System (ADS)

    Pronk, G. J.; Heister, K.; Kogel-Knabner, I.

    2012-12-01

    Recent research indicates that minerals play an important role in the formation and stabilization of soil organic matter (SOM). However, it is difficult to determine the effect of mineral composition on SOM development in natural soils where mineral composition is usually not well defined and initial conditions are generally unknown. Therefore, we performed an incubation experiment with so-called "artificial soils" composed of mixtures of clean and well-defined model materials where the development of organic matter could be followed from known initial conditions. The artificial soils were composed of 8 different mixtures of quartz, illite, montmorillonite, ferrihydrite, boehmite and charcoal, manure as carbon substrate and a microbial inoculum extracted from a natural arable soil. These mixtures were incubated in the dark and sampled 4 times over a total incubation time of 18 months. The organic matter (OM) turnover during incubation was followed by measuring CO2 respiration and C and N contents and distribution over particle size fractions with time. Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and acid hydrolysis were used to determine the development of OM composition. The artificial soil mixtures developed quickly into complex, aggregated, soil-like materials. CO2 respiration was the same for all artificial soil compositions, indicating that microbial degradation was probably limited by nutrient or substrate availability. With increasing incubation time, nitrogen-rich, proteinaceous material, became enriched in the smallest particle size fraction, indicating the accumulation of microbial debris. There was some difference in the distribution of hydrolysable and non-hydrolysable N and organic carbon after 3 months of incubation depending on the type of clay mineral and charcoal presence. However, the artificial soils developed towards more similar systems with increasing incubation time. The artificial soil incubation experiment provided a

  10. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  11. Isotope Fractionation During N Mineralization and the N Isotope Composition of Terrestrial Ecosystem N Pools

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; Schwartz, E.; Hungate, B. A.; Hart, S. C.

    2008-12-01

    It has been an open question for several decades whether N mineralization is a fractionating process. This question is important for N cycling in terrestrial ecosystems because even a small fractionation during N mineralization could potentially have a large influence on the N isotope composition of other ecosystem N pools. Fractionation during N mineralization should result in a difference between the N isotope composition of the soil microorganisms, that of its substrates, and products. We analyzed the N isotope composition of the soil microbial biomass in a variety of ecosystems, and found that it was 15N enriched compared to that of other soil N pools, such as soil soluble, organic and inorganic N (Dijkstra et al. 2006a,b). We observed a negative correlation between the 15N enrichment of the microorganisms and the relative C and N availability for soil from ecosystems in Hawaii and Arizona, across a broad range of climates, grasslands and forests, and more than four million years of ecosystem development. This suggests that during N dissimilation (and associated transaminations) and N export, the lighter 14N N isotope is preferentially removed in a manner similar to that proposed for animals and ectomycorrhizae. This was further confirmed by the positive correlation between microbial 15N enrichment and net N mineralization rate (Dijkstra et al. 2008, Ecology Letters 11: 389-397) and by culture experiments with Escherichia coli (Collins et al. 2008). Since mineralization is the largest flux of N in ecosystems, fractionation during N mineralization has the potential to influence the N isotope composition of other N pools, such as inorganic N, plant N and soil organic matter N. We demonstrate that the N isotope compositions of these ecosystem N pools exhibit differences that are consistent with fractionation during N mineralization. Our results show that the N isotope composition can be used as a measure to trace N mineralization and decomposition in ecosystems

  12. The extent of carbon mineralization in boreal soils controls compositional changes

    NASA Astrophysics Data System (ADS)

    Mercier Quideau, S.; Oh, S.; Paré, D.

    2013-12-01

    Almost twenty percent of global carbon stocks in vegetation and soil are found in boreal soils, making them the largest terrestrial carbon storehouse in the world. Yet, despite their importance in the global carbon budget, very little is known about the exact nature and decomposition pathways of organic matter in these soils. The overall objective of this study was to examine the effects of vegetation and disturbance (fire and harvest) on: 1) soil organic matter composition, and 2) decomposition-induced changes in composition from a range of representative boreal forest and peatland ecosystems. Forest floor and peat samples (0-10 cm) were obtained from 17 sites along an east-west transect from New Brunswick to British Columbia, Canada. Carbon mineralization rates were measured during a 1-year laboratory incubation at 10 °C. Carbon chemistry in pre- and post-incubation samples was characterized by solid-state ramped-cross-polarization (RAMP-CP) 13C nuclear magnetic resonance (NMR). The percentage of carbon mineralized during incubation ranged from 1 to 24%, and corresponded to significant increases in aromatic, phenolic, and carbonyl carbons. As expected, significant differences in carbon composition pre-incubation were found among vegetation types regardless of disturbance and sampling location. May be more interestingly, comparable differences among samples persisted post-incubation. In addition, decomposition-induced changes in carbon chemistry significantly differed among vegetation types. Samples from Jack pine and Douglas fir stands, which experienced the highest carbon mineralization, also showed the greatest increase in aromatic, phenolic, and carbonyl carbons. Overall, changes in carbon chemistry were significantly correlated to the percentage of carbon mineralized; i.e., the extent of decomposition that the samples underwent.

  13. Application of far infrared rare earth mineral composite materials to liquefied petroleum gas.

    PubMed

    Zhu, Dongbin; Liang, Jinsheng; Ding, Yan; Xu, Anping

    2010-03-01

    Far infrared rare earth mineral composite materials were prepared by the coprecipitation method using tourmaline, cerium acetate, and lanthanum acetate as raw materials. The results of Fourier transform infrared spectroscopy show that tourmaline modified with the rare earths La and Ce has a better far infrared emitting performance. Through XRD analysis, we attribute the improved far infrared emission properties of the tourmaline to the unit cell shrinkage of the tourmaline arising from La enhancing the redox properties of nano-CeO2. The effect of the composite materials on the combustion of liquefied petroleum gas (LPG) was studied by the flue gas analysis and water boiling test. Based on the results, it was found that the composite materials could accelerate the combustion of LPG, and that the higher the emissivity of the rare earth mineral composite materials, the better the effects on combustion of LPG. In all activation styles, both air and LPG to be activated has a best effect, indicating the activations having a cumulative effect. PMID:20355556

  14. Bioactive Polymeric Composites for Tooth Mineral Regeneration: Physicochemical and Cellular Aspects

    PubMed Central

    Skrtic, Drago; Antonucci, Joseph M.

    2011-01-01

    Our studies of amorphous calcium phosphate (ACP)-based dental materials are focused on the design of bioactive, non-degradable, biocompatible, polymeric composites derived from acrylic monomer systems and ACP by photochemical or chemically activated polymerization. Their intended uses include remineralizing bases/liners, orthodontic adhesives and/or endodontic sealers. The bioactivity of these materials originates from the propensity of ACP, once exposed to oral fluids, to release Ca and PO4 ions (building blocks of tooth and bone mineral) in a sustained manner while spontaneously converting to thermodynamically stable apatite. As a result of ACP's bioactivity, local Ca- and PO4-enriched environments are created with supersaturation conditions favorable for the regeneration of tooth mineral lost to decay or wear. Besides its applicative purpose, our research also seeks to expand the fundamental knowledge base of structure-composition-property relationships existing in these complex systems and identify the mechanisms that govern filler/polymer and composite/tooth interfacial phenomena. In addition to an extensive physicochemical evaluation, we also assess the leachability of the unreacted monomers and in vitro cellular responses to these types of dental materials. The systematic physicochemical and cellular assessments presented in this study typically provide model materials suitable for further animal and/or clinical testing. In addition to their potential dental clinical value, these studies suggest the future development of calcium phosphate-based biomaterials based on composite materials derived from biodegradable polymers and ACP, and designed primarily for general bone tissue regeneration. PMID:22102967

  15. Determination of Proximate, Minerals, Vitamin and Anti-Nutrients Composition of Solanum verbascifolium Linn.

    NASA Astrophysics Data System (ADS)

    Sam, S. M.; Udosen, I. R.; Mensah, S. I.

    2012-07-01

    The proximate, minerals, vitamins and anti-nutrients composition of Solanum verbascifolium Linn were determined. The proximate composition showed that moisture content was (85.5%), protein was (32.55%), lipid was (2.90%), ash was (7.20%), fibre was (4.80%), carbohydrate was (52.55%) and caloric value was (366.50%) respectively. This was found to be rich in protein and considerably high amount of carbohydrate. The anti-nutrient composition analysis revealed the presence of hydrocyanide (1.39mg/100g), Oxalate (114.40mg/100g), all of which are below toxic level except for oxalic acid. For mineral and vitamin compositions, potassium was significantly (P>0.05) higher than iron, sodium, calcium and phosphorus while vitamin A retinol was (371.72mg/100g) and vitamin C ascorbic acid (39.99mg/100g). Based on these findings the plant is recommended for consumption and for further investigation as a potential raw material for pharmaceutical industry.

  16. Seasonal variability of mineral composition of suspended material in the Yangtze River

    NASA Astrophysics Data System (ADS)

    Irino, T.; Saito, K.; Suzuki, Y.; Tada, R.; Chao, L.; He, M.; Zheng, H.

    2014-12-01

    Water discharge and suspension load of a river are potentially recorded in sediments in the drainage and / or the river mouth, which could provide us useful proxies for paleoclimatic study. Sediment load from the Yangtze River to the East China Sea (ECS) from the delta to the Okinawa Trough have been widely used to reconstruct the East Asian summer monsoon (EASM) in the past since the water discharge from the Yangtze would be highly affected by monsoon rain, which could deliver much fresh water and sediment to the ECS. Theoretically, sediment provenance and its yield could be changed from time to time depending on the distribution of precipitation which would control the balance of water discharges from the tributaries. Therefore, we need to know the sediment budget along the Yangtze main stream with regards to the inputs from its major tributaries in order to understand the potential effects from the change in the distribution of the EASM precipitation. For this purpose, we have conducted a systematic sampling of the Yangtze River water to determine the concentration and mineral composition of suspension loads during summer in 2011 and winter in 2012. Water samples were taken at main junctions of the major tributaries. The mineral composition of suspended material were determined by X-ray diffraction (XRD) analyses as well as amount of suspended solids (SS: mg/L) . Abundances of clay minerals relative to quartz tend to decrease from upstream to downstream, while feldspars and calcite increases downstream. Since clay minerals are generally finer than feldspars and calcite, it is suggested that the relatively coarse minerals were removed due to the grain size fractionation during transportation of the suspended particles. Mineral composition in winter is overridden by higher suspension load from upper to middle reaches in summer, which is characterized by higher plagioclase / K-feldspar, higher calcite and dolomite, and wider half-height widths of smectite and

  17. N Isotope Composition of the Soil Microbial Biomass Reflects N Mineralization and C and N Availability

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; Hungate, B. A.; Schwartz, E.; Hart, S. C.

    2009-04-01

    It has been an open question for several decades whether N mineralization is a fractionating process. This question is important for N cycling in terrestrial ecosystems because even a small fractionation during N mineralization could potentially have a large influence on the N isotope composition of other ecosystem N pools, since N mineralization represents the largest N flux in ecosystems. Fractionation during N mineralization should result in a difference between the N isotope composition of the soil microorganisms and that of its substrates. We analyzed the N isotope composition of the soil microbial biomass in a variety of ecosystems, and found that it was 15N enriched compared to that of other soil N pools, such as soil soluble, organic and inorganic N (Dijkstra et al. 2006a,b). We observed a negative correlation between the 15N enrichment of the microorganisms and the relative C and N availability for soil from ecosystems in Hawaii and Arizona, across a broad range of climates, grasslands and forests, and more than four million years of ecosystem development. This result suggests that during N dissimilation (and associated transaminations) and N export, the lighter 14N isotope is preferentially removed in a manner similar to that proposed for animals and ectomycorrhizae. This was further confirmed by the positive correlation between microbial 15N enrichment and net N mineralization rate (Dijkstra et al. 2008) and by culture experiments with Escherichia coli (Collins et al 2008). Since mineralization is the largest flux of N in ecosystems, fractionation during N mineralization has the potential to influence and even determine the N isotope composition of other N pools, such as inorganic N, plant N and soil organic matter N. We will show that the N isotope composition of these ecosystem N pools exhibit differences that are consistent with fractionation during N mineralization. Collins JG, Dijkstra P, Hart SC, Hungate BA, Flood NM and Schwartz E. 2008. Nitrogen

  18. Predicting the mineral composition of ureteral stone using non-contrast computed tomography.

    PubMed

    Kawahara, Takashi; Miyamoto, Hiroshi; Ito, Hiroki; Terao, Hideyuki; Kakizoe, Manabu; Kato, Yoshitake; Ishiguro, Hitoshi; Uemura, Hiroji; Yao, Masahiro; Matsuzaki, Junichi

    2016-06-01

    We investigated the correlation between computed tomography (CT) density of ureteral stones and their mineral composition. A total of 346 patients who underwent ureteroscopic lithotripsy for calculi all fragments of which were acquired at a single institution from 2009 to 2011 were analyzed. The maximum and mean CT densities were measured preoperatively. A mineral analysis revealed calcium oxalate in 203 (58.7 %), mixed calcium oxalate and calcium phosphate in 78 (23.0 %), calcium phosphate in 18 (5.2 %), uric acid in 8 (2.3 %), struvite in 3 (0.9 %), and cysteine in 5 (1.4 %). The mean Hounsfield units (HUs) of the CT density were 1046 HUs in calcium oxalate, 1101 HUs in mixed calcium oxalate and calcium phosphate, 835 HUs in calcium phosphate, 549 HUs in uric acid, 729 HUs in struvite, and 698 HUs in cystine. The HUs in calcium oxalate were significantly higher than those in uric acid (p < 0.01) and struvite (p < 0.01). Those in monohydrate stones were significantly higher, compared with dehydrate stones (p < 0.05). We analyzed the largest number of stones than each published study to correlate their mineral composition and CT density. Calcium component stones showed significantly higher CT densities than other types. PMID:26427864

  19. Determination and evaluation of the mineral composition of Obi (Cola acuminate).

    PubMed

    Martins, Valdinei S; de Jesus, Raildo M; da Silva, Erik G P; Fragoso, Wallace Duarte; Ferreira, Sérgio L C

    2011-10-01

    The obi (Cola acuminate) is a native fruit from Africa, which has been mainly used in the production of soft drinks and also in rituals of African religions. In this paper, the mineral composition of obi collected in seven different cities from Bahia State, Brazil was determined and evaluated using multivariate analysis. The samples were digested using nitric acid and hydrogen peroxide and were analyzed using inductively coupled plasma optical emission spectrometry. The accuracy of the method was confirmed by analysis of a certified reference material of apple leaves, furnished by National Institute of Standard and Technology. The study involved 46 samples, being 18 of the red specie and 28 for the white specie. The results expressed as milligrams of element per 100 g(-1) of sample demonstrated that the concentration ranges varied of 21.28-548.77 for potassium, 15.73-129.85 for phosphorous, 27.95-286.92 for calcium, 7.67-134.45 for magnesium, 0.05-1.41 for manganese, 0.21-0.94 for iron, 0.11-0.39 for copper, 0.27-1.35 for zinc, and 0.025-0.517 for strontium. The principal component analysis and hierarchical cluster analysis evidenced that the mineral composition of the red specie is different of the white specie. The red obi has mineral content higher than white obi. PMID:20838923

  20. Potassium Isotopic Compositions of NIST Potassium Standards and 40Ar/39Ar Mineral Standards

    NASA Technical Reports Server (NTRS)

    Morgan, Leah; Tappa, Mike; Ellam, Rob; Mark, Darren; Higgins, John; Simon, Justin I.

    2013-01-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25per mille level (1s) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards.

  1. Rock Maker: an MS Excel™ spreadsheet for the calculation of rock compositions from proportional whole rock analyses, mineral compositions, and modal abundance

    NASA Astrophysics Data System (ADS)

    Büttner, Steffen H.

    2012-01-01

    Rock Maker is a simple software tool that computes bulk rock compositions resulting from mixing or unmixing of rocks or minerals. The calculations describe the chemical expression of processes such as magma mixing, fractional crystallization, assimilation, residual melt extraction, or formation of solid solutions. Rock Maker can also be used for the elimination of thermodynamically inactive or unwanted chemical components from the whole rock composition, such as cores of porphyroblasts that are considered not to be in equilibrium with the matrix. The calculation of the resulting rock composition is essentially based on modal proportions and compositions of different components in rocks, which may include specific portions of the rock or individual mineral phases. Compositional data, obtained using XRF, ICPMS, EDS, or EPMA, may include major and trace element concentrations. Depending upon the nature of the problem to be solved, the concentrations of oxidic and elemental components can be added to, or subtracted from, each other, producing the calculated normalized whole rock composition after completion of the investigated process (mixing, unmixing, depletion, enrichment, etc.). Furthermore, the software allows the calculation of whole rock compositions from ideal mineral compositions, for which modal proportions can be chosen from pre-defined mineral compositions. The data set includes the most common rock forming minerals and allows the addition of further phases. This section can be used to calculate the approximate whole rock compositions from petrographic modal analysis. This part of Rock Maker is specifically suitable as a teaching tool that illustrates the interrelationship between mineral compositions, modes, and the corresponding whole rock compositions.

  2. Composition, distribution, and characterization of suspected endocrine-disrupting pesticides in Beijing GuanTing Reservoir (GTR).

    PubMed

    Xue, Nandong; Xu, Xiaobai

    2006-05-01

    GuanTing Reservoir (GTR) is one of two main water resources for the agriculture, industry, and living uses of Beijing (China). As a result of extensive pollution over the last few decades (particularly the 1980s), the reservoir has not supplied potable water to Beijing city since 1997. Composition, distribution, and characterization of 31 suspected endocrine-disrupting pesticides in surface water, pore water, and surface sediments from the reservoir are reported in this study. An analytical procedure based on solid-phase extraction (SPE) technology and capillary gas chromatography with electron-capture detection has been developed for the simultaneous determination of the 31 suspected endocrine-disrupting pesticides including the compounds hexachlorocyclohexane, cyclodiene, diphenyl aliphatic, chlordane, and other selected pesticides (hexachlorobenzene, heptachlor, endrin aldehyde, hepachlor epoxide, dicofol, acetochlor, alachlor, metolachlor, chlorpyriphos, nitrofen, trifluralin, cypermethrin, fenvalerate, and deltamethrin). The result shows that the pesticide pollution is moderate in GTR and its tributaries, although pesticide residue values in a few sites are quite high when considering their endocrine-disrupting effects and chronic health effects. Among the analyzed pesticides, p,p'-DDE, o,p'-DDT, beta-HCH, endosulfan sulfate, and aldrin were the most abundant pesticides in water while o,p'-DOT, delta-HCH, beta-HCH, p,p'-DDE, p,p'-DDT, and endosulfan sulfate were the most abundant in sediment. The variation in concentration of pesticides among sites can be expected to be caused by several factors such as contaminants in the rivers and drainage of contaminated water from the surrounding agricultural fields. To reduce exposure to these endocrine-disrupting compounds, the abundant current use of pesticides in the area should be minimized. Regular monitoring is needed to manage the environmental hazards due to these pesticides. PMID:16446992

  3. Petrography and mineral chemistry of the composite Deboullie Pluton, northern Maine, USA: implications for the genesis of Cu-Mo mineralization

    USGS Publications Warehouse

    Loferski, P.J.; Ayuso, R.A.

    1995-01-01

    Biotite and apatite mineral chemistry, particularly halogen abundances and ratios, are used to investigate the relation of the two contrasting parts of the Deboullie composite pluton (syenite-granodiorite) located in northern Maine. Biotite mineral chemistry helps to classify the weakly developed porphyry-style mineralization (Cu-Mo) associated with syenitic rocks of the Deboullie pluton. Biotite and apatite occur within the matrix of the rocks and within small multiphase inclusions hosted by clinopyroxene. The inclusions are interpreted to be crystallized melt inclusions rather than solid inclusions, that were trapped by clinopyroxene during growth. The multiphase inclusions consist of K-feldspar + quartz + biotite + apatite + magnetite. On a regional scale, biotite compositions from granitic plutons in Maine do not vary in a systematic manner. -from Authors

  4. Mineral Compositions from the Hawaii Scientific Drilling Project (HSDP): Preliminary Results Part I - Clinopyroxene

    NASA Astrophysics Data System (ADS)

    Polfer, K. M.; Smart, C. M.; Putirka, K. D.

    2004-12-01

    Drill core samples recovered from the HSDP have sampled Mauna Kea volcano, Hawaii, to depths of over 3000 meters. These samples provide a temporal view of the evolution of the Mauna Kea magma plumbing system not easily discerned from surface sampling. We utilize mineral compositions from the HSDP as a monitor of the depths at which magmas stagnated and partially crystallized. Mineral compositions provide a record of magma stagnation, and due to their resistance to re-equilibration and mixing, provide an archive of the range of liquid compositions that entered the magma plumbing system. Most interesting is the question as to whether the Mauna Kea magma plumbing system changed during the construction of the volcanic edifice, or during the waxing and waning of magma supply as Mauna Kea passed over the Hawaiian mantle hot spot. Here we use clinopyroxenes to examine magma transport, and in two accompanying abstracts we compare these results to those obtained from the analysis of plagioclase and olivine compositions. We utilized the models of Putirka (1999) to test clinopyroxene-melt equilibria and the models of Putirka et al (2003) to calculate the P-T conditions of crystallization of clinopyroxene, where appropriate. Equilibrium tests suggest that clinopyroxene phenocrysts are out of equilibrium with whole rock compositions. As an attempt to recover an equilibrium liquid, we adjusted whole rock compositions by adding or subtracting olivine so as to achieve Fe-Mg exchange equilibrium between (calculated) residual liquid and average olivine phenocryst compositions. This strategy required the subtraction of large amounts of olivine, 20% on average. Approximately 68% of cpx phenocrysts were calculated to approach equilibrium with these corrected liquid compositions; only these phenocrysts are used for the calculation of P and T. The distribution of cpx phenocryst depth estimates is not unlike those found for Mauna Kea in earlier studies (Putirka, 1997; Yang et al., 1999

  5. Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly(ɛ-caprolactone)/nanocellulose fibers.

    PubMed

    Si, Junhui; Cui, Zhixiang; Wang, Qianting; Liu, Qiong; Liu, Chuntai

    2016-06-01

    A biomimetic nanocomposite scaffold with HA formation on the electrospun poly(ɛ-caprolactone) (PCL)/nanocellulose (NC) fibrous matrix was developed in this study. The electrospun PCL/NC fiber mat was built and then biomineralized by treatment in simulated body fluid (SBF). Using such a rapid and effective procedure, a continuous biomimetic crystalline HA layer could be successfully formed without the need of any additional chemical modification of the substrate surface. The results showed that the introduction of NC into composite fibers is an effective approach to induce the deposition of HA nucleus as well as to improve their distribution and growth of a crystalline HA layer on the fibrous scaffolds. The water contact angle (WCA) of the PCL/NC/HA scaffolds decreases with increasing NC content and mineralization time, resulting in the enhancement of their hydrophilicity. These results indicated that HA-mineralized on PCL/NC fiber can be prepared directly by simply using SBF immersion. PMID:27083369

  6. Chemical composition, dietary fibre, tannins and minerals of grain amaranth genotypes.

    PubMed

    Mustafa, Arif F; Seguin, Philippe; Gélinas, Bruce

    2011-11-01

    The objective of this study was to determine the chemical composition of 28 white and coloured grain amaranth (Amaranthus spp.) genotypes. Neutral detergent fibre (NDF) concentration was greater while strach concentration was lower for coloured seeds genotypes than white seeds genotypes. Total dietary fibre followed a similar trend to that observed for NDF. Total tannin concentrations ranged between 20.7 and 0 g/kg with total and hydrolysed tannin concentrations being higher for white than for coloured seeds genotypes. Coloured seeds genotypes contained higher Mg and Ca concentrations than white seeds genotypes. However, seed colour had no influence on K, Na and P concentrations. Copper and Fe were the most variable micro-minerals in the evaluated genotypes with no significant effect of seed colour on the concentration of either mineral. PMID:21599462

  7. Disruption of OsEXO70A1 Causes Irregular Vascular Bundles and Perturbs Mineral Nutrient Assimilation in Rice

    PubMed Central

    Tu, Bin; Hu, Li; Chen, Weilan; Li, Tao; Hu, Binhua; Zheng, Ling; Lv, Zheng; You, Shuju; Wang, Yuping; Ma, Bingtian; Chen, Xuewei; Qin, Peng; Li, Shigui

    2015-01-01

    Normal uptake, transportation, and assimilation of primary nutrients are essential to plant growth. Tracheary elements (TEs) are tissues responsible for the transport of water and minerals and characterized by patterned secondary cell wall (SCW) thickening. Exocysts are involved in the regulation of SCW deposition by mediating the targeted transport of materials and enzymes to specific membrane areas. EXO70s are highly duplicated in plants and provide exocysts with functional specificity. In this study, we report the isolation of a rice mutant rapid leaf senescence2 (rls2) that exhibits dwarfism, ferruginous spotted necrotic leaves, decreased hydraulic transport, and disordered primary nutrient assimilation. Histological analysis of rls2-1 mutants has indicated impaired cell expansion, collapsed vascular tissues, and irregular SCW deposition. Map-based cloning has revealed that RLS2 encodes OsEXO70A1, which is one of the 47 members of EXO70s in rice. RLS2 was widely expressed and spatially restricted in vascular bundles. Subcellular localization analysis demonstrated that RLS2 was present on both membrane and nuclear regions. Expression analysis revealed that mutations in rls2 triggers transcriptional fluctuation of orthologous EXO70 genes and affects genes involved in primary nutrient absorption and transport. In brief, our study revealed that RLS2 is required for normal vascular bundle differentiation and primary nutrient assimilation. PMID:26691393

  8. Natural calcium isotonic composition of urine as a marker of bone mineral balance

    USGS Publications Warehouse

    Skulan, J.; Bullen, T.; Anbar, A.D.; Puzas, J.E.; Shackelford, L.; LeBlanc, A.; Smith, S.M.

    2007-01-01

    Background: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Methods: Calcium isotopic compositions are expressed as ??44Ca, or the difference in parts per thousand between the 44Ca/40Ca of a sample and the 44Ca/ 40Ca of a standard reference material. ??44Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Results: Urine ??44Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, Mest). Results were consistent with the model and with biochemical and bone mineral density data. Conclusion: Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool. ?? 2007 American Association for Clinical Chemistry.

  9. Isotopic compositions of gangue versus ore minerals in the Upper Mississippi Valley zinc-lead district

    SciTech Connect

    Brannon, J.C.; Podosek, F.A. . Dept. of Earth Planetary Sciences); McLimans, R.K. . Jackson Research Lab.)

    1993-03-01

    Four successive stages of gangue calcite occur after sulfide mineralization in the Upper Mississippi Valley zinc-lead district. These are commonly interpreted to represent the waning stage of MTV mineralization, because of spatial association and a smooth transition of decreasing fluid inclusion temperatures from late stage sphalerite through calcites 2 to 4. U-Pb systematics in two calcite 2 crystals suggests an age of 162 Ma, with [mu] values sufficiently great (1,175 and 1,611) that the indicated age is insensitive to initial [sup 206]Pb/[sup 204]Pb. This age for calcite formation is [approx] 100 Ma after that of sulfide mineralization and thus represents recurrent fluid activity along fracture zones. Initial [sup 87]Sr/[sup 86]Sr isotopic composition for three calcite 2 crystals range from 0.70956--0.70961, consist with initial [sup 87]Sr/[sup 86]Sr in the 270 Ma sphalerites. The initial [sup 87]Sr/[sup 86]Sr for two calcite 3 crystals and one calcite 4 crystal range from 0.70845--0.70875, consistent with mid-Ordovician seawater and the host carbonates of that age. The authors propose a hypothesis which is consistent with the Sr and U-Pb isotopic data. 162 Ma ago fluids flushed the existing pore fluids (left over from 270 Ma MVT event) from carbonate strata and deposited calcite 2. Subsequently, additional fluids containing [sup 87]Sr/[sup 86]Sr consistent with that derived from mid-Ordovician carbonates deposited calcite 3 and 4. If this hypothesis is correct the paragenetic connection between ore and gangue mineralization at UMV is weak and geochemical study of the gangue minerals may provide only limited information about the fluid which formed the ores.

  10. Associating rice root morphology and physiological traits with grain mineral concentrations of 24 varieties with extreme mineral compositions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first step towards mineral accumulation in plant seeds is the absorption/uptake of minerals from the soil by roots. Root physiological activities, such as root respiration and metabolism, modify physical (soil temperature), chemical (soil pH, redox potential, root exudates, allelochemicals, and ...

  11. Mineralization of clay/polymer aerogels: a bioinspired approach to composite reinforcement.

    PubMed

    Johnson, Jack R; Spikowski, Jane; Schiraldi, David A

    2009-06-01

    Clay aerogels, ultra low density materials made via a simple freeze-drying technique, have shown much promise in broad applications because of their low densities, often in the same range as silica aerogels (0.03-0.3 g/cm(3),) but suffering from low mechanical strength. A bioinspired approach to mineralize an active polymer/clay aerogel composite is inspected, showing marked improvement of the mechanical properties with increasing modification. Further property improvement was achieved using a layer-by-layer approach to produce alternate layers of polymer and silica on the surface. PMID:20355926

  12. Mineral oils

    NASA Technical Reports Server (NTRS)

    Furby, N. W.

    1973-01-01

    The characteristics of lubricants made from mineral oils are discussed. Types and compositions of base stocks are reviewed and the product demands and compositions of typical products are outlined. Processes for commercial production of mineral oils are examined. Tables of data are included to show examples of product types and requirements. A chemical analysis of three types of mineral oils is reported.

  13. Ionic composition and mineral equilibria of acidic groundwater on the west coast of Sweden

    SciTech Connect

    Sjoestroem, J.

    1993-08-01

    The groundwater chemistry of 14 shallow wells and 10 springs in Halland, southwest Sweden, and precipitation have been studied in trilinear diagrams. Ionic strength and saturation index (SI) for selected minerals have been calculated. Five springwaters have similar chemical composition to that of the precipitation, which indicates surficial and rapidly recharged water. The SI of the groundwaters is out of equilibrium (undersaturated) with respect to primary silicates such as mafic minerals, feldspar, K-mica and chlorite, but in equilibrium with solid SiO{sub 2} (quartz, cristobalite, or chalcedony). The SI shows oversaturation conditions for kaolinite, hydroxy-Al interlayered vermiculite, Na, K, Mg-beidellite, Mg-montmorillonite, and AB-montmorillonite. Concentrations of soluble Al and Si can be governed by Mg, Fe-beidellite, BF-montmorillonite, or Ca-montmorillonite at four springs, and by halloysite at two wells on the coastal plain. For these groundwaters, clay minerals may act as H{sup +} buffers and thus have an influence on pH and toxic Al, i.e., parameters affecting the drinking water quality and environment. The study shows that the soil catena are intensily weathered at the investigated sites. It is further concluded that neither cation exchange nor primary silicate weathering will keep up with buffering the acidic loads into the soils. A general prediction of groundwater quality is presented. 23 refs., 4 figs., 4 tabs.

  14. Composition and Origin of Martian Surface Material, Remote Detection of Minerals, and Applications to Astrobiology

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Lane, M. D.; Murad, E.; Mancinelli, R. L.

    1999-01-01

    Martian surface composition and processes are under study through analysis of spectral, magnetic and chemical data from Mars and analysis of laboratory analog materials. The focus of this study is on potential lander/rover measurements of weathered volcanic tephra and hydrothermal rocks because these samples resulted from processes that may have occurred on Mars. Fine-grained particles from these sources may be responsible for origination of the dust/soil on Mars that is shaping the planet's surface character. Alteration on the surface of Mars likely includes both chemical and physical interactions of soil particles and rock surfaces. Many of the minerals present in hydrothermal samples may be associated with organisms and may be useful as indicators of life or environments supportive of life on Mars. Characterization of the spectroscopic properties in the visible/near-infrared (VIS/NIR) and mid-infrared (IR) regions using reflectance, emittance and Raman, as well as the thermal properties of minerals thought to be present on Mars are being performed in order to identify them remotely. Particular interest is directed toward locating minerals, and hence landing sites, important to Astrobiology.

  15. Mineral Composition Determination of the Lunar Crust with the SIR-2 Instrument on CHANDRAYAAN-1

    NASA Astrophysics Data System (ADS)

    Mall, Urs; Bhatt, Megha; Bugiolacchi, Roberto

    2012-07-01

    Remote sensing techniques have been used for quite some time to collect information concerning the composition of terrestrial and extra-terrestrial surfaces. Among those techniques InfraRed (IR) spectroscopy provides information at the molecular level on the structure and properties of minerals. Due to the fact that IR spectra are specific to given minerals, IR spectroscopy is widely applied in qualitative and quantitative mineralogical analyses. In the laboratory the measurement of the IR transmission spectrum of a given material delivers a direct determination of the absorption coefficient of the irradiated substance as a unique identification parameter. Relative wavelength position, strength, and shape of the measured absorption bands have been employed for a long time as diagnostic tools to analyse the mineralogy of the observed surface by deriving basic correlations between optical properties and the actual mineralogy of the observed samples. With the advent of high-resolution NIR reflection spectrometers, mineral identification of planetary surfaces can be investigated now more quantitatively. We show how remotely sensed NIR lunar data, collected by the SIR-2-instrument [1] that flew on the Indian Lunar Mission Chandrayaan-1 in 2009 and 2010, can be used to unscramble and identify the mineral composition of the lunar crust. The SIR-2 instrument was a lightweight, modular, grating-based, high-resolution point spectrometer operating in the spectral range 0.9--2.4~μ m, with spectral resolution of ˜6 nm (256 bands). For this study 50,000 SIR-2 spectra were selected, which show clear absorption features. We concentrate here on pyroxene as one of the most common minerals in both evolved and undifferentiated solid bodies of the solar system and as the dominant mafic mineral on the lunar surface [2]. With their distinct absorption features not only in the visible but also in the near-infrared this group of minerals warrants a quantitative analysis. We are using the

  16. A Hydrogel-Mineral Composite Scaffold for Osteochondral Interface Tissue Engineering

    PubMed Central

    Khanarian, Nora T.; Jiang, Jie; Wan, Leo Q.; Mow, Van C.

    2012-01-01

    Osteoarthritis is the leading cause of physical disability among Americans, and tissue engineered cartilage grafts have emerged as a promising treatment option for this debilitating condition. Currently, the formation of a stable interface between the cartilage graft and subchondral bone remains a significant challenge. This study evaluates the potential of a hybrid scaffold of hydroxyapatite (HA) and alginate hydrogel for the regeneration of the osteochondral interface. Specifically, the effects of HA on the response of chondrocytes were determined, focusing on changes in matrix production and mineralization, as well as scaffold mechanical properties over time. Additionally, the optimal chondrocyte population for interface tissue engineering was evaluated. It was observed that the HA phase of the composite scaffold promoted the formation of a proteoglycan- and type II collagen–rich matrix when seeded with deep zone chondrocytes. More importantly, the elevated biosynthesis translated into significant increases in both compressive and shear moduli relative to the mineral-free control. Presence of HA also promoted chondrocyte hypertrophy and type X collagen deposition. These results demonstrate that the hydrogel–calcium phosphate composite supported the formation of a calcified cartilage-like matrix and is a promising scaffold design for osteochondral interface tissue engineering. PMID:21919797

  17. Chemical and isotopic composition of water from thermal springs and mineral springs of Washington

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1982-01-01

    Water from thermal springs of Washington range in chemical composition from dilute NaHC03, to moderately saline C02-charged NaHC03-Cl waters. St. Martin 's Hot Spring which discharges a slightly saline NaCl water, is the notable exception. Mineral springs generally discharge a moderately saline C02-charged NaHC03-Cl water. The dilute Na-HC03 waters are generally associated with granite. The warm to hot waters charged with C02 issue on or near the large stratovolcanoes and many of the mineral springs also occur near the large volcanoes. The dilute waters have oxygen isotopic compositions which indicate relatively little water-rock exchange. The C02-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. Carbon-13 in the C02-charged thermal waters is more depleted (-10 to -12 permil) than in the cold C02-charged soda springs (-2 to -8 permil) which are also scattered throughout the Cascades. The hot and cold C02-charged waters are supersaturated with respect to CaC03, but only the hot springs are actively depositing CaC03. Baker, Gamma, Sulphur , and Ohanapecosh seem to be associated with thermal aquifers of more than 100C. (USGS)

  18. Evaluation of honeys and bee products quality based on their mineral composition using multivariate techniques.

    PubMed

    Grembecka, Małgorzata; Szefer, Piotr

    2013-05-01

    The aim of this investigation was to estimate honeys and bee products quality in view of their mineral composition using multivariate techniques. Fourteen elements (Ca, Mg, K, Na, P, Co, Mn, Fe, Cr, Ni, Zn, Cu, Cd, and Pb) were determined in 66 honeys and bee products from different places of Poland and Europe and various botanical origins. The total metals contents were analyzed by flame atomic absorption spectrometry using deuterium-background correction after wet digestion with nitric acid in an automatic microwave digestion system. Phosphorus was determined in the form of phosphomolybdate by a spectrophotometric method. Reliability of the procedure was checked by analysis of the certified reference materials tea (NCS DC 73351) and cabbage (IAEA-359). The analytical data indicated a good level of quality of honeys, especially with regard to the concentration of toxic trace elements, such as Cd and Pb. Results were submitted to multivariate analysis, including such techniques as factor and cluster analyses in order to evaluate the existence of data patterns and the possibility of classification of honeys from different botanical origins according to their mineral content. The nine metals determined were considered as chemical descriptors of each sample. There was a significant influence of the botanical and geographical provenance as well as technological processing on the elemental composition of honeys. PMID:22930187

  19. Relationships between magnetic parameters, chemical composition and clay minerals of topsoils near Coimbra, central Portugal

    NASA Astrophysics Data System (ADS)

    Lourenço, A. M.; Rocha, F.; Gomes, C. R.

    2012-08-01

    Magnetic measurements, mineralogical and geochemical studies were carried out on surface soil samples in order to find possible relationships and to obtain environmental implications. The samples were taken over a square grid (500 × 500 m) near the city of Coimbra, in central Portugal. Mass specific magnetic susceptibility ranges between 12.50 and 710.11 × 10-8 m3 kg-1 and isothermal magnetic remanence at 1 tesla values range between 253 and 18 174 × 10-3 Am-1. Chemical analysis by atomic absorption spectrometry shows that the concentration of various toxic elements was higher than the mean background values for world soils. Higher values of susceptibility and toxic elements content were reported near roads and rivers. Urban pollution and road traffic emission seem to be the main influence for these values. A semi-quantitative X-ray diffraction study has been carried out on a representative set of subsamples, using peak areas. Illite (average 52%), kaolinite (average 55%), chlorite (average 6%) and irregular illite-smectite mixed-layers (average 9%) are the major clay minerals groups identified. Mineral composition of total fraction confirms the presence of magnetite/maghemite. The clay minerals results point to a contrast in the behavior of the main clay minerals: illite, chlorite, and kaolinite (also, smectite in some samples), which are generally in agreement with the magnetic and geochemical data. The results showed that magnetic measurements are a sensitive, fast, inexpensive and robust method, which can be advantageously applied for studying soils affected by urban and road pollution.

  20. Systematic Relationships Between Lidar Observables And Sizes And Mineral Composition Of Dust Aerosols

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Perlwitz, J. P.; Fridlind, A. M.; Chowdhary, J.; Cairns, B.; Stangl, A. J.

    2015-12-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  1. Rye Affects Bacterial Translocation, Intestinal Viscosity, Microbiota Composition and Bone Mineralization in Turkey Poults

    PubMed Central

    Tellez, Guillermo; Latorre, Juan D.; Kuttappan, Vivek A.; Hargis, Billy M.; Hernandez-Velasco, Xochitl

    2015-01-01

    Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are

  2. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  3. Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in Turkey poults.

    PubMed

    Tellez, Guillermo; Latorre, Juan D; Kuttappan, Vivek A; Hargis, Billy M; Hernandez-Velasco, Xochitl

    2015-01-01

    Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are

  4. Body composition and bone mineral density of national football league players.

    PubMed

    Dengel, Donald R; Bosch, Tyler A; Burruss, T Pepper; Fielding, Kurt A; Engel, Bryan E; Weir, Nate L; Weston, Todd D

    2014-01-01

    The purpose of the present study was to examine the body composition of National Football League (NFL) players before the start of the regular season. Four hundred eleven NFL players were measured for height, weight and lean, fat, and bone mass using dual-energy x-ray absorptiometry (DXA). Subjects were categorized by their offensive or defensive position for comparison. On average, positions that mirror each other (i.e., offensive lineman [OL] vs. defensive lineman [DL]) have very similar body composition. Although OL had more fat mass than DL, they were similar in total and upper and lower lean mass. Linebackers (LB) and running backs (RB) were similar for all measures of fat and lean mass. Tight ends were unique in that they were similar to RB and LB on measures of fat mass; however, they had greater lean mass than both RB and LB and upper-body lean mass that was similar to OL. Quarterbacks and punters/kickers were similar in fat and lean masses. All positions had normal levels of bone mineral density. The DXA allowed us to measure differences in lean mass between arms and legs for symmetry assessments. Although most individuals had similar totals of lean mass in each leg and or arms, there were outliers who may be at risk for injury. The data presented demonstrate not only differences in total body composition, but also show regional body composition differences that may provide positional templates. PMID:24149760

  5. Transformative learning in a professional development course aimed at addressing disruptive physician behavior: a composite case study.

    PubMed

    Samenow, Charles P; Worley, Linda L M; Neufeld, Ron; Fishel, Tobi; Swiggart, William H

    2013-01-01

    Disruptive physician behavior presents a challenge to the academic medical center. Such behaviors threaten the learning environment through increasing staff conflict, role modeling poor behaviors to trainees, and, ultimately, posing a risk to patient safety. Given that these physicians are often respected and valued for their clinical skills, many institutions struggle with how to best manage their behaviors. The authors present a composite case study of an academic physician referred to a professional development program for his disruptive behavior. They outline how transformative learning was applied to the development of concrete learning objectives, activities, and assessments for a curriculum aimed at promoting behavior change. Important themes include a safe group process in which the physician's assumptions are critically examined so that through experiential exercises and reflection, new roles, skills, and behaviors are learned, explored, and practiced. Timely feedback to the physician from the institution, colleagues, and administrators is critical to the physician's understanding of the impact of his or her behavior. Ultimately, the physician returns to practice demonstrating more professional behavior. Implications for medical education, prevention, and other professional development programs are discussed. PMID:23165281

  6. Potassium isotopic compositions of NIST potassium standards and 40Ar/39Ar mineral standards

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Tappa, M.; Ellam, R. M.; Mark, D. F.; Lloyd, N. S.; Higgins, J. A.; Simon, J. I.

    2013-12-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25‰ level (1σ) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards. [1] Hiess

  7. Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, age, puberty, and physical activity.

    PubMed

    Ausili, Emanuele; Rigante, Donato; Salvaggio, Elio; Focarelli, Benedetta; Rendeli, Claudia; Ansuini, Valentina; Paolucci, Valentina; Triarico, Silvia; Martini, Lucilla; Caradonna, Paolo

    2012-09-01

    Interventions directed to the recognition of abnormal bone mineral density, bone mineral content, and body composition in the pediatric age require the definition of factors influencing bone mass acquisition during growth. We have evaluated in a cross-sectional manner by dual-energy X-ray absorptiometry the impact of sex, age, puberty, and physical activity on total body areal bone mineral density, regional (lumbar and femoral) bone mineral densities, bone mineral content, and body composition (fat mass and lean mass) in a cohort of 359 healthy Italian children aged 3-14 years and investigated their specific contribution to bone mass accrual. Statistical multiple regression analysis was performed dividing the population in pre- and post-pubertal groups. Bone mineral density at the lumbar spine has resulted equally distributed in both sexes before puberty while has resulted higher at the femoral necks in males at whatever age. A significant effect on bone mass acquisition was exerted by male sex and lean mass. In the areas where the cortical bone is prevalent, males of the pre-pubertal group have presented the highest values; in the areas where the cancellous bone is prevalent, both sexes were equivalent until the age of 9 years, but after this age, females have presented higher increases, probably related to the inferior dimensional development of lumbar vertebrae. Conclusively, male sex and lean mass seem to represent independent predictors of bone mass accrual in the cortical bone of the examined children, while female sex and pubertal maturation are independent predictors of bone mass accrual in the trabecular bone. PMID:21809005

  8. Responses in Micro-Mineral Metabolism in Rainbow Trout to Change in Dietary Ingredient Composition and Inclusion of a Micro-Mineral Premix.

    PubMed

    Antony Jesu Prabhu, P; Geurden, Inge; Fontagné-Dicharry, Stéphanie; Veron, Vincent; Larroquet, Laurence; Mariojouls, Catherine; Schrama, Johan W; Kaushik, Sadasivam J

    2016-01-01

    Responses in micro-mineral metabolism to changes in dietary ingredient composition and inclusion of a micro-mineral premix (Fe, Cu, Mn, Zn and Se) were studied in rainbow trout. In a 2 x 2 factorial design, triplicate groups of rainbow trout (initial weight: 20 g) were fed over 12 weeks at 17°C a fishmeal-based diet (M) or a plant-ingredient based diet (V), with or without inclusion of a mineral premix. Trout fed the V vs. M diet had lower feed intake, growth, hepato-somatic index, apparent availability coefficient (AAC) of Fe, Cu, Mn and Zn and also lower whole body Se and Zn concentration, whereas whole body Fe and Cu and plasma Fe concentrations were higher. Feeding the V diet increased intestinal ferric reductase activity; at transcriptional level, hepatic hepcidin expression was down-regulated and ferroportin 1 was up-regulated. Transcription of intestinal Cu-transporting ATPases and hepatic copper transporter1 were higher in V0 compared to other groups. Among the hepatic metalo-enzyme activities assayed, only Se-dependent glutathione peroxidase was affected, being lower in V fed fish. Premix inclusion reduced the AAC of Fe, Cu and Zn; increased the whole body concentration of all micro- minerals; up-regulated hepatic hepcidin and down-regulated intestinal ferroportin 1 transcription; and reduced the transcription of Cu-transporting ATPases in the intestine. Overall, the regulation of micro-mineral metabolism in rainbow trout, especially Fe and Cu, was affected both by a change in ingredient composition and micro-mineral premix inclusion. PMID:26895186

  9. Responses in Micro-Mineral Metabolism in Rainbow Trout to Change in Dietary Ingredient Composition and Inclusion of a Micro-Mineral Premix

    PubMed Central

    Antony Jesu Prabhu, P.; Geurden, Inge; Fontagné-Dicharry, Stéphanie; Veron, Vincent; Larroquet, Laurence; Mariojouls, Catherine; Schrama, Johan W.; Kaushik, Sadasivam J.

    2016-01-01

    Responses in micro-mineral metabolism to changes in dietary ingredient composition and inclusion of a micro-mineral premix (Fe, Cu, Mn, Zn and Se) were studied in rainbow trout. In a 2 x 2 factorial design, triplicate groups of rainbow trout (initial weight: 20g) were fed over 12 weeks at 17°C a fishmeal-based diet (M) or a plant-ingredient based diet (V), with or without inclusion of a mineral premix. Trout fed the V vs. M diet had lower feed intake, growth, hepato-somatic index, apparent availability coefficient (AAC) of Fe, Cu, Mn and Zn and also lower whole body Se and Zn concentration, whereas whole body Fe and Cu and plasma Fe concentrations were higher. Feeding the V diet increased intestinal ferric reductase activity; at transcriptional level, hepatic hepcidin expression was down-regulated and ferroportin 1 was up-regulated. Transcription of intestinal Cu-transporting ATPases and hepatic copper transporter1 were higher in V0 compared to other groups. Among the hepatic metalo-enzyme activities assayed, only Se-dependent glutathione peroxidase was affected, being lower in V fed fish. Premix inclusion reduced the AAC of Fe, Cu and Zn; increased the whole body concentration of all micro- minerals; up-regulated hepatic hepcidin and down-regulated intestinal ferroportin 1 transcription; and reduced the transcription of Cu-transporting ATPases in the intestine. Overall, the regulation of micro-mineral metabolism in rainbow trout, especially Fe and Cu, was affected both by a change in ingredient composition and micro-mineral premix inclusion. PMID:26895186

  10. Time-of-flight mass spectrometry of mineral volatilization: toward direct composition analysis of shocked mineral vapor.

    PubMed

    Austin, Daniel E; Shen, Andy H T; Beauchamp, J L; Ahrens, Thomas J

    2012-04-01

    We have developed an orthogonal-acceleration time-of-flight mass spectrometer to study the volatiles produced when a mineral's shock-compressed state is isentropically released, as occurs when a shock wave, driven into the mineral by an impact, reflects upon reaching a free surface. The instrument is designed to use a gun or explosive-launched projectile as the source of the shock wave, impact onto a flange separating a poor vacuum and the high vacuum (10(-7) Torr) interior of the mass spectrometer, and transmission of the shock wave through the flange to a mineral sample mounted on the high-vacuum side of the flange. The device extracts and analyzes the neutrals and ions produced from the shocked mineral prior to the possible occurrence of collateral instrument damage from the shock-inducing impact. The instrument has been tested using laser ablation of various mineral surfaces, and the resulting spectra are presented. Mass spectra are compared with theoretical distributions of molecular species, and with expected distributions from laser desorption. PMID:22559558

  11. Effect of body composition on bone mineral density in Moroccan patients with juvenile idiopathic arthritis

    PubMed Central

    El Badri, Dalal; Rostom, Samira; Bouaddi, Ilham; Hassani, Asmae; Chkirate, Bouchra; Amine, Bouchra; Hajjaj-Hassouni, Najia

    2014-01-01

    Introduction The link between bone mass and body composition is widely recognized, but only few works were selectively performed on subjects with juvenile idiopathic arthritis. The aim of our study was to investigate the effect of body composition on bone mineral density (BMD) in Moroccan patients with juvenile idiopathic arthritis. Methods Thirty three children with juvenile idiopathic arthritis (JIA) were included in a cross-sectional study. The diagnosis of JIA was made according to the criteria of the International League of Association of Rheumatology (ILAR). Body mass index (BMI) was calculated from the ratio of weight/height2(kg/m2). Pubertal status was determined according to the Tanner criteria. Bone status, body composition and bone mineral content (BMC) were analyzed by using dual-energy X-ray absorptiometry (DXA). BMD was assessed at the lumbar spine (L1-L4) and at total body in (g/cm2). Total body fat tissue mass (FTM) and lean tissue mass (LTM) were also analyzed by DXA and expressed in kilograms. In children, low BMD was defined as a Z-score less than -2 and osteoporosis was defined as a Z-score less than -2 with a fracture history. Results A cross-sectional study was conducted in 33 Moroccan patients with JIA aged between 4 and 16 years, Fat mass was not related to bone density; in contrast, BMD was positively associated to LTM in total body(r = =0.41, p= 0.04) but not in lumbar spine (r = 0.29, p= 0.17). There exist significant correlation between BMC and BMD in total body (r = 0.51, p = 0.01). Conclusion This study suggests that the LTM is a determining factor of the BMD during adolescence. Other studies with a broader sample would be useful to confirm this relation. PMID:25120859

  12. Comparison of mineral and cholesterol composition of different commercial goat milk products manufactured in USA.

    PubMed

    Park

    2000-07-01

    Concentrations of 12 major and trace minerals and cholesterol in commercial goat fluid milk, evaporated, powdered, yogurt, and cheese products manufactured in the US were evaluated for compositional differences. Minerals were determined by an Inductively Coupled Argon Plasma Emission Spectroscopy (ICAP), while cholesterol was analyzed using colorimetric and gas chromatographic (GC) methods. Mean total solids content (%) of fluid milk, evaporated milk, powdered milk, yogurt, plain soft and Monterey Jack cheeses were: 11.3, 20.9, 94.1, 11.5, 32.5, and 57.7, respectively. Mean calcium and phosphorus contents (ppm, dry basis) of the corresponding products were: 103, 125; 440, 393; 7715, 7471; 161, 144; 691, 1105; 3492, 3067, respectively. The respective iron and zinc contents (ppm) of the corresponding products were: 0.062, 0.349; 1.518, 1.635; 3.33, 30.21, 0.117, 0.338; 7.16, 3.64; 8.86, 3.81. The levels of potassium (K) in cheeses were lowest among all the products including fluid goat milk, suggesting that a significant amount of K was lost during cheese manufacturing processes. Levels of all trace minerals were higher in yogurt and cheeses than in fluid milk. The levels of trace minerals in cheeses were greater than those in yogurt products. Iron and aluminum contents of certain goat milk products were considerably higher than normal, possibly due to contamination of minerals from manufacturing utensils and product metal cans. Sulphur contents of fermented products were significantly greater than those of fluid milk, which may be accountable for the microbial synthesis of sulfur containing proteins during the manufacturing processes of the products. Cholesterol contents (mg/100g, wet basis) of fluid, evaporated, powdered goat milk and Monterey Jack cheese determined by GC method were: 11.0, 24.9, 119.5 and 91.7, respectively. Cholesterol contents of the goat milk products analyzed by colorimetric method were substantially greater than those by GC method. PMID

  13. Study on the Relationship between the Depth of Spectral Absorption and the Content of the Mineral Composition of Biotite.

    PubMed

    Yang, Chang-bao; Zhang, Chen-xi; Liu, Fang; Jiang, Qi-gang

    2015-09-01

    The mineral composition of rock is one of the main factors affecting the spectral reflectance characteristics, and it's an important reason for generating various rock characteristic spectra. This study choose the rock samples provided by Jet Propulsion Laboratory (JPL) (including all kinds of mineral percentage of rocks, and spectral reflectances range from 0.35 to 2.50 μm wavelength measured by ASD spectrometer), and the various types of mineral spectral reflectances contained within the rocks are the essential data. Using the spectral linear mixture model of rocks and their minerals, firstly, a simulation study on the mixture of rock and mineral composition is achieved, the experimental results indicate that rock spectral curves using the model which based on the theory of the linear mixture are able to simulate better and preserve the absorption characteristics of various mineral components well. Then, 8 samples which contain biotite mineral are picked from the rock spectra of igneous, biotite contents and the absorption depth characteristics of spectral reflection at 2.332 μm, furthermore, a variety of linear and nonlinear normal statistical models are used to fit the relationship between the depth of absorption spectra and the content of the mineral composition of biotite, finally, a new simulation model is build up with the Growth and the Exponential curve model, and a statistical response relationship between the spectral absorption depth and the rock mineral contents is simulated by using the new model, the fitting results show that the correlation coefficient reaches 0.9984 and the standard deviation is 0.572, although the standard deviation using Growth and Exponential model is less than the two model combined with the new model fitting the standard deviation, the correlation coefficient of the new model had significantly increased, which suggesting that the, new model fitting effect is closer to the measured values of samples, it proves that the

  14. Mineral physics constraints on the chemical composition and temperature of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Calderwood, Arthur Robertson

    2000-10-01

    Numerical mineral physics modeling is used in seven studies to constrain the composition and dynamics of the Earth's mantle. First, using updated, published experimental data, I evaluate two competing mineralogical models for the composition of the mantle by calculating and comparing one dimensional profiles of density (rho) and bulk sound velocity (V φ) against seismologically inferred profiles. Second, to further test the predicted properties of the uniform composition, pyrolite model, the mineral physics calculations are extended to predict one dimensional profiles of shear (VS) and compression (V P) velocity across the upper mantle and transition zone. Third, I estimate a high temperature value for 6m/6T Mg-PvP of Mg-perovskite via constrained adiabatic decompression of the lower mantle PREM seismic properties. A simplified pyrolite lower mantle mineralogy of magnesiowustite and Mg-Fe perovskite is used to provide apriori constraints for some of the unknown high temperature decompressed properties thereby restricting the possible parameter space for the decompressed hot shear modulus (mu0). Fourth, adopting this estimate of 6m/6T Mg-PvP , and estimating 6m/6T Ca-PvP via a high temperature thermodynamic approximation, I then iteratively adjust the unmeasured pressure derivative, 6m/6T Mg-PvP , under the first order assumption 6m/6T Mg-PvP = 6m/6T Ca-PvP , until predicted one dimensional profiles of VS and VP for a pyrolite mineralogy match the seismic profiles across the lower mantle. Fifth, I incorporate the recent experimental and theoretical values for Mg-perovskite and compare these with the inferences deduced in the previous chapters. Sixth, I utilize the pyrolite V S and VP profiles to evaluate the ratio of relative VS and VP velocity heterogeneity in the mantle via the parameter (∂lnV S/∂lnVP)P. Seventh, I estimate new extremal bounds for the lateral temperature anomalies in the mantle using the pyrolite mineral physics model of VS and VP. I conclude

  15. Predicting the Mineral Composition of Dust Aerosols. Part 2; Model Evaluation and Identification of Key Processes with Observations

    NASA Technical Reports Server (NTRS)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  16. The use of the scanning electron microscope in the determination of the mineral composition of Ballachulish slate

    SciTech Connect

    Walsh, Joan A.

    2007-11-15

    Slate is a fine-grained, low-grade metamorphic rock derived from argillaceous sediments or occasionally volcanic ash. Although most slates contain mainly quartz, chlorite and white mica, they vary considerably in their durability, some lasting centuries while others fail after a few years of service. A detailed characterisation of their mineralogy is required for the assessment of performance, and to establish the provenance of a used slate. A combination of methods was used to examine Ballachulish slates; XRD analysis to determine the principal minerals present, XRF analysis to determine the total chemical composition, and scanning electron microscopy to determine the chemical composition of individual minerals. It was found that the white mica in Ballachulish slate is phengite and the chlorite is ripidolite. Feldspar is present as albite and carbonate as ferroan dolomite. Several accessory minerals were also identified, including chloritoid, monzonite and zircon. There was considerable variation in the ratio of the principal minerals, making it impossible to identify used slates by this criterion. Instead, chemical composition of the individual minerals, and possibly key accessory minerals, should be used to determine the provenance of slates.

  17. Lead isotope compositions as guides to early gold mineralization: The North Amethyst vein system, Creede district, Colorado

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.

    1994-01-01

    Pb isotope compositions from the late stage of the North Amethyst vein system and from the Bondholder and central and southern Creede mining districts are more radiogenic than the host volcanic rocks of the central cluster of the San Juan volcanic field. Our Pb isotope results indicate that early Au mineralization of the North Amethyst area may represent the product of an older and relatively local hydrothermal system distinct from that of the younger base metal and Ag mineralization found throughout the region. Fluids that deposited Au minerals may have derived their Pb isotope composition by a greater degree of interaction with shallow, relatively less radiogenic volcanic wall rocks. The younger, base metal and Ag-rich mineralization that overprints the Au mineralization in the North Amethyst area clearly has a more radiogenic isotopic signature, which implies that the later mineralization derived a greater component of its Pb from Proterozoic source rocks, or sediments derived from them.Paragenetically early sulfide-rich vein assemblages have the least radiogenic galenas and generally also have the highest Au contents. Thus, identification of paragenetically early vein assemblages with relatively unradiogenic Pb isotope compositions similar to those of the North Amethyst area provides an additional exploration tool for Au in the central San Juan Mountains area.

  18. Antioxidant activity and mineral composition of three Mediterranean common seaweeds from Abu-Qir Bay, Egypt.

    PubMed

    Khairy, Hanan M; El-Sheikh, Mohamed A

    2015-09-01

    Antioxidant activity and mineral composition were evaluated seasonally from spring to autumn 2010 in the three common seaweeds Ulva lactuca Linnaeus (Chlorophyta), Jania rubens (Linnaeus) J.V. Lamouroux and Pterocladia capillacea (S.G. Gmelin) Bornet (Rhodophyta). The antioxidant activity was measured with β-carotene, total phenol content and DPPH (2,2-diphenyl-1-picrylhydrazyl). Seaweeds were collected from the rocky site near Boughaz El-Maadya Abu-Qir Bay of Alexandria, Egypt. The results showed maximum increase of β-carotene in P. capillacea during summer. A significant increase in total phenolic content at P ⩽ 0.05 was found in the red alga (J. rubens) during summer. Also, U. lactuca showed the maximum antioxidant scavenging activity especially during summer. Minerals in all investigated samples were higher than those in conventional edible vegetables. Na/K ratio ranged between 0.78 and 2.4 mg/100 g, which is a favorable value. All trace metals exceeded the recommended doses by Reference Nutrient Intake (RNI). During summer season, it was found that Cu = 2.02 ± 0.13 and Cr = 0.46 ± 0.14 mg/100 g in U. lactuca and Fe had a suitable concentration (18.37 ± 0.5 mg/100 g) in P. capillacea. The studied species were rich in carotenoids, phenolic compounds, DPPH free radicals and minerals, therefore, they can be used as potential source of health food in human diets and may be of use to food industry. PMID:26288568

  19. Antioxidant activity and mineral composition of three Mediterranean common seaweeds from Abu-Qir Bay, Egypt

    PubMed Central

    Khairy, Hanan M.; El-Sheikh, Mohamed A.

    2015-01-01

    Antioxidant activity and mineral composition were evaluated seasonally from spring to autumn 2010 in the three common seaweeds Ulva lactuca Linnaeus (Chlorophyta), Jania rubens (Linnaeus) J.V. Lamouroux and Pterocladia capillacea (S.G. Gmelin) Bornet (Rhodophyta). The antioxidant activity was measured with β-carotene, total phenol content and DPPH (2,2-diphenyl-1-picrylhydrazyl). Seaweeds were collected from the rocky site near Boughaz El-Maadya Abu-Qir Bay of Alexandria, Egypt. The results showed maximum increase of β-carotene in P. capillacea during summer. A significant increase in total phenolic content at P ⩽ 0.05 was found in the red alga (J. rubens) during summer. Also, U. lactuca showed the maximum antioxidant scavenging activity especially during summer. Minerals in all investigated samples were higher than those in conventional edible vegetables. Na/K ratio ranged between 0.78 and 2.4 mg/100 g, which is a favorable value. All trace metals exceeded the recommended doses by Reference Nutrient Intake (RNI). During summer season, it was found that Cu = 2.02 ± 0.13 and Cr = 0.46 ± 0.14 mg/100 g in U. lactuca and Fe had a suitable concentration (18.37 ± 0.5 mg/100 g) in P. capillacea. The studied species were rich in carotenoids, phenolic compounds, DPPH free radicals and minerals, therefore, they can be used as potential source of health food in human diets and may be of use to food industry. PMID:26288568

  20. Mineral classification revisited: use of quasiternary diagrams in the visualization of compositional distribution of inorganic material in coal

    SciTech Connect

    Heikki J. Ollila; Jouni H.A. Daavitsainen; Laura H. Nuutinen; Minna S. Tiainen; Mika E. Virtanen; Risto S. Laitinen

    2006-03-15

    A comparative study to determine the elemental composition of individual inorganic particles in the Pittsburgh No. 8 coal sample has been carried out with two different magnifications by SEM-EDS. The classification of particles into mineral classes left 30-40% of the particles unclassified. It was deduced that the sample contained the following minerals: calcite, kaolinite, pyrite, quartz, apatite, muscovite, and montmorillonite. The information of the compositional distribution of inorganic material in the coal sample is enhanced by use of the quasiternary diagrams. Minerals, such as apatite, calcite, pyrite, and quartz, can clearly be identified from the quasiternary diagram. A suitable elemental definition of the three corners in the quasiternary diagram enables the discussion of the compositional distribution and identity of the inorganic material that remains unclassified in the mineral classification. By combining the information from mineral classification and quasiternary diagrams, the composition of the inorganic material of the coal sample can be understood. This information can be used in the prediction of ash-related problems regardless of the fuel type. 50 refs., 6 figs., 2 tabs.

  1. Chemical composition, antioxidant capacity, and mineral extractability of Sudanese date palm (Phoenix dactylifera L.) fruits

    PubMed Central

    Mohamed, Rania M A; Fageer, Aisha S M; Eltayeb, Mohamed M; Mohamed Ahmed, Isam A

    2014-01-01

    The aim of the present work was to investigate the chemical composition, mineral extractability, and antioxidant capacity of six date palm varieties grown in Sudan. The results showed that Sudanese date varieties contained significantly different (P < 0.05) amounts of moisture, ash, fiber, oil, and carbohydrates, but have almost similar amounts of protein. Moreover, results revealed that date varieties contained significantly varied (P < 0.05) amounts of total polyphenols and total flavonoids, which ranged between 35.82 and 99.34 mg gallic acid equivalent/100 g and 1.74–3.39 mg catechin equivalent/100 g, respectively. The antioxidant activities of the studied date varieties were as follows: ferric-reducing antioxidant power (FRAP) was within the range of 2.82–27.5 mmol/100 g, chelation of Fe2+ ion ranged from 54.31% to 94.98%, and scavenging of H2O2 ranged from 38.48% to 49.13%. There were many correlations (positive, negative, and weak) between antioxidant and mineral extractability of Sudanese date fruits. PMID:25473506

  2. Influence of Cultivation Parameters on the Mineral Composition of Kiwi Fruit from Corsica.

    PubMed

    Santoni, François; Barboni, Toussaint; Paolini, Julien; Costa, Jean

    2016-06-01

    The effect of four cultivation parameters (postmaturity harvest date, storage period at 0 °C, and input of nitrogen and potassium fertilizers) on the mineral composition of kiwi fruit (Actinidia deliciosa var. Hayward) from Corsica were evaluated. The kiwi fruit were harvested on three dates at two-week intervals and some fruit were stored for three and four months. The kiwi fruit orchard was fertilized with controlled levels of nitrogen (five levels) and potassium (three levels) during one growing season. The concentrations of 67 elements in kiwi fruit were measured using various analytical methods, such as flow injection spectrophotometry, flame atomic absorption spectrometry, flame atomic emission spectrometry, electrothermal atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, inductively coupled plasma mass spectrometry, and filtration. The main elements in kiwi fruit are K, N, Cl, P, and Si and, to a lesser amount, Ca, Mg, Na, and Fe. This study demonstrates a high degree of difference in the amount of 23 mineral elements depending on the harvest date, the time of storage, and the input of fertilizers. PMID:27135990

  3. Dissolved gas composition of groundwater in the natural spa complex "Choygan mineral waters" (East Tuva)

    NASA Astrophysics Data System (ADS)

    Kopylova, Y.; Guseva, N.; Shestakova, A.; Khvaschevskaya, A.; Arakchaa, K.

    2014-08-01

    The natural spa complex "Choygan mineral waters", a unique deposit of natural carbon dioxide mineral waters in Siberia, is located in the Eastern Sayan Mountains. There are 33 springs discharge in this area. Spring waters are mainly HCO3-Na-Ca type. TDS varies from 300 mg/L to 2600 mg/L and temperature ranges from 7 °C (in spring 33) to 39 °C (in spring 12), pH varies from 5.9 to 8.3, and the value of the oxidation-reduction potential is from - 170 mV to 236 mV. All studied waters were divided into two groups according to their temperature and geochemical conditions: cold fresh water with oxidizing conditions and warm slightly brackish water with reductive conditions. The gas composition of the studied waters is represented by nitrogen (28-75 vol.%), carbon dioxide (6-65 vol.%), oxygen (7-19 vol.%), radon (4-948 Bq/l). The studied gases differ not only by the content but by the different sources.

  4. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy

    PubMed Central

    González-Martín, M. Inmaculada; Escuredo, Olga; Revilla, Isabel; Vivar-Quintana, Ana M.; Coello, M. Carmen; Palacios Riocerezo, Carlos; Wells Moncada, Guillermo

    2015-01-01

    The potential of near infrared spectroscopy (NIR) with remote reflectance fiber-optic probes for determining the mineral composition of propolis was evaluated. This technology allows direct measurements without prior sample treatment. Ninety one samples of propolis were collected in Chile (Bio-Bio region) and Spain (Castilla-León and Galicia regions). The minerals measured were aluminum, calcium, iron, potassium, magnesium, phosphorus, and some potentially toxic trace elements such as zinc, chromium, nickel, copper and lead. The modified partial least squares (MPLS) regression method was used to develop the NIR calibration model. The determination coefficient (R2) and root mean square error of prediction (RMSEP) obtained for aluminum (0.79, 53), calcium (0.83, 94), iron (0.69, 134) potassium (0.95, 117), magnesium (0.70, 99), phosphorus (0.94, 24) zinc (0.87, 10) chromium (0.48, 0.6) nickel (0.52, 0.7) copper (0.64, 0.9) and lead (0.70, 2) in ppm. The results demonstrated that the capacity for prediction can be considered good for wide ranges of potassium, phosphorus and zinc concentrations, and acceptable for aluminum, calcium, magnesium, iron and lead. This indicated that the NIR method is comparable to chemical methods. The method is of interest in the rapid prediction of potentially toxic elements in propolis before consumption. PMID:26540058

  5. Mineralization, biodegradation, and drug release behavior of gelatin/apatite composite microspheres for bone regeneration.

    PubMed

    Leeuwenburgh, Sander C G; Jo, Junichiro; Wang, Huanan; Yamamoto, Masaya; Jansen, John A; Tabata, Yasuhiko

    2010-10-11

    Gelatin microspheres are well-known for their capacity to release growth factors in a controlled manner, but gelatin microspheres do not calcify in the absence of so-called bioactive substances that induce deposition of calcium phosphate (CaP) bone mineral. This study has investigated if CaP nanocrystals can be incorporated into gelatin microspheres to render these inert microspheres bioactive without compromising the drug releasing properties of gelatin microspheres. Incorporation of CaP nanocrystals into gelatin microspheres resulted into reduced biodegradation and drug release rates, whereas their calcifying capacity increased strongly compared to inert gelatin microspheres. The reduced drug release rate was correlated to the reduced degradation rate as caused by a physical cross-linking effect of CaP nanocrystals dispersed in the gelatin matrix. Consequently, these composite microspheres combine beneficial drug-releasing properties of organic gelatin with the calcifying capacity of a dispersed CaP phase. PMID:20804200

  6. Screening of endocrine-disrupting phenols, herbicides, steroid estrogens, and estrogenicity in drinking water from the waterworks of 35 Italian cities and from PET-bottled mineral water.

    PubMed

    Maggioni, Silvia; Balaguer, Patrick; Chiozzotto, Claudia; Benfenati, Emilio

    2013-03-01

    We investigated contamination by endocrine-disrupting chemicals in drinking water from 35 major Italian cities and five popular Italian brands of bottled mineral water. The quality of Italian drinking water was assessed by combing chemical analysis with bioassay to quantify specific estrogenic contaminants and to characterize the actual biological effect of the mixture of chemicals present in drinking water including the contribution of not targeted compounds. The selected contaminants were natural and synthetic steroid estrogens, alkylphenols and bisphenol A, linuron, triazine herbicides, and their metabolites. A specific analytical method was developed based on solid phase extraction of 1 L of water and concentration to 100 μL for quantification by electrospray ionization liquid chromatography tandem mass spectrometry, achieving quantification limits of 0.05-0.36 ng/L for herbicides and 0.64-7.70 ng/L for steroids and phenols. No steroid estrogens were detected in any of the samples, while bisphenol A and nonylphenols were detected in the ranges of 0.82-102.00 and 10.30-84.00 ng/L respectively. Herbicides and their degradation products, when present, were found from slightly above the quantification limits up to 49.91 ng/L, mainly from cities in northern Italy. Chemical analyses were complemented by the performance of a bioassay for the determination of the estrogenic activity in the extracts based on the transactivation of estrogen receptor α-transfected reporter HeLa-ERE-Luciferase-Neomycin cell line. Activity was generally low with maximum estrogenicity of 13.6 pg/L estradiol equivalents. PMID:22821279

  7. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina)

    NASA Astrophysics Data System (ADS)

    Kasemann, Simone A.; Meixner, Anette; Erzinger, Jörg; Viramonte, José G.; Alonso, Ricardo N.; Franz, Gerhard

    2004-06-01

    We have measured the boron concentration and isotope composition of regionally expansive borate deposits and geothermal fluids from the Cenozoic geothermal system of the Argentine Puna Plateau in the central Andes. The borate minerals borax, colemanite, hydroboracite, inderite, inyoite, kernite, teruggite, tincalconite, and ulexite span a wide range of δ11B values from -29.5 to -0.3‰, whereas fluids cover a range from -18.3 to 0.7‰. The data from recent coexisting borate minerals and fluids allow for the calculation of the isotope composition of the ancient mineralizing fluids and thus for the constraint of the isotope composition of the source rocks sampled by the fluids. The boron isotope composition of ancient mineralizing fluids appears uniform throughout the section of precipitates at a given locality and similar to values obtained from recent thermal fluids. These findings support models that suggest uniform and stable climatic, magmatic, and tectonic conditions during the past 8 million years in this part of the central Andes. Boron in fluids is derived from different sources, depending on the drainage system and local country rocks. One significant boron source is the Paleozoic basement, which has a whole-rock isotopic composition of δ11B=-8.9±2.2‰ (1 SD); another important boron contribution comes from Neogene-Pleistocene ignimbrites ( δ11B=-3.8±2.8‰, 1 SD). Cenozoic andesites and Mesozoic limestones ( δ11B≤+8‰) provide a potential third boron source.

  8. Application of gold compositional analyses to mineral exploration in the United States

    USGS Publications Warehouse

    Antweiler, J.C.; Campbell, W.L.

    1977-01-01

    Native gold is a mineral composed of Au, Ag and Cu in solid solution and it usually contains one or more trace metals as lattice impurities, as mineral inclusions, in grain boundaries or in surface coatings. Alloy proportions of Au, Ag and Cu, together with certain other elements, can be thought of as constituting a gold "signature". Gold is associated with a great variety of ore deposits and has characteristic signatures for each of several types of ore deposits. Signatures for gold derived from igneous-metamorphic, hypothermal, mesothermal and epithermal deposits reflect conditions of ore formation by their content of Ag, Cu and characteristic associated elements. At higher temperatures of ore formation, gold has low Ag and high Cu content, and Bi and Pb are the most abundant trace elements. But at lower temperatures of ore formation, Ag is high, Cu is low, and Pb is the most abundant trace element. The same trend in gold signatures is observable in gold mining districts, such as Central City, Colorado, where zoning as shown by mineral assemblages indicates ore deposition at progressively lower temperatures as the distance from a central high-temperature zone increases. The signatures of gold may be useful in searching for porphyry Cu deposits. Signatures from Butte (Montana), Mineral Park (Arizona) and Cala Abajo (Puerto Rico), on the basis of limited sampling, are similar and distinctive. They are characterized by a similar assemblage of trace elements and are relatively high in both Ag and Cu. Another application of gold compositional data is in tracing placer gold to its bedrock source. For example, the Ag content of placer gold in the Tarryall district of Colorado differed from that of nearly all of the bedrock sources of gold found by early prospectors. However, one lightly prospected area peripheral to the Tertiary quartz monzonite stock at Montgomery Gulch contains gold with a Ag content similar to that of the placer gold. This area is the most likely

  9. Protein-Mineral Interactions: Molecular Dynamics Simulations Capture Importance of Variations in Mineral Surface Composition and Structure.

    PubMed

    Andersen, Amity; Reardon, Patrick N; Chacon, Stephany S; Qafoku, Nikolla P; Washton, Nancy M; Kleber, Markus

    2016-06-21

    Molecular dynamics simulations, conventional and metadynamics, were performed to determine the interaction of model protein Gb1 over kaolinite (001), Na(+)-montmorillonite (001), Ca(2+)-montmorillonite (001), goethite (100), and Na(+)-birnessite (001) mineral surfaces. Gb1, a small (56 residue) protein with a well-characterized solution-state nuclear magnetic resonance (NMR) structure and having α-helix, 4-fold β-sheet, and hydrophobic core features, is used as a model protein to study protein soil mineral interactions and gain insights on structural changes and potential degradation of protein. From our simulations, we observe little change to the hydrated Gb1 structure over the kaolinite, montmorillonite, and goethite surfaces relative to its solvated structure without these mineral surfaces present. Over the Na(+)-birnessite basal surface, however, the Gb1 structure is highly disturbed as a result of interaction with this birnessite surface. Unraveling of the Gb1 β-sheet at specific turns and a partial unraveling of the α-helix is observed over birnessite, which suggests specific vulnerable residue sites for oxidation or hydrolysis possibly leading to fragmentation. PMID:27243116

  10. Mineral water discharges at the Azores archipelago (Portugal): hydrogeological setting, chemical composition and mapping

    NASA Astrophysics Data System (ADS)

    Freire, P.; Cruz, J.; Coutinho, R.; Costa, A.; Antunes, P.

    2009-04-01

    The geological setting of the Azores archipelago, located in the North Atlantic ocean, about 1500 km form Portugal mainland and made of 9 islands of volcanic origin, enhances the multiplicity of surface hydrothermal manifestations. Therefore, a field survey made possible to identify 101 mineral water discharges in the Azores, mainly of CO2-rich cold waters and thermal waters, spread along São Miguel (75%), Terceira (6%), Graciosa (7%), Pico (2%), Faial (3%), São Jorge (5%) and Flores ( 2%) islands, as well as fumarolic grounds. Furnas and Fogo central volcanoes, two of the three composite active volcanoes that dominates the geology of São Miguel, the largest island of the archipelago, represent respectively about 41% and 24% of the discharges from the Azores. Discharges are mainly from fissured aquifers, made of basaltic or trachitic lava flows. Instead, discharges from porous aquifers, made of pyroclastic deposits, mainly of pumice type, are less common, and are more frequent at São Miguel island. The studied discharges correspond mainly to springs (75), and also to boiling pools (10), at fumarolic grounds, 14 drilled wells and 2 large-diameter wells. The boiling pools are only observable at São Miguel island, while drilled wells were made at São Miguel, Terceira and Graciosa. Groundwater at Azores occurs in two major aquifers systems: (1) the basal aquifer system, which corresponds to fresh-water lenses floating on underlying salt water, and (2) in perched-water bodies. The basal aquifer system is in the coastal area, presenting generally a very low hydraulic gradient. From the 14 drilled wells only two are in perched-water bodies. Considering mineral springs, the majority discharge from perched-water bodies (77%), while all the boiling pools also discharge in altitude, also from perched -water bodies. During the field survey an extensive campaign of sample collection was made in all islands, in order to characterize the chemical composition of these waters

  11. The impact of climate and composition on playa surface roughness: Investigation of atmospheric mineral dust emission mechanisms

    NASA Astrophysics Data System (ADS)

    Tollerud, H. J.; Fantle, M. S.

    2011-12-01

    there were no active processes during the summers that changed surface roughness. Images from NASA's MODIS instrument (1640 nm, band 6) delineate winter flooding on the playa. Areas of water in the winter tend to be smoother in the summer. In particular, a smooth area of the play in summer 2010 aligns very closely with ponded water in February 2010. This indicates that standing water disrupts the playa surface, reducing roughness. We also compared the distribution of surface roughness across the playa to playa composition. X-ray diffraction (XRD) of samples from the Black Rock Desert demonstrates that the playa surface is composed of approximately 30% quartz, 45% clays, 10% calcite, and 5% halite. Calcite and halite concentrations vary significantly between samples. We produced a map of calcite concentration in the Black Rock Desert based on hyperspectral data from NASA's EO-1 Hyperion instrument. We find that calcite concentrations are higher in smooth areas that have been inundated by water. Without an understanding of the surface processes associated with dust emission, it is difficult to model atmospheric dust, especially in the past or future when there is much less data for an empirical dust model.

  12. [Nondestructive analysis of chemical composition, structure and mineral constitution of jadeite jade].

    PubMed

    Sun, Fang-Ce; Zhao, Hong-Xia; Gan, Fu-Xi

    2011-11-01

    The techniques of portable energy-dispersive X-ray fluorescence analysis (PXRF), proton induced X-ray emission spectroscopy (LRS) were employed to analyze the chemical composition, structure and mineral constitution of 12 samples. The results indicated that the chemical compositions determined by PXRF and PIXE are well comparable and most samples are constituted by almost pure jadeite with low concentration of secondary elements. One sample contains a little omphacite and one sample is composed only by omphacite. Raman characteristic peaks of jadeite occurred at 201, 372, 698, 985 and 1 037 cm(-1), while those of omphacite located at 680 and 1 017 cm(-1). By using laser Raman spectroscopy for testing the fissures of the samples, wax in 3 samples and epoxy resin in one sample were found. Raman characteristic peaks of wax located at 2 846 and 2 880 cm(-1) and those of epoxy resin occurred at 2 924 and 3 065 c(-1). The application of nondestructive techniques in jadeite jade broadens the range of samples for future study and provides technical support for jadeite jade's further study, identification and classification. PMID:22242534

  13. Constraints on the Compositions of Phobos and Deimos from Mineral Absorptions

    NASA Technical Reports Server (NTRS)

    Fraeman, A. A.; Murchie, S. L.; Arvidson, R. E.; Rivkin, A. S.; Morris, R. V.

    2013-01-01

    The compositions of Phobos and Deimos have remained controversial despite multiple Earth- and space-based observations acquired during the last 40 years. Phobos is composed of at least two spectral units that are both dark yet distinct at visible to near infrared wavelenghts; a spectrally red-sloped "red" unit covers most of the moon and a less red-sloped "blue" unit is present in the ejecta of the approximately 9-km diameter impact crater Stickney [1,2]. Deimos is similar spectrally to Phobos' "red" unit [2]. Here we report results from mapping mineral absorptions on Phobos and Deimos using visible/near infrared observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We find evidence for an absorption feature at 0.65 m in the Phobos red unit and Deimos that is reproducible in observations from other instruments. The phase responsible is uncertain but may be a Fe-bearing phyllosilicate and/or graphite, consistent with the notion that Phobos and Deimos have compositions similar to CM carbonaceous chondrites [3].

  14. Association Between Body Composition and Bone Mineral Density in Men on Hemodialysis.

    PubMed

    Marinho, Sandra M S de A; Wahrlich, Vivian; Mafra, Denise

    2015-10-01

    Studies have revealed complex interactions between bone and fat, however there are few studies about this crosstalk in patients with chronic kidney disease. This study investigated possible relationship between bone mineral density (BMD) and body composition in patients who underwent hemodialysis. Twenty patients were enrolled in a cross-sectional study (47.0 [42.3-56.8] years, body mass index 26.0 ± 4.2 kg/m, dialysis vintage of 48.5 [26.7-95.7] months). Body composition and BMD were assessed by dual-energy X-ray absorptiometry. Leptin and parathormone levels were analyzed using Multiplex kits (R&D System Inc). Low bone mass in the femoral neck was reported in 54.8% of patients. Total BMD and total T-score were positively correlated with lean mass (r = 0.46, P = 0.04; r = 0.47, P = 0.04, respectively), but not with leptin or body fat mass. In conclusion, lean body mass is probably important to maintain bone health in male patients who underwent hemodialysis. PMID:26418381

  15. Bone mineral density and body composition in a myelomeningocele children population: effects of walking ability and sport activity.

    PubMed

    Ausili, E; Focarelli, B; Tabacco, F; Fortunelli, G; Caradonna, P; Massimi, L; Sigismondi, M; Salvaggio, E; Rendeli, C

    2008-01-01

    Myelomeningocele causes serious locomotor disability, osteoporosis and pathologic fractures. The aim of this study was to investigate the relationship between body composition, bone mineral density, walking ability and sport activity in myelomeningocele children. 60 patients aged between 5 and 14 yrs with myelomeningocele (22 ambulatory and 38 non-ambulatory), were studied. Fat mass and fat-free-mass were calculated by anthropometry. The bone mineral density at lumbar and femoral neck were evaluated. Bone mineral density at the lumbar and femoral neck was lower than in the normal population. In the non-ambulaty group, bone mineral density was approximately 1 SD lower than in the ambulatory one (p < 0.01). Fat mass was greater than expected but without significantly differences between walking group (mean 26%) and wheel-chair users (25%). Patients practised sport activity had a better bone mineral density and body fat compared with other patients with the same disability. Patients with myelomeningocele have decreased bone mineral density and are at higher risk of pathologic bone fractures. All subjects showed an excess of fat as percentage of body weight and are shorter than normal children. The measurement of bone mineral density may help to identify those patients at greatest risk of suffering of multiple fractures. Walk ability and sport activity, associated with the development of muscle mass, are important factors in promoting bone and body growth, to reduce the risk of obesity and of pathological fractures. PMID:19146196

  16. Bioinspired Synthesis of CaCO3 Superstructures through a Novel Hydrogel Composite Membranes Mineralization Platform: A Comprehensive View.

    PubMed

    Di Profio, Gianluca; Salehi, Shabnam Majidi; Caliandro, Rocco; Guccione, Pietro; Nico, Giovanni; Curcio, Efrem; Fontananova, Enrica

    2016-01-27

    Hydrogel composite membranes (HCMs) are used as novel mineralization platforms for the bioinspired synthesis of CaCO3 superstructures. A comprehensive statistical analysis of the experimental results reveals quantitative relationships between crystallization conditions and crystal texture and a strong selectivity toward complex morphologies when monomers bearing carboxyl and hydroxyl groups are used together in the hydrogel layer synthesis in HCMs. PMID:26609641

  17. Calcium isotopic composition of mantle xenoliths and minerals from Eastern China

    NASA Astrophysics Data System (ADS)

    Kang, Jin-Ting; Zhu, Hong-Li; Liu, Yu-Fei; Liu, Fang; Wu, Fei; Hao, Yan-Tao; Zhi, Xia-Chen; Zhang, Zhao-Feng; Huang, Fang

    2016-02-01

    This study presents calcium isotope data for co-existing clinopyroxenes (cpx), orthopyroxenes (opx), and olivine (ol) in mantle xenoliths to investigate Ca isotopic fractionation in the upper mantle. δ44/40Ca (δ44/40Ca (‰) = (44Ca/40Ca)SAMPLE/(44Ca/40Ca)SRM915a - 1) in opx varies from 0.95 ± 0.05‰ to 1.82 ± 0.01‰ and cpx from 0.71 ± 0.06‰ to 1.03 ± 0.12‰ (2se). δ44/40Ca in ol (P-15) is 1.16 ± 0.08‰, identical to δ44/40Ca of the co-existing opx (1.12 ± 0.09‰, 2se). The Δ44/40Caopx-cpx (Δ44/40Caopx-cpx = δ44/40Caopx-δ44/40Cacpx) shows a large variation ranging from -0.01‰ to 1.11‰ and it dramatically increases with decreasing of Ca/Mg (atomic ratio) in opx. These observations may reflect the effect of opx composition on the inter-mineral equilibrium fractionation of Ca isotopes, consistent with the theoretical prediction by first-principles theory calculations (Feng et al., 2014). Furthermore, Δ44/40Caopx-cpx decreases when temperature slightly increases from 1196 to 1267 K. However, the magnitude of such inter-mineral isotopic fractionation (1.12‰) is not consistent with the value calculated by the well-known correlation between inter-mineral isotope fractionation factors and 1/T2 (Urey, 1947). Instead, it may reflect the temperature control on crystal chemistry of opx (i.e., Ca content), which further affects Δ44/40Caopx-cpx. The calculated δ44/40Ca of bulk peridotites and pyroxenites range from 0.76 ± 0.06‰ to 1.04 ± 0.12‰ (2se). Notably, δ44/40Ca of bulk peridotites are positively correlated with CaO and negatively with MgO content. Such correlations can be explained by mixing between a fertile mantle end-member and a depleted one with low δ44/40Ca, indicating that Ca isotopes could be a useful tool in studying mantle evolution.

  18. The Discovery of the Most Metal-rich White Dwarf: Composition of a Tidally Disrupted Extrasolar Dwarf Planet

    NASA Astrophysics Data System (ADS)

    Dufour, P.; Kilic, M.; Fontaine, G.; Bergeron, P.; Lachapelle, F.-R.; Kleinman, S. J.; Leggett, S. K.

    2010-08-01

    Cool white dwarf stars are usually found to have an outer atmosphere that is practically pure in hydrogen or helium. However, a small fraction have traces of heavy elements that must originate from the accretion of extrinsic material, most probably circumstellar matter. Upon examining thousands of Sloan Digital Sky Survey (SDSS) spectra, we discovered that the helium-atmosphere white dwarf SDSS J073842.56+183509.6 shows the most severe metal pollution ever seen in the outermost layers of such stars. We present here a quantitative analysis of this exciting star by combining high signal-to-noise ratio follow-up spectroscopic and photometric observations with model atmospheres and evolutionary models. We determine the global structural properties of our target star, as well as the abundances of the most significant pollutants in its atmosphere, i.e., H, O, Na, Mg, Si, Ca, and Fe. The relative abundances of these elements imply that the source of the accreted material has a composition similar to that of Bulk Earth. We also report the signature of a circumstellar disk revealed through a large infrared excess in JHK photometry. Combined with our inferred estimate of the mass of the accreted material, this strongly suggests that we are witnessing the remains of a tidally disrupted extrasolar body that was as large as Ceres.

  19. THE DISCOVERY OF THE MOST METAL-RICH WHITE DWARF: COMPOSITION OF A TIDALLY DISRUPTED EXTRASOLAR DWARF PLANET

    SciTech Connect

    Dufour, P.; Fontaine, G.; Bergeron, P.; Lachapelle, F.-R.; Kilic, M.; Kleinman, S. J.; Leggett, S. K.

    2010-08-10

    Cool white dwarf stars are usually found to have an outer atmosphere that is practically pure in hydrogen or helium. However, a small fraction have traces of heavy elements that must originate from the accretion of extrinsic material, most probably circumstellar matter. Upon examining thousands of Sloan Digital Sky Survey (SDSS) spectra, we discovered that the helium-atmosphere white dwarf SDSS J073842.56+183509.6 shows the most severe metal pollution ever seen in the outermost layers of such stars. We present here a quantitative analysis of this exciting star by combining high signal-to-noise ratio follow-up spectroscopic and photometric observations with model atmospheres and evolutionary models. We determine the global structural properties of our target star, as well as the abundances of the most significant pollutants in its atmosphere, i.e., H, O, Na, Mg, Si, Ca, and Fe. The relative abundances of these elements imply that the source of the accreted material has a composition similar to that of Bulk Earth. We also report the signature of a circumstellar disk revealed through a large infrared excess in JHK photometry. Combined with our inferred estimate of the mass of the accreted material, this strongly suggests that we are witnessing the remains of a tidally disrupted extrasolar body that was as large as Ceres.

  20. Relevance of the Sea Sand Disruption Method (SSDM) for the biometrical differentiation of the essential-oil composition from conifers.

    PubMed

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B; Wianowska, Dorota

    2013-02-01

    Sea Sand Disruption Method (SSDM) is a simple and cheap sample-preparation procedure allowing the reduction of organic solvent consumption, exclusion of sample component degradation, improvement of extraction efficiency and selectivity, and elimination of additional sample clean-up and pre-concentration step before chromatographic analysis. This article deals with the possibility of SSDM application for the differentiation of essential-oils components occurring in the Scots pine (Pinus sylvestris L.) and cypress (Cupressus sempervirens L.) needles from Madrid (Spain), Laganas (Zakhyntos, Greece), Cala Morell (Menorca, Spain), Lublin (Poland), Helsinki (Finland), and Oradea (Romania). The SSDM results are related to the analogous - obtained applying two other sample preparation methods - steam distillation and Pressurized Liquid Extraction (PLE). The results presented established that the total amount and the composition of essential-oil components revealed by SSDM are equivalent or higher than those obtained by one of the most effective extraction technique, PLE. Moreover, SSDM seems to provide the most representative profile of all essential-oil components as no heat is applied. Thus, this environmentally friendly method is suggested to be used as the main extraction procedure for the differentiation of essential-oil components in conifers for scientific and industrial purposes. PMID:23418171

  1. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  2. Effects of fractional crystallization and cumulus processes on mineral composition trends of some lunar and terrestrial rock series

    NASA Technical Reports Server (NTRS)

    Longhi, J.

    1982-01-01

    A plot of Mg of mafic minerals versus An of plagioclase in cumulate rocks from various lunar and terrestrial rock series shows each series to have a distinct curvilinear trend. The slopes of these trends vary from nearly vertical in the case of lunar anorthosites and Mg-norites to nearly horizontal in the case of gabbros from the mid-Atlantic ridge. Calculations based upon known major element partitioning between mafic minerals, plagioclase and subalkaline basaltic liquids indicate that fractional crystallization coupled with cotectic accumulation of mafic minerals and plagioclase will produce mineral composition trends on the Mg versus An diagram with slopes greater than 1 for cases where An is approximately greater than Mg. Furthermore, fractional crystallization of basaltic magmas with alkali concentrations approaching zero will produce near vertical Mg versus An trends. Therefore, the steep slopes of the lunar rock series are consistent with relatively simple fractionation processes. The relatively flat slope of mineral compositions from gabbros collected from the mid-Atlantic ridge at 26 deg N is inconsistent with simple fractionation processes, and calculations show that periodic refilling of a fractionating magma chamber with picritic magma cannot simply explain this flat slope either.

  3. Ultrastructure of regenerated bone mineral surrounding hydroxyapatite-alginate composite and sintered hydroxyapatite.

    PubMed

    Rossi, Andre L; Barreto, Isabela C; Maciel, William Q; Rosa, Fabiana P; Rocha-Leão, Maria H; Werckmann, Jacques; Rossi, Alexandre M; Borojevic, Radovan; Farina, Marcos

    2012-01-01

    We report the ultrastructure of regenerated bone surrounding two types of biomaterials: hydroxyapatite-alginate composite and sintered hydroxyapatite. Critical defects in the calvaria of Wistar rats were filled with micrometer-sized spherical biomaterials and analyzed after 90 and 120 days of implantation by high-resolution transmission electron microscopy and Fourier transform infrared attenuated total reflectance microscopy, respectively. Infrared spectroscopy showed that hydroxyapatite of both biomaterials became more disordered after implantation in the rat calvaria, indicating that the biological environment induced modifications in biomaterials structure. We observed that the regenerated bone surrounding both biomaterials had a lamellar structure with type I collagen fibers alternating in adjacent lamella with angles of approximately 90°. In each lamella, plate-like apatite crystals were aligned in the c-axis direction, although a rotation around the c-axis could be present. Bone plate-like crystal dimensions were similar in regenerated bone around biomaterials and pre-existing bone in the rat calvaria. No epitaxial growth was observed around any of the biomaterials. A distinct mineralized layer was observed between new bone and hydroxyapatite-alginate biomaterial. This region presented a particular ultrastructure with crystallites smaller than those of the bulk of the biomaterial, and was possibly formed during the synthesis of alginate-containing composite or in the biological environment after implantation. Round nanoparticles were observed in regions of newly formed bone. The findings of this work contribute to a better understanding of the role of hydroxyapatite based biomaterials in bone regeneration processes at the nanoscale. PMID:22057083

  4. Preliminary bounds on the water composition and secondary mineral development that may influence the near-field environment

    SciTech Connect

    Whitbeck, M.; Glassley, W.

    1998-02-01

    The evolution of the water chemistry and secondary mineral development in the vicinity of the near-field of a potential Yucca Mountain high level nuclear waste repository will be controlled by temperature, and interaction of water with rock over time. This report describes initial bounds on water composition and secondary mineral development, as a function of time, temperature, and rock type (devitrified, welded tuff and vitrophyre). The code EQ3/6 was used in the calculations, with explicit use of transition state theory models for mineral dissolution rates for the framework minerals of the tuff. Simulations were run for time durations sufficient to achieve steady state conditions. Uncertainty in the calculations, due to uncertainty in the measured dissolution rates, was considered by comparing results in simulations in which rates were varied within the range of known uncertainties for dissolution rate constants. The results demonstrate that the steady state mineralogy and water compositions are relatively insensitive to the rock unit modeled, which is consistent with the fact that the compositions of the rock units in the vicinity if the potential repository are similar, and will tend toward similar thermodynamic free energy minima, for similar rock:water ratios. Significant differences are observed, however, for large differences in rock: water ratios. The rates at which this end point condition are approached are a function of the rate parameters used, and can vary by orders of magnitude.

  5. Analysis of the Mineral Composition of the Human Calcified Cartilage Zone

    PubMed Central

    Zhang, Ying; Wang, Fuyou; Tan, Hongbo; Chen, Guangxing; Guo, Lin; Yang, Liu

    2012-01-01

    As the connecting tissue between the hyaline articular cartilage and the subchondral bone, calcified cartilage zone (CCZ) plays a great role in the force transmission and materials diffusion. However, the questions that remain to be resolved are its mineral composition and organization. In this study, 40 healthy human knee specimens were harvested; first the CCZ was dissected and observed by Safranin O/fast green staining, then CCZ chemical characteristics were measured by using amino acid assay and X-ray diffraction. The percentage of dry weight of type II collagen as an organic compound of CCZ was 20.16% ± 0.96%, lower than that of the hyaline cartilage layer (61.39% ± 0.38%); the percentage of dry weight of hydroxyapatite as an inorganic compound was 65.09% ± 2.31%, less than that of subchondral bone (85.78% ± 3.42%). Our study provides the accurate data for the reconstruction of the CCZ in vitro and the elucidation of CCZ structure and function. PMID:22811609

  6. Posterolateral spinal fusion in a rabbit model using a collagen–mineral composite bone graft substitute

    PubMed Central

    Vizesi, F.; Cornwall, G. B.; Bell, D.; Oliver, R.; Yu, Y.

    2009-01-01

    Choosing the appropriate graft material to participate in the healing process in posterolateral spinal fusion continues to be a challenge. Combining synthetic graft materials with bone marrow aspirate (BMA) and autograft is a reasonable treatment option for surgeons to potentially reduce or replace the need for autograft. FormaGraft, a bone graft material comprising 12% bovine-derived collagen and 88% ceramic in the form of hydroxyapatite (HAp) and beta tricalcium phosphate (β-TCP) was evaluated in three possible treatment modalities for posterior spinal fusion in a standard rabbit model. These three treatment groups were FormaGraft alone, FormaGraft soaked in autogenous BMA, and FormaGraft with BMA and iliac crest autograft. No statistically demonstrable benefits or adverse effects of the addition of BMA were found in the current study based on macroscopic, radiology or mechanical data. This may reflect, in part, the good to excellent results of the collagen HA/TCP composite material alone in a well healing bony bed. Histology did, however, reveal a benefit with the use of BMA. Combining FormaGraft with autograft and BMA achieved results equivalent to autograft alone. The mineral and organic nature of the material provided a material that facilitated fusion between the transverse processes in a standard preclinical posterolateral fusion model. PMID:19475437

  7. Determination of the mineral composition of Caigua (Cyclanthera pedata) and evaluation using multivariate analysis.

    PubMed

    Oliveira, Adriana Caires; dos Santos, Vitor Silva; dos Santos, Debora Correia; Carvalho, Rosemary Duarte Sales; Souza, Anderson Santos; Ferreira, Sergio Luis Costa

    2014-01-01

    Caigua (in Brazil "maxixe do reino") is a fruit that is generally consumed either cooked or even raw as salad. This fruit has been used as a food and also in folk medicine. In this work, the mineral composition of Caigua was determined for the first time. Twenty-nine samples from five farms located in the southwestern region of Bahia, Brazil were acquired and analyzed using inductively coupled plasma optical emission spectrometry. The elements determined in this fruit included calcium, magnesium, sodium, potassium, phosphorus, manganese, iron, zinc, copper and vanadium. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied to evaluate the obtained results. The average concentrations of the determined elements (expressed as mg 100 g(-1)) were as follows: 0.91 for sodium, 152 for potassium, 19.4 for phosphorus, 11.9 for calcium, 8.4 for magnesium, 0.074 for manganese, 0.21 for iron, 0.013 for copper, 0.13 for zinc and 0.015 for vanadium. PMID:24444984

  8. Changes in mineral composition of eggshells from black ducks and mallards fed DDE in the diet

    USGS Publications Warehouse

    Longcore, J.R.; Samson, F.B.; Kreitzer, J.F.; Spann, J.W.

    1971-01-01

    Diets containing 10 and 30 ppm (dry weight) DDE were fed to black ducks, and diets containing 1, 5, and 10 ppm (dry weight) DDE were fed to mallards. Among the results were the following changes in black duck eggshell composition: (a) significant increase in the percentage of Mg, (b) significant decreases in Ba and Sr, (c) increases (which approached significance) in average percentage of eggshell Na and Cu, (d) a decrease in shell Ca which approached significance, (e) patterns of mineral correlations which in some instances were distinct to dosage groups, and (f) inverse correlations in the control group between eggshell thickness Mg and Na. Changes in mallard eggshells were: (a) significant increase in percentage of magnesium at 5 and 10 ppm DDE, (b) significant decrease in Al at 5 and 10 ppm DDE, (c) a significant decrease in Ca from eggshells from the 10 ppm DDE group, and (d) an increase in average percentage of Na in eggshells from DDE dosed ducks which approached significance.

  9. The proximate, mineral, and toxicant compositions of four possible food security crops from southeastern Nigeria.

    PubMed

    Ojiako, Okey A; Ogbuji, Chiza A; Agha, Ngozi C; Onwuliri, Viola A

    2010-10-01

    The proximate, nutritional, and antinutritional compositions of the raw, cooked, and roasted samples of four Nigerian indigenous seeds-Sphenostylis stenocarpa, Pentaclethra macrophylla, Mucuna flagellipes, and Citrullus colocynthis-were evaluated. Also estimated were zinc and divalent cation bioavailability of the seeds using millimolar ratios/kg dry weight of [calcium]/[phytate], [phytate]/[zinc], [calcium][phytate]/[Zn], and [phytate]/[total phosphorus]. The results obtained revealed that the seeds of P. macrophylla and C. colocynthis had high protein and lipid levels. All the seeds were also found to have high energy value and low moisture content. Mineral analysis showed the presence of Na, K, Ca, and Mg in appreciable quantities and Zn, I, Fe, and Se in minute quantities. Antinutritional analyses indicated the presence of traces of tannin, oxalate, phytate, saponin, and cyanide in the samples. The various processing techniques had significant (P ≤ .05) effects on the measured parameters. The calculated [Ca][phytate]/[Zn] molar ratios revealed that these seeds had values above the critical level of 0.5 mL/kg, thus indicating reduced bioavailability of zinc. In view of the high nutrient contents, low antinutritional contents after processing, and their superabundance, these seeds could be cheap nutrient sources. The implications of these findings with regards to food security are enormous. PMID:20828321

  10. Foliar mineral composition, fertilization and dieback of Norway spruce in the Belgian Ardennes.

    PubMed

    Van Praag, H J; Weissen, F

    1986-09-01

    Needles from healthy Norway spruce (Picea abies (L.) Karst.) at Willerzie in the West Ardennes and from trees with symptoms of dieback at Langesthal in the East Ardennes were analyzed by age class for mineral composition. Both stands were on acid oligotrophic soils. At Willerzie, needles were sampled from plots fertilized 12 to 17 years earlier (dolomitic lime plus N, P and K) as well as unfertilized plots. Effects of fertilization included increased levels of calcium, manganese, phosphorus, and copper and reduced levels of total sulfur, sulfate-S, sulfate-S:total S, potassium and aluminum. Levels of calcium, magnesium, copper and boron were low at both sites and, at Langesthal, calcium and magnesium may have been deficient. Sulfur level was normal at Willerzie, but at Langesthal, mean sulfur content for needles of all age classes was 198 mg 100 g(-1) dry weight, a level that may be toxic. In older needles, the N:S ratio at Langesthal was below the threshold value of eight reported to be necessary for healthy growth. Other symptoms of stress observed were high sulfate-S:total S and nitrate-N:total N ratios. At Langesthal, manganese level was probably adequate although only one-fifth the level at Willerzie. Levels of aluminum and iron were very high at both sites. Most of the iron and much of the aluminum occurred as a surface deposit that could be removed by washing the needles in chloroform. PMID:14975893

  11. Mineral composition and charcoal determine the bacterial community structure in artificial soils.

    PubMed

    Ding, Guo-Chun; Pronk, Geertje Johanna; Babin, Doreen; Heuer, Holger; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    To study the influence of the clay minerals montmorillonite (M) and illite (I), the metal oxides ferrihydrite (F) and aluminum hydroxide (A), and charcoal (C) on soil bacterial communities, seven artificial soils with identical texture provided by quartz (Q) were mixed with sterilized manure as organic carbon source before adding a microbial inoculant derived from a Cambisol. Bacterial communities established in artificial soils after 90 days of incubation were compared by DGGE analysis of bacterial and taxon-specific 16S rRNA gene amplicons. The bacterial community structure of charcoal-containing soils highly differed from the other soils at all taxonomic levels studied. Effects of montmorillonite and illite were observed for Bacteria and Betaproteobacteria, but not for Actinobacteria or Alphaproteobacteria. A weak influence of metal oxides on Betaproteobacteria was found. Barcoded pyrosequencing of 16S rRNA gene amplicons done for QM, QI, QIF, and QMC revealed a high bacterial diversity in the artificial soils. The composition of the artificial soils was different from the inoculant, and the structure of the bacterial communities established in QMC soil was most different from the other soils, suggesting that charcoal provided distinct microenvironments and biogeochemical interfaces formed. Several populations with discriminative relative abundance between artificial soils were identified. PMID:23289489

  12. Chemical composition, mineral profile, and functional properties of Canna (Canna edulis) and Arrowroot (Maranta spp.) starches.

    PubMed

    Pérez, Elevina; Lares, Mary

    2005-09-01

    The aim of the present study was to evaluate some chemical and mineral characteristics and functional and rheological properties of Canna and Arrowroot starches produced in the Venezuelan Andes. Canna starch showed a higher (P < 0.05) moisture, ash, and crude protein content than arrowroot starch, while crude fiber, crude fat, and amylose content of this starch were higher (P < 0.05). Starches of both rhizomes own phosphorus, sodium, potassium, magnesium, iron, calcium, and zinc in their composition. Phosphorus, sodium, and potassium are the higher in both starches. Water absorption, swelling power, and solubility values revealed weak bonding forces in Canna starch granules; this explained the lower gelatinization temperature and the substantial viscosity development of Canna starch during heating. Arrowroot starch showed a higher gelatinization temperature measure by DSC, than Canna starch and exhibited a lower value of DeltaH. Both starches show negative syneresis. The apparent viscosity of Canna starch was higher (P < 0.05) than the Arrowroot starch values. The size (wide and large) of Canna starch granules was higher than arrowroot starch. From the previous results, it can be concluded that Canna and Arrowroot starches could become interesting alternatives for food developers, depending on their characteristics and functional properties. PMID:16187013

  13. Mineral compositions and sources of the riverbed sediment in the desert channel of Yellow River.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2011-02-01

    The Yellow River flows through an extensive, aeolian desert area and extends from Xiaheyan, Ningxia Province, to Toudaoguai, Inner Mongolia Province, with a total length of 1,000 km. Due to the construction and operation of large reservoirs in the upstream of the Yellow River, most water and sediment from upstream were stored in these reservoirs, which leads to the declining flow in the desert channel that has no capability to scour large amount of input of desert sands from the desert regions. By analyzing and comparing the spatial distribution of weight percent of mineral compositions between sediment sources and riverbed sediment of the main tributaries and the desert channel of the Yellow River, we concluded that the coarse sediment deposited in the desert channel of the Yellow River were mostly controlled by the local sediment sources. The analyzed results of the Quartz-Feldspar-Mica (QFM) triangular diagram and the R-factor models of the coarse sediment in the Gansu reach and the desert channel of the Yellow River further confirm that the Ningxia Hedong desert and the Inner Mongolian Wulanbuhe and Kubuqi deserts are the main provenances of the coarse sediment in the desert channel of the Yellow River. Due to the higher fluidity of the fine sediment, they are mainly contributed by the local sediment sources and the tributaries that originated from the loess area of the upper reach of the Yellow River. PMID:20354782

  14. Comparative sulfur analysis using thermal combustion or inductively coupled plasma methodology and mineral composition of common livestock feedstuffs.

    PubMed

    Kerr, B J; Ziemer, C J; Weber, T E; Trabue, S L; Bearson, B L; Shurson, G C; Whitney, M H

    2008-09-01

    The objective of this study was to compare the use of thermal combustion (CNS) and inductively coupled plasma (ICP) to measure the total S content in plant-, animal-, and mineral-based feedstuffs, and to provide concentrations of other macro- and micro-minerals contained in these feedstuffs. Forty-five feedstuffs (464 total samples) were obtained from suppliers as well as swine feed and pet food manufacturers throughout the United States. Mineral data from IPC analysis were summarized on a DM basis using sample mean and SD, whereas the comparison of total S content between CNS and ICP was examined by bivariate plot and correspondence correlation. Analyses of a wide range of feedstuffs by CNS and ICP for total S were comparable for all but a few feedstuffs. For potassium iodide and tribasic copper chloride, ICP estimated total S to be lower than when analyzed by CNS (bias = 2.51 +/- 0.15 SE, P < 0.01). In contrast, for defluorinated phosphate and limestone, ICP estimated total S to be greater than when analyzed by CNS (bias = -1.46 +/- 0.51 SE, P < 0.01). All other samples had similar estimates of total S, whether analyzed by CNS or ICP. As expected, S composition varied greatly among feedstuffs. For total S, plant-based feedstuffs generally had lower total S compared with animal-based feedstuffs, whereas minerals supplied in sulfate form had the greatest concentration of total S. In addition to total S, mineral composition data are provided for all feedstuffs as obtained by ICP analysis. Within specific feedstuffs, mineral composition was quite variable, potentially due to low concentrations in the feed-stuff causing high mathematical variation or due to the source of feedstock obtained. In general, analyzed values of P were similar to previous tabular values. These data provide feed formulators a database from which modifications in dietary minerals can be accomplished and from which mineral requirements can be met more precisely to reduce losses of minerals into

  15. Bulk and stable isotopic compositions of carbonate minerals in Martian meteorite Allan Hills 84001: no proof of high formation temperature.

    PubMed

    Treiman, A H; Romanek, C S

    1998-07-01

    Understanding the origin of carbonate minerals in the Martian meteorite Allan Hills (ALH) 84001 is crucial to evaluating the hypothesis that they contain traces of ancient Martian life. Using arguments based on chemical equilibria among carbonates and fluids, an origin at >650 degrees C (inimical to life) has been proposed. However, the bulk and stable isotopic compositions of the carbonate minerals are open to multiple interpretations and so lend no particular support to a high-temperature origin. Other methods (possibly less direct) will have to be used to determine the formation temperature of the carbonates in ALH84001. PMID:11543073

  16. Bulk and Stable Isotopic Compositions of Carbonate Minerals in Martian Meteorite Allan Hills 84001: No Proof of High Formation Temperature

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Romanek, Christopher S.

    1998-01-01

    Understanding the origin of carbonate minerals in the Martian meteorite Allan Hills (ALH) 84001 is crucial to evaluating the hypothesis that they contain traces of ancient Martian life. Using arguments based on chemical equilibria among carbonates and fluids, an origin at greater than 650 C (inimical to life) has been proposed. However, the bulk and stable isotopic compositions of the carbonate minerals are open to multiple interpretations and so lend no particular support to a high-temperature origin. Other methods (possibly less direct) will have to be used to determine the formation temperature of the carbonates in ALH 84001.

  17. Constraints from fluid inclusions in mantle minerals on the composition of subduction-zone fluids

    NASA Astrophysics Data System (ADS)

    Schiano, P.; Provost, A.; Cluzel, N.

    2013-12-01

    Slab-derived fluids are thought to enrich the mantle wedge in water and trace elements, and this metasomatized mantle region becomes the source of island arc basalts. Much of the evidence for this model has been derived indirectly through the study of the composition of the end-products, the lavas, and there have only been a few direct studies of the metasomatism of the mantle rocks from these regions. Therefore important aspects of the model have remained somewhat hypothetical. In particular, there are different viewpoints on the nature of subduction fluids, their trace element compositions and their pathways in the slab and overlying mantle. The whole debate is also hampered by the limited memory that high-pressure metamorphic rocks preserve of their subduction history, due to retrograde overprinting during exhumation, and by uncertainties in reproducing the conditions of subduction during experiments. Here we identify trapped pristine samples of the fluid phase percolating through the mantle wedge beneath island arcs, by examining fluid inclusions trapped within spinel-harzburgite xenoliths in an arc-front volcano (Batan island, Luzon arc). The xenoliths correspond to previously metasomatized mantle fragments incorporated in the lavas during ascent. Cl-bearing H2O-rich fluid inclusions occur within both primary (ol, opx) and late metasomatic minerals (e.g., cpx, phlogopite, amphibole). They were formed by the addition of aqueous fluids or by separation of aqueous fluids from H2O-saturated melt inclusions, as suggested by the occurrence of composite inclusions consisting of silicate glass and H2O (liq+vap). The associated silicate melt inclusions were previously shown to display silica-rich compositions that are consistent with slab-derived melts [1] or melts of metasomatized mantle peridotites [2]. In situ Raman spectroscopy reveals that at room temperature, the fluid inclusions are composed mainly of H2O, H2S and HS- and contain also sulphur (S6) and Mg

  18. Airborne particulate endocrine disrupting compounds in China: Compositions, size distributions and seasonal variations of phthalate esters and bisphenol A

    NASA Astrophysics Data System (ADS)

    Li, Jianjun; Wang, Gehui

    2015-03-01

    Phthalate esters and bisphenol A (BPA) are endocrine disrupting compounds (EDCs) and ubiquitously occur in the environment. In the past decade we have characterized atmospheric organic aerosols from various environments (e.g., urban, rural, mountain and marine) of East Asia on a molecular level, but not investigated EDCs in the samples. In the current study we re-analyzed our database for concentrations, compositions and size distributions of phthalates and BPA and compared with those in the literature to improve the understanding on air pollution status in China. Our results showed that airborne particulate phthalates and BPA are 63-1162 ng m- 3 and 1.0-20 ng m- 3 in the urban regions in China, respectively, being one to two orders of magnitude higher than those in the developed countries. Among the detected phthalates in Chinese urban areas, bis(2-ethylhexyl) phthalate (BEHP) is the predominant congener, contributing to 23-79% (ave. 53 ± 15%) of the total phthalates. Concentrations of phthalates and bisphenol A in Shanghai and Xi'an (two mega-cities in China) in 2009 were 3-84% lower than those in 2003, probably indicating a positive effect of the government's air pollution control in the recent years. Phthalates are higher in summer than in winter, because they are not chemically bonded to the polymeric matrix and more easily evaporate into the air under higher temperature conditions. Based on the size distribution observation, we found that diisobutyl and dibutyl phthalates mainly exist in coarse particles because of high volatilities, in contrast to BEHP and BPA, which are dominant in fine particles due to less volatility. Our results also indicate that BPA is mostly derived from the open burning of solid waste while phthalates are derived from both direct evaporation from the matrix and solid waste combustion.

  19. Effects of seasonal variations and collection methods on the mineral composition of propolis from Apis mellifera Linnaeus Beehives.

    PubMed

    Souza, E A; Zaluski, R; Veiga, N; Orsi, R O

    2016-06-01

    The effects of seasonal variations and the methods of collection of propolis produced by Africanized honey bees Apis mellifera Linnaeus, 1758, on the composition of constituent minerals such as magnesium (Mg), zinc (Zn), iron (Fe), sodium (Na), calcium (Ca), copper (Cu), and potassium (K) were evaluated. Propolis was harvested from 25 beehives by scraping or by means of propolis collectors (screen, "intelligent" collector propolis [ICP], lateral opening of the super [LOS], and underlay method). During the one-year study, the propolis produced was harvested each month, ground, homogenized, and stored in a freezer at -10 ºC. Seasonal analyses of the mineral composition were carried out by atomic absorption spectrophotometry and the results were evaluated by analysis of variance (ANOVA), followed by Tukey-Kramer's test to compare the mean values (p<0.05). The results showed that seasonal variations influence the contents of 5 minerals (Mg, Fe, Na, Ca, and Cu), and the propolis harvesting method affects the contents of 4 minerals (Mg, Zn, Fe, and Ca). PMID:26934152

  20. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant.

    PubMed

    Oliveira, Marcos L S; Ward, Colin R; Izquierdo, Maria; Sampaio, Carlos H; de Brum, Irineu A S; Kautzmann, Rubens M; Sabedot, Sydney; Querol, Xavier; Silva, Luis F O

    2012-07-15

    The extraction of sulphur produces a hematite-rich waste, known as roasted pyrite ash, which contains significant amounts of environmentally sensitive elements in variable concentrations and modes of occurrence. Whilst the mineralogy of roasted pyrite ash associated with iron or copper mining has been studied, as this is the main source of sulphur worldwide, the mineralogy, and more importantly, the characterization of submicron, ultrafine and nanoparticles, in coal-derived roasted pyrite ash remain to be resolved. In this work we provide essential data on the chemical composition and nanomineralogical assemblage of roasted pyrite ash. XRD, HR-TEM and FE-SEM were used to identify a large variety of minerals of anthropogenic origin. These phases result from highly complex chemical reactions occurring during the processing of coal pyrite of southern Brazil for sulphur extraction and further manufacture of sulphuric acid. Iron-rich submicron, ultrafine and nanoparticles within the ash may contain high proportions of toxic elements such as As, Se, U, among others. A number of elements, such as As, Cr, Cu, Co, La, Mn, Ni, Pb, Sb, Se, Sr, Ti, Zn, and Zr, were found to be present in individual nanoparticles and submicron, ultrafine and nanominerals (e.g. oxides, sulphates, clays) in concentrations of up to 5%. The study of nanominerals in roasted pyrite ash from coal rejects is important to develop an understanding on the nature of this by-product, and to assess the interaction between emitted nanominerals, ultra-fine particles, and atmospheric gases, rain or body fluids, and thus to evaluate the environmental and health impacts of pyrite ash materials. PMID:22613465

  1. Activin A Suppresses Osteoblast Mineralization Capacity by Altering Extracellular Matrix (ECM) Composition and Impairing Matrix Vesicle (MV) Production*

    PubMed Central

    Alves, Rodrigo D. A. M.; Eijken, Marco; Bezstarosti, Karel; Demmers, Jeroen A. A.; van Leeuwen, Johannes P. T. M.

    2013-01-01

    During bone formation, osteoblasts deposit an extracellular matrix (ECM) that is mineralized via a process involving production and secretion of highly specialized matrix vesicles (MVs). Activin A, a transforming growth factor-β (TGF-β) superfamily member, was previously shown to have inhibitory effects in human bone formation models through unclear mechanisms. We investigated these mechanisms elicited by activin A during in vitro osteogenic differentiation of human mesenchymal stem cells (hMSC). Activin A inhibition of ECM mineralization coincided with a strong decline in alkaline phosphatase (ALP1) activity in extracellular compartments, ECM and matrix vesicles. SILAC-based quantitative proteomics disclosed intricate protein composition alterations in the activin A ECM, including changed expression of collagen XII, osteonectin and several cytoskeleton-binding proteins. Moreover, in activin A osteoblasts matrix vesicle production was deficient containing very low expression of annexin proteins. ECM enhanced human mesenchymal stem cell osteogenic development and mineralization. This osteogenic enhancement was significantly decreased when human mesenchymal stem cells were cultured on ECM produced under activin A treatment. These findings demonstrate that activin A targets the ECM maturation phase of osteoblast differentiation resulting ultimately in the inhibition of mineralization. ECM proteins modulated by activin A are not only determinant for bone mineralization but also possess osteoinductive properties that are relevant for bone tissue regeneration. PMID:23781072

  2. Influence of mineral weathering reactions on the chemical composition of soil water, springs, and ground water, Catoctin Mountains, Maryland

    USGS Publications Warehouse

    Katz, B.G.

    1989-01-01

    During 1983 and 1984, wet precipitation was primarily a solution of dilute sulphuric acid, whereas calcium and bicarbonate were the major ions in springs and ground water in two small watersheds with a deciduous forest cover in central Maryland. Dominant ions in soil water were calcium, magnesium, and sulphate. The relative importance of mineral weathering reactions on the chemical composition of these subsurface waters was compared to the contribution from wet precipitation, biological processes, and road deicing salts. -from Author

  3. Luna 16 - An opaque mineral study and a systematic examination of compositional variations of spinels from Mare Fecunditatis.

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E.

    1972-01-01

    The opaque mineralogy of the Luna 16 soil sample is studied, with an emphasis on a detailed survey of the compositional variations of the Fe-Ti-Cr-Al-Mg spinels. Analytical data are also presented for ilmenite. Textural characteristics and shock-metamorphic effects on the opaque minerals are briefly described and comparisons are made throughout between the Luna 16 samples and published and unpublished data on the Apollo samples.

  4. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  5. Determination of the hydrogen isotopic compositions of organic materials and hydrous minerals using thermal combustion laser spectroscopy.

    PubMed

    Koehler, Geoff; Wassenaar, Leonard I

    2012-04-17

    Hydrogen isotopic compositions of hydrous minerals and organic materials were measured by combustion to water, followed by optical isotopic analysis of the water vapor by off-axis integrated cavity output spectroscopy. Hydrogen and oxygen isotopic compositions were calculated by numerical integration of the individual isotopologue concentrations measured by the optical spectrometer. Rapid oxygen isotope exchange occurs within the combustion reactor between water vapor and molecular oxygen so that only hydrogen isotope compositions may be determined. Over a wide range in sample sizes, precisions were ±3-4 per mil. This is comparable but worse than continuous flow-isotope ratio mass spectroscopy (CF-IRMS) methods owing to memory effects inherent in water vapor transfer. Nevertheless, the simplicity and reduced cost of this analysis compared to classical IRMS or CF-IRMS methods make this an attractive option to determine the hydrogen isotopic composition of organic materials where the utmost precision or small sample sizes are not needed. PMID:22432837

  6. Proximate, Antinutrients and Mineral Composition of Raw and Processed (Boiled and Roasted) Sphenostylis stenocarpa Seeds from Southern Kaduna, Northwest Nigeria

    PubMed Central

    Ndidi, Uche Samuel; Ndidi, Charity Unekwuojo; Olagunju, Abbas; Muhammad, Aliyu; Billy, Francis Graham; Okpe, Oche

    2014-01-01

    This research was aimed at evaluating the proximate composition, level of anti-nutrients, and the mineral composition of raw and processed Sphenostylis stenocarpa seeds and at examining the effect of processing on the parameters. From the proximate composition analysis, the ash content showed no significant difference (P > 0.05) between the processed and unprocessed (raw) samples. However, there was significant difference (P < 0.05) in the levels of moisture, crude lipid, nitrogen-free extract, gross energy, true protein, and crude fiber between the processed and unprocessed S. stenocarpa. Analyses of the antinutrient composition show that the processed S. stenocarpa registered significant reduction in levels of hydrogen cyanide, trypsin inhibitor, phytate, oxalate, and tannins compared to the unprocessed. Evaluation of the mineral composition showed that the level of sodium, calcium, and potassium was high in both the processed and unprocessed sample (150–400 mg/100 g). However, the level of iron, copper, zinc, and magnesium was low in both processed and unprocessed samples (2–45 mg/100 g). The correlation analysis showed that tannins and oxalate affected the levels of ash and nitrogen-free extract of processed and unprocessed seeds. These results suggest that the consumption of S. stenocarpa will go a long way in reducing the level of malnutrition in northern Nigeria. PMID:24967265

  7. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites.

    PubMed

    Giergiczny, Zbigniew; Król, Anna

    2008-12-30

    The presented work determines the level of heavy metals (Pb+2, Cu+2, Zn+2, Cr+6, Cd+2, Mn+2) immobilization in the composites produced using Ordinary Portland Cement (OPC) as well as of binders containing large amount of mineral additives in its composition-siliceous fly ash (FA), fluidized bed combustion ash (FFA) and ground granulated blast furnace slag (GGBFS). Heavy metals were introduced to cementitious materials in the form of soluble salts as well as components of hazardous wastes (medical ash, metallurgical dust). It has been stated, that the level of heavy metals immobilization is combined with composites composition. Majority of analyzed heavy metals, added to binders' composition in the form of heavy metal salts achieves high level of immobilization, in mortar based on binder with 85% GGBFS and 15% OPC. The lowest immobilization level was reached for chromium Cr+6 added to hardening mortars as Na2Cr2O72H2O. The level ranges from 85.97% in mortars made on blended binder (20% OPC, 30% FFA and 50% GGBFS) to 93.33% in mortar produced on OPC. The increase of the so-called immobilization degree with time of hardened material maturing was found. This should be attributed to the pozzolanic or pozzolanic/hydraulic properties of components used; their effect on microstructure of hardened material is also important. Mineral additions enter the hydration reactions in the mixtures and favor the formation of specific microstructure promoting the immobilization of hazardous elements. PMID:18423859

  8. Use of laser spectroscopy to measure the 13C/12C and 18O/16O compositions of carbonate minerals.

    PubMed

    Barker, Shaun L L; Dipple, Gregory M; Dong, Feng; Baer, Douglas S

    2011-03-15

    The stable carbon and oxygen isotope compositions of carbonate minerals are utilized throughout the earth and environmental sciences for various purposes. Here, we demonstrate the first application of a prototype instrument, based on off-axis integrated cavity output laser spectroscopy, to measure the carbon and oxygen isotope composition of CO(2) gas evolved from the acidification of carbonate minerals. The carbon and oxygen isotope ratios were recorded from absorption spectra of (12)C(16)O(16)O, (13)C(16)O(16)O, and (12)C(16)O(18)O in the near-infrared wavelength region. The instrument was calibrated using CaCO(3) minerals with known δ(13)C(VPDB) and δ(18)O(VSMOW) values, which had been previously calibrated by isotope ratio mass spectrometry relative to the international isotopic standards NBS 18 and NBS 19. Individual analyses are demonstrated to have internal precision (1 SE) of better than 0.15‰ for δ(13)C and 0.6‰ for δ(18)O. Analysis of four carbonate standards of known isotopic composition over 2 months, determined using the original instrumental calibration, indicates that analyses are accurate to better than 0.5‰ for both δ(13)C and δ(18)O without application of standard-sample-standard corrections. PMID:21341717

  9. Near-infrared optical constants of naturally occurring olivine and synthetic pyroxene as a function of mineral composition

    NASA Astrophysics Data System (ADS)

    Trang, David; Lucey, Paul G.; Gillis-Davis, Jeffrey J.; Cahill, Joshua T. S.; Klima, Rachel L.; Isaacson, Peter J.

    2013-04-01

    Radiative transfer theory will assist in determining olivine and pyroxene proportions and compositions from the surface of a planetary body composed of intimately mixed minerals. In order to use radiative transfer techniques, the model requires the optical constants of olivine and pyroxene. Optical constants are parameters that describe the degree light absorbed (k) and refracted (n) in a medium. Here we only parameterize k in the near infrared from 0.6 to 2.5 µm of natural olivine as a function of forsterite number and synthetic pyroxene with respect to wollastonite and ferrosilite number. In contrast to previous work, this study is an improvement on previous work because we have a diverse and larger sample size leading to robust optical parameters. Additionally, we characterize each k-spectrum with the modified Gaussian model (MGM). MGM is a physically realistic model of near-infrared absorptions due to electronic transitions. In each spectrum, we model each absorption and continuum with Gaussians and an inverse of a linear function, respectively. We find that our fitting routine characterizes the olivine and pyroxene k-spectra in a robust and consistent manner. Then we use regression analysis to characterize each parameter of the Gaussians and the continuum as a function of mineral composition. The developed optical parameters from this work will allow calculations of mineral proportions and compositions on planetary surfaces with use of data from missions such as Dawn, MESSENGER, SELENE, and Chandrayaan-1.

  10. Iron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma

    NASA Astrophysics Data System (ADS)

    Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn; Fakra, Sirine C.; Horn, Gregory; Jelinski, Nicolas A.; Rouxel, Olivier; Sorensen, Jeffry; Toner, Brandy M.

    2015-12-01

    Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ∼3.7 Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9Be/10Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patterns and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9Be/10Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ56/54Fe) in subsamples of 1-3 mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0 ± 0.4 mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were

  11. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on <25 μg of Ca. Results from this new study show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density by X-ray measurements occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker. Bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged over this period. Ca isotopes can in principle be used to quantify net changes in bone mass. Using a mass-balance model, our results indicate an average loss of 0.62 ± 0.16 % in bone mass over the course of this 30-day study. This is consistent with the rate of bone loss in longer-term studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  12. Reassessing Magmatic Space-Time-Composition Patterns in the Colorado Mineral Belt, USA

    NASA Astrophysics Data System (ADS)

    Bailley, T. L.; Farmer, G. L.; Jones, C.

    2007-05-01

    The Colorado Mineral Belt (COMB) is a northeast trending zone of Late Cretaceous to Early Tertiary (~75-50Ma) magmatism that accompanied the development of basement cored uplifts of the Laramide orogeny in Colorado. The origin of COMB magmatism remains enigmatic despite decades of study, largely because the magmatism coincided temporally with subduction at the western margin of North America but occurred some 1000 km inboard of the active trench. Many workers have attributed COMB magmatism to progressive shallowing of the oceanic lithosphere of the Farallon plate subducting beneath this region and have suggested that COMB magmatism was generally related to lower crustal melting (Simmons and Hedge, 1978, Stein and Crock, 1990). Others have attributed the COMB magmatism to upwelling of passive hot spots resulting from lithospheric deformation (Mutschler et al., 1987, 1998). Radiogenic isotopic data available for basaltic COMB volcanic clasts found in the Late Cretaceous Windy Gap member of the Middle Park Formation in northern Colorado (Farmer and Larson, unpublished data) support a mantle rather than crustal origin for COMB parental magmas. Further insights into the origin of the COMB clearly require a better understanding of the factors controlling the space-time-composition patterns in the magmatism. However, data compiled in the North American Volcanic and Igneous Rock Database (NAVDAT) illustrate the difficulty in assessing age patterns within the COMB. Little high quality age information is currently available for the COMB igneous rocks, and taken as a whole, little obvious space-time patterns can be discerned (Karlstrom and Humphreys, 1998). But when only the highest quality age determinations are used (including unpublished Ar-Ar ages from graduate theses), there is support for a progressive younging in igneous activity from the central COMB (~65 Ma) to northern COMB (~55 Ma; Cunningham et al., 1994). Cessation of COMB magmatism coincides with the onset of

  13. Diffusion of helium in carbonates: Effects of mineral structure and composition

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Amidon, W.; Hobbs, D.; Watson, E. B.

    2015-09-01

    Diffusion of helium has been characterized in four carbonates: calcite, dolomite, magnesite, and aragonite. Cleaved or oriented and polished slabs of carbonate minerals were implanted with 100 keV or 3 MeV 3He at doses of 5 × 10153He/cm2 and 1 × 10163He/cm2, respectively, and annealed in 1-atm furnaces. 3He distributions following diffusion experiments were measured with nuclear reaction analysis using the reaction 3He(d,p)4He. Our results show that He diffusion in calcite is the fastest among the carbonates studied, with diffusivities progressively slower in magnesite, dolomite and aragonite. In the case of the isomorphic trigonal carbonates (calcite, dolomite, magnesite), these observations are broadly consistent with predictions based on lattice characteristics such as unit cell size and inter-atomic apertures, with diffusivities faster in more open carbonate structures. Dolomite is an exception to this trend, suggesting that its unique ordered R3 crystal structure may play a role in slowing helium diffusion. Diffusion is anisotropic in all of the trigonal carbonates, and is typically slowest for diffusion along the c direction, and faster for diffusion normal to c and in directions normal to cleavage surfaces. The patterns of diffusional anisotropy are predicted to first order by the size of limiting inter-atomic apertures along any given crystallographic direction, providing additional support to the concept of modeling crystal lattices as "molecular sieves" with regard to diffusion of helium. When the effects of anisotropy and diffusion domain size are considered, our results are in reasonable agreement with previous results from bulk degassing of natural samples. Modeling of helium diffusive loss shows that calcite and magnesite are unlikely to be retentive of helium on the Earth's surface for typical grain sizes and time/temperature conditions. Dolomite and aragonite may be retentive under cooler conditions, but because helium retention is strongly

  14. Chemical and isotopic compositions of minerals and waters from the Campi Flegrei volcanic system, Naples, Italy

    NASA Astrophysics Data System (ADS)

    Valentino, G. M.; Cortecci, G.; Franco, E.; Stanzione, D.

    1999-08-01

    Based on their δ 34S signature, sulfate minerals and native sulfur around fumaroles and hot water pools from the Campi Flegrei volcanic area derive from supergenic oxidation of volcanic H 2S. Their mean δ 34S value (-0.2±1.7‰) matches with that of fumarolic H 2S at Solfatara (-0.3±0.3‰), as well as with the δ 34S of +1.4‰ obtained for total sulfur in fresh trachyte from the area. All δ 34S values indicate a mostly deep-seated origin for sulfur. Thermal waters were analysed for major and minor chemistry and for oxygen, hydrogen and sulfur isotope compositions. Pools at Pisciarelli are filled with evaporated meteoric water heated by rising (magmatic) gases. The water δ 18O (+3.8±1.3‰) and δ 2H (+6.5±2.2‰) values in these steam-heated waters are controlled by mixing and evaporation effects, and the δ 34S value of dissolved sulfate (-1.3±0.3‰) basically agrees with supergenic oxidation of deep-seated H 2S as the major source of sulfur. Instead, water from thermal springs and wells elsewhere in the Campi Flegrei appears to be a mixture between dilute meteoric and saline marine components. The latter may be local seawater from the bay of Pozzuoli. The δ 18O and δ 2H values of waters sampled during 1993-1994 range from -5.6 to +0.3‰ and from -33 to -3.4‰, respectively. The δ 34S values of dissolved sulfate range between -0.1 and +19.5‰. In general, sulfate is probably derived essentially from two sources, both within the volcanic cover, i.e., oxidation/dissolution of pyrite and anhydrite, and marine water. An occasional source of water and sulfate is represented by (magmatic) gases, which directly interact with shallow meteoric water as in the case of the Hotel Tennis well yielding steam-heated water with δ 18O=-1.5±0.2‰, δ 2H=-17±1‰ and δ 34S=-0.1‰.

  15. Salinity-induced changes in the morphology and major mineral nutrient composition of purslane (Portulaca oleracea L.) accessions.

    PubMed

    Alam, Md Amirul; Juraimi, Abdul Shukor; Rafii, M Y; Hamid, Azizah Abdul; Aslani, Farzad; Hakim, M A

    2016-01-01

    This study was undertaken to determine the effects of varied salinity regimes on the morphological traits (plant height, number of leaves, number of flowers, fresh and dry weight) and major mineral composition of 13 selected purslane accessions. Most of the morphological traits measured were reduced at varied salinity levels (0.0, 8, 16, 24 and 32 dS m(-1)), but plant height was found to increase in Ac1 at 16 dS m(-1) salinity, and Ac13 was the most affected accession. The highest reductions in the number of leaves and number of flowers were recorded in Ac13 at 32 dS m(-1) salinity compared to the control. The highest fresh and dry weight reductions were noted in Ac8 and Ac6, respectively, at 32 dS m(-1) salinity, whereas the highest increase in both fresh and dry weight was recorded in Ac9 at 24 dS m(-1) salinity compared to the control. In contrast, at lower salinity levels, all of the measured mineral levels were found to increase and later decrease with increasing salinity, but the performance of different accessions was different depending on the salinity level. A dendrogram was also constructed by UPGMA based on the morphological traits and mineral compositions, in which the 13 accessions were grouped into 5 clusters, indicating greater diversity among them. A three-dimensional principal component analysis also confirmed the output of grouping from cluster analysis. PMID:27090643

  16. Electrical and geochemical properties of tufa deposits as related to mineral composition in the South Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Gomaa, Mohamed M.; Abou El-Anwar, Esmat A.

    2015-06-01

    The geochemical, petrographical, and electrical properties of rocks are essential to the investigation of the properties of minerals. In this paper we will try to present a study of the A. C. electrical properties of carbonate rock samples and their relation to petrographical and geochemical properties. Samples were collected from four formations from the Bir Dungul area, in the South Western Desert, Egypt. The electrical properties of the samples were measured using a non-polarizing electrode, at room temperature (~28 °C), and at a relative atmospheric humidity of (~45%), in the frequency range from 42 Hz to 5 MHz. The changes in the electrical properties were argued to the change in mineral composition. Generally, the electrical properties of rocks are changed due to many factors e.g., grain size, mineral composition, grain shape and inter-granular relations between grains. The dielectric constant of samples decreases with frequency, and increases with conductor concentration. Also, the conductivity increases with an increase of continuous conductor paths between electrodes. The petrographical and geochemical studies reveal that the deposition of the tufa deposits occurred in shallow lakes accompanied by a high water table, an alkaline spring recharge and significant vegetation cover. Diagenetically, tufa deposits were subjected to early and late diagenesis. Petrography and geochemistry studies indicated that the area of tufa deposits was deposited under the control of bacterial activity. Geochemically, the Sr content indicates that the tufa deposits formed from dissolved bicarbonate under the control of microbes and bacterial activity.

  17. Effects of Sediment Iron Mineral Composition on Microbially Mediated Changes in Divalent Metal Speciation: Importance of Ferrihydrite

    SciTech Connect

    D. Craig Cooper; Andrew H. Neal; Ravichandran K. Kukkadapu; Dale Brewe; Aaron Coby; Flynn W. Picardal

    2005-04-01

    Dissimilatory metal reducing bacteria (DMRB) can influence geochemical processes that affect the speciation and mobility of metallic contaminants within natural environments. Most investigations into the effect of DMRB on sediment geochemistry utilize various synthetic oxides as the FeIII source (e.g., ferrihydrite, goethite, hematite). These synthetic materials do not represent the mineralogical composition of natural systems, and do not account for the effect of sediment mineral composition on microbially mediated processes. Our experiments with a DMRB (Shewanella putrefaciens 200) and a divalent metal (ZnII) indicate that, while complexity in sediment mineral composition may not strongly impact the degree of “microbial iron reducibility,” it does alter the geochemical consequences of such microbial activity. The ferrihydrite and clay mineral content are key factors. Microbial reduction of a synthetic blend of goethite and ferrihydrite (VHSA-G) carrying previously adsorbed ZnII increased both [ZnII-aq] and the proportion of adsorbed ZnII that is insoluble in 0.5 M HCl. Microbial reduction of FeIII in similarly treated iron-bearing clayey sediment (Fe-K-Q) and hematite sand, which contained minimal amounts of ferrihydrite, had no similar effect. Addition of ferrihydrite increased the effect of microbial FeIII reduction on ZnII association with a 0.5 M HCl insoluble phase in all sediment treatments, but the effect was inconsequential in the Fe-K-Q. Zinc k-edge X-ray absorption spectroscopy (XAS) data indicate that microbial FeIII reduction altered ZnII bonding in fundamentally different ways for VHSA-G and Fe-K-Q. In VHSA-G, ZnO6 octahedra were present in both sterile and reduced samples; with a slightly increased average Zn-O coordination number and a slightly higher degree of long-range order in the reduced sample. This result may be consistent with enhanced ZnII substitution within goethite in the microbially reduced sample, though these data do not show the

  18. Microbial Composition in Decomposing Pine Litter Shifts in Response to Common Soil Secondary Minerals

    NASA Astrophysics Data System (ADS)

    Welty-Bernard, A. T.; Heckman, K.; Vazquez, A.; Rasmussen, C.; Chorover, J.; Schwartz, E.

    2011-12-01

    A range of environmental and biotic factors have been identified that drive microbial community structure in soils - carbon substrates, redox conditions, mineral nutrients, salinity, pH, and species interactions. However, soil mineralogy has been largely ignored as a candidate in spite of recent studies that indicate that minerals have a substantial impact on soil organic matter stores and subsequent fluxes from soils. Given that secondary minerals and organic colloids govern a soil's biogeochemical activity due to surface area and electromagnetic charge, we propose that secondary minerals are a strong determinant of the communities that are responsible for process rates. To test this, we created three microcosms to study communities during decomposition using pine forest litter mixed with two common secondary minerals in soils (goethite and gibbsite) and with quartz as a control. Changes in bacterial and fungal communities were tracked over the 154-day incubation by pyrosequencing fragments of the bacterial 16S and fungal 18S rRNA genes. Ordination using nonmetric multidimensional scaling showed that bacterial communities separated on the basis of minerals. Overall, a single generalist - identified as an Acidobacteriaceae isolate - dominated all treatments over the course of the experiment, representing roughly 25% of all communities. Fungal communities discriminated between the quartz control alone and mineral treatments as a whole. Again, several generalists dominated the community. Coniochaeta ligniaria dominated communities with abundances ranging from 29 to 40%. The general stability of generalist populations may explain the similarities between treatment respiration rates. Variation between molecular fingerprints, then, were largely a function of unique minor members with abundances ranging from 0.01 to 8%. Carbon availability did not surface as a possible mechanism responsible for shifts in fingerprints due to the relatively large mass of needles in the

  19. Composition and chemical microprobe dating of U-Th-bearing minerals. Part I. Monazites from the Urals and Siberia

    NASA Astrophysics Data System (ADS)

    Votyakov, S. L.; Khiller, V. V.; Shchapova, Yu. V.

    2012-12-01

    To develop chemical microprobe timing of U-Th-bearing minerals, monazite grains from several localities in the Ural and Siberia have been dated using upgraded measurement techniques and age calculation based on original software. The samples were taken from pegmatites of the Ilmeny Mountains and the Ilmeny-Vishnevy Mountains Complex in the South Urals; pegmatites from the Adui granitic pluton and its framework in the Central Urals; gneisses and granulites of the Taratash Complex in the South Urals; and felsic gneisses from the Transangara region of the Yenisei Ridge. Scrutiny of the composition, heterogeneity, and chemical substitution of U and Th ions is a necessary stage of chemical dating aimed at estimating the degree of closeness of the U-Th-Pb system and unbiased screening of analytical data. The results obtained have been compared with the known isotopic ages of the studied minerals; the compared data are satisfactorily consistent.

  20. Thermodynamic Control of the Isotope Composition of Divalent Metal Cations in Aqueous Solutions and in Carbonate Minerals

    NASA Astrophysics Data System (ADS)

    Schott, J.; Mavromatis, V.; Pearce, C. R.; Fujii, T.; Oelkers, E. H.

    2014-12-01

    The very contrasting steric and electronic properties of divalent metals dramatically affect the reactivity and composition of their aqueous species and their partitioning between fluids and minerals. These contrasting properties result also in very distinct kinetic and thermodynamic trends of their isotopic composition in aqueous fluids and carbonate minerals. For example, if alkaline earths in calcite are all enriched in light isotopes, only Mg exhibits a decrease of its isotope fractionation with increasing calcite growth rate. Moreover, the Mg2+ aquo ion is the only alkaline earth ion whose isotopic composition is markedly affected by the presence in solution of inorganic ligands like bicarbonate, carbonate or sulfate. The distinct behavior of Mg stems from the reduced lability of water molecules in its coordination sphere and from the reduction of its aquo ion coordination sphere when it coordinates to HCO3- and CO32-. Ab initio calculations show that the preferred four hydration number of Mg in stable Mg bicarbonate and Mg carbonate monomers results in a strong enrichment in 26Mg of these species compared to Mg(H2O)62+ (i.e. 1000lnβ26/24MgCO3°-1000lnβ26/24Mg2+ = 5.16 ‰; Fujii, personal communication). The analysis of recent experiments on Mg isotope fractionation between carbonate crystals and solution using density functionnal theory estimation of lnβ values from Fujii i) confirm the marked impact of carbonate and bicarbonate ligands on the isotope composition of Mg in calcite and magnesite and ii) allow to reconcile First-principles and experimental estimates of equilibrium Mg isotope fractionation in carbonate crystals. Recent experiments also confirm that the strong affinity of Zn2+ or Cu2+ for RO- ligands results in a marked impact of fluid pH, ΣCO2(aq) and/or carboxylic ligands concentrations on the isotope composition of these metals in carbonate minerals. These observations provide new insights into the parameters controlling the isotope

  1. Mineral composition of TALDICE aeolian ice core dust by means of synchrotron radiation XAS and XRF techniques

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Cibin, G.; Sala, M.; Hampai, D.; Maggi, V.; Marino, F.; Delmonte, B.

    2009-04-01

    In this work we present the first accurate non-destructive comparison of the mineral composition of atmospheric dusts contained in a deep ice core from Antarctica using synchrotron radiation. Different mineral assemblages reaching glaciated areas could be correlated to sources areas starting from the knowledge of the dust composition. In this investigation we demonstrate the possibility to characterize with SR the mineral composition of the dust in order to perform its geochemical characterization and to understand the pattern of the transport and the trajectories of the aerosol. This study has been focused on the elemental characterization and the identification of the iron oxidation state of aeolian Antarctic dust by means of synchrotron radiation X-Ray Fluorescence and X-Ray Absorption Spectroscopy. A set of twelve ice samples from the TALDICE (TD, 72˚ 46'S, 159˚ 04'E, 2316 m a.s.l., mean accumulation rate 80 kg*m-2*yr-1) ice core, corresponding to the warm climatic period, Holocene, and to the cold climatic period, Marine Isotopic Stage 3 (MIS 3) have been measured. To obtain both the elemental composition and the iron oxidation state of the mineral dust we performed experiments on specially prepared samples at the Stanford Synchrotron Radiation Lightsource (SSRL) laboratory in the framework of the Proposal N.3082B. Actually, melted ice samples were filtered and then mineral particles were deposited onto Nuclepore polycarbonate membranes in a 1000 class clean room under a 100 class laminar flow bench for both XRF and XAS experiments. A dedicated HV experimental chamber, that allows performing different type of experimental technique on very low absorber concentration samples was developed and tested in Italy. The original experimental setup, including an in-vacuum sample micromanipulator and a special alignment and docking sample system was installed at the beamline 10-2 at SSRL. For the x-ray detection a 7 mm2 high sensitive Silicon Drift Detector was

  2. A Comparative Analyses of Granulometry, Mineral Composition and Major and Trace Element Concentrations in Soils Commonly Ingested by Humans.

    PubMed

    Ngole-Jeme, Veronica M; Ekosse, Georges-Ivo E

    2015-08-01

    This study compared the granulometric properties, mineralogical composition and concentrations of major and trace element oxides of commonly ingested soils (geophagic soil) collected from different countries with a view of understanding how varied they may be in these properties and to understand the possible health implications of ingesting them. Soil samples were collected from three different countries (South Africa, Swaziland and Democratic Republic of Congo (DRC)) and their granulometric properties, concentrations of major and trace element oxides as well as mineralogical composition determined. Differences were observed in the granulometric properties of geophagic soil from the three different countries with most of them having <20% clay content. The soils also showed varied degrees of weathering with values of Chemical Index of Alteration (CIA) and Chemical Index of Weathering (CIW) being between 60% and 99.9% respectively. The mineral assemblages of the soils from South Africa and Swaziland were dominated by the primary minerals quartz and feldspar whereas soils from DRC had more of kaolinite, a secondary mineral than primary minerals. Soils from DRC were associated with silt, clay, Al2O3, and CIA unlike most samples from South Africa which were associated with SiO2, sand, K2O, CaO, and MgO. The soils from Swaziland were closely associated with silt, H2O and Fe2O3(t). These associations reflect the mineralogy of the samples. These soils are not likely to serve as nutrient supplements because of the low concentrations of the nutrient elements contained. The coarse texture of the samples may also result in dental destruction during mastication. Sieving of the soils before ingestion to remove coarse particles is recommended to reduce the potential health threat associated with the ingestion of coarse-textured soils. PMID:26264010

  3. A Comparative Analyses of Granulometry, Mineral Composition and Major and Trace Element Concentrations in Soils Commonly Ingested by Humans

    PubMed Central

    Ngole-Jeme, Veronica M.; Ekosse, Georges-Ivo E.

    2015-01-01

    This study compared the granulometric properties, mineralogical composition and concentrations of major and trace element oxides of commonly ingested soils (geophagic soil) collected from different countries with a view of understanding how varied they may be in these properties and to understand the possible health implications of ingesting them. Soil samples were collected from three different countries (South Africa, Swaziland and Democratic Republic of Congo (DRC)) and their granulometric properties, concentrations of major and trace element oxides as well as mineralogical composition determined. Differences were observed in the granulometric properties of geophagic soil from the three different countries with most of them having <20% clay content. The soils also showed varied degrees of weathering with values of Chemical Index of Alteration (CIA) and Chemical Index of Weathering (CIW) being between 60% and 99.9% respectively. The mineral assemblages of the soils from South Africa and Swaziland were dominated by the primary minerals quartz and feldspar whereas soils from DRC had more of kaolinite, a secondary mineral than primary minerals. Soils from DRC were associated with silt, clay, Al2O3, and CIA unlike most samples from South Africa which were associated with SiO2, sand, K2O, CaO, and MgO. The soils from Swaziland were closely associated with silt, H2O and Fe2O3(t). These associations reflect the mineralogy of the samples. These soils are not likely to serve as nutrient supplements because of the low concentrations of the nutrient elements contained. The coarse texture of the samples may also result in dental destruction during mastication. Sieving of the soils before ingestion to remove coarse particles is recommended to reduce the potential health threat associated with the ingestion of coarse-textured soils. PMID:26264010

  4. The fatty acid, amino acid, and mineral composition of Egyptian goose meat as affected by season, gender, and portion.

    PubMed

    Geldenhuys, Greta; Hoffman, Louwrens C; Muller, Nina

    2015-05-01

    With the current absence of scientific information on the nutritive aspects it is essential to investigate the fatty acid, mineral, and amino acid composition of Egyptian geese as well as the factors of influence. The forage vs. grain based diets of Egyptian geese during certain periods of the yr leads to variation in the content of the key fatty acids such as oleic acid, linoleic acid, and α-linolenic acid. The differences in these fatty acids results in variation between the n-6/n-3 ratios of the seasons; the portions from winter (July) are within the recommendations (ratio <5) and those from summer (November) not. This study indicates that Egyptian goose meat does not only vary in nutritional composition but season may also have a substantial effect on the flavor profile and ultimate uniformity of the meat. The season and portion effects were, however, interlinked but the general tendency shows that the portions, especially the breast and thigh do differ concerning the major fatty acids. No substantial differences were found in the mineral composition of the breast portion on account of season and gender; however there were some variation in certain amino acids such as lysine and arginine due to season/diet. This research provides essential information that should be considered not only regarding the everyday consumption of Egyptian goose meat but the potential utilization and ultimate consistency of this meat product. PMID:25810407

  5. Micro-scale in situ characterisation of the organic and mineral composition of modern, hypersaline, photosynthetic microbial mats

    NASA Astrophysics Data System (ADS)

    Gautret, P.; Ramboz, C.; de Wit, R.; Delarue, F.; Orange, F.; Sorieul, S.; Westall, F.

    2012-04-01

    Physico-chemical and biological micro-scale environmental parameters within microbial mats formed in hypersaline conditions favour the precipitation of minerals, such as carbonates. We used optical microscopy and the technique "Fluorescence Induction Relaxation » (FIRe) to differentiate the photosynthetic activity of oxygenic photosynthesisers (cyanobacteria) from anoxygenic photosynthesisers (Chloroflexus-like bacteria, CFB) in samples obtained in 2011. After this preliminary investigation, we characterised the elemental composition of the different species of microorganisms, their extracellular substances (EPS), and the minerals precipitated on their surface. This study was made in-situ by µ-PIXE using the nuclear microprobe of the AIFIRA platform (CEN Bordeaux-Gradignan ; protons of 1.5 or 3MeV). With this microprobe it is possible to map the distribution of elements occurring in quantities down to several ppm, a resolution that is particularly favourable for studying microorganisms. SEM observation of the same zones allowed us to localise exactly the microbial structures (cells, EPS) and minerals analysed by nuclear probe. We were thus able to document the differential S and P concentrations in the different microbial species, the CLB being richer in P. Note that the CLB filaments are < 1 µm in diameter. We were also able to demonstrate the anti-correlation of Ca and Mg in the minerals precipitated directly on the microorganisms and on their EPS. Thus we have shown the utility of these in situ, nano-scale methods in studying microbial structures consisting of different species with different metabolic activitie, and different functional groups on their cell walls and EPS implicated in the bioprecipitation of different kinds of minerals. Such features in ancient microbial mats could aid their interpretation and possibly the distinction between ancient oxygenic and anoxygenic mats.

  6. Long Term Effect of Land Reclamation from Lake on Chemical Composition of Soil Organic Matter and Its Mineralization

    PubMed Central

    He, Dongmei; Ruan, Honghua

    2014-01-01

    Since the late 1950s, land reclamation from lakes has been a common human disturbance to ecosystems in China. It has greatly diminished the lake area, and altered natural ecological succession. However, little is known about its impact on the carbon (C) cycle. We conducted an experiment to examine the variations of chemical properties of dissolved organic matter (DOM) and C mineralization under four land uses, i.e. coniferous forest (CF), evergreen broadleaf forest (EBF), bamboo forest (BF) and cropland (CL) in a reclaimed land area from Taihu Lake. Soils and lake sediments (LS) were incubated for 360 days in the laboratory and the CO2 evolution from each soil during the incubation was fit to a double exponential model. The DOM was analyzed at the beginning and end of the incubation using UV and fluorescence spectroscopy to understand the relationships between DOM chemistry and C mineralization. The C mineralization in our study was influenced by the land use with different vegetation and management. The greatest cumulative CO2-C emission was observed in BF soil at 0–10 cm depth. The active C pool in EBF at 10–25 cm had longer (62 days) mean residence time (MRT). LS showed the highest cumulative CO2-C and shortest MRT comparing with the terrestrial soils. The carbohydrates in DOM were positively correlated with CO2-C evolution and negatively correlated to phenols in the forest soils. Cropland was consistently an outlier in relationships between DOM chemistry and CO2-evolution, highlighting the unique effects that this land use on soil C cycling, which may be attributed the tillage practices. Our results suggest that C mineralization is closely related to the chemical composition of DOM and sensitive to its variation. Conversion of an aquatic ecosystem into a terrestrial ecosystem may alter the chemical structure of DOM, and then influences soil C mineralization. PMID:24905998

  7. Mineral associations and major element compositions of base metal sulphides from the subcontinental lithospheric mantle of NE Spain

    NASA Astrophysics Data System (ADS)

    Galán, Gumer; Cruz, Erzika; Fernández-Roig, Mercè; Martínez, Francisco J.; Oliveras, Valentí

    2016-02-01

    This study deals with textural types and major element compositions of Cu-Ni-Fe sulphides from spinel lherzolite, harzburgite and olivine websterite xenoliths found in alkali basaltic rocks of the Neogene-Quaternary volcanic zone of Catalonia (NE Spain). Sulphides in harzburgites and websterites are scarce. Four textural types have been distinguished: inclusions in silicates and spinel, trails of small droplets often radiating from inclusions, interstitial grains, and grains related to pyrometamorphic textures. The mineral associations are dominated by one or two low-temperature monosulphide solid solutions: mss1, mss2, occasionally accompanied by pyrrhotite, pentlandite and Cu-rich sulphides. Compositions of mss1 are more Fe-enriched in inclusions and interstitial grains than in grains related to pyrometamorphism. Compositions of mss2 are Ni-rich very close to pentlandite. Sulphide bulk compositions correspond to high-temperature monosulphide solid solution equilibrated with a relatively Cu-Ni enriched sulphide melt at 1100-1000 °C. The breakdown products of these earlier compositions could have been either equilibrated below 600, 300 °C or being at disequilibrium. A restitic origin is consistent with the main sulphide mineral associations, the estimated melt extraction for peridotites (<30 %) and with the fact that lherzolites are less affected by cryptic metasomatism than harzburgites . However, Ni exchange coefficients between olivine and the high-temperature monosulphide solid solution underestimate equilibrium values. This suggests that some lherzolites could derive from pervasive refertilization. The scarcity of sulphides in websterites is explained by S incompatible behaviour during the formation of earlier cumulates from the mafic alkaline magmas which caused the cryptic metasomatism.

  8. Calcium Phosphate Mineralization in Cellulose Derivative/Poly(acrylic acid) Composites Having a Chiral Nematic Mesomorphic Structure.

    PubMed

    Ogiwara, Takuya; Katsumura, Ayaka; Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2015-12-14

    Calcium phosphate mineralization was conducted by using polymer composites of liquid-crystalline (ethyl)cellulose (EC) or (hydroxypropyl)cellulose (HPC) with poly(acrylic acid) (PAA) as a scaffolding medium for the inorganic deposition. The EC/PAA and HPC/PAA samples were prepared in colored film form from EC and HPC lyotropic liquid crystals of left-handed and right-handed chiral nematics, respectively, by polymerization and cross-linking of acrylic acid as the main solvent component. The mineralization was allowed to proceed in a batchwise operation by soaking the liquid-crystalline films in an aqueous salt solution containing the relevant ions, Ca(2+) and HPO4(2-). The calcium phosphate-deposited EC/PAA and HPC/PAA composites (weight gain, typically 15-25% and 6-11%, respectively) retained the chiral nematic organization of the respective original handedness but exhibited selective light-reflection of longer wavelengths relative to that of the corresponding nonmineralized samples. From X-ray diffraction and energy-dispersive X-ray spectroscopy measurements, it was deduced that the calcium and phosphorus were incorporated inside the polymer matrices in three forms: amorphous calcium phosphate, hydroxyapatite, and a certain complex of PAA-Ca(2+). Dynamic mechanical analysis and thermogravimetry revealed that the inorganic hybridization remarkably enhanced the thermal and mechanical performance of the optically functionalized cellulosic/synthetic polymer composites; however, the effect was more drastic in the EC/PAA series rather than the HPC/PAA series, reflecting the difference in the deposited mineral amount between the two. PMID:26536381

  9. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis

    NASA Astrophysics Data System (ADS)

    Tonannavar, J.; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B.; Patil, Nikhil A.; Mulimani, B. G.

    2016-02-01

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400 cm- 1) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH.

  10. Genetic diversity for seed mineral composition in Teramnus labialis, a wild relative of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Teramnus labialis (L.) Spreng. is a wild relative of soybean whose seeds are collected and used as a food source by tribal populations in Asia. In order to assess the potential of this legume to provide dietary minerals for humans, fourteen diverse accessions were grown under controlled, nutrient-r...

  11. Genetic diversity for seed mineral composition in the wild legume Teramnus labialis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Teramnus labialis is a wild, tropical legume whose seeds are collected and used as a food source by tribal populations. In order to assess the potential of this legume to provide dietary minerals for humans, fourteen diverse accessions were grown under controlled, nutrient-replete conditions and se...

  12. Geochronology of the Xihuashan composite granitic body and tungsten mineralization, Jiangxi province, south China.

    USGS Publications Warehouse

    McKee, E.H.; Rytuba, J.J.; Xu, Keqin

    1987-01-01

    One of the goals of this visit was to collect samples of different granitic rocks in the pluton for radiometric dating to establish the geochronology of intrusion, alteration, and mineralization. This report summarises geochronologic studies during a visit by Chinese and US scientists to the Xihuashan mine.-after Authors

  13. Composition of structural fragments and the mineralization rate of organic matter in zonal soils

    NASA Astrophysics Data System (ADS)

    Larionova, A. A.; Zolotareva, B. N.; Kolyagin, Yu. G.; Kvitkina, A. K.; Kaganov, V. V.; Kudeyarov, V. N.

    2015-10-01

    Comparative analysis of the climatic characteristics and the recalcitrance against decomposition of organic matter in the zonal soil series of European Russia, from peat surface-gley tundra soil to brown semidesert soil, has assessed the relationships between the period of biological activity, the content of chemically stable functional groups, and the mineralization of humus. The stability of organic matter has been determined from the ratio of functional groups using the solid-state 13C NMR spectroscopy of soil samples and the direct measurements of organic matter mineralization from CO2 emission. A statistically significant correlation has been found between the period of biological activity and the humification indices: the CHA/CFA ratio, the aromaticity, and the alkyl/ O-alkyl ratio in organic matter. The closest correlation has been observed between the period of biological activity and the alkyl/ O-alkyl ratio; therefore, this parameter can be an important indicator of the soil humus status. A poor correlation between the mineralization rate and the content of chemically stable functional groups in soil organic matter has been revealed for the studied soil series. At the same time, the lowest rate of carbon mineralization has been observed in southern chernozem characterized by the maximum content of aromatic groups (21% Corg) and surface-gley peat tundra soil, where an extremely high content of unsubstituted CH2 and CH3 alkyl groups (41% Corg) has been noted.

  14. Clay Mineral Composition of Sediments in Some Desert Lakes in Nevada, California, and Oregon.

    PubMed

    Droste, J B

    1961-06-16

    X-ray analyses of some Recent desert lacustrine sediments in Nevada, California, and Oregon show that illite and montmorillonite are the most abundant clay minerals and that chlorite and kaolinite are present in subordinate amounts in the sediments of many of the lakes. These clay suites are derived from source rocks. PMID:17738874

  15. Effect of gypsum application on mineral composition in peanut pod walls and seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alleviation of soil-Ca deficiency through gypsum amendment increases the yield potential and ensures high seed quality in peanut (Arachis hypogaea L.). The effects of gypsum treatment, plant life cycle stage, and the fruit development stages on the accrual of several essential minerals (Ca, S, Mg, P...

  16. Synthesis of supported carbon nanotubes in mineralized silica-wood composites

    SciTech Connect

    Shin, Yongsoon; Wang, Chong M.; Li, Xiaohong S.; Exarhos, Gregory J.

    2005-03-01

    Multiwall carbon nanotubes (MWNTs) form spontaneously upon graphitization of organic precursors bound to the internal surfaces of a high porosity mineralized sample of natural wood. Following HF etching, both mesostructured carbon and randomly distributed and intertwined MWNTs were seen throughout the wood cellular structure.

  17. Fatty acid, flavonol, and mineral composition variability among seven macrotyloma uniflorum (Lam.) verdc. accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horse gram [Macrotyloma uniflorum (Lam.) Verdc.] seeds containing high concentrations of fatty acids, flavonols and minerals will provide government, public and private organizations with a nutritious and healthy food for use by malnourished and food deprived people worldwide. Seeds from seven horse...

  18. Analysis of the relationships between edentulism, periodontal health, body composition, and bone mineral density in elderly women

    PubMed Central

    Ignasiak, Zofia; Radwan-Oczko, Malgorzata; Rozek-Piechura, Krystyna; Cholewa, Marta; Skrzek, Anna; Ignasiak, Tomasz; Slawinska, Teresa

    2016-01-01

    Objective The relationship between bone mineral density (BMD) and tooth loss in conjunction with periodontal disease is not clear. The suggested effects include alteration in bone remodeling rates as well as the multifaceted etiology of edentulism. There is also a question if other body-related variables besides BMD, such as body composition, may be associated with tooth number and general periodontal health. The aim of this study was to evaluate if tooth number and marginal periodontal status are associated with body composition and BMD in a sample of elderly women. Materials and methods The study involved 91 postmenopausal women. Data included basic anthropometric characteristics, body composition via bioelectrical impedance analysis, and BMD analysis at the distal end of the radial bone of the nondominant arm via peripheral dual-energy X-ray absorptiometry. A dental examination was performed to assess tooth number, periodontal pocket depth (PD), and gingival bleeding. Results In nonosteoporotic women, a significant positive correlation was found between BMD and lean body mass, total body water, and muscle mass. The indicators of bone metabolism correlated negatively with PD. Such relationships did not appear in osteoporotic women. In both groups, basic anthropometric characteristics and body composition were significantly and positively correlated with PD and bleeding on probing. Conclusion The results suggest that body composition and BMD are not significantly correlated with tooth number and gingival bleeding. PMID:27042033

  19. Graphene-based composite with γ-Fe2O3 nanoparticle for the high-performance removal of endocrine-disrupting compounds from water.

    PubMed

    Sinha, Arjyabaran; Jana, Nikhil R

    2013-04-01

    Graphene is a 2D sp(2)-hybridized carbon sheet and an ideal material for the adsorption-based separation of organic pollutants. However, such potential applications of graphene are largely limited, owing to their poor solubility and extensive aggregation properties through graphene-graphene interactions. Herein, we report the synthesis of graphene-based composites with γ-Fe2O3 nanoparticle for the high-performance removal of endocrine-disrupting compounds (EDC) from water. The γ-Fe2O3 nanoparticles partially inhibit these graphene-graphene interactions and offer water dispersibility of the composite without compromising much of the high surface area of graphene. In their dispersed form, the graphene component offers the efficient adsorption of EDC, whilst the magnetic iron-oxide component offers easier magnetic separation of adsorbed EDC. PMID:23401314

  20. Amorphous Calcium Phosphate-Based Bioactive Polymeric Composites for Mineralized Tissue Regeneration

    PubMed Central

    Skrtic, D.; Antonucci, J. M.; Eanes, E. D.

    2003-01-01

    Amorphous calcium phosphate (ACP), a postulated precursor in the formation of biological hydroxyapatite, has been evaluated as a filler phase in bioactive polymeric composites that utilize dental monomers to form the matrix phase on polymerization. In addition to excellent biocompatibility, these composites provided sustained release of calcium and phosphate ions into simulated saliva milieus. In an effort to enhance the physicochemical and mechanical properties and extend the utility of remineralizing ACP composites to a greater variety of dental applications, we have focused on: a) hybridizing ACP by introducing silica and/or zirconia, b) assessing the efficacy of potential coupling agents, c) investigating the effects of chemical structure and compositional variation of the resin matrices on the mechanical strength and ion-releasing properties of the composites, and d) improving the intrinsic adhesiveness of composites by using bifunctional monomers with an affinity for tooth structure in resin formulations. Si- and Zr-modified ACPs along with several monomer systems are found useful in formulating composites with improved mechanical and remineralizing properties. Structure-property studies have proven helpful in advancing our understanding of the remineralizing behavior of these bioactive composites. It is expected that this knowledge base will direct future research and lead to clinically valuable products, especially therapeutic materials appropriate for the healing or even regeneration of defective teeth and bone structures. PMID:27413603

  1. Surface and optical analyses of a dye-mineral composite -- an XPS, FTIR and Raman study

    NASA Astrophysics Data System (ADS)

    Durrer, William; Manciu, Felicia; Ramirez, Alejandra; Chianelli, Russell

    2007-10-01

    Maya Purple is a pigment produced by mixing the dye thioindigo with the clay mineral palygorskite. In this investigation, we address the questions of how the dye binds to the clay and how such binding might be affected by the organic-inorganic material ratio and of the heating time used in the preparation of the pigment. Synthetically prepared Maya Purple samples were examined using XPS, FTIR, and Raman spectroscopy. XPS measurements show that pigment preparation results in interactions between the dye and the mineral that give rise to several different binding states of the key elemental components oxygen, sulfur, and aluminum. These results are in good agreement with the Raman analysis, where the appearance and disappearance of bands in the 600 cm-1, 1100 cm-1, and 1600 cm-1 regions demonstrate interaction affecting oxygen and sulfur. The data are further corroborated by vibrational line shifting in the FTIR data.

  2. Material properties and biochemical composition of mineralized vertebral cartilage in seven elasmobranch species (Chondrichthyes).

    PubMed

    Porter, Marianne E; Beltrán, Jennie L; Koob, Thomas J; Summers, Adam P

    2006-08-01

    Elasmobranchs, particularly sharks, function at speed and size extremes, exerting large forces on their cartilaginous skeletons while swimming. This casts doubt on the generalization that cartilaginous skeletons are mechanically inferior to bony skeletons, a proposition that has never been experimentally verified. We tested mineralized vertebral centra from seven species of elasmobranch fishes: six sharks and one axially undulating electric ray. Species were chosen to represent a variety of morphologies, inferred swimming speeds and ecological niches. We found vertebral cartilage to be as stiff and strong as mammalian trabecular bone. Inferred swimming speed was a good, but not infallible, predictor of stiffness and strength. Collagen content was also a good predictor of material stiffness and strength, although proteoglycan was not. The mineral fraction in vertebral cartilage was similar to that in mammalian trabecular bone and was a significant predictor of material properties. PMID:16857876

  3. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone.

    PubMed

    Addison, W N; Nelea, V; Chicatun, F; Chien, Y-C; Tran-Khanh, N; Buschmann, M D; Nazhat, S N; Kaartinen, M T; Vali, H; Tecklenburg, M M; Franceschi, R T; McKee, M D

    2015-02-01

    Bone cell culture systems are essential tools for the study of the molecular mechanisms regulating extracellular matrix mineralization. MC3T3-E1 osteoblast cell cultures are the most commonly used in vitro model of bone matrix mineralization. Despite the widespread use of this cell line to study biomineralization, there is as yet no systematic characterization of the mineral phase produced in these cultures. Here we provide a comprehensive, multi-technique biophysical characterization of this cell culture mineral and extracellular matrix, and compare it to mouse bone and synthetic apatite mineral standards, to determine the suitability of MC3T3-E1 cultures for biomineralization studies. Elemental compositional analysis by energy-dispersive X-ray spectroscopy (EDS) showed calcium and phosphorus, and trace amounts of sodium and magnesium, in both biological samples. X-ray diffraction (XRD) on resin-embedded intact cultures demonstrated that similar to 1-month-old mouse bone, apatite crystals grew with preferential orientations along the (100), (101) and (111) mineral planes indicative of guided biogenic growth as opposed to dystrophic calcification. XRD of crystals isolated from the cultures revealed that the mineral phase was poorly crystalline hydroxyapatite with 10 to 20nm-sized nanocrystallites. Consistent with the XRD observations, electron diffraction patterns indicated that culture mineral had low crystallinity typical of biological apatites. Fourier-transform infrared spectroscopy (FTIR) confirmed apatitic carbonate and phosphate within the biological samples. With all techniques utilized, cell culture mineral and mouse bone mineral were remarkably similar. Scanning (SEM) and transmission (TEM) electron microscopy showed that the cultures had a dense fibrillar collagen matrix with small, 100nm-sized, collagen fibril-associated mineralization foci which coalesced to form larger mineral aggregates, and where mineralized sites showed the accumulation of the

  4. Bioinspired, cytocompatible mineralization of silica-titania composites: thermoprotective nanoshell formation for individual chlorella cells.

    PubMed

    Ko, Eun Hyea; Yoon, Yeonjung; Park, Ji Hun; Yang, Sung Ho; Hong, Daewha; Lee, Kyung-Bok; Shon, Hyun Kyong; Lee, Tae Geol; Choi, Insung S

    2013-11-18

    Hard-shell case: Using a (RKK)4 D8 peptide allows mineralization to occur under cytocompatible conditions. Thus individual Chlorella cells could be encapsulated within a SiO2 -TiO2 nanoshell with high cell viability (87 %). The encapsulated Chlorella showed an almost threefold increase in their thermo-tolerance after 2 h at 45 °C. PMID:24115679

  5. Ultrastructure and mineral composition of the cornea cuticle in the compound eyes of a supralittoral and a marine isopod.

    PubMed

    Alagboso, Francisca I; Reisecker, Christian; Hild, Sabine; Ziegler, Andreas

    2014-08-01

    The cuticle of the cornea in Crustacea is an interesting example of a composite material compromising between two distinct functions. As part of the dioptric apparatus of the ommatidia within the complex eye it forms transparent micro-lenses that should as well maintain the mechanical stability of the head capsule. We analyzed the ultrastructure and composition of the isopod cornea cuticle of the terrestrial species Ligia oceanica and the marine Sphaeroma serratum. We used a variety of tissue preparation methods, electron microscopic techniques as well as electron microprobe analysis and Raman spectroscopic imaging. The results reveal various structural adaptations that likely increase light transmission. These are an increase in the thickness of the epicuticle, a reduction of the thickness of the outer layer of calcite, a spatial restriction of pore canals to interommatidial regions, and, for S. serratum only, an increase in calcite crystal size. In both species protein-chitin fibrils within the proximal exocuticle form a peculiar reticular structure that does not occur within the cuticle of the head capsule. In L. oceanica differential mineralization results in a spherically shaped interface between mineralized and unmineralized endocuticle, likely an adaptation to increase the refractive power of the cornea maintaining the mechanical stability of the cuticle between the ommatidia. The results show that the habitat and differences in the general structure of the animal's cuticle affect the way in which the cornea is adapted to its optical function. PMID:24937761

  6. Effects of mineral composition and pore structure in HC potential of reservoir rocks in the Western Foothill Belt, Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, J. M.; Tsai, L. Y.

    2014-12-01

    The exploration of unconventional gas resource achieved a successful breakthrough in USA due to the innovation of hydraulic fracturing and horizontal drilling since 1995. The production of shale gas dramatically changed the energy structure and released the demand of fossil fuel in USA. Many studies about the unconventional oil-gas resource were performed worldwide especially in China, which provide very useful characterization for unconventional gas reservoirs. Since Taiwan has a strong energy demand and still highly relied on imported fossil fuel, the development of unconventional gas resource needs to be concerned. Therefore, the objective of this study is to evaluate the potential of unconventional oil-gas in Taiwan. In this study, we examine mineral composition and pore structure of Miocene oil-gas bearing strata from the Western Foothill Belt in Taiwan. Sandstone samples were collected from Cholan Fm, Yutengpin ss, Kuantaoshan ss, Shangfuchi ss, Tungkeng Fm, Guanyinshang ss and Peiliao Fm; whereas shale samples were collected from Chinshui sh and Talu sh, as well as outcropped coal sample from Nanchung Fm. The porosity, permeability, TOC, thermal maturity, and mineral composition of samples are examined after a series of geochemical experiments. Finally, after comparing the data with their gas sorption capacity, the reservoir with the strongest potential in unconventional gas resource can be identified.

  7. Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera.

    PubMed

    Cosme, Marco; Franken, Philipp; Mewis, Inga; Baldermann, Susanne; Wurst, Susanne

    2014-10-01

    Moringa is a mycorrhizal crop cultivated in the tropics and subtropics and appreciated for its nutritive and health-promoting value. As well as improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can affect plant synthesis of compounds bioactive against chronic diseases in humans. Rhizophagus intraradices and Funneliformis mosseae were used in a full factorial experiment to investigate the impact of AMF on the accumulation of glucosinolates, flavonoids, phenolic acids, carotenoids, and mineral elements in moringa leaves. Levels of glucosinolates were enhanced, flavonoids and phenolic acids were not affected, levels of carotenoids (including provitamin A) were species-specifically reduced, and mineral elements were affected differently, with only Cu and Zn being increased by the AMF. This study presents novel results on AMF effects on glucosinolates in leaves and supports conclusions that the impacts of these fungi on microelement concentrations in edible plants are species dependent. The nonspecific positive effects on glucosinolates and the species-specific negative effects on carotenoids encourage research on other AMF species to achieve general benefits on bioactive compounds in moringa. PMID:24706008

  8. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens

    PubMed Central

    Tellez, Guillermo; Latorre, Juan D.; Kuttappan, Vivek A.; Kogut, Michael H.; Wolfenden, Amanda; Hernandez-Velasco, Xochitl; Hargis, Billy M.; Bottje, Walter G.; Bielke, Lisa R.; Faulkner, Olivia B.

    2014-01-01

    Two independent trials were conducted to evaluate the utilization of rye as energy source on bacterial translocation (BT), intestinal viscosity, gut integrity, gut microbiota composition, and bone mineralization, when compared with a traditional cereal (corn) in broiler chickens. In each experiment, day-of-hatch, broiler chickens were randomly assigned to either a corn or a rye diet (n = 20 chickens/group). At 10 d of age, in both experiments, 12 chickens/group were randomly selected, and given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood samples were collected to determine the passage of FITC-d. The liver was collected from each bird to evaluate BT. Duodenum, ileum, and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with rye showed increased (p < 0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that chickens fed with rye had increased the number of total lactic acid bacteria in all three sections of the gastrointestinal tract evaluated when compared to chickens fed with corn. Chickens fed with rye also had significantly higher coliforms in duodenum and ileum, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in chickens fed with rye when compared with corn fed chickens. In conclusion, rye evoked mucosal damage in chickens that alter the intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition as well as bone mineralization. Studies to evaluate dietary inclusion of selected DFM candidates that produce exogenous enzymes in rye fed chickens are currently being evaluated. PMID:25309584

  9. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH) Vitamin D Serum Levels in Systemic Sclerosis.

    PubMed

    Corrado, Addolorata; Colia, Ripalta; Mele, Angiola; Di Bello, Valeria; Trotta, Antonello; Neve, Anna; Cantatore, Francesco Paolo

    2015-01-01

    A reduced bone mineral density (BMD) is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc); nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc) or diffuse cutaneous (dcSSc) SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD) were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content. PMID:26375284

  10. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH) Vitamin D Serum Levels in Systemic Sclerosis

    PubMed Central

    Corrado, Addolorata; Colia, Ripalta; Mele, Angiola; Di Bello, Valeria; Trotta, Antonello; Neve, Anna; Cantatore, Francesco Paolo

    2015-01-01

    A reduced bone mineral density (BMD) is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc); nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc) or diffuse cutaneous (dcSSc) SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD) were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content. PMID:26375284

  11. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens.

    PubMed

    Tellez, Guillermo; Latorre, Juan D; Kuttappan, Vivek A; Kogut, Michael H; Wolfenden, Amanda; Hernandez-Velasco, Xochitl; Hargis, Billy M; Bottje, Walter G; Bielke, Lisa R; Faulkner, Olivia B

    2014-01-01

    Two independent trials were conducted to evaluate the utilization of rye as energy source on bacterial translocation (BT), intestinal viscosity, gut integrity, gut microbiota composition, and bone mineralization, when compared with a traditional cereal (corn) in broiler chickens. In each experiment, day-of-hatch, broiler chickens were randomly assigned to either a corn or a rye diet (n = 20 chickens/group). At 10 d of age, in both experiments, 12 chickens/group were randomly selected, and given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood samples were collected to determine the passage of FITC-d. The liver was collected from each bird to evaluate BT. Duodenum, ileum, and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with rye showed increased (p < 0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that chickens fed with rye had increased the number of total lactic acid bacteria in all three sections of the gastrointestinal tract evaluated when compared to chickens fed with corn. Chickens fed with rye also had significantly higher coliforms in duodenum and ileum, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in chickens fed with rye when compared with corn fed chickens. In conclusion, rye evoked mucosal damage in chickens that alter the intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition as well as bone mineralization. Studies to evaluate dietary inclusion of selected DFM candidates that produce exogenous enzymes in rye fed chickens are currently being evaluated. PMID:25309584

  12. Disruption model

    SciTech Connect

    Murray, J.G.; Bronner, G.

    1982-07-01

    Calculations of disruption time and energy dissipation have been obtained by simulating the plasma as an electrical conducting loop that varies in resistivity, current density, major radius. The calculations provide results which are in good agreement with experimental observations. It is believed that this approach allows engineering designs for disruptions to be completed in large tokamaks such as INTOR or FED.

  13. Mineralizing conditions and source fluid composition of base metal sulfides in the Lon District, southeastern Iceland

    NASA Astrophysics Data System (ADS)

    Kremer, C. H.; Thomas, D.; García del Real, P.; Zierenberg, R. A.; Bird, D. K.

    2014-12-01

    Hydrothermal base metal mineralization is rare in Iceland due to the scarcity of evolved magma bodies that discharge metal-rich aqueous fluids into bedrock. One exception is the Lon District of southeastern Iceland, where explosively emplaced rhyolitic breccias host base metal sulfide minerals. We performed petrographic, fluid inclusion, and stable isotope analyses on samples collected in Lon to constrain the conditions of sulfide mineral formation. Based on outcrop and hand sample observations, hot, early-stage hydrothermal fluids precipitated sulfide minerals, quartz, and epidote in rhyolitic breccia and basalt flows. Cooler late-stage fluids precipitated carbonates and quartz in rhyolitic breccia and basalt flows. The order of precipitation of the sulfides was: galena, sphalerite, then chalcopyrite. Homogenization temperatures of liquid-dominated multi-phase fluid inclusions in hydrothermal early-stage quartz coeval with chalcopyrite cluster around 303 °C and 330 °C, indicating precipitation of metallic sulfides in two main hydrothermal fluid pulses early in the period of hydrothermal activity in the Lon District. Freezing point depression analyses of fluid inclusions in quartz show that the sulfide minerals precipitated from a solution that was 4 wt. % NaCl. The 𝛿34S values of sulfides indicate that early-stage hydrothermal sulfur was derived from igneous rocks, either through leaching by non-magmatic hydrothermal fluids or by exsolution of magmatic waters. Early stage epidote 𝛿D values were on average -65.96 per mil, about 14 per mil higher than reported values in epidotes from elsewhere in southeastern Iceland. The 𝛿13C and 𝛿18O values of late-stage carbonates indicate that late stage hydrothermal fluids were meteoric in origin. Collectively, fluid inclusion and stable isotope analyses suggest that early-stage aqueous fluids derived from a mixture of magmatic waters exsolved from the proximal Geitafell intrusion and meteoric

  14. Immobilization of plutonium-containing waste into borobasalt, piroxen and andradite mineral-like compositions

    NASA Astrophysics Data System (ADS)

    Matyunin, Yu. I.; Yudintsev, S. V.; Jardine, L. J.

    2000-07-01

    Immobilization of plutonium-containing waste with obtaining stable and solid compositions is one of the problems that require a solution while managing radioactive waste. At VNIINM work is under way to select and synthesize matrix compositions for the immobilization of various-origin plutonium waste with the use of a cold crucible induction melting technology (CCIM). This paper presents information on the synthesis in a muffle furnace and in the CCIM zerium-, uranium- and plutonium-containing borobasalt, piroxen and andradite materials.

  15. Influence of pH and electrolyte composition on adsorption of poliovirus by soils and minerals.

    PubMed Central

    Taylor, D H; Moore, R S; Sturman, L S

    1981-01-01

    The pH and the nature an concentration of simple electrolytes influenced the interaction of poliovirus type 2 with three soils, a sand, and a clay mineral. In electrolytes above pH 9 the virus was not adsorbed extensively to the substrates, but below pH 7 almost all virus was bound. For each adsorbent there was a characteristic pH region of transition from strong to weak uptake. Differences between the soils in virus uptake were shown to parallel their pH-dependent mineral. In electrolytes above pH 9 the virus was not adsorbed extensively to the substrates, but below pH 7 almost all virus was bound. For each adsorbent there was a characteristic pH region of transition from strong to weak uptake. Differences between the soils in virus uptake were shown to parallel their pH-dependent mineral. In electrolytes above pH 9 the virus was not adsorbed extensively to the substrates, but below pH 7 almost all virus was bound. For each adsorbent there was a characteristic pH region of transition from strong to weak uptake. Differences between the soils in virus uptake were shown to parallel their pH-dependent charge properties, as determined by whole-particle microelectrophoresis. Only when the pH was close to or above the critical region was uptake increased with electrolyte concentration. The transition region for all substrates was above pH 7.5 the isoelectric point of the virus. Thus, it appears that when both the virus and substrate are highly negative charged, repulsive electrostatic effects may exceed inherent attractive interactions, thereby inhibiting adsorption. PMID:6274260

  16. Mineral composition and heavy metal contamination of sediments originating from radium rich formation water.

    PubMed

    Bzowski, Zbigniew; Michalik, Bogusław

    2015-03-01

    Radium rich formation water is often associated with fossil fuels as crude oil, natural gas and hard coal. As a result of fossil fuels exploitation high amount of such water is released into environment. In spite of the high radium content such waters create a serious radiation risk neither to humans nor biota directly. First and foremost due to very high mineralization they are not drinkable at all. But after discharge chemical and physical conditions are substantially changed and sediments which additionally concentrated radium are arising. Due to features of technological processes such phenomenon is very intensive in underground coal mining where huge volume of such water must be pumped into surface in order to keep underground galleries dry. Slightly different situation occurs in oil rigs, but finally also huge volume of so called process water is pumped into environment. Regardless their origin arising sediments often contain activity concentration of radium isotopes exceeding the clearance levels set for naturally occurring radioactive materials (NORM) (Council Directive, 2013). The analysis of metals and minerals content showed that besides radioactivity such sediments contain high amount of metals geochemically similar to radium as barium, strontium and lead. Correlation analysis proved that main mechanism leading to sediment creation is co-precipitation radium with these metals as a sulfate. The absorption on clay minerals is negligible even when barium is not present in significant quantities. Owing to very low solubility of sulfates radium accumulated in this way should not migrate into environment in the neighborhood of a site where such sediment were deposited. PMID:25434264

  17. Chemical and isotopic compositions of thermal waters in Anatolia, Turkey: A link to fluid-mineral equilibria

    NASA Astrophysics Data System (ADS)

    Mutlu, Halim; Gülec, Nilgün; Hilton, David R.

    2015-04-01

    The complex magmato-tectonic setting of Turkey has resulted in the occurrence of numerous geothermal fields with distinct chemical and isotopic fluid compositions. We evaluate the data on these fluids in terms of water-rock interaction, mineral equilibrium conditions and reservoir temperatures of each geothermal field. The Ca-HCO3 rich nature of most waters is ascribed to derivation from carbonate-type reservoir rocks. SO4-type waters are found in areas where the reservoir is partly comprised of evaporite units. Na-Cl type waters are characteristic for the coastal areas of west Anatolia. Chemical geothermometer applications estimate average reservoir temperatures of 180 °C for the western Anatolian region, 120 °C for the Balıkesir region, 130 °C for the eastern Anatolian region, 140 °C for the North Anatolian Fault Zone and 70 °C for the Eskişehir region. For most of the waters, chalcedony controls the silica solubility and the majority of waters are equilibrated with calcite and chalcedony minerals. Oxygen and hydrogen isotope compositions (-13.5 to -4 permil (VSMOW) and -95.4 to -23 permil (VSMOW), respectively) are generally conformable with Global Meteoric Water Line (GMWL); however, stable isotope systematics of geothermal waters close to the coast are consistent with the Mediterranean Meteoric Water Line (MMWL). Carbon and sulfur isotope compositions (δ13C (VPDB): -17.7 to +5.6 permil and δ34S (VCDT): -5.5 to +45.7 permil) suggest marine carbonates and terrestrial evaporite units as the main source of dissolved carbon and sulfate in the waters.

  18. Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing.

    PubMed

    Kelly, L C; Colin, Y; Turpault, M-P; Uroz, S

    2016-08-01

    Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site. PMID:27138048

  19. What is the impact of Silicon Carbide nanoparticles to the mineral composition of rat lungs? A PIXE-μPIXE comparative study

    NASA Astrophysics Data System (ADS)

    Lozano, O.; Colaux, J. L.; Laloy, J.; Dogné, J. M.; Lucas, S.

    2015-05-01

    The exposure to nanomaterials can yield changes in the mineral composition of tissues which may have long term health repercussions. In this study, the changes in mineral composition of rat lungs, exposed to a nanoaerosol of silicon carbide (SiC), has been studied by means of global and local ion beam probes with the Particle-Induced X-ray Emission (PIXE) technique, measuring the whole lung contents and selected areas where SiC was found, respectively. It was found that from a global perspective there is a small decrease in the mineral contents (phosphorous, sulphur, chlorine and potassium) of the lung except for Ca, while locally these mineral contents tend fluctuate.

  20. Proximate composition, mineral content and in vitro antioxidant activity of leaf and stem of Costus afer (Ginger lily)

    PubMed Central

    Anyasor, G. N.; Onajobi, F. D.; Osilesi, O.; Adebawo, O.

    2014-01-01

    Aim: This study was designed to determine the proximate composition and mineral content of Costus afer leaf and stem, as well as to identify the most active antioxidant fraction. Materials and Methods: The proximate composition and mineral analysis of C. afer leaf and stem were performed using the standard methods described by Pearson and Association of Official Analytical Chemist while the 1,1 diphenyl 2 picryl hydrazyl (DPPH), thiobarbituric acid reactive species (TBARS), lipid peroxidation (LPO), and total antioxidant capacity (TAC) assays were used to determine the in vitro antioxidant activity of aqueous, n-butanol, ethyl acetate and hexane fractions of C. afer leaf and stem. Results: Proximate analysis revealed that the carbohydrate content was highest in the leaf (55.83 ± 3.71%) and stem (50.38 ± 1.27%) while crude fat content was lowest in the leaf (1.83 ± 0.43%) and stem (1.75 ± 0.48%). The minerals detected in appreciable quantity in both the leaf and stem samples were calcium, magnesium, potassium, sodium, chromium, lead, manganese, nickel, and copper. Further study showed that the aqueous leaf fraction exhibited a significantly (P < 0.05) high DPPH scavenging activity (IC50 = 259.07 µg/ml) and TAC (7.95 ± 0.37 mg ascorbic acid equivalent/g) compared with the other test fractions while the aqueous stem fraction had the highest TBARS scavenging activity (IC50 = 0.37 µg/ml) and inhibition of LPO (IC50 = 41.15 µg/ml) compared with the other test fractions. Conclusion: The findings from this study indicate that C. afer could serve as a source of nutrient and minerals for animal nutrition and human metabolism. It also showed that the aqueous fractions of C. afer leaf and stem possess high antioxidant activity than the other fractions. In addition, this study may also explain the folkloric use of crude C. afer leaf or stem extracts in the treatment of oxidative stress associated diseases, including rheumatoid arthritis and hepatic disorder. PMID

  1. Reversal of osteoporotic changes of mineral composition in femurs of diabetic rats by insulin.

    PubMed

    Zhang, Xiaolin; Fei, Yurong; Zhang, Min; Wei, Dan; Li, Ming; Ding, Wenjun; Yang, Jianhong

    2008-03-01

    Insulin plays an important role in bone prevention of diabetic osteoporosis, but little is known about the relation between the bone mineral density (BMD) increase and the change of mineral element content after treated with insulin. To address this problem, male Wistar rats were randomly divided into three groups: normal group (n = 6), streptozotocin-induced diabetic group (n = 5), and streptozotocin-induced diabetic group with insulin treatment (n = 5). The femoral BMD was measured by dual energy X-ray absorptiometry, and the element content was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The results showed that the femoral BMD in diabetic group was significantly lower than that in normal group (P < 0.01) but restored by insulin treatment (P < 0.01 vs diabetic group). ICP-AES analysis revealed that the element content of calcium (Ca), phosphorous (P), magnesium (Mg), strontium (Sr), and potassium (K) in diabetic group were remarkably lower than those in normal group (P < 0.01) but only Ca, P, and Mg content were significantly increased compared with diabetic group (P < 0.05) after insulin treatment. However, no significant differences were observed in element zinc (Zn) content among three groups. Our findings suggested that the loss of Ca, P, Mg, Sr, and K content accounted for the lower BMD in streptozotocin-induced diabetes rats, insulin treatment could restore BMD by increasing the content of Ca, P, and Mg. PMID:17952383

  2. Effect of 30 % hydrogen peroxide on mineral chemical composition and surface morphology of bovine enamel.

    PubMed

    González-López, Santiago; Torres-Rodríguez, Carolina; Bolaños-Carmona, Victoria; Sanchez-Sanchez, Purificación; Rodríguez-Navarro, Alejandro; Álvarez-Lloret, Pedro; Domingo Garcia, María

    2016-01-01

    A combination of atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FTIR), scanning electronic microscopy (SEM), and gas adsorption techniques was used to characterize the effect of 30 % hydrogen peroxide (HP) on enamel surface. To perform the analyses of AAS, 1 ml of 30 % HP was added to 30 mg of a bovine enamel powder sample (150-200 µm fractions) for times of 5, 20, 60, 90, and 120 min; then 5 ml of the solution was withdrawn after each time period to measure [Ca(2+)] ions. The remaining powder was recovered and analyzed by FTIR. For SEM and gas adsorption tests, 4 × 4 mm(2) enamel sectioned samples were polished and 30 % HP was applied on the surface for the same time periods. AAS data show that 30 % HP treatment mobilized calcium from the enamel at all times studied. FTIR spectra showed that the total amount of phosphate and carbonate mineral contents such as amide I decreased significantly. SEM revealed that randomly distributed areas throughout the smooth enamel surface treatment became rougher and more irregular. These alterations indicate that surface damage increases with increasing durations of HP treatment. Gas adsorption analysis proved that bleached enamel is a typically non-porous material with a small specific surface area which decreases slightly with the 30 % HP treatment. In sum, 30 % HP induced a significant alteration of the organic and mineral part of the enamel, leading to the release of calcium and a rougher, more irregular enamel surface on randomly distributed areas. PMID:25528151

  3. Composite membranes for alkaline electrolysis based on polysulfone and mineral fillers

    NASA Astrophysics Data System (ADS)

    Burnat, Dariusz; Schlupp, Meike; Wichser, Adrian; Lothenbach, Barbara; Gorbar, Michal; Züttel, Andreas; Vogt, Ulrich F.

    2015-09-01

    Mineral-based membranes for high temperature alkaline electrolysis were developed by a phase inversion process with polysulfone as binder. The long-term stability of new mineral fillers: wollastonite, forsterite and barite was assessed by 8000 h-long leaching experiments (5.5 M KOH, 85 °C) combined with thermodynamic modelling. Barite has released only 6.22 10-4 M of Ba ions into the electrolyte and was selected as promising filler material, due to its excellent stability. Barite-based membranes, prepared by the phase inversion process, were further studied. The resistivity of these membranes in 5.5 M KOH was investigated as a function of membrane thickness and total porosity, hydrodynamic porosity as well as gas purities determined by conducting electrolysis at ambient conditions. It was found that a dense top layer resulting from the phase inversion process, shows resistivity values up to 451.0 ± 22 Ω cm, which is two orders of magnitude higher than a porous bulk membrane microstructure (3.89 Ω cm). Developed membranes provided hydrogen purity of 99.83 at 200 mA cm-2, which is comparable to previously used chrysotile membranes and higher than commercial state-of-the-art Zirfon 500utp membrane. These cost-effective polysulfone - barite membranes are promising candidates as asbestos replacement for commercial applications.

  4. Minerals salt composition and secondary metabolites of Euphorbia hirta Linn., an antihyperglycemic plant

    PubMed Central

    Yvette Fofie, N’Guessan Bra; Sanogo, Rokia; Coulibaly, Kiyinlma; Kone-Bamba, Diénéba

    2015-01-01

    Phytochemical study and research on acute toxicity were performed on the aerial parts (leaves and stems) of Euphorbia hirta Linn. The phytochemical screening and chromatography revealed the presence of saponin, sterol, terpene, alkaloids, polyphenols, tannins and flavonoids and especially mucilage. The evaluation of total polyphenols and total flavonoids gave 120.97 ± 7.07 gallic acid equivalents (GAE) mg/g (mg of GAE/g of extract) of dry extract and 41.4 ± 0.5 mg quercetin equivalent per gram (QE/g) (mg of QE/g of plant extract) of dry extract respectively. The physicochemical study revealed moisture content of 7.73% ± 0.00%, total ash 7.48% ± 0.03%. Sulfuric ash 9.05% ± 0.01%, hydrochloric acid insoluble ash of 0.8% ± 0.02%. The search for minerals salt revealed the presence of Cr, Zn, K, Ca and Mg having an important role in glucose metabolism. The acute toxicity study showed that the toxic dose may be above 3000 mg/kg. The results of these studies indicate that extracts from the leaves and stem of E. hirta Linn. contains trace elements and minerals salt and bioactive secondary metabolites which explain their therapeutic uses for treating diabetes mellitus. PMID:25598628

  5. Phyllosilicate mineral assemblages, elemental compositions and microstructures from the SAFOD Main Hole

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B. A.; Schleicher, A. M.; Solum, J. G.; Tourscher, S. N.; Warr, L. N.

    2005-12-01

    Mineral transformations and fabrics, particularly those involving phyllosilicates, can critically affect the mechanical behavior of shallow faults and may be more important than generally assumed. Thus, detailed phyllosilicate mineralogy, mineral transformation history and fabric development are central to the study of fault rocks and our understanding of fault properties. The SAFOD hole provides the opportunity to study the in situ change from undeformed protolith to fault rock, thereby establishing a reference for the characterization of the type and magnitude of changes in active fault zones. The SAFOD hole also allows for direct comparison with exhumed SAFOD analogs, which have been used as representatives for fault zones at depth. In exhumed faults several populations of discrete and mixed-layer phyllosilicates were observed, including a protolithic population (chlorite and mica), a syn-faulting population (chlorite-rich chlorite-smectite and illite-rich illite-smectite), and a post-faulting population (smectite-rich chlorite-smectite). In the SAFOD Pilot Hole multiple populations of phyllosilicates were also observed, including mixed-layer clays in the shallow sedimentary rocks and chlorite in deeper granitic rocks. These findings indicate that there are variations in phyllosilicate mineralization with (1) depth (2) strain energy/deformation mechanism/position in fault zone and (3) time. There are several preliminary zones of phyllosilicates in the SAFOD Main Hole, including: (1) a zone at 7800-8100 ft MD, marked by an increase in the amount of illite, and the appearance of a mixed-layer illite-smectite (I-S) phase; (2) a zone at 8400-8800 ft MD that includes at least one large shear zone marked large a increase in the amount of I-S and illite relative to surrounding protolith; (3) a zone at 11050-12400 ft MD marked by a large increase in the amount of chlorite that is fairly constant to the bottom of the hole, and the appearance of a mixed-layer clay. Three

  6. Monzonitoid magmatism of the Glukhoe gold ore deposit (Primorye): U-Pb, SHRIMP dating, petrochemical and minor-element compositions, and peculiar features of noble metal mineralization

    NASA Astrophysics Data System (ADS)

    Sakhno, V. G.; Kovalenko, S. V.; Barinov, N. N.; Lyzganov, A. V.; Kuznetsov, Yu. A.

    2015-11-01

    Monzogabbrodiorites and monzodiorites from the Tatibin Group of Central Sikhote Alin (Primorye), which hosts the Glukhoe gold ore deposit, are considered with discussion of the most important data on the geological structure and composition of magmatic complexes and the results of U-Pb and SHRIMP dating. It is first established that mineral associations of the gold ore deposit include native Pt, Cu, and other compounds and mineral associations. Their formation conditions of both scientific and practical significance are analyzed.

  7. Spatial distribution and compositional variation of APS minerals related to uranium deposits in the Kiggavik-Andrew Lake structural trend, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Riegler, Thomas; Quirt, Dave; Beaufort, Daniel

    2016-02-01

    The Kiggavik-Andrew Lake structural trend consists of four mineralized zones, partially outcropping, lying 2 km south of the erosional contact with the unmetamorphosed sandstone and basal conglomerates of the Paleoproterozoic Thelon Formation. The mineralization is controlled by a major E-W fault system associated with illite and sudoite alteration halos developed in the Archean metagraywackes of the Woodburn Lake Group. Aluminum phosphate sulfate (APS) minerals from the alunite group crystallized in association with the clay minerals in the basement alteration halo as well as in the overlying sandstones, which underwent mostly diagenesis. APS minerals are Sr- and S-rich (svanbergite end-member) in the sedimentary cover overlying the unconformity, whereas they are light rare earth elements (LREE)-rich (florencite end-member) in the altered basement rocks below the unconformity. The geochemical signature of each group of APS minerals together with the petrography indicates three distinct generations of APS minerals related to the following: (1) paleoweathering of continental surfaces prior to the basin occurrence, (2) diagenetic processes during the burial history of the lower unit of the Thelon sandstones, and (3) hydrothermal alteration processes which accompanied the uranium deposition in the basement rocks and partially overlap the sedimentary-diagenetic mineral parageneses. In addition, the association of a first generation of APS minerals with both detrital cerium oxide and aluminum oxy-hydroxide highlights the fact that a part of the detrital material of the basal Thelon Formation originated from eroded paleolaterite (allochthonous regolith). The primary rare earth element (REE)-bearing minerals (e.g., monazite, REE carbonates, and allanite) of the host rocks were characterized to identify the potential sources of REE. The REE chemical composition highlights a local re-incorporation of the REE released from the alteration processes in the APS minerals of

  8. In vitro mineralization of bioresorbable poly(ɛ-caprolactone)/apatite composites for bone tissue engineering: a vibrational and thermal investigation

    NASA Astrophysics Data System (ADS)

    Taddei, Paola; Tinti, Anna; Reggiani, Matteo; Fagnano, Concezio

    2005-06-01

    This study was aimed at evaluating the physico-chemical properties of a porous poly(ɛ-caprolactone)/carbonated-apatite (PCL/CAp 30/70 w/w) composite to be used as scaffold for bone tissue engineering. The in vitro degradation mechanism of this matrix in different media was evaluated as well as its bioactivity in a simulated body fluid (SBF) buffered at pH 7.4 (37 °C, 28 days). For this purpose, we used vibrational IR and Raman spectroscopy coupled to thermogravimetry (TG) and differential scanning calorimetry (DSC). The samples were analyzed before and after immersion in the above mentioned solution as well as in 0.01 M NaOH solution (pH=12), saline phosphate buffer at pH 7.4 (SPB) and esterase/SPB. A control PCL sample was analyzed before the addition of the apatitic component. As regards the untreated samples, the method of synthesis utilized for preparing the composite was found to lower the crystallinity degree. The CAp component revealed to be constituted of a B-type CAp with a 3% carbonate content. After immersion in SBF solution, vibrational analysis coupled to TG revealed the deposition of a significant amount of an apatite component on the surface of the PCL/CAp composite as well as in its interior, showing a good in vitro mineralization.

  9. Various intensity of Proteus mirabilis-induced crystallization resulting from the changes in the mineral composition of urine.

    PubMed

    Torzewska, Agnieszka; Różalski, Antoni

    2015-01-01

    Infectious urolithiasis is a result of recurrent and chronic urinary tract infections caused by urease-positive bacteria, especially Proteus mirabilis. The main role in the development of this kind of stones is played by bacterial factors such as urease and extracellular polysaccharides, but urinary tract environment also contributes to this process. We used an in vitro model to establish how the changes in the basic minerals concentrations affect the intensity of crystallization which occurs in urine. In each experiment crystallization was induced by an addition of P. mirabilis to artificial urine with a precisely defined chemical composition. Crystallization intensity was determined using the spectrophotometric microdilution method and the chemical composition of formed crystals was established by atomic absorption spectroscopy and colorimetric methods. Increasing the concentration of all crystals forming ions such as Mg(2+), Ca(2+) and phosphate strongly intensified the process of crystallization, whereas reducing the amount of these components below the proper physiological concentration did not affect its intensity. The inhibitory influence of citrate on calcium and magnesium phosphate crystallization and competitive actions of calcium and oxalate ions on struvite crystals formation were not confirmed. In the case of infectious stones the chemical composition of urine plays an important role, which creates a necessity to support the treatment by developing a model of proper diet. PMID:25654361

  10. Mineral compositions in pristine lunar highland rocks and the diversity of highland magmatism

    NASA Technical Reports Server (NTRS)

    Bersch, Michael G.; Taylor, G. J.; Keil, Klaus; Norman, Marc D.

    1991-01-01

    High precision electron microprobe analyses of olivine and pyroxene in pristine lunar highland rocks confirm the dichotomy between ferroan anorthosites and the Mg-suite. Ferroan-anorthosites plot as coherent trends, consistent with formation in a complex global magma system. Lack of coherent compositional trends in the Mg-suite rocks indicates derivation from numerous magmas.

  11. Soil Fauna Alter the Effects of Litter Composition on Nitrogen Cycling in a Mineral Soil

    EPA Science Inventory

    Plant chemical composition and the soil community are known to influence litter and soil organic matter decomposition. Although these two factors are likely to interact, their mechanisms and outcomes of interaction are not well understood. Studies of their interactive effects are...

  12. Gloves against mineral oils and mechanical hazards: composites of carboxylated acrylonitrile–butadiene rubber latex

    PubMed Central

    Krzemińska, Sylwia; Rzymski, Władysław M.; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz

    2016-01-01

    Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile–butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves. PMID:26757889

  13. Gloves against mineral oils and mechanical hazards: composites of carboxylated acrylonitrile-butadiene rubber latex.

    PubMed

    Krzemińska, Sylwia; Rzymski, Władysław M; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz

    2016-09-01

    Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile-butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves. PMID:26757889

  14. Mineral chemical composition and geodynamic significance of peridotites from Nain ophiolite, central Iran

    NASA Astrophysics Data System (ADS)

    Ghazi, Javad Mehdipour; Moazzen, Mohssen; Rahgoshay, Mohammad; Moghadam, Hadi Shafaii

    2010-05-01

    The peridotites from north of the town of Nain in central Iran consist of clinopyroxene-bearing harzburgite and lherzolite with small lenses of dunite and chromitite pods. The lherzolite contains aluminous spinel with a Cr number (Cr # = Cr/[Cr + Al]) of 0.17. The Cr number of spinels in harzburgite and chromitite is 0.38-0.42 and 0.62, respectively. This shows that the lherzolite and harzburgite resulted from <18% of partial melting of the source materials. The estimated temperature is 1100 ± 200 °C for peridotites, the estimated pressure is <15 ± 2.3 kbar for harzburgites and >16 ± 2.3 kbar for lherzolites and estimated fo2 is 10 -1±0.5 for peridotites. Discriminant geochemical diagrams based on mineral chemistry of harzburgites indicate a supra-subduction zone (SSZ) to mid-oceanic ridge (MOR) setting for these rocks. On the basis of their Cr #, the harzburgite and lherzolite spinels are analogous to those from abyssal peridotites and oceanic ophiolites, whereas the chromites in the chromitite (on the basis of Cr # and boninitic nature of parental melts) resemble those from SSZ ophiolitic sequences. Therefore, the Nain ophiolite complex most likely originated in an oceanic crust related to supra-subduction zone, i.e. back arc basin. Field observations and mineral chemistry of the Nain peridotites, indicating the suture between the central Iran micro-continent (CIM) block and the Sanandaj-Sirjan zone, show that these peridotites mark the site of the Nain-Baft seaway, which opened with a slow rate of ocean-floor spreading behind the Mesozoic arc of the Sanandaj-Sirjan zone as a result of change of Neo Tethyan subduction régime during middle Cretaceous.

  15. Quantitative Comparison of 2 Dual-Energy X-ray Absorptiometry Systems in Assessing Body Composition and Bone Mineral Measurements.

    PubMed

    Xu, Wenhua; Chafi, Hatim; Guo, Beibei; Heymsfield, Steven B; Murray, Kori B; Zheng, Jolene; Jia, Guang

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used in body composition measurement and evaluation. Because of its numerous applications, the probability of instrument discrepancies has increased dramatically. This study quantitatively compares 2 different DXA systems. In this study, 96 subjects (60 female and 36 male, aged 19-82 years) were recruited and scanned using a General Electric Lunar iDXA and a Hologic Discovery scanner. Four measurements (percent fat, total mass, bone mineral density [BMD], and bone mineral content [BMC]) were quantitatively compared in the whole body and in specific anatomic regions (arms, legs, trunk, android, gynoid, head, ribs, and pelvis). A simple linear regression of each measurement was performed to examine the correlation between the 2 systems. Percent fat, total mass, BMC, and BMD were highly correlated between the 2 DXA systems, with correlation r values greater than 0.854 for both the whole body and the individual anatomic regions except for BMC and BMD in ribs. The high correlation between the 2 DXA systems with systematic differences enabled development of calibration equations for extending the multisystem measurements to advanced quantitative analyses. PMID:26206525

  16. Fatty acid, amino acid, and mineral composition of four common vetch seeds on Qinghai-Tibetan plateau.

    PubMed

    Mao, Zhuxin; Fu, Hua; Nan, Zhibiao; Wan, Changgui

    2015-03-15

    The chemical composition of four common vetch (Vicia sativa L.) seeds was investigated to determine their nutrition value. The result shows that the seeds are low in lipid (1.55-2.74% of dry weight), and high in the unsaturated fatty acid (74.51-77.36% of total fatty acid). The ratio of essential amino acid to non-essential amino acid (0.62-0.69) is even higher than the amount (0.38) recommended by World Health Organization. Besides, the seeds are also found rich in Mg, Mn and Cu, but with a low ratio of Ca to P (0.24-0.73), which may increase the risk of the mineral element toxicity. The results indicate that the four common vetch seeds could be taken as an alternative food source, but the possible toxic effect should be taken into consideration. PMID:25308636

  17. Rb-Sr whole-rock and mineral ages, K-Ar, 40Ar/39Ar, and U-Pb mineral ages, and strontium, lead, neodymium, and oxygen isotopic compositions for granitic rocks from the Salinian Composite Terrane, California:

    USGS Publications Warehouse

    Kistler, R.W.; Champion, D.E.

    2001-01-01

    This report summarizes new and published age and isotopic data for whole-rocks and minerals from granitic rocks in the Salinian composite terrane, California. Rubidium-strontium whole-rock ages of plutons are in two groups, Early Cretaceous (122 to 100 Ma) and Late Cretaceous (95 to 82 Ma). Early Cretaceous plutons occur in all granitic rock exposures from Bodega Head in the north to those from the Santa Lucia and Gabilan Ranges in the central part of the terrane. Late Cretaceous plutons have been identified in the Point Reyes Peninsula, the Santa Lucia and the Gabilan Ranges, and in the La Panza Range in the southern part of the terrane. Ranges of initial values of isotopic compositions are 87Sr/86Sr, 0.7046-0.7147, δ18O, +8.5 to +12.5 per mil, 206Pb/204Pb, 18.901-19.860, 207Pb/204Pb, 15.618-15.814, 208Pb/204Pb, 38.569- 39.493, and εNd, +0.9 to -8.6. The initial 87Sr/86Sr=0.706 isopleth is identified in the northern Gabilan Range and in the Ben Lomond area of the Santa Cruz Mountains, in Montara Mountain, in Bodega Head, and to the west of the Farallon Islands on the Cordell Bank. This isotopic boundary is offset about 95 miles (160km) by right-lateral displacements along the San Gregorio-Hosgri and San Andreas fault systems.

  18. Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties.

    PubMed

    Fei, Xiang; Jia, Minghui; Du, Xin; Yang, Yuhong; Zhang, Ren; Shao, Zhengzhong; Zhao, Xia; Chen, Xin

    2013-12-01

    Natural polymer Bombyx mori silk fibroin is used as a biotemplate to produce silver nanoparticles in situ under light (both incandescent light and sunlight) at room temperature. Silk fibroin provides multiple functions in the whole reaction system, serving as the reducing agent of silver, and the dispersing and stabilizing agent of the resulted silver nanoparticles. As the reaction needs not any other chemicals and only uses light as power source, the synthetic route of silver nanoparticles reported here is rather environment-friendly and energy-saving. The silk fibroin-silver nanoparticle composite prepared by this method can be stably stored in a usual environment (room temperature, exposure to light, and so forth) for at least one month. Such a silk fibroin-silver nanoparticle composite shows an effective antibacterial activity against the methicillin-resistant Staphylococcus aureus (S. aureus) and subsequently inhibits the biofilm formation caused by the same bacterium. Moreover, a maturely formed biofilm created by methicillin-resistant S. aureus can be destroyed by the silk fibroin-silver nanoparticle composite, which meets the demand of clinical application. Therefore, the silk fibroin-silver nanoparticle composite prepared by this clean and facile method is expected to be an effective and economical antimicrobial material in biomedical fields. PMID:24171643

  19. Relationship between Rock Varnish and Adjacent Mineral Dust Compositions Using Microanalytical Techniques

    NASA Astrophysics Data System (ADS)

    Macholdt, D.; Jochum, K. P.; Otter, L.; Stoll, B.; Weis, U.; Pöhlker, C.; Müller, M.; Kappl, M.; Weber, B.; Kilcoyne, A. L. D.; Weigand, M.; Al-Amri, A. M.; Andreae, M. O.

    2015-12-01

    Rock varnishes are up to 250 μm thick, Mn- and Fe-rich, dark black to brownish-orange lustrous rock coatings. Water and aeolian dust (60-70%), in combination with biological oxidation or inorganic precipitation processes, or even a combination of both, induce varnish growth rates of a few μm per 1000 a, indicating that element enrichment and aging processes are of major importance for the varnish formation. A combination of 200 nm-fs laser- and 213 nm-ns laser ablation- inductively coupled plasma-mass spectrometry (LA-ICP-MS), focused ion beam (FIB) slicing, and scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) was chosen for high-spatial-resolution analyses. The aim was to identify provenance, chemistry, and dynamics of the varnishes, and their formation over the millennia. To this end, mineral dust and adjacent varnishes were sampled in six arid to semi-arid deserts, in Israel, South Africa, California, and Saudi Arabia. Dust minerals incorporated in the varnishes were examined by STXM-NEXAFS spectroscopic and element mapping at the nm scale. Varnishes from different locations can be distinguished by element ratio plots of Pb/Ni vs. Mn/Ba. A comparison of dust element ratios of particles <50 μm to ratios of adjacent varnishes reveals much lower values for dust. However, the factors between the element ratios of dust and of varnish are similar for four of six regions (Mn/Ba: 6 ± 2; Pb/Ni: 4 ± 3). Two of the six regions diverge, which are South African (Mn/Ba: 20, Pb/Ni: 0.5) and Californian (Anza Borrego Desert: Mn/Ba: 4.5; Pb/Ni: 16.5) varnishes.The results indicate that the enrichment and degradation processes might be similar for most locations, and that Mn and Pb are preferably incorporated and immobilized in most varnishes compared to Ba and Ni. The Pb/Ni ratios of the South African varnishes are indicators for either a preferred incorporation of Ni compared to Pb from available dust, and

  20. A new approach to relate kinetic parameters, composition and temperatures of igneous minerals: the case of Villarrica Volcano 1971 eruption

    NASA Astrophysics Data System (ADS)

    Contreras, C.; Parada, M. A.; Morgado, E. E.; Castruccio, A.

    2014-12-01

    This contribution provides a new approach to calculate the plagioclase composition of a given igneous rock based on kinetics parameters of crystallization obtained from CSD analyses of plagioclase. The procedure we use includes the following steps: 1) determination of the effective rates of crystal growth and nucleation based on the maximum time interval of mineral crystallization obtained from the CSD segment with the minimum slope and extrapolated to rest of the segments; 2) calculation of the total crystallization time; 3) determination of the time-dependent variation of plagioclase volume fraction based on crystal population density and CSD slopes; 4) calculation of the ideal rates of crystal growth and nucleation; 5) determination of temperature of plagioclase crystallization as a function of the ideal crystal growth rate; 6) determination of plagioclase composition as a function of the ideal crystal growth rate. We apply our model for plagioclase of 17 samples of The Villarrica Volcano 1971 eruption lava flow. All CSD show two segments with a break at 0.3 mm. The first segment is interpreted as the syn-eruptive crystallization and the second as the within-reservoir crystallization. An interval of 1.5 years as a maximum crystallization time for the syn-eruptive stage was estimated from Cashman's (1993) expression. Crystal growth rates in the reservoir stage took place during two stages. The first stage varies from 10^-8.9 to 10^-9.4 mm s-1 and the second one varied from 10^-9.4 to 10^-9.1 mm s-1. Finally, the crystal growth rate as high as 10^-7.8 mm s-1 were estimated for the syn-eruptive stage. Nucleation rates varies exponentially from 10^-13 to 10^-8 s-1 in the reservoir stage and from 10^-8 to 10^-1 s^-1 in the syn-eruptive stage. The total crystallization interval varies from 120 to 390 years. A mean total volume fraction of plagioclase of 0.55 was obtained (0.98 for all minerals) whereas a mean value of 0.054 was obtained at the onset of the eruption (0

  1. The spatial and seasonal variations in mineral particle composition on the snow surface and their possible effect on snow algae in the Tateyama Mountains, Japan

    NASA Astrophysics Data System (ADS)

    Umino, T.; Takeuchi, N.

    2012-12-01

    Snow algae are autotrophic microbes and play an important role as primary producers in food chain of glaciers and snowfield. Although their reproduction requires nutrients, snow and ice is extreamly poor in nutrients. One of the possible sources of nutrients is mineral particles blown by wind and deposited on the snow. They may contain variable elements and provide nutrients for snow algae. However, we scarcely know about the relationship between mineral particles and snow algae. In this study, we described spatial and seasonal variations in mineral particle composition and also snow algae on the snow surface in the Tateyama Mountains, Japan. We discussed the possible effect of mineral particles on snow algae. Tateyama Mountains are located in middle-north part of Japan ranging from 2000 - 3000 m above sea level and have heavy snow fall in winter due to strong monsoon wind from Siberia. The snow starts to thaw in April and remains until late summer as perennial snow patches in some valleys. Kosa eolian dust is known to be blown from Chinese deserts and deposited on the snow every spring. Also, snow algal bloom is often observed as red-colored snow in summer. Samples were collected from the snow surface during summer in 2008 - 2011 at four different sites (A - D) in this area. We examined them by X-ray diffractometer (XRD) and microscope to obtain composition of mineral particles and structure of snow algae community. XRD analysis revealed mineral particles on the snow surface were mainly composed of quartz, plagioclase, hornblende, mica, chlorite, and amorphous. In April, mineral compositions of all sites were almost similar to that of Kosa eolian dust, indicating that these mineral particles were derived from Chinese arid regions. After May, the mineral compositions changed according to sites. The proportion of hornblende at the site C significantly increased whereas that of mica increased at the site D. Since the site C was located near geological features mainly

  2. Surface damage behavior during scratch deformation of mineral reinforced polymer composites

    SciTech Connect

    Misra, R.D.K.; Hadal, R.; Duncan, S.J

    2004-08-16

    The surface damage behavior during scratch deformation of neat and wollastonite reinforced ethylene-propylene and polypropylene polymeric materials with significant differences in ductility was studied using electron microscopy in association with scratch deformation parameters and local crystallinity characteristics obtained from atomic force microscopy. Under identical conditions of scratch tests, the decrease in resistance to scratch damage and stress whitening of polymeric materials followed the sequence: wollastonite-reinforced polypropylene (PP-W) congruent with wollastonite-reinforced ethylene-propylene (EP-W) > neat polypropylene (PP) > neat ethylene-propylene copolymer (EP). The improved resistance to scratch damage of mineral reinforced polymeric materials is attributed to the effective reinforcement by micrometer-sized wollastonite particles that increase the tensile modulus of the polymeric materials and restrict plastic deformation of the polymer matrix. Scratching of neat and wollastonite-containing EP copolymers involved periodic parabolic scratch tracks containing voids, which transformed to distinct zig-zag scratch tracks on reinforcement with micrometric wollastonite particles. The enhanced plastic flow in neat EP is facilitated by high ductility of the material and ability to nucleate voids, while in EP-W the plastic flow is suppressed because of reinforcement effect of wollastonite. On the other hand, zig-zag periodic scratch tracks were observed in both neat PP and PP-W, but the scratch tracks were not clearly discernible on reinforcement of PP with wollastonite. The resistance to scratch deformation is discussed in terms of tensile modulus, elastic recovery, scratch hardness, and reinforcement-matrix interaction.

  3. Heavy metal composition of some solid minerals in Nigeria and their health implications to the environment.

    PubMed

    Arogunjo, Adeseye Muyiwa

    2007-12-15

    Heavy metals overload taken via ingestion, inhalation and dermal have been found to be detrimental to both the occupationally exposed group and member of the public. The body burden of these metals has been a source of concern in environmental safety regulatory programs. The risk factor becomes potentially high in an environment where regulatory safety criteria are either neglected or not available. The implication of indiscriminate or unregulated mining activities has been pointed out as a major risk to public health. In order to assess the potential toxicological and radiological health hazard posed to the environment due to mining activities in Nigeria, solid mineral ores (iron, tin and tantalite) from south-western and north-central (Kogi and Ekiti States) part of the country were analysed for their trace-metal contents. The analysis was performed using Energy Dispersive X-Ray Fluorescence (EDXRF) analyses spanning several months between 2005 and 2006. The samples were found to contain some major, minor and trace elements of varying concentrations. The elements reported here are K, Ca, Ti, V, Cr, Mn, Fe, Ni, Sr, Y, Zr, Nb, Sn, Ta, Re, Th, U, Sc, Cd, Bi, Ra and Zn. Toxic metal of serious environmental and public concern like Cadmium was detected. The possibility of altering heavy metal constituents of the natural ecosystem as a result of mining activities and the implications of such alterations has been enumerated. Possible pathway into the food chain as a result of mining activity has also been presented. PMID:19093508

  4. Diagenesis of basalts from the Pasco Basin, Washington. I. Distribution and composition of secondary mineral phases

    SciTech Connect

    Benson, L.V.; Teague, L.S.

    1982-01-01

    The principal components of secondary mineral assemblages found in Pasco Basin basalts are iron-rich smectite (nontronite), clinoptilolite, and silica. Silica occurs as quartz, cristobalite, tridymite, and opal-CT. Extractable iron within the nontronite suggests the presence of an iron-bearing oxyhydroxide phase intercalated with the nontronite. Other components present in minor or trace amounts are mordenite, celadonite, apatite, pyrite, phillipsite, gypsum, crionite, and chabazite. The generalized precipitation sequence with time and/or depth was found to be clay (usually nontronite) ..-->.. clinoptilolite ..-->.. silica and/or clay. Nontronite, the first phase to form, is present at nearly all sampled depths. Clinoptilolite is apparently restricted to depths below about 350 m. Quartz is ubiquitous whereas opal and cristobalite appear to be abundant only below 600 m. Mordenite occurs only at depths below about 900 m, which correlates roughly with the first occurrence of dissolution-etched clinoptilolite. These observations as well as comparisons with data on secondary minearl assemblages from other basaltic and felsic systems suggest that the geochemical evolution of Pasco Basin basalts probably occurred under conditions similar to those existing today.

  5. Raman spectroscopic study of the mineral composition of cirratulid tubes (Annelida, Polychaeta).

    PubMed

    Taylor, Paul D; Vinn, Olev; Kudryavtsev, Anatoliy; Schopf, J William

    2010-09-01

    Raman spectroscopy was used to determine the mineralogical composition of the calcareous tubes of three species belonging to the family Cirratulidae. In all three cases, the tubes were found to be aragonitic, confirming previous inferences based on EDX and thin section studies, and corroborated by new EDX analyses revealing the presence of Sr but no Mg. Biomineralization in cirratulids is first recorded in the Oligocene epoch, at a time of aragonite seas. Similarly, the mineralogies of the earliest skeletons matched seawater chemistry in three other polychaete groups that independently evolved calcareous skeletons. PMID:20566380

  6. Relationship of body composition, knee extensor strength, and standing balance to lumbar bone mineral density in postmenopausal females

    PubMed Central

    Shin, Seungsub; Lee, Kyeongjin; Song, Changho

    2016-01-01

    [Purpose] This study aimed to investigate correlations between lumbar bone mineral density (BMD) and general characteristics of postmenopausal females, including body composition, knee extensor strength, standing balance, and femur BMD. [Subjects and Methods] A total of 40 postmenopausal females (55.6 ± 4.6 years) who were caregivers or guardians of patients in the K hospital were included in the study. The weight, height, body composition, left and right knee extensor strength, standing balance, femur BMD, and lumbar BMD measurements of the subjects were obtained. [Results] The effect of measurement variables on lumbar BMD was examined. Increases in age and menopausal duration were observed to significantly increase lumbar BMD, whereas an increase in height was found to significantly decrease lumbar BMD. An increase in soft lean mass, skeletal muscle mass, fat-free mass, and femur BMD was also associated with significantly decreased lumbar BMD. [Conclusion] Age, menopausal duration, soft lean mass, skeletal muscle mass, and fat-free mass were factors that decreased lumbar BMD in menopausal females. This study is expected to provide basic knowledge for osteoporosis prevention and treatment programs for postmenopausal females. PMID:27512276

  7. Strontium-loaded mineral bone cements as sustained release systems: Compositions, release properties, and effects on human osteoprogenitor cells.

    PubMed

    Tadier, Solène; Bareille, Reine; Siadous, Robin; Marsan, Olivier; Charvillat, Cédric; Cazalbou, Sophie; Amédée, Joelle; Rey, Christian; Combes, Christèle

    2012-02-01

    This study aims to evaluate in vitro the release properties and biological behavior of original compositions of strontium (Sr)-loaded bone mineral cements. Strontium was introduced into vaterite CaCO3 -dicalcium phosphate dihydrate cement via two routes: as SrCO3 in the solid phase (SrS cements), and as SrCl2 dissolved in the liquid phase (SrL cements), leading to different cement compositions after setting. Complementary analytical techniques implemented to thoroughly investigate the release/dissolution mechanism of Sr-loaded cements at pH 7.4 and 37°C during 3 weeks revealed a sustained release of Sr and a centripetal dissolution of the more soluble phase (vaterite) limited by a diffusion process. In all cases, the initial burst of the Ca and Sr release (highest for the SrL cements) that occurred over 48 h did not have a significant effect on the expression of bone markers (alkaline phosphatase, osteocalcin), the levels of which remained overexpressed after 15 days of culture with human osteoprogenitor (HOP) cells. At the same time, proliferation of HOP cells was significantly higher on SrS cements. Interestingly, this study shows that we can optimize the sustained release of Sr(2+) , the cement biodegradation and biological activity by controlling the route of introduction of strontium in the cement paste. PMID:22102621

  8. Relationship of body composition, knee extensor strength, and standing balance to lumbar bone mineral density in postmenopausal females.

    PubMed

    Shin, Seungsub; Lee, Kyeongjin; Song, Changho

    2016-07-01

    [Purpose] This study aimed to investigate correlations between lumbar bone mineral density (BMD) and general characteristics of postmenopausal females, including body composition, knee extensor strength, standing balance, and femur BMD. [Subjects and Methods] A total of 40 postmenopausal females (55.6 ± 4.6 years) who were caregivers or guardians of patients in the K hospital were included in the study. The weight, height, body composition, left and right knee extensor strength, standing balance, femur BMD, and lumbar BMD measurements of the subjects were obtained. [Results] The effect of measurement variables on lumbar BMD was examined. Increases in age and menopausal duration were observed to significantly increase lumbar BMD, whereas an increase in height was found to significantly decrease lumbar BMD. An increase in soft lean mass, skeletal muscle mass, fat-free mass, and femur BMD was also associated with significantly decreased lumbar BMD. [Conclusion] Age, menopausal duration, soft lean mass, skeletal muscle mass, and fat-free mass were factors that decreased lumbar BMD in menopausal females. This study is expected to provide basic knowledge for osteoporosis prevention and treatment programs for postmenopausal females. PMID:27512276

  9. Uniformity and diversity in the composition of mineralizing fluids from hydrothermal vents on the southern Juan de Fuca Ridge

    SciTech Connect

    Philpotts, J.A.; Aruscavage, P.J.; Von Damm, K.L.

    1987-10-10

    Abundances of Li, Ni, K, Rb, Ca, Sr, Ba, Mn, Fe, Zn, and Si have been determined in fluid samples from seven vents located in three areas on the southern Juan de Fuca Ridge. The hydrothermal component estimated from the Mg contents of the samples ranges from 7% to 76%. Concentrations of Fe and Si, among the other elements, in acid-stabilized solutions appear to be generally representative of the parental hydrothermal fluids, but some Zn determinations and most Ba values appear to be too low. Thermodynamic calculations indicate that the acidified samples remain supersaturated with respect to silica, barite, and pyrite; unacidified samples are supersaturated, in addition with respect to ZnS, FeS, and many silicate phases. Within the constraints of limited sampling there appear to be differences in fluid compositions both within and between the three vent areas. Some uniform differences in the elemental abundances predicted for hydrothermal end-member fluids might be due to inmixing of fresh seawater at depth in the hydrothermal system. The Juan de Fuca hydrothermal fluids contain more Fe but otherwise have relative elemental abundances fairly similar to those in 13 /sup 0/N (East Pacific Rise) fluids, albeit at higher levels. In contrast, fluids from 21 /sup 0/N (East Pacific Rise) and Galapagos have lower K/Rb and much lower Sr and Na abundances; these compositional features probably result from interaction of these fluids with a different mineral assemblage, possibly more mature greenstone. copyright American Geophysical Union 1987

  10. Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions.

    PubMed

    Keller, L P; Thomas, K L; Clayton, R N; Mayeda, T K; DeHart, J M; McKay, D S

    1994-12-01

    A petrographic, geochemical, and oxygen isotopic study of the Bali CV3 carbonaceous chondrite revealed that the meteorite has undergone extensive deformation and aqueous alteration on its parent body. Deformation textures are common and include flattened chondrules, a well-developed foliation, and the presence of distinctive (100) planar defects in olivine. The occurrence of alteration products associated with the planar defects indicates that the deformation features formed prior to the episode of aqueous alteration. The secondary minerals produced during the alteration event include well-crystallized Mg-rich saponite, framboidal magnetite, and Ca-phosphates. The alteration products are not homogeneously distributed throughout the meteorite, but occur in regions adjacent to relatively unaltered material, such as veins of altered material following the foliation. The alteration assemblage formed under oxidizing conditions at relatively low temperatures (<100 degrees C). Altered regions in Bali have higher Na, Ca, and P contents than unaltered regions which suggests that the fluid phase carried significant dissolved solids. Oxygen isotopic compositions for unaltered regions in Bali fall within the field for other CV3 whole-rocks, however, the oxygen isotopic compositions of the heavily altered material lie in the region for the CM and CR chondrites. The heavy-isotope enrichment of the altered regions in Bali suggest alteration conditions similar to those for the petrographic type-2 carbonaceous chondrites. PMID:11539152

  11. Chemical and isotopic composition of water from thermal and mineral springs of Washington

    SciTech Connect

    Mariner, R.H.; Presser, T.S.; Evans, W.C.

    1982-02-01

    Waters from the thermal springs of Washington range in chemical composition from dilute Na-HCO/sub 3/ to moderately saline CO/sub 2/-charged Na-HCO/sub 3/-Cl type waters. St. Martin's Hot Spring which discharges a slightly saline Na-Cl water, is the notable exception. The dilute Na-HCO/sub 3/ waters are generally associated with granitic intrusions; the warm to hot CO/sub 2/-charged waters issue on or near the large stratovolcanoes. The dilute waters have oxygen-isotopic compositions that indicate relatively little water-rock exchange. The CO/sub 2/-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. The carbon-13 in the CO/sub 2/-charged thermal waters is more depleted (-10 to -12 %) than in the cold CO/sub 2/-charged soda springs (-2 to -8%) which are also scattered throughout the Cascades. The hot and cold CO/sub 2/-charged waters are supersaturated with respect to CaCO/sub 3/, but only the hot springs are actively depositing CaCO/sub 3/. Baker, Gamma, Sulphur, and Ohanapecosh hot springs seem to be associated with thermal aquifers of more than 100/sup 0/C. As these springs occur as individual springs or in small clusters, the respective aquifers are probably of restricted size.

  12. Synthesis, characterization, and mineralization of polyamide-6/calcium lactate composite nanofibers for bone tissue engineering.

    PubMed

    Pant, Hem Raj; Risal, Prabodh; Park, Chan Hee; Tijing, Leonard D; Jeong, Yeon Jun; Kim, Cheol Sang

    2013-02-01

    Polyamide-6 nanofibers containing calcium lactate (CL) on their surface were prepared by neutralization of lactic acid (LA) in core-shell structured polyamide-6/LA electrospun fibers. First, simple blending of LA with polyamide-6 solution was used for electrospinning which interestingly formed a thin LA layer around polyamide-6 nanofibers (core-shell structure) and then subsequent conversion of this LA into calcium lactate via neutralization using calcium base. FE-SEM and TEM images revealed that plasticizer capacity of LA led the formation of point-bonded structure due to the formation of shell layer of LA and core of polyamide-6. The bone formation ability of polyamide-6/calcium lactate composite fibers was evaluated by incubating in biomimetic simulated body fluid (SBF). The SBF incubation test confirmed the faster deposition of large amount of calcium phosphate around the composite polyamide-6/calcium lactate fibers compared to pristine polyamide-6. This study demonstrated a simple post electrospinning calcium compound coating technique of polymeric nanofibers for enhancing the bone biocompatibility of polyamide-6 fibers. PMID:23006560

  13. Characterization of the surfaces of sparingly soluble minerals by constant composition dissolution kinetics methods

    SciTech Connect

    Tucker, B.E.; Nancollas, G.H.

    1995-12-31

    Calcium phosphates are utilized in many applications both as ceramics and as plasma sprayed coatings on metallic substrates. Although conventional physical analytical chemical methods of characterization such as X-ray diffraction, FTIR, and microscopic examination may indicate the exclusive presence of the thermodynamically most stable calcium phosphate phase, hydroxyapatite, small amounts of other calcium-containing phases (such as tetracalcium and tricalcium phosphates, and calcium oxide) and impurities (possibly resulting from contaminants in the plasma spray chamber) may be present. Coating impurities play a very important role in the initial reactions that take place when the materials are brought into contact with aqueous media. The presence of multiple phases may result in changes in solution molar calcium to phosphate ratios, which will also modify the thermodynamic driving forces (super/under saturations, or {sigma}) during the reactions. The Dual Constant Composition (DCC) method offers a very sensitive characterization technique for establishing not only the existence of these phases, but, simultaneously, their dissolution kinetics profiles. Since resorption is the major reparative mechanism in vivo, the dissolution kinetics results are of considerable interest. By carefully selecting solution compositions, the DCC approach can also be used for the controlled removal of surface phases.

  14. Natural and synthetic mineral silicates as functional nanoparticles in polymer composites

    NASA Astrophysics Data System (ADS)

    Shao, Hua

    A new strategy is described for the substantial enhancement of the barrier properties for both a thermoset epoxy polymer and a thermoplastic polyolefin by sandwiching a novel self-supported clay fabric film between thin polymer sheets. The success of this strategy is attributed to the high orientation of clay nanolayers in the paper-like clay fabric films and to the filling of the micro- or sub-micro sized voids between imperfectly tiled clay platelet edges by the polymer chains. Thermoplastic polyolefin-clay fabric film composites were fabricated by hot-pressing the clay films between two sheets of high density polyethylene (HDPE) films. The sandwiched composites exhibit more than a 30-fold decrease in O2 transmission rate with respect to the pure HDPE film. Impregnating the self-supported clay papers with epoxy pre-polymers successfully leads to thermoset composite films with more than 2-3 orders of magnitude reduction in O2 permeability in comparison to the pristine epoxy matrix. Owing to the promising use of synthetic Mg-saponite (denoted SAP) as epoxy polymer reinforcing agents, we investigated the cost-effective synthesis of SAP by replacing urea with sodium hydroxide as base source. Co-crystallization of new zeolite phases, such as garronite (denoted GIS) and cancrinite (denoted CAN), occurred along with SAP upon increasing the alkalinity of the reaction mixture. This finding represents the first example of the preparation of a CAN/SAP phase mixture. Moreover, pure-phase cancrinite with rod-like morphology up to several mum in length was synthesized under Mg-free conditions. Also, the Si/AI ratio within the synthesis gel has an influence on the chemical composition and textural properties of pure CAN crystals. Microporous cancrinite is a promising candidate for reinforcing epoxy polymers, considering that CAN represents a substantial fraction of the mixed CAN-SAP phase formed during the synthesis of saponite. Therefore, the reaction conditions (e

  15. Hydrated Minerals in Circumpolar Terrains: Geographic Distribution, Mineralogical Composition and Possible Origins

    NASA Astrophysics Data System (ADS)

    Langevin, Y.; Poulet, F.; Fishbaugh, K. E.; Roach, L.; Vincendon, M.; Gondet, B.; Bibring, J.; Murchie, S.

    2007-12-01

    The nearly global mapping provided at a scale of a few km by the OMEGA Vis/NIR imaging spectrometer on board Mars Express revealed that hydrated minerals on Mars are mostly observed in ancient terrains (Bibring et al., 2005). These discoveries led to the conclusion that surface water on Mars was mainly present early in the history of the planet, and that Mars has remained cold and dry during the last 3 billion years (Bibring et al., 2006). The observation by OMEGA of a very strong calcium sulfate signature (most likely dominated by gypsum) within the boundaries of the Olympia Planitia Dune field (Langevin et al., 2005) is a major puzzle as this geological feature is at most a few 100 m.y. old. An independent analysis of the OMEGA data (Horgan et al. 2007) confirmed the results of Langevin et al. (2005), in particular the identification of gypsum as the dominant mineralogical hydrated species in the dune field. The extended region richest in gypsum (~ 60 km x 200 km) remained unresolved at a resolution of 1 km/pixel (Langevin et al., 2006). With its 20 m resolution, CRISM, the Vis/NIR imaging spectrometer on board MRO, secured the relationship between the gypsum signature and the dune field as well as its absence over the "basal unit" (only a few pixels wide in OMEGA data) which is exposed between the dune field and the ice (Roach et al., 2007). CRISM showed that the gypsum signatures were highest over dune crests and weakest over exposed bedrock. Mineralogical modeling of the CRISM and OMEGA spectra shows that Gypsum represents at least 60% of the dune material in the eastern part of the Olympia field and decreases towards the western part. This lower limit has been raised since then by accounting for aerosol contributions which reduce the strength of absorption bands. The low albedo (< 20%) requires significant intimate and/or intra- mixture of dark material. The low thermal inertia (Herkenhoff and Vasavada, 1999) is difficult to reconcile with morphologic

  16. Mineral chemical compositions of late Cretaceous volcanic rocks in the Giresun area, NE Turkey: Implications for the crystallization conditions

    NASA Astrophysics Data System (ADS)

    Oǧuz, Simge; Aydin, Faruk; Uysal, İbrahim; Şen, Cüneyt

    2016-04-01

    This contribution contains phenocryst assemblages and mineral chemical data of late Cretaceous volcanic (LCV) rocks from the south of Görele and Tirebolu areas (Giresun, NE Turkey) in order to investigate their crystallization conditions. The LCV rocks in the study area occur in two different periods (Coniasiyen-Early Santonian and Early-Middle Campanian), which generally consist of alternation of mafic-intermediate (basaltic to andesitic) and felsic rock series (dacitic and rhyolitic) within each period. The basaltic and andesitic rocks in both periods generally exhibit porphyritic to hyalo-microlitic porphyritic texture, and contain phenocrysts of plagioclase and pyroxene, whereas the dacitic and rhyolitic rocks of the volcanic sequence usually show a vitrophyric texture with predominant plagioclase, K-feldspar, quartz and lesser amphibole-biotite phenocrysts. Zoned plagioclase crystals of the mafic and felsic rocks in different volcanic periods are basically different in composition. The compositions of plagioclase in the first-stage mafic rocks range from An52 to An78 whereas those of plagioclase from the first-stage felsic rocks have lower An content varying from An38 to An50. Rim to core profile for the zoned plagioclase of the first-stage mafic rocks show quite abrupt and notable compositional variations whereas that of the first-stage felsic rocks show slight compositional variation, although some of the grains may display reverse zoning. On the other hand, although no zoned plagioclase phenocryst observed in the second-stage mafic rocks, the compositions of microlitic plagioclase show wide range of compositional variation (An45‑80). The compositions of zoned plagioclase in the second-stage felsic rocks are more calcic (An65‑81) than those of the first-stage felsic rocks, and their rim to core profile display considerable oscillatory zoning. The compositions of pyroxenes in the first- and second-stage mafic-intermediate rocks vary over a wide range

  17. Evolution of composition of major mineral phases in layered complex of ophiolite assemblage: Evidence for the Voykar ophiolites (Polar urals, Russia)

    USGS Publications Warehouse

    Sharkov, E.V.; Chistyakov, A.V.; Laz'ko, E. E.; Quick, J.E.

    1999-01-01

    We present a detailed study of compositional variation of major minerals through a cross section of the layered complex of the Late Devonian Voykar ophiolite assemblage (Polar Urals). The principal characteristics of this layered complex suggest crystallization from a periodically replenished open magma system in a tectonically dynamic, oceanic environment. The complex may be described in terms of two sequences of cumulus rocks, or megarhythms, that each display an upward progression from ultramafic to gabbroic composition. A transitional zone between the megarhythms is characterized by an upwardly reverse lithologic progression from gabbroic to ultramafic composition. Broad cryptic variation in mineral composition over intervals >100 m parallel changes in the lithologic abundances and suggest changes in the rate of magma supply relative to crystallization and(or) tapping of different mantle sources that had been previously depleted to different degrees. The mineralogy, mineral compositions and isotopic composition of the layered complex coupled with the association of the Voykar ophiolite with island-arc complexes suggest that it most likely formed in a back-arc basin.

  18. Waste yield, proximate and mineral composition of three different types of land snails found in Nigeria.

    PubMed

    Adeyeye, E I

    1996-03-01

    Some aspects of the chemical and anatomical weight composition of land snails in Nigeria were analysed with a view to assessing the waste yield, carcass yield and their nutritional evaluation on wet weight basis. Proximate analysis of Archachatina, Archatina and Limicolaria species was carried out on the carcass. Moisture and protein contents were high in all samples, fat and ash contents were generally low while crude fibre was not detected. The concentrations of iron, copper, zinc, manganese, sodium, calcium, magnesium, potassium and cobalt were determined in the carcass. Values of iron, calcium, magnesium, sodium and potassium were consistently high while both chromium and cobalt were not detected. Anatomical fractionation showed the shell to vary between 17.12 - 31.99%, carcass varied between 36.97 - 45.14% and the intestine varied between 18.80 - 22.74%. Snails interact with man in a variety of ways, the beneficial interactions are enumerated. PMID:8833175

  19. Mineral composition of small-grain cultivars from a uniform test plot in South Dakota

    USGS Publications Warehouse

    Erdman, J.A.; Moul, R.C.

    1982-01-01

    Seventy-five cultivated varieties (cultivars) of hard red spring wheat (HRS), hard red winter wheat (HRW), durum wheat, oats, and barley were harvested in 1974 from a small-grain trial plot in Harding County, SD, just north of Buffalo. Analysis of the grains reported here includes crude protein for only the wheat cultivars, ash yield, and 17 chemical elements, many of which are not commonly given in the literature (such as B, Cd, Mo, Ni, and Se). Differences in composition between the two classes of hard red wheat indicate that HRS is significantly higher (p < 0.05) than HRW in protein content, ash yield, Ca, K, Mg, Na, P, total S, Sr, and Zn; Cd is significantly higher in the HRW cultivars. For the most part, concentrations were quite uniform within all grain types. Only two cultivars were anomalous: cv. Hi Plains in HRW wheats and cv. Astro in the oat group.

  20. Inorganic elemental compositions of commercial multivitamin/mineral dietary supplements: application of collision/reaction cell inductively coupled-mass spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave digestion followed by analysis using ICP-MS has been shown to be a simple, fast reliable method for the multi-element determination in multivitamin/mineral dietary supplements (MVM). A study of 35 popular MVM dietary supplements revealed that composition and levels varied among products, a...

  1. The composition of fluid inclusions in ore and gangue minerals from the Silesian-Cracow Mississippi Valley-type Zn-Pb deposits Poland: Genetic and environmental implications

    USGS Publications Warehouse

    Viets, J.G.; Hofstra, A.H.; Emsbo, P.; Kozlowski, A.

    1996-01-01

    The composition of fluids extracted from ore and gangue sulfide minerals that span most of the paragenesis of the Silesian-Cracow district was determined using a newly developed ion chromatographic (IC) technique. Ionic species determined were Na+, NH+4, Ca2+, Mg2+, K+, Rb+, Sr2+, Ba2+, Cl-, Br-, F-, I-, PO3-4, CO2-3, HS-, S2O2-3, SO2-4, NO-3, and acetate. Mineral samples included six from the Pomorzany mine and one from the Trzebionka mine which are hosted in the Triassic Muschelkalk Formation, and two samples of drill core from mineralized Upper Devonian strata. Nine paragenetically identifiable sulfide minerals occur throughout the Silesian-Cracow district. These include from earliest to latest: early iron sulfides, granular sphalerite, early galena, light-banded sphalerite, galena, dark-banded sphalerite, iron sulfides, late dark-banded sphalerite with late galena, and late iron sulfides. Seven of the minerals were sampled for fluid inclusion analysis in this study. Only the early iron sulfides and the last galena stage were not sampled. Although the number of analyses are limited to nine samples and two replicates and there is uncertainty about the characteristics of the fluid inclusions analyzed, the data show clear temporal trends in the composition of the fluids that deposited these minerals. Fluid inclusions in minerals deposited later in the paragenesis have significantly more K+, Br-, NH+4, and acetate but less Sr2+ than those deposited earlier in the paragenesis. The later minerals are also characterized by isotopically lighter sulfur and significantly more Tl and As in the solid minerals. The change in ore-fluid chemistry is interpreted to reflect a major change in the hydrologic regime of the district. Apparently, the migrational paths of ore fluids from the Upper Silesian basin changed during ore deposition and the fluids which deposited early minerals reacted with aquifers with very different geochemical characteristics than those that deposited

  2. Mineral composition of two populations of leaves - green and iron chlorotic - of the same age all from the same tree

    SciTech Connect

    Procopiou, J.; Wallace, A.

    1981-01-01

    Since carefully washed Fe chlorotic leaves often contain more total Fe on the dry weight basis than do green leaves, a population of leaves of the same age representing chlorotic leaves from each of two lemon trees and green leaves also of the same age and from the same two trees were analyzed individually for mineral elements to determine, especially, the frequency distribution of Fe in the various groups of leaves (n = 47, 48, 71, 48). The chlorotic leaves from one tree had mineral composition typical of lime-induced chlorosis. The chlorotic leaves for this tree were, on the average, higher in P, K, and Fe and lower in Ca than the green leaves. For the other tree the chlorotic leaves appeared to be truly Fe deficient; P was not higher in these leaves but the mean K and Ca showed the same pattern as in the first tree. Zinc was higher in the deficient leaves than in the green ones on this tree which can be expected for true Fe deficiency. Mean zinc levels were below the critical levels. Mean manganese was below the critical level for all groups. The coefficient of variation for each element in each group was usually around 30%. Maximum-minimum data indicated that many individual leaves did not fit the patterns just described. Correlation coefficients indicated that most major patterns were consistent in spite of the variability, although there were some differences. The frequency distribution for each of most elements was much like a normal curve with usually a three-fold range for each of the elements. Many of the Fe-deficient leaves had more Fe than some of the green leaves. Analysis of an individual leaf, therefore, cannot result in accurate description of lime-induced chlorosis.

  3. Family Disruptions

    MedlinePlus

    ... and Returns Do you or your spouse frequently travel on business? These can be disruptive times for your child and for the family as ... these out-of-town trips. Spend as much time as it takes to explain where you are ... before and during your travels. You need to acknowledge and accept her feelings: " ...

  4. Petrography and mineral compositions of eclogites from the Koidu Kimberlite Complex, Sierra Leone

    NASA Astrophysics Data System (ADS)

    Fung, Agnes T.; Haggerty, Stephen E.

    1995-10-01

    The origins of eclogite (clinopyroxene + garnet) and the relative proportions of eclogite in the upper mantle are issues of considerable uncertainty and debate that bear upon the chemical and physical dynamics of petrogenesis, recycling, and remote sensing interpretation. Forty-one upper mantle eclogites from the Koidu Kimberlite Complex, Sierra Leone, were selected for detailed petrographic and chemical examination to bolster an earlier database with a view to the identification of protoliths and possible source regions of eclogite origin. On the basis of MgO contents in garnets, eclogites are divided into a high-MgO suite and a low-MgO suite. High-MgO eclogites contain pyrope (16.5-20.2 wt % MgO), with an average garnet composition of Pyr65Alm20Gross15. Almandine and grossular (5.3-13.2 wt % MgO) are present in low-MgO eclogites and vary from Pyr20Alm60Gross20 to Pyr35Alm30Gross35. Pyroxenes in high-MgO eclogites are diopsidic (Jd11Di89-Jd26Di74); those in low-MgO eclogites range from jadeitic-diopside to omphacite (Jd20Di80-Jd48Di52). Oriented apatite crystals in garnet and clinopyroxene are interpreted to be products of exsolution and, coupled with coexisting rutile, imply that garnet is a major repository for P, Cl, F, OH, and Ti in the upper mantle. Reconstructed bulk compositions of high-(15.0-18.9 wt %) and low-MgO (7.1-12.2 wt %) eclogites are distinct, and major elements in these xenoliths broadly resemble basalts, picrites, and komatiites. Most high-MgO eclogites equilibrated at 1080°C at 4.7 GPa to 1130°C at 5.2 GPa, whereas most low-MgO eclogites cluster at 880°C at 3.3 GPa to 930°C at 3.8 GPa. Estimated PT and depths of origin of the Koidu eclogites imply that high-MgO eclogites are asthenospheric, low-MgO eclogites are lithospheric, and both are likely products of plume activity. Diamondiferous eclogites, worldwide, have characteristic Na, K, Ti, and IVAl (Si) in garnet-clinopyroxene pairs that point to distinctive source regions and petrogenesis

  5. Variable mineral composition of metamorphic rocks from a single quarry compared to their ASR potential (Bohemian Massif, Czech Republic)

    NASA Astrophysics Data System (ADS)

    Stastna, Aneta; Sachlova, Sarka; Pertold, Zdenek; Nekvasilova, Zuzana; Prikryl, Richard

    2013-04-01

    The alkali-silica reaction (ASR) is one of the most damaging factors for concrete structures. ASR originates due to the presence of reactive silica (SiO2) that reacts with alkaline ions under wet conditions. The reaction mechanism consists of four different steps: initial attack of OH- compounds on SiO2 at aggregate-cement paste boundary; formation of silanol groups at SiO2 surface; formation of siloxane groups and their polymerization; adsorption of alkaline and Ca2+ ions and formation of alkali-silica gels. Alkali-silica gels tend to absorb water molecules and swell causing increasing internal pressures in concrete and microcracking. The most reactive aggregates are mainly composed of amorphous and/or fine-grained SiO2-rich phases. In the Czech Republic, ASR was observed in deteriorating concrete structures containing very fine-grained quartz (quartz in tuffaceous sandstones and greywackes), as well as quartz indicating variable degree of deformation (quartz in quartzite, granodiorite and various metamorphic rock types). In this study, mineralogical-petrographic methods (polarizing, electron and cathodoluminescence microscopy) were combined with the accelerated mortar bar test (following the standard ASTM C1260), with the aim to quantify the ASR potential, as well as to distinguish reactive mineral phases. Different aggregate varieties from the Těchobuz quarry (Moldanubian Zone, Czech Republic) have been compared. Mineralogical-petrographic characteristics permit a distinction between 1) medium-grained plagioclase quartzite and 2) fine-grained biotite-plagioclase-quartz paragneiss and 3) fine-grained calc-silicate rock. Mineralogical composition of the first type is quartz + Ca-plagioclase + K-feldspar + biotite + chlorite + diopside + pyrite + apatite + titanite ± calcite. The second type has mineral assemblage including quartz + Ca-plagioclase + K-feldspar + biotite + chlorite + pyrite + tourmaline + apatite + titanite ± calcite. The third type contains

  6. Clay Mineralogy: The clay mineral composition of soils and clays is providing an understanding of their properties.

    PubMed

    Grim, R E

    1962-03-16

    The structures of the clay minerals are reasonably well known, but greater detail and more precision are needed if the properties of clays and soils are to be fully understood. For example, the selective adsorptive and catalytic properties and the reaction with organic materials vary with the character of the clay mineral, but the structural factors that control such properties are not well understood. Research is urgently needed on the structure of pure clay minerals and on the reactions of pure clay minerals with organic and inorganic materials. Much past research on clay-mineral reactions has little fundamental value because the clay that was used was composed of a mixture of minerals which were not well characterized. It is not a simple matter to find pure samples of many of the clay minerals, and to a considerable extent progress depends on finding such pure minerals or preparing them in the laboratory. PMID:17816101

  7. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and

  8. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape

  9. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape

  10. Usefulness of NIR spectroscopy for the estimation of the mineral composition and texture of soils and heavy metal uptake

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Gómez, I.; Jordán, M. M.; Guerrero, C.; Navarro-Pedreño, J.; Meseguer, S.; Sanfeliu, T.

    2009-04-01

    The accumulation of heavy metals in soils from different sources (atmospheric deposition, agricultural practices, urban-industrial activities, etc.) is of a great environmental concern. In this sense, there is a consensus in the literature that the total heavy metals in soil are not a suitable tool for risk assessment regarding heavy metal mobility and bioavailability. Several approaches have been proposed to estimate this bioavailability but controversy exists to define an universal method. The bioavailability is influenced, apart from other properties like pH, organic matter, etc., by the mineral fraction and texture of a soil. However, the determination of these parameters, especially the mineral composition, is laborious, expensive, and time consuming. Thus, the objectives of this work are the estimation of the texture and mineral components of contrasting soils and the heavy metal uptake (Cu, Zn, Pb, Ni, Cr, Cd) by barley after sewage sludge application using NIR spectroscopy. A set of 70 contrasting soils from different parts of Spain were used for the analysis of the texture and mineral composition. The mineralogical characterization of soil samples was carried out by X-ray diffraction (XRD) using whole soil random powder, oriented clay on ceramic plates, and clay random powder. Chung method was used for semi-quantitative interpretation of X-ray diffraction patterns of soils, obtaining the percentage of Calcite (Ca), Quartz (Q), Albite (Ab), Potassium Feldspar (FK), phyllosilicates (PS). For the prediction of heavy metal uptake, the 70 soils were divided in two separate sets of 36 (experiment 1) and 34 (experiment 2) soils. The methodology for both experiments, separated in time, was the same. The soils were amended with the same dose of sewage sludge (15.71 g dry weight kg-1) and placed in pots. In these pots, a bioassay with barley, under greenhouse conditions, was carried out. Eight weeks after sowing, the plants were harvested. Roots were dried in an

  11. Altering the sphingolipid acyl chain composition prevents LPS/GLN-mediated hepatic failure in mice by disrupting TNFR1 internalization

    PubMed Central

    Ali, M; Fritsch, J; Zigdon, H; Pewzner-Jung, Y; Schütze, S; Futerman, A H

    2013-01-01

    The involvement of ceramide in death receptor-mediated apoptosis has been widely examined with most studies focusing on the role of ceramide generated from sphingomyelin hydrolysis. We now analyze the effect of the ceramide acyl chain length by studying tumor necrosis factor α receptor-1 (TNFR1)-mediated apoptosis in a ceramide synthase 2 (CerS2) null mouse, which cannot synthesize very-long acyl chain ceramides. CerS2 null mice were resistant to lipopolysaccharide/galactosamine-mediated fulminant hepatic failure even though TNFα secretion from macrophages was unaffected. Cultured hepatocytes were also insensitive to TNFα-mediated apoptosis. In addition, in both liver and in hepatocytes, caspase activities were not elevated, consistent with inhibition of TNFR1 pro-apoptotic signaling. In contrast, Fas receptor activation resulted in the death of CerS2 null mice. Caspase activation was blocked because of the inability of CerS2 null mice to internalize the TNFR1; whereas Fc-TNFα was internalized to a perinuclear region in hepatocytes from wild-type mice, no internalization was detected in CerS2 null mice. Our results indicate that altering the acyl chain composition of sphingolipids inhibits TNFR1 internalization and inhibits selective pro-apoptotic downstream signaling for apoptosis. PMID:24263103

  12. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation

    NASA Astrophysics Data System (ADS)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick

    2014-05-01

    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  13. Proximate composition, functional properties, amino acid, mineral and vitamin contents of a novel food: Alhydwan (Boerhavia elegana Choisy) seed flour.

    PubMed

    Al-Farga, Ammar; Zhang, Hui; Siddeeg, Azhari; Shamoon, Muhammad; V M Chamba, Moses; Al-Hajj, Nabil

    2016-11-15

    Alhydwan (Boerhavia elegana Choisy) seed flour was evaluated for chemical and nutritional composition, and functional properties in a pursuit to identify an innovative plant with high nutraceuticals value which could be exploited in other food applications. The flour was found to be rich in dietary fiber (30.13%), protein (14.60%), crude fat (11.49%), carbohydrates (30.77%), and ash (6.88%) and encompassed adequate amounts of essential amino acids and minerals, whereas, sucrose constituted 71.3% of total sugar contents. Vitamins analysis revealed that flour is rich in water-soluble vitamins such as Thiamin (B1), Riboflavin (B2) and Niacin (B3), to the amounts of 19.3, 8.2 and 2.3mg/100g, respectively. Results on functional properties demonstrated high water and oil absorption capacities of 6.31 and 2.43g/g, respectively. Foaming capacity, foam stability and emulsion capacity were 9.35%, 6.90%, and 29.60%, respectively. It can be concluded that alhydwan is an excellent food material with a high nutritional value. PMID:27283631

  14. Effect of saline irrigation on growth characteristics and mineral composition of two local halophytes under Saudi environmental conditions.

    PubMed

    Alshammary, Saad F

    2008-09-01

    A field experiment was carried out to determine the growth characteristics and mineral composition of two local halophytes (Atriplex halimus and Salvadora persica) under saline irrigation at Kind Abdulaziz City for Science and Technology (KACST), Research Station Al-Muzahmyia, Riyadh. The experiment treatments were one soil (sandy), four irrigation waters of different salinities (2000, 8000, 12000 and 16000 mg L(-1) TDS), two halophytes (Salvadora persica and Atriplex halimus) and one irrigation level (irrigation at 50% depletion of moisture at field capacity). Mean fresh biomass yield and fresh plant root weight of A. halimus increased while that of S. persica decreased significantly with increasing irrigation water salinity in all the treatments. Soil salinity increased significantly with increasing water salinity. A positive correlation (r = 0.987) existed between the irrigation water salinity and the soil salinity resulting from saline irrigation. The plant tissue protein contents increased in A. halimus, but decreased in S. persica with increasing irrigation water salinity. The Na ion uptake by plant roots was significantly less than K in A. halimus compared to S. persica which indicated adjustment of plants to high soil salinity and high Na ion concentration for better growth. The order of increasing salt tolerance was A. halimus > S. persica under the existing plant growing conditions. Among the two halophytes, A. halimus showed great potential for establishing gene banks of local species, because it has more forage value due to high protein contents than S. persica for range animals. PMID:19266925

  15. Socket preservation and sinus augmentation using a medical grade calcium sulfate hemihydrate and mineralized irradiated cancellous bone allograft composite.

    PubMed

    Bagoff, Robert; Mamidwar, Sachin; Chesnoiu-Matei, Ioana; Ricci, John L; Alexander, Harold; Tovar, Nick M

    2013-06-01

    Regeneration and preservation of bone after the extraction of a tooth are necessary for the placement of a dental implant. The goal is to regenerate alveolar bone with minimal postoperative pain. Medical grade calcium sulfate hemihydrate (MGCSH) can be used alone or in combination with other bone grafts; it improves graft handling characteristics and particle containment of particle-based bone grafts. In this case series, a 1:1 ratio mix of MGCSH and mineralized irradiated cancellous bone allograft (MICBA) was mixed with saline and grafted into an extraction socket in an effort to maintain alveolar height and width for future implant placement. MGCSH can be used in combination with other bone grafts and can improve handling characteristics and graft particle containment of particle-based bone grafts. In the cases described, we found that an MGCSH:MICBA graft can potentially be an effective bone graft composite. It has the ability to act as a space maintainer and as an osteoconductive trellis for bone cells, thereby promoting bone regeneration in the extraction socket. MGCSH, a cost-effective option, successfully improved MICBA handling characteristics, prevented soft tissue ingrowth, and assisted in the regeneration of bone. PMID:21905884

  16. Chronic Psychological Stress Disrupted the Composition of the Murine Colonic Microbiota and Accelerated a Murine Model of Inflammatory Bowel Disease.

    PubMed

    Watanabe, Yohei; Arase, Sohei; Nagaoka, Noriko; Kawai, Mitsuhisa; Matsumoto, Satoshi

    2016-01-01

    The effect of psychological stress on the gastrointestinal microbiota is widely recognized. Chronic psychological stress may be associated with increased disease activity in inflammatory bowel disease, but the relationships among psychological stress, the gastrointestinal microbiota, and the severity of colitis is not yet fully understood. Here, we examined the impact of 12-week repeated water-avoidance stress on the microbiota of two inbred strains of T cell receptor alpha chain gene knockout mouse (background, BALB/c and C57BL/6) by means of next-generation sequencing of bacterial 16S rRNA genes. In both mouse strains, knockout of the T cell receptor alpha chain gene caused a loss of gastrointestinal microbial diversity and stability. Chronic exposure to repeated water-avoidance stress markedly altered the composition of the colonic microbiota of C57BL/6 mice, but not of BALB/c mice. In C57BL/6 mice, the relative abundance of genus Clostridium, some members of which produce the toxin phospholipase C, was increased, which was weakly positively associated with colitis severity, suggesting that expansion of specific populations of indigenous pathogens may be involved in the exacerbation of colitis. However, we also found that colitis was not exacerbated in mice with a relatively diverse microbiota even if their colonic microbiota contained an expanded phospholipase C-producing Clostridium population. Exposure to chronic stress also altered the concentration of free immunoglobulin A in colonic contents, which may be related to both the loss of bacterial diversity in the colonic microbiota and the severity of the colitis exacerbation. Together, these results suggest that long-term exposure to psychological stress induces dysbiosis in the immunodeficient mouse in a strain-specific manner and also that alteration of microbial diversity, which may be related to an altered pattern of immunoglobulin secretion in the gastrointestinal tract, might play a crucial role in the

  17. Chronic Psychological Stress Disrupted the Composition of the Murine Colonic Microbiota and Accelerated a Murine Model of Inflammatory Bowel Disease

    PubMed Central

    Watanabe, Yohei; Arase, Sohei; Nagaoka, Noriko; Kawai, Mitsuhisa; Matsumoto, Satoshi

    2016-01-01

    The effect of psychological stress on the gastrointestinal microbiota is widely recognized. Chronic psychological stress may be associated with increased disease activity in inflammatory bowel disease, but the relationships among psychological stress, the gastrointestinal microbiota, and the severity of colitis is not yet fully understood. Here, we examined the impact of 12-week repeated water-avoidance stress on the microbiota of two inbred strains of T cell receptor alpha chain gene knockout mouse (background, BALB/c and C57BL/6) by means of next-generation sequencing of bacterial 16S rRNA genes. In both mouse strains, knockout of the T cell receptor alpha chain gene caused a loss of gastrointestinal microbial diversity and stability. Chronic exposure to repeated water-avoidance stress markedly altered the composition of the colonic microbiota of C57BL/6 mice, but not of BALB/c mice. In C57BL/6 mice, the relative abundance of genus Clostridium, some members of which produce the toxin phospholipase C, was increased, which was weakly positively associated with colitis severity, suggesting that expansion of specific populations of indigenous pathogens may be involved in the exacerbation of colitis. However, we also found that colitis was not exacerbated in mice with a relatively diverse microbiota even if their colonic microbiota contained an expanded phospholipase C-producing Clostridium population. Exposure to chronic stress also altered the concentration of free immunoglobulin A in colonic contents, which may be related to both the loss of bacterial diversity in the colonic microbiota and the severity of the colitis exacerbation. Together, these results suggest that long-term exposure to psychological stress induces dysbiosis in the immunodeficient mouse in a strain-specific manner and also that alteration of microbial diversity, which may be related to an altered pattern of immunoglobulin secretion in the gastrointestinal tract, might play a crucial role in the

  18. Tracing chlorine sources of thermal and mineral springs along and across the Cascade Range using halogen and chlorine isotope compositions

    USGS Publications Warehouse

    Cullen, Jeffrey T.; Barnes, Jaime D.; Hurwitz, Shaul; Leeman, William P.

    2015-01-01

    In order to provide constraints on the sources of chlorine in spring waters associated with arc volcanism, the major/minor element concentrations and stable isotope compositions of chlorine, oxygen, and hydrogen were measured in 28 thermal and mineral springs along the Cascade Range in northwestern USA. Chloride concentrations in the springs range from 64 to 19,000 mg/L and View the MathML source values range from +0.2‰ to +1.9‰ (average=+1.0±0.4‰), with no systematic variation along or across the arc, nor correlations with their presumed underlying basement lithologies. Additionally, nine geochemically well-characterized lavas from across the Mt. St. Helens/Mt. Adams region of the Cascade Range (Leeman et al., 2004 and Leeman et al., 2005) were analyzed for their halogen concentrations and Cl isotope compositions. In the arc lavas, Cl and Br concentrations from the volcanic front are higher than in lavas from the forearc and backarc. F and I concentrations progressively decrease from forearc to backarc, similar to the trend documented for B in most arcs. View the MathML source values of the lavas range from −0.1 to +0.8‰ (average = +0.4±0.3‰). Our results suggest that the predominantly positive View the MathML source values observed in the springs are consistent with water interaction with underlying 37Cl-enriched basalt and/or altered oceanic crust, thereby making thermal spring waters a reasonable proxy for the Cl isotope compositions of associated volcanic rocks in the Cascades. However, waters with View the MathML source values >+1.0‰ also suggest additional contributions of chlorine degassed from cooling magmas due to subsurface vapor–liquid HCl fractionation in which Cl is lost to the aqueous fluid phase and 37Cl is concentrated in the ascending magmatic HCl vapor. Future work is necessary to better constrain Cl isotope behavior during volcanic degassing and fluid–rock interaction in order to improve volatile flux estimates through

  19. Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization.

    PubMed

    Sagar, Nitin; Khanna, Kunal; Sardesai, Varda S; Singh, Atul K; Temgire, Mayur; Kalita, Mridula Phukan; Kadam, Sachin S; Soni, Vivek P; Bhartiya, Deepa; Bellare, Jayesh R

    2016-12-01

    Bioactive 3D composites play an important role in advanced biomaterial design to provide molecular coupling and improve integrity with the cellular environment of the native bone. In the present study, a hybrid lyophilized polymer composite blend of anionic charged sodium salt of carboxymethyl chitin and gelatin (CMChNa-GEL) reinforced with nano-rod agglomerated hydroxyapatite (nHA) has been developed with enhanced biocompatibility and tunable elasticity. The scaffolds have an open, uniform and interconnected porous structure with an average pore diameter of 157±30μm and 89.47+0.03% with four dimensional X-ray. The aspect ratio of ellipsoidal pores decrease from 4.4 to 1.2 with increase in gelatin concentration; and from 2.14 to 1.93 with decrease in gelling temperature. The samples were resilient with elastic stain at 1.2MPa of stress also decreased from 0.33 to 0.23 with increase in gelatin concentration. The crosslinker HMDI (hexamethylene diisocyanate) yielded more resilient samples at 1.2MPa in comparison to glutaraldehyde. Increased crosslinking time from 2 to 4h in continuous compression cycle show no improvement in maximum elastic stain of 1.2MPa stress. This surface elasticity of the scaffold enables the capacity of these materials for adherent self renewal and cultivation of the NTERA-2 cL.D1 (NT2/D1), pluripotent embryonal carcinoma cell with biomechanical surface, as is shown here. Proliferation with MG-63, ALP activity and Alizarin red mineralization assay on optimized scaffold demonstrated ***p<0.001 between different time points thus showing its potential for bone healing. In pre-clinical study histological bone response of the scaffold construct displayed improved activity of bone regeneration in comparison to self healing of control groups (sham) up to week 07 after implantation in rabbit tibia critical-size defect. Therefore, this nHA-CMChNa-GEL scaffold composite exhibits inherent and efficient physicochemical, mechanical and biological

  20. Targeted disruption of BMP signaling through type IA receptor (BMPR1A) in osteocyte suppresses SOST and RANKL, leading to dramatic increase in bone mass, bone mineral density and mechanical strength.

    PubMed

    Kamiya, Nobuhiro; Shuxian, Lin; Yamaguchi, Ryosuke; Phipps, Matthew; Aruwajoye, Olumide; Adapala, Naga Suresh; Yuan, Hui; Kim, Harry K W; Feng, Jian Q

    2016-10-01

    Recent studies suggest a critical role of osteocytes in controlling skeletal development and bone remodeling although the molecular mechanism is largely unknown. This study investigated BMP signaling in osteocytes by disrupting Bmpr1a under the Dmp1-promoter. The conditional knockout (cKO) mice displayed a striking osteosclerotic phenotype with increased trabecular bone volume, thickness, number, and mineral density as assessed by X-ray and micro-CT. The bone histomorphometry, H&E, and TRAP staining revealed a dramatic increase in trabecular and cortical bone masses but a sharp reduction in osteoclast number. Moreover, there was an increase in BrdU positive osteocytes (2-5-fold) and osteoid volume (~4-fold) but a decrease in the bone formation rate (~85%) in the cKO bones, indicating a defective mineralization. The SEM analysis revealed poorly formed osteocytes: a sharp increase in cell numbers, a great reduction in cell dendrites, and a remarkable change in the cell distribution pattern. Molecular studies demonstrated a significant decrease in the Sost mRNA levels in bone (>95%), and the SOST protein levels in serum (~85%) and bone matrices. There was a significant increase in the β-catenin (>3-fold) mRNA levels as well as its target genes Tcf1 (>6-fold) and Tcf3 (~2-fold) in the cKO bones. We also showed a significant decrease in the RANKL levels of serum proteins (~65%) and bone mRNA (~57%), and a significant increase in the Opg mRNA levels (>20-fold) together with a significant reduction in the Rankl/Opg ratio (>95%), which are responsible for a sharp reduction in the cKO osteoclasts. The values of mechanical strength were higher in cKO femora (i.e. max force, displacement, and work failure). These results suggest that loss of BMP signaling specifically in osteocytes dramatically increases bone mass presumably through simultaneous inhibition of RANKL and SOST, leading to osteoclast inhibition and Wnt activation together. Finally, a working hypothesis is

  1. The role of phytoplankton composition, biomass and cell volume in accumulation and transfer of endocrine disrupting compounds in the Southern Baltic Sea (The Gulf of Gdansk).

    PubMed

    Staniszewska, Marta; Nehring, Iga; Zgrundo, Aleksandra

    2015-12-01

    Endocrine disrupting compounds (EDCs) like bisphenol A (BPA), 4-tert-octylphenol (OP) and 4-nonylphenol (NP) are introduced to the trophic webs through among others phytoplankton. This paper describes BPA, OP and NP concentrations in phytoplankton in the Gulf of Gdansk (Southern Baltic Sea) in the years 2011-2012. The assays of BPA, OP and NP in samples were performed using HPLC with fluorescence detection. The concentrations of BPA, the most commonly used of the three compounds, were over ten times higher than OP and NP concentrations. The concentrations of the studied EDCs in phytoplankton from the Gulf of Gdansk depended on anthropogenic factors and on phytoplankton properties (species composition, biomass, volume). An increase in phytoplankton biomass did not always result in an increase of BPA, OP and NP concentrations. However, the load of the studied EDCs accumulated in phytoplankton biomass increase with a rise of biomass. An increase in BPA, OP and NP concentrations was effected by biomass growth and the proportions ofciliates, dinoflagellates, diatoms and green algae. A strong positive correlation between OP and NP concentrations and negative correlation between BPA concentrations and biomass of organisms with cells measuring <1000 μm(3) in volume results from the differing properties of these compounds. PMID:26433181

  2. Short-term sleep deprivation disrupts the molecular composition of ionotropic glutamate receptors in entorhinal cortex and impairs the rat spatial reference memory.

    PubMed

    Xie, Meilan; Li, Chao; He, Chao; Yang, Li; Tan, Gang; Yan, Jie; Wang, Jiali; Hu, Zhian

    2016-03-01

    Numerous studies reported that sleep deprivation (SD) causes impairment in spatial cognitive performance. However, the molecular mechanisms affected by SD underlying this behavioral phenomenon remain elusive. Here, we focused on the entorhinal cortex (EC), the gateway of the hippocampus, and investigated how SD affected the subunit expression of AMPARs and NMDARs, the main ionotropic glutamategic receptors serving a pivotal role in spatial cognition. In EC, we found 4h SD remarkably reduced surface expression of GluA1, while there was an increase in the surface expression of GluA2 and GluA3. As for NMDARs, SD with short duration significantly reduced the surface expression levels of GluN1 and GluN2B without effect on the GluN2A. In parallel with the alterations in AMPARs and NMDARs, we found the 4h SD impaired rat spatial reference memory as assessed by Morris water maze task. Overall, these data indicate that brief SD differently affects the AMPAR and NMDAR subunit expressions in EC and might consequently disrupt the composition and functional properties of these receptors. PMID:26455878

  3. The effects of advanced physical coal cleaning on mineral matter and ash composition and its relationship to boiler slagging and fouling potential

    SciTech Connect

    DeMaris, P.J.; Read, R.B.; Camp, L.R. )

    1988-06-01

    Recent progress in cleaning medium to high-sulfur coals from the Illinois Basic by advanced flotation methods (Read et al., 1987a) has led to the need to evaluate changes in the ash fusion temperatures of deep cleaned coal. Because the alumina and silica-rich clay minerals and coarse pyrite are more easily removed during coal cleaning than finely disseminated pyrite, it is believed that deeply cleaned coal products may have lower ash fusion temperatures because of altered composition of the remaining ash. To investigate this question a suite of six coals, cleaned to various degrees, were analyzed for ash chemistry (ASTM method on 750/sup 0/C Ash), ash fusion temperatures, perographic variation and mineralogic composition. The samples include the two major mined seams in the Illinois Basin, the Herrin (No. 6) and Springfield (No. 5) Coal Members, as well as the widely used Pittsburgh seam. In this abbreviated paper results for ash chemistry and ash fusion analysis are reported and evaluated. The coals tested contain a variety of minerals. For a run-of-mine (ROM) or channel sample the typical mineral suite listed in decreasing abundance order is: various clay minerals (kaolinite, illite and expandables), pyrite/marcasite, quartz, calcite and other minerals. As these coals are cleaned certain components are more easily removed, such as the free clay and quartz (largely from floor and roof materials) and coarse pyrite/marcasite and calcite from the coal seam. While some of the mineral matter can be liberated with minimum crushing and removed by gravity separation without significant Btu loss, the finely dispersed (framboidal) pyrite requires extensive grinding to achieve significant liberation levels.

  4. Comparison of Surti goat milk with cow and buffalo milk for gross composition, nitrogen distribution, and selected minerals content

    PubMed Central

    Kapadiya, Dhartiben B.; Prajapati, Darshna B.; Jain, Amit Kumar; Mehta, Bhavbhuti M.; Darji, Vijaykumar B.; Aparnathi, Kishorkumar D.

    2016-01-01

    Aim: The study was undertaken to find out the gross composition, nitrogen distribution, and selected mineral content in Surti goat milk, and its comparison was made between cow and buffalo milk. Materials and Methods: Goat milk samples of Surti breed and buffalo milk samples were collected during the period from July to January 2014 at Reproductive Biology Research Unit, Anand Agricultural University (AAU), Anand. Cow milk samples of Kankrej breed were collected from Livestock Research Station, AAU, Anand. Samples were analyzed for gross composition such as total solids (TS), fat, solid not fat (SNF), protein, lactose, and ash. Samples were also analyzed for nitrogen distribution such as total nitrogen (TN), non-casein nitrogen (NCN), non-protein nitrogen (NPN), and selected minerals content such as calcium, magnesium, phosphorous, and chloride. Total five replications were carried out. Results: Goat milk had the lowest TS, fat, protein, and lactose content among all three types of milk studied in the present investigation. On the other hand, the highest TS, fat, protein, and lactose content were found in buffalo milk. Buffalo milk had the highest SNF, calcium, magnesium, and phosphorous content, which was followed by goat milk and lowest in cow milk. The SNF, protein, TN, and calcium content of goat milk were statistically non-significant (p<0.05) with cow milk. The lactose content of goat milk was significantly lower (p>0.05) than that of the cow milk as well as buffalo milk. The goat milk had the highest ash and NCN content, which were followed by buffalo milk and lowest in cow milk. However, the differences in ash, NPN, and phosphorous content of three types of milk studied, viz., goat milk, cow milk, and buffalo milk were found statistically non-significant (p<0.05). The NCN content of buffalo milk was statistically non-significant (p<0.05) with cow milk as well as goat milk. The NCN and magnesium content of goat milk were significantly higher (p>0.05) than

  5. Nutrient and mineral composition during shoot growth in seven species of Phyllostachys and Pseudosasa bamboo consumed by giant panda.

    PubMed

    Christian, A L; Knott, K K; Vance, C K; Falcone, J F; Bauer, L L; Fahey, G C; Willard, S; Kouba, A J

    2015-12-01

    During the annual period of bamboo shoot growth in spring, free-ranging giant pandas feed almost exclusively on the shoots while ignoring the leaves and full- height culm. Little is known about the nutritional changes that occur during bamboo shoot growth, if nutritional changes differ among species, or how these changes might influence forage selection. Our objective was to examine the nutrient and mineral composition during three phases of shoot growth (<60, 90-150 and >180 cm) for seven species of bamboo (Phyllostachys (P.) aurea, P. aureosulcata, P. bissetii, P. glauca, P. nuda, P. rubromarginata, Pseudosasa japonica) fed to captive giant pandas at the Memphis Zoo. Total dietary fiber content of bamboo shoots increased (p < 0.0001) from an overall species average of 61% dry matter (DM) at < 60 cm to 75% DM at shoot heights > 180 cm, while crude protein, fat and ash exhibited significant declines (p < 0.05). Phyllostachys nuda had the overall greatest (p = 0.007) crude protein (21% DM) and fat (4% DM) content, and lowest overall total fibre (61% DM) content compared to the other species examined. In contrast, Pseudosasa japonica had the overall lowest crude protein and fat, and relatively higher fibre content (9%, 3% and 74% respectively). Concentrations of Zn and Fe were highest in shoots <60 cm (10-50 μg/g DM) and decreased (p < 0.05) during growth in all species examined. Concentrations of Ca, Cu, Mn, Na and K varied among species and were largely unaffected by growth stage. Due to their higher concentrations of nutrients and lower fibre content in comparison to culm and leaf, bamboo shoots should be a major component of captive giant panda diets when available. PMID:25581029

  6. Boron and silicon: Effects on growth, plasma lipids, urinary cyclic AMP and bone and brain mineral composition of male rats

    SciTech Connect

    Seaborn, C.D.; Nielsen, F.H. . Grand Forks Human Nutrition Research Center)

    1994-06-01

    Because boron resembles silicon in its chemical properties, an experiment was performed to determine if excessive dietary boron would affect the response to silicon deprivation and, conversely, if silicon would influence the effects of an excessive intake of boron. Male weanling Sprague-Dawley rats were assigned to groups of 6 or 12 in a two-by-two factorially arranged experiment. Supplemented to a ground corn/casein diet containing 1.2 [mu]g silicon and 3 [mu]g boron per gram were silicon as sodium metasilicate at 0 or 50 [mu]g/g and boron as orthoboric acid at 0 or 500 [mu]g/g diet. At nine weeks, animals fed high dietary boron had significantly decreased final body weights, liver-weight-to-body-weight ratios, urinary cAMP concentrations, plasma triglyceride, cholesterol, glycine, valine, leucine, and lysine concentrations and skull copper, sodium, and manganese concentrations. High dietary boron also significantly increased brain-weight-to-body-weight ratios, magnesium concentrations of femur, brain, and plasma, zinc concentration of femur, and iron concentration of skull. The bone mineral findings suggest that excess dietary boron exerts subtle effects on bone composition. Dietary silicon affected blood urea nitrogen, hematocrit, hemoglobin, and the concentrations of plasma threonine and aspartic acid in animals fed excess boron. Depression of the testes-weight-to-body-weight ratio of animals fed 500 [mu]g boron per gram diet was most marked in animals not fed silicon. Although excessive dietary boron did not markedly enhanced the response of rats to silicon deprivation, dietary silicon affected their response to high dietary boron. Thus, dietary silicon apparently can influence boron toxicity.

  7. Comparative study of mineral composition of beef steak and pork chops depending on the thermal preparation method.

    PubMed

    Goran, Gheorghe Valentin; Tudoreanu, Liliana; Rotaru, Elena; Crivineanu, Victor

    2016-08-01

    This study focuses on the effects of three different thermal preparation methods (roasting, boiling, and microwave cooking) on the mineral concentrations of beef and pork, as well as on the comparison of mineral levels between these two types of meat. In this study, raw and cooked beef and pork samples were selected and analyzed by ICP-OES in order to determine mineral concentrations. In general, thermal preparation clearly increased mineral concentrations in cooked samples compared to raw meat. The highest mineral concentration was identified in the roasted samples. Trace element concentrations in beef were significantly higher compared to pork. In pork, Na concentration decreased in all samples, suggesting that Na is lost with water. Zn mean content in cooked beef samples registered significant differences compared to pork cooked samples. The percentage of water loss during the microwave thermal preparation for beef samples was higher than the other two treatments. PMID:27088876

  8. “Evaluation of shear bond strength of a composite resin to white mineral trioxide aggregate with three different bonding systems”-An in vitro analysis

    PubMed Central

    Patil, Anand C.

    2016-01-01

    Background Mineral trioxide aggregate (MTA) is a biomaterial that has been investigated for endodontic applications. With the increased use of MTA in pulp capping, pulpotomy, perforation repair, apexification and obturation, the material that would be placed over MTA as a final restoration is an important matter. As composite resins are one of the most widely used final restorative materials, this study was conducted to evaluate the shear bond strength of a composite resin to white mineral trioxide aggregate (WMTA) using three different bonding systems namely the two-step etch and rinse adhesive, the self-etching primer and the All-in-one system. Material and Methods Forty five specimens of white MTA (Angelus) were prepared and randomly divided into three groups of 15 specimens each depending on the bonding systems used respectively. In Group A, a Two-step etch and rinse adhesive or ‘total-etch adhesive’, Adper Single Bond 2 (3M/ESPE) and Filtek Z350 (3M ESPE, St Paul, MN) were placed over WMTA. In group B, a Two-step self-etching primer system, Clearfil SE Bond (Kuraray, Medical Inc) and Filtek Z350 were used. In Group C, an All-in-one system, G Bond (GC corporation, Tokyo, Japan) and Filtek Z350 were used. The shear bond strength was measured for all the specimens. The data obtained was subjected to One way Analysis of Variance (ANOVA) and Scheffe’s post hoc test. Results The results suggested that the Two-step etch and rinse adhesive when used to bond a composite resin to white MTA gave better bond strength values and the All-in-one exhibited the least bond strength values. Conclusions The placement of composite used with a Two-step etch and rinse adhesive over WMTA as a final restoration may be appropriate. Key words:Composite resins, dentin bonding agents, mineral trioxide aggregate, shear bond strength. PMID:27398177

  9. A semiquantitative X-ray diffraction method to determine mineral composition in stream sediments with similar mineralogy

    USGS Publications Warehouse

    Webster, D.M.

    1989-01-01

    A semiquantitative X-ray diffraction procedure has been developed that can be used to acquire reproducible mineralogic data from geographically unrelated stream-sediment samples having similar mineralogy. Weight percentages for quartz, total-feldspar, and total-clay can be determined by direct comparison of intensities with standard-mineral mixtures of known weight percent. Matrix effects and mass-absorption differences are circumvented by taking the ratio of peak-intensity, in counts per second, for quartz relative to that of other minerals being quantified. Mineral percentages generally are reproducible to within 10 percent.

  10. Tracing the pathway of compositional changes in bone mineral with age: Preliminary study of bioapatite aging in hypermineralized dolphin’s bulla

    PubMed Central

    Li, Zhen; Pasteris, Jill D.

    2014-01-01

    Background Studies of mineral compositional effects during bone aging are complicated by the presence of collagen. Methods Hypermineralized bullae of Atlantic bottlenose dolphins of < 3 months, 2.5 years, and 20 years underwent micrometer-scale point analysis by Raman spectroscopy and electron microprobe in addition to bulk analysis for carbon. Results Bulla central areas have a mineral content of ~96 wt.% and 9–10 wt.% carbonate in their bioapatite, which is ~2 wt.% more than edge areas. Ca/P atomic ratios (~1.8) and concentrations of Mg, S, and other minor/trace elements are almost constant in central areas over time. Maturity brings greater over-all homogeneity in mineral content, stoichiometry, and morphology throughout central and edge areas of the bullae. During aging, edge areas become less porous, whereas the concentration of organics in the edge is reduced. Enhancement of coupled substitutions of CO32− for PO43− and Na for Ca during aging increases carbonate content up to ~10 wt.% in the adult bulla. Conclusions 1) Changes in physical properties during aging did not occur simultaneously with changes in chemical properties of the bone mineral. 2) Compositional changes in bone mineral were minor during the neonatal to sub-adult stage, but significant during later maturity. 3) Na and CO3 concentrations covary in a 1:1 molar proportion during aging. 4) The mineral’s crystallinity did not decrease as CO3 concentration increased during aging. General Significance Hypermineralized dolphin’s bulla, due to extreme depletion in collagen, is an ideal material for investigating mineralogical changes in bioapatite during bone aging. PMID:24650888

  11. Influence of mineral characteristics and long-term arable and forest land use on stocks, composition, and stability of soil organic matter

    NASA Astrophysics Data System (ADS)

    Kaiser, Michael; Ellerbrock, Ruth H.; Wulf, Monika; Dultz, Stefan; Hierath, Christina; Michael, Sommer

    2013-04-01

    A land use change from arable to forest is discussed as an option to sequester carbon and mitigate climate change but land use specific mechanisms responsible for soil organic matter stabilization are still poorly understood. In this study we aimed to analyze the impact of soil mineral characteristics on organic carbon (OC) stocks and on the composition as well as on the stability of mineral associated organic matter (OM) of arable and forest topsoils. We selected seven soil types of different mineral characteristics. Topsoil samples of each soil type were taken from a deciduous forest and an adjacent arable site, which have been continuously used for more than 100 years. The sequentially extracted Na-pyrophosphate soluble OM fractions (OM(PY)), representing mineral associated OM, were analyzed on their OC and 14C content and characterized by infrared spectroscopy. We found land use effects on the soil OC stocks and OC amounts separated by OM(PY) (OCPY) (forest > arable) as well as on the stability of OM(PY) (arable > forest). For the forest and arable topsoils, a linear relationship was found between the stocks of OC and exchangeable Ca. Only for the near neutral arable topsoils, correlation analyses indicate increasing OCPY contents with an increase in oxalate soluble Fe and Al, exchangable Ca, and Na-pyrophosphate soluble Mg and Fe contents. The stability of OM(PY) of the arable topsoils seems to increase with the specific surface area of the mineral phase and the content of exchangeable Ca. For the acidic forest topsoils, the stability of OM(PY) seems to increase with increasing pH, the C=O group content of OM(PY) and, the Na-pyrophosphate soluble Mg contents. The results indicate cation bridging of OM to mineral surfaces in near neutral arable soils and OM-crosslinking in acidic forest soil as important mechanisms for the stabilization of OM(PY).

  12. Impacts of pore- and petro-fabrics, mineral composition and diagenetic history on the bulk thermal conductivity of sandstones

    NASA Astrophysics Data System (ADS)

    Nabawy, Bassem S.; Géraud, Yves

    2016-03-01

    The present study aims to model the bulk thermal fabric of the highly porous (26.5 ≤ øHe ≤ 39.0%) siliceous Nubia sandstones in south Egypt, as well as their pore- and petro-anisotropy. The thermal fabric concept is used in the present study to describe the magnitude and direction of the thermal foliation 'F', lineation 'L' and anisotropy 'λ'. Cementation, pressure solution, compaction and the authigenic clay content are the main pore volume-controlling factors, whereas the cement dissolution and fracturing are the most important porosity-enhancing factors. The bulk thermal fabric of the Nubia sandstone is raised mostly from the contribution of the mineral composition and the pore volume. The kaolinite content and pore volume are the main reducing factors for the measured bulk thermal conductivity 'k', whereas the quartz content is the most important enhancing factors. The optical scanning technique, which is one of the most accurate and precise techniques, was applied for measuring the bulk thermal conductivity 'k' of the studied samples. For the dry state, the average thermal condutivity 'kav' in the NE-SW, NW-SE and vertical directions, varies from 1.53 to 2.40, 1.54 to 2.36 and from 1.31 to 2.20 W/(mK), respectively. On other hand, 'kav' for the saline water-saturated state for the NE-SW, NW-SE and vertical directions varies between 2.94 & 4.42, 2.90 & 4.31 and between 2.39 & 3.65 W/(mK), respectively. The present thermal pore fabric is slightly anisotropic, 'λ' varies from 1.10 to 1.41, refers mostly to the NW-SE direction (kmax direction, elongation direction), whereas the petro-fabric refers to NE-SW direction (kmax direction, elongation direction). This gives rise to a conclusion that the pore- and petro-fabrics have two different origins. Therefore, studying the thermal conductivity of the Nubia sandstone in 3-D indicates a pore fabric elongation fluctuating around the N-S direction.

  13. Impact of Natural and Man-Made Factors on Mineral Composition of the Ardon River Water and Hydrophytes

    NASA Astrophysics Data System (ADS)

    Vadim, Ermakov; Elena, Korobova; Alexander, Degtyarev; Nina, Petrunina; Sergey, Tyutikov

    2013-04-01

    The Unal basin located in mountain region of Northern Ossetia (the Caucasus) belongs to Pb-Zn natural province with anthropogenic and natural transformation of the environment leading to risks of ecological damage. Activity of the Misursk Mining Combine and its Arkhon-Khosta tailings caused a significant local increase of Pb, Cd, Cu, Zn content in soils, water and biotic components relative to background values [1-5]. A catastrophic mud flow of 2002 and the later construction of a gas pipeline and a dam for hydroelectric power station changed local landscapes and biota (plants, algae, and amphibia). Biogeochemical studies performed in the area in 2001, 2003 and 2008 showed that in some cases the specified factors might change the structure of landscapes due to enhanced mass migration and the erosion of outcropping rocks which could be followed by corresponding transformation of the chemical composition of draining waters and flood plain soils, and could also change the character of species' invasion. Algae were proved to adapt and to indicate both natural and man-made transformation of the environment [3, 4]. A distinct relation between the particle size of the suspended matter in the Ardon river waters and water mineralization was discovered. However, heavy metals' concentration level in waters of the Ardon river appeared in general to be within the acceptable hygienic standards and therefore ecologically not critical. References 1. Degtyarev V.P., Ermakov V.V. Ecological and geochemical evaluation of the the Ardon river basin (Northern Ossetia). Geokhimiya, 1998, 1, 88-94. 2. Karpova E.A., Krechetova E.V., Degtyarev V.P. Parameters of heavy metal migration in soils of biogeochemical anomalies of the Northern Ossetia. Modern problems of soil contamination, Moscow State University, V. 1, 2007, 106-110. 3. Petrunina N.S., Ermakov V.V., Tuytikov S.F., Karpova E.A., Levkina L.M., Gololobova M.A. Biogeochemical identification of natural and technogenic polymetallic

  14. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk.

    PubMed

    Bovenhuis, H; Visker, M H P W; Poulsen, N A; Sehested, J; van Valenberg, H J F; van Arendonk, J A M; Larsen, L B; Buitenhuis, A J

    2016-04-01

    Several studies have described associations between the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism and routinely collected milk production traits but not much is known about effects of the DGAT1 polymorphism on detailed milk composition. The aim of this study was to estimate effects of the DGAT1 polymorphism on milk fatty acid, protein, and mineral composition. We looked for effects that were significant and consistent in Danish Holstein Friesian (HF), Danish Jersey, and Dutch HF as these are likely to be true effects of the DGAT1 K232A polymorphism rather than being effects of linked loci. For fatty acid composition, significant and consistent effects of the DGAT1 polymorphism were detected on C14:0, C16:0, C15:0, C16:1, C18:1 cis-9, conjugated linoleic acid (CLA) cis-9,trans-11, C18:2 cis-9,cis-12, and C18:3 cis-9,cis-12,cis-15 content (percent by weight, wt/wt %). For C16:0, C16:1, and C18:1 cis-9, the DGAT1 polymorphism explained more than 10% of the phenotypic variation. Significant effects on milk protein composition in Dutch HF could not be confirmed in Danish Jersey or Danish HF. For mineral content, significant and consistent effects of the DGAT1 polymorphism on calcium, phosphorus, and zinc were detected. In the Dutch HF population, the contribution of the DGAT1 K232A polymorphism to phenotypic variance was 12.0% for calcium, 8.3% for phosphorus, and 6.1% for zinc. Different from effects on fatty acid composition, effects of the DGAT1 polymorphism on yields of long-chain fatty acids C18:1 cis-9, CLA cis-9,trans-11, C18:2 cis-9,cis-12, and C18:3 cis-9,cis-12,cis-15 were not significant. This indicates that effects of DGAT1 on these fatty acids are indirect, not direct, effects: DGAT1 affects de novo synthesis of fatty acids and, consequently, the contribution of the long-chain fatty acids to total fat is decreased. In addition, effects of the DGAT1 polymorphism on yields of Ca, P, and Zn were not significant, which indicates that effects

  15. Composition, size distribution, optical properties and radiative effects of re-suspended local mineral dust of Rome area by individual-particle microanalysis and radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Pietrodangelo, A.; Salzano, R.; Bassani, C.; Pareti, S.; Perrino, C.

    2015-05-01

    New information on the PM10 mineral dust from site-specific (Rome area, Latium) outcropped rocks, and on the microphysics, optical properties and radiative effects of mineral dust at local level were gained in this work. A multi-disciplinary approach was used, based on individual-particle scanning electron microscopy with X-ray energy-dispersive microanalysis (SEM XEDS), X-ray diffraction (XRD) analysis of dust, size distribution of mineral particles, and radiative transfer modelling (RTM).The mineral composition of Rome lithogenic PM10 varies between an end-member dominated by silicate minerals and one exclusively composed of calcite. The first is obtained from volcanic lithotypes, the second from travertine or limestones; lithogenic PM10 with intermediate composition derives mainly from siliciclastic rocks or marlstones of Rome area. Size and mineral species of PM10 particles of silicate-dominated dust types are tuned mainly by weathering and, to lesser extent, by debris formation or crystallization; chemical precipitation of CaCO3 plays a major role in calcite-dominated types. These differences are evidenced by the diversity of volume distributions, within either dust types, or mineral species. Further differences are observed between volume distributions of calcite from travertine (natural source) and from road dust (anthropic source), specifically on the width, shape and enrichment of the fine fraction (unimodal at 5 μm a.d. for travertine, bimodal at 3.8 and 1.8 μm a.d. for road dust). Log-normal probability density functions of volcanics and travertine dusts affect differently the single scattering albedo (SSA) and the asymmetry parameter (g) in the VISible and Near Infrared (NIR) regions, depending also on the absorbing/non-absorbing character of volcanics and travertine, respectively. The downward component of the BOA solar irradiance simulated by RTM for a volcanics-rich or travertine-rich atmosphere shows that volcanics contribution to the solar

  16. Adsorptional photocatalytic mineralization of oxytetracycline and ampicillin antibiotics using Bi2O3/BiOCl supported on graphene sand composite and chitosan.

    PubMed

    Priya, Bhanu; Raizada, Pankaj; Singh, Nahar; Thakur, Pankaj; Singh, Pardeep

    2016-10-01

    In present study, heterojunctioned Bi2O3/BiOCl (BO/BOC) was synthesized via in situ chemical reduction and oxidation of BiOCl nanoplates. BiOCl was reduced to metallic Bi in KHB4 solution followed by oxidation in H2O2 solution to produce BO/BOC. The BO/BOC was supported over graphene sand composite and also on chitosan using wet impregnation method to report BO/BOC/GSC and BO/BOC/CT nanocomposite. The morphology and compositional characteristics of BO/BOC/GSC and BO/BOC/CT were investigated by FESEM, TEM, HRTEM, FTIR, XRD, EDX, RAMAN, BET and UV-visible diffuse reflectance spectral analysis. The photocatalytic activity of BO/BOC/GSC and BO/BOC/CT was performed for mineralization of ampicillin (AMP) and oxytetracycline (OTC) antibiotics under solar light. The adsorption process had significant effect on photodegradation of AMP and OTC. The adsorption of both OTC and AMP onto BO/BOC/GSC and BO/BOC/CT followed pseudo second order kinetics. Simultaneous adsorption and degradation process (A+P) resulted in higher degradation rate of investigated antibiotics. The applicability of power law model indicates the intricacies of mineralization process. During A+P process, OTC and AMP were mineralized to CO2·H2O, NO3(-) and SO4(2-) ions. Both BO/BOC/GSC and BO/BOC/CT exhibited significant recycle efficiency. PMID:27393889

  17. Chemical Composition of Magnetic Minerals in the Sedimentary Interval Containing the Mono Lake Excursion from Summer Lake, Oregon, U.S.A

    NASA Astrophysics Data System (ADS)

    Horton, R. A.; Lopez, J.; Thompson, G. R.; Soto, C.; Herrera, I. S.; Sevier, K. L.; Negrini, R. M.

    2011-12-01

    Oriented piston cores were taken from Summer Lake for the purpose of obtaining a high-resolution paleomagnetic record of the Mono Lake Excursion. McCuan (2011) reported that the main magnetic carrier mineral is consistent throughout the cores and is composed principally of pseudo-single domain titanomagnetite. This result is based on XRD scans of magnetic mineral separates and modified Day plots of bulk sediment hysteresis parameters. In addition, small amounts of maghemite, hematite, and ilmenite were identified using reflected light microscopy though these did not show up in the XRD patterns or bulk hysteresis analyses. In contrast to the above results, preliminary SIRM unmixing results suggest the presence of at least three different significant magnetic carriers with moderately low coercivities. To test the unmixing results, magnetic separates were obtained from core samples and prepared into polished sections for analysis using the SEM-EDS at CSUB. Grains in excess of 10 um were randomly analyzed (N = 646). The vast majority of grains were titanomagnetites with atomic Fe:Ti ranging from 7.5:2.5 to 8.5:1.5, but there are also small amounts of ulvospinel, magnetite, and occasionally Fe-rich chromite, and most grains contain small amounts of Mg, Al, and Cr. Ternary plots of Fe-Ti-Cr show multiple wide but similar compositional ranges at all depths. These compositional data generally support the SIRM unmixing results suggesting three or so families of magnetic minerals.

  18. Relationship of Physical Performance with Body Composition and Bone Mineral Density in Individuals over 60 Years of Age: A Systematic Review

    PubMed Central

    Shin, Hyehyung; Panton, Lynn B.; Dutton, Gareth R.; Ilich, Jasminka Z.

    2011-01-01

    The purpose of this review was to examine the relationship between physical performance and body composition measurements, including fat/muscle mass and bone mineral density (BMD) in individuals ≥60 years of age. Various measurements used to assess body composition, BMD, and physical performance (PP) were discussed as well. Medline/PubMed, CINAHL, and SCIE were used to identify articles. After limiting the search for age and kind of physical performance measures, 33 articles were evaluated. Higher fat mass was associated with poorer physical performance while higher muscle mass was a predictor of better physical performance, especially in the lower extremities. Additionally, evidence showed that higher muscle fat infiltration was a determinant of poorer physical performance. BMD was shown to be a good predictor of physical performance although the relationship was stronger in women than in men. Developing standardized methods for PP measurements could help in further investigation and conclusions of its relationship with body composition. PMID:21318048

  19. Chemical composition and varieties of fahlore-group minerals from Oligocene mineralization in the Rhodope area, Southern Bulgaria and Northern Greece

    NASA Astrophysics Data System (ADS)

    Repstock, Alexander; Voudouris, Panagiotis; Zeug, Manuela; Melfos, Vasilios; Zhai, Mingguo; Li, Hongzhong; Kartal, Tamara; Matuszczak, Julia

    2016-02-01

    Fahlore-group minerals in Oligocene magmatic-hydrothermal deposits from the central and eastern Rhodope area, Bulgaria and Greece (e.g. porphyry-epithermal systems at Pagoni Rachi, Maronia and Kassiteres-Sapes, polymetallic epithermal high- and intermediate-sulfidation veins at Kirki, Perama Hill, Mavrokoryfi, Pefka, Zvezdel-Pcheloyad and Madzharovo, skarn-carbonate replacement deposits at Laki, Davidkovo, Madan, Enyovche and intrusion-related deposits at Kimmeria), cover the whole range of the tetrahedrite-tennantite solid solution series and are dominated by zincian and ferroan varieties reflecting deposition from Zn-(and Fe)-rich fluids. The majority of the studied fahlores are "normal" fully-substituted with Cu (+Ag) close to 10 apfu. However, high-sulfidation epithermal deposits in Greece contain "Cu-excess" tetrahedrite-tennantite; those with extreme high Cu-excess > Fe + Zn occur in transitional high- to intermediate-sulfidation systems, whereas low "Cu-excess" tetrahedrite-tennantite with Zn > Cu-excess + Fe and Fe > Cu-excess + Zn are part of tellurides-bearing intermediate-sulfidation assemblages. The epithermal St. Demetrios and Pefka deposits display the most Cu-rich tetrahedrites (11.039 apfu Cu) and tennantite (11.784 apfu Cu) worldwide. Although Ag substitutes for Cu in the structure of Ag-rich tetrahedrite in several deposits, freibergite with 6.800 apfu Ag occurs only at Mavrokoryfi; in particular, the cadmian freibergite at Mavrokoryfi is the second finding of this variety worldwide. Tellurium-bearing fahlore varieties occur in association with enargite/luzonite and native gold in high-sulfidation ore assemblages. Tetravalent tellurium substitutes for trivalent As and Sb in goldfieldite and Te-rich tennantite and tetrahedrite at Mavrokoryfi, Perama Hill, St. Demetrios and Pefka deposits. Goldfieldite at Mavrokoryfi and Perama Hill is remarkably Te-rich (up to 3.766 apfu and 3.711 apfu Te, respectively), with total metal content of 10.591 apfu and

  20. A randomized controlled trial of the effects of flaxseed lignan complex on metabolic syndrome composite score and bone mineral in older adults.

    PubMed

    Cornish, Stephen M; Chilibeck, Philip D; Paus-Jennsen, Lisa; Biem, H Jay; Khozani, Talaei; Senanayake, Vijitha; Vatanparast, Hassanali; Little, Jonathan P; Whiting, Susan J; Pahwa, Punam

    2009-04-01

    A randomized double-blind placebo controlled study design was used to assess the effects of flaxseed lignan complex supplementation during exercise training on a metabolic syndrome composite score and osteoporosis risk in older adults. A total of 100 subjects (>or=50 years) were randomized to receive flaxseed lignan (543 mg.day-1 in a 4050 mg complex) or placebo while completing a 6 month walking program (30-60 min.day-1, 5-6 days.week-1). Fasting serum glucose, triacylglycerol (TAG), high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, total cholesterol, interleukin-6, and tumor necrosis factor-alpha were measured every 2 months, while body composition, bone mineral density, and resting blood pressure were assessed at baseline and at 6 months. A composite Z score of 6 risk factors for metabolic syndrome (fasting glucose, HDL cholesterol, TAG, abdominal adiposity, blood pressure, and inflammatory cytokines) was calculated at baseline and at 6 months. Men taking placebo increased metabolic syndrome composite Z score (p < 0.05), but there were no changes in the other groups. A significant group x sex x time interaction was noted for TAG (p = 0.017) and diastolic blood pressure (p = 0.046), with men taking flaxseed lignan decreasing diastolic blood pressure relative to men taking placebo, and men taking placebo increasing TAG relative to men taking flax lignan. There were no differences between groups for change in bone measures, body composition, lipoproteins, or cytokines. Males taking the flaxseed lignan complex reduced metabolic syndrome score relative to men taking placebo, but a similar trend was not seen in females. Flaxseed lignan had no effect on bone mineral density or content, body composition, lipoproteins, glucose, or inflammation. PMID:19370038

  1. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature

    NASA Astrophysics Data System (ADS)

    Abers, Geoffrey A.; Hacker, Bradley R.

    2016-02-01

    To interpret seismic images, rock seismic velocities need to be calculated at elevated pressure and temperature for arbitrary compositions. This technical report describes an algorithm, software, and data to make such calculations from the physical properties of minerals. It updates a previous compilation and Excel® spreadsheet and includes new MATLAB® tools for the calculations. The database of 60 mineral end-members includes all parameters needed to estimate density and elastic moduli for many crustal and mantle rocks at conditions relevant to the upper few hundreds of kilometers of Earth. The behavior of α and β quartz is treated as a special case, owing to its unusual Poisson's ratio and thermal expansion that vary rapidly near the α-β transition. The MATLAB tools allow integration of these calculations into a variety of modeling and data analysis projects.

  2. The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long-term arable and forest land use

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Ellerbrock, R. H.; Wulf, M.; Dultz, S.; Hierath, C.; Sommer, M.

    2012-06-01

    In this study, we analyzed the influence of soil mineral characteristics (e.g., clay concentration and mineralogical composition, iron and aluminum oxide concentration and crystallinity, specific surface area, and exchangeable cation concentration) on (i) organic carbon (OC) content (kg m-2) and (ii) the concentration (g kg-1), composition, and stability of the mineral-associated organic matter (OM) of arable and forest topsoils. We selected seven soil types with different mineral characteristics for this study. For each soil type, samples were taken from topsoils of a deciduous forest and an adjacent arable site. The arable and forest sites have been used continuously for more than 100 years. Na-pyrophosphate soluble OM fractions (OM(PY)), representing mineral-associated OM, were extracted, analyzed for OC and 14C concentrations, and characterized by FTIR spectroscopy. For the forest and arable topsoils, a linear relationship was found between the OC content and exchangeable Ca. For the arable topsoils (pH 6.7-7.5), correlation analyses indicated that the OCPY concentration increased with an increase in oxalate soluble Fe and Al, exchangeable Ca, and Na-pyrophosphate soluble Mg and Fe concentrations. The stability of OM(PY) determined by the 14C measurements of the near-neutral arable topsoils was shown to increase with the specific surface area and the concentration of exchangeable Ca. For the acidic forest topsoils (pH <5), the stability of OM(PY) was found to increase as the pH, and the concentration of C=O groups and Na-pyrophosphate soluble Mg increase.

  3. Compositional and mineralogic constraints on the genesis of ophiolite hosted nickel mineralization in the Pevkos area, Limassol Forest, Cyprus

    USGS Publications Warehouse

    Foose, M.P.; Economou, M.; Panayiotou, A.

    1985-01-01

    Mineralization composed dominantly of primary troilite, maucherite, pentlandite, and chalcopyrite, and secondary valleriite occurs in serpentinized transition zone rocks of the Limasol Forest segment of the Troodos ophiolite complex, Cyprus. Whole-rock and electron microprobe analyses of this mineralization gives ranges of Cu/(Cu+Ni)=0.16 to 0.47, Pt/(Pt+Pd)=0.66 to 0.51, Ni/Co=6.33 to 13.4, and chondrite normalized plots with low concentrations of Rh, Pt, and Pd, but relatively high Au. Estimated distribution coefficients of nickel and iron between olivine and ore range from 0.5 to 7.4. Most of these data are unlike values from magmatic sulfide deposits and indicate either a complete alteration of a preexisting magmatic sulfide concentration or, more likely, a nonmagmatic origin for this mineralization. ?? 1985 Springer-Verlag.

  4. The effects of long-term whole-body vibration and aerobic exercise on body composition and bone mineral density in obese middle-aged women

    PubMed Central

    Nam, Sang-seok; Park, Hun-young; Moon, Hwang-woon

    2016-01-01

    [Purpose] The purpose of this study was to determine the effectiveness of whole-body passive vibration exercise and its differences from aerobic exercise on body composition, bone mineral density (BMD) and bone mineral content (BMC). [Methods] Obese middle-aged women (n=33 out of 45) with 34±3% body fat completed the training protocol. They were randomly assigned into diet (n=9; control group), diet plus whole-body vibration exercise (n=13; vibration group), and diet plus aerobic exercise (n=11; aerobic group) groups and we compared their body composition, BMD, and BMC before and after 9 months of training. There were no significant differences in nutrient intake among groups during the training period. [Results] Relative body fat (%) decreased significantly (p < .05) in all three groups and the exercise groups showed a greater reduction in fat mass than the diet only group. BMD in the whole body, lumbar spine, hip and forearm were not significantly different among the three groups. Total body BMC increased significantly in the vibration group throughout the first 6 months of training. [Conclusion] Results suggest that long- term vibration training when used in conjunction with a diet program is as effective as aerobic exercise with a diet program in improving body composition of obese middle-aged women without compromising BMC or BMD. Thus, it can be considered a novel and effective method for reducing body fat. PMID:27508150

  5. Influence of mineral characteristics on soil organic matter stocks, composition and stability of topsoils under long-term arable and forest land use

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Ellerbrock, R. H.; Wulf, M.; Dultz, S.; Hierath, C.; Sommer, M.

    2011-12-01

    A land use change from arable to forest is discussed as an option to sequester carbon and mitigate climate change but land use specific mechanisms responsible for soil organic matter stabilization are still poorly understood. In this study we aimed to analyze the impact of soil mineral characteristics (clay content and composition, iron and aluminium oxide content and crystallinity, specific surface area, content of exchangeable cations) on organic carbon (OC) stocks (kg m-2) and on the composition as well as on the stability of mineral associated organic matter (OM) of arable and forest topsoils. We selected seven soil types of different mineral characteristics for this study. Topsoil samples of each soil type were taken from a deciduous forest and an adjacent arable site. The arable and forest sites have been used continuously for more than 100 years. The Na-pyrophosphate soluble OM fractions (OM(PY)), representing mineral associated OM, were sequentially extracted, analyzed on their OC and 14C content, and characterised by FTIR spectroscopy. We found land use effects on the soil OC stocks and OC amounts separated by OM(PY) (OCPY) (forest > arable) as well as on the stability of OM(PY) (arable > forest). For the forest and arable topsoils, respectively, a linear relationship was found between the stocks of OC and exchangeable Ca. Only for the arable topsoils (pH 6.7-7.5), correlation analyses indicate increasing OCPY contents with an increase in oxalate soluble Fe and Al, exchangable Ca, and Na-pyrophosphate soluble Mg and Fe contents. The stability of OM(PY) of the arable topsoils seems to increase with the specific surface area of soil minerals <2 μm and the content of exchangeable Ca. For the acidic forest topsoils (pH <5) showing a ratio between soil organic carbon content and specific surface area of >1 g m-2, the stability of OM(PY) seems to increase with increasing pH, the C=O group content of OM(PY) and, the Na-pyrophosphate soluble Mg contents. We

  6. Effects of Sediment Iron Mineral Composition on Microbially Mediated Changes in Divalent Metal Speciation: Importance of ferrihydrite

    SciTech Connect

    Cooper, David C.; Neal, Andrew L.; Kukkadapu, Ravi K.; Brewe, Dale; Coby, Aaron J.; Picardal, Flynn W.

    2005-04-01

    Dissimilatory metal reducing bacteria (DMRB) can influence geochemical processes that subsequently affect the speciation the speciation and lability of metallic contaminants within natural environments. Most investigations into the effect of DMRB on sediment geochemistry utilize various synthetic oxides as the FeIII source (e.g. ferrihydrite, goethite, hematite, hydrous ferric oxide), providing for well-controlled experiments. However, these materials do not necessarily emulate the actual mineralogical composition of natural systems, nor do they account for the effect of sediment mineralogy on microbial activity and/or microbially induced geochemical processes. Our experiments with a divalent metal (ZnII) indicate that, while sediment mineralogy may have little effect on the net rate of microbial iron reduction, it does impact the resultant speciation of reduced iron and sediment associated transition metals. These data demonstrate that microbial reduction of synthetic goethite carrying previously sorbed ZnII increased both [ZnII-aq] and the proportion of sorbed ZnII that is insoluble in 0.5 M HCl. Microbial reduction of FeIII in similarly treated iron-bearing clayey sediment (Fe-clay) and hematite sand had no similar effect. Moessbauer spectroscopy data indicate that small amounts of ferrihydrite present in the synthetic VHSA goethite are preferentially consumed during FeIII reduction, a process that may result from FeII-driven conversion of ferrihydrite to goethite. Microbial reduction of Fe-clay did not permanently alter iron speciation within the Fe-clay. Zinc k-edge XAS data collected for ZnII previously sorbed to VHSA goethite and Fe-clay indicate that microbial FeIII reduction altered ZnII bonding in fundamentally different ways for VHSA goethite and Fe-clay. In VHSA goethite, XANES data indicate ZnO6 octahedra in both sterile and reduced samples. EXAFS data indicate a slightly increased average Zn-O coordination number and a slightly higher degree of long

  7. Effect of species composition on carbon and nitrogen stocks in forest floor and mineral soil in Norway spruce and European beech mixed forests

    NASA Astrophysics Data System (ADS)

    Andivia, Enrique; Rolo, Víctor; Jonard, Mathieu; Formánek, Pavel; Ponette, Quentin

    2015-04-01

    Management of existing forests has been identified as the main strategy to enhance carbon sequestration and to mitigate the impact of climate change on forest ecosystems. In this direction, the conversion of Norway spruce monospecific stands into mixed stands by intermingling individuals of European beech is an ongoing trend in adaptive forest management strategies, especially in Central Europe. However, studies assessing the effect of changes in tree species composition on soil organic carbon (SOC) and nitrogen stocks are still scarce and there is a lack of scientific evidence supporting tree species selection as a feasible management option to mitigate the effects of predicted future climatic scenarios. We compared C and N stocks in the forest floor (litter and humus) and the top 10 cm of mineral soil in two monospecific stands of Norway spruce and European beech and in a mixed stand of both species. The effect of tree species composition on the C and N stocks and its spatial distribution was evaluated based on litterfall, root production, elevation and canopy opening, and by using a combination of modelling and geostatistical techniques. C stock was highest in the Norway spruce and the mixed stands, while N stock was highest in the mixed stand and lowest under European beech, with intermediate values in the Norway spruce stand. Each forest type showed differences in forest floor properties, suggesting that species composition is an important factor governing forest floor characteristics, including C and N stocks. The distribution of C and N stocks between forest soil layers was different for each forest type. C and N stocks were highest in the hummus layer under Norway spruce, whereas both stocks were lowest in the European beech stand. On the other hand, the mixed stand showed the highest C and N accumulation in the uppermost mineral soil layer, while the monospecific stands showed similar values. Litterfall was the main contribution to C and N stocks of the

  8. Geochemical and isotopic composition of organic matter in the Kupferschiefer of the Polish Zechstein basin: relation to maturity and base metal mineralization

    NASA Astrophysics Data System (ADS)

    Bechtel, A.; Gratzer, R.; Püttmann, W.; Oszczepalski, S.

    Drill core samples from the Kupferschiefer of Poland were collected throughout the Zechstein basin. The samples included oxidized Kupferschiefer from Rote Fäule zones, adjacent Cu-mineralized Kupferschiefer of southwestern Poland, and drill cores from the central and northern parts of the Zechstein basin. The Kupferschiefer samples reflect differences in base metal mineralization and in burial depth (630-5067m). The organic matter of the Kupferschiefer is characterized by Rock-Eval and GC-MS analyses. Classification of kerogen by hydrogen and oxygen indices (HI, OI), correlations of Tmax vs the present depth of the Kupferschiefer, soluble organic matter (SOM) yields, and relative proportions of saturated and aromatic hydrocarbons of the SOM provide evidence for an oxidative alteration of organic matter in highly mineralized Kupferschiefer samples near the Rote Fäule zones. This is confirmed by differences in the composition of the saturated and aromatic hydrocarbon fractions of the soluble organic matter: Saturated hydrocarbons from Rote Fäule samples are dominated by short-chain n-alkanes and higher abundances of pristane and phytane relative to heptadecane (n-C17) and octadecane (n-C18), respectively, compared with samples more distant to the Rote Fäule zone. Compositional changes of the aromatic hydrocarbon fractions with decreasing distance to that zone are characterized by the occurrence of polycyclic aromatic hydrocarbons and elevated ratios of phenanthrene to methylphenanthrenes that are attributed to demethylation reactions and resulted in a decrease of the methylphenanthrene index (MPI1). Kupferschiefer samples from the barren zone of the Polish Basin do not show these alteration patterns. The observed variations in organic matter composition with burial depth are consistent with changes due to increasing thermal maturation. Maturity assessment is achieved from MPI1 and the methyldibenzothiophene ratio (MDR). From the relationship between the maturity

  9. Trace-element composition and zoning in clinopyroxene- and amphibole-group minerals: Implications for element partitioning and evolution of carbonatites

    NASA Astrophysics Data System (ADS)

    Reguir, Ekaterina P.; Chakhmouradian, Anton R.; Pisiak, Laura; Halden, Norman M.; Yang, Panseok; Xu, Cheng; Kynický, Jindřich; Couëslan, Chris G.

    2012-01-01

    The present work is a first comprehensive study of the trace-element composition and zoning in clinopyroxene- and amphibole-group minerals from carbonatites, incorporating samples from 14 localities worldwide (Afrikanda, Aley, Alnö, Blue River, Eden Lake, Huayangchuan, Murun, Oka, Ozernaya Varaka, Ozernyi, Paint Lake, Pinghe, Prairie Lake, Turiy Mys). The new electron-microprobe data presented here significantly extend the known compositional range of clinopyroxenes and amphiboles from carbonatites. These data confirm that calcic and sodic clinopyroxenes from carbonatites are not separated by a compositional gap, instead forming an arcuate trend from nearly pure diopside through intermediate aegirine-augite compositions confined to a limited range of CaFeSi 2O 6 contents (15-45 mol%) to aegirine with < 25 mol% of CaMgSi 2O 6 and a negligible proportion of CaFeSi 2O 6. A large set of LA-ICPMS data shows that the clinopyroxenes of different composition are characterized by relatively low levels of Cr, Co and Ni (≤ 40 ppm) and manifold variations in the concentration of trivalent lithophile and some incompatible elements (1-150 ppm Sc, 26-6870 ppm V, 5-550 ppm Sr, 90-2360 ppm Zr, and nil to 150 ppm REE), recorded in some cases within a single crystal. The relative contribution of clinopyroxenes to the whole-rock Rb, Nb, Ta, Th and U budget is negligible. The major-element compositional range of amphiboles spans from alkali- and Al-poor members (tremolite) to Na-Al-rich Mg- or, less commonly, Fe-dominant members (magnesiohastingsite, hastingsite and pargasite), to calcic-sodic, sodic and potassic-sodic compositions intermediate between magnesio-ferrikatophorite, richterite, magnesioriebeckite, ferri-nyböite and (potassic-)magnesio-arfvedsonite. In comparison with the clinopyroxenes, the amphiboles contain similar levels of tetravalent high-field-strength elements (Ti, Zr and Hf) and compatible transition elements (Cr, Co and Ni), but are capable of incorporating

  10. Comparative Sulfur Analysis Using Thermal Combustion or Inductively Coupled Plasma Methodology and Mineral Composition of Common Livestock Feedstuffs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the ability of thermal combustion (CNS) and inductively coupled plasma (ICP) to measure the total sulfur (S) content in plant-, animal-, and mineral-based feedstuffs commonly fed to livestock. Analyses of a wide range of feedstuffs by CNS and ICP for total ...

  11. EFFECT OF SOURCE AND RATE OF NITROGEN AND SULFUR FERTILIZER ON YIELD, QUALITY, AND MINERAL COMPOSITION OF STOCKPILED TALL FESCUE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field research was conducted for 2 yr to determine the effect of nitrogen (N) and sulfur (S) source and rate effects on stockpiled tall fescue (Festuca arundinacea Schreb.) forage yield, quality, and mineral content at different harvest dates. High lysine fertilizer (HLF), which contains approximate...

  12. Soil Mineral Composition Matters: Response of Microbial Communities to Phenanthrene and Plant Litter Addition in Long-Term Matured Artificial Soils

    PubMed Central

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  13. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    PubMed

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  14. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    NASA Astrophysics Data System (ADS)

    Li, Ling; Kolle, Stefan; Weaver, James C.; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-02-01

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.

  15. Local geological dust in the area of Rome (Italy): linking mineral composition, size distribution and optical properties to radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Pietrodangelo, Adriana; Salzano, Roberto; Bassani, Cristiana; Pareti, Salvatore; Perrino, Cinzia

    2015-04-01

    Airborne mineral dust plays a key role in the energy balance of the Earth - atmosphere coupled system. The microphysical and optical properties of dust drive the direct radiative effects and are in turn influenced by the dust mineralogical composition. The latter varies largely, depending on the geology of the source region. Knowledge gaps still exist about relationships between the scattering and absorption of solar and terrestrial radiation by mineral dust and its mineralogical, size distribution and particle morphology features; this also affects the reliability of radiative transfer (RT) modelling estimates (Hansell et al., 2011). In this study, these relationships were investigated focusing on the crustal suspended PM10 dust, sourced from outcropping rocks of the local geological domains around Rome (Latium, Italy). The mineral composition variability of the Latium rocks ranges from the silicate-dominated (volcanics domain) to the calcite-dominated (travertine), through lithological materials composed in different proportions by silicates, silica and calcite, mainly (limestone series, siliciclastic series) (Cosentino et al., 2009). This peculiarity of the Latium region was thus exploited to investigate the behavior of the size distribution, optical properties and radiative transfer at BOA (Bottom Of Atmosphere) of the suspended dust PM10 fraction with the variability of mineral composition. Elemental source profiles of the same dust samples were previously determined (Pietrodangelo et al., 2013). A multi-faceted analysis was performed, and outcomes from the following approaches were merged: individual-particle scanning electron microscopy combined with X-ray energy-dispersive microanalysis (SEM XEDS), bulk mineralogical analysis by X-ray diffraction (XRD), size distribution fit of the individual-particle data set and modelling of the dust optical and radiative properties. To this aim, the 6SV atmospheric radiative transfer code (Kotchenova et al., 2008

  16. Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources.

    PubMed

    Rohani-Ghadikolaei, Kiuomars; Abdulalian, Eessa; Ng, Wing-Keong

    2012-12-01

    The proximate, fatty acid and mineral composition were determined for green (Ulva lactuca and Enteromorpha intestinalis), brown (Sargassum ilicifolium and Colpomenia sinuosa) and red (Hypnea valentiae and Gracilaria corticata) seaweeds collected from the Persian Gulf of Iran. Results showed that the seaweeds were high in carbohydrate (31.8-59.1%, dry weight) and ash (12.4-29.9%) but low in lipid content (1.5-3.6%). The protein content of red or green seaweeds was significantly higher (p < 0.05) compared to brown seaweeds. The fatty acid composition of various seaweed lipids varied considerably with 51.9-67.4% of saturates, 22.0-32.9% of monoenes and 9.2-19.1% of polyunsaturated fatty acids (PUFA). E. intestinalis contained the highest total n-3 PUFA content with the lowest n-6/n-3 ratio. Persian Gulf seaweeds contained higher concentrations of all the minerals examined (K, Mg, Fe, Mn, Cu, Zn and Co) compared to terrestrial vegetables. Seaweeds could potentially be used as a food or feed additive in Iran. PMID:24293698

  17. Influences upon the lead isotopic composition of organic and mineral horizons in soil profiles from the National Soil Inventory of Scotland (2007-09).

    PubMed

    Farmer, John G; Graham, Margaret C; Eades, Lorna J; Lilly, Allan; Bacon, Jeffrey R

    2016-02-15

    Some 644 individual soil horizons from 169 sites in Scotland were analyzed for Pb concentration and isotopic composition. There were three scenarios: (i) 36 sites where both top and bottom (i.e. lowest sampled) soil horizons were classified as organic in nature, (ii) 67 with an organic top but mineral bottom soil horizon, and (iii) 66 where both top and bottom soil horizons were mineral. Lead concentrations were greater in the top horizon relative to the bottom horizon in all but a few cases. The top horizon (206)Pb/(207)Pb ratio was lesser (outside analytical error) than the corresponding bottom horizon (206)Pb/(207)Pb ratio at (i) 64%, (ii) 94% and (iii) 73% of sites, and greater at only (i) 8%, (ii) 3% and (iii) 8% of sites. A plot of (208)Pb/(207)Pb vs. (208)Pb/(206)Pb ratios showed that the Pb in organic top (i, ii) and bottom (i) horizons was consistent with atmospherically deposited Pb of anthropogenic origin. The (206)Pb/(207)Pb ratio of the organic top horizon in (ii) was unrelated to the (206)Pb/(207)Pb ratio of the mineral bottom horizon as demonstrated by the geographical variation in the negative shift in the ratio, a result of differences in the mineral horizon values arising from the greater influence of radiogenic Pb in the north. In (iii), the lesser values of the (206)Pb/(207)Pb ratio for the mineral top horizon relative to the mineral bottom horizon were consistent with the presence of anthropogenic Pb, in addition to indigenous Pb, in the former. Mean anthropogenic Pb inventories of 1.5 and 4.5 g m(-2) were obtained for the northern and southern halves of Scotland, respectively, consistent with long-range atmospheric transport of anthropogenic Pb (mean (206)Pb/(207)Pb ratio~1.16). For cultivated agricultural soils (Ap), this corresponded to about half of the total Pb inventory in the top 30 cm of the soil column. PMID:26674702

  18. Dietary supplement ingredient database (DSID): Preliminary USDA studies on the composition of adult multivitamin/mineral supplements☆

    PubMed Central

    Roseland, Janet M.; Holden, Joanne M.; Andrews, Karen W.; Zhao, Cuiwei; Schweitzer, Amy; Harnly, James; Wolf, Wayne R.; Perry, Charles R.; Dwyer, Johanna T.; Picciano, Mary Frances; Betz, Joseph M.; Saldanha, Leila G.; Yetley, Elizabeth A.; Fisher, Kenneth D.; Sharpless, Katherine E.

    2013-01-01

    The Nutrient Data Laboratory of the United States Department of Agriculture (USDA) is collaborating with the Office of Dietary Supplements (ODS), the National Center for Health Statistics (NCHS), and other government agencies to design and populate a dietary supplement ingredient database (DSID). This analytically based, publicly available database will provide reliable estimates of vitamin and mineral content of dietary supplement (DS) products. The DSID will initially be populated with multivitamin/mineral (MVM) products because they are the most commonly consumed supplements. Challenges associated with the analysis of MVMs were identified and investigated. A pilot study addressing the identification of appropriate analytical methods, sample preparation protocols, and experienced laboratories for the analysis of 12 vitamins and 11 minerals in adult MVM supplement products was completed. Preliminary studies support the development of additional analytical studies with results that can be applied to the DSID. Total intakes from foods and supplements are needed to evaluate the associations between dietary components and health. The DSID will provide better estimates of actual nutrient intake from supplements than databases that rely on label values alone. PMID:24307755

  19. Luminescence properties and compositions of contaminating inorganic minerals separated from gamma-irradiated fresh and white ginsengs from different areas

    PubMed Central

    Ahn, Jae-Jun; Akram, Kashif; Jeong, Mi-Seon; Kwak, Ji-Young; Park, Eun-Joo; Kwon, Joong-Ho

    2013-01-01

    Gamma-irradiation (0-7 kGy) of ginseng is permitted in Korea for the purpose of microbial decontamination; with strict labeling, traceability and monitoring requirements. An identification study was conducted to determine the photostimulated-luminescence (PSL) and thermoluminescence (TL) properties of gamma-irradiated fresh and white ginsengs cultivated in different areas. Dosedependent PSL-based screening was possible for white ginseng samples; however, inappropriate results from non-irradiated fresh ginseng samples were obtained, showing intermediate (700 to 5,000) or positive (T2 >5,000, irradiated) PSL counts due to the abundance of minerals on the surfaces of the samples. TL analysis of separated minerals from all non-irradiated samples gave TL glow curves of low intensity with a maximum peak after 300℃. However, well-defined irradiation-specific (high intensity with a maximum peak at about 200℃) glow curves were observed for all the irradiated samples, regardless of their type and origins. TL ratios (first glow curve /second glow curve) were also determined to confirm the irradiated (>0.1) and non-irradiated (<0.1) results. SEM-EDX (scanning electron microscope-energy dispersive X-ray) and XRD (X-ray diffraction) spectroscopic analyses showed that feldspar and quartz minerals were the main source for the typical radiation-specific luminescence properties. PMID:24235863

  20. Effect of temperature on the oxygen isotope composition of carbon dioxide (δ18O) prepared from carbonate minerals by reaction with polyphosphoric acid: An example of the rhombohedral CaCO 3-MgCO 3 group minerals

    NASA Astrophysics Data System (ADS)

    Crowley, Stephen F.

    2010-11-01

    Measurement of the ratio of 18O to 16O in CO 2(δ18O) produced from rhombohedral carbonate minerals in the compositional range CaCO 3-MgCO 3 by reaction with polyphosphoric acid (PPA), at temperatures of between 25 and 110 °C, shows that values of δ18O are linearly correlated ( r o > 0.99) with the reciprocal of absolute reaction temperature (K/ T). This observation is consistent with earlier studies documenting the effect of temperature on the kinetic fractionation of oxygen isotopes between parent carbonate and product CO 2 and H 2O during acid decomposition. However, analysis of the resultant data reveals: (1) a progressive increase in dδ18O/dT-1 with increasing Mg content, and (2) a significant variation in dδ18O/dT-1 between individual samples of carbonate of identical lattice symmetry and similar chemical composition. The overall increase in gradient with increasing Mg content is assumed to reflect cation radius dependent factors that control the bonding environment at the interface between the metal cation exposed at the surface of the reacting carbonate solid and a H 2CO 3 transitional species during disproportionation of H 2CO 3 to CO 2 and H 2O ("cluster model" of Guo et al., 2009). Phase-specific variations in dδ18O/dT-1 might result from differences in lattice structure variables (e.g., degree of lattice distortion, extent of positional disorder, and non-ideal mixing of substituent cations where carbonates depart from end-member compositions). Lattice structure variables may be dependent on geochemical conditions pertaining at the time of carbonate precipitation (e.g., biosynthetic versus inorganic precipitates) and suggests that dδ18O/dT-1 has the potential to vary, within limits, in response to both the chemical composition and structure of each carbonate sample. Because the oxygen isotope composition of carbonate minerals (δ18O) measured on the VPDB scale is defined by the oxygen isotope composition of CO 2 prepared from NBS19 (calcite) by

  1. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  2. Can fatty acid and mineral compositions of sturgeon eggs distinguish between farm-raised versus wild white (Acipenser transmontanus) sturgeon origins in California? Preliminary report.

    PubMed

    DePeters, Edward J; Puschner, Birgit; Taylor, Scott J; Rodzen, Jeff A

    2013-06-10

    The objective was to investigate the potential of using fatty acid and mineral compositions of sturgeon eggs to distinguish their source, either farm-raised or wild fish. Trafficking of illegally obtained wild white sturgeon eggs is a major concern to the California Department of Fish and Game, but there is no forensic method to separate wild and farm-raised white sturgeon eggs. The extension of these findings in future work will be to use the fatty acid and mineral compositions as forensic indicators of caviar produced legally from farm raised sturgeon compared with illegal caviar produced from sturgeon poached from the wild. Samples (10) of sturgeon eggs were collected from a commercial aquaculture facility in the Sacramento Valley. Eggs from wild sturgeon (9) were obtained primarily from confiscations of illegally caught sturgeon by fish and game law enforcement personnel. The total lipid content of sturgeon eggs was analyzed for fatty acid composition. The most notable difference was the higher concentration (P<0.001) of C18:2n6 in farm raised eggs (6.5 mg/100g total lipid) than wild eggs (0.6 mg/100g total lipid) while other differences between fatty acids were smaller. Eicosapentaenoic acid (C20:5n3) was higher (P<0.02) in farm-raised (5.56 mg/100g) than wild (4.49 mg/100g). Docosahexaenoic acid (C22:6n3), C18:1 cis 9&10, and C20:4n6 were not different for origin of the eggs. Concentration of selenium was markedly higher (P<0.001) in eggs from wild sturgeon (10.0 mg/kg dry weight) than farm-raised sturgeon (2.7 mg/kg dry weight). Concentrations of iron, zinc, copper, phosphorus, sulfur, calcium, and potassium did not differ between farm-raised and wild eggs. Arsenic concentration in wild eggs was 3.3mg/kg dry weight whereas arsenic was not detected in the farm-raised eggs. Fatty acid and mineral compositions of eggs differed significantly between farm-raised and wild sturgeon and these should be investigated further as biological markers for forensic

  3. Chemical and sulphur isotope compositions of pyrite in the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, eastern India: Implications for sulphide mineralization

    NASA Astrophysics Data System (ADS)

    Pal, Dipak C.; Sarkar, Surajit; Mishra, Biswajit; Sarangi, A. K.

    2011-06-01

    The Jaduguda U (-Cu-Fe) deposit in the Singhbhum shear zone has been the most productive uranium deposit in India. Pyrite occurs as disseminated grains or in sulphide stringers and veins in the ore zone. Veins, both concordant and discordant to the pervasive foliation, are mineralogically either simple comprising pyrite ± chalcopyrite or complex comprising pyrite + chalcopyrite + pentlandite + millerite. Nickel-sulphide minerals, though fairly common in concordant veins, are very rare in the discordant veins. Pyrite in Ni-sulphide association is commonly replaced by pentlandite at the grain boundary or along micro-cracks. Based on concentrations of Co and Ni, pyrite is classified as: type-A - high Co (up to 30800 ppm), no/low Ni; type-B - moderate Co (up to 16500 ppm) and moderate to high Ni (up to 32700 ppm); type-C - no/low Co and high Ni (up to 43000 ppm); type-D - neither Co nor Ni. Textural and compositional data of pyrites suggest that the hydrothermal fluid responsible for pre-/early-shearing mineralization evolved from Co-rich to Ni-rich and the late-/post-shearing fluid was largely depleted in minor elements. Sulphur isotope compositions of pyrite mostly furnish positive values ranging between -0.33 and 12.06‰. Composite samples of pyrites with only type-A compositions and mixed samples of type-A and type-B are consistently positive. However, pyrite with mixed type-A and type-C and pyrite with type-D compositions have negative values but close to 0‰. By integrating minor element and sulphur isotope compositions of pyrite in conjunction with other published data on the Jaduguda deposit, it is proposed that reduced sulphur for the precipitation of most pyrites (type-A, type-B) was likely derived from isotopically heavy modified seawater. However, some later sulphur might be magmatic in origin remobilized from existing sulphides in the mafic volcanic rocks in the shear zone.

  4. Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals.

    PubMed

    Krakowska, Agata; Reczyński, Witold; Muszyńska, Bożena

    2016-09-01

    Agaricus bisporus species (J.E. Lange) Imbach one of the most popular Basidiomycota species was chosen for the research because of its dietary and medicinal value. The presented herein studies included determination of essential mineral accumulation level in the mycelium of A. bisporus, cultivated on liquid cultures in the medium supplemented with addition of the chosen metals' salts. Quantitative analyses of Zn, Cu, Mg, and Fe in liquid cultures made it possible to determine the relationship between accumulation of the selected mineral in A. bisporus mycelium and the culture conditions. Monitoring of the liquid cultures and determination of the elements' concentrations in mycelium of A. bisporus were performed using the flame technique of AAS method. Concentration of Zn in the mycelium, maintained in the medium with the addition of its salt, was in a very wide range from 95.9 to 4462.0 mg/g DW. In the analyzed A. bisporus mycelium, cultured in the medium enriched with copper salt, this metal concentration changed from 89.79 to 7491.50 mg/g DW; considering Mg in liquid cultured mycelium (medium with Mg addition), its concentration has changed from 0.32 to 10.55 mg/g DW. The medium enriched with iron salts has led to bioaccumulation of Fe in mycelia of A. bisporus. Determined Fe concentration was in the range from 0.62 to 161.28 mg/g DW. The proposed method of liquid A. bisporus culturing on medium enriched with the selected macro- and microelements in proper concentrations ratio have led to obtaining maximal growth of biomass, characterized by high efficiency of the mineral accumulation. As a result, a dietary component of increased nutritive value was obtained. PMID:26857993

  5. Why Mineral Interfaces Matter

    NASA Astrophysics Data System (ADS)

    Putnis, Andrew; Putnis, Christine V.

    2015-04-01

    While it is obvious that reactions between a mineral and an aqueous solution take place at the mineral-fluid interface it is only relatively recently that high spatial resolution studies have demonstrated how the local structure of the mineral surface and the chemical composition of the fluid at the interface control both the short-range and the long-range consequences of mineral-fluid interaction. Long-range consequences of fluid-mineral interaction control element cycles in the earth, the formation of ore-deposits, the chemical composition of the oceans through weathering of rocks and hence climate changes. Although weathering is clearly related to mineral dissolution, to what extent do experimentally measured dissolution rates of minerals help to understand weathering, especially weathering mechanisms? This question is related to the short-range, local reactions that take place when a mineral, that is not stable in the fluid, begins to dissolve. In this case the fluid composition at the interface will become supersaturated with respect to a different phase or phases. This may be a different composition of the same mineral e.g. a Ca-rich feldspar dissolving in a Na-rich solution results in a fluid at the interface which may be supersaturated with respect to an Na-rich feldspar. Alternatively, the interfacial fluid could be supersaturated with respect to a different mineral e.g. an Na-rich zeolite, depending on the temperature. Numerous experiments have shown that the precipitation of a more stable phase at the mineral-fluid interface results in a coupling between the dissolution and the precipitation, and the replacement of one mineral by another. This process separates the short-range mechanisms which depend only on the composition of the interfacial solution, and the long-range consequences that depend on the composition of the residual fluid released from the reacting parent mineral. Typically such residual fluids may carry metal ions tens to hundreds of

  6. Titanium minerals for new materials

    NASA Astrophysics Data System (ADS)

    Kotova, O.; Ozhogina, E.; Ponaryadov, A.; Golubeva, I.

    2016-04-01

    The mineral composition of titanium minerals of modern coastal-marine placer in Stradbroke Island (Australia) and Pizhma paleoplacer in Middle Timan (Russia) has been presented. The physical features of titanium minerals and their modification methods were shown. Photocatalysts on the basis of the Pizhma leucoxene were developed for water purification.

  7. Effects of land use and mineral characteristics on the organic carbon content, and the amount and composition of Na-pyrophosphate soluble organic matter in subsurface soils

    NASA Astrophysics Data System (ADS)

    Ellerbrock, R.; Kaiser, M.; Walter, K.; Sommer, M.

    2010-12-01

    Land use and mineral characteristics affect the balance of organic carbon in surface as well as in subsurface soils and related feedbacks on soil functions like their potential to mitigate the greenhouse effect. Actually, there are less information about the effects of land use as well as soil properties on the amount and composition of organic matter (OM) for subsurface soils as compared to surface soils. Here we aimed to analyze the long-term impact of arable and forest land use and soil mineral characteristics on subsurface soil organic carbon (SOC) contents, as well as on amount and composition of OM sequentially separated by Na-pyrophosphate solution (OM(PY)) from subsurface soil samples. Seven soils different in mineral characteristics were selected within Germany. Soil samples were taken from subsurface horizons of forest and adjacent arable sites continuously used >100 years. The OM(PY) fractions were analysed on their OC content (OCPY) and characterized by FTIR spectroscopy. A distinct influence of the long-term land use on the SOC contents could not be detected because only for four out of seven sites the forest subsurface soils showed larger SOC contents than the adjacent agricultural soils. A generally site independent enhanced OC sequestration in subsurface soils due to differences in land use cannot be expected in the long-term. Multiple regression analyses indicated for the arable subsurface soils significant positive relationships between the SOC contents and combined effects of the i) exchangeable Ca (Caex) and oxalate soluble Fe (Feox), and ii) the Caex and Alox contents. For the arable subsurface soils the increase of OCPY* (OCPY multiplied by the relative C=O content of OM(PY)) by increasing contents of Caex indicated that OM(PY) mainly interacts with Ca2+ cations. For the forest subsurface soils (pH <5), the OCPY contents were found to be related to the contents of Na-pyrophosphate soluble Fe and Al. The long-term arable and forest land use

  8. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    SciTech Connect

    Li, Ling; Kolle, Stefan; Weaver, James C.; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-02-26

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.

  9. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    DOE PAGESBeta

    Li, Ling; Kolle, Stefan; Weaver, James C.; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-02-26

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuummore » of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance.« less

  10. A highly conspicuous mineralized composite photonic architecture in the translucent shell of the blue-rayed limpet

    PubMed Central

    Li, Ling; Kolle, Stefan; Weaver, James C.; Ortiz, Christine; Aizenberg, Joanna; Kolle, Mathias

    2015-01-01

    Many species rely on diverse selections of entirely organic photonic structures for the manipulation of light and the display of striking colours. Here we report the discovery of a mineralized hierarchical photonic architecture embedded within the translucent shell of the blue-rayed limpet Patella pellucida. The bright colour of the limpet’s stripes originates from light interference in a periodically layered zig-zag architecture of crystallographically co-oriented calcite lamellae. Beneath the photonic multilayer, a disordered array of light-absorbing particles provides contrast for the blue colour. This unique mineralized manifestation of a synergy of two distinct optical elements at specific locations within the continuum of the limpet’s translucent protective shell ensures the vivid shine of the blue stripes, which can be perceived under water from a wide range of viewing angles. The stripes’ reflection band coincides with the spectral range of minimal light absorption in sea water, raising intriguing questions regarding their functional significance. PMID:25716102

  11. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity. PMID:23562363

  12. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two independent trials were conducted to evaluate the effect of two different dietary cereal types, corn versus rye, on digesta viscosity, gut integrity, and gut microbiota composition in commercial broiler chickens. In each experiment, day-of-hatch, off-sex broiler chickens were randomly assigned ...

  13. Ectomycorrhizal Influence on Particle Size, Surface Structure, Mineral Crystallinity, Functional Groups, and Elemental Composition of Soil Colloids from Different Soil Origins

    PubMed Central

    Li, Yanhong; Wang, Huimei; Wang, Wenjie; Yang, Lei; Zu, Yuangang

    2013-01-01

    Limited data are available on the ectomycorrhizae-induced changes in surface structure and composition of soil colloids, the most active portion in soil matrix, although such data may benefit the understanding of mycorrhizal-aided soil improvements. By using ectomycorrhizae (Gomphidius viscidus) and soil colloids from dark brown forest soil (a good loam) and saline-alkali soil (heavily degraded soil), we tried to approach the changes here. For the good loam either from the surface or deep soils, the fungus treatment induced physical absorption of covering materials on colloid surface with nonsignificant increases in soil particle size (P > 0.05). These increased the amount of variable functional groups (O–H stretching and bending, C–H stretching, C=O stretching, etc.) by 3–26% and the crystallinity of variable soil minerals (kaolinite, hydromica, and quartz) by 40–300%. However, the fungus treatment of saline-alkali soil obviously differed from the dark brown forest soil. There were 12–35% decreases in most functional groups, 15–55% decreases in crystallinity of most soil minerals but general increases in their grain size, and significant increases in soil particle size (P < 0.05). These different responses sharply decreased element ratios (C : O, C : N, and C : Si) in soil colloids from saline-alkali soil, moving them close to those of the good loam of dark brown forest soil. PMID:23766704

  14. Variations in the chemical composition of lamprophyllite-group minerals and the crystal structure of fluorine-rich barytolamprophyllite from new peralkaline dyke

    NASA Astrophysics Data System (ADS)

    Akimenko, M. I.; Aksenov, S. M.; Sorokhtina, N. V.; Kogarko, L. N.; Kononkova, N. N.; Rastsvetaeva, R. K.; Rozenberg, K. A.

    2015-11-01

    The variations in the chemical composition of lamprophyllite-group minerals from a peralkaline dyke of the Mokhnatye Roga area (Kandalaksha region, Kola Peninsula), which are crystallized during the entire period of dyke formation and form several generations, have been investigated. The early generations differ in a steadily high fluorine content, while the later ones exhibit reduced amount of fluorine, impurity elements, and sodium, with a simultaneous increase in the potassium content. The crystal structure of fluorine- rich barytolamprophyllite (potentially a new representative of the lamprophyllite group, differing by the predominance of fluorine in the anion X site) has been analyzed by single crystal X-ray diffraction. This mineral is found to have a monoclinic unit cell with the following parameters: a = 19.5219(8) Å, b = 7.0915(2) Å, c = 5.3925(2) Å, β = 96.628(3)°, and sp. gr. C2/ m. The structure is refined to R = 5.73% in the anisotropic approximation of the atomic displacement parameters using 3668 I > 2σ( I). The idealized formula ( Z = 2) is (Ba,Sr)2[Na(Na,Fe)2(Ti,Mg)F2][Ti2(Si2O7)2O2].

  15. Composition and source of salinity of ore-bearing fluids in Cu-Au systems of the Carajás Mineral Province, Brazil

    USGS Publications Warehouse

    Xavier, Roberto; Rusk, Brian; Emsbo, Poul; Monteiro, Lena

    2009-01-01

    The composition and Cl/Br – NaCl ratios of highly saline aqueous inclusions from large tonnage (> 100 t) IOCG deposits (Sossego, Alvo 118, and Igarapé Bahia) and a Paleoproterozoic intrusion-related Cu-Au-(Mo-W-Bi-Sn) deposit (Breves; < 50 Mt)) in the Carajás Mineral Province have been analysed by LA-ICP-MS and ion chromatography. In both Cu-Au systems, brine inclusions are Ca-dominated (5 to 10 times more than in porphyry Cu-Au fluids), and contain percent level concentrations of Na and K. IOCG inclusion fluids, however, contain higher Sr, Ba, Pb, and Zn concentrations, but significantly less Bi, than the intrusion-related Breves inclusion fluids. Cu is consistently below detection limits in brine inclusions from the IOCG and intrusion-related systems and Fe was not detected in the latter. Cl/Br and Na/Cl ratios of the IOCG inclusion fluids range from entirely evaporative brines (bittern fluids; e.g. Igarapé Bahia and Alvo 118) to values that indicate mixing with magma-derived brines. Cl/Br and Na/Cl ratios of the Breves inclusion fluids strongly suggest the involvement of magmatic brines, but that possibly also incorporated bittern fluids. Collectively, these data demonstrate that residual evaporative and magmatic brines were important components of the fluid regime involved in the formation of Cu-Au systems in the Carajás Mineral Province.

  16. Automatic location of disruption times in JET.

    PubMed

    Moreno, R; Vega, J; Murari, A

    2014-11-01

    The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors). PMID:25430239

  17. Hydrothermal and Diagenetic Mineralization on Mars

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Quinn, D. P.

    2015-12-01

    Predicted by geophysical modeling, the mineraolgic record of early Mars groundwater has only recently been discovered. First, rover exploration in sedimentary basins reveals diagenesis. At Meridiani, sandstone porosity is occluded by precipitation of secondary sulfates, hematite, and silica. Multiple alteration episodes are indicated by crystal vugs, disruption of preexisting textures by hematite concretions, and grain coatings (e.g. McLennan et al., 2005). At Gale crater, raised ridges in mudstones, interpreted to be early diagenetic features, are crossed by later-emplaced hydrated calcium sulfate veins (e.g. Grotzinger et al., 2014). Waters in Gale were likely circumneutral while jarosite mineralogy at Meridiani implies acidic waters. Second, systems of raised ridges at 100-m scale are observed from orbit in multiple Martian sedimentary rock units. An outstanding example is sulfate-bearing sediments exhumed at the northern margin of the Syrtis Major lavas (e.g. Quinn & Ehlmann, 2015). Polygonal and with no clearly preferred orientation, the ridges rise 5-30 m above the surrounding terrain. Parallel light-toned grooves with dark interiors (indicative of isopachous fills) and jarosite in ridge mineralogy point to mineralization by acidic waters. Third, some mineral assemblages observed from orbit represent the products of subsurface aqueous alteration at elevated temperatures (Ehlmann et al., 2011). These are globally distributed, exposed in scarps and by impact cratering. Mineral assemblages variously include (a) serpentine and carbonate; (b) prehnite and chlorite, and (c) zeolites. Collectively, these datasets indicate that groundwaters were spatially widespread on ancient Mars, contributing to the sustenance of lakes and to the alteration of bedrock to >1 km depths. While the Martian surface may have always been relatively inhospitable, a warmer, wetter subsurface provided a long-term potentially habitable environment. Key outstanding questions remaining include

  18. Influence of sediment permeability and mineral composition on organic matter degradation in three sediments from the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Rasheed, Mohammed; Badran, Mohammad I.; Huettel, Markus

    2003-05-01

    In order to investigate the influence of sediment physical and chemical characteristics on the degradation of deposited organic matter, decomposition in three sediments from the Gulf of Aqaba (Red Sea) that differ in permeability and mineral composition were compared. Freeze-dried Spirulina was added to coarse carbonate and silicate sands from a shallow nearshore region and silt-clay sediment from the deeper center region of the Gulf incubated in laboratory chambers. The stirring in the chambers caused higher solute exchange in the coarse permeable sands relative to the fine less permeable silt due to the generation of advective fluid exchange between the sediment and overlying water. This enhanced exchange increased the decomposition rates of organic matter in the incubated sands. The decomposition rates of total organic carbon in the permeable carbonate (3.0 mg C m -2 d -1) and silicate sands (2.0 mg C m -2 d -1) exceeded that in the fine-grained sediment (1.4 mg C m -2 d -1). Oxygen consumption in the coarse sands was 3-fold higher than in the silt-clay sediment, with highest rates in the carbonate sand. In carbonate and silicate sands of the same grain size, the carbonate sediment was more permeable than the silicate, resulting in 1.4-fold higher fluid exchange rates and 1.4-fold larger sedimentary organic matter mineralization rates. An in situ experiment comparing trapping efficiencies in carbonate and silicate sands showed that the higher fluid exchange rate in the carbonate sand results in larger filtration rates and a faster accumulation of particulate organic matter from the boundary layer. These experiments demonstrate that with respect to sedimentary mineralization rates, higher transport rates in permeable coarse sediments can outweigh the effect of a higher specific surface area in fine-grained silt sediments. In permeable sands, however, the higher specific surface area and fluid exchange in biogenic carbonate sands result in higher mineralization

  19. Applications of the direct photon absorption technique for measuring bone mineral content in vivo. Determination of body composition in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.

    1972-01-01

    The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.

  20. Evaluation of Antioxidant Compounds, Antioxidant Activities, and Mineral Composition of 13 Collected Purslane (Portulaca oleracea L.) Accessions

    PubMed Central

    Juraimi, Abdul Shukor; Rafii, M. Y.; Abdul Hamid, Azizah; Hasan, M. M.; Mohd Zainudin, Mohd Asraf; Uddin, Md. Kamal

    2014-01-01

    The methanolic extracts of 13 accessions of purslane were analyzed for their total phenol content (TPC), total flavonoid contents (TFC), and total carotenoid contents (TCC) and antioxidant activity of extracts was screened using FRAP assay and DPPH radical scavenging methods. The TPC, TFC, and TCC ranged from 0.96 ± 0.04 to 9.12 ± 0.29 mg GAE/g DW, 0.13 ± 0.04 to 1.44 ± 0.08 mg RE/g DW, and 0.52 ± 0.06 to 5.64 ± 0.09 mg (β-carotene equivalent) BCE/g DW, respectively. The DPPH scavenging (IC50) activity varied between 2.52 ± 0.03 mg/mL and 3.29 ± 0.01 mg/mL and FRAP ranged from 7.39 ± 0.08 to 104.2 ± 6.34 μmol TE/g DW. Among all the measured micro- and macrominerals K content was the highest followed by N, Na, Ca, Mg, P, Fe, Zn, and Mn. The overall findings proved that ornamental purslane was richer in antioxidant properties, whereas common purslane possesses more mineral contents than ornamental ones. PMID:24579078

  1. Effect of humic acid on pyrene removal from water by polycation-clay mineral composites and activated carbon.

    PubMed

    Radian, Adi; Mishael, Yael

    2012-06-01

    Pyrene removal by polycation-montmorillonite (MMT) composites and granulated activated carbon (GAC) in the presence of humic acid (HA) was examined. Pyrene, HA, and sorbent interactions were characterized by FTIR, fluorescence and zeta measurements, adsorption, and column filtration experiments. Pyrene binding coefficients to the macromolecules were in the order of PVPcoS (poly-4-vinylpiridine-co-styrene) > HA > PDADMAC (poly diallyl-dimethyl-ammonium-chloride), correlating to pyrene-macromolecules compatibility. Electrostatic interactions explained the high adsorption of HA to both composites (∼100%), whereas HA adsorption by GAC was low. Pyrene removal by the composites, unlike GAC, was enhanced in the presence of HA; removal by PDADMAC-MMT increased from ∼50 (k(d) = 2.2 × 10(3) kg/L) to ∼70% (k(d) = 2.4 × 10(3) kg/L) in the presence of HA. This improvement was attributed to the adsorption of pyrene-HA complexes. PVPcoS-MMT was most efficient in removing pyrene (k(d) = 1.1 × 10(4) kg/L, >95% removal) which was explained in terms of specific π donor-π acceptor interactions. Pyrene uptake by column filters of GAC reached ∼50% and decreased to ∼30% in the presence of HA. Pyrene removal by the PVPcoS-MMT filter was significantly higher (100-85% removal), exhibiting only a small decrease in the presence of HA. The utilization of HA as an enhancing agent in pollutant removal is novel and of major importance in water treatment. PMID:22545663

  2. Mineral chemistry of a zircon-bearing, composite, veined and metasomatised upper-mantle peridotite xenolith from kimberlite

    NASA Astrophysics Data System (ADS)

    Dawson, J. B.; Hill, P. G.; Kinny, P. D.

    2001-02-01

    Zircon-bearing veins in a harzburgite xenolith from kimberlite have imposed Ca-metasomatism on the harzburgite wall rock, in addition to adding K, Fe, Ti and OH. The zircon, previously dated to have an age similar to that of the xenolith-hosting kimberlite, shows higher Y, Nb, Ba, REE, Th and U contents than other mantle-derived zircons. Peripheral alteration of the zircon to baddeleyite and zirconolite, and alteration of vein ilmenite to perovskite suggest reaction with an evolving carbonatitic kimberlite melt. The high Cr2O3 content (0.77 wt%) of the zirconolite extends the compositional range of terrestrial zirconolite.

  3. The Mechanism of Membrane Disruption by Cytotoxic Amyloid Oligomers Formed by Prion Protein(106–126) Is Dependent on Bilayer Composition*

    PubMed Central

    Walsh, Patrick; Vanderlee, Gillian; Yau, Jason; Campeau, Jody; Sim, Valerie L.; Yip, Christopher M.; Sharpe, Simon

    2014-01-01

    The formation of fibrillar aggregates has long been associated with neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although fibrils are still considered important to the pathology of these disorders, it is now widely understood that smaller amyloid oligomers are the toxic entities along the misfolding pathway. One characteristic shared by the majority of amyloid oligomers is the ability to disrupt membranes, a commonality proposed to be responsible for their toxicity, although the mechanisms linking this to cell death are poorly understood. Here, we describe the physical basis for the cytotoxicity of oligomers formed by the prion protein (PrP)-derived amyloid peptide PrP(106–126). We show that oligomers of this peptide kill several mammalian cells lines, as well as mouse cerebellar organotypic cultures, and we also show that they exhibit antimicrobial activity. Physical perturbation of model membranes mimicking bacterial or mammalian cells was investigated using atomic force microscopy, polarized total internal reflection fluorescence microscopy, and NMR spectroscopy. Disruption of anionic membranes proceeds through a carpet or detergent model as proposed for other antimicrobial peptides. By contrast, when added to zwitterionic membranes containing cholesterol-rich ordered domains, PrP(106–126) oligomers induce a loss of domain separation and decreased membrane disorder. Loss of raft-like domains may lead to activation of apoptotic pathways, resulting in cell death. This work sheds new light on the physical mechanisms of amyloid cytotoxicity and is the first to clearly show membrane type-specific modes of action for a cytotoxic peptide. PMID:24554723

  4. Enhanced in Vitro Mineralization and in Vivo Osteogenesis of Composite Scaffolds through Controlled Surface Grafting of L-Lactic Acid Oligomer on Nanohydroxyapatite.

    PubMed

    Wang, Zongliang; Xu, Yang; Wang, Yu; Ito, Yoshihiro; Zhang, Peibiao; Chen, Xuesi

    2016-03-14

    Nanocomposite of hydroxyapatite (HA) surface grafted with L-lactic acid oligomer (LAc oligomer) (op-HA) showed improved interface compatibility, mechanical property, and biocompatibility in our previous study. In this paper, composite scaffolds of op-HA with controlled grafting different amounts of LAc oligomer (1.1, 5.2, and 9.1 wt %) were fabricated and implanted to repair rabbit radius defects. The dispersion of op-HA nanoparticles was more uniform than n-HA in chloroform and nanocomposites scaffold. Calcium and phosphorus exposure, in vitro biomineralization ability, and cell proliferation were much higher in the op-HA1.1 wt %/PLGA scaffolds than the other groups. The osteodifferentiation and bone fusion in animal tests were significantly enhanced for op-HA5.2 wt %/PLGA scaffolds. The results indicated that the grafted LAc oligomer of 5.2 or 9.1 wt %, which formed a barrier layer on the HA surface, prevented the exposure of nucleation sites. The shielded nucleation sites of op-HA particles (5.2 wt %) might be easily exposed as the grafted LAc oligomer was decomposed easily by enzyme systems in vivo. Findings from this study have revealed that grafting 1.1 wt % amount of LAc oligomer on hydroxyapatite could improve in vitro mineralization, and 5.2 wt % could promote in vivo osteogenesis capacity of composite scaffolds. PMID:26821731

  5. Mineral Composition and Abundance of the Rocks and Soils at Gusev and Meridiani from the Mars Exploration Rover Mini-TES Instruments

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Wyatt, M. B.; Glotch, T. D.; Rogers, A. D.; Anwar, S.; Arvidson, R. E.; Bandfield, J. L.; Blaney, D. L.; Budney, C.; Calvin, W. M.

    2005-01-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) has provided remote measurements of mineralogy, thermophysical properties, and atmospheric temperature profile and composition of the outcrops, rocks, spherules, and soils surrounding the Spirit and Opportunity Rovers. The mineralogy of volcanic rocks provides insights into the composition of the source regions and the nature of martian igneous processes. Carbonates, sulfates, evaporites, and oxides provide information on the role of water in the surface evolution. Oxides, such as crystalline hematite, provide insight into aqueous weathering processes, as would the occurrence of clay minerals and other weathering products. Diurnal temperature measurements can be used to determine particle size and search for the effects of sub-surface layering, which in turn provide clues to the origin of surficial materials through rock disintegration, aeolian transport, atmospheric fallout, or induration. In addition to studying the surface properties, Mini-TES spectra have also been used to determine the temperature profile in the lower boundary layer, providing evidence for convective activity, and have determined the seasonal trends in atmospheric temperature and dust and cloud opacity.

  6. Preservative management of traumatized maxillary central incisor using fiber reinforced composite and mineral trioxide aggregate: Report of a case

    PubMed Central

    Surapaneni, Sai Kalyan; Chandki, Rita

    2015-01-01

    The myriads of technological advancements in dentistry in last two decades have led to a dramatic shift from conventional invasive procedures to more conservative biomimetic therapies. In this series, management of traumatic dental injuries has taken a big leap in that now it is possible to conserve many of these teeth which were otherwise doomed to extraction. Depending on the extent of injury, esthetic and functional requirements, traumatic dental injuries can be managed by a variety of clinical procedures including composite resin restorations, reattachment of fractured fragment, endodontic therapy with or without post and core or lastly extraction. Reattaching natural tooth structure offers an advantage over the others in that it is instant, provides superior esthetics, preserves the natural tooth structure and is best accepted by the patient. This paper describes the comprehensive management of traumatized maxillary central incisor involving pulp exposure while maintaining pulp vitality and natural appearance of a tooth. PMID:26604608

  7. Effect of Smear Layer on the Push-Out Bond Strength of Two Different Compositions of White Mineral Trioxide Aggregate

    PubMed Central

    Lotfi, Mehrdad; Rahimi, Saeed; Ghasemi, Negin; Vosoughhosseini, Sepideh; Bahari, Mahmood; Saghiri, Mohammad Ali; Shahidi, Atabak

    2013-01-01

    Introduction The aim of this in vitro study was to evaluate the effect of smear layer on the push-out bond strength of white mineral trioxide aggregate (WMTA) with and without disodium hydrogen phosphate (Na2HPO4). Materials and Methods Dentin discs with standard cavities were obtained from extracted human single-rooted teeth and divided to 4 groups (n=15) according to the irrigation regimen and the canal filling material. In groups 1 and 3, canals were irrigated with normal saline; in groups 2 and 4, irrigation method included sodium hypochlorite (NaOCl) and then ethylenediaminetetra-acetic acid (EDTA). The canals were filled with WMTA in first and second groups and with WMTA+Na2HPO4; in groups 3 and 4. The samples were wrapped in wet gauze and incubated in 37°C for 3 days. The push-out bond strength was then measured by means of the Universal Testing Machine and the failure modes were examined under stereomicroscope at 40× magnification. Tow-way ANOVA was used to evaluate the effect of material type and smear layer removal. Post hoc Tukey test was used for the two-by-two comparison of the groups. Results The greatest and lowest mean±standard deviation for push-out bond strength were observed in groups 4 (4.54±1.14 MPa) and 1 (1.44±0.96 MPa), respectively. The effect of removing the smear layer on the push-out bond strength of WMTA+Na2HPO4 was significant (P=0.01), but not for WMTA (P=0.52). Interestingly, there was significant difference between groups 1, 3 and 2, 4 (P<0.05). The failure mode for all experimental groups was of mixed type. Conclusion Under circumstances of this in vitro study, removal of smear layer increases push-out bond strength when Na2HPO4 is added to WMTA. PMID:24171021

  8. Mineral Chart

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Mineral Chart KidsHealth > For Teens > Mineral Chart Print A A A Text Size en ... sources of calcium. You'll also find this mineral in broccoli and dark green, leafy vegetables. Soy ...

  9. Chemical composition, nutritionally valuable minerals and functional properties of benniseed (Sesamum radiatum), pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours.

    PubMed

    Oshodi, A A; Ogungbenle, H N; Oladimeji, M O

    1999-09-01

    The chemical composition, nutritionally valuable minerals and functional properties of benniseed (Sesamum radiatum), pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) were studied. The results showed that the samples contained crude protein in the range of 11.4 to 22.5% with benniseed having the highest value of 2.5%, and pearl millet with the lowest value 11.4%. Ether extracts fall within the range of 6.3-44.3%. The moisture contents ranged from 5.2 to 11.2% while the ash contents were found to be in the range of 1.2 to 4.1% and the crude fibre ranged between 3.1 and 9.6%. The flours were relatively higher in maltose and D-ribose which were found to be in the range of 1.28-5.08 mg sugar in 5 ml sample. They also have low contents of glucose and fructose which ranged between 0.70 and 1.46 mg sugar in 5 ml sample. The predominant mineral was potassium which varied between 5150 and 7140 mg per kg sample while the samples were significantly low in manganese and copper. The protein solubility of the flours were found to have minimum solubility at pH 5 for benniseed, about pH 6 for pearl millet and quinoa. The seed flours also have good gelation property, water absorption capacity, emulsion capacity and stability. The oil absorption capacity and foaming capacity were low but the foams were relatively stable. PMID:10719563

  10. Chemical composition, plant secondary metabolites, and minerals of green and black teas and the effect of different tea-to-water ratios during their extraction on the composition of their spent leaves as potential additives for ruminants.

    PubMed

    Ramdani, Diky; Chaudhry, Abdul Shakoor; Seal, Chris J

    2013-05-22

    This study characterized the chemical composition of green and black teas as well as their spent tea leaves (STL) following boiling in water with different tea-to-water ratios. The green and black tea leaves had statistically similar (g/kg dry matter (DM), unless stated otherwise) DM (937 vs 942 g/kg sample), crude protein (240 vs 242), and ash (61.8 vs 61.4), but green tea had significantly higher (g/kg DM) total phenols (231 vs 151), total tannins (204 vs 133), condensed tannins (176 vs 101), and total saponins (276 vs 86.1) and lower neutral detergent fiber (254 vs 323) and acid detergent fiber (211 vs 309) than the black tea leaves. There was no significant difference between the green and black tea leaves for most mineral components except Mn, which was significantly higher in green tea leaves, and Na and Cu, which were significantly higher in black tea leaves. A higher tea-to-water ratio during extraction significantly reduced the loss of soluble compounds into water and hence yielded more nutrient-rich STL. On the basis of these analyses it appears that the green and black tea leaves alongside their STL have the potential for use as sources of protein, fiber, secondary metabolites, and minerals in ruminant diets. The presence of high levels of plant secondary metabolites in either tea leaves or their STL suggests that they may have potential for use as natural additives in ruminant diets. PMID:23621359

  11. Mineral Composition and Abundance of the Rocks and Soils at Gusev and Meridiani from the Mars Exploration Rover Mini-TES Instruments: Implications for Aqueous Processes

    NASA Astrophysics Data System (ADS)

    Christensen, P.

    2004-12-01

    The Mini-TES instruments on Spirit and Opportunity have studied the mineral composition and abundance of the outcrops, rocks, spherules, and soils at Gusev Crater and the Meridiani Plains. At Gusev undisturbed soil spectra closely match MGS TES bright-region dust spectra, with features interpreted to be due to minor carbonates and bound water. Dark-toned soils observed on rover-disturbed surfaces are likely derived from rocks and has a derived mineralogy, with uncertainties of 5-10 percent, of 45 percent pyroxene (20 percent Ca-rich pyroxene, 25 percent pigeonite), 40 percent sodic/intermediate plagioclase, and 15 percent olivine (Fo45 ±~10). Rocks have complex spectra that are influenced by coatings and atmospheric downwelling radiance, as these high-thermal-inertia rocks are typically colder during the day than the atmosphere. Their Mini-TES spectra are consistent with olivine-rich basalts with varying degrees of dust and other coatings. Aeolian drift material has a unique spectral character with higher oxide abundances than disturbed soil. One (or possibly two) spectrally distinct coatings are observed on rocks, a possible indicator of the interaction of water, rock, and airfall dust. At Meridiani, the Mini-TES has identified coarse crystalline hematite and olivine basalt sands as predicted from orbital TES spectroscopy. Light-toned outcrops of aqueous origin exposed in crater walls are composed of 20 to 40 percent Mg and Ca sulfates, a high-silica component that is modeled as glass/feldspar/sheet silicates (~20-30 percent), and hematite. The Fe sulfate jarosite is not reliably identified in Mini-TES spectra. The mm-sized spherules appear from analysis of Mini-TES spectra to be dominated by hematite, with no other components detected. Basaltic materials have more plagioclase than pyroxene, contain olivine, and are similar in inferred mineral composition to basalt mapped by TES from orbit. Bounce Rock is dominated by clinopyroxene and is closer in inferred

  12. Effect of breed, intake, and carcass composition on the status of several macro and trace minerals of adult beef cattle.

    PubMed

    Littledike, E T; Wittum, T E; Jenkins, T G

    1995-07-01

    The objective was to determine the association between breed, intake, and carcass composition and the status of liver Cu, Zn, and Fe, and serum Cu, Zn, Ca, and Mg of 118 mature cows representing nine breeds of cattle. Breeds used were Angus, Braunvieh, Charolais, Gelbvieh, Hereford, Limousin, Red Poll, Pinzgauer, and Simmental. The cows were fed one of four levels of DMI: 58, 76, 93, and 111 g of DMI.wt-75.d-1. A ground alfalfa, corn, and corn silage diet was fed for up to 5 yr. There was no relationship between liver and serum concentrations of Cu, a negative correlation (P < .05) existed between liver and serum concentrations of Zn and a positive correlation (P < .01) existed between liver concentrations of Cu and Zn. Concentrations of serum Ca were positively correlated (Cu and Zn, P < .01; Mg, P < .05) with serum concentrations of Cu, Zn, and Mg, but negatively correlated (P < .01) with liver Fe. Liver Cu was higher (P < .05) for the Limousin breed than all others, except Angus. Liver Zn concentrations were higher (P < .05) for Limousin than for Pinzgauer, but no other breed differences were observed. Liver Cu concentration was not affected by daily intake, but liver Zn concentration increased (P < .05) with increased daily intake. Liver Fe concentration decreased (P < .01) in a curvilinear manner with increased daily intake. No breed differences in serum concentrations of Cu or Zn were observed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7592099

  13. New Petrology, Mineral Chemistry and Stable MG Isotope Compositions of an Allende CAI: EK-459-7-2

    NASA Technical Reports Server (NTRS)

    Jeffcoat, C. R.; Kerekgyarto, A. G.; Lapen, T. J.; Righter, M.; Simon, J. I.; Ross, D. K.

    2016-01-01

    Calcium-aluminum-rich inclusions (CAIs) are the key to understanding physical and chemical conditions in the nascent solar nebula. These inclusions have the oldest radiometric ages of solar system materials and are composed of phases that are predicted to condense early from a gas of solar composition. Thus, their chemistry and textures record conditions and processes in the earliest stages of development of the solar nebula. Type B inclusions are typically larger and more coarse grained than other types with substantial evidence that many of them were at least partially molten. Type B inclusions are further subdivided into Type B1 (possess thick melilite mantle) and Type B2 (lack melilite mantle). Despite being extensively studied, the origin of the melilite mantles of Type B1 inclusions remains uncertain. We present petrologic and chemical data for a Type B inclusion, EK-459-7-2, that bears features found in both Type B1 and B2 inclusions and likely represents an intermediate between the two types. Detailed studies of more of these intermediate objects may help to constrain models for Type B1 rim formation.

  14. Constraints on Mineral-Phase Abundances and Compositions in the Low-Albedo Northern Plains of Mars using MGS-TES, OMEGA, and Laboratory Spectral Data.

    NASA Astrophysics Data System (ADS)

    Wyatt, M. B.; Mustard, J. F.

    2006-12-01

    The abundances and compositions of mineral-phases in the low-albedo northern plains of Mars have been a focus of considerable study and debate in recent years. Large expanses of Acidalia Planitia surface materials are characterized by the MGS-TES Surface Type 2 (ST2) spectral endmember [1]. The ST2 spectrum is distinguished by a rounded, slightly V-shaped 800 to 1200 wavenumber region of absorption and uniform absorption at low wavenumbers. The same areas are also characterized by an OMEGA spectral signature that is relatively featureless, but with a strong blue slope (decreasing reflectance as a function of wavelength) from 0.9 to 2.6 microns [2]. A central question with both observations is whether they represent the spectral signature of a high-silica primary volcanic lithology (andesite) or the effects of chemical alteration on basaltic surface materials. Ambiguity in classifying the ST2 lithology arises because a spectral component of this unit (20-30 vol %) can be interpreted as volcanic siliceous glass [1, 3] (an abundant phase in andesite) or a combination of secondary phases found in altered basalt (amorphous silica-rich coatings, palagonite, smectite, and zeolite) [4-8]. Similarly, the OMEGA spectrum lacks evidence of distinct mafic mineral bands (found in andesite) as well as molecular vibration absorptions due to H2O and/or OH-, which might indicate the presence of well- crystalline alteration products and phyllosilicates [2]. Constraining these compositions is significant for understanding the petrogenesis of the Martian crust and its subsequent alteration. Identification of widespread andesite may imply an early episode of plate tectonics on Mars while altered basalt would indicate extensive surface-volatile interactions. The objective of this study is to combine TES and OMEGA observations of the low-albedo northern plains for comparison to laboratory thermal infrared and visible/near-infrared measurements of primary volcanic lithologies (basalt to

  15. The Multicomponent Anthropometric Model for Assessing Body Composition in a Male Pediatric Population: A Simultaneous Prediction of Fat Mass, Bone Mineral Content, and Lean Soft Tissue

    PubMed Central

    Machado, Dalmo; Oikawa, Sérgio; Barbanti, Valdir

    2013-01-01

    The aim of this study was to propose and cross-validate an anthropometric model for the simultaneous estimation of fat mass (FM), bone mineral content (BMC), and lean soft tissue (LST) using DXA as the reference method. A total of 408 boys (8–18 years) were included in this sample. Whole-body FM, BMC, and LST were measured by DXA and considered as dependent variables. Independent variables included thirty-two anthropometrics measurements and maturity offset determined by the Mirwald equation. From a multivariate regression model (Ymn = x(r + 1)(r + 1)nβm + εnm), a matrix analysis was performed resulting in a multicomponent anthropometric model. The cross-validation was executed through the sum of squares of residuals (PRESS) method. Five anthropometric variables predicted simultaneously FM, BMC, and LST. Cross-validation parameters indicated that the new model is accurate with high RPRESS2 values ranging from 0.94 to 0.98 and standard error of estimate ranging from 0.01 to 0.09. The newly proposed model represents an alternative to accurately assess the body composition in male pediatric ages. PMID:23555052

  16. The evolution of the Waiotapu geothermal system, New Zealand, based on the chemical and isotopic composition of its fluids, minerals and rocks

    NASA Astrophysics Data System (ADS)

    Hedenquist, Jeffrey W.; Browne, Patrick R. L.

    1989-09-01

    The Waiotapu geothermal system is hosted by silicic rocks of the Taupo Volcanic Zone, New Zealand. Exploration drilling in the late 1950s down to 1100 m provided physical information on the system. Measured temperatures show a boiling profile to 295 °C, with shallow inversions, particularly in the north. Total discharge fluid samples were collected; the geothermometry and measured temperatures show that fluids derive mainly from a shallow (~400 m deep) reservoir at about 225°C. Petrologic study of drillcore samples recovered from seven wells reveals an alteration assemblage of quartz and albite + adularia, with a variable distribution of chlorite, pyrite, calcite, zeolites, epidote, pyrrhotite, sphene, leucoxene, apatite and minor base metal sulfides; white mica is a late overprint, particularly well developed at shallow depths. Surficial alteration of kaolin, cristobalite, alunite and smectite clays reflect alteration by acid sulfate, steam-heated waters. The activities of components in minerals (determined from microprobe analyses and composition-activity relations) and fluids (speciated to reservoir conditions) indicate equilibrium now exists between the fluids and white mica; the Na/K ratio of the fluid is being controlled by dissolution of albite and adularia, while its H 2/H 2S ratio is buffered by pyrite replacing pyrrhotite. The fluids are now slightly undersaturated with respect to calcite. The present deep fluids boil adiabatically from at least 300°C to 230°C; at depths of ≤500 m, this ascending chloride fluid is variably diluted by a steam-heated water (of zero chloride) that lies over, and occurs on the margin of, the system like a discontinuous umbrella; the steam-heated water is relatively CO 2-rich (≤0.1 m). The cooling at shallow levels by this mixing has shifted the alteration from albite-adularia stability to white mica stability; this shift is enhanced by the CO 2-rich nature of the diluent. Dilution of ascending chloride fluids by

  17. Tracing chlorine sources of thermal and mineral springs along and across the Cascade Range using halogen concentrations and chlorine isotope compositions

    NASA Astrophysics Data System (ADS)

    Cullen, Jeffrey T.; Barnes, Jaime D.; Hurwitz, Shaul; Leeman, William P.

    2015-09-01

    In order to provide constraints on the sources of chlorine in spring waters associated with arc volcanism, the major/minor element concentrations and stable isotope compositions of chlorine, oxygen, and hydrogen were measured in 28 thermal and mineral springs along the Cascade Range in northwestern USA. Chloride concentrations in the springs range from 64 to 19,000 mg/L and δ37Cl values range from + 0.2 ‰ to + 1.9 ‰ (average = + 1.0 ± 0.4 ‰), with no systematic variation along or across the arc, nor correlations with their presumed underlying basement lithologies. Additionally, nine geochemically well-characterized lavas from across the Mt. St. Helens/Mt. Adams region of the Cascade Range (Leeman et al., 2004, 2005) were analyzed for their halogen concentrations and Cl isotope compositions. In the arc lavas, Cl and Br concentrations from the volcanic front are higher than in lavas from the forearc and backarc. F and I concentrations progressively decrease from forearc to backarc, similar to the trend documented for B in most arcs. δ37Cl values of the lavas range from -0.1 to + 0.8 ‰ (average = + 0.4 ± 0.3 ‰). Our results suggest that the predominantly positive δ37Cl values observed in the springs are consistent with water interaction with underlying 37Cl-enriched basalt and/or altered oceanic crust, thereby making thermal spring waters a reasonable proxy for the Cl isotope compositions of associated volcanic rocks in the Cascades. However, waters with δ37Cl values > + 1.0 ‰ also suggest additional contributions of chlorine degassed from cooling magmas due to subsurface vapor-liquid HCl fractionation in which Cl is lost to the aqueous fluid phase and 37Cl is concentrated in the ascending magmatic HCl vapor. Future work is necessary to better constrain Cl isotope behavior during volcanic degassing and fluid-rock interaction in order to improve volatile flux estimates through subduction zones.

  18. Industrial Minerals.

    ERIC Educational Resources Information Center

    Brady, Lawrence L.

    1983-01-01

    Discusses trends in and factors related to the production of industrial minerals during 1982, indicating that, as 1981 marked a downturn in production of industrial minerals, 1982 continued the trend with temporary and permanent cutbacks in mine and plant production. Includes highlights of several conferences/conference papers in this field.…

  19. Assessment of grain-scale homogeneity and equilibration of carbon and oxygen isotope compositions of minerals in carbonate-bearing metamorphic rocks by ion microprobe

    NASA Astrophysics Data System (ADS)

    Ferry, John M.; Ushikubo, Takayuki; Kita, Noriko T.; Valley, John W.

    2010-11-01

    Nineteen samples of metamorphosed carbonate-bearing rocks were analyzed for carbon and oxygen isotope ratios by ion microprobe with a ˜5-15 μm spot, three from a regional terrain and 16 from five different contact aureoles. Contact metamorphic rocks further represent four groups: calc-silicate marble and hornfels (6), brucite marble (2), samples that contain a reaction front (4), and samples with a pervasive distribution of reactants and products of a decarbonation reaction (4). The average spot-to-spot reproducibility of standard calcite analyses is ±0.37‰ (2 standard deviations, SD) for δ 18O and ±0.71‰ for δ 13C. Ten or more measurements of a mineral in a sample that has uniform isotope composition within error of measurement can routinely return a weighted mean with a 95% confidence interval of 0.09-0.16‰ for δ 18O and 0.10-0.29‰ for δ 13C. Using a difference of >6SD as the criterion, only four of 19 analyzed samples exhibit significant intracrystalline and/or intercrystalline inhomogeneity in δ 13C at the 100-500 μm scale, with differences within individual grains up to 3.7‰. Measurements are consistent with carbon isotope exchange equilibrium between calcite and dolomite in five of six analyzed samples at the same scale. Because of relatively slow carbon isotope diffusion in calcite and dolomite, differences in δ 13C can survive intracrystalline homogenization by diffusion during cooling after peak metamorphism and likely represent the effects of prograde decarbonation and infiltration. All but 2 of 11 analyzed samples exhibit intracrystalline differences in δ 18O (up to 9.4‰), intercrystalline inhomogeneity in δ 18O (up to 12.5‰), and/or disequilibrium oxygen isotope fractionations among calcite-dolomite, calcite-quartz, and calcite-forsterite pairs at the 100-500 μm scale. Inhomogeneities in δ 18O and δ 13C are poorly correlated with only a single mineral (dolomite) in a single sample exhibiting both. Because of relatively

  20. Alcohol disrupts sleep homeostasis.

    PubMed

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  1. Disrupting Vestibular Activity Disrupts Body Ownership.

    PubMed

    Hoover, Adria E N; Harris, Laurence R

    2015-01-01

    People are more sensitive at detecting asynchrony between a self-generated movement and visual feedback concerning that movement when the movement is viewed from a first-person perspective. We call this the 'self-advantage' and interpret it as an objective measure of self. Here we ask if disruption of the vestibular system in healthy individuals affects the self-advantage. Participants performed finger movements while viewing their hand in a first-person ('self') or third-person ('other') perspective and indicated which of two periods (one with minimum delay and the other with an added delay of 33-264 ms) was delayed. Their sensitivity to the delay was calculated from the psychometric functions obtained. During the testing, disruptive galvanic vestibular stimulation (GVS) was applied in five-minute blocks interleaved with five minutes of no stimulation for a total of 40 min. We confirmed the self-advantage under no stimulation (31 ms). In the presence of disruptive GVS this advantage disappeared and there was no longer a difference in performance between perspectives. The threshold delay for the 'other' perspective was not affected by the GVS. These results suggest that an intact vestibular signal is required to distinguish 'self' from 'other' and to maintain a sense of body ownership. PMID:26595957

  2. Changes in Biomass, Mineral Composition, and Quality of Cardoon in Response to NO3-:Cl- Ratio and Nitrate Deprivation from the Nutrient Solution

    PubMed Central

    Borgognone, Daniela; Rouphael, Youssef; Cardarelli, Mariateresa; Lucini, Luigi; Colla, Giuseppe

    2016-01-01

    Leaf extracts of cultivated cardoon (Cynara cardunculus L. var. altilis DC) are an important source of phenols. Soilless culture represents an important and alternative tool to traditional agriculture, since it allows a precise control of plant nutrition and the maximization of yield and quality of the product. Reducing N supply, while keeping quantity as high as possible is desirable for environmental and health-related reasons, especially that N deficiency can lead to improved concentrations of secondary plant metabolites. Two greenhouse experiments were carried out in order to determine the effect of a decreasing NO3-:Cl- ratio (80:20, 60:40, 40:60, or 20:80) and nitrate deprivation (0, 5, 10, or 15 days before harvest) on biomass production, leaf chlorophyll content and fluorescence, mineral composition, and phytochemicals in leaves of cardoon ‘Bianco Avorio’ grown in a floating system. Total phenols, flavonoids and antioxidant capacity increased linearly with Cl- availability, especially when nitrate was replaced by 80% of chloride (20:80 NO3-:Cl- ratio), without having a detrimental effect on yield. Total nitrogen and nitrate concentration in leaves decreased linearly with increasing Cl- in the nutrient solution. Total phenols and antioxidant capacity recorded after 15 days of nitrate deprivation were higher by 43.1, 42.8, and 44.3% and by 70.5, 40.9, and 62.2%, at 59, 97 and 124 days after sowing, respectively compared to the control treatment. The decrease in leaf nitrate content recorded under N-deprivation occurred more rapidly than the reduction in total nitrogen. Thus, up to 15 days of nitrate withdrawal can lower nitrates without sharply reduce total nitrogen or affecting growth and biomass of cultivated cardoon. The use of N-free nutrient solution prior to harvest or the replacement of nitrates with chlorides could be adopted among growers to improve the quality of the product and enhance sustainability of crop production system. PMID:27446196

  3. Changes in Biomass, Mineral Composition, and Quality of Cardoon in Response to [Formula: see text]:Cl(-) Ratio and Nitrate Deprivation from the Nutrient Solution.

    PubMed

    Borgognone, Daniela; Rouphael, Youssef; Cardarelli, Mariateresa; Lucini, Luigi; Colla, Giuseppe

    2016-01-01

    Leaf extracts of cultivated cardoon (Cynara cardunculus L. var. altilis DC) are an important source of phenols. Soilless culture represents an important and alternative tool to traditional agriculture, since it allows a precise control of plant nutrition and the maximization of yield and quality of the product. Reducing N supply, while keeping quantity as high as possible is desirable for environmental and health-related reasons, especially that N deficiency can lead to improved concentrations of secondary plant metabolites. Two greenhouse experiments were carried out in order to determine the effect of a decreasing [Formula: see text]:Cl(-) ratio (80:20, 60:40, 40:60, or 20:80) and nitrate deprivation (0, 5, 10, or 15 days before harvest) on biomass production, leaf chlorophyll content and fluorescence, mineral composition, and phytochemicals in leaves of cardoon 'Bianco Avorio' grown in a floating system. Total phenols, flavonoids and antioxidant capacity increased linearly with Cl(-) availability, especially when nitrate was replaced by 80% of chloride (20:80 [Formula: see text]:Cl(-) ratio), without having a detrimental effect on yield. Total nitrogen and nitrate concentration in leaves decreased linearly with increasing Cl(-) in the nutrient solution. Total phenols and antioxidant capacity recorded after 15 days of nitrate deprivation were higher by 43.1, 42.8, and 44.3% and by 70.5, 40.9, and 62.2%, at 59, 97 and 124 days after sowing, respectively compared to the control treatment. The decrease in leaf nitrate content recorded under N-deprivation occurred more rapidly than the reduction in total nitrogen. Thus, up to 15 days of nitrate withdrawal can lower nitrates without sharply reduce total nitrogen or affecting growth and biomass of cultivated cardoon. The use of N-free nutrient solution prior to harvest or the replacement of nitrates with chlorides could be adopted among growers to improve the quality of the product and enhance sustainability of crop

  4. The Association between Trunk Body Composition and Spinal Bone Mineral Density in Korean Males versus Females: a Farmers' Cohort for Agricultural Work-Related Musculoskeletal Disorders (FARM) Study.

    PubMed

    Kang, Eun Kyoung; Park, Hee Won; Baek, Sora; Lim, Jae Young

    2016-10-01

    The purpose of this study was proposed to identify the association of trunk body composition with spinal bone mineral density (BMD) in Korean male and female farmers. A total of 523 Korean farmers (259 males, 44 premenopausal females, and 220 postmenopausal females) were recruited. Computed tomography scans were acquired at the mid-L4 vertebral level, and total trunk muscle mass (TMM, cm³), back muscle mass (BMM), and abdominal wall muscle mass (AMM), total trunk fat mass (TFM), visceral fat mass (VFM), and subcutaneous fat mass (SFM) were assessed. Spinal BMD (g/cm²) was estimated from dual-energy X-ray absorptiometry at the L4 level. In terms of muscle mass, spinal BMD was significantly correlated with all the components of the trunk muscle mass (r = 0.171-0.360; P < 0.05, P < 0.001) in female farmers, while only with AMM (r = 0.181; P < 0.01) in male farmers. In terms of fat mass, spinal BMD was significantly correlated with all components of the trunk fat mass (r = 0.142-0.424; P < 0.05, P < 0.001) in male and premenopausal female farmers, while only with VFM (r = 0.132; P < 0.05) in postmenopausal females. Adjusted multivariate regression analysis showed that AMM in male and post-menopausal female farmers was closely associated with spinal BMD. There may be positive associations between trunk muscle and fat mass and spinal BMD with sexual dimorphism, and abdominal wall muscle mass was an explanatory variable closely related to spinal BMD in Korean farmers. Registered at the Clinical Research Information Service (CRIS, http://cris.nih.go.kr), number KCT0000829. PMID:27550488

  5. Increasing the number of unloading/reambulation cycles does not adversely impact body composition and lumbar bone mineral density but reduces tissue sensitivity

    NASA Astrophysics Data System (ADS)

    Gupta, Shikha; Manske, Sarah L.; Judex, Stefan

    2013-11-01

    A single exposure to hindlimb unloading leads to changes in body mass, body composition and bone, but the consequences of multiple exposures are not yet understood. Within a 18 week period, adult C57BL/6 male mice were exposed to 1 (1x-HLU), 2 (2x-HLU) or 3 (3x-HLU) cycles of 2 weeks of hindlimb unloading (HLU) followed by 4 weeks of reambulation (RA), or served as ambulatory age-matched controls. In vivo μCT longitudinally tracked changes in abdominal adipose and lean tissues, lumbar vertebral apparent volumetric bone mineral density (vBMD) and upper hindlimb muscle cross-sectional area before and after the final HLU and RA cycle. During the final HLU cycle, significant decreases in total adipose tissue and vertebral vBMD in the three experimental groups occurred such that there were no significant between-group differences at the beginning of the final RA cycle. However, the magnitude of the HLU induced losses diminished in mice undergoing their 2nd or 3rd HLU cycle. Irrespective of the number of HLU/RA cycles, total adipose tissue and vertebral vBMD recovered and were no different from age-matched controls after the final RA period. In contrast, upper hindlimb muscle cross-sectional area was significantly lower than controls in all unloaded groups after the final RA period. These results suggest that tissues in the abdominal region are more resilient to multiple bouts of unloading and more amenable to recovery during reambulation than the peripheral musculoskeletal system.

  6. Recent patents on physical, mineral & organic Acid composition of golden delicious and red delicious apples (malus×domestica borkh) grown in the west of Iran.

    PubMed

    Rad, Amir H K; Falahi, Ebrahim; Ebrahimzadeh, Farzad

    2014-01-01

    Apple is one of the fruits that has beneficial effects on human healthy diet and life. The aim of this study is to determine some physical, mineral and organic acids composition of apple cultivars grown in different locations throughout Lorestan province. Apple cultivars had been harvested from different locations throughout Lorestan province of Iran. Analyses for 3 elements (Iron, Zinc, and calcium) were conducted by the flame atomic absorption spectrometry. Phosphorus was measured by the UV-Vis spectrophotometer and Sodium and Potassium were measured by the flame photometer. Organic acids were determined by Titration method using NaOH and phenolphethalein indicator. Weight was measured by scale based on 0.1 g and length and diameters were measured by caliper. The mean weight of Red Delicious and Golden Delicious apples was 173.7 g and 146.7 g, respectively. The amount of iron, zinc, calcium, phosphorus, sodium, and potassium for the red variety was 0.24, 0.14, 28, 8.9, 4.7 and 63.8 respectively; values for the Golden variety were 0.23, 0.14, 27.9, 8.8, 4.5, and 66.3 mg/100g fresh weight, respectively. The amount of ascorbic acid, malic acid, and citric acid for Golden delicious was 9.09, 0.27 and 0.28, respectively; for Red delicious apples, the amount was 9.47, 0.26 and 0.28 mg/100 g, respectively. Acidities for Golden delicious and Red delicious were 3.7 and 4, respectively. One hundred gram of apple fruit grown in Lorestan would provide 3% of iron, 1.5% of zinc, 2.8% of calcium and 1.4% of potassium requirements. The amount of organic acid in apples of Lorestan province was lower than some other countries. PMID:25620278

  7. Effect of recombinant human growth hormone on changes in height, bone mineral density, and body composition over 1-2 years in children with Hurler or Hunter syndrome.

    PubMed

    Polgreen, Lynda E; Thomas, William; Orchard, Paul J; Whitley, Chester B; Miller, Bradley S

    2014-02-01

    Patients with Hurler or Hunter syndrome typically have moderate to severe growth deficiencies despite therapy with allogeneic hematopoietic stem cell transplantation and/or enzyme replacement therapy. It is unknown whether treatment with recombinant human growth hormone (hGH) can improve growth in these children. The objectives of this study were to determine the effects of hGH on growth, bone mineral density (BMD), and body composition in children with Hurler or Hunter syndrome enrolled in a longitudinal observational study. The difference in annual change in outcomes between hGH treated and untreated subjects was estimated by longitudinal regression models that adjusted for age, Tanner stage, and sex where appropriate. We report on 23 participants who completed at least 2 annual study visits (10 [43%] treated with hGH): Hurler syndrome (n=13) average age of 9.8 ± 3.1 years (range 5.3-13.6 years; 54% female) and Hunter syndrome (n=10) average age of 12.0 ± 2.7 years (range 7.0-17.0 years; 0% female). As a group, children with Hurler or Hunter syndrome treated with hGH had no difference in annual change in height (growth velocity) compared to those untreated with hGH. Growth velocity in hGH treated individuals ranged from -0.4 to 8.1cm/year and from 0.3 to 6.6 cm/year in the untreated individuals. Among children with Hunter syndrome, 100% (N=4) of those treated but only 50% of those untreated with hGH had an annual increase in height standard deviation score (SDS). Of the individuals treated with hGH, those with GHD had a trend towards higher annualized growth velocity compared to those without GHD (6.5 ± 1.9 cm/year vs. 3.5 ± 2.1cm/year; p=.050). Children treated with hGH had greater annual gains in BMD and lean body mass. In conclusion, although as a group we found no significant difference in growth between individuals treated versus not treated with hGH, individual response was highly variable and we are unable to predict who will respond to treatment. Thus

  8. Cu-Ni-PGE fertility of the Yoko-Dovyren layered massif (northern Transbaikalia, Russia): thermodynamic modeling of sulfide compositions in low mineralized dunite based on quantitative sulfide mineralogy

    NASA Astrophysics Data System (ADS)

    Ariskin, Alexey A.; Kislov, Evgeny V.; Danyushevsky, Leonid V.; Nikolaev, Georgy S.; Fiorentini, Marco L.; Gilbert, Sarah; Goemann, Karsten; Malyshev, Alexey

    2016-06-01

    The geology and major types of sulfide mineralization in the Yoko-Dovyren layered massif (northern Transbaikalia, Russia) are presented. This study focuses on the structure, mineralogy, and geochemistry of poorly mineralized plagiodunite and dunite in the lower part of the intrusion. Assuming these rocks contain key information on the timing of sulfide immiscibility in the original cumulate pile, we apply a novel approach which combines estimates of the average sulfide compositions in each particular rock with thermodynamic modeling of the geochemistry of the original sulfide liquid. To approach the goal, an updated sulfide version of the COMAGMAT-5 model was used. Results of simulations of sulfide immiscibility in initially S-undersaturated olivine cumulates demonstrate a strong effect of the decreasing fraction of the silicate melt, due to crystallization of silicate and oxide minerals, on the composition of the intercumulus sulfide liquid. Comparison of the observed and modeled sulfide compositions indicates that the proposed modeling reproduces well the average concentrations of Cu, Cd, Ag, and Pd in natural sulfides. This suggests the sulfide control on the distribution of these elements in the rocks. Conversely, data for Pt and Au suggest that a significant portion of these elements could present in a native form, thus depleting the intercumulus sulfide melt at an early stage of crystallization.

  9. The influence of fluoride exposure on dentin mineralization using an in vitro organ culture model.

    PubMed

    Moseley, R; Waddington, R J; Sloan, A J; Smith, A J; Hall, R C; Embery, G

    2003-11-01

    This study aimed to characterize fluoride-induced alterations in dentin mineralization within a dentin-pulp organ culture system. Tooth sections derived from male Wistar rat incisors were cultured in Trowel-type culture for 14 days, in the presence of 0 mM, 1 mM, 3 mM and 6 mM sodium fluoride. Tooth sections were processed and analyzed for uptake of fluoride, its subsequent effect on dentin mineralization by tetracycline hydrochloride incorporation and mineral composition, expressed as calcium/phosphorous (Ca/P) ratios. Tetracycline hydrochloride incorporation was demonstrated to decrease with increased fluoride exposure, accompanied by significant increases in both Ca/P ratios and fluoride incorporation. These findings provide further evidence that the established alterations in dentin formation during fluorosis are a consequence of disruption to the mineralization process, and provide a model system with which to investigate further the potential role the extracellular matrix plays in inducing the apparent changes in mineral composition. PMID:14523603

  10. Composition.

    ERIC Educational Resources Information Center

    Nemanich, Donald, Ed.

    1974-01-01

    The articles in this special issue of the "Illinois English Bulletin" concern the state of composition instruction at the secondary and college levels. The titles and authors are "Monologues or Dialogues? A Plea for Literacy" by Dr. Alfred J. Lindsey, "Teaching Composition: Curiouser and Curiouser" by Denny Brandon, and "Teaching Writing to High…

  11. Mineral Quantification.

    PubMed

    2016-01-01

    Optimal intakes of elements, such as sodium, potassium, magnesium, calcium, manganese, copper, zinc and iodine, can reduce individual risk factors including those related to cardiovascular diseases among humans and animals. In order to meet the need for vitamins, major minerals, trace minerals, fatty acids and amino acids, it is necessary to include a full spectrum programme that can deliver all of the nutrients in the right ratio. Minerals are required for normal growth, activities of muscles, skeletal development (such as calcium), cellular activity, oxygen transport (copper and iron), chemical reactions in the body, intestinal absorption (magnesium), fluid balance and nerve transmission (sodium and potassium), as well as the regulation of the acid base balance (phosphorus). The chapter discusses the chemical and instrumentation techniques used for estimation of minerals such as N, P, Ca, Mg, K, Na, Fe, Cu, Zn, B and Mb. PMID:26939263

  12. Clay Minerals

    SciTech Connect

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  13. Control of Disruptive Instabilities

    NASA Astrophysics Data System (ADS)

    Arshad, S. A.

    Available from UMI in association with The British Library. Requires signed TDF. In tokamak devices, at critical values of discharge parameters (n_ e, q(a), beta) the plasma can suddenly be terminated. The process is called a disruption. It is a major limitation in the operation of tokamaks, not only because of the limitation it imposes on the operation parameter space, but also due to the severe thermal and electromechanical loadings on the vessel. These difficulties and implications for fusion reactors have attracted increasing attention and a variety of approaches in the attempt to avoid, reduce or overcome the problem have been investigated. The growth of a magnetic perturbation is believed to be responsible for the disruptive process, and previous experiments have examined the effect on this perturbation of magnetic feedback. In DITE experiments have been done to extend this work by using a more sophisticated feedback loop. The detector-coils and feedback saddle-coils (configured to treat the m = 21, n = 1 structure which is dominant in disruption precursors) were mounted inside the vacuum vessel and fast programmable loop-gain and loop-phase controllers were used. Open-loop experiments contained studies of mode locking and plasma response to applied (2,1) fields. The feedback work explored the effect on disruption precursors over a large area in parameter space and was the first to address in detail the effect of feedback on disruptions. Both open-loop and feedback experiments were conducted on Ohmic discharges and discharges with lower hybrid current drive (LHCD). The experiments have demonstrated disruption precursor control in both types of discharge. Disruptions were studied in Ohmic plasmas. They were postponed and the density limit was extended.

  14. Mineral and whole rock compositions of peridotites from Loma Caribe (Dominican Republic): insights into the evolution of the oceanic mantle in the Caribbean region

    NASA Astrophysics Data System (ADS)

    Marchesi, C.; Garrido, C. J.; Proenza, J. A.; Konc, Z.; Hidas, K.; Lewis, J.; Lidiak, E.

    2012-04-01

    Several mantle peridotite massifs crop out as isolated dismembered bodies in tectonic belts along the northern margin of the Caribbean plate, especially in Cuba, Guatemala, Jamaica, Hispaniola and Puerto Rico. Among these bodies, the Loma Caribe peridotite forms the core of the Median Belt in central Dominican Republic and is considered to have been emplaced in Aptian time as result of the collision between an oceanic plateau (the Duarte plateau terrane) and the primitive Caribbean island arc. This peridotite massif is mainly composed of clinopyroxene-rich harzburgite, harzburgite, lherzolite and dunite which mainly have porphyroclastic texture with strongly deformed orthopyroxene porphyroclasts, as commonly observed in ophiolitic mantle tectonites. Mg# [100*Mg/(Mg+Fe2+)] of olivine increases from lower values in lherzolite (89-90), to higher values in harzburgite (89-91) and dunite (91-92). Orthopyroxene in harzburgite has higher Mg# (91-92) and lower Al2O3 (0.89 to 1.12 wt.%) than in lherzolite (Mg# = 89-91; Al2O3 = 2.4-3.5wt.%), similarly to clinopyroxene (Mg# = 94-95 and Al2O3 = 0.89-1.10 wt% in harzburgite, versus Mg# = 86-94 and Al2O3 = 2.3-4.0 wt% in lherzolite). Cr# [Cr/(Cr+Al)] of spinel spans from 0.30 in lherzolite to 0.88 in dunite. These variations in terms of Mg# in olivine and Cr# in spinel overlap the mineral compositions in both abyssal and supra-subduction zone peridotites. The sample/chondrite REE concentrations of peridotites are variable (0.002 < LREE chondrite-normalized < 0.11 and 0.002 < HREE chondrite-normalized < 1.02) and their HREE contents generally reflect the clinopyroxene proportions in the samples, i.e. harzburgite has lower HREE abundances than lherzolite. These trace element abundances are transitional between those of highly depleted supra-subduction peridotites from ophiolites in eastern Cuba and those of fertile mantle rocks in ultramafic massifs from Puerto Rico. Chondrite-normalized patterns are U-shaped (i.e., relatively

  15. Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Gezari, Suvi

    2013-12-01

    The majority of supermassive black holes in the Universe lie dormant and starved of fuel. These hidden beasts can be temporarily illuminated when an unlucky star passes close enough to be tidally disrupted and consumed by the black hole. Theorists first proposed in 1975 that tidal disruption events should be an inevitable consequence of supermassive black holes in galaxy nuclei and later argued that the resulting flare of radiation from the accretion of the stellar debris could be a unique signpost for the presence of a dormant black hole in the center of a normal galaxy. It was not until over two decades later that the first convincing tidal disruption event candidates emerged in the X-rays by the ROSAT All-Sky Survey. Since then, over a dozen total candidates have now emerged from searches across the electromagnetic spectrum, including the X-rays, the ultraviolet, and the optical. In the last couple of years, we have also witnessed a paradigm shift with the discovery of relativistic beamed emission associated with tidal disruption events. I review the census of observational candidates to date and discuss the exciting prospects for using large samples of tidal disruption events discovered with the next-generation of ground-based and space-based synoptic surveys to probe accretion disk and/or jet formation and black hole demographics.

  16. The disruption management model.

    PubMed

    McAlister, James

    2011-10-01

    Within all organisations, business continuity disruptions present a set of dilemmas that managers may not have dealt with before in their normal daily duties. The disruption management model provides a simple but effective management tool to enable crisis management teams to stay focused on recovery in the midst of a business continuity incident. The model has four chronological primary headlines, which steer the team through a quick-time crisis decision-making process. The procedure facilitates timely, systematic, rationalised and justified decisions, which can withstand post-event scrutiny. The disruption management model has been thoroughly tested within an emergency services environment and is proven to significantly support clear and concise decision making in a business continuity context. PMID:22130341

  17. Interruptions disrupt reading comprehension.

    PubMed

    Foroughi, Cyrus K; Werner, Nicole E; Barragán, Daniela; Boehm-Davis, Deborah A

    2015-06-01

    Previous research suggests that being interrupted while reading a text does not disrupt the later recognition or recall of information from that text. This research is used as support for Ericsson and Kintsch's (1995) long-term working memory (LT-WM) theory, which posits that disruptions while reading (e.g., interruptions) do not impair subsequent text comprehension. However, to fully comprehend a text, individuals may need to do more than recognize or recall information that has been presented in the text at a later time. Reading comprehension often requires individuals to connect and synthesize information across a text (e.g., successfully identifying complex topics such as themes and tones) and not just make a familiarity-based decision (i.e., recognition). The goal for this study was to determine whether interruptions while reading disrupt reading comprehension when the questions assessing comprehension require participants to connect and synthesize information across the passage. In Experiment 1, interruptions disrupted reading comprehension. In Experiment 2, interruptions disrupted reading comprehension but not recognition of information from the text. In Experiment 3, the addition of a 15-s time-out prior to the interruption successfully removed these negative effects. These data suggest that the time it takes to process the information needed to successfully comprehend text when reading is greater than that required for recognition. Any interference (e.g., an interruption) that occurs during the comprehension process may disrupt reading comprehension. This evidence supports the need for transient activation of information in working memory for successful text comprehension and does not support LT-WM theory. PMID:25867225

  18. Alcohol disrupts sleep homeostasis

    PubMed Central

    Thakkar, Mahesh M.; Sharma, Rishi; Sahota, Pradeep

    2014-01-01

    Alcohol is a potent somnogen and one of the most commonly used “over the counter” sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to understand how and where alcohol acts to affect sleep. We have conducted a series of experiments using two different species, rats and mice, as animal models, and a combination of multi-disciplinary experimental methodologies to examine and understand anatomical and cellular substrates mediating the effects of acute and chronic alcohol exposure on sleep-wakefulness. The results of our studies suggest that the sleep-promoting effects of alcohol may be mediated via alcohol’s action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Lesions of the BF cholinergic neurons or blockade of AD A1 receptors results in attenuation of alcohol-induced sleep promotion, suggesting that AD and BF cholinergic neurons are critical for sleep-promoting effects of alcohol. Since binge alcohol consumption is a highly prevalent pattern

  19. Composites

    SciTech Connect

    Chou, T.; McCullough, R.L.; Pipes, R.B.

    1986-10-01

    The degree of control over material properties that is typified by hybrid composites is transforming engineering design. In part because homogeneous materials such as metals and alloys do not offer comparable control, specifying a material and designing a component have traditionally taken place separately. As composites begin to replace traditional materials in fields and such as aerospace, component design and the specification of a material are merging and becoming aspects of a single process. The controllable microstructure of a composite allows it to be tailored to match the distribution of stresses to which it will be subject. At the same time components must come to reflect the distinctive nature of composites: their directional properties and the intricate forms they can be given through processes such as injection molding, filament winding and three-dimensional weaving. The complexity inherent in conceiving components and their materials at the same time suggests engineering design will grow increasingly dependent on computers and multidisciplinary teams. Such an approach will harness the full potential of composites for the technologies of the future. 10 figures.

  20. Coping with Campus Disruption.

    ERIC Educational Resources Information Center

    Crookston, Burns B.

    Following a short introduction about the current status of student unrest and campus disruption, this paper discusses the contributing factors: (1) the unique aspects of the present generation gap; (2) confusion on the role of the university in contemporary society; (3) the inability, on the basis of their organizational structure, of universities…

  1. Citrus Leafminer Mating Disruption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mating disruption targets a specific pest and has no negative impact on natural enemies, the environment, or agricultural workers. A flowable wax dispenser was tested for releasing the female sex pheromone of the citrus leafminer, Phyllocnistis citrella. These dispensers are biodegradable, inexpens...

  2. Industrial Minerals

    ERIC Educational Resources Information Center

    Bradbury, James C.

    1978-01-01

    The past year is seen as not particularly good for industrial minerals and for industry in general. Environmental concerns continued to trouble the industry with unacceptable asbestos concentrations and chlorofluorocarbon effects on ozone. A halting U.S. economy also affected industrial progress. (MA)

  3. A simplified soil extraction sequence to monitor the main and trace element speciation in soil after compost and mineral fertilizer additions upon the composition of wheat grains

    NASA Astrophysics Data System (ADS)

    Sager, Manfred; Erhart, Eva

    2016-04-01

    High quality biological waste treatment aims at producing compost in order to maintain a clean environment and to sustain soil organic carbon levels. Fertilization with compost as a source of organic carbon, nutrients, and accessory elements, as well as fertilization with mineral N- and PK fertilizer have been tested in a field experiment on a calcaric Fluvisol in the Danube wetlands, at 4 levels each. Yields of wheat were recorded, and grains and soils were sampled from each treatment, and analyzed for main and trace element composition. The corresponding soils were characterized by mobile phases, obtained by leaching with 0,16M acetic acid to cover exchangeables plus carbonates, and subsequently by 0,1M oxalate buffer pH 3 to dissolve the pedogenic oxides. Total amounts were obtained from digests with perchloric- nitric-hydrofluoric acid. For quasi-total amounts, aqua regia was replaced by pressure decomposition with KClO3 in dilute nitric acid. The proposed extraction sequence permits to analyze and interpret soil for main elements, trace elements, nutrients and anions simultaneously. Factor analyses of soil extracts obtained from dilute acetic acid revealed Ba-Be-Cd-Cu-Li-S (traces), Ca-Mg-Mn (main carbonates), Al-Fe-B, Y, and P-K (nutrients) as chemically feasible principal components. Subsequent soil extracts from oxalate contained Al-B-Co-K-Na-Pb-Si-V-S (maybe acid silicate weathering), Cr-Li-Ni-Sr-Ti (maybe basic silicate weathering), Be-Cu-Fe-P, Co-Mg-Mn-Zn (Mn-oxides) and Ba-Sc as principal components. Factor analyses of total element data distinguished the principal components Ce-La-Li-Sc-Y-P (rare earths), Al-Ca-Fe-K-Mg-Na-P (main elements), Cd-Co-Cr-Cu-Ni-Zn (trace elements), As-Pb (contaminants), Ba-Mn-Sr, and Ti, which looks chemically feasible also. Factor analyses of those soil fractions which presumably form the main fractions of exchangeables, carbonates, pedogenic oxides and silicates, showed no cross connections, except for P. Oxalate

  4. Composites

    NASA Astrophysics Data System (ADS)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  5. Effects of the composition of the basal diet on the evaluation of mineral phosphorus sources and interactions with phytate hydrolysis in broilers.

    PubMed

    Shastak, Y; Zeller, E; Witzig, M; Schollenberger, M; Rodehutscord, M

    2014-10-01

    The objectives of this study were to determine the availability of P from mineral phosphate sources by using different basal diets and measurement of P retention and prececal (pc) P digestibility as well as pc myo-inositol phosphate (InsP) degradation in broilers. Semi-synthetic and corn-soybean meal-based basal diets were used in experiment 1, and corn-based and wheat-based basal diets were used in experiment 2. Anhydrous monosodium phosphate (MSPa) or monocalcium phosphate monohydrate (MCPh) was supplemented to increment the P concentration by 0.05, 0.10, and 0.15% or by 0.075 and 0.150% in experiments 1 and 2, respectively. Titanium dioxide was used as an indigestible marker. Diets were pelleted through a 3-mm screen. In experiment 1, retention was measured based on total excreta collection from 20 to 24 d of age using 7 replicated birds per diet. In experiment 2, digesta from the terminal ileum was collected from 22-d-old broilers penned in groups of 19 with 5 replicated pens per diet. The P retention response to supplemented MSPa did not differ between the 2 basal diets in experiment 1. The response in pc P digestibility to MCPh supplements also did not differ between the 2 basal diets in experiment 2, as calculated by linear regression analysis. Hydrolysis of InsP6 measured on both the excreta and pc levels was high in the basal diets without a mineral P supplement. Mineral P supplementation significantly decreased (P < 0.05) InsP6 hydrolysis from the InsP-containing diets in both experiments. Thus, the choice of the basal diet did not affect the evaluation of the supplemented mineral P source. However, calculated values for mineral P sources need to be adjusted for the decline in hydrolysis of InsP contained in the basal diet that results from the P supplement. PMID:25085939

  6. Bioleaching of Minerals

    SciTech Connect

    F. Roberto

    2002-02-01

    Bioleaching is the term used to describe the microbial dissolution of metals from minerals. The commercial bioleaching of metals, particularly those hosted in sulfide minerals, is supported by the technical disciplines of biohydrometallurgy, hydrometallurgy, pyrometallurgy, chemistry, electrochemistry, and chemical engineering. The study of the natural weathering of these same minerals, above and below ground, is also linked to the fields of geomicrobiology and biogeochemistry. Studies of abandoned and disused mines indicate that the alterations of the natural environment due to man's activities leave as remnants microbiological activity that continues the biologically mediated release of metals from the host rock (acid rock drainage; ARD). A significant fraction of the world's copper, gold and uranium is now recovered by exploiting native or introduced microbial communities. While some members of these unique communities have been extensively studied for the past 50 years, our knowledge of the composition of these communities, and the function of the individual species present remains relatively limited. Nevertheless, bioleaching represents a major strategy in mineral resource recovery whose importance will increase as ore reserves decline in quality, become more difficult to process (due to increased depth, increased need for comminution, for example), and as environmental considerations eliminate traditional physical processes such as smelting, which have served the mining industry for hundreds of years.

  7. Mineral bioprocessing

    SciTech Connect

    Torma, A.E.

    1993-05-01

    In the last 25 years, the introduction of biotechnological methods in hydrometallurgy has created new opportunities and challenges for the mineral processing industry. This was especially true for the production of metal values from mining wastes and low-and-complex-grade mineral resources, which were considered economically not amenable for processing by conventional extraction methods. Using bio-assisted heap, dump and in-situ leaching technologies, copper and uranium extractions gained their first industrial applications. The precious metal industries were the next to adopt the bio-preoxidation technique in the extraction of gold from refractory sulfide-bearing ores and concentrates. A variety of other bioleaching opportunities exist for nickel, cobalt, cadmium and zinc sulfide leaching. Recently developed bioremediation methods and biosorption technologies have shown a good potential for industrial applications to remove trace heavy metal and radionuclide concentrations from contaminated soils, and mining and processing effluents.

  8. Intrapartum Pubic Symphysis Disruption

    PubMed Central

    Pires, RES; Labronici, PJ; Giordano, V; Kojima, KE; Kfuri, M; Barbisan, M; Wajnsztejn, A; de Andrade, MAP

    2015-01-01

    During pregnancy, high progesterone and relaxin levels produce physiological ligament relaxation on the pelvis. Therefore, moderate pubic symphysis and sacroiliac joints relaxing provide birth canal widening, thereby facilitating vaginal delivery. Sometimes, functional pain or pelvic instability may occur during pregnancy or puerperium, which is defined as symptomatic pelvic girdle relaxation. In rare cases, a pubic symphysis disruption can occur during the labor, causing severe pain and functional limitations. The early recognition of this injury is crucial to prevent complications and improve clinical and functional outcomes. This study reports an acute symphyseal disruption resulting from childbirth in a primiparous patient who underwent open reduction and internal fixation with plate and screws. After a 6 months follow-up, the patient presented no pain and satisfactory functional recovery. PMID:27057391

  9. Production without environmental disruption

    SciTech Connect

    Not Available

    1984-06-01

    Coal mining at the Butterwell site in the U.K. is discussed. The operation is owned by the National Coal Board and has caused special planning to keep from disrupting the environment. The close proximity of villages has caused the need for air and noise pollution control, and protection of the land. A discussion of the methods of removing the overburden, processing the coal, and reclaiming the area is included.

  10. Coincident disruptive coloration

    PubMed Central

    Cuthill, Innes C.; Székely, Aron

    2008-01-01

    Even if an animal matches its surroundings perfectly in colour and texture, any mismatch between the spatial phase of its pattern and that of the background, or shadow created by its three-dimensional relief, is potentially revealing. Nevertheless, for camouflage to be fully broken, the shape must be recognizable. Disruptive coloration acts against object recognition by the use of high-contrast internal colour boundaries to break up shape and form. As well as the general outline, characteristic features such as eyes and limbs must also be concealed; this can be achieved by having the colour patterns on different, but adjacent, body parts aligned to match each other (i.e. in phase). Such ‘coincident disruptive coloration’ ensures that there is no phase disjunction where body parts meet, and causes different sections of the body to blend perceptually. We tested this theory using field experiments with predation by wild birds on artificial moth-like targets, whose wings and (edible pastry) bodies had colour patterns that were variously coincident or not. We also carried out an experiment with humans searching for analogous targets on a computer screen. Both experiments show that coincident disruptive coloration is an effective mechanism for concealing an otherwise revealing body form. PMID:18990668

  11. Endocrine disrupting chemicals

    PubMed Central

    Yeung, Bonnie HY; Wan, Hin T; Law, Alice YS

    2011-01-01

    In the past 200 years, an enormous number of synthetic chemicals with diverse structural features have been produced for industrial, medical and domestic purposes. These chemicals, originally thought to have little or no biological toxicity, are widely used in our daily lives as well as are commonly present in foods. It was not until the first World Wildlife Federation Wingspread Conference held in 1994 were concerns about the endocrine disrupting (ED) effects of these chemicals articulated. The potential hazardous effects of endocrine disrupting chemicals (EDCs) on human health and ecological well-being are one of the global concerns that affect the health and propagation of human beings. Considerable numbers of studies indicated that endocrine disruption is linked to “the developmental basis of adult disease,” highlighting the significant effects of EDC exposure on a developing organism, leading to the propensity of an individual to develop a disease or dysfunction in later life. In this review, we intend to provide environmental, epidemiological and experimental data to associate pollutant exposure with reproductive disorders, in particular on the development and function of the male reproductive system. Possible effects of pollutant exposure on the processes of embryonic development, like sex determination and masculinization are described. In addition, the effects of pollutant exposure on hypothalamus-pituitary-gonadal axis, testicular signaling, steroidogenesis and spermatogenesis are also discussed. PMID:22319671

  12. Composites

    NASA Astrophysics Data System (ADS)

    Chmielewski, M.; Nosewicz, S.; Pietrzak, K.; Rojek, J.; Strojny-Nędza, A.; Mackiewicz, S.; Dutkiewicz, J.

    2014-11-01

    It is commonly known that the properties of sintered materials are strongly related to technological conditions of the densification process. This paper shows the sintering behavior of a NiAl-Al2O3 composite, and its individual components sintered separately. Each kind of material was processed via the powder metallurgy route (hot pressing). The progress of sintering at different stages of the process was tested. Changes in the microstructure were examined using scanning and transmission electron microscopy. Metal-ceramics interface was clean and no additional phases were detected. Correlation between the microstructure, density, and mechanical properties of the sintered materials was analyzed. The values of elastic constants of NiAl/Al2O3 were close to intermetallic ones due to the volume content of the NiAl phase particularly at low densities, where small alumina particles had no impact on the composite's stiffness. The influence of the external pressure of 30 MPa seemed crucial for obtaining satisfactory stiffness for three kinds of the studied materials which were characterized by a high dense microstructure with a low number of isolated spherical pores.

  13. Chemical and mineralogical size segregation in the impact disruption of anhydrous stone meteorites

    SciTech Connect

    Flynn, G.J.; Durda, D.D.

    2005-02-02

    average composition of the IDPs may be biased towards the composition of the matrix of the parent body while the average composition of the polar micrometeorites may be more heavily weighted towards the composition of the chondrules and clasts. Thus, neither the IDPs nor the polar micrometeorites may sample the bulk composition of their respective parent bodies. We determined the threshold collisional specific energy (Q*{sub D}) for these chondritic meteorites to be 1419 J/kg, about twice the value for terrestrial basalt. Comparison of the mass of the largest fragment produced in the disruption of an {approx} 100 g sample of the porous ordinary chondrite Saratov with the largest fragment produced in the disruption of an {approx} 100 g sample of the compact ordinary chondrite MOR001 when each was struck by an impactor having approximately the same kinetic energy confirms that it requires significantly more energy to disrupt a porous target than a non-porous target. These results may also have important implications for the design of spacecraft missions intended to sample the composition and mineralogy of the chondritic asteroids and other inhomogeneous bodies. A Stardust-like spacecraft intended to sample asteroids by collecting only the small debris from a man-made impact onto the asteroid may collect particles that over-sample the matrix of the target and do not provide a representative sample of the bulk composition. The impact collection technique to be employed by the Japanese HAYABUSA (formerly MUSES-C) spacecraft to sample the asteroid Itokawa may result in similar mineral segregation.

  14. Vitamins and Minerals

    MedlinePlus

    ... I Help a Friend Who Cuts? Vitamins and Minerals KidsHealth > For Teens > Vitamins and Minerals Print A ... of a good thing? What Are Vitamins and Minerals? Vitamins and minerals make people's bodies work properly. ...

  15. Manuel's asteroid disruption technique

    PubMed Central

    John, Manuel; Ipe, Abraham; Jacob, Ivan

    2015-01-01

    A seventy-year-old male presented with dense asteroid hyalosis in both eyes. He had undergone cataract extraction in one eye 3 years ago, and the other eye had immature cataract. Both the autorefractor and dilated streak retinoscopy did not give readings and subjective visual improvement could not be achieved. Immediately following YAG posterior capsulotomy and anterior vitreous asteroid disruption, the vision improved to 20/20 with recordable auto refractor and streak retinoscopy values. Our initial experience indicates that the treatment is simple, safe and effective but needs controlled and prospective studies to confirm its long-term safety. PMID:23571244

  16. [Children's disruptive behavior].

    PubMed

    Aronen, Eeva

    2016-01-01

    During normal development, a child learns to regulate her/his aggressions and follow the social norms of her/his community.This learning takes place in interaction with the environment. Risk factors associated with the child, parenthood and environment underlie the disruptive behavior. If a child of preschool/school age exhibits age group deviant difficulties in the management of aggression, defiant, rule-breaking behavior or difficulties in social relationships, there is every reason to get worried and to evaluate the child's symptoms and situation. The earlier the support and therapy is provided, the better are the possibilities to influence the prognosis of conduct disorders. PMID:27382832

  17. Petrogenesis and tectonic implications of the early Jurassic Fe-Ti oxide-bearing Xialan mafic intrusion in SE China: Constraints from zircon Hf-O isotopes, mineral compositions and whole-rock geochemistry

    NASA Astrophysics Data System (ADS)

    Bai, Zhong-Jie; Zhu, Wei-Guang; Zhong, Hong; Li, Chusi; Liao, Jing-Qing; Sun, Hui-Si

    2015-01-01

    Abundant Jurassic bimodal igneous rocks are present in the Nanling region, southeastern China. Their relationship with the tectonic evolution of southeastern China in the Jurassic is still a matter of debate. The ~ 194 Ma Xialan gabbroic intrusion is the oldest mafic intrusion in the Jurassic Nanling igneous belt discovered to date. The intrusion also hosts a significant Fe-Ti oxide deposit. Thus, this intrusion is important for the studies of fundamental controls on the early Jurassic basaltic magmatism in the region and on the Fe-Ti oxide mineralization in this type of intrusion. In this paper we report Hf-O isotopic compositions of zircon for the intrusion and the stratigraphic variations of whole-rock and important mineral compositions in the intrusion. Based on variations in mineral assemblages and the compositions of cumulus minerals, the Xialan intrusion is divided into four cyclic units (I to IV from the base to the top). Our results indicate that each unit represents a new input of magma with composition more primitive than the resident magma. The contents of Fo in olivine, which occurs in the base of Units I and II, are ~ 66 mol%. This indicates that the parental magma for the intrusion is highly fractionated. Extensive fractional crystallization and density-driving crystal sorting appear to have played a critical role in the formation of important Fe-Ti oxide layers in the upper parts of Units I and II. Clinopyroxene trace element analyses indicate that the parental magma for the Xialan intrusion is characterized by pronounced negative Nb-Ta anomalies. Some of the zircon crystals from the Xialan intrusion have εHf(t) > 10 and δ18O between 5.2 and 5.8‰. This, together with the depleted Sr-Nd isotopic compositions in whole rocks reported previously by others, indicates a dominant asthenospheric mantle source with significant contribution of the overlying SCLM. The εHf(t) and δ18O values of zircon from the intrusion are negatively correlated

  18. Quantitative compositional analysis of sedimentary materials using thermal emission spectroscopy: 2. Application to compacted fine-grained mineral mixtures and assessment of applicability of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Pan, C.; Rogers, A. D.; Thorpe, M. T.

    2015-11-01

    Fine-grained sedimentary deposits on planetary surfaces require quantitative assessment of mineral abundances in order to better understand the environments in which they formed. One way that planetary surface mineralogy is commonly assessed is through thermal emission (~6-50 µm) spectroscopy. To that end, we characterized the TIR spectral properties of compacted, very fine-grained mineral mixtures of oligoclase, augite, calcite, montmorillonite, and gypsum. Nonnegative linear least squares minimization (NNLS) is used to assess the linearity of spectral combination. A partial least squares (PLS) method is also applied to emission spectra of fine-grained synthetic mixtures and natural mudstones to assess its applicability to fine-grained rocks. The NNLS modeled abundances for all five minerals investigated are within ±10% of the known abundances for 39% of the mixtures, showing the relationships between known and modeled abundance follow nonlinear curves. The poor performance of NNLS is due to photon transmission through small grains over portions of the wavelength range and multiple reflections in the volume. The PLS method was able to accurately recover the known abundances (to within ±10%) for 78-90% of synthetic mixtures and for 85% of the mudstone samples chosen for this study. The excellent agreement between known and modeled abundances is likely due to high absorption coefficients over portions of the thermal infrared (TIR) spectral range, and thus, combinations are linear over portions of the range. PLS can be used to recover abundances from very fine-grained rocks from TIR measurements and could potentially be applied to landed or orbital TIR observations.

  19. Collisional Disruption of super-Earths

    NASA Astrophysics Data System (ADS)

    Marcus, Robert A.; Stewart, S. T.; Sasselov, D.; Hernquist, L. E.

    2009-05-01

    The late stages of planet formation are dominated by collisions between planetary embryos with masses on the order of one tenth the mass of the Earth in our solar system (e.g., Agnor et al. 1999). The dynamics of this stage determine the final configuration of planets in the system. In the solar system, there is evidence of possible late giant impacts in the histories of both Mercury (Benz et al. 1988, 2007) and the Earth (e.g., Canup 2004). Here we consider high energy collisions (near catastrophic disruption) between planets of initially terrestrial composition with a range of masses into the super-Earth regime. We derive the transition between collisional accretion and erosion for super-Earths, following the method of Stewart and Leinhardt (2009). We identify both a catastrophic disruption regime and grazing impact and bouncing regime, as found by Agnor and Asphaug (2004). In the disruption regime, we derive a scaling law for changing the bulk composition (iron to silicate ratio). We then discuss the observational implications for such missions as Kepler.

  20. Diagenesis and fluid flow in the San Juan Basin, New Mexico - regional zonation in the mineralogy and stable isotope composition of clay minerals in sandstone.

    USGS Publications Warehouse

    Whitney, G.; Northrop, H.R.

    1987-01-01

    The Westwater Canyon Member of the Upper Jurassic Morrison Formation is a relatively homogeneous, hydrologically continuous 100-m-thick sequence of massive fluvial sandstone, bounded above and below by relatively heterogeneous, hydrologically discontinuous units and has served as a primary conduit for fluids within this stratigraphic interval. Patterns of mineral-fluid reactions suggest a basinwide hydrologic regime in which warm, evolved fluids migrated up-dip from the center of the basin under the influence of a regional hydraulic head. -from Authors

  1. Compositionally Controlled Volatile Content of Nominally Volatile-Free Minerals in the Continental Upper Mantle of Southern Gondwana (Patagonia & W. Antarctica)

    NASA Astrophysics Data System (ADS)

    Rooks, E. E.; Gibson, S. A.; Leat, P. T.; Petrone, C. M.

    2015-12-01

    H2O and F contents affect many physical and chemical properties of the upper mantle, including melting temperature and viscosity. These elements are hosted by hydrous and F-rich phases, and by modally abundant, nominally-anhydrous/halogen-free mantle minerals, which can potentially accommodate the entire volatile budget of the upper mantle. We present high-precision SIMS analyses of H2O, and F in mantle xenoliths hosted by recently-erupted (5-10 Ka) alkali basalts from south Patagonia (Pali Aike) and older (c. 25 Ma) alkali basalts from localities along the Antarctic Peninsula. Samples are well characterised peridotites and pyroxenites, from a range of depths in the off-craton lithospheric mantle. Minerals are relatively dry: H2O contents of olivine span 0-49 ppm, orthopyroxene 150-235 ppm and clinopyroxene 100-395 ppm, with highest concentrations found in spinel-garnet lherzolites from Pali Aike. These H2O concentrations fall within the global measured range for off-craton mantle minerals. H2O and F are correlated, and the relative compatibility of F in mantle phases is clinopyroxene>orthopyroxene>olivine. However, elevated F concentrations of 100-210 ppm are found in pyroxenites from two Antarctic localities. This elevated F content is not correlated with high H2O, suggesting that these rocks interacted with a F-rich melt. In clinopyroxenes, F concentration is correlated with Ti, and the ratio of M1Ti to M1Al + M1Cr, suggesting a charge balanced substitution. Consistency between samples (excepting high-F pyroxenites) suggests a constant F-budget, and that concentrations in clinopyroxenes are controlled by mineral chemistry. In orthopyroxene, F correlates with CaO, but no other major or minor elements. Large variability of H2O concentrations within samples is attributed to diffusive loss during ascent. Cl is negligible in all samples, indicating little or no influence of slab fluids from this long-lived subduction zone.

  2. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  3. Disruptions in the TFTR tokamak

    SciTech Connect

    Janos, A.; Fredrickson, E.D.; McGuire, K.; Batha, S.H.; Bell, M.G.; Bitter, M.; Budny, R.; Bush, C.E.; Efthimion, P.C.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jobes, F.C.; Johnson, D.W.; Levinton, F.; Mansfield, D.; Meade, D.; Medley, S.S.; Monticello, D.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.; Park, W.; Post, D.E.; Schivell, J.; Strachan, J.D.; Taylor, G.; Ulrickson, M.; von Goeler, S.; Wilfrid, E.; Wong, K.L.; Yamada, M.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.; Drake, J.F.; Kleva, R.G.; Fleischmann, H.H.

    1993-03-01

    For a successful reactor, it will be useful to predict the occurrence of disruptions and to understand disruption effects including how a plasma disrupts onto the wall and how reproducibly it does so. Studies of disruptions on TFTR at both high-{beta}{sub pol} and high-density have shown that, in both types, a fast growing m/n=1/1 mode plays an important role. In highdensity disruptions, a newly observed fast m/n = 1/1 mode occurs early in the thermal decay phase. For the first time in TFTR q-profile measurements just prior to disruptions have been made. Experimental studies of heat deposition patterns on the first wall of TFTR due to disruptions have provided information on MHD phenomena prior to or during the disruption, how the energy is released to the wall, and the reproducibility of the heat loads from disruptions. This information is important in the design of future devices such as ITER. Several new processes of runaway electron generation are theoretically suggested and their application to TFTR and ITER is considered, together with a preliminary assessment of x-ray data from runaways generated during disruptions.

  4. Disruptions in the TFTR tokamak

    SciTech Connect

    Janos, A.; Fredrickson, E.D.; McGuire, K.; Batha, S.H.; Bell, M.G.; Bitter, M.; Budny, R.; Bush, C.E.; Efthimion, P.C.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jobes, F.C.; Johnson, D.W.; Levinton, F.; Mansfield, D.; Meade, D.; Medley, S.S.; Monticello, D.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.; Park, W.; Post, D.E.; Schivell, J.; Strachan, J.D.; Taylor, G.; Ulrickson, M.; von Goeler, S.; Wilfrid, E.; Wong, K.L.; Yamad

    1993-03-01

    For a successful reactor, it will be useful to predict the occurrence of disruptions and to understand disruption effects including how a plasma disrupts onto the wall and how reproducibly it does so. Studies of disruptions on TFTR at both high-[beta][sub pol] and high-density have shown that, in both types, a fast growing m/n=1/1 mode plays an important role. In highdensity disruptions, a newly observed fast m/n = 1/1 mode occurs early in the thermal decay phase. For the first time in TFTR q-profile measurements just prior to disruptions have been made. Experimental studies of heat deposition patterns on the first wall of TFTR due to disruptions have provided information on MHD phenomena prior to or during the disruption, how the energy is released to the wall, and the reproducibility of the heat loads from disruptions. This information is important in the design of future devices such as ITER. Several new processes of runaway electron generation are theoretically suggested and their application to TFTR and ITER is considered, together with a preliminary assessment of x-ray data from runaways generated during disruptions.

  5. Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen

    PubMed Central

    Wang, Yan-Fu; Wang, Cheng-Yue; Wan, Peng; Wang, Shao-Gang; Wang, Xiu-Mei

    2016-01-01

    To study the effect of two composition ratios of nano-hydroxyapatite and collagen (NHAC) composites on repairing alveolar bone defect of dogs. Eighteen healthy adult dogs were randomly divided into three groups. Two kinds of the NHAC composites were prepared according to the constituent ratios of 3:7 and 5:5; immediately after extraction of the mandibular second premolars, each kind of the NHAC composite was implanted into extraction socket, respectively: Group I, nHA/Col = 3:7; Group II, nHA/Col = 5:5 and Group III, blank control group. The bone-repairing ability of the two grafts was separately analyzed by morphometric measurement, X-ray tomography examination and biomechanical analysis at 1st, 3rd and 6th month post-surgical, respectively. The NHAC composites were absorbed gradually after implanting into alveolar bone defect and were replaced by new bone. The ratios of new bone formation of Group I was significantly higher than that of Group II after 3 months (P < 0.05). The structure and bioactive performance can be improved when the ratio between the collagen and the hydroxyapatite was reasonable, and the repairing ability and effect in extraction sockets are obviously better. PMID:26816654

  6. Oxygen-isotope composition of ground water and secondary minerals in Columbia Plateau basalts: implications for the paleohydrology of the Pasco Basin

    USGS Publications Warehouse

    Hearn, P.P., Jr.; Steinkampf, W.C.; Horton, D.G.; Solomon, G.C.; White, L.D.; Evans, J.R.

    1989-01-01

    Concentrations of 18O and deuterium in ground waters beneath the Hanford Reservation, Washington State, suggest that the meteoric waters recharging the basalt aquifers have been progressively depleted in these isotopes since at least Pleistocene time. This conclusion is supported by oxygen-isotope analyses of low-temperature secondary minerals filling vugs and fractures in the basalts, which are used to approximate the 18O content of ground water at the time the mineral assemblage formed. A fossil profile of ??18O values projected for ground water in a 1500 m vertical section beneath the reservation suggests that the vertical mixing of shallow and deep ground water indicated by present-day hydrochemical data was also occurring during Neogene time. These data also suggest that a unidirectional depletion of 18O and deuterium recorded in Pleistocene ground waters may have extended considerably further back in time. This shift is tentatively attributed to the orographic depletion of 18O associated with the progressive uplift of the Cascade Range since the middle Miocene. -Authors

  7. Clay Mineral Preferred Orientation

    NASA Astrophysics Data System (ADS)

    Day-Stirrat, R. J.

    2014-12-01

    Anisotropy of the orientation of clay minerals, often referred to as texture, may be unique to sediments' deposition, composition, deformation or diagenetic history. The literature is rich with studies that include preferred orientation generation in fault gouge, low-grade metamorphic rocks, sediments with variable clay content and during the smectite-to-illite transformation. Untangling the interplay between many competing factors in any one geologic situation has proven a significant challenge over many years. Understanding how, where and when clay minerals develop a preferred orientation has significant implications for permeability anisotropy in shallow burial, the way mechanical properties are projected from shallower to deeper settings in basin modeling packages and the way velocity anisotropy is accounted for in seismic data processing. The assessment of the anisotropic properties of fine-grained siliciclastic rocks is gaining significant momentum in rock physics research. Therefore, a fundamental understanding of how clay minerals develop a preferred orientation in space and time is crucial to the understanding of anisotropy of physical properties. The current study brings together a wealth of data that may be used in a predictive sense to account for fabric anisotropy that may impact any number of rock properties.

  8. Infiltration of Refractory Melts into the Sub-Oceanic Mantle: Evidence from Major and Minor Element Compositions of Minerals from the 53° E Amagmatic Segment Abyssal Peridotites at the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Gao, C.; Dick, H. J.; Zhou, H.; Liu, Y.; Wang, J.

    2014-12-01

    Elevated sodium and titanium in pyroxene and spinel with high TiO2 (> 0.2 wt%) are suggested as the geochemical characteristic for the MORB-like melt infiltration of peridotites. The petrological and geochemical results of melt infiltrating in mantle peridotites are controlled by not only the melt composition but also the melt/rock ratio. Large discordant dunite bodies in the mantle transition zone are the direct observation of large volume melt (high melt/rock ratio) infiltrating by channeled porous flow in the shallow mantle (1). In addition to dunites, melt infiltrating results in a large variety of vein lithologies in mantle, and the occurrence of plagioclases are considered as a petrological signal of melt-reaction at shallow depth (2, 3) with a medium melt/rock ratio. Because the lacking of obviously petrological and geochemical variation of peridotites, melt infiltration of peridotites with a low melt/rock ratio are rarely reported. Peridotites in this study are from the 53° E amagmatic segment at the Southwest Indian Ridge. These peridotites are suggested as highly depleted buoyant mantle drawn up from the asthenosphere beneath southern Africa during the breakup of Gondwanaland (4) and are residues of multi-stage melt extracting in both spinel and garnet field. We present a detailed analysis of mineral compositions by both the EMPA and LA-ICPMS. Mineral phases in 53°E peridotites have mantle major element compositions, although minerals show variations with the crystal size and the location from cores to rims (Fig.1). In conjunction with the profile analysis of large clinopyroxene crystals, our results document the melt infiltration occurred at the ultraslow-spreading environment. At least two kinds of percolation melts are distinguished. They are normally MORB-like melt and ultra-depleted melt. Reference1.P. B. Kelemen, H. J. B. Dick, Journal of Geophysical Research-Solid Earth 100, 423 (Jan, 1995). 2.J. M. Warren, N. Shimizu, Journal of Petrology 51

  9. Cell disruption for microalgae biorefineries.

    PubMed

    Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. PMID:25656098

  10. Endocrine disrupters as obesogens

    PubMed Central

    Grün, Felix; Blumberg, Bruce

    2009-01-01

    The recent dramatic rise in obesity rates is an alarming global health trend that consumes an ever increasing portion of health care budgets in Western countries. The root cause of obesity is thought to be a prolonged positive energy balance. Hence, the major focus of preventative programs for obesity has been to target overeating and inadequate physical exercise. Recent research implicates environmental risk factors, including nutrient quality, stress, fetal environment and pharmaceutical or chemical exposure as relevant contributing influences. Evidence points to endocrine disrupting chemicals that interfere with the body's adipose tissue biology, endocrine hormone systems or central hypothalamic-pituitary-adrenal axis as suspects in derailing the homeostatic mechanisms important to weight control. This review highlights recent advances in our understanding of the molecular targets and mechanisms of action for these compounds and areas of future research needed to evaluate the significance of their contribution to obesity. PMID:19433244

  11. Use of diphosphonates to correct disorders in calcium metabolism and mineral composition of bone tissue with 60-day hypokinesia in rats

    NASA Technical Reports Server (NTRS)

    Morukov, B. V.; Zaychik, V. YE.; Ivanov, V. M.; Orlov, O. I.

    1988-01-01

    Compounds of the diphosphonate group suppress bone resorption and bone tissue metabolism, from which it was assumed that they can be used for the prevention of osteoporosis and disorders of calcium homeostasis in humans during space flight. Two compounds of this group were used for preventive purposes in 60 day hypokinesia in rats. The results showed that diphosphonates have a marked effect on calcium metabolism and the condition of the bone tissues under conditions of long term hypokinesia: they reduce the content of ionized calcium in blood, delay the loss of calcium and phosphorus by the bone tissue, and to a considerable degree prevent reduction of bone density. This confirms the possibility of using compounds of this group for correcting and preventing changes of bone tissue and mineral metabolism during long term hypokinesia.

  12. The effect of terebinth (Pistacia terebinthus L.) coffee addition on the chemical and physical characteristics, colour values, organic acid profiles, mineral compositions and sensory properties of ice creams.

    PubMed

    Yüksel, Arzu Kavaz; Şat, Ihsan Güngör; Yüksel, Mehmet

    2015-12-01

    The aim of this research was to evaluate the effect of terebinth (Pistacia terebinthus L.) coffee addition (0.5, 1 and 2 %) on the chemical and physical properties, colour values, organic acid profiles, mineral contents and sensory characteristics of ice creams. The total solids, fat, titratable acidity, viscosity, first dripping time and complete melting time values, a (*) and b (*) colour properties, citric, lactic, acetic and butyric acid levels and Ca, Cu, Mg, Fe, K, Zn and Na concentrations of ice creams showed an increase with the increment of terebinth coffee amount, while protein, pH, L (*), propionic acid and orotic acid values decreased. However, Al and malic acid were not detected in any of the samples. The overall acceptability scores of the sensory properties showed that the addition of 1 % terebinth coffee to the ice cream was more appreciated by the panellists. PMID:26604374

  13. Effect of application of fluidized bed combustion residue to reclaimed mine pastures on forage yield, composition, animal performance, and mineral status

    SciTech Connect

    Smedley, K.O.

    1985-01-01

    Reclaimed surface mined soils in Appalachia are typically infertile and must be amended for optimum vegetative growth. Fluidized bed combustion residue (FBCR) has high levels of Ca, S, Zn, Fe, and Al, and 50% of the neutralizing capacity of limestone. Three treatments were applied to three capacity of limestone. Three treatments were applied to three replicated 0.81 ha reclaimed mine pastures: (A) control (no amendment), (B) 6760 kg FBCR/ha, and (C) 3380 kg limestone/ha. Based on forage availability, six steers were rotationally grazed on pastures receiving each treatment. Steers were weighed and blood samples collected at 14-d intervals and all animals were sacrificed for tissue sampling at the end of the 114-d trial. B and C increased soil pH above control levels. Forage yield and steer gain were not significantly affected by treatment. Forage samples collected during the trial indicated that B and C amendments elevated forage ash, Ca, Mg, S, Cu, and Ca:P ratio and depressed cellulose and NDF. The forage sampled the following spring was lower in hemicellulose, Zn, Mn and Ni; and higher in ash, Ca, S, the Ca:P ratio in the B and C pastures. Mean serum mineral levels of steers were not affected by pasture treatment. The blood packed cell volume was higher in cattle grazing pastures. Liver levels of Fe, Mn, Ni, and Na and bile levels of Mn were depressed in cattle grazing B and C and serum was at deficiency levels and was not detectable in bile, regardless of treatment. Kidney levels of Ca, Mg and P were higher, hair Zn was higher, rib Cr and long bone Cd levels were lower in animals grazing the pastures. This study suggests that FBCR amendment enhances nutrient quality of forage and minerals status of animals at least as well as limestone application to acidic reclaimed mine pastures.

  14. Elastic Properties of Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.; Stan, C. V.

    2012-12-01

    The most direct information about the interior structure of the Earth comes from seismic wave velocities. Interpretation of seismic data requires an understanding of how sound velocities and elastic properties of minerals vary with pressure, temperature, crystal structure, and composition as well as the role of anelasticity, melts, etc. More generally, elastic moduli are important for understanding many solid-state phenomena including mechanical stability, interatomic interactions, material strength, compressibility, and phase transition mechanisms. The database of mineral elasticity measurements has been growing rapidly in recent years. In this work, we report initial results of an ongoing survey of our current knowledge of mineral elasticity at both ambient conditions and high pressures and temperatures. The analysis is selective, emphasizing single crystal measurements but also incorporating polycrystalline measurements and volume compression data as appropriate. The goal is to synthesize our current understanding of mineral elasticity in terms of structure and composition, and to identify the major remaining needs for experimental and theoretical work. Clinopyroxenes (Cpx) provide an example of our approach. A wide range of clinopyroxene compositions are found geologically and Mg-, Ca-, and Na-rich clinopyroxenes are expected to be important components in the upper mantle. The single-crystal elastic properties of a number of endmember Cpx compositions have been measured and these exhibit a range of ~25% in shear velocity. Those with monovalent cations (spodumene, jadeite) in the M2 site exhibit the highest velocities while Fe-rich (hendenbergit, acmite) compositions have the lowest velocities. The effects on velocity due to a wide range of chemical substitutions can be defined, but there are important discrepancies and omissions in the database. New measurements of omphacites, intermediate diopside-hedenbergite compositions, aegerine/acmite, augite, etc. are

  15. Horizontal ridge augmentation utilizing a composite graft of demineralized freeze-dried allograft, mineralized cortical cancellous chips, and a biologically degradable thermoplastic carrier combined with a resorbable membrane: a retrospective evaluation of 73 consecutively treated cases from private practices.

    PubMed

    Toscano, Nicholas; Holtzclaw, Danny; Mazor, Ziv; Rosen, Paul; Horowitz, Robert; Toffler, Michael

    2010-01-01

    Ridge deficiency is an unfortunate obstacle in the field of implant dentistry. Many techniques are available to rebuild the deficient ridge. Some of these techniques are associated with significant morbidity and often require a second surgical site. With the advent of guided bone regeneration (GBR), one may now graft the deficient ridge with decreased morbidity and without a second surgical site. The purpose of this retrospective consecutive case series from 5 private practices is to report on the outcomes of a composite material of demineralized freeze-dried allograft, mineralized cortical cancellous chips, and a biologically degradable thermoplastic carrier (Regenaform RT) when combined with a resorbable membrane for GBR of lateral ridge defects in human patients. The specific aim was to quantify clinical results through direct measurement. Data were obtained from 73 consecutively treated lateral ridge augmentations performed on 67 partial and/or completely edentate patients. Clinical data (presurgical ridge width, ridge width at implant placement, and bone density at implant placement) were obtained retrospectively from 5 private practices via an exhaustive retrospective chart review, which was pooled and averaged for analysis. The average gain in horizontal ridge width was 3.5 mm (range, 3-6 mm). The density of the bone was noted to be type 2 to 3, with type 3 being the predominant finding. This retrospective case series from 5 clinical private practices suggests that the use of a composite material of demineralized freeze-dried allograft, mineralized cortical cancellous chips, and a biologically degradable thermoplastic carrier, when covered by a resorbable collagen membrane for GBR, is an effective means of horizontal ridge augmentation. PMID:20545553

  16. Tracing the Southwest African climate development during the Miocene - changes in elemental distribution and clay mineral composition at DSDP Site 530A (southeastern Angola Basin)

    NASA Astrophysics Data System (ADS)

    Roters, B.

    2009-04-01

    During the middle and late Miocene the climatic system in Southwest Africa was reorganized leading to generally drier conditions as known from today. The reason for this was the cooling of the coastal-near ocean by the initialization of the Benguela Current. Thus the temperature difference between the continent and the sea increased and a system of seaward blowing winds developed. This lead to (1) the development of the Benguela Upwelling System in front of the Namibian coast and (2) it prevented the landward flow of humid air masses. The Mid-Miocene climate change in SW-Africa has been shown by data-sets from the Cape Basin and the Walvis Ridge (Kastanja et al., 2006; Westerhold et al., 2005; Diester-Haass et al., 2002; Roters & Henrich, in press). The DSDP Site 530A is situated in the SE corner of the Walvis Basin at the toe of the Walvis Ridge in a water depth of 4629 m. Today the distance to the coast is about 285 km. The idea is to trace the climatic development between 19 and 9 Myr with the help of (1) a clay mineral record and (2) the results of XRF-scanning of the core. The sediment is carbonate-depleted, which, inversely, enriches the terrigenous components. On the other hand mass accumulation rates are low and the age control of the sediments is difficult. XRF scanning was done on the archive cores at the MARUM, Bremen in a resolution of about 10 kyr, while the clay mineral contents were measured in the isolated clay fraction (< 2µm) on a XRD machine at the AWI, Bremerhaven in a 100 kyr resolution. By grain size analysis it was found that the content of clays (fraction < 2µm) of the sediments averages out to about 75%. The most prominent clays found in the samples are Illites. The remaining material is nearly completely composed of silt. The sediments could have been transported to site 530A by three different processes: (1) in the sediment load of the Kunene River and onwards by surface ocean currents, (2) with the dust load from the African continent

  17. Repartnering after First Union Disruption

    ERIC Educational Resources Information Center

    Wu, Zheng; Schimmele, Christoph M.

    2005-01-01

    Using data from the 1995 General Social Survey (N= 2,639), this study examines two competing repartnering choices made by Canadians after first union disruption: marriage or cohabitation. About 42% of women and 54% of men form a second union 5 years after union disruption, with cohabitation being the most prevalent choice. The timing of second…

  18. Adrenocortical endocrine disruption.

    PubMed

    Harvey, Philip W

    2016-01-01

    The adrenal has been neglected in endocrine disruption regulatory testing strategy. The adrenal is a vital organ, adrenocortical insufficiency is recognised in life threatening "adrenal crises" and Addison's disease, and the consequences of off-target toxicological inhibition of adrenocortical steroidogenesis is well recognised in clinical medicine, where drugs such as aminoglutethimide and etomidate killed patients via unrecognised inhibition of adrenocortical steroidogenic enzymes (e.g. CYP11B1) along the cortisol and aldosterone pathways. The consequences of adrenocortical dysfunction during early development are also recognised in the congenital salt wasting and adrenogenital syndromes presenting neonatally, yet despite a remit to focus on developmental and reproductive toxicity mechanisms of endocrine disruption by many regulatory agencies (USEPA EDSTAC; REACH) the assessment of adrenocortical function has largely been ignored. Further, every step in the adrenocortical steroidogenic pathway (ACTH receptor, StAR, CYP's 11A1, 17, 21, 11B1, 11B2, and 3-hydroxysteroid dehydrogenase Δ4,5 isomerase) is known to be a potential target with multiple examples of chemicals inhibiting these targets. Many of these chemicals have been detected in human and wildlife tissues. This raises the question of whether exposure to low level environmental chemicals may be affecting adrenocortical function. This review examines the omission of adrenocortical testing in the current regulatory frameworks; the characteristics that make the adrenal cortex particularly vulnerable to toxic insult; chemicals and their toxicological targets within the adrenocortical steroidogenic pathways; the typical manifestations of adrenocortical toxicity (e.g. human iatrogenically induced pharmacotoxicological adrenal insufficiency, manifestations in typical mammalian regulatory general toxicology studies, manifestations in wildlife) and models of adrenocortical functional assessment. The utility of the

  19. [Mineral water as a cure].

    PubMed

    Nocco, Priska Binz

    2008-01-01

    was to attribute, on the one hand to the physico-chemical properties of the water and on the other hand to the climatic, nutritional and social factors characterising the selected health resort. All over Europe, pharmacists were dealing with mineral waters, among them even very famous names such as Klaproth, Trommsdorf, Lampadius and Fresenius. They were on one side involved in the development and analysis of the waters, while on the other side they were interested in their artificial production. Their knowledge and findings in the area of the mineral water source chemistry gave a crucial impetus to the future evolution of analytic chemistry. Following the improvements in the precision of analysis and classification of the composition of the mineral waters, the imitation of artificial mineral waters increased significantly. Certain pharmacists tried to copy well-known mineral waters in their properly furnished laboratories. At the same time, pharmacies were important sales points: natural and artificial mineral waters as well as their dried components were either sold there, or delivered upon prescription. In the second part of this work, specifically concerning the situation in the Canton Tessin, the most important local sources and spa resorts are described, as well as the analyses performed and the researchers involved. Moreover, the types of therapies used at that time are mentioned. The integration of the local mineral waters into the pharmacopoeia of the Canton Tessin, the Farmacopea Ticinese, is also discussed. Of particular interest are the delivery and the sale of mineral waters and their dried components by a local pharmacy. In the Canton Tessin, the five most frequented spa resorts were Acquarossa, Brissago, Craveggia, Rovio and Stabio. Craveggia spa resort is of course based in Italy; it has however been included in the present work due to its proximity to Switzerland and to a connected historical Substantial differences existed among the individual health

  20. New Minerals and Science.

    ERIC Educational Resources Information Center

    Birch, William D.

    1997-01-01

    Defines geodiversity, compares it to biodiversity, and discusses the mineral classification system. Charts the discovery of new minerals in Australia over time and focuses on uses of these minerals in technological advances. (DDR)

  1. Mineral spirits poisoning

    MedlinePlus

    Mineral spirits are liquid chemicals used to thin paint and as a degreaser. Mineral spirits poisoning occurs ... be found in: Mineral spirits ( Stoddard solvent ) Some paints Some floor and furniture waxes and polishes Some ...

  2. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  3. Magnetic composites from minerals: study of the iron phases in clay and diatomite using Mössbauer spectroscopy, magnetic measurements and XRD

    NASA Astrophysics Data System (ADS)

    Cabrera, M.; Maciel, J. C.; Quispe-Marcatoma, J.; Pandey, B.; Neri, D. F. M.; Soria, F.; Baggio-Saitovitch, E.; de Carvalho, L. B.

    2014-01-01

    Magnetic particles as matrix for enzyme immobilization have been used and due to the enzymatic derivative can be easily removed from the reaction mixture by a magnetic field. This work presents a study about the synthesis and characterization of iron phases into magnetic montmorillonite clay (mMMT) and magnetic diatomaceous earth (mDE) by 57Fe Mössbauer spectroscopy (MS), magnetic measurements and X-ray diffraction (XRD). Also these magnetic materials were assessed as matrices for the immobilization of invertase via covalent binding. Mössbauer spectra of the magnetic composites performed at 4.2 K showed a mixture of magnetite and maghemite about equal proportion in the mMMT, and a pure magnetite phase in the sample mDE. These results were verified using XRD. The residual specific activity of the immobilized invertase on mMMT and mDE were 83 % and 92.5 %, respectively. Thus, both magnetic composites showed to be promising matrices for covalent immobilization of invertase.

  4. Density, temperature, and composition of the North American lithosphere—New insights from a joint analysis of seismic, gravity, and mineral physics data: 2. Thermal and compositional model of the upper mantle

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail K.; Mooney, Walter D.; Cloetingh, Sierd A. P. L.

    2014-12-01

    and compositional variations of the North American (NA) lithospheric mantle are estimated using a new inversion technique introduced in Part 1, which allows us to jointly interpret seismic tomography and gravity data, taking into account depletion of the lithospheric mantle beneath the cratonic regions. The technique is tested using two tomography models (NA07 and SL2013sv) and different lithospheric density models. The first density model (Model I) reproduces the typical compositionally stratified lithospheric mantle, which is consistent with xenolith samples from the central Slave craton, while the second one (Model II) is based on the direct inversion of the residual gravity and residual topography. The results obtained, both in terms of temperature and composition, are more strongly influenced by the input models derived from seismic tomography, rather than by the choice of lithospheric density Model I versus Model II. The final temperatures estimated in the Archean lithospheric root are up to 150°C higher than in the initial thermal models obtained using a laterally and vertically uniform "fertile" compositional model and are in agreement with temperatures derived from xenolith data. Therefore, the effect of the compositional variations cannot be neglected when temperatures of the cratonic lithospheric mantle are estimated. Strong negative compositional density anomalies (<-0.03 g/cm3), corresponding to Mg # (100 × Mg/(Mg + Fe)) >92, characterize the lithospheric mantle of the northwestern part of the Superior craton and the central part of the Slave and Churchill craton, according to both tomographic models. The largest discrepancies between the results based on different tomography models are observed in the Proterozoic regions, such as the Trans Hudson Orogen (THO), Rocky Mountains, and Colorado Plateau, which appear weakly depleted (>-0.025 g/cm3 corresponding to Mg # ˜91) when model NA07 is used, or locally characterized by high-density bodies when

  5. AIDS and economic disruption.

    PubMed

    Johnson, G S

    1996-10-01

    Child and adult mortality increases in Cameroon due to AIDS will cause life expectancy to fall by as many as 8 years, from just over 50 to just over 40 years. The social consequences of AIDS include grieving, stigmatizing, and the large-scale disruption of family and community structures. Widows and widowers due to AIDS mortality are affected differently from each other, with the widows of men who have died from AIDS facing potential sociocultural and economic hardship. The economic consequences of AIDS in Bamenda and elsewhere in Cameroon will occur mainly through the epidemic's impact upon the size and quality of the labor force. By killing a significant number of male and female workers aged 15-60 years, AIDS will reduce the size and growth rate of the labor force. Despite, rapid population growth, labor is a relatively scarce factor of agricultural production in Cameroon. The spread of HIV in rural areas, combined with the intensity and scarcity of agricultural labor, suggests that AIDS will have an impact upon production and per capita incomes, and increase the already high rates of hunger and absolute poverty. In the context of HIV/AIDS, young people must be empowered to make informed decisions about sex. Adolescents are most at risk because they tend to experiment more than married couples and have many sex partners. Sexual activity begins as early as age 8 years and penetrative sex at age 13 or earlier. The author considers the factors which encourage adolescents to engage in sexual activities. PMID:12293251

  6. Interception and disruption

    SciTech Connect

    Solem, J.C.

    1995-07-01

    Given sufficient warning we might try to avert a collision with a comet or asteroid by using beamed energy or by using the kinetic energy of an interceptor rocket. If motivated by the opportunity to convert the object into a space asset, perhaps a microgravity mine for construction materials or spacecraft fuels, we might try a rendezvous to implant a propulsion system of some sort. But the most cost-effective means of disruption is a nuclear explosive. In this paper, I discuss optimal tactics for terminal intercept, which can be extended to remote-interdiction scenarios as well. I show that the optimal mass ratio of an interceptor rock carrying a nuclear explosive depends mainly on the ratio of the exhaust velocity to the assailant-object closing velocity. I compare the effectiveness of stand-off detonation, surface burst, and penetration, for both deflection and pulverization, concluding that a penetrator has no clear advantage over a surface-burst device for deflection, but is a distinctly more capable pulverizer. The advantage of a stand-off device is to distribute the impulse more evenly over the surface of the object and to prevent fracture, an event which would greatly complicate the intercept problem. Finally, I present some results of a model for gravitationally bound objects and obtain the maximum non-fracturing deflection speed for a variety of object sizes and structures. For a single engagement, I conclude that the non-fracturing deflection speed obtainable with a stand-off device is about four times the speed obtainable with a surface-burst device. Furthermore, the non-fracturing deflection speed is somewhat dependent on the number of competent components of the object, the speed for a 13 component object being about twice that for a 135 component object.

  7. Tidal disruption event demographics

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2016-09-01

    We survey the properties of stars destroyed in tidal disruption events (TDEs) as a function of black hole (BH) mass, stellar mass and evolutionary state, star formation history and redshift. For M_{BH} ≲ 10^7 M_{⊙}, the typical TDE is due to a M* ˜ 0.3 M⊙ M-dwarf, although the mass function is relatively flat for M_{ast } ≲ M_{⊙}. The contribution from older main-sequence stars and sub-giants is small but not negligible. From MBH ≃ 107.5-108.5 M⊙, the balance rapidly shifts to higher mass stars and a larger contribution from evolved stars, and is ultimately dominated by evolved stars at higher BH masses. The star formation history has little effect until the rates are dominated by evolved stars. TDE rates should decline very rapidly towards higher redshifts. The volumetric rate of TDEs is very high because the BH mass function diverges for low masses. However, any emission mechanism which is largely Eddington-limited for low BH masses suppresses this divergence in any observed sample and leads to TDE samples dominated by MBH ≃ 106.0-107.5 M⊙ BHs with roughly Eddington peak accretion rates. The typical fall-back time is relatively long, with 16 per cent ha