Science.gov

Sample records for mineral density bone

  1. Bone mineral density test

    MedlinePlus

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... Bone density testing can be done several ways. The most common and accurate way uses a dual-energy x- ...

  2. Bone mineral density test

    MedlinePlus

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... need to undress. This scan is the best test to predict your risk of fractures. Peripheral DEXA ( ...

  3. [Hyperprolactinaemia and bone mineral density].

    PubMed

    Kostrzak, Anna; Męczekalski, Błażej

    2015-08-01

    Hyperprolactinaemia is one of the most common endocrinological disorder at women at the reproductive age. Prolactin is produced by the anterior lobe of the pituitary.The main role of prolactin is associated with mamotrophic action and lactogenesis. Hyperprolactinaemia causes several symptoms such as menstrual disorders, infertility, decrease of sexual function, galactorrhea in women and gynecomasty, impotence and decrease of semen quality in men. Recent studies have presented prolactin as a homone involved in many metabolic processes. Long-term consequences of high prolactin serum concentration are related to higher risk of cardiovascular system disease, disturbances in lipid profile and immunological system. Hyperprolactiaemia causes decrease of bone mass density (BMD). High serum prolactin levels lead to increase of the risk of osteopenia or/and osteoporosis. Decrease of BMD results from hypoestrogenism induced by hyperprolactinaemia and also by the direct negative influence of prolactin on bone. Hyperprolactinaemia related to prolactinoma significantly (more than functional hyperprolactiaemia) increases the risk of osteopenia, osteoporosis and bone fractures. Important group of patients threatened by osteoporosis and bone fracture is constituted by women which use antipsychotic drugs (which induce hyperprolactinaemia). Hyperprolactinaemia diagnosed in patients should be treated as soon as possible. Hyperprolactinaemic patients should be diagnosed in the direction of osteopenia and osteoporosis. When diagnosis is confirmed proper treatment is indicated. PMID:26319389

  4. Baseline Bone Mineral Density Measurements Key to Future Testing Intervals

    MedlinePlus

    ... on Research 2012 May 2012 (historical) Baseline Bone Mineral Density Measurements Key to Future Testing Intervals How often a woman should have bone mineral density (BMD) tests to track bone mass is ...

  5. Exercise Training and Bone Mineral Density.

    ERIC Educational Resources Information Center

    Lohman, Timothy G.

    1995-01-01

    The effect of exercise on total and regional bone mineral density (BMD) in postmenopausal women is reviewed. Studies on non-estrogen-replete postmenopausal women show 1-2% changes in regional BMD with 1 year of weight-bearing exercises. Studies of exercise training in the estrogen-replete postmenopausal population suggest large BMD changes.…

  6. [Inflammatory bowel disease and bone decreased bone mineral density].

    PubMed

    Hisamatsu, Tadakazu; Wada, Yasuyo; Kanai, Takanori

    2015-11-01

    Metabolic bone diseases such as osteopenia and osteoporosis increase the risk of bone fracture that negatively affects quality of life of individuals. Patients with inflammatory bowel disease(IBD), including ulcerative colitis(UC)and Crohn's disease(CD), have been shown to be at increased risk of decreased bone mineral density, however frequency of metabolic bone disease in IBD and identified risk factors are varied among reports. PMID:26503868

  7. Bone mineral density: testing for osteoporosis

    PubMed Central

    Sheu, Angela; Diamond, Terry

    2016-01-01

    Summary Primary osteoporosis is related to bone loss from ageing. Secondary osteoporosis results from specific conditions that may be reversible. A thoracolumbar X-ray is useful in identifying vertebral fractures, and dual energy X-ray absorptiometry is the preferred method of calculating bone mineral density. The density of the total hip is the best predictor for a hip fracture, while the lumbar spine is the best site for monitoring the effect of treatment. The T-score is a comparison of the patient’s bone density with healthy, young individuals of the same sex. A negative T-score of –2.5 or less at the femoral neck defines osteoporosis. The Z-score is a comparison with the bone density of people of the same age and sex as the patient. A negative Z-score of –2.5 or less should raise suspicion of a secondary cause of osteoporosis. Clinical risk calculators can be used to predict the 10-year probability of a hip or major osteoporotic fracture. A probability of more than 5% for the hip or more than 20% for any fracture is abnormal and treatment may be warranted. PMID:27340320

  8. DXA parameters: beyond bone mineral density.

    PubMed

    Briot, Karine

    2013-05-01

    Dual-energy X-ray absorptiometry (DXA) is the reference standard for measuring bone mineral density (BMD) to diagnose osteoporosis. However, BMD measurement alone does not reliably predict the fracture risk. DXA can be used to assess other parameters (e.g. presence of vertebral fractures, bone microarchitecture, bone geometry, and body composition) simultaneously with BMD measurements, to help identify individuals at high fracture risk. Among these parameters, some are suitable for use in clinical practice, whereas others are reserved for research. Vertebral fracture assessment (VFA) is a very low radiation-dose method for detecting thoracic and lumbar vertebral fractures. Compared to standard radiography, VFA can be used in a broader population to detect asymptomatic vertebral fractures. The very good negative predictive value of VFA leads, in one-third of cases, to changes in patient management (drug treatment and prescription of radiographs). The trabecular bone score (TBS) is a noninvasively measured texture parameter that correlates with 3D bone microarchitecture parameters independently from BMD and that can be determined from lumbar-spine DXA images. Several cross-sectional studies and a prospective study established that the TBS was effective in identifying individuals with fractures. Additional studies will have to be performed to determine whether TBS determination can be recommended for everyday practice when treatment decisions are difficult. PMID:23622733

  9. Bone mineral density, adiposity, and cognitive functions

    PubMed Central

    Sohrabi, Hamid R.; Bates, Kristyn A.; Weinborn, Michael; Bucks, Romola S.; Rainey-Smith, Stephanie R.; Rodrigues, Mark A.; Bird, Sabine M.; Brown, Belinda M.; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S.; Mehta, Pankaj D.; Foster, Jonathan K.; Martins, Ian J.; Lautenschlager, Nicola T.; Mastaglia, Francis; Laws, Simon M.; Martins, Ralph N.

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34–87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  10. Bone mineral density, adiposity, and cognitive functions.

    PubMed

    Sohrabi, Hamid R; Bates, Kristyn A; Weinborn, Michael; Bucks, Romola S; Rainey-Smith, Stephanie R; Rodrigues, Mark A; Bird, Sabine M; Brown, Belinda M; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S; Mehta, Pankaj D; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Francis; Laws, Simon M; Martins, Ralph N

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34-87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  11. Bone mineral density testing after fragility fracture

    PubMed Central

    Posen, Joshua; Beaton, Dorcas E.; Sale, Joanna; Bogoch, Earl R.

    2013-01-01

    Abstract Objective To determine the proportion of patients with fragility fractures who can be expected to have low bone mineral density (BMD) at the time of fracture and to assist FPs in deciding whether to refer patients for BMD testing. Data sources MEDLINE, EMBASE, and CINAHL were searched from the earliest available dates through September 2009. Study selection English-language articles reporting BMD test results of patients with fragility fractures who were managed in an orthopedic environment (eg, fracture clinic, emergency management by orthopedic surgeons, inpatients) were eligible for review. While the orthopedic environment has been identified as an ideal point for case finding, FPs are often responsible for investigation and treatment. Factors that potentially influenced BMD test results (eg, selection of fracture types, exclusion criteria) were identified. Studies with 2 or more selection factors of potential influence were flagged, and rates of low BMD were calculated including and excluding these studies. Synthesis The distribution of the proportion of persons with low BMD was summarized across studies using descriptive statistics. We calculated lower boundaries on this distribution, using standard statistical thresholds, to determine a lower threshold of the expected rate of low BMD. Conclusion Family physicians evaluating patients with fragility fractures can expect that at least two-thirds of patients with fragility fractures who are older than 50 years of age will have low BMD (T score ≤ −1.0). With this a priori expectation, FPs might more readily conduct a fracture risk assessment and pursue warranted fracture risk reduction strategies following fragility fracture. PMID:24336562

  12. Total body bone mineral density in young children: influence of head bone mineral density.

    PubMed

    Taylor, A; Konrad, P T; Norman, M E; Harcke, H T

    1997-04-01

    Dual-energy X-ray absorptiometry (DXA) with its short scan time, low radiation dose, and high precision and accuracy have made this technique particularly suitable for measuring total body bone mineral density (TBMD) in children. Other published reports have related TBMD to age in children 2-18 years of age. However, in young normal children aged 2-9 years (51 girls, 43 boys), we found that regression equations for TBMD with age as the predictor did not explain enough of the variance to warrant their use for predicting TBMD (adjusted R2 0.47, females; 0.41, males). Subtotal BMD (TBMD-head BMD) is predicted better by age because of a possibly invalid adult algorithm for head BMD (adjusted R2 0.73, females; 0.71, males). PMID:9101377

  13. Bone mineral content and bone mineral density are lower in older than in younger females with Rett syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although bone mineral deficits have been identified in Rett syndrome (RTT), the prevalence of low bone mineral density (BMD) and its association with skeletal fractures and scoliosis has not been characterized fully in girls and women with RTT. Accordingly, we measured total body bone mineral conten...

  14. Can Dental Cone Beam Computed Tomography Assess Bone Mineral Density?

    PubMed Central

    2014-01-01

    Mineral density distribution of bone tissue is altered by active bone modeling and remodeling due to bone complications including bone disease and implantation surgery. Clinical cone beam computed tomography (CBCT) has been examined whether it can assess oral bone mineral density (BMD) in patient. It has been indicated that CBCT has disadvantages of higher noise and lower contrast than conventional medical computed tomography (CT) systems. On the other hand, it has advantages of a relatively lower cost and radiation dose but higher spatial resolution. However, the reliability of CBCT based mineral density measurement has not yet been fully validated. Thus, the objectives of this review are to discuss 1) why assessment of BMD distribution is important and 2) whether the clinical CBCT can be used as a potential tool to measure the BMD. Brief descriptions of image artefacts associated with assessment of gray value, which has been used to account for mineral density, in CBCT images are provided. Techniques to correct local and conversion errors in obtaining the gray values in CBCT images are also introduced. This review can be used as a quick reference for users who may encounter these errors during analysis of CBCT images. PMID:25006568

  15. Bone mineral density, Bone mineral contents, MMP-8 and MMP-9 levels in Human Mandible and alveolar bone: Simulated microgravity

    NASA Astrophysics Data System (ADS)

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in flights. There is no study on the correlation on effects of mandibular bone and alveolar bone loss in both sex in simulating microgravity. This study was designed to determine the Bone mineral density and GCF MMP-8 MMP-9 in normal healthy subject of both sexes in simulated microgravity condition of -6 head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers participated in three weeks 6 HDT bed-rest exposure. The Bone density and bone mineral contents were measured by dual energy X-ray absorptiometry before and in simulated microgravity. The GCF MMP-8 MMP-8 were measured by Enzyme-linked immunosorbent assays (Human Quantikine MMP-8,-9 ELISA kit). The bone mineral density and bone mineral contents levels were significantly decreased in simulated microgravity condition in both genders, although insignificantly loss was higher in females as compared to males. MMP-8 MMP-9 levels were significantly increased in simulated microgravity as compared to normal condition although insignificantly higher in females as compared to males. Further study is required on large samples size including all factors effecting in simulated microgravity and microgravity. Keys words-Simulated microgravity condition, head-down-tilt, Bone loss, MMP-8, MMP-9, Bone density, Bone mineral contents.

  16. PRECISION OF SINGLE VERSUS BILATERAL HIP BONE MINERAL DENSITY SCANS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual-energy X-ray absorptiometry (DXA) scans of the hip and lumbar spine are currently the "gold standard" for measurement of bone mineral density (BMD). DXA allows swift, noninvasive measurements with minimal radiation for both clinical practice and research. Traditional testing has used results ...

  17. Race/ethnic differences in bone mineral density in men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The epidemiology of osteoporosis in male and minority populations is understudied. To address this concern, we conducted a study of skeletal health in a diverse population of adult males, comparing Bone Mineral Density (BMD) in 367 Black, 401 Hispanic, and 451 White men aged 30-79 years who were ran...

  18. Relationship of bone mineral density to progression of knee osteoarthritis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective. To evaluate the longitudinal relationship between bone mineral density (BMD) and BMD changes and the progression of knee osteoarthritis (OA), as measured by cartilage outcomes. Methods. We used observational cohort data from the Vitamin D for Knee Osteoarthritis trial. Bilateral femoral ...

  19. Difference in Bone Mineral Density between Young versus Midlife Women

    ERIC Educational Resources Information Center

    Sanderson, Sonya; Anderson, Pamela S.; Benton, Melissa J.

    2016-01-01

    Background: Older age is a risk factor for low bone mineral density (BMD). Older women have been found to have lower BMD than younger women. Recent trends for decreased calcium consumption and physical activity may place younger women at greater risk than previously anticipated. Purpose: The purpose of this study was to evaluate the effect of age…

  20. Treatment of Premenopausal Women with Low Bone Mineral Density

    PubMed Central

    Cohen, Adi; Shane, Elizabeth

    2015-01-01

    Interpretation of bone mineral density (BMD) results in premenopausal women is particularly challenging, because the relationship between BMD and fracture risk is not the same as for postmenopausal women. Z scores rather than T scores should be used to define “low BMD” in premenopausal women. The finding of low BMD in a premenopausal woman should prompt an evaluation for secondary causes of bone loss. If a secondary cause is found, management should focus on treatment of this condition. In some cases in which the secondary cause cannot be addressed, such as glucocorticoid therapy or cancer chemotherapy, treatment with a bone-active agent to prevent bone loss should be considered. In women with no fractures and no known secondary cause, low BMD may not signify compromised bone strength. BMD is likely to remain stable in these women, and pharmacologic therapy is rarely justified. Assessment of markers of bone turnover and follow-up bone density measurements can help to identify those with an ongoing process of bone loss that may indicate a higher risk for fracture, and possible need for pharmacologic intervention. PMID:18430399

  1. Method for improved prediction of bone fracture risk using bone mineral density in structural analysis

    NASA Technical Reports Server (NTRS)

    Cann, Christopher E. (Inventor); Faulkner, Kenneth G. (Inventor)

    1992-01-01

    A non-invasive in-vivo method of analyzing a bone for fracture risk includes obtaining data from the bone such as by computed tomography or projection imaging which data represents a measure of bone material characteristics such as bone mineral density. The distribution of the bone material characteristics is used to generate a finite element method (FEM) mesh from which load capability of the bone can be determined. In determining load capability, the bone is mathematically compressed, and stress, strain force, force/area versus bone material characteristics are determined.

  2. Bone Mineral Density in Elite DanceSport Athletes.

    PubMed

    Kruusamäe, Helena; Maasalu, Katre; Jürimäe, Jaak

    2016-03-01

    This study compared bone mineral density (BMD) variables of female and male elite dancesport athletes with untrained control subjects of the same gender. Sixty-six elite dancesport athletes (M 33, F 33) and 64 untrained controls (M 34, F 31) participated in this study. Elite dancesport athletes were dancing couples competing at the international level. Whole-body bone mineral content and whole-body, forearm, lumbar-spine, and femoral-neck BMD, as well as whole-body fat mass and fat free mass, were measured by dual-energy X-ray absorptiometry. There were no differences (p>0.05) in height and body mass between dancers and controls of the same gender, but percent body fat was lower (p<0.05) in dancers of both genders than in untrained controls. Elite dancesport athletes had significantly higher femoral-neck BMD, and male dancers also higher whole-body BMD values when compared with controls of the same gender. All other measured bone mineral values did not differ between the groups of the same gender. In addition, training experience was positively correlated with whole-body BMD (r=0.27; p<0.05) in dancesport athletes. Based on this study, it can be concluded that elite dancesport athletes have higher BMD values at the weight-bearing site (femoral-neck BMD), while other measured areas and whole-body bone mineral values do not differ from the corresponding values of healthy sedentary controls of the same gender. According to our results, low BMD is not an issue for elite female dancesport athletes, despite their lower percent body fat values. PMID:26966961

  3. Bone Mineral Density of the Tarsals and Metatarsals With Reloading

    PubMed Central

    Hastings, Mary Kent; Gelber, Judy; Commean, Paul K; Prior, Fred; Sinacore, David R

    2008-01-01

    Background and Purpose: Bone mineral density (BMD) decreases rapidly with prolonged non–weight bearing. Maximizing the BMD response to reloading activities after NWB is critical to minimizing fracture risk. Methods for measuring individual tarsal and metatarsal BMD have not been available. This case report describes tarsal and metatarsal BMD with a reloading program, as revealed by quantitative computed tomography (QCT). Case Description: A 24-year-old woman was non–weight bearing for 6 weeks after right talocrural arthroscopy. Tarsal and metatarsal BMD were measured with QCT 9 weeks (before reloading) and 32 weeks (after reloading) after surgery. A 26-week progressive reloading program was completed. Change scores were calculated for BMD before reloading and BMD after reloading for the total foot (average of all tarsals and metatarsals), tarsals, metatarsals, bones of the medial column (calcaneus, navicular, cuneiforms 1 and 2, and metatarsal 1), and bones of the lateral column (calcaneus, cuboid, cuneiform 3, and metatarsals 2–5). The percent differences in BMD between the involved side and the uninvolved side were calculated. Outcomes: Before reloading, BMD of the involved total foot was 9% lower than that on the uninvolved side. After reloading, BMD increased 22% and 21% for the total foot, 16% and 14% for the tarsals, 29% and 30% for the metatarsals, 14% and 15% for the medial column bones, and 28% and 26% for the lateral column bones on the involved and uninvolved sides, respectively. After reloading, BMD of the involved total foot remained 8% lower than that on the uninvolved side. Discussion: The increase in BMD with reloading was not uniform across all pedal bones; the metatarsals showed a greater increase than the tarsals, and the lateral column bones showed a greater increase than the medial column bones. PMID:18388153

  4. Quantitative CT for determination of bone mineral density: a review

    SciTech Connect

    Cann, C.E.

    1988-02-01

    One of the major uses of quantitative computed tomography (CT) has been the measurement of bone mineral density (BMD) at various skeletal sites. The published literature on this subject from 1974 to the present is extensive. Because many investigators and clinicians are just now starting to explore the utility of this technique, the author reviewed this literature to provide both the historic perspective and current status of BMD measurement with CT. The physical and physiologic bases of the method, accuracy, reproducibility, radiation dose, and clinical utility are all discussed.103 references.

  5. Optical studies of changes in bone mineral density

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Matcher, Stephen J.; Attenburrow, Don P.

    2003-07-01

    The ability to measure changes in bone-mineral-density (BMD) in-vivo has potential applications in monitoring stress-induced bone remodelling in, for example, competition race horses. In this study we have begun to investigate the potential of optical techniques to monitor such changes via changes in bone optical scattering. Using integrating spheres, we have investigated the optical properties of bone samples taken from the leg of the horse. Since our samples have stable characteristics over the time, we are able to use a single integrating-sphere technique. Diffuse reflection and transmission coefficients have been measured over the wavelength range 520 to 960 nm. Measurements were made on samples immersed in formic acid solution for different lengths of time; this was to investigate the effect of reduction in BMD on the optical properties. The experimental results and a Monte-Carlo based inversion method were used to extract the absorption coefficient and unmodified scattering coefficient of the samples. After full demineralisation scattering coefficient fell by a factor 4. This shows that the calcium-content in bone influences its optical properties considerably. Our experiments confirm the possibility of using optical techniques to determine changes in the BMD of samples.

  6. Selective glucocorticoid receptor modulation maintains bone mineral density in mice.

    PubMed

    Thiele, Sylvia; Ziegler, Nicole; Tsourdi, Elena; De Bosscher, Karolien; Tuckermann, Jan P; Hofbauer, Lorenz C; Rauner, Martina

    2012-11-01

    Glucocorticoids (GCs) are potent anti-inflammatory drugs, but their use is limited by their adverse effects on the skeleton. Compound A (CpdA) is a novel GC receptor modulator with the potential for an improved risk/benefit profile. We tested the effects of CpdA on bone in a mouse model of GC-induced bone loss. Bone loss was induced in FVB/N mice by implanting slow-release pellets containing either vehicle, prednisolone (PRED) (3.5 mg), or CpdA (3.5 mg). After 4 weeks, mice were killed to examine the effects on the skeleton using quantitative computed tomography, bone histomorphometry, serum markers of bone turnover, and gene expression analysis. To assess the underlying mechanisms, in vitro studies were performed with human bone marrow stromal cells (BMSCs) and murine osteocyte-like cells (MLO-Y4 cells). PRED reduced the total and trabecular bone density in the femur by 9% and 24% and in the spine by 11% and 20%, respectively, whereas CpdA did not influence these parameters. Histomorphometry confirmed these results and further showed that the mineral apposition rate was decreased by PRED whereas the number of osteoclasts was increased. Decreased bone formation was paralleled by a decline in serum procollagen type 1 N-terminal peptide (P1NP), reduced skeletal expression of osteoblast markers, and increased serum levels of the osteoblast inhibitor dickkopf-1 (DKK-1). In addition, serum CTX-1 and the skeletal receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) ratio were increased by PRED. None of these effects were observed with CpdA. Consistent with the in vivo data, CpdA did not increase the RANKL/OPG ratio in MLO-Y4 cells or the expression of DKK-1 in bone tissue, BMSCs, and osteocytes. Finally, CpdA also failed to transactivate DKK-1 expression in bone tissue, BMSCs, and osteocytes. This study underlines the bone-sparing potential of CpdA and suggests that by preventing increases in the RANKL/OPG ratio or DKK-1 in osteoblast lineage cells, GC

  7. Bone mineral density in survivors of childhood acute lymphoblastic leukemia.

    PubMed

    Athanassiadou, Fani; Tragiannidis, Athanassios; Rousso, Israel; Katsos, Georgios; Sidi, Vassiliki; Papageorgiou, Theodotis; Papastergiou, Christos; Tsituridis, Ioannis; Koliouskas, Dimitrios

    2006-01-01

    The aim of our study was to evaluate bone metabolism with measurement of bone mineral density (BMD) after management (chemo-, radiotherapy) for childhood acute lymphoblastic leukemia (ALL). Bone mineral density (g/cm2) of lumbar spine was measured by dual energy X-ray absorptiometry (Norland bone densitometer) in 18 children with ALL and a median of 34 months' post-diagnosis with no history of relapse, secondary malignancy, or transplantation. In addition, patients' BMDs were correlated with particular attention to age, sex and time (years) from completion of chemotherapy. The results were compared with healthy age- and sex-matched controls of the same population and expressed as standard deviation scores (SDS). Mean age of children was 9.8 +/- 3.7 years. Of 18 children (10 boys and 8 girls), 13 were grouped as standard and 5 as high-risk, respectively. Based on z-score values, 9 were classified as normal (z-score <1 SD), 7 as osteopenic (z-score 1-2.5 SD) and 2 as osteoporotic (z-score >2.5 SD). Children with ALL had reduced lumbar BMDs (z score -0.99) in comparison to healthy controls (z score -0.14) (p=0.011), which is indicative of relative osteopenia. Moreover, the reduced BMD was associated with patient age (z score -0.14 and -1.52 for ages <10 and >10 years, respectively, p=0.016). Reduced BMD was not correlated with time from completion of chemotherapy (p=0.33), risk group (p=0.9) and sex (p=0.3). We conclude that children's BMDs are reduced after completion of chemotherapy for ALL. The causes are multifactorial and mainly related to antineoplastic treatments, such as corticosteroids and methotrexate, physical inactivity and cranial irradiation. We suggest that further studies are needed to evaluate the long-term effect on BMD in these children and to prevent pathological fractures later in life. PMID:16848106

  8. Multiple vibration intensities and frequencies for bone mineral density improvement.

    PubMed

    Ezenwa, Bertram; Burns, Edith; Wilson, Charles

    2008-01-01

    Devices that deliver controlled quantum vibration intensities at multiple frequencies (QVIMF) provide optimal stress to the musculoskeletal system for improved bone mineral density and muscle strength. This paper presents development of a QVIMF system and pilot study to determine device performance. Development is centered on specially-designed actuators that comprise multiple nodes of controlled and smooth, but variable rates of contact on a telescoping platform through sets of damping subsystems. The combination of specially-designed actuators and damping subsystems, powered by a DC controlled motor, delivers quantum busts of vibration at multiple frequencies resulting in whole body vibration. An initial feasibility study involved a 79 year old adult male. After IRB approval from both the University of Wisconsin-Milwaukee (UWM) and the Zablocki VA Medical Center, Milwaukee, the subject's bone mineral density (BMD) was measured by dual x-ray absorptimetry (DXA) at baseline. The subject then visited the UWM laboratory for two fifteen-minute vibration sessions per visit, three times a week for a total of 60 visits. Post-vibration BMD was again measured by DXA. Comparison pre- and post-vibration test results showed increases in BMD at the femoral neck, trochanter, total hip, forearm and lower lumbar spine (L1-4). PMID:19163635

  9. Periprosthetic tibial bone mineral density changes after total knee arthroplasty

    PubMed Central

    Jaroma, Antti; Soininvaara, Tarja; Kröger, Heikki

    2016-01-01

    Background and purpose Total knee arthroplasty (TKA) may cause postoperative periprosthetic bone loss due to stress shielding. Bone also adapts to mechanical alterations such as correction of malalignment. We investigated medium-term changes in bone mineral density (BMD) in tibial periprosthetic bone after TKA. Patients and methods 86 TKA patients were prospectively measured with dual-energy X-ray absorptiometry (DXA), the baseline measurement being within 1 week after TKA and the follow-up measurements being at 3 and 6 months, and at 1, 2, 4, and 7 years postoperatively. Long standing radiographs were taken and clinical evaluation was done with the American Knee Society (AKS) score. Results The baseline BMD of the medial tibial metaphyseal region of interest (ROI) was higher in the varus aligned knees (25%; p < 0.001). Medial metaphyseal BMD decreased in subjects with preoperatively varus aligned knees (13%, p < 0.001) and in those with preoperatively valgus aligned knees (12%, p = 0.02) between the baseline and 7-year measurements. No statistically significant changes in BMD were detected in lateral metaphyseal ROIs. No implant failures or revision surgery due to tibial problems occurred. Interpretation Tibial metaphyseal periprosthetic bone is remodeled after TKA due to mechanical axis correction, resulting in more balanced bone stock below the tibial tray. The diaphyseal BMD remains unchanged after the initial drop, within 3–6 months. This remodeling process was related to good component survival, as there were no implant failures or revision operations due to tibial problems in this medium-term follow-up. PMID:27120266

  10. Periprosthetic tibial bone mineral density changes after total knee arthroplasty.

    PubMed

    Jaroma, Antti; Soininvaara, Tarja; Kröger, Heikki

    2016-06-01

    Background and purpose - Total knee arthroplasty (TKA) may cause postoperative periprosthetic bone loss due to stress shielding. Bone also adapts to mechanical alterations such as correction of malalignment. We investigated medium-term changes in bone mineral density (BMD) in tibial periprosthetic bone after TKA. Patients and methods - 86 TKA patients were prospectively measured with dual-energy X-ray absorptiometry (DXA), the baseline measurement being within 1 week after TKA and the follow-up measurements being at 3 and 6 months, and at 1, 2, 4, and 7 years postoperatively. Long standing radiographs were taken and clinical evaluation was done with the American Knee Society (AKS) score. Results - The baseline BMD of the medial tibial metaphyseal region of interest (ROI) was higher in the varus aligned knees (25%; p < 0.001). Medial metaphyseal BMD decreased in subjects with preoperatively varus aligned knees (13%, p < 0.001) and in those with preoperatively valgus aligned knees (12%, p = 0.02) between the baseline and 7-year measurements. No statistically significant changes in BMD were detected in lateral metaphyseal ROIs. No implant failures or revision surgery due to tibial problems occurred. Interpretation - Tibial metaphyseal periprosthetic bone is remodeled after TKA due to mechanical axis correction, resulting in more balanced bone stock below the tibial tray. The diaphyseal BMD remains unchanged after the initial drop, within 3-6 months. This remodeling process was related to good component survival, as there were no implant failures or revision operations due to tibial problems in this medium-term follow-up. PMID:27120266

  11. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    PubMed Central

    Parvaneh, Kolsoom; Jamaluddin, Rosita; Karimi, Golgis; Erfani, Reza

    2014-01-01

    A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density. PMID:24587733

  12. Effect of probiotics supplementation on bone mineral content and bone mass density.

    PubMed

    Parvaneh, Kolsoom; Jamaluddin, Rosita; Karimi, Golgis; Erfani, Reza

    2014-01-01

    A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium. The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density. PMID:24587733

  13. Bone mineral density of healthy Turkish children and adolescents.

    PubMed

    Goksen, Damla; Darcan, Sukran; Coker, Mahmut; Kose, Timur

    2006-01-01

    The objective of this article is to gain reference values of lumbar and femoral neck bone mineral density (BMD) for healthy Turkish children. Three hundred forty-five children aged 2-18 years were examined. Weight and height development were normal for age according to national growth charts. Areal BMD (aBMD) was corrected using the model of Kroger et al (9). The results of the lumbar and femoral aBMD increased progressively from childhood to adulthood. Statistically significant correlation was found between lumbar and femoral neck aBMD and age and height (p<0.01). Lumbar volumetric (vBMD) data were similar between males and females. Femoral vBMD was only significantly different at the ages of 8 and 16 (p<0.05) in girls and boys and did not increase with age. A significant increase in aBMD L1-L4 values according to puberty was observed between all Tanner stages, except Tanner stages 3 and 4 (p>0.05). A significant difference was found between stages 1 and 2, and 2 and 3 in femoral neck aBMD (p<0.05). This data provides a tool for the investigation and follow-up of Turkish children at risk for low-bone mineralization. PMID:16731436

  14. Serum Bicarbonate and Bone Mineral Density in US Adults

    PubMed Central

    Chen, Wei; Melamed, Michal L.; Abramowitz, Matthew K.

    2014-01-01

    Background Chronic metabolic acidosis leads to bone mineral loss and results in lower bone mineral density (BMD), which is a risk factor for osteoporosis-related fractures. The effect of low-level metabolic acidosis on bone density in the general population is unknown. Study Design Cross-sectional study. Setting & Participants 9,724 nationally representative adults aged 20 years or older in the National Health and Nutrition Examination Survey 1999-2004. Factor Serum bicarbonate level. Outcomes Lumbar and total BMD as well as low lumbar and total bone mass defined as 1.0 SD below sex-specific mean of young adults. Measurements BMD was measured by dual-energy X-ray absorptiometry and serum bicarbonate levels were measured in all participants. Results Both men and women with lower serum bicarbonate levels were more likely to be current smokers and had higher body mass index and estimated net endogenous acid production. There was a significant linear trend across quartiles of serum bicarbonate with lumbar BMD among the total population as well as in sex-specific models (p=0.02 for all three models, p=0.1 for interaction). For total BMD, a significant association was seen with serum bicarbonate levels among women but not men (p=0.02 and p=0.1, respectively; p=0.8 for interaction); and a significant association was seen among post-menopausal women but not pre-menopausal women (p=0.02 and p=0.2, respectively; p=0.5 for interaction). Compared to women with serum bicarbonate level <24 mEq/L, those with serum bicarbonate ≥27 mEq/L had 0.018 g/cm2 higher total BMD (95% CI, 0.004-0.032; p=0.01) and had 31% lower odds of having low total bone mass (OR, 0.68; 95% CI, 0.46-0.99; p=0.05). Limitations Cross-sectional study using a single measurement of serum bicarbonate level. The subgroup differences are not definitive. Conclusions Lower serum bicarbonate levels are associated with lower BMD in US adults. Further studies should examine whether serum bicarbonate levels should be

  15. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status

    PubMed Central

    Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  16. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status.

    PubMed

    Rodrigues Filho, Edil de Albuquerque; Santos, Marcos André Moura Dos; Silva, Amanda Tabosa Pereira da; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara E Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-03-01

    Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  17. Bone morphometry and mineral density measurement using quantitative computed tomography

    SciTech Connect

    Jacobson, D.R.

    1991-01-01

    Application of computed tomography (CT) to the study of bone structure and density was explored and developed. A review of bone mineral densitometry (BMD) methodology and general principles of quantitative CT (QCT) are presented. A method for QCT of the spine was developed using a flexible tissue equivalent reference placed adjacent to the patient. A methodology for the development and production of tissue equivalent materials is also presented. Patient equivalent phantoms were used to characterize the method, and phantom studies were performed at five clinical sites. A protocol is defined for measuring the inside diameter of the lumbar pedicular canal. Data generated from this study has proven invaluable in the planning for lumbar fusion surgery when screws are to be used for immobilization. Pedicular canal data from 33 patients is presented. QCT was also used to quantify several parameters of the femoral shaft for use in hip replacement surgical planning. Parameters studied include inside diameter, BMD, endosteal BMD and proximal shaft morphology. The structure and trabecular BMD of the proximal femur was extensively studied using QCT. A large variation was found in the fat content of marrow within the proximal femur, and phantom studies were performed to quantify the effect of fat on trabecular QCT BMD. Cadaveric trabecular bone samples with marrow were analyzed physically to determine water, fat, non-fat soft tissue, and ash content. Multiple thin-slice CT studies were performed on cadaveric femurs. A structural model of the proximal femur was developed in which the structural support is provided primarily by trabecular bone. This model may have profound implications in the study of femoral fractures and prosthetic hardware design.

  18. Abnormal bone mineral density and bone turnover marker expression profiles in patients with primary spontaneous pneumothorax

    PubMed Central

    Yu, Lixin; Hou, Shengcai; Hu, Bin; Zhao, Liqiang; Miao, Jinbai; Wang, Yang; Li, Tong; Zhang, Zhenkui; You, Bin; Pang, Baosen; Liang, Yufang; Zhao, Yi; Hao, Wei

    2016-01-01

    Background To examine the bone mineral density (BMD) and the role of bone biomarkers, including bone formation marker procollagen type I aminoterminal propeptide (PINP) and N-terminal midmolecule fragment osteocalcin (N-MID), bone resorption marker b-C-telopeptides of type I collagen (b-CTX) and tartrate-resistant acid phosphatase 5b (TRACP5b) in the pathogenesis of PSP. Methods Eighty-three consecutive primary spontaneous pneumothorax (PSP) patients (PSP group) and 87 healthy individuals (control group) were enrolled in this study. General data, including gender, age, height, weight, and body mass index (BMI), were recorded. Dual-energy X-ray absorptiometry, electrochemiluminescence immunoassay (ECLIA), and ELISA were used to evaluate bone mineral density and expression levels of bone metabolism markers, including PINP, b-CTX, TRACP5b, N-MID, and 25-hydroxyvitamin D (25-OH VD). Results Mean height was significantly greater in the PSP group compared with the control group, whereas weight and BMI were lower. Patients in the PSP group had significantly lower average bone mineral density, which mainly manifested as osteopenia (11/12, 91.7%); however, only one patient (8.3%) developed osteoporosis. Serum overexpression of PINP, b-CTX, TRACP5b, and N-MID were found in PSP patients. Expression of 25-OH VD was low in PSP patients. Bone resorption markers showed positive linear relationships with bone formation markers in all participants; whereas only TRACP5b expression negatively correlated with 25-OH VD. Expression levels of all bone turnover markers negatively correlated with BMI. Regression analysis identified risk factors of PSP as age, height, weight, and TRACP5b and 25-OH VD expression levels; whereas gender and PINP, b-CTX, and N-MID expression levels were not significantly associated with the onset of PSP. Conclusions It had lower bone mineral density in PSP patients. Bone formation marker PINP, N-MID and bone resorption marker b-CTX, TRACP5b were upregulated in

  19. Brief Report: HIV Infection Is Associated With Worse Bone Material Properties, Independently of Bone Mineral Density.

    PubMed

    Güerri-Fernández, Robert; Molina, Daniel; Villar-García, Judit; Prieto-Alhambra, Daniel; Mellibovsky, Leonardo; Nogués, Xavier; González-Mena, Alicia; Guelar, Ana; Trenchs-Rodríguez, Marta; Herrera-Fernández, Sabina; Horcajada, Juan Pablo; Díez-Pérez, Adolfo; Knobel, Hernando

    2016-07-01

    Low bone mineral density (BMD) in HIV-infected individuals has been documented in an increasing number of studies. However, it is not clear whether it is the infection itself or the treatment that causes bone impairment. Microindentation measures bone material strength (Bone Material Strength index) directly. We recruited 85 patients, 50 infected with HIV and 35 controls. Median Bone Material Strength index was 84.5 (interquartile range 83-87) in HIV-infected patients and 90 (88.5-93) in controls (P < 0.001). No significant differences in BMD between cases and controls at any of the sites examined (total hip, femoral neck, and lumbar spine). HIV infection is associated with bone damage, independently of BMD. PMID:26910501

  20. Effects of aluminum exposure on bone mineral density, mineral, and trace elements in rats.

    PubMed

    Li, Xinwei; Hu, Chongwei; Zhu, Yanzhu; Sun, Hao; Li, Yanfei; Zhang, Zhigang

    2011-10-01

    The purpose of the study was to investigate the effects of aluminum (Al) exposure on bone mineral elements, trace elements, and bone mineral density (BMD) in rats. One hundred Wistar rats were divided randomly into two groups. Experimental rats were given drinking water containing aluminum chloride (AlCl(3), 430 mg Al(3+)/L), whereas control rats were given distilled water for up to 150 days. Ten rats were sacrificed in each group every 30 days. The levels of Al, calcium (Ca), phosphorus (P), magnesium (Mg), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), boron (B), and strontium (Sr) in bone and the BMD of femur were measured. Al-treated rats showed lower deposition of Ca, P, and Mg compared with control rats. Levels of trace elements (Zn, Fe, Cu, Mn, Se, B, and Sr) were significantly lower in the Al-treated group than in the control group from day 60, and the BMD of the femur metaphysis in the Al-treated group was significantly lower than in the control group on days 120 and 150. These findings indicate that long-term Al exposure reduces the levels of mineral and trace elements in bone. As a result, bone loss was induced (particularly in cancellous bone). PMID:20886309

  1. Bone mineral density and blood metals in premenopausal women

    SciTech Connect

    Pollack, A.Z.; Mumford, S.L.; Wactawski-Wende, J.; Yeung, E.; Mendola, P.; Mattison, D.R.; Schisterman, E.F.

    2013-01-15

    Exposure to metals, specifically cadmium, lead, and mercury, is widespread and is associated with reduced bone mineral density (BMD) in older populations, but the associations among premenopausal women are unclear. Therefore, we evaluated the relationship between these metals in blood and BMD (whole body, total hip, lumbar spine, and non-dominant wrist) quantified by dual energy X-ray absorptiometry in 248 premenopausal women, aged 18-44. Participants were of normal body mass index (mean BMI 24.1), young (mean age 27.4), 60% were white, 20% non-Hispanic black, 15% Asian, and 6% other race group, and were from the Buffalo, New York region. The median (interquartile range) level of cadmium was 0.30 {mu}g/l (0.19-0.43), of lead was 0.86 {mu}g/dl (0.68-1.20), and of mercury was 1.10 {mu}g/l (0.58-2.00). BMD was treated both as a continuous variable in linear regression and dichotomized at the 10th percentile for logistic regression analyses. Mercury was associated with reduced odds of decreased lumbar spine BMD (0.66, 95% confidence interval: 0.44, 0.99), but overall, metals at environmentally relevant levels of exposure were not associated with reduced BMD in this population of healthy, reproductive-aged women. Further research is needed to determine if the blood levels of cadmium, lead, and mercury in this population are sufficiently low that there is no substantive impact on bone, or if effects on bone can be expected only at older ages.

  2. Bone mineral density and blood metals in premenopausal women

    PubMed Central

    Pollack, AZ; Mumford, SL; Wactawski-Wende, J; Yeung, E; Mendola, P; Mattison, DR; Schisterman, EF

    2012-01-01

    Exposure to metals, specifically cadmium, lead, and mercury, is widespread and is associated with reduced bone mineral density (BMD) in older populations, but the associations among premenopausal women are unclear. Therefore, we evaluated the relationship between these metals in blood and BMD (whole body, total hip, lumbar spine, and non-dominant wrist) quantified by dual energy x-ray absorptiometry in 248 premenopausal women, aged 18–44. Participants were of normal body mass index (mean BMI 24.1), young (mean age 27.4), 60% were white, 20% non-Hispanic black, 15% Asian, and 6% other race group, and were from the Buffalo, New York region. The median (interquartile range) level of cadmium was 0.30 μg/l (0.19–0.43), of lead was 0.86 μg/dl (0.68–1.20), and of mercury was, 1.10 μg/l (0.58–2.00). BMD was treated both as a continuous variable in linear regression and dichotomized at the 10th percentile for logistic regression analyses. Mercury was associated with reduced odds of decreased lumbar spine BMD (0.66, 95% confidence interval: 0.44, 0.99), but overall, metals at environmentally relevant levels of exposure were not associated with reduced BMD in this population of healthy, reproductive-aged women. Further research is needed to determine if the blood levels of cadmium, lead, and mercury in this population are sufficiently low that there is no substantive impact on bone, or if effects on bone can be expected only at older ages. PMID:23122770

  3. Bone Mineral Density in Postmenopausal Women Heterozygous for the C282Y HFE Mutation

    PubMed Central

    Gates, Frances; Fulcher, Greg R.

    2016-01-01

    Mutations in the HFE gene may be associated with increased tissue iron stores reflected in an elevated serum ferritin. With homozygous mutation C282Y, the increase in serum ferritin may be associated with tissue damage in the liver, pancreas, and pituitary and with a reduced bone mineral density. With heterozygous mutation C282Y, the degree of iron retention is less but information relating to how a heterozygous C282Y mutation might impact bone mineral density is uncertain. The present study was undertaken to study the relationships between bone mineral density measured by dual energy X-ray absorptiometry and the serum ferritin and serum iron in postmenopausal women heterozygous for the C282Y mutation. The spinal bone mineral density, L2–4, was significantly less than age matched community controls (P = 0.016). There was no significant change in the femoral neck bone mineral density compared to age matched community controls. The correlation between the spinal bone mineral density, L2–4, the femoral neck bone mineral density, and the serum ferritin was not significant. The serum iron correlated significantly inversely with the femoral neck bone mineral density (P = 0.048). The heterozygous C282Y mutation may be associated with impairment of bone cell function in postmenopausal women when only small increases in the serum iron or serum ferritin have occurred. PMID:27123357

  4. Preoperative Periarticular Knee Bone Mineral Density in Osteoarthritic Patients Undergoing TKA

    PubMed Central

    Ishii, Yoshinori; Noguchi, Hideo; Sato, Junko; Todoroki, Koji; Ezawa, Nobukazu; Toyabe, Shin-ichi

    2016-01-01

    Background: Preoperative periarticular bone quality is affected by joint loading. The purpose of this study was to determine the periarticular bone mineral density of the knee joint of patients undergoing total knee arthroplasty, and whether the location of the load-bearing axis correlates with the measured bone mineral density. Materials and Methods: The bone mineral densities of the medial and lateral femoral condyles and the medial and lateral tibial condyles were analyzed in consecutive 116 osteoarthritic patients (130 knees) by dual energy x-ray absorptiometry. Results: The median bone mineral density values in the condyles were 1.138 in femoral medial, 0.767 in femoral lateral, 1.056 in tibial medial, and 0.714 in tibial lateral. The medial condyles showed significantly higher bone mineral densities than the lateral condyles in both the femur and tibia. In addition, the femoral medial showed significantly higher bone mineral density levels than the tibial medial, and the femoral lateral condyle had higher bone mineral density levels than the tibial lateral. The bone mineral density Medial/Lateral ratio was significantly negatively correlated with the location (tibial medial edge 0%, lateral edge 100%) of the load-bearing axis in the femur and tibia. Conclusion: Preoperative bone mineral density values may provide against the changes in bone mineral density after total knee arthroplasty by reflecting the correlation with joint loading axis. These results help explain why total knee arthroplasty has such good long-term clinical outcomes with a low frequency of component loosening and periarticular fractures despite a high degree of postoperative bone loss. PMID:27583058

  5. Factors associated with bone mineral density in healthy African women

    PubMed Central

    Kelly, Cliff; Gati, Brenda; Greenspan, Susan; Dai, James Y.; Bragg, Vivian; Livant, Edward; Piper, Jeanna M.; Nakabiito, Clemensia; Magure, Tsitsi; Marrazzo, Jeanne M.; Chirenje, Z. Mike; Riddler, Sharon A.

    2015-01-01

    Summary There is a paucity of normative bone mineral density (BMD) data in healthy African women. Baseline total hip and lumbar spine BMD was measured in premenopausal women. BMD distribution was comparable to that of a reference population and was impacted by several factors including contraception and duration of lactation. Introduction Normative data on bone mineral density (BMD) and the cumulative impact of lactation, contraceptive use, and other factors on BMD in healthy African women have not been well studied. Objectives The objective of this study was to determine the factors associated with BMD in healthy premenopausal women in Uganda and Zimbabwe. Methods Baseline total hip (TH) and lumbar spine (LS) BMD was measured by dual x-ray absorptiometry in 518 healthy, premenopausal black women enrolling in VOICE, an HIV-1 chemoprevention trial, at sites in Uganda and Zimbabwe. Contraceptive and lactation histories, physical activity assessment, calcium intake, and serum vitamin D levels were assessed. Independent factors associated with BMD were identified using an analysis of covariance model. Results The study enrolled 331 women from Zimbabwe and 187 women from Uganda. Median age was 29 years (IQR 25, 32) and median body mass index (BMI) was 24.8 kg/m2 (IQR 22.2, 28.6). In univariate analyses, lower TH BMD values were associated with residence in Uganda (p<0.001), lower BMI (p<0.001), and any use of and duration of depot-medroxyprogresterone acetate. Use of oral contraceptives, progestin-only implants, and higher physical activity levels were protective against reduced BMD. Similarly, lower LS BMD values were associated with these same factors but also higher parity and history of breastfeeding. In a multivariable analysis, lower TH and LS BMD values were associated with enrollment in Uganda, lower BMI, and lower physical activity level; contraceptive use was associated with lower spine BMD, and breastfeeding contributed to lower total hip BMD. Conclusions

  6. Effects of Statins on Bone Mineral Density and Fracture Risk

    PubMed Central

    Wang, Zongze; Li, Ying; Zhou, Fengxin; Piao, Zhe; Hao, Jian

    2016-01-01

    Abstract Although observational studies have identified the protective effect of statins on bone health, the effects remain controversial in randomized controlled trials (RCTs). We conducted a meta-analysis of RCTs to evaluate the effects of statins on bone mineral density (BMD) and fracture risk among adults. We searched electronic databases of Medline, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) and conducted a bibliography review to identify articles published until May, 2015. Studies included in this meta-analysis should be randomized controlled trials conducted in adults, using statins in the intervention group. Information on changes in BMD or odds ratio, relative risk or hazard ratio (HR) for fracture risk with the corresponding 95% confidence interval (CI) was provided. Two investigators independently reviewed the title or abstract, further reviewed the full-texts and extracted information on study characteristics and study outcomes. Net change estimates of BMD and pooled HR of fracture risk comparing the intervention group with the control group were estimated across trials using random-effects models. Of the relevant 334 citations, 7 trials (including 27,900 randomized participants in total) meeting the eligibility criteria were included. Of the 7 trials, 5 were conducted to assess the association of statins use with BMD change and 2 with fracture risk. Compared with the control group, statins use was associated with significant increase in BMD of 0.03 g/cm2 (95% CI: 0.006, 0.053; I2 = 99.2%; P < 0.001), but null association with fracture risk, with the pooled HR of 1.00 (95% CI: 0.87, 1.15; I2 = 0; P = 0.396). Sensitivity analyses revealed that the associations were consistent and robust. The effect of statins use on bone health among subpopulation could not be identified due to limited number of trials. These findings provide evidence that statins could be used to increase BMD other than decreasing fracture

  7. Genetics of Bone Density

    MedlinePlus

    ... study linked 32 novel genetic regions to bone mineral density. The findings may help researchers understand why ... or treating osteoporosis. Bones are made of a mineral and protein scaffold filled with bone cells. Bone ...

  8. Factors Affecting Bone Mineral Density in Adults with Cerebral Palsy

    PubMed Central

    Yoon, Young Kwon; Kim, Ae Ryoung; Kim, On Yoo; Lee, Kilchan; Suh, Young Joo

    2012-01-01

    Objective To clarify factors affecting bone mineral density (BMD) in adults with cerebral palsy (CP). Method Thirty-five patients with CP participated in this study. Demographic data including gender, age, body mass index (BMI), subtype according to neuromotor type and topographical distribution, ambulatory function, and functional independence measure (FIM) were investigated. The BMD of the lumbar spine and femur were measured using Dual-energy X-ray absorptiometry, and the factors affecting BMD were analyzed. Results The BMD had no significant association with factors such as gender, age, and subtype in adults with CP. However, BMI was significantly correlated with the BMD of lumbar spine and femur (p<0.05). The FIM score was also positively correlated with the BMD of femur (p<0.05). Moreover, CP patients with higher ambulatory function had significantly higher BMD of femur (p<0.05). Conclusion These findings suggest that BMI and functional levels such as FIM and ambulatory function can affect BMD in adults with CP. The results might be used as basic data, suggesting the importance of treatment including weight bearing exercise and gait training in adults with CP. PMID:23342308

  9. Menatetrenone ameliorates reduction in bone mineral density and bone strength in sciatic neurectomized rats.

    PubMed

    Iwasaki-Ishizuka, Yoshiko; Yamato, Hideyuki; Murayama, Hisashi; Abe, Masako; Takahashi, Kei; Kurokawa, Kiyoshi; Fukagawa, Masafumi; Ezawa, Ikuko

    2003-08-01

    Vitamin K2 (menaquinone) acts on the bone metabolism. Menatetrenon (MK-4) is a vitamin K2 homologue that has been used as a therapeutic agent for osteoporosis in Japan. Rat models of immobilization induced by sciatic neurectomy are characterized by transiently increased bone resorption and sustained reduction in bone formation. Using such a rat model, we investigated the efficacy of MK-4 on bone loss. Male Sprague-Dawley rats were subjected to unilateral sciatic neurectomy and administered MK-4 for 28 d beginning day 21 after operation. The effect of MK-4 on the immobilized bone was assessed by measuring the bone mineral density of the femur, breaking force of the femoral diaphysis, and bone histomorphometry in tibial diaphysis. The BMD on both the femoral distal metaphysis and diaphysis was reduced by sciatic neurectomy. The administration of MK-4 ameliorated this reduction in a dose-dependent manner. The administration of 30 mg/kg MK-4 ameliorated the reduction in bone strength. An improvement in bone formation was observed following the administration of MK-4. These results suggest that MK-4 has a therapeutic potential for immobilization-induced osteopenia. PMID:14598912

  10. Bone mineral density, muscle strength, and recreational exercise in men

    NASA Technical Reports Server (NTRS)

    Snow-Harter, C.; Whalen, R.; Myburgh, K.; Arnaud, S.; Marcus, R.

    1992-01-01

    Muscle strength has been shown to predict bone mineral density (BMD) in women. We examined this relationship in 50 healthy men who ranged in age from 28 to 51 years (average 38.3 years). BMD of the lumbar spine, proximal femur, whole body, and tibia were measured by dual-energy x-ray absorptiometry (Hologic QDR 1000W). Dynamic strength using one repetition maximum was assessed for the biceps, quadriceps, and back extensors and for the hip abductors, adductors, and flexors. Isometric grip strength was measured by dynamometry. Daily walking mileage was assessed by 9 week stepmeter records and kinematic analysis of video filming. Subjects were designated as exercisers and nonexercisers. Exercisers participated in recreational exercise at least two times each week. The results demonstrated that BMD at all sites correlated with back and biceps strength (p < 0.01 to p = 0.0001). Body weight correlated with tibia and whole-body BMD (p < 0.001); age negatively correlated with Ward's triangle BMD (p < 0.01). In stepwise multiple regressions, back strength was the only independent predictor of spine and femoral neck density (R2 = 0.27). Further, back strength was the most robust predictor of BMD at the trochanter, Ward's triangle, whole body, and tibia, although biceps strength, age, body weight, and leg strength contributed significantly to BMD at these skeletal sites, accounting for 35-52% of the variance in BMD. Exercisers and nonexercisers were similar for walking (3.97 versus 3.94 miles/day), age (37.8 versus 38.5) years, and weight (80.0 versus 77.7 kg). However, BMD and muscle strength were significantly greater in exercises than in nonexercisers.(ABSTRACT TRUNCATED AT 250 WORDS).

  11. Bone Mineral Density in Healthy Female Adolescents According to Age, Bone Age and Pubertal Breast Stage

    PubMed Central

    Moretto, M.R; Silva, C.C; Kurokawa, C.S; Fortes, C.M; Capela, R.C; Teixeira, A.S; Dalmas, J.C; Goldberg, T.B

    2011-01-01

    Objectives: This study was designed to evaluate bone mineral density (BMD) in healthy female Brazilian adolescents in five groups looking at chronological age, bone age, and pubertal breast stage, and determining BMD behavior for each classification. Methods: Seventy-two healthy female adolescents aged between 10 to 20 incomplete years were divided into five groups and evaluated for calcium intake, weight, height, body mass index (BMI), pubertal breast stage, bone age, and BMD. Bone mass was measured by bone densitometry (DXA) in lumbar spine and proximal femur regions, and the total body. BMI was estimated by Quetelet index. Breast development was assessed by Tanner’s criteria and skeletal maturity by bone age. BMD comparison according to chronologic and bone age, and breast development were analyzed by Anova, with Scheffe’s test used to find significant differences between groups at P≤0.05. Results: BMD (g·cm-2) increased in all studied regions as age advanced, indicating differences from the ages of 13 to 14 years. This group differed to the 10 and 11 to 12 years old groups for lumbar spine BMD (0.865±0.127 vs 0.672±0.082 and 0.689±0.083, respectively) and in girls at pubertal development stage B3, lumbar spine BMD differed from B5 (0.709±0.073 vs 0.936±0.130) and whole body BMD differed from B4 and B5 (0.867±0.056 vs 0.977±0.086 and 1.040±0.080, respectively). Conclusion: Bone mineralization increased in the B3 breast maturity group, and the critical years for bone mass acquisition were between 13 and 14 years of age for all sites evaluated by densitometry. PMID:21966336

  12. Dietary Pseudopurpurin Effects on Bone Mineral Density and Bone Geometry Architecture in Rats

    PubMed Central

    Wu, Chen-Chen; Li, Xiao-Bing; Han, Tie-Suo; Li, Peng; Liu, Guo-Wen; Wang, Wei-Zhong; Wang, Zhe

    2012-01-01

    The objective of our study was to evaluate whether feeding pseudopurpurin affects bone mineral density and bone geometry architecture in rats. Pseudopurpurin was extracted, analyzed and purified using an HLPC-ESI-MS. Rats were given 0% and 0.5% pseudopurpurin powder in their diet. Femurs of rats were examined at 0.5, 1 and 2 months after pseudopurpurin feeding. Compared with rats in the group 0%, the bone mineral density, and the calcium, magnesium, zinc and manganese concentrations in the rats femur in the group 0.5% increased significantly at 1 month and 2 months after pseudopurpurin feeding. Analytical results of micro-computed tomography showed that the group 0.5% displayed an increase in the trabecular volume fraction, trabecular thickness and trabecular number of the distal femur at 1 and 2 months after pseudopurpurin feeding, and the mean thickness, inner perimeter, outer perimeter, and area of the femur diaphysis were significantly increased at 2 months after pseudopurpurin feeding compared with the group 0%. In parallel, the trabecular separation and structure model index of the distal femur were decreased, compared with the group 0% at 1 and 2 months after pseudopurpurin feeding. In the 0.5% and 0% groups, there was no damage to kidney and liver by histopathology analysis. The long-term feeding of pseudopurpurin is safe for rats. The feeding of 0.5% pseudopurpurin which has specific chemical affinities for calcium for bone improvement and level of bone mineral density, enhances the geometry architecture compared with the 0% group. PMID:22489160

  13. Geographic differences in bone mineral density of Mexican women.

    PubMed

    Delezé, M; Cons-Molina, F; Villa, A R; Morales-Torres, J; Gonzalez-Gonzalez, J G; Calva, J J; Murillo, A; Briceño, A; Orozco, J; Morales-Franco, G; Peña-Rios, H; Guerrero-Yeo, G; Aguirre, E; Elizondo, J

    2000-01-01

    The aim of this study was to generate standard curves for normal spinal and femoral neck bone mineral density (BMD) in Mexican women using dual-energy X-ray absorptiometry (DXA), to analyze geographic differences and to compare these with 'Hispanic' reference data to determine its applicability. This was a cross-sectional study of 4460 urban, clinically normal, Mexican women, aged 20-90 years, from 10 different cities in Mexico (5 in the north, 4 in the center and 1 in the southeast) with densitometry centers. Women with suspected medical conditions or who had used drugs affecting bone metabolism, were excluded. Lumbar spine BMD was significantly higher (1.089 +/- 0.18 g/cm2) in women from the northern part of Mexico, with intermediate values in the center (1.065 +/- 0.17 g/cm2) and lower values (1.013 +/- 0.19 g/cm2) in the southeast (p < 0.0001). Similarly, femoral neck BMD was significantly higher in women from the north (0.895 +/- 0.14 g/cm2), intermediate in the center (0.864 +/- 0.14 g/cm2) and lower (0.844 +/- 0.14 g/cm ) in the southeast part of Mexico (p < 0.0001). Northern Mexican women tend to be taller and heavier than women from the center and, even more, than those from the southeast of Mexico (p < 0.0001). However, these differences in BMD remained significant after adjustment for weight (p < 0.0001). A significant loss (p < 0.0001) in BMD was observed from 40 to 69 years of age at the lumbar spine and up to the eighth decade at the femoral neck. Higher and lower lumbar spine values, as compared with the 'Hispanic' population, were observed in Mexican mestizo women from the northern and southeastern regions, respectively. In conclusion, there are geographic differences in weight and height of Mexican women, and in BMD despite adjustment for weight. PMID:11069189

  14. Comparative Analysis of Linear and Angular Measurements on Digital Orthopantomogram with Calcaneus Bone Mineral Density

    PubMed Central

    Daniel, Mariappan Jonathan; Srinivasan, Subramaniam Vasudevan; Koliyan, Ramadoss; Kumar, Jimsha Vannathan

    2015-01-01

    Background Bone remodeling is a continuous and complex process which occurs throughout life. Radiomorphometric and radioangular indices on the orthopantomogram are the predictors of bone remodeling associated with mandible. Bone mineral density is the amount of calcified tissue in a certain volume of the bone. Materials and Methods Fifty normal healthy individuals within the age range of 25-55 years were included in the study. Linear measurements including mandibular cortical width (MCW) and panoramic mandibular index (PMI); and angular measurements including mandibular angle (MA) and antegonial angle (AGA) were recorded. Quantitative ultrasound bone mineral density (BMD) scan of the heel bone (calcaneus) of the same patient were also performed. Results In our study, for both males and females, antegonial angle (AGA) had highest correlation with calcaneus bone mineral density. In the age group of less than 35 years, PMI in males, and AGA in females had highest correlation. In the age range of more than 35 years, MA in males and AGA in females had highest correlation. Conclusion There is a correlation between the mandibular bone remodelling changes and calcaneal bone mineral density in case of elder subjects and thus these parameters may be used as an inexpensive alternative screening method to assess the bone mineral density and identify individuals at risk for osteoporosis and fractures and also for dental treatment planning. PMID:26393197

  15. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship

    PubMed Central

    Chen, J.; Gantz, M.; Punyanitya, M.; Heymsfield, S. B.; Gallagher, D.; Albu, J.; Engelson, E.; Kotler, D.; Pi-Sunyer, X.; Shapses, S.

    2012-01-01

    Summary The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. Introduction It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Methods Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18–88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. Results A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r=−0.533, −0.576, respectively; P<0.001). In multiple regression analyses with BMD as the dependent variable, ethnicity significantly entered the regression models as either an individual term or an interaction with BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premeno-pausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. Conclusions An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations. PMID

  16. Bone mineral density and changes in bone metabolism in patients with obstructive sleep apnea syndrome.

    PubMed

    Terzi, Rabia; Yılmaz, Zahide

    2016-07-01

    The aim of this study was to evaluate the differences between patients with obstructive sleep apnea syndrome (OSAS) and phenotypically similar subjects without OSAS in terms of bone mineral density (BMD) and bone turnover markers. The study was conducted on 30 males diagnosed with OSAS and 20 healthy males. All subjects underwent polysomnographic testing. Calcium, phosphorus parathyroid hormone, thyroid stimulating hormone, bone-specific alkaline phosphatase, 25-hydroxyvitamin D3, osteocalcin, and beta-CrossLaps (β-CTx) were measured. BMD in the lumbar spine (L1-L4) and femoral neck was measured by dual energy X-ray absorptiometry. There was no statistically significant difference between the two groups in terms of demographic data with the exception of bone mass index and waist circumference. (p < 0.05). Analyses showed significantly lower BMD measurements in the femoral neck and T-scores in the femoral neck in patients diagnosed with OSAS. Serum β-CTx levels were found to be statistically significantly higher in the OSAS group (p = 0.017). In multivariate assessments performed for apnea/hypopnea index values, mean saturation O2 levels were found to be significantly associated with osteocalcin levels and neck BMD. OSAS patients might represent a risk group with respect to loss of BMD and bone resorption. It is important to evaluate bone loss in these patients. Further studies should be carried out on larger study populations to evaluate the effects of chronic hypoxia on BMD in detail. PMID:26204846

  17. Effects of risedronate on femoral bone mineral density and bone strength in sciatic neurectomized young rats.

    PubMed

    Iwamoto, Jun; Seki, Azusa; Takeda, Tsuyoshi; Sato, Yoshihiro; Yamada, Harumoto

    2005-01-01

    Immobilization induces a rapid loss of bone density and bone strength in rats. The purpose of the present study was to examine the effects of risedronate (Ris) on the femoral bone density and bone strength of sciatic neurectomized young rats. Forty male Sprague-Dawley rats, 6 weeks of age, were randomized by the stratified weight method into the following four treatment groups of 10 rats each: sham-operation, bilateral sciatic neurectomy (NX), NX + low-dose Ris (0.25 mg/kg/day, orally), and NX + high-dose Ris (0.5 mg/kg/day, orally). After 8 weeks of feeding, the volumetric bone mineral density (vBMD) and stress strain index (SSI) of the femoral distal metaphysis and middiaphysis of the rats were measured by peripheral quantitative computed tomography. The mechanical properties of the femoral distal metaphysis and middiaphysis were measured by the compression and three-point bending tests, respectively. The femoral length was also measured. As compared with the findings in the sham-operated controls, NX resulted in a loss of femoral length, cancellous vBMD, SSI, maximum load, stiffness, and breaking energy of the femoral distal metaphysis; there was also loss of cortical thickness, SSI, maximum load, and stiffness of the femoral middiaphysis, with no significant effects on the cortical vBMD or breaking energy of the femoral middiaphysis. High-dose Ris increased the vBMD to values higher than those in the sham-operated controls, and prevented the loss of SSI, maximum load, and stiffness of the femoral distal metaphysis, while low-dose Ris prevented the loss of cancellous vBMD of the femoral distal metaphysis. Neither high- nor low-dose Ris affected any of the cortical bone parameters of the femoral middiaphysis, except for cortical thickness, or the femoral length. These findings suggest that Ris may prevent immobilization-induced loss of cancellous bone density and bone strength in a dose-dependent manner without interfering with bone growth, but has no apparent

  18. Bone mineral density and risk of postmenopausal breast cancer.

    PubMed

    Grenier, Debjani; Cooke, Andrew L; Lix, Lisa; Metge, Colleen; Lu, Huimin; Leslie, William D

    2011-04-01

    To determine if higher bone mineral density (BMD) is a risk factor for breast cancer in women age 50 years and older. 37,860 women ≥ 50-year old with no previous breast cancer diagnosis had baseline BMD assessment between January 1999 and December 2007. Cox proportional hazards models were created for time to a new breast cancer as a function of lumbar spine or femoral neck BMD quartile (1st = lowest as reference) with adjustment for relevant covariates. A secondary analysis was performed to look for an association with estrogen receptor-positive (ER-positive) breast cancers. 794 invasive and in situ breast cancers (484 ER-positive) occurred with a median follow up of 5.4 years. Increased breast cancer risk was seen for the 3rd and 4th quartiles of lumbar spine BMD with hazard ratios (HRs) of 1.26 (95% CI, 1.01-1.58) and 1.45 (95% CI, 1.16-1.81), respectively and for the 3rd quartile of femoral neck BMD with a HR of 1.33 (95% CI, 1.07-1.64). A test for linear trend showed that lumbar spine BMD (P < 0.001) and femoral neck BMD (P = 0.04) were associated with increased risk. Higher lumbar spine BMD was also associated with increased risk of ER-positive breast cancer with HR of 1.45 (95% CI, 1.08-1.94), and 1.68 (95% CI, 1.24-2.27) for women in the 2nd and 4th quartiles, respectively. A test for linear trend showed lumbar spine BMD was associated with increasing risk of ER-positive breast cancer (P = 0.003). Increased ER-positive breast cancer risk was seen for the 3rd quartile of femoral neck BMD with a HR of 1.43 (95% CI, 1.08-1.89). Higher lumbar spine and femoral neck BMD are associated with higher risk of breast cancer in women ≥50-year old. Lumbar spine and femoral neck BMD are associated with increased risk of ER-positive breast cancer. PMID:20838879

  19. Single x-ray transmission system for bone mineral density determination

    NASA Astrophysics Data System (ADS)

    Jimenez-Mendoza, Daniel; Espinosa-Arbelaez, Diego G.; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Vargas-Vazquez, Damian; Rodriguez-Garcia, Mario E.

    2011-12-01

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm2)], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  20. Single x-ray transmission system for bone mineral density determination.

    PubMed

    Jimenez-Mendoza, Daniel; Espinosa-Arbelaez, Diego G; Giraldo-Betancur, Astrid L; Hernandez-Urbiola, Margarita I; Vargas-Vazquez, Damian; Rodriguez-Garcia, Mario E

    2011-12-01

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm(2))], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones. PMID:22225247

  1. Single x-ray transmission system for bone mineral density determination

    SciTech Connect

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Rodriguez-Garcia, Mario E.

    2011-12-15

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  2. Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

    PubMed Central

    Finkelstein, Joel S.; Lee, Hang; Leder, Benjamin Z.; Goldstein, David W.; Hahn, Christopher W.; Hirsch, Sarah C.; Linker, Alex; Perros, Nicholas; Servais, Andrew B.; Taylor, Alexander P.; Webb, Matthew L.; Youngner, Jonathan M.; Yu, Elaine W.

    2016-01-01

    BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain. METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men. RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men. CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton. TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114

  3. Practice of martial arts and bone mineral density in adolescents of both sexes

    PubMed Central

    Ito, Igor Hideki; Mantovani, Alessandra Madia; Agostinete, Ricardo Ribeiro; Costa, Paulo; Zanuto, Edner Fernando; Christofaro, Diego Giulliano Destro; Ribeiro, Luis Pedro; Fernandes, Rômulo Araújo

    2016-01-01

    Abstract Objective: The purpose of this study was to analyze the relationship between martial arts practice (judo, karate and kung-fu) and bone mineral density in adolescents. Methods: The study was composed of 138 (48 martial arts practitioners and 90 non-practitioners) adolescents of both sexes, with an average age of 12.6 years. Bone mineral density was measured using Dual-Energy X-ray Absorptiometry in arms, legs, spine, trunk, pelvis and total. Weekly training load and previous time of engagement in the sport modality were reported by the coach. Partial correlation tested the association between weekly training load and bone mineral density, controlled by sex, chronological age, previous practice and somatic maturation. Analysis of covariance was used to compare bone mineral density values according to control and martial arts groups, controlled by sex, chronological age, previous practice and somatic maturation. Significant relationships between bone mineral density and muscle mass were inserted into a multivariate model and the slopes of the models were compared using the Student t test (control versus martial art). Results: Adolescents engaged in judo practice presented higher values of bone mineral density than the control individuals (p-value=0.042; Medium Effect size [Eta-squared=0.063]), while the relationship between quantity of weekly training and bone mineral density was significant among adolescents engaged in judo (arms [r=0.308] and legs [r=0.223]) and kung-fu (arms [r=0.248] and spine [r=0.228]). Conclusions: Different modalities of martial arts are related to higher bone mineral density in different body regions among adolescents. PMID:27017002

  4. Bone mineral density in asthmatic patients using low dose inhaled glucocorticosteroids.

    PubMed

    El, O; Gulbahar, S; Ceylan, E; Ergor, G; Sahin, E; Senocak, O; Oncel, S; Cimrin, A

    2005-01-01

    Inhaled glucocorticosteroids are clearly beneficial in subjects with moderate or severe asthma since they are well tolerated, reduce symptoms, and improve quality of life. Some studies suggest that inhaled glucocorticosteroids can adversely affect bone mineral density. The aim of this study is to determine the effects of inhaled glucocorticosteroid therapy on bone mineral density in female patients. Forty-five asthmatic female patients (36 premenopousal and 9 postmenopausal) and forty-six healthy control subjects were included in the study. Bone mineral density was measured from lumbar spine (L1-4) and femur (neck, trochanter, and Ward's triangle) by dual energy X-Ray absorptiometry. Age, occupation, menopause and smoking status, alcohol consumption, body mass index, previous fractures, family history of fractures, menstrual history, ooferectomy, number of pregnancies, the duration of lactation, physical activity and calcium intake were questioned according to the European Vertebral Osteoporosis Study Group (EVOS) form. Cumulative inhaled glucocorticosteroid dose was calculated. T score of femoral neck and T score and bone mineral density of Ward's triangle were significantly lower in asthmatic patients compared to control group but no statistically significant correlation was found between the disease duration, inhaled steroid treatment duration, cumulative inhaled dose and annual inhaled steroid dose and bone mineral density measurement. These results suggest that in asthmatic patients using low dose inhaled corticosteroids bone mineral density is lower than in healthy controls but it is still unclear if asthma by itself is a risk factor for osteoporosis. PMID:15864884

  5. Bone mineral density and body composition of collegiate modern dancers.

    PubMed

    Friesen, Karlie J; Rozenek, Ralph; Clippinger, Karen; Gunter, Kathy; Russo, Albert C; Sklar, Susan E

    2011-03-01

    This study investigates body composition (BC), bone mineral density (BMD), eating behaviors, and menstrual dysfunction in collegiate modern dancers. Thirty-one female collegiate modern dance majors (D), 18 to 25 years of age, and 30 age-matched controls (C) participated in the study. BC and BMD were measured using dual energy x-ray absorptiometry (DXA). Upper and lower body strength was assessed by chest and leg press one-repetition maximum tests. Participants completed three-day food records, and the diet was analyzed using nutritional software. Menstrual dysfunction (MD) and history of eating disorder (ED) data were collected via questionnaires. BC and BMD variables were analyzed using MANCOVA and frequency of ED and MD by Chi-Square analysis. BMD was greater in D than C at the spine (1.302 ± 0.135 g/cm(2) vs. 1.245 ± 0.098 g/cm(2)), and both the right hip (1.163 ± 0.111 g/cm(2) vs. 1.099 ± 0.106 g/cm(2)) and left hip (1.160 ± 0.114 g/cm(2) vs. 1.101 ± 0.104 g/cm(2); p ≤ 0.05). Total body fat percentage was lower in D than C (25.9 ± 4.2% vs. 32.0 ± 5.9%; p ≤ 0.05), and percent of fat distributed in the android region was also lower in D than C (28.0 ± 6.2% vs. 37.6 ± 8.6%; p ≤ 0.05). With regard to diet composition, only percent fat intake was lower in D than C (27.54 ± 6.8% vs. 31.5 ± 7.4%, p ≤ 0.05). A greater incidence of ED was reported by D than C (12.9% vs. 0%; p ≤ 0.05), as well as a greater incidence of secondary amenorrhea (41.9% vs 13.3%; p ≤ 0.05). No differences were found for incidence of primary amenorrhea, oligomenorrhea, or use of birth control. Strength values were higher in D than C for both chest press (30.1 ± 0.9 kg vs. 28.4 ± 1.0 kg; p ≤ 0.05) and leg press (170.7 ± 4.2 kg vs.163.1 ± 3.9 kg; p ≤ 0.05). It is concluded that the dancers in our study had a healthy body weight, yet reported a higher incidence of eating disorders and menstrual dysfunction, than non-dancers. These dancers' higher BMD may be

  6. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    SciTech Connect

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-09-15

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm{sup 3}, which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm{sup 3}, requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm{sup 3}) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm{sup 3} and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0

  7. Bone mineral density and survival of elements and element portions in the bones of the Crow Creek massacre victims.

    PubMed

    Willey, P; Galloway, A; Snyder, L

    1997-12-01

    The interpretation of archaeologically-derived skeletal series is dependent on the elements and portions of elements preserved for examination. Bone and bone portion survival is affected by factors, both intrinsic and extrinsic to the elements themselves, that influence deterioration and preservation. Among the intrinsic variables, the density of the element and element portion are particularly important with respect to the degree of preservation. Recently reported bone mineral density values from a contemporary human sample are compared to the survival of prehistoric limb bones of the Crow Creek specimens, a fourteenth-century massacre skeletal series. The contemporary density values are positively correlated with Crow Creek element and element portion survival. Two calculations of bone mineral density, however, are more closely related to preservation than a third. Such density information has implications for assessing minimum number of elements and individuals and documenting taphonomic processes. PMID:9453699

  8. Effects of resistance training on bone mineral content and density in adolescent females.

    PubMed

    Blimkie, C J; Rice, S; Webber, C E; Martin, J; Levy, D; Gordon, C L

    1996-09-01

    Postmenarcheal adolescent girls performed resistance training (RT) for 26 weeks, which consisted of 4 sets of 13 exercises of varying and progressive intensity performed 3 times weekly on hydraulic resistance machines. Bone mineral was assessed by dual photon absorptiometry. Resistance training resulted in significant increases (pre-post) in biceps curl (21.4%), triceps press (21.5%), knee extension (25.1%), knee flexion (52.8%), and squat press (21.5%) strength. There were no significant differences between RT and control (C) groups initially, and no significant effects of training (pre-post) for total body (TB) or lumbar spine (LS) bone mineral content (BMC) or bone mineral density (BMD). The largest increases in LS bone mineral occurred during the first 13 weeks, and although not significant, the increases in LS BMC (g) (3.9 vs. 5.9%), LS BMC (g.cm-1) (2.6 vs. 5.9%), LS areal BMD (g.cm-2) (1.48 vs. 4.75%), and LS bone mineral apparent density (BMAD, g.cm-3) (0.47 vs. 4.13%) were greater in the RT compared with the C group during this period. In conclusion, resistance training resulted in a trend towards a transient increase in LS bone mineral during the first 13 weeks, but despite significant strength gains, there were no significant changes in TB or LS bone mineral after 26 weeks of training. PMID:8960394

  9. Genetically Low Vitamin D Levels, Bone Mineral Density, and Bone Metabolism Markers: a Mendelian Randomisation Study.

    PubMed

    Li, Shan-Shan; Gao, Li-Hong; Zhang, Xiao-Ya; He, Jin-We; Fu, Wen-Zhen; Liu, Yu-Juan; Hu, Yun-Qiu; Zhang, Zhen-Lin

    2016-01-01

    Low serum 25-hydroxyvitamin D (25OHD) is associated with osteoporosis and osteoporotic fracture, but it remains uncertain whether these associations are causal. We conducted a Mendelian randomization (MR) study of 1,824 postmenopausal Chinese women to examine whether the detected associations between serum 25OHD and bone mineral density (BMD) and bone metabolism markers were causal. In observational analyses, total serum 25OHD was positively associated with BMD at lumbar spine (P = 0.003), femoral neck (P = 0.006) and total hip (P = 0.005), and was inversely associated with intact parathyroid hormone (PTH) (P = 8.18E-09) and procollagen type 1 N-terminal propeptide (P1NP) (P = 0.020). By contract, the associations of bioavailable and free 25OHD with all tested outcomes were negligible (all P > 0.05). The use of four single nucleotide polymorphisms, GC-rs2282679, NADSYN1-rs12785878, CYP2R1-rs10741657 and CYP24A1-rs6013897, as candidate instrumental variables in MR analyses showed that none of the two stage least squares models provided evidence for associations between serum 25OHD and either BMD or bone metabolism markers (all P > 0.05). We suggest that after controlling for unidentified confounding factors in MR analyses, the associations between genetically low serum 25OHD and BMD and bone metabolism markers are unlikely to be causal. PMID:27625044

  10. Bone mineral density in children with familial Mediterranean fever.

    PubMed

    Duzova, Ali; Ozaltin, Fatih; Ozon, Alev; Besbas, Nesrin; Topaloglu, Rezan; Ozen, S; Bakkaloglu, A

    2004-06-01

    The aim of this study was to evaluate bone mineral content (BMC), serum and urinary bone turnover parameters in patients with familial Mediterranean fever (FMF), an autosomal recessive disease characterized by recurrent episodes of inflammation of serous membranes. Demographic characteristics and MEFV mutations were defined in 48 children diagnosed with FMF (23 F, 25 M; median age 7.0 years (3.0-10.0)). We evaluated the blood counts, acute-phase proteins and serum and urinary bone turnover parameters during attack-free periods. The BMC and BA (bone area) of vertebrae L1-L4 were measured by DEXA. Thirty-eight age-, sex- and ethnicity-matched healthy children constituted the control group. Mean L1-L4 BMC in Group I (patients with two mutations) and II (patients with no or single mutations) were 15.49+/-5.99 g and 15.68+/-4.89 g, respectively, both significantly lower than the mean L1-L4 BMC of control patients, which was 19.59+/-6.7 g (p<0.05). Mean L1-L4 BMD in Group I, Group II and the control group were 0.466+/-0.066 g/cm(2), 0.487+/-0.085 g/cm(2 )and 0.513+/-0.079 g/cm(2), respectively. Mean z-scores in Group I, Group II and the control group were -1.87+/-0.74, -1.55+/-0.92 and -1.39+/-0.84, respectively. Mean L1-L4 BMD and z-score of Group I were lower than in the control group (p<0.05). ESR and SAA (serum amyloid A) levels were higher in Group I patients: 28.3+/-14.5 mm/h and 350+/-62 mg/l in Group I; and 20.5+/-11.7 mm/h and 190+/-68 mg/l in Group II, respectively. In conclusion, FMF patients had lower BMC, BMD and z-scores than a control group. We suggest that decreased BMD, BMC and z-score in FMF patients may be secondary to subclinical inflammation. PMID:15168151

  11. [Bone mineral density in residents living on radioactive territories of Cheliabinsk Region].

    PubMed

    Tolstykh, E I; Shagina, N B; Peremyslova, L M; Degteva, M O

    2010-01-01

    Operation of "Mayak" plutonium production complex resulted in radioactive contamination of the part of Chelyabinsk Region in 1950-60s. Significant gas-aerosol emissions of 1311 occurred since 1948; in 1957, a radiation accident resulted in 90Sr contamination of large territories. This paper presents comparison of bone mineral density of persons lived on territories with different levels of soil 90Sr-contamination with a control group. It was found that in 1970-1975 the bone mineral density, estimated from mineral content in bone samples, in residents of contaminated areas born in 1936-1952 was significantly lower compared with the control group. For persons born in 1880-1935 such differences were not found. It was shown that the decrease in bone mineral density was not related to 90Sr exposure of osteogenic cells in the dose range from 0.1 to 1300 mGy: the coefficient of correlation between individual 90Sr-doses and bone mineral contents was not significant. The decrease in bone mineral density of persons born in 1936-1952 could be associated with exposure of thyroid and parathyroid glands (systemic regulators of calcium turnover) by 131I from gas-aerosol emissions from "Mayak". Maximum gas-aerosol emissions occurred in 1948-1954 and coincided with growth and development of thyroid gland, characterizing by intensive accumulation of 131I, and with growth and maturation of the skeleton of persons born in these calendar years. PMID:20968060

  12. Association between mean platelet volume and bone mineral density in postmenopausal women

    PubMed Central

    Aypak, Cenk; Türedi, Özlem; Bircan, Mustafa A.; Civelek, Gul M.; Araz, Mine

    2016-01-01

    [Purpose] Osteoporosis is an inflammatory disease, and platelets play a critical role in bone remodeling. Mean platelet volume has been shown to be influenced by inflammation. Our aim was to evaluate the relationship between mean platelet volume and bone mineral density in postmenopausal women. [Subjects and Methods] The records of female patients who had been referred to a tertiary hospital for bone mineral density analysis were retrospectively reviewed. [Results] A total of 175 patients (mean age: 61.3 ± 9.0 years) were enrolled. Overall, 72% (126/175) of patients met the criteria for osteoporosis. Mean platelet volume was found to be inversely correlated with body mass index. There was a significant positive correlation between mean platelet volume and femoral neck bone mineral density in our normal weight osteoporotic group, whereas there was a significant negative correlation in our overweight-obese osteoporotic group. The negative correlation between mean platelet volume and femoral neck bone mineral density in the overweight-obese osteoporotic group persisted after adjustment for confounding factors. Multivariate analyses revealed that mean platelet volume was significantly associated with femoral neck bone mineral density in osteoporotic patients in both our normal weight and overweight-obese groups. [Conclusion] Regardless of mechanisms, mean platelet volume might be used as a biomarker for osteoporosis in clinical settings. PMID:27390409

  13. Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, age, puberty, and physical activity.

    PubMed

    Ausili, Emanuele; Rigante, Donato; Salvaggio, Elio; Focarelli, Benedetta; Rendeli, Claudia; Ansuini, Valentina; Paolucci, Valentina; Triarico, Silvia; Martini, Lucilla; Caradonna, Paolo

    2012-09-01

    Interventions directed to the recognition of abnormal bone mineral density, bone mineral content, and body composition in the pediatric age require the definition of factors influencing bone mass acquisition during growth. We have evaluated in a cross-sectional manner by dual-energy X-ray absorptiometry the impact of sex, age, puberty, and physical activity on total body areal bone mineral density, regional (lumbar and femoral) bone mineral densities, bone mineral content, and body composition (fat mass and lean mass) in a cohort of 359 healthy Italian children aged 3-14 years and investigated their specific contribution to bone mass accrual. Statistical multiple regression analysis was performed dividing the population in pre- and post-pubertal groups. Bone mineral density at the lumbar spine has resulted equally distributed in both sexes before puberty while has resulted higher at the femoral necks in males at whatever age. A significant effect on bone mass acquisition was exerted by male sex and lean mass. In the areas where the cortical bone is prevalent, males of the pre-pubertal group have presented the highest values; in the areas where the cancellous bone is prevalent, both sexes were equivalent until the age of 9 years, but after this age, females have presented higher increases, probably related to the inferior dimensional development of lumbar vertebrae. Conclusively, male sex and lean mass seem to represent independent predictors of bone mass accrual in the cortical bone of the examined children, while female sex and pubertal maturation are independent predictors of bone mass accrual in the trabecular bone. PMID:21809005

  14. Bone mineral density and disorders of mineral metabolism in chronic liver disease

    PubMed Central

    George, Joe; Ganesh, Hosahithlu K; Acharya, Shrikrishna; Bandgar, Tushar R; Shivane, Vyankatesh; Karvat, Anjana; Bhatia, Shobna J; Shah, Samir; Menon, Padmavathy S; Shah, Nalini

    2009-01-01

    AIM: To estimate the prevalence and identify the risk factors for metabolic bone disease in patients with cirrhosis. METHODS: The study was performed on 72 Indian patients with cirrhosis (63 male, nine female; aged < 50 years). Etiology of cirrhosis was alcoholism (n = 37), hepatitis B (n = 25) and hepatitis C (n = 10). Twenty-three patients belonged to Child class A, while 39 were in class B and 10 in class C. Secondary causes for metabolic bone disease and osteoporosis were ruled out. Sunlight exposure, physical activity and dietary constituents were calculated. Complete metabolic profiles were derived, and bone mineral density (BMD) was measured using dual energy X ray absorptiometry. Low BMD was defined as a Z score below -2. RESULTS: Low BMD was found in 68% of patients. Lumbar spine was the most frequently and severely affected site. Risk factors for low BMD included low physical activity, decreased sunlight exposure, and low lean body mass. Calcium intake was adequate, with unfavorable calcium: protein ratio and calcium: phosphorus ratio. Vitamin D deficiency was highly prevalent (92%). There was a high incidence of hypogonadism (41%). Serum estradiol level was elevated significantly in patients with normal BMD. Insulin-like growth factor (IGF) 1 and IGF binding protein 3 levels were below the age-related normal range in both groups. IGF-1 was significantly lower in patients with low BMD. Serum osteocalcin level was low (68%) and urinary deoxypyridinoline to creatinine ratio was high (79%), which demonstrated low bone formation with high resorption. CONCLUSION: Patients with cirrhosis have low BMD. Contributory factors are reduced physical activity, low lean body mass, vitamin D deficiency and hypogonadism and low IGF-1 level. PMID:19630107

  15. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    PubMed

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. PMID:25418909

  16. Effects of Rubus coreanus-Cheonggukjang on Bone Mineral Density and Bone Mineral Content in Growing Rats

    PubMed Central

    Jung, Yun-Jung; Choi, Mi-Ja

    2015-01-01

    The purpose of the present study was to investigate the bone-conserving effects of Rubus coreanus-Cheonggukjang (RC-CGJ) supplemented with more intensified phytochemicals compared to general Cheonggukjang (CGJ) in growing rats. Eighteen rats were divided into 3 treatment groups (Control, CGJ, and RC-CGJ) and were given experimental diets for 9 weeks. All of the rats in this study were fed a AIN-93G-based diet. Both CGJ groups were fed with 33.1% CGJ and RC-CGJ powder, respectively. The results of this study indicate that weight gain, mean food intake, and food efficiency ratio were not significantly different by the experimental diets among all groups. Spine bone mineral density (BMD) and femur BMD were not significantly different by the experimental diets. Spine bone mineral content (BMC) was significantly higher in the RC-CGJ and CGJ groups than in the control group, regardless of CGJ type. The femur BMC of the CGJ supplemented group was significantly higher compared with the control group and the RC-CGJ group. Compared with the control group, spine BMD and femur BMD per weight were markedly increased in the RC-CGJ and CGJ group regardless of CGJ type. Also, spine BMC per weight was significantly higher in the RC-CGJ group than in the CGJ group. However, femur BMC per weight was significantly higher in the CGJ group than in the RC-CGJ group. It can be concluded that RC-CGJ and CGJ supplemented diets have more beneficial effects on spine and femur peak bone mass in growing rats. PMID:26770913

  17. Effects of Rubus coreanus-Cheonggukjang on Bone Mineral Density and Bone Mineral Content in Growing Rats.

    PubMed

    Jung, Yun-Jung; Choi, Mi-Ja

    2015-12-01

    The purpose of the present study was to investigate the bone-conserving effects of Rubus coreanus-Cheonggukjang (RC-CGJ) supplemented with more intensified phytochemicals compared to general Cheonggukjang (CGJ) in growing rats. Eighteen rats were divided into 3 treatment groups (Control, CGJ, and RC-CGJ) and were given experimental diets for 9 weeks. All of the rats in this study were fed a AIN-93G-based diet. Both CGJ groups were fed with 33.1% CGJ and RC-CGJ powder, respectively. The results of this study indicate that weight gain, mean food intake, and food efficiency ratio were not significantly different by the experimental diets among all groups. Spine bone mineral density (BMD) and femur BMD were not significantly different by the experimental diets. Spine bone mineral content (BMC) was significantly higher in the RC-CGJ and CGJ groups than in the control group, regardless of CGJ type. The femur BMC of the CGJ supplemented group was significantly higher compared with the control group and the RC-CGJ group. Compared with the control group, spine BMD and femur BMD per weight were markedly increased in the RC-CGJ and CGJ group regardless of CGJ type. Also, spine BMC per weight was significantly higher in the RC-CGJ group than in the CGJ group. However, femur BMC per weight was significantly higher in the CGJ group than in the RC-CGJ group. It can be concluded that RC-CGJ and CGJ supplemented diets have more beneficial effects on spine and femur peak bone mass in growing rats. PMID:26770913

  18. Dietary Strontium Increases Bone Mineral Density in Intact Zebrafish (Danio rerio): A Potential Model System for Bone Research

    PubMed Central

    Padgett-Vasquez, Steve; Garris, Heath W.; Nagy, Tim R.; D'Abramo, Louis R.; Watts, Stephen A.

    2010-01-01

    Abstract Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p < 0.05) increased zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492

  19. Dietary strontium increases bone mineral density in intact zebrafish (Danio rerio): a potential model system for bone research.

    PubMed

    Siccardi, Anthony J; Padgett-Vasquez, Steve; Garris, Heath W; Nagy, Tim R; D'Abramo, Louis R; Watts, Stephen A

    2010-09-01

    Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p < 0.05) increased zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492

  20. Prolactinoma: A Massive Effect on Bone Mineral Density in a Young Patient.

    PubMed

    Sperling, Scott; Bhatt, Harikrashna

    2016-01-01

    This case highlights a prolactinoma in a young male, and its impact on bone health. Osteoporosis has been noted to be an issue in postmenopausal women with prolactinomas. This case shows a similar impact on bone health in a young male resulting in low bone mineral density for age based on Z-score. This case report highlights the possible mechanisms for the bone loss in the setting of prolactinoma and the need for assessing bone health in such patients. Furthermore it highlights the need for a thorough evaluation in such patients. PMID:27446618

  1. Prolactinoma: A Massive Effect on Bone Mineral Density in a Young Patient

    PubMed Central

    2016-01-01

    This case highlights a prolactinoma in a young male, and its impact on bone health. Osteoporosis has been noted to be an issue in postmenopausal women with prolactinomas. This case shows a similar impact on bone health in a young male resulting in low bone mineral density for age based on Z-score. This case report highlights the possible mechanisms for the bone loss in the setting of prolactinoma and the need for assessing bone health in such patients. Furthermore it highlights the need for a thorough evaluation in such patients. PMID:27446618

  2. Longitudinal bone mineral content and density in Rett syndrome and their contributing factors.

    PubMed

    Jefferson, Amanda; Fyfe, Sue; Downs, Jenny; Woodhead, Helen; Jacoby, Peter; Leonard, Helen

    2015-05-01

    Bone mass and density are low in females with Rett syndrome. This study used Dual energy x-ray absorptiometry to measure annual changes in z-scores for areal bone mineral density (aBMD) and bone mineral content (BMC) in the lumbar spine and total body in an Australian Rett syndrome cohort at baseline and then after three to four years. Bone mineral apparent density (BMAD) was calculated in the lumbar spine. Annual changes in lean tissue mass (LTM) and bone area (BA) were also assessed. The effects of age, genotype, mobility, menstrual status and epilepsy diagnosis on these parameters were also investigated. The baseline sample included 97 individuals who were representative of the total live Australian Rett syndrome population under 30years in 2005 (n=274). Of these 74 had a follow-up scan. Less than a quarter of females were able to walk on their own at follow-up. Bone area and LTM z-scores declined over the time between the baseline and follow-up scans. Mean height-standardised z-scores for the bone outcomes were obtained from multiple regression models. The lumbar spine showed a positive mean annual BMAD z-score change (0.08) and a marginal decrease in aBMD (-0.04). The mean z-score change per annum for those 'who could walk unaided' was more positive for LS BMAD (p=0.040). Total body BMD mean annual z-score change from baseline to follow-up was negative (-0.03). However this change was positive in those who had achieved menses prior to the study (0.03, p=0,040). Total body BMC showed the most negative change (-0.60), representing a decrease in bone mineral content over time. This normalised to a z-score change of 0.21 once adjusted for the reduced lean tissue mass mean z-score change (-0.21) and bone area mean z-score change (-0.14). Overall, the bone mineral content, bone mineral density, bone area and lean tissue mass z-scores for all outcome measures declined, with the TB BMC showing significant decreases. Weight, height and muscle mass appear to have

  3. Physical activity and lifestyle effects on bone mineral density among young adults: sociodemographic and biochemical analysis.

    PubMed

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas

    2015-07-01

    [Purpose] The purpose of this study was to assess the possible role of physical activities, calcium consumption and lifestyle factors in both bone mineral density and bone metabolism indices in 350 young adult volunteers. [Subjects and Methods] All volunteers were recruited for the assessment of lifestyle behaviors and physical activity traits using validated questioners, and bone mineral density (BMD), serum osteocalcin (s-OC), bone-specific alkaline phosphatase (BAP), and calcium were estimated using dual-energy X-ray absorptiometry analysis, and immunoassay techniques. [Results] Male participants showed a significant increase in BMD along with an increase in bone metabolism markers compared with females in all groups. However, younger subjects showed a significant increase in BMD, OC, BAP, and calcium compared with older subjects. Osteoporosis was more common in older subjects linked with abnormal body mass index and waist circumference. Bone metabolism markers correlated positively with BMD, physically activity and negatively with osteoporosis in all stages. Also, moderate to higher calcium and milk intake correlated positively with higher BMD. However, low calcium and milk intake along with higher caffeine, and carbonated beverage consumption, and heavy cigarette smoking showed a negative effect on the status of bone mineral density. Stepwise regression analysis showed that life style factors including physical activity and demographic parameters explained around 58-69.8% of the bone mineral density variation in young adults especially females. [Conclusion] body mass index, physical activity, low calcium consumption, and abnormal lifestyle have role in bone mineral density and prognosis of osteoporosis in young adults. PMID:26311965

  4. [Physical activity/sports and bone mineral density].

    PubMed

    Inomoto, Takeaki

    2008-09-01

    This study observed the amount of exercise of Japanese schoolchildren as recorded by pedometer. Schools are necessary venues to increase children's mobility, but home environments are hotbeds for lack of exercise on weekends and during holidays and vacations. This research measured the L(2 - 4)BMD of 185 male and female primary schoolchildren using a DEXA method. Results showed significant partial correlations for measurements of boys' grip strength, boys' standing broad jump, and girls' grip strength, indicating the influence of mechanical stress. In a parallel study, L(2 - 4)BMD measurements for high school athletic club members (14 and 10 sports for boys and girls respectively) were taken, and it was found that the L(2 - 4)BMD (60 kg/weight) values were significantly higher than the control values for boys' boxing and weightlifting but significantly lower for boys' sumo. No significance was found in L(2 - 4)BMD (50 kg/weight) among the different girls' sports. From both studies, it was concluded that with approximately 2 hours of moderate play and exercise daily, the bone density of children rises with increase of overall muscle quantity, resulting in higher athletic ability and overall physical strength. PMID:18758041

  5. Correlations Between Abnormal Glucose Metabolism and Bone Mineral Density or Bone Metabolism.

    PubMed

    Qu, Yang; Kang, Ming-Yang; Dong, Rong-Peng; Zhao, Jian-Wu

    2016-01-01

    BACKGROUND The aim of this meta-analysis was to explore the correlations of abnormal glucose metabolism (AGM) with bone mineral density (BMD) and bone metabolism. MATERIAL AND METHODS Relevant studies were identified using computerized and manual search strategies. The included studies were in strict accordance with inclusion and exclusion criteria. Statistical analyses were conducted with the Comprehensive Meta-analysis 2.0 (Biostat Inc., Englewood, NJ, USA). RESULTS Our present meta-analysis initially searched 844 studies, and 7 studies were eventually incorporated in the present meta-analysis. These 7 cohort studies included 1123 subjects altogether (560 patients with AGM and 563 healthy controls). The results showed that bone mass index (BMI), insulin, and insulin resistance (IR) of patients with AGM were significantly higher than that of the population with normal glucose metabolism (BMI: SMD=1.658, 95% CI=0.663~2.654, P=0.001; insulin: SMD=0.544, 95% CI=0.030~1.058, P=0.038; IR: SMD=8.767, 95% CI=4.178~13.356, P<0.001). However, the results also indicated there was no obvious difference in osteocalcin (OC) and BMD in patients with AGM and the population with normal glucose metabolism (OC: SMD=0.293, 95% CI=-0.023~0.609, P=0.069; BMD: SMD=0.805, 95% CI=-0. 212~1.821, P=0.121). CONCLUSIONS Our meta-analysis results suggest that AGM might lead to increased BMI, insulin, and IR, while it has no significant correlation with BMD or bone metabolism. PMID:26970713

  6. Correlations Between Abnormal Glucose Metabolism and Bone Mineral Density or Bone Metabolism

    PubMed Central

    Qu, Yang; Kang, Ming-Yang; Dong, Rong-Peng; Zhao, Jian-Wu

    2016-01-01

    Background The aim of this meta-analysis was to explore the correlations of abnormal glucose metabolism (AGM) with bone mineral density (BMD) and bone metabolism. Material/Methods Relevant studies were identified using computerized and manual search strategies. The included studies were in strict accordance with inclusion and exclusion criteria. Statistical analyses were conducted with the Comprehensive Meta-analysis 2.0 (Biostat Inc., Englewood, NJ, USA). Results Our present meta-analysis initially searched 844 studies, and 7 studies were eventually incorporated in the present meta-analysis. These 7 cohort studies included 1123 subjects altogether (560 patients with AGM and 563 healthy controls). The results showed that bone mass index (BMI), insulin, and insulin resistance (IR) of patients with AGM were significantly higher than that of the population with normal glucose metabolism (BMI: SMD=1.658, 95% CI=0.663~2.654, P=0.001; insulin: SMD=0.544, 95% CI=0.030~1.058, P=0.038; IR: SMD=8.767, 95% CI=4.178~13.356, P<0.001). However, the results also indicated there was no obvious difference in osteocalcin (OC) and BMD in patients with AGM and the population with normal glucose metabolism (OC: SMD=0.293, 95% CI=−0.023~0.609, P=0.069; BMD: SMD=0.805, 95% CI=−0. 212~1.821, P=0.121). Conclusions Our meta-analysis results suggest that AGM might lead to increased BMI, insulin, and IR, while it has no significant correlation with BMD or bone metabolism. PMID:26970713

  7. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers.

    PubMed

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-12-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  8. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers

    PubMed Central

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-01-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  9. Bone mineral density in elite adolescent female figure skaters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elite adolescent figure skaters must accommodate both the physical demands of competitive training and the accelerated rate of bone growth that is associated with adolescence. Although, these athletes apparently undergo sufficient physical activity to develop healthy bones, it is possible that other...

  10. Relationship between spine osteoarthritis, bone mineral density and bone turn over markers in post menopausal women

    PubMed Central

    2010-01-01

    Background Several studies have observed an inverse relationship between osteoporosis and spinal osteoarthritis, the latter being considered as possibly delaying the development of osteoporosis. The aim of this study was to determine the association between individual radiographic features of spine degeneration, bone mineral density (BMD) and bone-turn over markers. Methods It was a cross sectional study of 277 post menopausal women. BMD of all patients was assessed at the spine and hip using dual-energy X-ray absorptiometry. Lateral spinal radiographs were evaluated for features of disc degeneration. Each vertebral level from L1/2 to L4/5 was assessed for the presence and severity of osteophytes and disc space narrowing (DSN). For Bone turn-over markers, we assessed serum osteocalcin and C-terminal cross-linking telopeptide of type I collagen (CTX). Linear regressions and partial correlation were used respectively to determine the association between each of disc degeneration features, BMD, and both CTX and osteocalcin. Results Mean age of patients was 58.7 ± 7.7 years. Eighty four patients (31.2%) were osteoporotic and 88.44% had spine osteoarthritis. At all measured sites, there was an increase in BMD with increasing severity of disc narrowing while there was no association between severity of osteophytes and BMD. After adjustment for age and BMI, there was a significant negative correlation between CTX and DSN. However, no significant correlation was found between CTX and osteophytes and between osteocalcin and both osteophytes or DSN. Conclusion In post menopausal women the severity of disc narrowing, but not osteophytes, is associated with a generalized increase in BMD and a decreased rate of bone resorption. These results are consistent with the hypothesis that osteoarthritis, through DSN, has a protective effect against bone loss, mediated by a lower rate of bone resorption. However, spine BMD is not a relevant surrogate marker for the assessment of

  11. Relationship of bone mineralization density distribution (BMDD) in cortical and cancellous bone within the iliac crest of healthy premenopausal women.

    PubMed

    Misof, B M; Dempster, D W; Zhou, Hua; Roschger, P; Fratzl-Zelman, N; Fratzl, P; Silverberg, S J; Shane, E; Cohen, A; Stein, E; Nickolas, T L; Recker, R R; Lappe, J; Bilezikian, J P; Klaushofer, K

    2014-10-01

    Bone mineralization density distribution (BMDD) is an important determinant of bone mechanical properties. The most available skeletal site for access to the BMDD is the iliac crest. Compared to cancellous bone much less information on BMDD is available for cortical bone. Hence, we analyzed complete transiliac crest bone biopsy samples from premenopausal women (n = 73) aged 25-48 years, clinically classified as healthy, by quantitative backscattered electron imaging for cortical (Ct.) and cancellous (Cn.) BMDD. The Ct.BMDD was characterized by the arithmetic mean of the BMDD of the cortical plates. We found correlations between Ct. and Cn. BMDD variables with correlation coefficients r between 0.42 and 0.73 (all p < 0.001). Additionally to this synchronous behavior of cortical and cancellous compartments, we found that the heterogeneity of mineralization densities (Ct.Ca(Width)), as well as the cortical porosity (Ct.Po) was larger for a lower average degree of mineralization (Ct.Ca(Mean)). Moreover, Ct.Po correlated negatively with the percentage of highly mineralized bone areas (Ct.Ca(High)) and positively with the percentage of lowly mineralized bone areas (Ct.Ca(Low)). In conclusion, the correlation of cortical with cancellous BMDD in the iliac crest of the study cohort suggests coordinated regulation of bone turnover between both bone compartments. Only in a few cases, there was a difference in the degree of mineralization of >1wt % between both cortices suggesting a possible modeling situation. This normative dataset of healthy premenopausal women will provide a reference standard by which disease- and treatment-specific effects can be assessed at the level of cortical bone BMDD. PMID:25134800

  12. [Exercise and bone mineral density in old subjects: theorical and practical implications].

    PubMed

    Paillard, Thierry

    2014-09-01

    With age advancement, the decrease of bone mineral density is ineluctable. Physical exercise constitutes a physiological approach likely to attenuate or limit the effects of normal bone demineralization (i.e. not pathological) particularly in elderly subjects. Indeed, physical exercise induces mechanical constraints generating bone deformation which stimulates osteogenesis and favors bone remodelage. Physical activities achieved in condition of body discharge (e.g. swimming, cycling) or in static condition (e.g. stretching, balance) do not stimulate (or very weakly) osteogenesis. The osteogenic function of aerobic training (e.g. walking, running) is effective only if the intensity of exercise is high (i.e. the impacts on the ground and thus the bone deformation) and that of strength training is effective only if the completed muscular contractions are dynamic and carried out with heavy loads. The calcium concentration increase is greater on the concave side than on the convex side for the bones which undergo strong mechanical pressures during exercise. Hence, it is advisable to vary the directions of mechanical constraints during physical activity to strengthen the resistance of the bone in all the plans. In order to obtain significant effects in terms of bone remodelage, the optimal duration of training programs should last at least 4 to 6 months. The osteogenic effects of regular exercise begin from 2-3 weekly sessions. The activation of osteogenesis by means of physical exercise is more difficult in aging women than in aging men because of hormonal factors that are not favorable in aging women. At last, regular exercise is fundamental not only to maintain bone mineral density but also to reduce the risk of bone fracture since there is a relationship between the bone mineral density and the risk of bone fracture. PMID:25245313

  13. Bone Mineral Density and Microarchitecture in Patients With Autosomal Dominant Osteopetrosis: A Report of Two Cases.

    PubMed

    Arruda, Mariana; Coelho, Maria Caroline Alves; Moraes, Aline Barbosa; de Paula Paranhos-Neto, Francisco; Madeira, Miguel; Farias, Maria Lucia Fleiuss; Neto, Leonardo Vieira

    2016-03-01

    The aim of this case study is to describe changes in areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) scan, as well as volumetric bone density and microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) in two patients with autosomal dominant osteopetrosis (ADO) and compare with 20 healthy subjects. We describe a 44-year-old male patient with six low-impact fractures since he was age 16 years, and a 32-year-old female patient with four low-impact fractures on her past history. Radiographic changes were typical of ADO. Consistent with the much higher aBMD, total volumetric BMD (average bone density of the whole bone, including trabecular and cortical compartments) at distal radius and tibia (HR-pQCT) was more than twice the mean values found in healthy subjects in both patients. Trabecular number and thickness were higher, leading to an evident increase in trabecular bone volume to tissue volume. Also, an enormous increase in cortical thickness was found. Most important, a great heterogeneity in bone microstructure of the affected patients was evident on HR-pQCT images: islets of very dense bone were interposed with areas with apparent normal density. The increase in aBMD, volumetric BMD, and most indices of trabecular and cortical bone, associated with the great heterogeneity on bone tridimensional microarchitecture, reflect the accumulation of old and fragile bone randomly distributed along the skeleton. These alterations in bone microstructure probably compromise bone quality, which might justify the high prevalence of low-impact fractures in patients with ADO, despite abnormally elevated BMD. © 2015 American Society for Bone and Mineral Research. PMID:26387875

  14. Bone mineral density of skeletal remains: Discordant results between chemical analysis and DXA method.

    PubMed

    Sutlovic, Davorka; Boric, Igor; Sliskovic, Livia; Popovic, Marijana; Knezovic, Zlatka; Nikolic, Ivana; Vucinovic, Ana; Vucinovic, Zoran

    2016-05-01

    Dual-energy X-ray absorptiometry (DXA) scanning is a gold standard for bone mineral density measurement and diagnosis of primary and secondary osteoporosis in living persons. DXA is becoming widespread when analysing archaeological material, and is considered to provide an accurate diagnosis of osteoporosis in skeletal samples. The aim of this study was to explain the differences in results between bone mineral density (obtained with DXA) and chemical determination of calcium and phosphorus concentrations in skeletal remains. We examined bone mineral density (BMD) and mineral content of femoral bone samples exhumed from mass graves of the Second World War. BMD was determined by Hologic QDR 4500 C (S/N 48034) Bone Densitometer. Concentrations of calcium and phosphorus were determined with AAS (Atomic absorption spectroscopy) and UV/VIS (Ultraviolet-visible) spectroscopy. The results obtained in this study do not support the hypothesis according to which BMD measured by DXA scan has positive correlation with chemically determined concentrations of calcium and phosphorus in bones, especially in acidic soils where there was significant impact of diagenesis observed. PMID:27161916

  15. Bone mineral density and biochemical markers of bone metabolism in predialysis patients with chronic kidney disease.

    PubMed

    Fidan, Nuri; Inci, Ayca; Coban, Melahat; Ulman, Cevval; Kursat, Seyhun

    2016-04-01

    The aim of the study was to evaluate the usefulness of serum bone turnover markers (BTM) and bone mineral density (BMD) determined by dual-energy X-ray absorptiometry (DEXA) in predialysis patients with chronic kidney disease (CKD). We enrolled 83 patients with CKD, 41 (49.4%) males, 42 (50.6%) females, with mean estimated glomerular filtration rate (eGFR) 23.90±12 (range=6.0-56.0). BMD of the lumbar spine (LS) (anteroposterior, L2 through L4), femoral neck (FN) and femoral trochanter (FT) were measured by DEXA. Biochemical BTM, including calcium (Ca), phosphorus (P), intact parathyroid hormone (PTH), serum specific alkaline phosphatase (serum AP), bone-specific AP (BSAP), plasma bicarbonate and 25-hydroxy-vitamin D (25hD) were used for the prediction of BMD loss. T score results of LS and FN were worse than FT. BMD levels were lower in females than in males (all p<0.05). According to different BMD T score levels, patients with age ≥65 years and patients in menopause were significantly more osteopenic (p=0.026) and there was no relation between different BMD T scores and presence of diabetes (p=0.654). A positive correlation was identified between the BMD of FN T-Z scores (r=0.270, p=0.029, r=0.306, p=0.012), FT T-Z scores (r=0.220, p=0.076, r:0.250, p=0.043) and serum HCO3, while the correlation with serum alkaline phosphatase (AP) and BSAP was considered to be negative. No statistically significant association was found between BMD of all the measured skeletal sites and eGFR. Loss of BMD was identified mostly in females over ≥65 years of age and after menopause. Higher serum levels of BSAP and AP can be determined in the advanced stages of renal failure and they reflect fracture risk of the femur, but not spine. Measurements of BMD by DEXA are useful to demonstrate bone loss, but not technical enough to distinguish the quantity of bone loss between different stages of CKD. PMID:26969749

  16. Osteoporotic-like effects of cadmium on bone mineral density and content in aged ovariectomized beagles

    SciTech Connect

    Sacco-Gibson, N.; Abrams, J.; Chaudhry, S.; Hurst, D.; Peterson, D.; Bhattacharyya, M.

    1992-12-31

    Our purpose was to evaluate the effects of ovariectomy in conjunction with cadmium (Cd) exposure on bone. Aged female beagles with {sup 45}Ca-labeled skeletons ovariectomized and exposed to Cd. Successive vertebral scans by dual photon absorptiometry monitored changes in bone mineral density (BMD) in each dog with time. Results showed that ovariectomy or Cd exposure alone caused significant decreases in BMD; ovariectomy with Cd exposure caused the greatest decrease. Ovariectomy alone did not decrease BMD in the distal end or mid-shaft of the tibia while BMD of the distal tibia decreased significantly due to Cd exposure alone. Combination treatment resulted in significant decreases in BMD of both tibial regions. At necropsy, tibiae, humeri, lumbar vertebrae and ribs were obtained for biochemical analysis. No group-to-group differences in bone weights (wet, dry, ash), in ash/dry ratios, or in long bone and vertebral Ca/dry or Ca/ash ratios were observed. Significantly higher total {sup 45}Ca content and {sup 45}Ca/dry and {sup 45}Ca/ash ratios were observed in long bones and vertebrae of OV- and OV+ groups. In contrast, intact ribs showed significantly decreased Ca/dry and Ca/ash ratios compared to the SO-group. Quartered ribs demonstrated regional responses to specific treatment; decreases in total Ca content were greatest in the mid-rib region ({minus}36 to {minus}46%). Results suggest that in the aged female beagle, bone mineral loss associated with estrogen depletion is not only related to bone type (trabecular versus cortical) but also to bone Ca pools. Our results also suggest that a regional heterogeneity of bone plays a role in responsiveness to ovariectomy and Cd exposure. These aspects suggest that Cd is an exogenous factor affecting bone mineral loss independently of estrogen depletion. However, estrogen depletion primes bone for responsiveness to Cd-induced bone mineral loss.

  17. Tenofovir treatment of primary osteoblasts alters gene expression profiles: implications for bone mineral density loss

    PubMed Central

    Grigsby, Iwen F.; Pham, Lan; Mansky, Louis M.; Gopalakrishnan, Raj; Carlson, Ann E.; Mansky, Kim C.

    2010-01-01

    There is strong clinical evidence that implicates tenofovir in the loss of bone mineral density during treatment of human immunodeficiency virus infection. In this study, we sought to test the hypothesis that tenofovir treatment of osteoblasts causes changes in the gene expression profile that would impact osteoblast function during bone formation. Primary osteoblasts were isolated and then treated with the tenofovir prodrug, tenofovir disoproxil fumarate (TDF). Total RNA from TDF-treated and untreated osteoblasts were extracted and used for microarray analysis to assess TDF-associated changes in the gene expression profile. Strikingly, the changes in gene expression profiles involved in cell signaling, cell cycle and amino acid metabolism, which would likely impact osteoblast function in bone formation. Our findings demonstrate for the first time that tenofovir treatment of primary osteoblasts results in gene expression changes that implicate loss of osteoblast function in tenofovir-associated bone mineral density loss. PMID:20171173

  18. Association of Circulating Renin and Aldosterone With Osteocalcin and Bone Mineral Density in African Ancestry Families.

    PubMed

    Kuipers, Allison L; Kammerer, Candace M; Pratt, J Howard; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2016-05-01

    Hypertension is associated with accelerated bone loss, and the renin-angiotensin-aldosterone system is a key regulator of blood pressure. Although components of this system are expressed in human bone cells, studies in humans are sparse. Thus, we studied the association of circulating renin and aldosterone with osteocalcin and bone mineral density. We recruited 373 African ancestry family members without regard to health status from 6 probands (mean family size: 62 and relative pairs: 1687). Participants underwent a clinical examination, dual-energy x-ray absorptiometry, and quantitative computed tomographic scans. Renin activity, aldosterone concentration, and osteocalcin were measured in fasting blood samples. Aldosterone/renin ratio was calculated as aldosterone concentration/renin activity. All models were analyzed using pedigree-based variance components methods. Full models included adjustment for age, sex, body composition, comorbidities, lifestyle factors, blood pressure, and antihypertensive medication. Higher renin activity was significantly associated with lower total osteocalcin and with higher trabecular bone mineral density (bothP<0.01). There were also significant genetic correlations between renin activity and whole-body bone mineral density. There were no associations with aldosterone concentration in any model and results for aldosterone/renin ratio were similar to those for renin activity. This is the first study to report a significant association between renin activity and a marker of bone turnover and bone mineral density in generally healthy individuals. Also, there is evidence for significant genetic pleiotropy and, thus, there may be a shared biological mechanism underlying both the renin-angiotensin-aldosterone system and bone metabolism that is independent of hypertension. PMID:26975710

  19. Effects of Physical Training and Calcium Intake on Bone Mineral Density of Students with Mental Retardation

    ERIC Educational Resources Information Center

    Hemayattalab, Rasool

    2010-01-01

    The purpose of this study was to investigate the effects of physical training and calcium intake on bone mineral density (BMD) of students with mental retardation. Forty mentally retarded boys (age 7-10 years old) were randomly assigned to four groups (no differences in age, BMD, calcium intake and physical activity): training groups with or…

  20. Bone Mineral Density in Adults With Down Syndrome, Intellectual Disability, and Nondisabled Adults

    ERIC Educational Resources Information Center

    Geijer, Justin R.; Stanish, Heidi I.; Draheim, Christopher C.; Dengel, Donald R.

    2014-01-01

    Individuals with intellectual disability (ID) or Down syndrome (DS) may be at greater risk of osteoporosis. The purpose of this study was to compare bone mineral density (BMD) of DS, ID, and non-intellectually disabled (NID) populations. In each group, 33 participants between the ages of 28 and 60 years were compared. BMD was measured with…

  1. Strong Association Between Tibial Plateau Bone Mineral Density and Cartilage Damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tibial bone mineral density (BMD) is associated with radiographic features of osteoarthritis (OA), but no study has looked at its relationship with a direct measure of cartilage damage. We hypothesize that a relative increase in medial and lateral tibial BMD will be associated with cartilage damage...

  2. Associations of APOE gene polymorphisms with bone mineral density and fracture risk: a meta-analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein E (APOE) has been studied for its potential role in osteoporosis risk. It is hypothesized that genetic variation at common APOE loci, known as E2, E3, and E4, may modulate bone mineral density (BMD) through its effects on lipoproteins and vitamin K transport. To determine the associa...

  3. Exercise Effects on Fitness and Bone Mineral Density in Early Postmenopausal Women: 1-Year EFOPS Results.

    ERIC Educational Resources Information Center

    Kemmler, Wolfgang; Engelke, Klaus; Lauber, Dirk; Weineck, Juergen; Hensen, Johannes; Kalender, Willi A.

    2002-01-01

    Investigated the effect of intense exercise training on physical fitness, coronary heart disease, bone mineral density (BMD), and parameters related to quality of life in early postmenopausal women with osteopenia. Data on woman in control and exercise training groups indicated that the intense exercise training program was effective in improving…

  4. Do the Determinants of Bone Mineral Density Differ by Gender? The Framingham Osteoporosis Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osteoporosis is a disease that affects both men and women yet it remains unclear whether determinants of bone mineral density (BMD) differ by gender since few population-based osteoporosis studies have included both men and women. Our study goal was to determine factors associated with BMD and wheth...

  5. Association between sleep duration, insomnia symptoms and bone mineral density in older Puerto Rican adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To examine the association between sleep patterns (sleep duration and insomnia symptoms) and total and regional bone mineral density (BMD) among older Boston Puerto Rican adults. Materials/Methods: We conducted a cross-sectional study including 750 Puerto Rican adults, aged 47–79 y livi...

  6. Sustained swimming increases the mineral content and osteocyte density of salmon vertebral bone

    PubMed Central

    Totland, Geir K; Fjelldal, Per Gunnar; Kryvi, Harald; Løkka, Guro; Wargelius, Anna; Sagstad, Anita; Hansen, Tom; Grotmol, Sindre

    2011-01-01

    This study addresses the effects of increased mechanical load on the vertebral bone of post-smolt Atlantic salmon by forcing them to swim at controlled speeds. The fish swam continuously in four circular tanks for 9 weeks, two groups at 0.47 body lengths (bl) × s−1 (non-exercised group) and two groups at 2 bl × s−1 (exercised group), which is just below the limit for maximum sustained swimming speed in this species. Qualitative data concerning the vertebral structure were obtained from histology and electron microscopy, and quantitative data were based on histomorphometry, high-resolution X-ray micro-computed tomography images and analysis of bone mineral content, while the mechanical properties were tested by compression. Our key findings are that the bone matrix secreted during sustained swimming had significantly higher mineral content and mechanical strength, while no effect was detected on bone in vivo architecture. mRNA levels for two mineralization-related genes bgp and alp were significantly upregulated in the exercised fish, indicating promotion of mineralization. The osteocyte density of the lamellar bone of the amphicoel was also significantly higher in the exercised than non-exercised fish, while the osteocyte density in the cancellous bone was similar in the two groups. The vertebral osteocytes did not form a functional syncytium, which shows that salmon vertebral bone responds to mechanical loading in the absence of an extensive connecting syncytial network of osteocytic cell processes as found in mammals, indicating the existence of a different mechanosensing mechanism. The adaptive response to increased load is thus probably mediated by osteoblasts or bone lining cells, a system in which signal detection and response may be co-located. This study offers new insight into the teleost bone biology, and may have implications for maintaining acceptable welfare for farmed salmon. PMID:21615400

  7. Risk Factors for Low Bone Mineral Density in Individuals Residing in a Facility for the People with Intellectual Disability

    ERIC Educational Resources Information Center

    Jaffe, J. S.; Timell, A. M.; Elolia, R.; Thatcher, S. S.

    2005-01-01

    Background: Individuals with intellectual disability (ID) are known to have a high prevalence of both low bone mineral density (BMD) and fractures with significant attendant morbidity. Effective strategies aimed at reducing fractures will be facilitated by the identification of predisposing risk factors. Methods: Bone mineral density was measured…

  8. Mineral Metabolism and Cortical Volumetric Bone Mineral Density in Childhood Chronic Kidney Disease

    PubMed Central

    Tsampalieros, Anne K.; de Boer, Ian H.; Shults, Justine; Kalkwarf, Heidi J.; Zemel, Babette S.; Foerster, Debbie; Stokes, David; Leonard, Mary B.

    2013-01-01

    Context: The relationships among cortical volumetric bone mineral density (CortBMD) and comprehensive measures of mineral metabolism have not been addressed in chronic kidney disease (CKD). Objective: The aim of the study was to identify the determinants of CortBMD in childhood CKD. A secondary objective was to assess whether CortBMD was associated with subsequent fracture. Design and Participants: This prospective cohort study included 171 children, adolescents, and young adults (aged 5–21 years) with CKD stages 2–5D at enrollment and 89 1 year later. Outcomes: Serum measures included vitamin D [25-hydroxyvitamin D (25[OH]D), 1,25-dihydroxyvitamin D (1,25(OH)2D), 24,25-dihydroxyvitamin D], vitamin D-binding protein, intact PTH, fibroblast growth factor 23, calcium, and phosphorus. Tibia quantitative computed tomography measures of CortBMD were expressed as sex-, race-, and age-specific Z-scores based on 675 controls. Multivariable linear regression identified the independent correlates of CortBMD Z-scores and the change in CortBMD Z-scores. Results: Lower calcium (β = .31/1 mg/dL, P = .01) and 25(OH)D (β = .18/10 ng/mL, P = .04) and higher PTH (β = −.02/10%, P = .002) and 1,25(OH)2D (β = −.07/10%, P < .001) were independently associated with lower CortBMD Z-scores at baseline. The correlations of total, free, and bioavailable 25(OH)D with CortBMD did not differ. Higher baseline 1,25(OH)2D (P < .05) and greater increases in PTH (P < .001) were associated with greater declines in CortBMD Z-scores. Greater increases in calcium concentrations were associated with greater increases in CortBMD Z-scores in growing children (interaction P = .009). The hazard ratio for fracture was 1.75 (95% confidence interval 1.15–2.67; P = .009) per SD lower baseline CortBMD. Conclusions: Greater PTH and 1,25(OH)2D and lower calcium concentrations were independently associated with baseline and progressive cortical deficits in childhood CKD. Lower CortBMD Z-score was

  9. Bone Density

    MedlinePlus

    ... bone health. It compares your bone density, or mass, to that of a healthy person who is ... Whether your osteoporosis treatment is working Low bone mass that is not low enough to be osteoporosis ...

  10. Mechanism by Sambucus nigra Extract Improves Bone Mineral Density in Experimental Diabetes.

    PubMed

    Badescu, Laurentiu; Badulescu, Oana; Badescu, Magda; Ciocoiu, Manuela

    2012-01-01

    The effects of polyphenols extracted from Sambucus nigra fruit were studied in streptozotocin- (STZ-) induced hyperglycemic rats to evaluate its possible antioxidant, anti-inflammatory, antiglycosylation activity, and antiosteoporosis effects in diabetes. DEXA bone mineral density tests were performed in order to determine bone mineral density (BMD), bone mineral content (BMC), and fat (%Fat) in control and diabetic animals, before and after polyphenol delivery. As compared to the normoglycemic group, the rats treated with STZ (60 mg/kg body weight) revealed a significant malondialdehyde (MDA) increase, as an index of the lipid peroxidation level, by 69%, while the total antioxidant activity (TAS) dropped by 36%, with a consistently significant decrease (P < 0.05) in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX). Also, the treatment of rats with STZ revealed a significant increase of IL-6, glycosylated haemoglobin (HbA(1c)), and osteopenia detected by DEXA bone mineral density tests. The recorded results highlight a significant improvement (P < 0.001) in the antioxidative capacity of the serum in diabetic rats treated with natural polyphenols, bringing back to normal the concentration of reduced glutathione (GSH), as well as an important decrease in the serum concentration of MDA, with improved osteoporosis status. Knowing the effects of polyphenols could lead to the use of the polyphenolic extract of Sambucus nigra as a dietary supplement in diabetic osteoporosis. PMID:23024697

  11. Serum Dickkopf-1 Level in Postmenopausal Females: Correlation with Bone Mineral Density and Serum Biochemical Markers

    PubMed Central

    Fouda, Neveen; Abbas, Amal Ahmed

    2013-01-01

    Objective. To assess serum level of Dickkopf-1 in postmenopausal females and its correlation with bone mineral density and serum biochemical markers. Methods. Bone densitometry, serum Dickkopf-1, calcium, phosphorus, and alkaline phosphatase were done in sixty postmenopausal females. Patients were divided according to T score into osteoporosis (group I), osteopenia (group II), and normal bone mineral density that served as controls. Results. There was highly significant increase in serum Dickkopf-1 levels in postmenopausal females with abnormal T score versus controls (P < 0.001). Serum DKK-1 levels correlated negatively with both lumbar T score (r = −0.69, P < 0.001) and femur T score (r = −0.64, P < 0.001) and correlated positively with duration of menopause (r = 0.61, P < 0.001), while there was no significant correlation between serum levels of either calcium, phosphorus or alkaline phosphatase, and both serum Dickkopf-1 levels and the level of bone mineral density (P > 0.05). Conclusion. Postmenopausal females may suffer from osteoporosis as evidenced by bone densitometry. Postmenopausal women with significantly increased serum Dickkopf-1 had more significant osteoporosis. Prolonged duration of menopause and increased serum Dickkopf-1 are important risk factors for the development and severity of osteoporosis. PMID:23878759

  12. Tibolone increases bone mineral density but also relapse in breast cancer survivors: LIBERATE trial bone substudy

    PubMed Central

    2012-01-01

    Introduction The Livial Intervention Following Breast Cancer: Efficacy, Recurrence and Tolerability Endpoints (LIBERATE: Clinical http://Trials.gov number NCT00408863), a randomized, placebo-controlled, double-blind trial that demonstrated that tibolone (Livial), a tissue-selective hormone-replacement therapy (HRT), increased breast cancer (BC) recurrence HR 1.40 (95% CI, 1.14 to 1.70; P = 0.001). A subgroup of women was entered into a study of bone mineral density (BMD). Methods Women with surgically excised primary BC (T1-3, N0-2, M-0) within the last 5 years, complaining of vasomotor symptoms, were assigned to tibolone, 2.5 mg daily, or placebo treatment for a maximum of 5 years. The BMD substudy enrolled 763 patients, using dual-energy X-ray absorptiometry (DXA) scanning at baseline and at 2 years. Results In the bone substudy, 699 of 763 women were eligible (345 allocated to tibolone, and 354, to placebo). After undergoing DXA scans, 300 (43%) women had normal BMD; 317 (45%), osteopenia; and 82 (11.7%), osteoporosis. Low body-mass index (P < 0.001), Asian race (P < 0.001), and late age at menarche (P < 0.04) predicted low bone mass at baseline. Tibolone increased BMD by 3.2% at the lumbar spine and 2.9% at the hip compared with placebo (both P < 0.001). The majority of fractures (55%) occurred in osteopenic patients. Women with normal BMD had increased recurrence with tibolone, 22 (15.6%) of 141 compared with placebo, 11 (6.9%) of 159 (P = 0.016), whereas no increased BC recurrence was seen in women with low BMD; 15 (7.4%) of 204 taking tibolone versus 13 (6.7%) of 195 taking placebo. Conclusions Tibolone is contraindicated after BC treatment, as it increases BMD and BC recurrence. Risk of BC recurrence was elevated in BC women with normal BMD (compared with low) who took tibolone. PMID:22251615

  13. Aging bone in men and women: beyond changes in bone mineral density.

    PubMed

    Russo, C R; Lauretani, F; Bandinelli, S; Bartali, B; Di Iorio, A; Volpato, S; Guralnik, J M; Harris, T; Ferrucci, L

    2003-07-01

    Using peripheral quantitative computed tomography (pQCT) we assessed trabecular and cortical bone density, mass and geometric distribution at the tibia level in 512 men and 693 women, age range 20-102 years, randomly selected from the population living in the Chianti area, Tuscany, Italy. Total, trabecular and cortical bone density decreased linearly with age ( p<0.0001 in both sexes), and the slope of age-associated decline was steeper in women than in men. In men, the cortical bone area was similar in different age groups, while in women older than 60 years it was significantly smaller by approximately 1% per year. The total cross-sectional area of the bone became progressively wider with age, but the magnitude of the age-associated increment was significantly higher in men than in women ( p<0.001). The minimum moment of inertia, an index of mechanical resistance to bending, remained stable with age in men, while it was significantly lower in older compared with younger women (0.5% per year). The increase in bone cross-sectional area in aging men may contribute to the maintenance of adequate bone mechanical competence in the face of declining bone density. In women this compensatory mechanism appears to be less efficient and, accordingly, the bone mechanical competence declines with age. The geometric adaptation of increasing cross-sectional bone size is an important component in the assessment of bone mechanical resistance which is completely overlooked, and potentially misinterpreted, by traditional planar densitometry. PMID:12827220

  14. Revised Reference Curves for Bone Mineral Content and Areal Bone Mineral Density According to Age and Sex for Black and Non-Black Children: Results of the Bone Mineral Density in Childhood Study

    PubMed Central

    Kalkwarf, Heidi J.; Gilsanz, Vicente; Lappe, Joan M.; Oberfield, Sharon; Shepherd, John A.; Frederick, Margaret M.; Huang, Xiangke; Lu, Ming; Mahboubi, Soroosh; Hangartner, Thomas; Winer, Karen K.

    2011-01-01

    Context: Deficits in bone acquisition during growth may increase fracture risk. Assessment of bone health during childhood requires appropriate reference values relative to age, sex, and population ancestry to identify bone deficits. Objective: The objective of this study was to provide revised and extended reference curves for bone mineral content (BMC) and areal bone mineral density (aBMD) in children. Design: The Bone Mineral Density in Childhood Study was a multicenter longitudinal study with annual assessments for up to 7 yr. Setting: The study was conducted at five clinical centers in the United States. Participants: Two thousand fourteen healthy children (992 males, 22% African-Americans) aged 5–23 yr participated in the study. Intervention: There were no interventions. Main Outcome Measures: Reference percentiles for BMC and aBMD of the total body, lumbar spine, hip, and forearm were obtained using dual-energy x-ray absorptiometry for Black and non-Black children. Adjustment factors for height status were also calculated. Results: Extended reference curves for BMC and aBMD of the total body, total body less head, lumbar spine, total hip, femoral neck, and forearm for ages 5–20 yr were constructed relative to sex and age for Black and non-Black children. Curves are similar to those previously published for 7–17 year olds. BMC and aBMD values were greater for Black vs. non-Black children at all measurement sites. Conclusions: We provide here dual-energy x-ray absorptiometry reference data on a well-characterized cohort of 2012 children and adolescents. These reference curves provide the most robust reference values for the assessment and monitoring of bone health in children and adolescents in the literature to date. PMID:21917867

  15. Distinct Tissue Mineral Density in Plate- and Rod-like Trabeculae of Human Trabecular Bone.

    PubMed

    Wang, Ji; Kazakia, Galateia J; Zhou, Bin; Shi, X Tony; Guo, X Edward

    2015-09-01

    Trabecular bone quality includes both microstructural and intrinsic tissue mineralization properties. However, the tissue mineralization in individual trabeculae of different trabecular types and orientations has not yet been investigated. The aim of this study was to develop an individual trabecula mineralization (ITM) analysis technique to determine tissue mineral density (TMD) distributions in plate- and rod-like trabeculae, respectively, and to compare the TMD of trabeculae along various orientations in micro-computed tomography (μCT) images of trabecular bone samples from the femoral neck, greater trochanter, and proximal tibia. ITM analyses indicated that trabecular plates, on average, had significantly higher TMD than trabecular rods. In addition, the distribution of TMD in trabecular plates depended on trabecular orientation with the lowest TMD in longitudinal plates and the highest TMD in transverse plates. Conversely, there was a relatively uniform distribution of TMD among trabecular rods, with respect to trabecular orientation. Further analyses of TMD distribution revealed that trabecular plates had higher mean and peak TMD, whereas trabecular rods had a wider TMD distribution and a larger portion of low mineralized trabeculae. Comparison of apparent Young's moduli derived from micro-finite element models with and without heterogeneous TMD demonstrated that heterogeneous TMD in trabecular plates had a significant influence on the elastic mechanical property of trabecular bone. In conclusion, this study revealed differences in TMD between plate- and rod-like trabeculae and among various trabecular orientations. The observation of less mineralized longitudinal trabecular plates suggests interesting implications of these load-bearing plates in bone remodeling. The newly developed ITM analysis can be a valuable technique to assess the influence of metabolic bone diseases and their pharmaceutical treatments on not only microstructure of trabecular bone but

  16. Short-Term Effects of TNF Inhibitors on Bone Turnover Markers and Bone Mineral Density in Rheumatoid Arthritis.

    PubMed

    Orsolini, Giovanni; Adami, Giovanni; Adami, Silvano; Viapiana, Ombretta; Idolazzi, Luca; Gatti, Davide; Rossini, Maurizio

    2016-06-01

    TNFα inhibitors (TNFαI) exert positive effects on disease activity in rheumatoid arthritis (RA). Bone involvement is a major determinant of functional impairment in this disease. Here we investigated the short-term effects of TNFαI therapy on bone metabolism and density. We studied 54 patients with RA starting a TNFαI biologic drug, in whom any factor known to interfere with bone metabolism was excluded or rigorously accounted for. We measured at baseline and after 6-month therapy bone turnover markers: N-propeptide of type I collagen (P1NP), and bone alkaline phosphates for bone formation and serum C-terminal telopeptide of type I collagen (CTX) for bone resorption. We also evaluated bone mineral density (BMD) at hip and lumbar by dual-energy X-ray absorptiometry. All bone markers rose significantly and these changes were not dependent on steroid dosage. A significant decrease in femoral neck BMD was also observed. These results indicate that TNFαI therapy in RA over 6 months is associated with an early increase in bone turnover and a decline in hip BMD. PMID:26887973

  17. Characteristics of bone turnover in the long bone metaphysis fractured patients with normal or low Bone Mineral Density (BMD).

    PubMed

    Wölfl, Christoph; Schweppenhäuser, Daniela; Gühring, Thorsten; Takur, Caner; Höner, Bernd; Kneser, Ulrich; Grützner, Paul Alfred; Kolios, Leila

    2014-01-01

    The incidence of osteoporotic fractures increases as our population ages. Until now, the exact biochemical processes that occur during the healing of metaphyseal fractures remain unclear. Diagnostic instruments that allow a dynamic insight into the fracture healing process are as yet unavailable. In the present matched pair analysis, we study the time course of the osteoanabolic markers bone specific alkaline phosphatase (BAP) and transforming growth factor β1 (TGFβ1), as well as the osteocatabolic markers crosslinked C-telopeptide of type-I-collagen (β-CTX) and serum band 5 tartrate-resistant acid phosphatase (TRAP5b), during the healing of fractures that have a low level of bone mineral density (BMD) compared with fractures that have a normal BMD. Between March 2007 and February 2009, 30 patients aged older than 50 years who suffered a metaphyseal fracture were included in our study. BMDs were verified by dual energy Xray absorptiometry (DXEA) scans. The levels of BTMs were examined over an 8-week period. Osteoanabolic BAP levels in those with low levels of BMD were significantly different from the BAP levels in those with normal BMD. BAP levels in the former group increased constantly, whereas the latter group showed an initial strong decrease in BAP followed by slowly rising values. Osteocatabolic β-CTX increased in the bone of the normal BMD group constantly, whereas these levels decreased significantly in the bone of the group with low BMD from the first week. TRAP5b was significantly reduced in the low level BMD group. With this work, we conduct first insights into the molecular biology of the fracture healing process in patients with low levels of BMD that explains the mechanism of its fracture healing. The results may be one reason for the reduced healing qualities in bones with low BMD. PMID:24788647

  18. Bone mineral density and body composition in a myelomeningocele children population: effects of walking ability and sport activity.

    PubMed

    Ausili, E; Focarelli, B; Tabacco, F; Fortunelli, G; Caradonna, P; Massimi, L; Sigismondi, M; Salvaggio, E; Rendeli, C

    2008-01-01

    Myelomeningocele causes serious locomotor disability, osteoporosis and pathologic fractures. The aim of this study was to investigate the relationship between body composition, bone mineral density, walking ability and sport activity in myelomeningocele children. 60 patients aged between 5 and 14 yrs with myelomeningocele (22 ambulatory and 38 non-ambulatory), were studied. Fat mass and fat-free-mass were calculated by anthropometry. The bone mineral density at lumbar and femoral neck were evaluated. Bone mineral density at the lumbar and femoral neck was lower than in the normal population. In the non-ambulaty group, bone mineral density was approximately 1 SD lower than in the ambulatory one (p < 0.01). Fat mass was greater than expected but without significantly differences between walking group (mean 26%) and wheel-chair users (25%). Patients practised sport activity had a better bone mineral density and body fat compared with other patients with the same disability. Patients with myelomeningocele have decreased bone mineral density and are at higher risk of pathologic bone fractures. All subjects showed an excess of fat as percentage of body weight and are shorter than normal children. The measurement of bone mineral density may help to identify those patients at greatest risk of suffering of multiple fractures. Walk ability and sport activity, associated with the development of muscle mass, are important factors in promoting bone and body growth, to reduce the risk of obesity and of pathological fractures. PMID:19146196

  19. Disordered-Eating Attitudes in Relation to Bone Mineral Density and Markers of Bone Turnover in Overweight Adolescents

    PubMed Central

    Schvey, Natasha A.; Tanofsky-Kraff, Marian; Yanoff, Lisa B.; Checchi, Jenna M.; Shomaker, Lauren B.; Brady, Sheila; Savastano, David M.; Ranzenhofer, Lisa M.; Yanovski, Susan Z.; Reynolds, James C.; Yanovski, Jack A.

    2009-01-01

    Purpose To examine the relationships between cognitive eating restraint and both bone mineral density (BMD) and markers of bone turnover in overweight adolescents. Methods 137 overweight (BMI 39.1±6.8 kg/m2) African American and Caucasian adolescent (age=14.4 ± 1.4y) girls (66.4%) and boys were administered the Eating Disorder Examination (EDE) interview and Eating Inventory (EI) questionnaire and underwent dual energy x-ray absorptiometry (DXA) to measure total lumbar spine BMD. Markers of bone formation (serum bone specific alkaline phosphatase and osteocalcin), bone resorption (24-hour urine N-telopeptides), and stress (urine free cortisol) were measured. Results After accounting for the contribution of demographics, height, weight, serum 25-hydroxyvitamin D, and depressive symptoms, adolescents’ weight concern, as assessed by interview, was a significant contributor to a model of urine free cortisol (β =.30, p <.05). Shape concern, as also assessed by interview, was significantly associated with lumbar spine bone mineral density (β =.−.15, p < 05). Dietary restraint was not a significant predictor in any of these models. Conclusions These findings suggest that among severely overweight adolescents, dissatisfaction with shape and weight may be salient stressors. Future research is required to illuminate the relationship between bone health and disordered-eating attitudes in overweight adolescents. PMID:19541247

  20. Fructus Ligustri Lucidi (FLL) ethanol extract increases bone mineral density and improves bone properties in growing female rats.

    PubMed

    Lyu, Ying; Feng, Xin; Zhao, Pengling; Wu, Zhenghao; Xu, Hao; Fang, Yuehui; Hou, Yangfeng; Denney, Liya; Xu, Yajun; Feng, Haotian

    2014-11-01

    Osteoporosis is a chronic disease affecting millions of people worldwide. It is generally accepted that acquisition of a high peak bone mass (PBM) early in life can reduce the risk of osteoporosis later in life. The aims of this study were to investigate the effects of Fructus Ligustri Lucidi (FLL) ethanol extract on bone mineral density and its mechanical properties in growing female rats and to explore the underlying mechanisms. The rats were given different doses of FLL extract mixed with AIN-93G formula (0.40, 0.65 and 0.90 %), and a group given AIN-93G diet treatment only was used as control. The intervention lasted for 16 weeks until the animals were about 5 months old, the time when the animals almost reach their PBM. Our results showed that FLL treatment increased bone mineral density and improved bone mechanical properties in the growing female rats in a dose-dependent manner. In addition, FLL treatment significantly decreased the serum bone-resorbing marker, CTX-I, while significantly increasing serum 25(OH)D3 and thereby increasing Ca absorption and Ca retention. Intriguingly, both in vivo and in vitro results demonstrated that FLL treatment could reduce the RANKL/OPG ratio. In conclusion, FLL ethanol extract exerted beneficial effects on peak bone mass acquisition and the improvement of bone mechanical properties by favoring Ca metabolism and decreasing the RANKL/OPG ratio. PMID:24362453

  1. Correlation of vitamin D, bone mineral density and parathyroid hormone levels in adults with low bone density

    PubMed Central

    Kota, Sunil; Jammula, Sruti; Kota, Siva; Meher, Lalit; Modi, Kirtikumar

    2013-01-01

    Background: Bone mineral densiy (BMD) is known to be affected by serum 25-hydroxyvitamin D (25(OH) D) levels, intact parathyroid hormone (iPTH) levels. Indian data pertinent to above observation is scant. Our study aimed to investigate the relationships between serum 25-hydroxyvitamin D (25(OH) D) levels, intact parathyroid hormone (iPTH) levels and bone mineral density (BMD) in a cohort of Indian patients. Materials and Methods: Adults with or without fragility fractures with low BMD at the hip or lumbar spine were evaluated clinically along with laboratory investigations. T-scores of the hip and spine were derived from BMD-DEXA (dual-energy X-ray absorptiometry). Multivariate regression models were used to investigate the relationships between serum 25(OH) D, iPTH and BMD. Results: Total of 102 patients (male:female = 38:64) with a mean age of 62.5 ± 6.4 years were included in the study. Forty-four patients had osteopenia. Osteoporosis was present in 58 patients. The mean values for serum 25(OH) D and iPTH levels were 21.3 ± 0.5 ng/ml and 53.1 ± 22.3 pg/ml, respectively. In 84.3% of patients, serum 25(OH) D levels were below 30 ng/ml (Normal = 30-74 ng/ml), confirming vitamin D deficiency. There was no association between 25(OH) D levels and BMD at the hip or lumbar spine (P = 0.473 and 0.353, respectively). Both at the hip and lumbar spine; iPTH levels, male gender, body mass index (BMI) and age were found to be significant predictors of BMD. Patients with higher BMI had significantly lower BMD and T-score. At levels <30 ng/ml, 25(OH) D was negatively associated with iPTH (P = 0.041). Conclusion: Among our cohort of patients with low BMD, no direct relationship between serum 25(OH) D levels and BMD was observed. However, a negative correlation between iPTH and 25(OH) D at serum 25(OH) D concentrations <30 ng/ml. Serum iPTH levels showed a significant negative association with BMD at the hip and lumbar spine. Our findings underscore the critical role of

  2. Quantitative evaluation of bone-mineral density loss using X-ray coherent scattering

    NASA Astrophysics Data System (ADS)

    Barroso, Regina Cély; Oliveira, Luis Fernando; Castro, Carlos Roberto Ferreira; Lima, João Carlos; Braz, Delson; Lopes, Ricardo Tadeu; Droppa, Roosevel; Tromba, Giuliana; Mancini, Lucia; Zanini, Franco; Rigon, Luigi; Dreossi, Diego

    2007-08-01

    In this work, we intend to relate the mineral to non-mineral bone scattering intensity ratio with the bone-mineral density (BMD) reduction. In this way, EDXRD can be a novel technique to measure BMD loss in function of the mineral and non-mineral scattering intensity. The scattering profiles were obtained at Laboratório Nacional de Luz Síncrotron (LNLS) at the X-ray diffraction beamline XD2. A double-crystal Si(1 1 1) pre-monochromator, upstream of the beamline, was used to select a small energy bandwidth (Δ λ/ λ≈10 -4) at 11 keV. The sample holder has a circle depression in the center to contain a range of bone and fat mixture ratios. The mixture consists of powdered cortical bone and fat, which together simulate in vivo bone. The diffraction patterns were carried out with 0.5 mm slits after and behind of the sample holder. The data were collected in 0.05° increments every 0.5 s. EDXRD results show an indication of different bone densities may be distinguished which suggested that X-ray coherent scattering technique may have a role in monitoring changes in BMD via changes in the related scattering intensity of mineral and non-mineral bone. The main aim of the Synchrotron Radiation for MEdical Physics (SYRMEP) project at the ELETTRA is the investigation and the development of innovative techniques for medical imaging. The beamline provides, at a distance of about 23 m from the source, a monochromatic, laminar section X-ray beam with a maximum area of about 160×5 mm 2 at 20 keV. The monochromator, that covers the entire angular acceptance of the beamline, is based on a double-Si (1 1 1) crystal system working in Bragg configuration. A micrometric vertical and horizontal translation stage allows the positioning and scanning of the sample with respect to the stationary beam. In this case, the detector is kept stationary in front of the beam, while the object is rotated in discrete steps in front of it. At each rotation, a projection is acquired. A goniometric

  3. Bone mineral density and diet of teachers of College of Home Economics at Lahore

    PubMed Central

    Javed, Zahra; Imam, Sardar Fakhar; Imam, Neelam; Saba, Kanwal; Bukhari, Mulazim Hussain

    2015-01-01

    Objective: To evaluate the Bone Mineral Density (BMD) and diet of teachers of a Govt. College of Home Economics in Lahore. Methods: It was survey research. Purposive sampling technique was adopted for the selection of 50 teachers from Govt. College of Home Economics of age group 30 – 60 years. Results: About 46% of the subjects had BMD ratio in between -2.58 to -4.0 (Osteoporotic category). The root cause of low BMD ratio was not really age related but in majority of the sample it was due to sedentary life style and lack of awareness about the importance of exercise in relation to bone health. Conclusion: The total mineral and vitamin intake required for bone health (calcium, magnesium, phosphorus & vitamin D) was below the recommended, among majority of the sample. PMID:26430440

  4. Age-related decrements in bone mineral density in women over 65

    NASA Technical Reports Server (NTRS)

    Steiger, P.; Cummings, S. R.; Black, D. M.; Spencer, N. E.; Genant, H. K.

    1992-01-01

    Age-related changes in bone density contribute to the risk of fractures. To describe the relationship between age and bone mass in elderly women, we studied a large cohort of women over age 65 years who were recruited from population-based lists in four cities in the United States. Bone density in g/cm2 was measured by single-photon absorptiometry (SPA) and dual x-ray absorptiometry (DXA) at the distal and proximal radius, the calcaneus, the lumbar spine, and the proximal femur. Centralized data collection was used to control data quality and consistency. We found a strong inverse relationship between bone density and age for most sites. Decrements in bone density between women aged 65-69 years and women 85 years and older exceeded 16% in all regions except the spine, where the difference between the two age groups was 6%. Ward's triangle and the calcaneus exhibited the largest decrements, with 26 and 21%, respectively. The estimates of annual changes in bone mineral density by linear regression at sites other than the spine ranged from -0.82% at the femoral neck and trochanter to -1.30% at Ward's triangle. Correlations between the different regions ranged from r = 0.51 between the proximal radius and Ward's triangle to r = 0.66 between the distal radius and calcaneus. We conclude that the inverse relationship between age and bone mass measured by absorptiometry techniques in white women continues into the ninth decade of life. The relationship is strongest for bone density of Ward's triangle and the calcaneus and weakest for the spine.

  5. Electrical and dielectric properties of bovine trabecular bone - relationships with mechanical properties and mineral density

    NASA Astrophysics Data System (ADS)

    Sierpowska, J.; Töyräs, J.; Hakulinen, M. A.; Saarakkala, S.; Jurvelin, J. S.; Lappalainen, R.

    2003-03-01

    Interrelationships of trabecular bone electrical and dielectric properties with mechanical characteristics and density are poorly known. While electrical stimulation is used for healing fractures, better understanding of these relations has clinical importance. Furthermore, earlier studies have suggested that bone electrical and dielectric properties depend on the bone density and could, therefore, be used to predict bone strength. To clarify these issues, volumetric bone mineral density (BMDvol), electrical and dielectric as well as mechanical properties were determined from 40 cylindrical plugs of bovine trabecular bone. Phase angle, relative permittivity, loss factor and conductivity of wet bovine trabecular bone were correlated with Young's modulus, yield stress, ultimate strength, resilience and BMDvol. The reproducibility of in vitro electrical and dielectric measurements was excellent (standardized coefficient of variation less than 1%, for all parameters), especially at frequencies higher than 1 kHz. Correlations of electrical and dielectric parameters with the bone mechanical properties or density were frequency-dependent. The relative permittivity showed the strongest linear correlations with mechanical parameters (r > 0.547, p < 0.01, n = 40, at 50 kHz) and with BMDvol (r = 0.866, p < 0.01, n = 40, at 50 kHz). In general, linear correlations between relative permittivity and mechanical properties or BMDvol were highest at frequencies over 6 kHz. In addition, a significant site-dependent variation of electrical and dielectric characteristics, mechanical properties and BMDvol was revealed in bovine femur (p < 0.05, Kruskall-Wallis H-test). Based on the present results, we conclude that the measurement of electrical and dielectric properties provides quantitative information that is related to bone quantity and quality.

  6. Electromagnetic field versus circuit weight training on bone mineral density in elderly women

    PubMed Central

    Elsisi, Hany Farid Eid Morsy; Mousa, Gihan Samir Mohamed; ELdesoky, Mohamed Taher Mahmoud

    2015-01-01

    Background and purpose Osteoporosis is a common skeletal disorder with costly complications and a global health problem and one of the leading causes of morbidity and mortality worldwide. Magnetic field therapy and physical activity have been proven as beneficial interventions for prevention and treatment of osteoporosis. The purpose of this study was to compare the response of bone mineral content and bone mineral density (BMD) in elderly women to either low-frequency low-intensity pulsed magnetic field (LFLIPMF) or circuit weight training (CWT) on short-run basis (after 12 weeks). Patients and methods Thirty elderly women, aged 60–70 years, were randomly assigned into two groups (magnetic field and CWT) (n=15 each group). The session was performed three times per week for magnetic field and CWT groups, for 12 weeks. BMD and bone mineral content of lumbar spine (L2–L4) and femoral neck, trochanter, and Ward’s triangle were evaluated before and after 12 weeks of treatment. Results Both magnetic field and CWT for 12 weeks in elderly women seem to yield beneficial and statistically significant increasing effect on BMD and bone mineral content (P<0.05). But magnetic field seems to have more beneficially and statistically significant effect than does CWT. Conclusion It is possible to conclude that LFLIPMF and CWT programs are effective modalities in increasing BMD but LFLIPMF is more effective in elderly women. PMID:25834412

  7. Comparison of vertebral and femoral bone mineral density in adult females.

    PubMed

    Choe, Han Seong; Lee, Jae Hong; Min, Dong Ki; Shin, So Hong

    2016-06-01

    [Purpose] This study assessed vertebral and femoral bone mineral density in adult females. [Subjects and Methods] A total of 314 females in their 40s to 70s were divided into normal, osteopenia, and osteoporosis groups and their vertebral and femoral bone mineral densities were compared. [Results] Comparisons of T scores revealed significant differences among measurements of the third lumbar vertebra, femoral neck, Ward's triangle, and femoral trochanter. Pearson correlation coefficients were used to assess differences between the vertebral and femoral measurements, and significant differences and positive correlations were observed among third lumbar vertebra, femoral neck, Ward's triangle, and femur trochanter in the normal group. [Conclusion] Females in the normal, osteopenia, and osteoporosis groups showed significant differences in their third lumbar vertebrae. The lack of significant differences among measurements in the osteoporosis group in this study suggests that patients with osteoporosis require careful and accurate diagnosis. PMID:27390449

  8. Comparison of vertebral and femoral bone mineral density in adult females

    PubMed Central

    Choe, Han Seong; Lee, Jae Hong; Min, Dong Ki; Shin, So Hong

    2016-01-01

    [Purpose] This study assessed vertebral and femoral bone mineral density in adult females. [Subjects and Methods] A total of 314 females in their 40s to 70s were divided into normal, osteopenia, and osteoporosis groups and their vertebral and femoral bone mineral densities were compared. [Results] Comparisons of T scores revealed significant differences among measurements of the third lumbar vertebra, femoral neck, Ward’s triangle, and femoral trochanter. Pearson correlation coefficients were used to assess differences between the vertebral and femoral measurements, and significant differences and positive correlations were observed among third lumbar vertebra, femoral neck, Ward’s triangle, and femur trochanter in the normal group. [Conclusion] Females in the normal, osteopenia, and osteoporosis groups showed significant differences in their third lumbar vertebrae. The lack of significant differences among measurements in the osteoporosis group in this study suggests that patients with osteoporosis require careful and accurate diagnosis. PMID:27390449

  9. The Progression of Bone Mineral Density Abnormalities After Chemotherapy for Childhood Acute Lymphoblastic Leukemia.

    PubMed

    Vitanza, Nicholas A; Hogan, Laura E; Zhang, Guangxiang; Parker, Robert I

    2015-07-01

    Although reduced bone mineral density in survivors of childhood acute lymphoblastic leukemia (ALL) is well documented, the degree of demineralization and relation to age are not well described. This is a retrospective chart analysis of 58 patients consecutively treated for ALL without relapse, cranial irradiation, or transplantation. Bone mineral densities were measured by dual-energy x-ray absorptiometry and patients were divided by sex and age (≤5, 6 to 10, and >10 y) at diagnosis. Serial scans for 6 years after therapy were analyzed as Z-scores. Over 6 years after therapy, 93.1% of patients exhibited a decreased Z-score in at least 1 anatomic site. The difference in Z-score among the age cohorts was significant at both the lumbar spine and femoral neck. Patients older than 10 years at diagnosis had the lowest Z-scores: -2.78 and -2.87 for boys and -2.39 and -2.91 for girls at the lumbar spine and femoral neck, respectively. Children after ALL therapy exhibit a significant bone mineral deficit shortly after completion of therapy that persists for at least 6 years. The degree of bone demineralization can be followed up by a dual-energy x-ray absorptiometry scan and is most severe in patients older than 10 years at the initiation of therapy. PMID:25222061

  10. Bones of Contention: Bone Mineral Density Recovery in Celiac Disease—A Systematic Review

    PubMed Central

    Grace-Farfaglia, Patricia

    2015-01-01

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied. PMID:25961322

  11. Bones of contention: bone mineral density recovery in celiac disease--a systematic review.

    PubMed

    Grace-Farfaglia, Patricia

    2015-05-01

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied. PMID:25961322

  12. Relationship of serum GDF11 levels with bone mineral density and bone turnover markers in postmenopausal Chinese women.

    PubMed

    Chen, Yusi; Guo, Qi; Zhang, Min; Song, Shumin; Quan, Tonggui; Zhao, Tiepeng; Li, Hongliang; Guo, Lijuan; Jiang, Tiejian; Wang, Guangwei

    2016-01-01

    Growth differentiation factor 11 (GDF11) is an important circulating factor that regulates aging. However, the role of GDF11 in bone metabolism remains unclear. The present study was undertaken to investigate the relationship between serum GDF11 level, bone mass, and bone turnover markers in postmenopausal Chinese women. Serum GDF11 level, bone turnover biochemical markers, and bone mineral density (BMD) were determined in 169 postmenopausal Chinese women (47-78 years old). GDF11 serum levels increased with aging. There were negative correlations between GDF11 and BMD at the various skeletal sites. After adjusting for age and body mass index (BMI), the correlations remained statistically significant. In the multiple linear stepwise regression analysis, age or years since menopause, BMI, GDF11, and estradiol were independent predictors of BMD. A significant negative correlation between GDF11 and bone alkaline phosphatase (BAP) was identified and remained significant after adjusting for age and BMI. No significant correlation was noted between cross-linked N-telopeptides of type I collagen (NTX) and GDF11. In conclusion, GDF11 is an independent negative predictor of BMD and correlates with a biomarker of bone formation, BAP, in postmenopausal Chinese women. GDF11 potentially exerts a negative effect on bone mass by regulating bone formation. PMID:27408764

  13. Osteoclastogenesis inhibitory factor/osteoprotegerin ameliorates the decrease in both bone mineral density and bone strength in immobilized rats.

    PubMed

    Mochizuki, Shin-ichi; Fujise, Nobuaki; Higashio, Kanji; Tsuda, Eisuke

    2002-01-01

    Rat models of immobilization-induced osteopenia are characterized by uncoupling of bone metabolism, i.e., increased bone resorption and decreased bone formation in trabecular bone. Using such a rat model, the efficacy of osteoclastogenesis inhibitory factor (OCIF)/osteoprotegerin, a novel secreted protein that inhibits osteoclastogenesis, in reducing bone loss was investigated. Male Fischer rats were neurectomized and injected intramuscularly with either OCIF (0.2, 1.0, or 5.0 mg/kg body weight) or vehicle once daily for 7 days. On the eighth day after sciatic neurectomy, significant bone loss was observed in the vehicle-injected rats. OCIF ameliorated the decrease in bone mineral density (BMD) of both the proximal and distal femur in a dose-dependent manner. OCIF also ameliorated the decrease in bone strength of the femoral neck at the highest dose. A high correlation (r = 0.805) was detected between the BMD of the distal femur and the bone strength of the femoral neck. When OCIF was administered intermittently to the immobilized rats twice weekly (on days 1 and 4) after immobilization, it also ameliorated the decrease in BMD of the distal femur. These results suggest that OCIF has therapeutic potential for the treatment of immobilization-induced osteopenia. PMID:11810411

  14. Relationship of serum GDF11 levels with bone mineral density and bone turnover markers in postmenopausal Chinese women

    PubMed Central

    Chen, Yusi; Guo, Qi; Zhang, Min; Song, Shumin; Quan, Tonggui; Zhao, Tiepeng; Li, Hongliang; Guo, Lijuan; Jiang, Tiejian; Wang, Guangwei

    2016-01-01

    Growth differentiation factor 11 (GDF11) is an important circulating factor that regulates aging. However, the role of GDF11 in bone metabolism remains unclear. The present study was undertaken to investigate the relationship between serum GDF11 level, bone mass, and bone turnover markers in postmenopausal Chinese women. Serum GDF11 level, bone turnover biochemical markers, and bone mineral density (BMD) were determined in 169 postmenopausal Chinese women (47–78 years old). GDF11 serum levels increased with aging. There were negative correlations between GDF11 and BMD at the various skeletal sites. After adjusting for age and body mass index (BMI), the correlations remained statistically significant. In the multiple linear stepwise regression analysis, age or years since menopause, BMI, GDF11, and estradiol were independent predictors of BMD. A significant negative correlation between GDF11 and bone alkaline phosphatase (BAP) was identified and remained significant after adjusting for age and BMI. No significant correlation was noted between cross-linked N-telopeptides of type I collagen (NTX) and GDF11. In conclusion, GDF11 is an independent negative predictor of BMD and correlates with a biomarker of bone formation, BAP, in postmenopausal Chinese women. GDF11 potentially exerts a negative effect on bone mass by regulating bone formation. PMID:27408764

  15. Calcium supplementation, bone mineral density and bone mineral content. Predictors of bone mass changes in adolescent mothers during the 6-month postpartum period.

    PubMed

    Malpeli, Agustina; Apezteguia, María; Mansur, José L; Armanini, Alicia; Macías Couret, Melisa; Villalobos, Rosa; Kuzminczuk, Marta; Gonzalez, Horacio F

    2012-03-01

    We determined the effect of calcium supplementation on bone mineral density (BMD) and bone mineral content (BMC) and identified predictors of bone mass changes in adolescent mothers 6 months postpartum. A prospective, analytical, clinical study was performed in adolescent mothers (< or = 19 years old; n = 37) from La Plata, Argentina. At 15 days postpartum, mothers were randomly assigned into one of two groups and started with calcium supplementation; one group received dairy products (932 mg Ca; n = 19) and the other calcium citrate tablets (1000 mg calcium/day; n = 18). Weight, height and dietary intake were measured and BMD was determined by DEXA at 15 days (baseline) and 6 months postpartum. BMC, total body BMD and BMD were assessed in lumbar spine, femoral neck, trochanter and total hip. Regression models were used to identify the relationship of total body BMD and BMC with independent variables (calcium supplementation, months of lactation, weight at 6 months, percent weight change, lean mass at 6 months, percent lean mass change, total calcium intake). Results showed that changes in BMD and BMC at the different sites were similar in both groups, and changes in percent body weight and total calcium intake were the main predictive factors. In conclusion, the effect of calcium was similar with either form of supplementation, i.e., dairy products or tablets, and changes in percent body weight and total calcium intake were predictors of total body BMD and BMC changes. PMID:23477205

  16. Comparison of radiograph-based texture analysis and bone mineral density with three-dimensional microarchitecture of trabecular bone

    SciTech Connect

    Ranjanomennahary, P.; Ghalila, S. Sevestre; Malouche, D; Marchadier, A.; Rachidi, M.; Benhamou, Cl.; Chappard, C.

    2011-01-15

    Purpose: Hip fracture is a serious health problem and textural methods are being developed to assess bone quality. The authors aimed to perform textural analysis at femur on high-resolution digital radiographs compared to three-dimensional (3D) microarchitecture comparatively to bone mineral density. Methods: Sixteen cadaveric femurs were imaged with an x-ray device using a C-MOS sensor. One 17 mm square region of interest (ROI) was selected in the femoral head (FH) and one in the great trochanter (GT). Two-dimensional (2D) textural features from the co-occurrence matrices were extracted. Site-matched measurements of bone mineral density were performed. Inside each ROI, a 16 mm diameter core was extracted. Apparent density (D{sub app}) and bone volume proportion (BV/TV{sub Arch}) were measured from a defatted bone core using Archimedes' principle. Microcomputed tomography images of the entire length of the core were obtained (Skyscan 1072) at 19.8 {mu}m of resolution and usual 3D morphometric parameters were computed on the binary volume after calibration from BV/TV{sub Arch}. Then, bone surface/bone volume, trabecular thickness, trabecular separation, and trabecular number were obtained by direct methods without model assumption and the structure model index was calculated. Results: In univariate analysis, the correlation coefficients between 2D textural features and 3D morphological parameters reached 0.83 at the FH and 0.79 at the GT. In multivariate canonical correlation analysis, coefficients of the first component reached 0.95 at the FH and 0.88 at the GT. Conclusions: Digital radiographs, widely available and economically viable, are an alternative method for evaluating bone microarchitectural structure.

  17. Assessment of bone mineral density in the jaws and its relationship to radiomorphometric indices

    PubMed Central

    Gulsahi, A; Paksoy, CS; Ozden, S; Kucuk, NO; Cebeci, ARI; Genc, Y

    2010-01-01

    Objectives The aim of this study was to evaluate maxillary, mandibular and femoral neck bone mineral density using dual energy X-ray absorptiometry (DXA) and to determine any correlation between the bone mineral density of the jaws and panoramic radiomorphometric indices. Methods 49 edentulous patients (18 males and 31 females) aged between 41 and 78 years (mean age 60.2 ± 11.04) were examined by panoramic radiography. Bone mineral density (BMD) of the jaws and femoral neck was measured with a DXA; bone mineral density was calculated at the anterior, premolar and molar regions of the maxilla and mandible. Results The mean maxillary molar BMD (0.45 g cm−2) was significantly greater than the maxillary anterior and premolar BMD (0.31 g cm−2, P < 0.05). Furthermore, the mean mandibular anterior and premolar BMD (1.39 g cm−2 and 1.28 g cm−2, respectively) was significantly greater than the mean mandibular molar BMD (1.09 g cm−2, P < 0.01). Although BMD in the maxillary anterior and premolar regions were correlated, BMD in all the mandibular regions were highly correlated. Maxillary and mandibular BMD were not correlated with femoral BMD. In addition, mandibular cortical index (MCI) classification, mental index (MI) or panoramic mandibular index (PMI) values were not significantly correlated with the maxillary and mandibular BMDs (P > 0.05). Conclusions The BMD in this study was highest in the mandibular anterior region and lowest in the maxillary anterior and premolar regions. The BMD of the jaws was not correlated with either femoral BMD or panoramic radiomorphometric indices. PMID:20587652

  18. Detecting low bone mineral density from dental radiographs: a mini-review

    PubMed Central

    Graham, James

    2015-01-01

    Summary Over a number of years researchers have reported associations between osteoporosis or low bone mineral density and signs that can be detected on dental radiographs, particularly in the width of the inferior mandibular cortex and the texture of the trabecular bone. As patients visit the dentist more regularly than they visit their doctor, there is the possibility that such signs could be used as a means of identifying individuals at risk of developing osteoporosis or suffering from consequent fracture. This paper reviews the historical background behind this research and the current status, including recent developments in automation of measurement using computer image analysis. PMID:26604946

  19. Low Bone Density

    MedlinePlus

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  20. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  1. The Soy Isoflavones to Reduce Bone Loss (SIRBL) Study: Three Year Effects on pQCT Bone Mineral Density and Strength Measures in Postmenopausal Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy isoflavones exert inconsistent bone density preserving effects, but the bone strength preserving effects in humans are unknown. Our double-blind randomized controlled trial examined 2 soy isoflavone doses (80 or 120 mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength ...

  2. Milk consumption throughout life and bone mineral content and density in elderly men and women

    PubMed Central

    Eysteinsdottir, T.; Halldorsson, T. I.; Thorsdottir, I.; Sigurdsson, G.; Sigurðsson, S.; Harris, T.; Launer, L. J.; Gudnason, V.; Gunnarsdottir, I.

    2016-01-01

    Summary Association between bone mineral density and bone mineral content in old age and milk consumption in adolescence, midlife, and old age was assessed. The association was strongest for milk consumption in midlife: those drinking milk daily or more often had higher bone mineral density and content in old age than those drinking milk seldom or never. Introduction The role of lifelong milk consumption for bone mineral density (BMD) and bone mineral content (BMC) in old age is not clear. Here we assess the association between hip BMD and BMC in old age and milk consumption in adolescence, midlife, and current old age. Methods Participants of the Age, Gene/Environment Susceptibility-Reykjavik Study, aged 66–96 years (N=4,797), reported retrospective milk intake during adolescence and midlife as well as in current old age, using a validated food frequency questionnaire. BMC of femoral neck and trochanteric area was measured by volumetric quantitative computed tomography and BMD obtained. Association was assessed using linear regression models. Differences in BMC, bone volume, and BMD in relation to milk intake were portrayed as gender-specific Z-scores. Results Men consuming milk≥once/day during midlife had 0.21 higher Z-scores for BMD and 0.18 for BMC in femoral neck (95 % confidence interval 0.05–0.39 and 0.01–0.35, respectively) compared withbone volume. The strongest associations are seen for

  3. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity. PMID:27344855

  4. Varying ratios of omega-6: omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens.

    PubMed

    Baird, H T; Eggett, D L; Fullmer, S

    2008-02-01

    The purpose of this study was to investigate the effects of varying ratios of n-6 to n-3 fatty acids in the diets of White Leghorn chickens on tibia bone characteristics [bone mineral density, bone mineral content (BMC), ash bone mineral content, bone morphology, and cortical thickness] and tibia bone strength parameters (ultimate force, bending stress, maximum strain, Young's modulus of elasticity, area under the curve, and moment of inertia). Seventy-five 16-wk-old female White Leghorn chickens were randomly assigned to 1 of 5 dietary ratios of n-6 to n-3 fatty acids: 47.8:1, 18.0:1, 7.6:1, 5.9:1, or 4.7:1. Corn oil was the n-6 fatty acid source, whereas flax oil provided the n-3 fatty acids. Bone density was measured on the left tibia via dual-energy x-ray absorptiometry (DXA) prior to killing and after excision. Bones were ashed in a muffle furnace at 500 degrees F. Tibia bones were broken by using a 3-point bending rig. Results showed no significant effect of diet on bone characteristics. There were no significant differences among diet groups for parameters of bone strength except cortical thickness (P < or = 0.01). Bone mineral content determined by ashing was significantly different by 9.2% (P < or = 0.0001) from BMC determined in vivo by DXA; however, there were no differences in ex vivo BMC and BMC ash, although they were highly correlated (r = 0.99, P < or = 0.0001). We concluded that there was no effect of n-3 fatty acids on tibia bone in mature White Leghorn chickens. The GE Lunar Prodigy DXA instrument significantly underestimated the in vivo BMC in chickens. PMID:18212376

  5. Low bone mineral density is related to atherosclerosis in postmenopausal Moroccan women

    PubMed Central

    Hmamouchi, Ihsane; Allali, Fadoua; Khazzani, Hamza; Bennani, Loubna; Mansouri, Leila EL; Ichchou, Linda; Cherkaoui, Mohammed; Abouqal, Redouane; Hajjaj-Hassouni, Najia

    2009-01-01

    Background Some studies have implicated several possible metabolic linkages between osteoporosis and vascular calcification, including estrogen deficiency, vitamin D excess, vitamin K deficiency and lipid oxidation products. Nevertheless, it remains unclear whether osteoporosis and atherosclerosis are related to each other or are independent processes, both related to aging. The aim of this cross-sectional study was to evaluate the correlation between arterial thickening and bone status in a sample of apparently healthy Moroccan women. Methods Seventy-two postmenopausal women were studied. All patients were without secondary causes that might affect bone density. Bone status was assessed by bone mineral density (BMD) in lumbar spine and all femoral sites. Arterial wall thickening was assessed by intima-media thickness (IMT) in carotid artery (CA) and femoral artery (FA). Prevalent plaques were categorized into four groups ranging from low echogenicity to high echogenicity. Results The mean age was 59.2 ± 8.3 years. 84.7% had at least one plaque. By Spearman Rank correlation, CA IMT was negatively correlated to Femoral total BMD (r = -0.33), Femoral neck BMD (r = -0.23), Ward triangle BMD (r = -0.30) and Trochanter BMD (r = -0.28) while there was no association with lumbar BMD. In multiple regression analysis, CA IMT emerged as an independent factor significantly associated with all femoral sites BMD after adjusting of confounding factors. FA IMT failed to be significantly associated with both Femoral and Lumbar BMD. No significant differences between echogenic, predominantly echogenic, predominantly echolucent and echolucent plaques groups were found concerning lumbar BMD and all femoral sites BMD Conclusion Our results demonstrate a negative correlation between bone mineral density (BMD) qnd carotid intima-media thickness (IMT) in postmenopausal women, independently of confounding factors. We suggest that bone status should be evaluated in patients with vascular

  6. Comparison of Bone Mineral Density in Thalassemia Major Patients with Healthy Controls

    PubMed Central

    Meena, Mahesh Chand; Hemal, Alok; Satija, Mukul; Arora, Shilpa Khanna; Bano, Shahina

    2015-01-01

    Chronic hemoglobinopathies like thalassemia are associated with many osteopathies like osteoporosis. Methods. This observational study was carried out to compare the bone mineral density (BMD) in transfusion dependent thalassemics with that of healthy controls. Thirty-two thalassemia patients, aged 2–18 years, and 32 age and sex matched controls were studied. The bone mineral concentration (BMC) and BMD were assessed at lumbar spine, distal radius, and neck of femur. Biochemical parameters like serum calcium and vitamin D levels were also assessed. Results. The BMC of neck of femur was significantly low in cases in comparison to controls. We also observed significantly lower BMD at the lumbar spine in cases in comparison to controls. A significantly positive correlation was observed between serum calcium levels and BMD at neck of femur. Conclusion. Hence, low serum calcium may be used as a predictor of low BMD especially in populations where incidence of hypovitaminosis D is very high. PMID:26880923

  7. Bone mineral density in cone beam computed tomography: Only a few shades of gray

    PubMed Central

    Campos, Marcio José da Silva; de Souza, Thainara Salgueiro; Mota Júnior, Sergio Luiz; Fraga, Marcelo Reis; Vitral, Robert Willer Farinazzo

    2014-01-01

    Cone beam computed tomography (CBCT) has often been used to determine the quality of craniofacial bone structures through the determination of mineral density, which is based on gray scales of the images obtained. However, there is no consensus regarding the accuracy of the determination of the gray scales in these exams. This study aims to provide a literature review concerning the reliability of CBCT to determine bone mineral density. The gray values obtained with CBCT show a linear relationship with the attenuation coefficients of the materials, Hounsfield Units values obtained with medical computed tomography, and density values from dual energy X-ray absorciometry. However, errors are expected when CBCT images are used to define the quality of the scanned structures because these images show inconsistencies and arbitrariness in the gray values, particularly when related to abrupt change in the density of the object, X-ray beam hardening effect, scattered radiation, projection data discontinuity-related effect, differences between CBCT devices, changes in the volume of the field of view (FOV), and changes in the relationships of size and position between the FOV and the object evaluated. A few methods of mathematical correction of the gray scales in CBCT have been proposed; however, they do not generate consistent values that are independent of the devices and their configurations or of the scanned objects. Thus, CBCT should not be considered the examination of choice for the determination of bone and soft tissue mineral density at the current stage, particularly when values obtained are to be compared to predetermined standard values. Comparisons between symmetrically positioned structures inside the FOV and in relation to the exomass of the object, as it occurs with the right and left sides of the skull, seem to be viable because the effects on the gray scale in the regions of interest are the same. PMID:25170398

  8. Bone mineral density evaluation among patients with neuromuscular scoliosis secondary to cerebral palsy☆

    PubMed Central

    Rezende, Rodrigo; Cardoso, Igor Machado; Leonel, Rayana Bomfim; Perim, Larissa Grobério Lopes; Oliveira, Tarcísio Guimarães Silva; Jacob Júnior, Charbel; Júnior, José Lucas Batista; Lourenço, Rafael Burgomeister

    2014-01-01

    Objective To evaluate bone mineral density among patients with neuromuscular scoliosis secondary to quadriplegic cerebral palsy. Methods This was a descriptive prospective study in which both bone densitometric and anthropometric data were evaluated. The inclusion criteria used were that the patients should present quadriplegic cerebral palsy, be confined to a wheelchair, be between 10 and 20 years of age and present neuromuscular scoliosis. Results We evaluated 31 patients (20 females) with a mean age of 14.2 years. Their mean biceps circumference, calf circumference and body mass index were 19.4 cm, 18.6 cm and 16.9 kg/m2, respectively. The mean standard deviation from bone densitometry was −3.2 (z-score), which characterizes osteoporosis. Conclusion There is high incidence of osteoporosis in patients with neuromuscular scoliosis secondary to quadriplegic cerebral palsy. PMID:26229882

  9. Comparisons of bone mineral density and bone quality in adult rock climbers, resistance-trained men, and untrained men.

    PubMed

    Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2010-09-01

    The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups. PMID:20093970

  10. Pilot study of bone mineral density in breast cancer patients treated with adjuvant chemotherapy

    NASA Technical Reports Server (NTRS)

    Headley, J. A.; Theriault, R. L.; LeBlanc, A. D.; Vassilopoulou-Sellin, R.; Hortobagyi, G. N.

    1998-01-01

    The objective of this cross-sectional study was to determine lumbar spine bone mineral density (BMD) in breast cancer patients previously treated with adjuvant chemotherapy. Sixteen of 27 patients who received adjuvant chemotherapy became permanently amenorrheic as a result of chemotherapy. BMD was measured at the lumbar spine using dual energy X-ray absorptiometry (DEXA). Chemotherapy drugs and dosages along with a history of risk factors for reduced bone density including activity level, tobacco and/or alcohol use, metabolic bone disease, family history, and hormone exposure were identified. Results showed that women who became permanently amenorrheic as a result of chemotherapy had BMD 14% lower than women who maintained menses after chemotherapy. Chemotherapy-treated women who maintained ovarian function had normal BMD. This study suggests that women who have premature menopause as a result of chemotherapy for breast cancer are at increased risk of bone loss and may be at risk for early development of osteoporosis. Women who maintain menses do not appear to be at risk for accelerated trabecular bone loss.

  11. Forearm bone mineral density in familial hypocalciuric hypercalcemia and primary hyperparathyroidism: a comparative study.

    PubMed

    Isaksen, Troels; Nielsen, Christian Stoltz; Christensen, Signe Engkjær; Nissen, Peter H; Heickendorff, Lene; Mosekilde, Leif

    2011-10-01

    Studies have shown that cancellous bone is relatively preserved in primary hyperparathyroidism (PHPT), whereas bone loss is seen in cortical bone. Familial hypocalciuric hypercalcemia (FHH) patients seem to preserve bone mineral in spite of hypercalcemia and often elevated plasma parathyroid hormone (PTH). The objective of this study was to compare total and regional forearm bone mineral density (BMD) in patients with PHPT and FHH and to examine if differences can be used to separate the two disorders. We included 63 FHH, and 121 PHPT patients in a cross-sectional study. We performed dual-energy X-ray absorptiometry scans of the forearm, hip and lumbar spine and measured a number of biochemical variables. PTH patients had significantly lower Z-scores in all parts of the forearm compared to FHH. This was also the case after adjustment for body mass index. When stratifying for age, gender and PTH, T-scores were still significantly lower in PHPT patients than in FHH patients at the total, the mid and the ultradistal forearm, but not at the proximal 1/3 forearm. In a multiple regression analysis BMD Z-score was lower in PHPT compared to FHH at the total forearm, the mid forearm and the ultradistal forearm but not the proximal forearm when adjusting for biochemical variables including PTH, 1,25(OH)(2)D and Ca(2+). These observations support that inactivating mutations in the CASR gene in bone cells in FHH may protect against forearm bone loss. Differences between the two groups in total or regional forearm BMD were inferior to the calcium/creatinine clearance ratio as a diagnostic tool to separate FHH from PHPT. PMID:21785908

  12. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography.

    PubMed

    Yamada, Kazutaka; Sato, Fumio; Higuchi, Tohru; Nishihara, Kaori; Kayano, Mitsunori; Sasaki, Naoki; Nambo, Yasuo

    2015-01-01

    Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R(2)=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R(2)=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  13. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography

    PubMed Central

    YAMADA, Kazutaka; SATO, Fumio; HIGUCHI, Tohru; NISHIHARA, Kaori; KAYANO, Mitsunori; SASAKI, Naoki; NAMBO, Yasuo

    2015-01-01

    ABSTRACT Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R2=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R2=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  14. Lycopene intake facilitates the increase of bone mineral density in growing female rats.

    PubMed

    Iimura, Yuki; Agata, Umon; Takeda, Satoko; Kobayashi, Yuki; Yoshida, Shigeki; Ezawa, Ikuko; Omi, Naomi

    2014-01-01

    Intake of the antioxidant lycopene has been reported to decrease oxidative stress and have beneficial effects on bone health. However, few in vivo studies have addressed these beneficial effects in growing female rodents or young women. The aim of this study was to investigate the effect of lycopene intake on bone metabolism through circulating oxidative stress in growing female rats. Six-week-old Sprague-Dawley female rats were randomly divided into 3 groups according to the lycopene content in their diet: 0, 50, and 100 ppm. The bone mineral density (BMD) of the lumbar spine and the tibial proximal metaphysis increased with lycopene content in a dose-dependent manner; the BMD in 100 ppm group was significantly higher than in the 0 ppm group. The urine deoxypyridinoline concentrations were significantly lower in the 50 and 100 ppm groups than in the 0 ppm group, and the serum bone-type alkaline phosphatase activity was significantly higher in 100 ppm group than in the 0 ppm group. No difference in systemic oxidative stress level was observed; however, the oxidative stress level inversely correlated with the tibial BMD. Our findings suggested that lycopene intake facilitates bone formation and inhibits bone resorption, leading to an increase of BMD in growing female rats. PMID:24975219

  15. Bone Mineral Density in Adolescent Females Using Injectable or Oral Contraceptives: A 24 Month Prospective Study

    PubMed Central

    Cromer, Barbara A.; Bonny, Andrea E.; Stager, Margaret; Lazebnik, Rina; Rome, Ellen; Ziegler, Julie; Camlin-Shingler, Kelly; Secic, Michelle

    2008-01-01

    Study Objective To determine whether bone mineral density (BMD) is lower in hormonal contraceptive users than that in an untreated, comparison group. Design Observational, prospective cohort; duration: 24 months. Setting Adolescent clinics in a midwestern, metropolitan setting. Patients 433 postmenarcheal girls, aged 12–18 years, on depot medroxyprogesterone acetate (DMPA) [n=58], oral contraceptives (OC) [n=187], or untreated (n=188). Intervention DMPA and OC containing 100 mcg levonorgestrel and 20 mcg ethinyl estradiol. Main Outcome Measure BMD measurements at spine and femoral neck were obtained with dual x-ray absorptiometry (DXA) at baseline and 6-month intervals. Results Over 24 months, mean percent change in spine BMD was: DMPA −1.5%, OC +4.2%, and untreated +6.3%. Mean percent change in femoral neck BMD was: DMPA −5.2%, OC +3.0%, untreated +3.8%. Statistical significance was found between the DMPA group and other two groups (p<.001). In the DMPA group, mean percent change in spine BMD over the first 12 months was −1.4%; the rate of change slowed to −0.1% over the second 12 months. No bone density loss reached the level of osteopenia. Conclusions Adolescent girls receiving DMPA had significant loss in BMD compared with bone gain in the OC and untreated group. However, its clinical significance is mitigated by slowed loss after the first year of DMPA use and general maintenance of bone density values within the normal range. PMID:18222431

  16. Next-generation sequencing for disorders of low and high bone mineral density

    PubMed Central

    Sule, Gautam; Campeau, Philippe M.; Zhang, Victor Wei; Nagamani, Sandesh C.S.; Dawson, Brian C.; Grover, Monica; Bacino, Carlos A.; Sutton, V. Reid; Brunetti-Pierri, Nicola; Lu, James T.; Lemire, Edmond; Gibbs, Richard A.; Cohn, Dan H.; Cui, Hong; Wong, Lee-Jun C.; Lee, Brendan H.

    2013-01-01

    Introduction Osteogenesis imperfecta (OI), Ehlers-Danlos syndrome (EDS), and osteopetrosis (OPT)are collectively common inherited skeletal diseases. Evaluation of subjects with these conditions often includes molecular testing which has important counseling, therapeutic and sometimes legal implications. Since several different genes have been implicated in these conditions, Sanger sequencing of each gene can be a prohibitively expensive and time consuming way to reach a molecular diagnosis. Methods In order to circumvent these problems, we have designed and tested a NGS platform that would allow simultaneous sequencing on a single diagnostic platform of different genes implicated in OI, OPT, EDS, and other inherited conditions leading to low or high bone mineral density. We used a liquid-phase probe library that captures 602 exons (~100 kb) of 34 selected genes and have applied it to test clinical samples from patients with bone disorders. Results NGS of the captured exons by Illumina HiSeq2000 resulted in an average coverage of over 900X. The platform was successfully validated by identifying mutations in 6 patients with known mutations. Moreover, in 4 patients with OI or OPT without a prior molecular diagnosis, the assay was able to detect the causative mutations. Conclusions In conclusion, our NGS panel provides a fast and accurate method to arrive at a molecular diagnosis in most patients with inherited high or low bone mineral density disorders. PMID:23443412

  17. Bone Mineral Density in Children and Adolescents with Neurofibromatosis Type 1

    PubMed Central

    Stevenson, David A.; Moyer-Mileur, Laurie J.; Murray, Mary; Slater, Hillarie; Sheng, Xiaoming; Carey, John C.; Dube, Bukhosi; Viskochil, David H.

    2007-01-01

    Objective To assess if children and adolescents with neurofibromatosis type 1 (NF1) have decreased bone mineral density (BMD). Study design Bone densitometry of the whole body, hip and lumbar spine was utilized in a case:control design (84 individuals with NF1: 293 healthy individuals without NF1). Subjects were 5–18 years of age. Individuals with NF1 were compared to controls using an analysis-of-covariance with a fixed set of covariates (age, weight, height, Tanner stage, and sex). Results Individuals with NF1 had decreased areal bone mineral density (aBMD) of the hip (p<0.0001), femoral neck (p<0.0001), lumbar spine (p=0.0025), and whole body subtotal (p<0.0001). When individuals with NF1 were separated into groups with and without a skeletal abnormality, the NF1 individuals without a skeletal abnormality still had statistically significant decreases compared to controls (p<0.0001 for whole body subtotal aBMD) albeit less pronounced than those with osseous abnormalities. Conclusions These data suggest that individuals with NF1 have a unique generalized skeletal dysplasia, predisposing them to localized osseous defects. Dual energy x-ray absorptiometry may prove useful to identify individuals with NF1 who are at risk for clinical osseous complications, and monitoring therapeutic trials. PMID:17188620

  18. Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus.

    PubMed

    Wear, K A; Stuber, A P; Reynolds, J C

    2000-10-01

    Ultrasonic attenuation and sound speed have been investigated in trabecular bone by numerous authors. Ultrasonic backscatter has received much less attention. To investigate relationships among these three ultrasonic parameters and bone mineral density (BMD), 30 defatted human calcanei were investigated in vitro. Normalized broadband ultrasonic attenuation (nBUA), sound speed (SOS), and logarithm of ultrasonic backscatter coefficient (LBC) were measured. Bone mineral density was assessed using single-beam dual energy x-ray absorptiometry (DEXA). The correlation coefficients of least squares linear regressions of the three individual ultrasound (US) parameters with BMD were 0.84 (nBUA), 0.84 (SOS) and 0.79 (LBC). The 95% confidence intervals for the correlation coefficients were 0. 69-0.92 (nBUA), 0.68-0.92 (SOS) and 0.60-0.90 (LBC). The correlations among pairs of US variables ranged from 0.63-0.79. Variations in nBUA accounted for r(2) = 62% of the variations in LBC. Variations in SOS accounted for r(2) = 40% of the variations in LBC. These results suggest that ultrasonic backscattering properties may contain substantial information not already contained in nBUA and SOS. A multiple regression model including all three US variables was somewhat more predictive of BMD than a model including only nBUA and SOS. PMID:11120369

  19. Impact of Strength Training on Bone Mineral Density in Patients Infected With HIV Exhibiting Lipodystrophy.

    PubMed

    Santos, Wlaldemir R; Santos, Walmir R; Paes, Pedro P; Ferreira-Silva, Isac A; Santos, André P; Vercese, Natan; Machado, Dalmo R L; de Paula, Francisco José A; Donadi, Eduardo A; Navarro, Anderson M; Fernandes, Ana Paula M

    2015-12-01

    This study aimed to evaluate the impact of strength training on bone mineral density (BMD) in individuals harboring HIV exhibiting lipodystrophy. The study included 20 subjects (16 men) aged 50.60 ± 6.40 years with reduced BMD, presenting positive serology for HIV, using highly active antiretroviral therapy, and performing no regular practice of physical exercise before being enrolled in the study. Bone mineral density levels were evaluated by dual-energy x-ray absorptiometry in the lumbar spine, femoral neck, and 1/3 radius, before and after 36 sessions (12 weeks) of strength training. Compared with pre-exercise period, the results showed increased BMD in lumbar spine (3.28%; p = 0.012), femoral neck (8.45%; p = 0.044), and 1/3 radius (5.41%; p = 0.035). This is the first study evaluating the impact of strength training in patients living with HIV and exhibiting lipodystrophy, showing an increased BMD in all the regions measured (lumbar spine, femoral neck, and 1/3 radius). This study showed the beneficial impact of the strength training on BMD increase in patients living with HIV as an effective and available approach to improve bone health. PMID:25970490

  20. The recent prevalence of Osteoporosis and low bone mass in the United States based on bone mineral density at the Femoral Neck or Lumbar Spine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral ...

  1. Bone Mineral Density and Bone Turnover Markers Under Bisphosphonate Therapy Used in the First Year After Liver Transplantation.

    PubMed

    Nowacka-Cieciura, Ewa; Sadowska, Anna; Pacholczyk, Marek; Chmura, Andrzej; Tronina, Olga; Durlik, Magdalena

    2016-01-01

    BACKGROUND Rapid bone loss occurs early after liver transplantation (Tx), concomitantly with intensified bone turnover. In the present study we investigated the effect of bisphosphonates (bisph) added to vitamin D (vitD) and calcium on bone mineral density (BMD) and bone biomarkers in liver graft recipients in the first posttransplant year. MATERIAL AND METHODS In 28 patients BMD was determined at the third month after Tx. In case of osteopenia (Tscore ≤-1.0) and no contraindications, oral bisph was started for 1 year (group BP, n=14); other patients served as controls (CON, n=14). The changes in BMD and biomarkers of bone formation were osteocalcin (OC), bone alkaline phosphatase (BAP), and resorption. Study endpoints were active isoform 5b of the tartrate-resistant acid phosphatase (TRACP5b), serum pyridinoline crosslinks (PYD), and urine excretion of deoxypyridinoline (Dpd) crosslinks. RESULTS In 19 (68%) patients, reduced BMD (T-score ≤1.0) was observed at baseline. The changes in lumbar BMD in BP and CON groups were 5.2% and 1.5%, respectively, not reaching statistical significance. Baseline PYD, Dpd/creat, and OC were elevated in all patients, indicating high bone turnover. We observed decrease in PYD and Dpd/creat in both groups; however, OC decreased only under bisph therapy. Increase in BAP was observed in the control group but not in the BP group. The changes in BAP and OC were significantly different (p<0.01). CONCLUSIONS Combining bisph with vitD and calcium is an effective bone- sparing strategy in liver transplant recipients in the first posttransplant year. Bisph more efficiently decreased the rate of bone turnover than vitD and calcium alone. PMID:27112626

  2. Evaluation of Bone Mineral Density by Computed Tomography in Patients with Obstructive Sleep Apnea

    PubMed Central

    Hamada, Satoshi; Ikezoe, Kohei; Hirai, Toyohiro; Oguma, Tsuyoshi; Tanizawa, Kiminobu; Inouchi, Morito; Handa, Tomohiro; Oga, Toru; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Study Objectives: Clinical studies have investigated whether obstructive sleep apnea (OSA) can modulate bone metabolism but data are conflicting. Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is the standard technique for quantifying bone strength but has limitations in overweight patients (body mass index [BMI] ≥ 25 kg/m2). The aim of this study was to examine the association between OSA and BMD by examining CT images that allow true volumetric measurements of the bone regardless of BMI. Methods: Lumbar vertebrae BMD was evaluated in 234 persons (180 males and 54 females) by CT scan. The method was calibrated by a phantom containing a known concentration of hydroxyapatite. Results: BMD was lower in male patients with severe OSA (apnea-hypopnea index [AHI] ≥ 30/h) than non OSA (AHI < 5; p < 0.05), while OSA and BMD had no association in females. Linear and multiple regression analyses revealed that age (p < 0.0001, β = −0.52), hypertension (p = 0.0068, β = −0.17), and the alveolar-arterial oxygen pressure difference (A-aDO2) (p = 0.012, β = −0.15) in males were associated with BMD, while only age (p < 0.0001, β = −0.68) was associated with BMD in females. Conclusion: Males with severe OSA had a significantly lower BMD than non OSA participants. Age, hypertension, and elevation of A-aDO2 were significant factors for BMD by CT imaging. The usefulness of measuring BMD in OSA patients by CT scanning should be studied in future. Citation: Hamada S, Ikezoe K, Hirai T, Oguma T, Tanizawa K, Inouchi M, Handa T, Oga T, Mishima M, Chin K. Evaluation of bone mineral density by computed tomography in patients with obstructive sleep apnea. J Clin Sleep Med 2016;12(1):25–34. PMID:26235157

  3. Effect of body composition on bone mineral density in Moroccan patients with juvenile idiopathic arthritis

    PubMed Central

    El Badri, Dalal; Rostom, Samira; Bouaddi, Ilham; Hassani, Asmae; Chkirate, Bouchra; Amine, Bouchra; Hajjaj-Hassouni, Najia

    2014-01-01

    Introduction The link between bone mass and body composition is widely recognized, but only few works were selectively performed on subjects with juvenile idiopathic arthritis. The aim of our study was to investigate the effect of body composition on bone mineral density (BMD) in Moroccan patients with juvenile idiopathic arthritis. Methods Thirty three children with juvenile idiopathic arthritis (JIA) were included in a cross-sectional study. The diagnosis of JIA was made according to the criteria of the International League of Association of Rheumatology (ILAR). Body mass index (BMI) was calculated from the ratio of weight/height2(kg/m2). Pubertal status was determined according to the Tanner criteria. Bone status, body composition and bone mineral content (BMC) were analyzed by using dual-energy X-ray absorptiometry (DXA). BMD was assessed at the lumbar spine (L1-L4) and at total body in (g/cm2). Total body fat tissue mass (FTM) and lean tissue mass (LTM) were also analyzed by DXA and expressed in kilograms. In children, low BMD was defined as a Z-score less than -2 and osteoporosis was defined as a Z-score less than -2 with a fracture history. Results A cross-sectional study was conducted in 33 Moroccan patients with JIA aged between 4 and 16 years, Fat mass was not related to bone density; in contrast, BMD was positively associated to LTM in total body(r = =0.41, p= 0.04) but not in lumbar spine (r = 0.29, p= 0.17). There exist significant correlation between BMC and BMD in total body (r = 0.51, p = 0.01). Conclusion This study suggests that the LTM is a determining factor of the BMD during adolescence. Other studies with a broader sample would be useful to confirm this relation. PMID:25120859

  4. Relationship of Volumetric Bone Mineral Density and Structural Parameters with ERα Gene Polymorphisms

    PubMed Central

    Cepollaro, C.; Lauretani, F.; Gozzini, A.; Masi, L.; Falchetti, A.; Monte, F.; Carbonell-Sala, S.; Tanini, A.; Corsi, A.M.; Bandinelli, S.; Ferrucci, L.; Brandi, M.L.

    2009-01-01

    Bone mineral density (BMD) contributes to bone strength, and methods for clinical assessment of bone quality characteristics beyond what can be gathered by BMD are awaited. Peripheral quantitative computed tomography (pQCT) allows for separate assessments of cortical and trabecular bone, providing information on bone geometry. Previous studies examining the relationship between estrogen receptor α (ERα) gene polymorphisms and BMD have been performed in large populations. However, only limited information is available on the possible segregation of ERα gene polymorphisms with bone structural properties. The aim of our study was to evaluate the association of XbaI and PvuII ERα gene polymorphisms with QCT parameters. We studied 900 subjects (541 women, 449 men) participating to the InCHIANTI study. By tibial pQCT we evaluated trabecular volumetric BMD, cortical volumetric BMD, cortical bone area, and cortical thickness (CtTh). Subjects were genotyped for ERα gene PvuII and XbaI polymorphisms. Analysis of variance was used for statistical analysis. Male subjects with PP and XX genotypes had higher geometric parameters, and female subjects with XX and PP genotypes showed higher densitometric parameters than other genotypes; however, the differences did not reach statistical significance. After adjustment for potential confounders, we found a significant (P = 0.002) CtTh difference across PvuII polymorphism in male subjects, with higher CtTh values in PP genotypes with respect to Pp and pp genotypes. These results show a relationship between the presence of the P allele and higher values of CtTh in male subjects, indicating for ERα a role in the control of tibial bone geometry. PMID:17505773

  5. Quantitative CT assessment of bone mineral density in dogs with hyperadrenocorticism.

    PubMed

    Lee, Donghoon; Lee, Youngjae; Choi, Wooshin; Chang, Jinhwa; Kang, Ji-Houn; Na, Ki-Jeong; Chang, Dong-Woo

    2015-01-01

    Canine hyperadrenocorticism (HAC) is one of the most common causes of general osteopenia. In this study, quantitative computed tomography (QCT) was used to compare the bone mineral densities (BMD) between 39 normal dogs and 8 dogs with HAC (6 pituitary-dependent hyperadrenocorticism [PDH]; pituitary dependent hyperadrenocorticism, 2 adrenal hyperadrenocorticism [ADH]; adrenal dependent hyperadrenocorticism) diagnosed through hormonal assay. A computed tomogaraphy scan of the 12th thoracic to 7th lumbar vertebra was performed and the region of interest was drawn in each trabecular and cortical bone. Mean Hounsfield unit values were converted to equivalent BMD with bone-density phantom by linear regression analysis. The converted mean trabecular BMDs were significantly lower than those of normal dogs. ADH dogs showed significantly lower BMDs at cortical bone than normal dogs. Mean trabecular BMDs of dogs with PDH using QCT were significantly lower than those of normal dogs, and both mean trabecular and cortical BMDs in dogs with ADH were significantly lower than those of normal dogs. Taken together, these findings indicate that QCT is useful to assess BMD in dogs with HAC. PMID:26040613

  6. Quantitative CT assessment of bone mineral density in dogs with hyperadrenocorticism

    PubMed Central

    Lee, Donghoon; Lee, Youngjae; Choi, Wooshin; Chang, Jinhwa; Kang, Ji-Houn; Na, Ki-Jeong

    2015-01-01

    Canine hyperadrenocorticism (HAC) is one of the most common causes of general osteopenia. In this study, quantitative computed tomography (QCT) was used to compare the bone mineral densities (BMD) between 39 normal dogs and 8 dogs with HAC (6 pituitary-dependent hyperadrenocorticism [PDH]; pituitary dependent hyperadrenocorticism, 2 adrenal hyperadrenocorticism [ADH]; adrenal dependent hyperadrenocorticism) diagnosed through hormonal assay. A computed tomogaraphy scan of the 12th thoracic to 7th lumbar vertebra was performed and the region of interest was drawn in each trabecular and cortical bone. Mean Hounsfield unit values were converted to equivalent BMD with bone-density phantom by linear regression analysis. The converted mean trabecular BMDs were significantly lower than those of normal dogs. ADH dogs showed significantly lower BMDs at cortical bone than normal dogs. Mean trabecular BMDs of dogs with PDH using QCT were significantly lower than those of normal dogs, and both mean trabecular and cortical BMDs in dogs with ADH were significantly lower than those of normal dogs. Taken together, these findings indicate that QCT is useful to assess BMD in dogs with HAC. PMID:26040613

  7. Minodronic acid ameliorates vertebral bone strength by increasing bone mineral density in 9-month treatment of ovariectomized cynomolgus monkeys.

    PubMed

    Tanaka, Makoto; Mori, Hiroshi; Kawabata, Kazuhito; Mashiba, Tasuku

    2016-07-01

    The effect of treatment for 9months with minodronic acid, a nitrogen-containing bisphosphonate, on vertebral mechanical strength was examined in ovariectomized (OVX) cynomolgus monkeys. Forty skeletally mature female monkeys were randomized into four OVX groups and one sham group (n=8) based on lumbar bone mineral density (BMD). OVX animals were treated orally with 15 and 150μg/kg QD of minodronic acid or 500μg/kg QD alendronate as a reference drug. Measurements of bone turnover markers and lumbar BMD were conducted at 0, 4 and 8months. Measurements of bone mechanical strength and minodronic acid concentration in vertebral bodies were also performed. OVX resulted in a decrease in lumbar BMD and an increase in bone turnover markers at 4 and 8months, compared to the sham group, and the ultimate load on the lumbar vertebra was decreased in OVX animals. Minodronic acid and alendronate prevented the OVX-induced increase in bone turnover markers and decrease in lumbar BMD. Minodronic acid at 150μg/kg increased the ultimate load on lumbar vertebra compared to untreated OVX animals. Regression analysis revealed that the ultimate load was correlated with lumbar BMD and bone mineral content (BMC), and most strongly with the increase in lumbar BMD and BMC over 8months. In a separate analysis within the sham-OVX controls and minodronic acid and alendronate treatment groups, the ultimate loads were also correlated with BMD and BMC. The load-BMD (BMC) correlation in the minodronic acid group showed a trend for a shift to a higher load from the basal relationship in the sham-OVX controls. These results indicate that treatment with minodronic acid for 9months increases vertebral mechanical strength in OVX monkeys, mainly by increasing BMD and BMC. PMID:27155564

  8. Pycnogenol® treatment inhibits bone mineral density loss and trabecular deterioration in ovariectomized rats

    PubMed Central

    Huang, Gangyong; Wu, Jianguo; Wang, Siqun; Wei, Yibing; Chen, Feiyan; Chen, Jie; Shi, Jingsheng; Xia, Jun

    2015-01-01

    Context: Pycnogenol® extracted from French maritime pine bark (Pinus pinaster Ait. subsp. atlantica) is functional for its antioxidant activity. Objective: To investigate the effects of Pycnogenol® on bone mineral density (BMD), trabecular microarchitecture and bone metabolism in ovariectomized (OVX) rats. Materials and methods: Thirty Sprague-Dawley rats were randomized into 3 groups: SHAM group (sham-operated rats), OVX group (OVX rats), and treatment group (OVX rats supplemented with 40 mg/kg Pycnogenol® by oral gavage). Serum levels of procollagen type I N-terminal propeptide (PINP), alkaline phosphatase (ALP) and minerals were detected at the end of 9 weeks of gavage. Deoxypyridinoline/creatinine (DPYD/Cr) and N-telopeptide of type I collagen/creatinine (NTX/Cr) rate in urine were also calculated. Left femora were collected for BMD determination, and the right distal femora were made into undecalcified specimens for histomorphometry analysis. Results: At the end of study, PINP level, DPYD/Cr and NTX/Cr rate were significantly increased, and femoral BMD were dramatically decreased in OVX group compared with SHAM group (P < 0.01) while serum minerals and ALP concentrations showed no significant difference. The treatment group had dramatically decreased biomarkers and increased BMD than OVX group (P < 0.01). Histomorphometry analysis showed worse bone microarchitecture parameters in the OVX group compared with the SHAM group which were significantly improved in the treatment group compared with the OVX group (P < 0.01). Discussion and conclusion: Pycnogenol® (40 mg/kg) can inhibit aggravated bone resorption, prevent BMD loss, and restore the impaired trabecular microarchitecture in OVX rats after 9-week-intervention. PMID:26379883

  9. Experimental assessment of bone mineral density using quantitative computed tomography in holstein dairy cows.

    PubMed

    Maetani, Ayami; Itoh, Megumi; Nishihara, Kahori; Aoki, Takahiro; Ohtani, Masayuki; Shibano, Kenichi; Kayano, Mitsunori; Yamada, Kazutaka

    2016-08-01

    The aim of this study was to assess the measurement of bone mineral density (BMD) by quantitative computed tomography (QCT), comparing the relationships of BMD between QCT and dual-energy X-ray absorptiometry (DXA) and between QCT and radiographic absorptiometry (RA) in the metacarpal bone of Holstein dairy cows (n=27). A significant positive correlation was found between QCT and DXA measurements (r=0.70, P<0.01), and a significant correlation was found between QCT and RA measurements (r=0.50, P<0.01). We conclude that QCT provides quantitative evaluation of BMD in dairy cows, because BMD measured by QCT showed positive correlations with BMD measured by the two conventional methods: DXA and RA. PMID:27075115

  10. [Effects of alfacalcidol on mineral density of bone tissue in patients with rheumatoid arthritis].

    PubMed

    Gukasian, D A; Nasonov, E L; Balabanova, R M; Smirnov, A V; Vlasova, I S

    2001-01-01

    The analysis of antiosteoporotic efficacy of alphacalcidol was made in 50 patients with rheumatoid arthritis (RA). 30 RA patients received alphacalcidol in a dose 0.75-1.0 mcg/day for 12 months. 20 control RA patients did not receive the drug. Mineral density of the bone tissue (MD) of the proximal femur and low back spine was studied using double x-ray absorptiometry at the start of the treatment and 12 months after it. It was established that alphacalcidol stabilizes MD of the neck of the femur and low spine. A significant MD increase was observed in those areas of the proximal femur where cortical bone tissue prevails. PMID:11641938

  11. Experimental assessment of bone mineral density using quantitative computed tomography in holstein dairy cows

    PubMed Central

    MAETANI, Ayami; ITOH, Megumi; NISHIHARA, Kahori; AOKI, Takahiro; OHTANI, Masayuki; SHIBANO, Kenichi; KAYANO, Mitsunori; YAMADA, Kazutaka

    2016-01-01

    The aim of this study was to assess the measurement of bone mineral density (BMD) by quantitative computed tomography (QCT), comparing the relationships of BMD between QCT and dual-energy X-ray absorptiometry (DXA) and between QCT and radiographic absorptiometry (RA) in the metacarpal bone of Holstein dairy cows (n=27). A significant positive correlation was found between QCT and DXA measurements (r=0.70, P<0.01), and a significant correlation was found between QCT and RA measurements (r=0.50, P<0.01). We conclude that QCT provides quantitative evaluation of BMD in dairy cows, because BMD measured by QCT showed positive correlations with BMD measured by the two conventional methods: DXA and RA. PMID:27075115

  12. Effects of ultrasound on estradiol level, bone mineral density, bone biomechanics and matrix metalloproteinase-13 expression in ovariectomized rabbits

    PubMed Central

    XIA, LU; HE, HONGCHEN; GUO, HUA; QING, YUXI; HE, CHENG-QI

    2015-01-01

    The aim of the present study was to observe the effect of ultrasound (US) on estradiol level, bone mineral density (BMD), bone biomechanics and matrix metalloproteinase-13 (MMP-13) expression in ovariectomized (OVX) rabbits. A total of 28 virgin New Zealand white rabbits were randomly assigned into the following groups: Control (control group), ovariectomy (OVX group), ovariectomy with ultrasound therapy (US group) and ovariectomy with estrogen replacement therapy group (ERT group). At 8 weeks after ovariectomy, the US group received ultrasound treatment while the ERT group were orally treated with conjugated estrogens, and the control and OVX groups remained untreated. The estradiol level, BMD and bone biomechanics, cartilage histology and the MMP-13 expression were analyzed after the intervention. The results indicate that the US treatment increased estradiol level, BMD and bone biomechanical function. Furthermore, the US treatment appeared to improve the recovery of cartilage morphology and decreased the expression of MMP-13 in OVX models. Furthermore, the results suggest that 10 days of US therapy was sufficient to prevent the reduction of estradiol, BMD and bone biomechanical function, to protect osteoarthritis cartilage structure, and to reduce MMP-13 transcription and expression in OVX rabbits. Therefore, US treatment may be a potential treatment for postmenopausal osteoarthritis and osteoporosis. PMID:26622502

  13. A Comparison of Bone Mineral Density in Amateur Male Boxers and Active Non-boxers.

    PubMed

    Bolam, K A; Skinner, T L; Sax, A T; Adlard, K N; Taaffe, D R

    2016-08-01

    To examine the site-specific osteogenic effect of upper limb impact-loading activity we compared the forearm and arm bone mineral density (BMD) of male boxers to that of active controls. A cross-sectional study was performed with 30 amateur male boxers (aged 18-44 years) and 32 age-matched, non-boxing, active controls. Participants had their regional and whole body BMD and bone mineral content (BMC) assessed by dual-energy X-ray absorptiometry. Hand grip strength, testosterone, oestradiol, sex hormone-binding globulin, vitamin D, lean and fat mass, and past and current physical activity were also assessed. Forearm and arm BMD were 1.5-2.2% higher in boxers than the control group although this was not statistically significant (p>0.05), with no significant difference for BMC (p>0.05). There were no differences between groups for spine, hip, or whole body BMD or BMC, or for body composition or hormone status. Within the arms, lean mass was associated with BMD and BMC in both boxers and the control group (BMD, r=0.60-0.76, p<0.001; BMC, r=0.67-0.82, p<0.001). There were no significant differences between amateur boxers and the control group for upper limb BMD and BMC. However, muscle mass appears to be particularly important to bone health of the upper limbs. PMID:27203576

  14. A Piece of the Puzzle: The Bone Health Index of the BoneXpert Software Reflects Cortical Bone Mineral Density in Pediatric and Adolescent Patients

    PubMed Central

    Schündeln, Michael M.; Marschke, Laura; Bauer, Jens J.; Hauffa, Pia K.; Schweiger, Bernd; Führer-Sakel, Dagmar; Lahner, Harald; Poeppel, Thorsten D.; Kiewert, Cordula; Hauffa, Berthold P.; Grasemann, Corinna

    2016-01-01

    Introduction Suspected osteopathology in chronically ill children often necessitates the assessment of bone mineral density. The most frequently used methods are dual-energy X-ray-absorption (DXA) and peripheral quantitative computed tomography (pQCT). The BoneXpert software provides an automated radiogrammatic method to assess skeletal age from digitalized X-rays of the left hand. Furthermore, the program calculates the Bone Health Index (BHI), a measure of cortical thickness and mineralization, which is obtained from indices of three metacarpal bones. In our study, we analyzed the manner in which BHI information provided by BoneXpert compares with DXA or pQCT measurements in youths. Study Design The BHI was retrospectively obtained using digitalized X-rays of the left hand and compared with the results of 203 corresponding DXA readings (Lunar Prodigy, GE Healthcare) of the lumbar vertebrae and femur as well as 117 pQCT readings (XCT 900, Stratec) of the distal radius. Results The BHI values showed a strong positive correlation with the DXA readings at each and all lumbar vertebrae (L1 –L4: r = 0.73; P < 0.0001). The age-adjusted Z-score of L1 –L4 and the height-adjusted score showed a positive correlation with the BHI-SDS (standard deviation score, r = 0.23; P < 0.002 and r = 0.27; P < 0.001, respectively). Total bone mineral density, as assessed via pQCT, also positively correlated with the BHI (r = 0.39; P < 0.0001), but the trabecular values displayed only a weak correlation. Conclusions The BHI obtained using BoneXpert can be a useful parameter in the assessment of bone health in children in most cases. This technique provides observer-independent information on cortical thickness and mineralization based on X-ray imaging of the hands. PMID:27014874

  15. Influence of bone mineral density and hip geometry on the different types of hip fracture

    PubMed Central

    Li, Yizhong; Lin, Jinkuang; Cai, Siqing; Yan, Lisheng; Pan, Yuancheng; Yao, Xuedong; Zhuang, Huafeng; Wang, Peiwen; Zeng, Yanjun

    2016-01-01

    The aim of this study was to assess the influence of bone mineral density and hip geometry on the fragility fracture of femoral neck and trochanteric region. There were 95 menopausal females of age ≥ 50 years with fragility fracture of hip, including 55 cases of femoral neck fracture and 40 cases of trochanteric fracture. Another 63 non-fractured females with normal bone mineral density (BMD) were chosen as control. BMD, hip axis length, neck-shaft angle and structural parameters including cross surface area, cortical thickness and buckling ratio were detected and compared. Compared with control group, the patients with femoral neck fracture or trochanteric fractures had significantly lower BMD of femoral neck, as well as lower cross surface area and cortical thickness and higher buckling ratio in femoral neck and trochanteric region. There were no significant differences of BMD and structural parameters in the femoral neck fracture group and intertrochanteric fracture group. Hip axis length and neck-shaft angle were not significantly different among three groups. The significant changes of BMD and proximal femur geometry were present in the fragility fracture of femoral neck and trochanteric region. The different types of hip fractures cannot be explained by these changes. PMID:26773177

  16. Bone mineral density in children with fanconi anemia after hematopoietic cell transplantation.

    PubMed

    Petryk, Anna; Polgreen, Lynda E; Barnum, Jessie L; Zhang, Lei; Hodges, James S; Baker, K Scott; Wagner, John E; Steinberger, Julia; MacMillan, Margaret L

    2015-05-01

    Fanconi anemia (FA) is an inherited DNA repair disorder associated with short stature and bone marrow failure, usually requiring hematopoietic cell transplantation (HCT). Although low bone mineral density (BMD) has been reported in leukemia patients after HCT, little is known about BMD in FA children after HCT (FA HCT). This study's goals were to compare BMD in FA HCT to BMD in healthy controls and in children who received HCT for hematologic malignancy (cancer HCT), and to test for associations between BMD and risk factors for bone loss. This cross-sectional study included 20 FA HCT, 13 cancer HCT, and 90 healthy controls, age-matched and <18 years old at evaluation. BMD Z-scores for total body (TBMD) and lumbar spine (LBMD) were measured by dual energy x-ray absorptiometry and adjusted for height-for-age Z-score (HAZ). FA HCT had lower mean TBMDHAZ Z-score (by .8 SD) and higher fraction with Z-score ≤ -1 than healthy controls (42% versus 11%). No LBMD deficits were detected. FA HCT and cancer HCT groups did not differ significantly in TBMD or LBMD Z-scores. In FA HCT patients, lower body mass index and lower percent fat were associated with lower BMD. This study highlights the importance of monitoring BMD to optimize bone health in FA patients. PMID:25591848

  17. Parametric electrical impedance tomography for measuring bone mineral density in the pelvis using a computational model.

    PubMed

    Kimel-Naor, Shani; Abboud, Shimon; Arad, Marina

    2016-08-01

    Osteoporosis is defined as bone microstructure deterioration resulting a decrease of bone's strength. Measured bone mineral density (BMD) constitutes the main tool for Osteoporosis diagnosis, management, and defines patient's fracture risk. In the present study, parametric electrical impedance tomography (pEIT) method was examined for monitoring BMD, using a computerized simulation model and preliminary real measurements. A numerical solver was developed to simulate surface potentials measured over a 3D computerized pelvis model. Varying cortical and cancellous BMD were simulated by changing bone conductivity and permittivity. Up to 35% and 16% change was found in the real and imaginary modules of the calculated potential, respectively, while BMD changes from 100% (normal) to 60% (Osteoporosis). Negligible BMD relative error was obtained with SNR>60 [dB]. Position changes errors indicate that for long term monitoring, measurement should be taken at the same geometrical configuration with great accuracy. The numerical simulations were compared to actual measurements that were acquired from a healthy male subject using a five electrodes belt bioimpedance device. The results suggest that pEIT may provide an inexpensive easy to use tool for frequent monitoring BMD in small clinics during pharmacological treatment, as a complementary method to DEXA test. PMID:27185035

  18. Association Between Body Composition and Bone Mineral Density in Men on Hemodialysis.

    PubMed

    Marinho, Sandra M S de A; Wahrlich, Vivian; Mafra, Denise

    2015-10-01

    Studies have revealed complex interactions between bone and fat, however there are few studies about this crosstalk in patients with chronic kidney disease. This study investigated possible relationship between bone mineral density (BMD) and body composition in patients who underwent hemodialysis. Twenty patients were enrolled in a cross-sectional study (47.0 [42.3-56.8] years, body mass index 26.0 ± 4.2 kg/m, dialysis vintage of 48.5 [26.7-95.7] months). Body composition and BMD were assessed by dual-energy X-ray absorptiometry. Leptin and parathormone levels were analyzed using Multiplex kits (R&D System Inc). Low bone mass in the femoral neck was reported in 54.8% of patients. Total BMD and total T-score were positively correlated with lean mass (r = 0.46, P = 0.04; r = 0.47, P = 0.04, respectively), but not with leptin or body fat mass. In conclusion, lean body mass is probably important to maintain bone health in male patients who underwent hemodialysis. PMID:26418381

  19. Comparison of DXA and MRI methods for interpreting femoral neck bone mineral density.

    PubMed

    Arokoski, Merja H; Arokoski, Jari P A; Vainio, Pauli; Niemitukia, Lea H; Kröger, Heikki; Jurvelin, Jukka S

    2002-01-01

    The aim of the study was to improve the practical implementation of the dual X-ray absorptiometry (DXA) by converting the areal bone mineral density BMD (BMD(areal)) to volumetric BMD using magnetic resonance (MR) imaging (MRI) because a failure to control for the femoral neck size can lead to erroneous interpretation of BMD values. We also evaluated the feasibility of MR T2* relaxation time in assessing bone mineral status of the femoral neck. Twenty-eight randomly selected 47- to 64-yr-old healthy men were studied. The men had neither unilateral nor bilateral hip osteoarthritis according to radiographs. Bone width, mineral content (BMC), BMD(areal), and apparent volumetric BMD (BMD(vol)) of the right femoral neck were measured with DXA. The BMD(vol) was calculated by approximating the femoral neck to be cylindrical with a circular cross-section (Vol(dxa)). Volumetric measurements from MR (Vol(mri)) images of the femoral neck were also used to create a BMD measure that was corrected for the femoral neck volume (BMD(mri)). T2* measurements were performed with a 1.5-T scanner (Siemens Magnetom 63SP, Erlangen, Germany). A single 10-mm-thick coronal slice was generated on the femur with a repetition time of 60 ms, and nine echo times (4-20 ms) were used to derive T2* values. Vol(mri) correlated positively (r = 0.828, p < 0.001) with Vol(dxa). However, the Vol(mri) of the femoral neck was 18% lower than the Vol(dxa). Similarly, the BMD(mri) was related to the BMD(vol) (r = 0.737, p < 0.001). Because of the difference in the volumetric measures, the BMD(mri) of the femoral neck was 21% higher than the BMD(vol) (p < 0.001). T2* relaxation time showed a significant negative correlation with BMC, BMD(areal), BMD(vol), and BMD(mri) (r = -0.423 to -0.757, p < 0.05-0.001). In conclusion, these results are evidence that DXA-derived volume approximations by the cylinder with circular cross-section geometry may lead to lower DXA-derived BMD(vol) values, as compared to true MRI

  20. The association between systemic sclerosis and bone mineral density- a meta-analysis of observational studies.

    PubMed

    Wan, Ya-Nan; Zhang, Li; Wang, Yu-Jie; Yan, Jun-Wei; Wang, Bing-Xiang; Wang, Jing

    2014-11-01

    Previous research has shown inconsistent effect of systemic sclerosis (SSc) on bone mineral density (BMD). The objective of this study was to perform a meta-analysis of previous articles to investigate the differences in BMD (g/cm(2) ) between SSc and non-SSc populations and to discuss potential underlying mechanisms. Twelve full-text articles (including an outlier study and two studies with identical data) with 662 SSc patients and 886 controls were identified by searching Medline prior to 10 September, 2013 using search terms 'Systemic sclerosis' OR 'scleroderma' and 'osteoporosis' OR 'bone density' OR 'bone mass'. BMD (mean and standard deviation), T-scores and Z-scores at lumbar spine, femoral neck and total hip measured by dual-energy X-ray absorptiometry were extracted. Meta-analysis showed that a lower level of BMD was found in SSc patients, with weighted mean difference of -0.343 (95% CI: -0.500 to -0.186) at femoral neck, -0.084 (95% CI: -0.110 to -0.057) at total hip and -0.104 (95% CI: -0.135 to -0.073) at the lumbar spine. We conclude that patients with SSc may have a lower BMD level than healthy controls. PMID:24894309

  1. Molecular Variation in Neuropeptide Y and Bone Mineral Density Among Men of African Ancestry

    PubMed Central

    Goodrich, Louis J.; Yerges-Armstrong, Laura M.; Miljkovic, Iva; Nestlerode, Cara S.; Kuipers, Allison L.; Bunker, Clareann H.; Patrick, Alan L.; Wheeler, Victor W.

    2016-01-01

    Neuropeptide Y (NPY) is a physiological candidate gene for the regulation of body weight and has more recently been implicated in regulating bone mass. The current study sought to test if inherited variation in NPY might influence BMD in a population of African-ancestry men who have high bone mineral density (BMD). We genotyped 17 tagging single-nucleotide polymorphisms (SNPs) across the NPY gene region in 1,113 randomly selected men of African ancestry aged ≥40 years and tested for association with anthropometric characteristics and proximal femur BMD. The homozygous rare genotype of four SNPs was associated with a 0.92–1.59% decrease in stature (corrected P < 0.05). No SNP was associated with body mass index or body weight. Two SNPs in a 5-kb linkage disequilibrium block encompassing exons 3 and 4 were associated with proximal femur BMD, adjusted for age, body weight, and height (corrected P < 0.05). These results suggest that genetic variation at the NPY locus may contribute to bone density, independently of body weight. PMID:19865784

  2. Association of chemerin levels and bone mineral density in Chinese obese postmenopausal women.

    PubMed

    Shi, Liang; Mao, Chaoming; Wang, Xuefeng; Liu, Rencong; Li, Lin; Mou, Xiao; Xu, Ping; Li, Hongli; Xu, Chengcheng; Yuan, Guoyue; Wang, Bin; Zhang, Hao

    2016-08-01

    Increasing evidence suggests the association between obesity and bone metabolism. However, whether excessive fat accumulation has a beneficial or adverse effect on bone health remains controversial. Chemerin is a novel adipocyte-derived hormone and a chemoattractant cytokine that regulates adipogenesis. This study was performed to investigate the associations of serum chemerin with bone mineral density (BMD) and serum pro-inflammatory cytokine levels in 543 Chinese obese postmenopausal women. BMD of the femoral neck and lumbar spine, lean mass, and fat mass were measured using dual energy X-ray absorptiometry. Anthropometric assessment and laboratory measurements were performed. The age, time after menopause, and fat mass were negatively correlated with femoral and lumbar BMD, whereas lean mass was positively correlated with aforementioned variables. Furthermore, BMD at the lumbar spine was inversely associated with serum chemerin and TNF-α levels (r = -0.155, P = 0.001; r = -0.147, P = 0.001). Multiple linear regression analyses showed that serum chemerin levels were negatively correlated with BMD at the lumbar site after controlling for the age, lean, and fat mass (β = -0.125, P = 0.001). Chronic low-grade inflammation state in obese population has an inverse effect on bone mass. Chemerin as an adipocytokine and chemoattractant negatively affects the bone mass of Chinese obese postmenopausal women. Further studies are needed to confirm the potential role of chemerin in the crosstalk between bone and fat accumulation in obese population. PMID:27583869

  3. Combat sports practice favors bone mineral density among adolescent male athletes.

    PubMed

    Nasri, Raouf; Hassen Zrour, Saoussen; Rebai, Haithem; Neffeti, Fadoua; Najjar, Mohamed Fadhel; Bergaoui, Naceur; Mejdoub, Hafedh; Tabka, Zouhair

    2015-01-01

    The aim of this study was to determine the impact of combat sports practice on bone mineral density (BMD) and to analyze the relationship between bone parameters and anthropometric measurements, bone markers, and activity index (AI). In other words, to detect the most important determinant of BMD in the adolescent period among combat sports athletes. Fifty athletes engaged in combat sports, mean age 17.1±0.2 yr, were compared with 30 sedentary subjects who were matched for age, height, and pubertal stage. For all subjects, the whole-body BMD, lumbar spine BMD (L2-L4), and BMD in the pelvis, arms, and legs was measured by dual-energy X-ray absorptiometry, and anthropometric measurements were evaluated. Daily calcium intake, bone resorption, and formation markers were measured. BMD measurements were greater in the combat sports athletes than in the sedentary group (p<0.01). Weight, body mass index, and lean body mass were significantly correlated with BMD in different sites. Daily calcium consumption lower than daily calcium intake recommended in both athletes and sedentary group. AI was strongly correlated with all BMD measurements particularly with the whole body, legs, and arms. Negative correlations were observed between bone markers and BMD in different sites. The common major predictor of BMD measurements was AI (p<0.0001). AI associated to lean body mass determined whole-body BMD until 74%. AI explained both BMD in arms and L2-L4 at 25%. AI associated to height can account for 63% of the variance in BMD legs. These observations suggested that the best model predicting BMD in different sites among adolescent combat sports athletes was the AI. Children and adolescents should be encouraged to participate in combat sports to maximize their bone accrual. PMID:24176431

  4. Association of chemerin levels and bone mineral density in Chinese obese postmenopausal women

    PubMed Central

    Shi, Liang; Mao, Chaoming; Wang, Xuefeng; Liu, Rencong; Li, Lin; Mou, Xiao; Xu, Ping; Li, Hongli; Xu, Chengcheng; Yuan, Guoyue; Wang, Bin; Zhang, Hao

    2016-01-01

    Abstract Increasing evidence suggests the association between obesity and bone metabolism. However, whether excessive fat accumulation has a beneficial or adverse effect on bone health remains controversial. Chemerin is a novel adipocyte-derived hormone and a chemoattractant cytokine that regulates adipogenesis. This study was performed to investigate the associations of serum chemerin with bone mineral density (BMD) and serum pro-inflammatory cytokine levels in 543 Chinese obese postmenopausal women. BMD of the femoral neck and lumbar spine, lean mass, and fat mass were measured using dual energy X-ray absorptiometry. Anthropometric assessment and laboratory measurements were performed. The age, time after menopause, and fat mass were negatively correlated with femoral and lumbar BMD, whereas lean mass was positively correlated with aforementioned variables. Furthermore, BMD at the lumbar spine was inversely associated with serum chemerin and TNF-α levels (r = −0.155, P = 0.001; r = −0.147, P = 0.001). Multiple linear regression analyses showed that serum chemerin levels were negatively correlated with BMD at the lumbar site after controlling for the age, lean, and fat mass (β = −0.125, P = 0.001). Chronic low-grade inflammation state in obese population has an inverse effect on bone mass. Chemerin as an adipocytokine and chemoattractant negatively affects the bone mass of Chinese obese postmenopausal women. Further studies are needed to confirm the potential role of chemerin in the crosstalk between bone and fat accumulation in obese population. PMID:27583869

  5. Lack of deleterious effect on bone mineral density of long-term thyroxine suppressive therapy for differentiated thyroid carcinoma.

    PubMed

    Reverter, J L; Holgado, S; Alonso, N; Salinas, I; Granada, M L; Sanmartí, A

    2005-12-01

    The effect of subclinical hyperthyroidism on bone mineral density is controversial and could be significant in patients with differentiated thyroid carcinoma who receive suppressive doses of levothyroxine (LT4). To ascertain whether prolonged treatment with LT4 to suppress thyrotropin had a deleterious effect on bone mineral density and/or calcium metabolism in patients thyroidectomized for differentiated thyroid cancer we have performed a cross-sectional study in a group of 88 women (mean +/- SD age: 51 +/- 12 years) treated with LT4 after near-total thyroidectomy and in a control group of 88 healthy women (51 +/- 11 years) matched for body mass index and menopausal status. We determined calcium metabolism parameters, bone turnover marker N-telopeptide and bone mass density by dual-energy X-ray absorptiometry. No differences were found between patients and controls in calcium metabolism parameters or N-telopeptide except for PTH, which was significantly increased in controls. No differences were found between groups in bone mineral density in femoral neck (0.971 +/- 0.148 gr/cm(2) vs 0.956 +/- 0.130 gr/cm(2) in patients and controls respectively, P = 0.5). In lumbar spine, bone mineral density values were lower in controls than in patients (1.058 +/- 0.329 gr/cm(2) vs 1.155 +/- 0.224 gr/cm(2) respectively, P < 0.05). When premenopausal (n = 44) and postmenopausal (n = 44) patients were compared with their respective controls, bone mineral density was similar both in femoral neck and lumbar spine. The proportion of women with normal bone mass density, osteopenia and osteoporosis in patient and control groups was similar in pre- and postmenopausal women. In conclusion, long-term suppressive LT4 treatment does not appear to affect skeletal integrity in women with differentiated thyroid carcinoma. PMID:16322336

  6. Effect of chronic activity-based therapy on bone mineral density and bone turnover in persons with spinal cord injury

    PubMed Central

    Harness, Eric T.; Witzke, Kara A.

    2014-01-01

    Purpose Osteoporosis is a severe complication of spinal cord injury (SCI). Many exercise modalities are used to slow bone loss, yet their efficacy is equivocal. This study examined the effect of activity-based therapy (ABT) targeting the lower extremities on bone health in individuals with SCI. Methods Thirteen men and women with SCI (age and injury duration = 29.7 ± 7.8 and 1.9 ± 2.7 years) underwent 6 months of ABT. At baseline and after 3 and 6 months of training, blood samples were obtained to assess bone formation (serum procollagen type 1 N propeptide (PINP) and bone resorption (serum C-terminal telopeptide of type I collagen (CTX), and participants underwent dual-energy X-ray absorptiometry scans to obtain total body and regional estimates of bone mineral density (BMD). Results Results demonstrated significant increases (p < 0.05) in spine BMD (+4.8 %; 1.27 ± 0.22–1.33 ± 0.24 g/cm2) and decreases (p < 0.01) in total hip BMD (−6.1 %; 0.98 ± 0.18–0.91 ± 0.16 g/cm2) from 0 to 6 months of training. BMD at the bilateral distal femur (−7.5 to −11.0 %) and proximal tibia (− 8.0 to −11.2 %) declined but was not different (p > 0.05) versus baseline. Neither PINP nor CTX was altered (p> 0.05) with training. Conclusions Chronic activity-based therapy did not reverse bone loss typically observed soon after injury, yet reductions in BMD were less than the expected magnitude of decline in lower extremity BMD in persons with recent SCI. PMID:24097172

  7. Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci

    PubMed Central

    Thompson, Wesley K.; McEvoy, Linda K.; Schork, Andrew J.; Zuber, Verena; LeBlanc, Marissa; Bettella, Francesco; Mills, Ian G.; Desikan, Rahul S.; Djurovic, Srdjan; Gautvik, Kaare M.; Dale, Anders M.; Andreassen, Ole A.

    2015-01-01

    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity. PMID:26695485

  8. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  9. [Relation between body mass index and bone mineral density in a sample population of Mexican women].

    PubMed

    Murillo-Uribe, A; Aranda-Gallegos, J E; Río de la Loza-Cava, M F; Ortíz-Luna, G; Mendoza-Torres, L J; Santos-González, J

    1998-07-01

    The purpose of this trial is to demonstrate that a women with high body mass index (BMI > or = 28) has greater bone mineral density (BMD) from that with lower BMI. We studied 922 healthy women who met the inclusion criteria. They were classified into four groups according to their BMI (> or = 28 and < 28) and age (> or = 35 and < 35 years). Bone mineral measurement was performed by dual-energy X-ray absorptiometry (DEXA) in the hip and at the lumbar region. BMD in overweight women older than 35 years was significantly higher in comparison with that of women with lower BMI, both in the hip and the lumbar spine. In overweight women younger than 35 years, we found greater BMD in the hip reaching statistical significance, but not at the lumbar spine. We conclude that obesity is associated with greater BMD (4% at the lumbar spine; 11% at the hip) probably due to both greater physical stress and higher estrogen levels. PMID:9737066

  10. In vivo measurement of the trabecular bone mineral density by coherent and Compton. gamma. -ray scattering

    SciTech Connect

    Karellas, A.

    1984-01-01

    A photon scattering method for measuring the mineral density of trabecular bone (BMD) is described. By computing the ratio of the coherent to Compton scattered photons, the BMD can be measured accurately and without any significant interference by the surrounding tissue. This study shows theoretically and experimentally that an increase in the scatter angle, when using 60 keV photons from Am-241, results in a stronger power dependence on Z. This implies that by increasing the scatter angle, smaller changes in BMD can be detected, thus improving the sensitivity of the measurement. The dependence of the sensitivity on the energy of the incident photons was also investigated. A collimated beam of photons from 1200 mCi of Am-241 (60 keV) was used and the scattered photons were detected at a scatter angle of 71/sup 0/. The system was calibrated by using a new standard which contains bone mineral mixed homogeneously with a marrow simulating substance. This method was applied for the measurement of the calcaneal BMD in 21 normal volunteers and seven paraplegic patients. The BMD values for the normal group ranged from 170-300 mg/cm/sup 3/. The BMD for the paraplegics with injuries older than one year ranged from 90-150 mg/cm/sup 3/. This measurement has potential application in the diagnosis of early osteopenia and in monitoring the effect of various treatment regimens.

  11. Modulation and predictors of periprosthetic bone mineral density following total knee arthroplasty.

    PubMed

    Mau-Moeller, Anett; Behrens, Martin; Felser, Sabine; Bruhn, Sven; Mittelmeier, Wolfram; Bader, Rainer; Skripitz, Ralf

    2015-01-01

    Total knee arthroplasty (TKA) leads to a loss of periprosthetic bone mineral density (BMD). Great importance is attached to the prevention of periprosthetic bone loss with a view to ensuring a long service life of the prosthesis. In order to provide appropriate recommendations for preventive movement therapy measures to combat peri-implant bone loss, it is necessary to know the predictors of periprosthetic BMD. The aim of this study was (1) to determine the change of periprosthetic BMD of the femur and tibia and (2) to analyse the effects of different predictors on periprosthetic BMD. Twenty-three patients with primary TKA were evaluated 10 days and 3 months postoperatively. The data analysis comprised (1) the change in periprosthetic BMD from pretest to posttest and (2) the correlations between BMD and the variables isometric maximum voluntary force, lean mass, physical activity (step count), and BMI using multiple linear regression and structural equation modelling (SEM). BMD of the distal femur was significantly reduced by 19.7% (P = 0.008) 3 months after surgery, while no changes were found in BMD of the tibia. The results of SEM demonstrate that 55% of the BMD variance was explained by the model (χ(2) = 0.002; df = 1; P = 0.96; χ(2)/df = 0.002; RMSEA < 0.01; TLI = 1.5; CFI = 1.0). A significant direct effect was only evidenced by the variable lean mass (β = 0.38; b = 0.15; SE = 0.07; C.R. = 2.0; P = 0.046). It can be assumed that a large muscle mass with accompanying distribution of high mechanical load in the bones can contribute to local changes of periprosthetic BMD. Concrete recommendations for preventing peri-implant bone loss therefore include exercises which have the aim of maintaining or building up muscle mass. PMID:25793194

  12. Modulation and Predictors of Periprosthetic Bone Mineral Density following Total Knee Arthroplasty

    PubMed Central

    Felser, Sabine; Skripitz, Ralf

    2015-01-01

    Total knee arthroplasty (TKA) leads to a loss of periprosthetic bone mineral density (BMD). Great importance is attached to the prevention of periprosthetic bone loss with a view to ensuring a long service life of the prosthesis. In order to provide appropriate recommendations for preventive movement therapy measures to combat peri-implant bone loss, it is necessary to know the predictors of periprosthetic BMD. The aim of this study was (1) to determine the change of periprosthetic BMD of the femur and tibia and (2) to analyse the effects of different predictors on periprosthetic BMD. Twenty-three patients with primary TKA were evaluated 10 days and 3 months postoperatively. The data analysis comprised (1) the change in periprosthetic BMD from pretest to posttest and (2) the correlations between BMD and the variables isometric maximum voluntary force, lean mass, physical activity (step count), and BMI using multiple linear regression and structural equation modelling (SEM). BMD of the distal femur was significantly reduced by 19.7% (P = 0.008) 3 months after surgery, while no changes were found in BMD of the tibia. The results of SEM demonstrate that 55% of the BMD variance was explained by the model (χ2 = 0.002; df = 1; P = 0.96; χ2/df = 0.002; RMSEA < 0.01; TLI = 1.5; CFI = 1.0). A significant direct effect was only evidenced by the variable lean mass (β = 0.38; b = 0.15; SE = 0.07; C.R. = 2.0; P = 0.046). It can be assumed that a large muscle mass with accompanying distribution of high mechanical load in the bones can contribute to local changes of periprosthetic BMD. Concrete recommendations for preventing peri-implant bone loss therefore include exercises which have the aim of maintaining or building up muscle mass. PMID:25793194

  13. Effects of Radiation and a High Iron Load on Bone Mineral Density

    NASA Technical Reports Server (NTRS)

    Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.

    2012-01-01

    Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.

  14. The Choice of Normative Pediatric Reference Database Changes Spine Bone Mineral Density Z-scores But Not The Relationship Between Bone Mineral Density and Prevalent Vertebral Fractures

    PubMed Central

    Ma, Jinhui; Siminoski, Kerry; Alos, Nathalie; Halton, Jacqueline; Ho, Josephine; Lentle, Brian; Matzinger, MaryAnn; Shenouda, Nazih; Atkinson, Stephanie; Barr, Ronald; Cabral, David A.; Couch, Robert; Cummings, Elizabeth A.; Fernandez, Conrad V.; Grant, Ronald M.; Rodd, Celia; Sbrocchi, Anne Marie; Scharke, Maya; Rauch, Frank; Ward, Leanne M.

    2015-01-01

    Objectives Our objectives were to assess the magnitude of the disparity in lumbar spine bone mineral density (LSBMD) Z-scores generated by different reference databases and to evaluate whether the relationship between LSBMD Z-scores and vertebral fractures (VF) varies by choice of database. Patients and Design Children with leukemia underwent LSBMD by cross-calibrated dual energy x-ray absorptiometry, with Z-scores generated according to Hologic and Lunar databases. VF were assessed by the Genant method on spine radiographs. Logistic regression was used to assess the association between fractures and LSBMD Z-scores. Net reclassification improvement (NRI) and area under the receiver operating characteristic curve (AUC) were calculated to assess the predictive accuracy of LSBMD Z-scores for VF. Results For the 186 children from 0–18 years of age, 6 different age ranges were studied. The Z-scores generated for the 0 to 18 group were highly correlated (r ≥ 0.90), but the proportion of children with LSBMD Z-scores ≤ −2.0 among those with VF varied substantially (from 38 to 66%). Odds ratios (OR) for the association between LSBMD Z-score and VF were similar regardless of database (OR = 1.92, 95% confidence interval (CI): 1.44, 2.56 to OR = 2.70, 95% CI: 1.70, 4.28). AUC and NRI ranged from 0.71 to 0.75 and −0.15 to 0.07 respectively. Conclusions Although the use of a LSBMD Z-score threshold as part of the definition of osteoporosis in a child with VF does not appear valid, the study of relationships between BMD and VF is valid regardless of the BMD database that is used. PMID:25494661

  15. Effect of Sunlight Exposure on Bone Mineral Density in Children with Severe Disability.

    PubMed

    Kanemura, Hideaki; Hatakeyama, Kazuo; Sano, Fumikazu; Yagasaki, Hideaki; Sugita, Kanji; Aihara, Masao

    2016-08-01

    The aim of this study was to determine the efficacy of sunlight exposure for increasing bone mineral density (BMD) in children with severe disability. The subjects were five children with severe disability, aged 6 to 8 years. BMD was measured at baseline and after 3, 6, 9, and 12 months of starting sunlight exposure. All caregivers of patients were instructed to create opportunities to stay outdoors. Daily sunlight exposure time was defined as hours of staying outdoors. Mean hours of sunbathing per day were calculated at baseline and after 3, 6, 9, and 12 months of starting sunlight exposure. Sunlight exposure tended to be longer after starting than before starting in all patients, but the difference was not significant (p = 0.052). Along with the increase in sunlight exposure, BMD increased significantly after the start of sunlight exposure in all patients (p < 0.01). The serum values of total alkaline phosphatase and intact parathyroid hormone were significantly decreased and that of 25-hydroxyvitamin D was significantly increased 12 months after starting sunlight exposure. No patients had bone fractures after the start of sunlight exposure. These results suggest that sunlight exposure increased BMD, and that this may reduce the risk of bone fracture in children with disability. PMID:27227999

  16. Effects of Antipsychotics on Bone Mineral Density in Patients with Schizophrenia: Gender Differences

    PubMed Central

    Chen, Chien-Yu; Lane, Hsien-Yuan; Lin, Chieh-Hsin

    2016-01-01

    Low bone mineral density (BMD) and osteoporosis are common in patients with schizophrenia and detrimental to illness prognosis and life quality. Although the pathogenesis is not fully clear, series of studies have revealed factors related to low BMD such as life style, psychotic symptoms, medication use and the activity of bone absorption markers. It has been known that antipsychotic-induced hyperprolactinemia plays a critical role on decreased BMD. However, it remains uncertain whether the risk factors differ between men and women. According to the effect on prolactin, antipsychotics can be classified into two groups: prolactin-sparing (PS) and prolactin-raising (PR). Our previous study has demonstrated that clozapine which is among the PS antipsychotics is beneficial for BMD when compared with PR antipsychotics in women with chronic schizophrenia. We have also found that risks factors associated with low BMD are different between men and women, suggesting that gender-specific risk factors should be considered for intervention of bone loss in patients with schizophrenia. This article reviews the effects of antipsychotics use on BMD with particular discussion for the differences on gender and age, which implicate the alterations of sex and other related hormones. In addition, currently reported protective and risk factors, as well as the effects of medication use on BMD including the combination of antipsychotics and other psychotropic agents and other potential medications are also reviewed. PMID:27489377

  17. Effects of Antipsychotics on Bone Mineral Density in Patients with Schizophrenia: Gender Differences.

    PubMed

    Chen, Chien-Yu; Lane, Hsien-Yuan; Lin, Chieh-Hsin

    2016-08-31

    Low bone mineral density (BMD) and osteoporosis are common in patients with schizophrenia and detrimental to illness prognosis and life quality. Although the pathogenesis is not fully clear, series of studies have revealed factors related to low BMD such as life style, psychotic symptoms, medication use and the activity of bone absorption markers. It has been known that antipsychotic-induced hyperprolactinemia plays a critical role on decreased BMD. However, it remains uncertain whether the risk factors differ between men and women. According to the effect on prolactin, antipsychotics can be classified into two groups: prolactin-sparing (PS) and prolactin-raising (PR). Our previous study has demonstrated that clozapine which is among the PS antipsychotics is beneficial for BMD when compared with PR antipsychotics in women with chronic schizophrenia. We have also found that risks factors associated with low BMD are different between men and women, suggesting that gender-specific risk factors should be considered for intervention of bone loss in patients with schizophrenia. This article reviews the effects of antipsychotics use on BMD with particular discussion for the differences on gender and age, which implicate the alterations of sex and other related hormones. In addition, currently reported protective and risk factors, as well as the effects of medication use on BMD including the combination of antipsychotics and other psychotropic agents and other potential medications are also reviewed. PMID:27489377

  18. Change in bone mineral density at one year following glucocorticoid withdrawal in kidney transplant recipients.

    PubMed

    Ing, Steven W; Sinnott, Loraine T; Donepudi, Sirisha; Davies, Elizabeth A; Pelletier, Ronald P; Lane, Nancy E

    2011-01-01

    Glucocorticoid (GC) therapy induces deleterious effects on the skeleton in kidney transplantation but studies of GC discontinuation in this population are limited. This study evaluated changes in areal bone mineral density (BMD) with GC withdrawal. Subjects were enrolled one yr after renal transplantation and randomized to continue or stop prednisone; all subjects continued cyclosporine and mycophenolate mofetil. BMD measured by dual-energy X-ray absorptiometry was performed at enrollment and repeated at one yr and values were standardized. Mean ± standard deviation of annualized change in standardized BMD between GC withdrawal vs. continuation group at the lumbar spine was +4.7% ± 5.5 vs. +0.9% ± 5.3 (p = 0.0014); total hip +2.4% ± 4.2 vs. -0.4% ± 4.2 (p = 0.013), and femoral neck +2.1% ± 4.6 vs. +1.0% ± 6.0 (p = 0.37). There was no confounding by prednisone dose prior to enrollment, change in creatinine clearance, weight, or use of bone-active medications following study entry. Multivariate analysis determined that the change in BMD was positively associated with baseline alkaline phosphatase and creatinine clearance and negatively associated with baseline BMD. BMD improves with GC withdrawal after renal transplantation, and this gain in BMD is dependent on the baseline bone turnover, renal function, and BMD. PMID:20961333

  19. Swimming and cycling do not cause positive effects on bone mineral density: a systematic review.

    PubMed

    Abrahin, Odilon; Rodrigues, Rejane Pequeno; Marçal, Anderson Carlos; Alves, Erik Artur Cortinhas; Figueiredo, Rosa Costa; de Sousa, Evitom Corrêa

    2016-01-01

    Osteoporosis is considered a common metabolic bone disease and its prevalence is increasing worldwide. In this context, physical activity has been used as a non-pharmacological tool for prevention and auxiliary treatment of this disease. The aim of this systematic review was to evaluate the effects of cycling and swimming practice on bone mineral density (BMD). This research was conducted in accordance with the recommendations outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The studies were consulted in the period from 2004 to 2014, through major electronic databases: PubMed(®), SciELO(®) and LILACS(®). Ten studies evaluated the effects of cycling on BMD, and the results showed that nine studies have linked the practice of professional cycling with low levels of BMD. Another 18 studies have reported that swimming has no positive effects on bone mass. We conclude that cycling and swimming do not cause positive effects on BMD; thus, these are not the most suitable exercises for prevention and treatment of osteoporosis. PMID:27476628

  20. Can ultrasound be used to estimate bone mineral density in children with growth problems?

    PubMed Central

    Khan, Khalid M; Sarafoglou, Kyriakie; Somani, Arif; Frohnert, Brigitte; Miller, Bradley S.

    2016-01-01

    Aim To assess predictability of bone mineral density (BMD) of the lumbar spine (LS) determined by duel energy x-ray absorptiometry (DXA) using by ultrasound- speed of sound of the right and left radii (SOS-R and SOS-L) in patients with growth problems. Methods Ultrasound and DXA were compared in patients with advanced, normal and delayed bone ages assessed by Greulich and Pyle (GP) and Tanner and Whitehouse (TW3) methods. Results There was a strong correlation (r), of raw scores, between SOS-R and SOS-L, r=0.81, P=0.000, and their respective Z-scores, r=0.78, P=0.000. Z-score correlations were poor between SOS-R or SOS-L and LS-BMD. Sensitivity, specificity, positive- and negative predictive value of SOS-R, Z-scores for predicting normal (>−1 to < 1) and low (< −1) LS-BMD, Z scores were poor. For high (> 1) LS-BMD, Z scores were 22%, 93%, 29%, and 90% respectively for SOS-R and for SOS-L, 25%, 89%, 20%, and 91%. For very low (< −2) LS-BMD, SOS-R and SOS-L were the same, respectively 29%, 91%, 40%, and 86%. Conclusion Ultrasound of the radius is a poor predictor of radiologically assessed BMD at the lumbar spine, especially with delayed bone age. PMID:23750846

  1. Efficacy of pamidronate in pediatric osteosarcoma patients with low bone mineral density

    PubMed Central

    Lim, Se Won; Ahn, Ju Hyun; Choi, Aery; Cho, Wan Hyeong; Lee, Jun Ah; Kim, Dong Ho; Seo, Ju-Hee

    2016-01-01

    Purpose Most surviving pediatric osteosarcoma patients experience osteoporosis, bone pain, and pathologic fracture during and after therapy. The aim of this study was to evaluate the efficacy and side effects of pamidronate therapy in these patients. Methods Nine osteosarcoma patients (12.8±1.6 years of age; 5 boys and 4 girls) who had a history of nontraumatic fracture or severe pain after completing chemotherapy were included. Intravenous pamidronate (1.5 mg/kg) was given every 6 weeks for 4 to 6 cycles. Bone mineral density (BMD) of the lumbar spine was measured by dual-energy x-ray absorptiometry. Clinical outcomes including acute side effects were also evaluated. Results After pamidronate treatments, all patients experienced decreased pain. Seven of 9 patients could walk without a crutch. The BMD of lumbar spine was increased by 0.108±0.062 mg/cm2 after 8.4±1.0 months (n=8, P=0.017) and the mean z-score improved from –2.14±0.94 to –1.76±0.95 (P=0.161). Six patients (67%) had an acute-phase reaction, and 2 patients had symptomatic hypocalcemia. Conclusion Pamidronate appears to be safe and effective for the treatment of osteosarcoma in children with low BMD and bone pain. PMID:27104175

  2. The Bindex(®) ultrasound device: reliability of cortical bone thickness measures and their relationship to regional bone mineral density.

    PubMed

    Behrens, Martin; Felser, Sabine; Mau-Moeller, Anett; Weippert, Matthias; Pollex, Johannes; Skripitz, Ralf; Herlyn, Philipp K E; Fischer, Dagmar-C; Bruhn, Sven; Schober, Hans-Christof; Zschorlich, Volker; Mittlmeier, Thomas

    2016-09-01

    The Bindex(®) quantitative ultrasound (QUS) device is currently available and this study analyzed (I) its relative and absolute intra- and inter-session reliability and (II) the relationship between the data provided by Bindex(®)-QUS and the bone mineral density (BMD) measured by dual-energy x-ray absorptiometry at corresponding skeletal sites in young and healthy subjects (age: 25.0  ±  3.6 years). Bindex(®)-QUS calculates a density index on the basis of the thickness of cortical bone measured at the distal radius and the distal plus proximal tibia. The data show a very good relative and absolute intra- (ICC  =  0.977, CV  =  1.5%) and inter-session reliability (ICC  =  0.978, CV  =  1.4%) for the density index. The highest positive correlations were found between cortical thickness and BMD for the distal radius and distal tibia (r  ⩾  0.71, p  <  0.001). The data indicate that the Bindex(®)-QUS parameters are repeatable within and between measurement sessions. Furthermore, the measurements reflect the BMD at specific skeletal sites. Bindex(®)-QUS might be a useful tool for the measurement of skeletal adaptations. PMID:27511629

  3. Effect of Denosumab on Bone Mineral Density and Markers of Bone Turnover among Postmenopausal Women with Osteoporosis

    PubMed Central

    Salerni, H.; González, D.; Bagur, A.; Oliveri, B.; Farías, V.; Maffei, L.; Mansur, J. L.; Larroudé, M. S.; Pavlove, M. M.; Karlsbrum, S.

    2016-01-01

    The aim of this study was to evaluate the effect of denosumab (Dmab) on bone mineral density (BMD) and bone turnover markers after 1 year of treatment. Additionally, the effect of Dmab in bisphosphonate-naïve patients (BP-naïve) compared to patients previously treated with bisphosphonates (BP-prior) was analyzed. This retrospective study included 425 postmenopausal women treated with Dmab for 1 year in clinical practice conditions in specialized centers from Argentina. Participants were also divided according to previous bisphosphonate treatment into BP-naïve and BP-prior. A control group of patients treated with BP not switched to Dmab matched by sex, age, and body mass index was used. Data are expressed as mean ± SEM. After 1 year of treatment with Dmab the bone formation markers total alkaline phosphatase and osteocalcin were significantly decreased (23.36% and 43.97%, resp.), as was the bone resorption marker s-CTX (69.61%). Significant increases in BMD were observed at the lumbar spine, femoral neck, and total hip without differences between BP-naïve and BP-prior. A better BMD response was found in BP-prior group compared with BP treated patients not switched to Dmab. Conclusion. Dmab treatment increased BMD and decreased bone turnover markers in the whole group, with similar response in BP-naïve and BP-prior patients. A better BMD response in BP-prior patients versus BP treated patients not switched to Dmab was observed. PMID:27579211

  4. Effect of Denosumab on Bone Mineral Density and Markers of Bone Turnover among Postmenopausal Women with Osteoporosis.

    PubMed

    Sánchez, A; Brun, L R; Salerni, H; Costanzo, P R; González, D; Bagur, A; Oliveri, B; Zanchetta, M B; Farías, V; Maffei, L; Premrou, V; Mansur, J L; Larroudé, M S; Sarli, M A; Rey, P; Ulla, M R; Pavlove, M M; Karlsbrum, S; Brance, M L

    2016-01-01

    The aim of this study was to evaluate the effect of denosumab (Dmab) on bone mineral density (BMD) and bone turnover markers after 1 year of treatment. Additionally, the effect of Dmab in bisphosphonate-naïve patients (BP-naïve) compared to patients previously treated with bisphosphonates (BP-prior) was analyzed. This retrospective study included 425 postmenopausal women treated with Dmab for 1 year in clinical practice conditions in specialized centers from Argentina. Participants were also divided according to previous bisphosphonate treatment into BP-naïve and BP-prior. A control group of patients treated with BP not switched to Dmab matched by sex, age, and body mass index was used. Data are expressed as mean ± SEM. After 1 year of treatment with Dmab the bone formation markers total alkaline phosphatase and osteocalcin were significantly decreased (23.36% and 43.97%, resp.), as was the bone resorption marker s-CTX (69.61%). Significant increases in BMD were observed at the lumbar spine, femoral neck, and total hip without differences between BP-naïve and BP-prior. A better BMD response was found in BP-prior group compared with BP treated patients not switched to Dmab. Conclusion. Dmab treatment increased BMD and decreased bone turnover markers in the whole group, with similar response in BP-naïve and BP-prior patients. A better BMD response in BP-prior patients versus BP treated patients not switched to Dmab was observed. PMID:27579211

  5. HDL cholesterol and bone mineral density: Is there a genetic link?

    PubMed Central

    Ackert-Bicknell, Cheryl L.

    2011-01-01

    Overwhelming evidence has linked cardiovascular disease and osteoporosis, but the shared root cause of these two diseases of the elderly remains unknown. Low levels of high-density lipoprotein cholesterol (HDL) and bone mineral density (BMD) are risk factors for cardiovascular disease and osteoporosis respectively. A number of correlation studies have attempted to determine if there is a relationship between serum HDL and BMD but these studies are confounded by a number of variables including age, diet, genetic background, gender and hormonal status. Collectively, these data suggest that there is a relationship between these two phenotypes, but that the nature of this relationship is context specific. Studies in mice plainly demonstrate that genetic loci for BMD and HDL co-map and transgenic mouse models have been used to show that a single gene can affect both serum HDL and BMD. Work completed to date has demonstrated that HDL can interact directly with both osteoblasts and osteoclasts, but no direct evidence links bone back to the regulation of HDL levels. Understanding the genetic relationship between BMD and HDL has huge implications for understanding the clinical relationship between CVD and osteoporosis and for the development of safe treatment options for both diseases. PMID:21810493

  6. Effect of Bone Mineral Density on Rotator Cuff Tear: An Osteoporotic Rabbit Model

    PubMed Central

    Chen, Xiaobin; Giambini, Hugo; Ben-Abraham, Ephraim; An, Kai-Nan; Nassr, Ahmad; Zhao, Chunfeng

    2015-01-01

    Introduction An increased bone mineral density (BMD) in the proximity to tendon insertion can improve rotator cuff repair and healing. However, how a decrease of BMD in the humeral head affects the biomechanical properties of the rotator cuff tendon is still unclear. Previous studies have demonstrated ovariectomy in animals to lead to osteoporosis and decreased BMD, and Teriparatide (PTH) administration to improve BMD and strength of bone. This study aimed to explore the correlation between humeral head BMD and infraspinatus (ISP) tendon insertion strength, and if an increase in bone quantity of the humeral head can improve the strength of the rotator cuff. Materials and Methods Eighteen New England white rabbits were divided into the 3 groups: Control, Ovariectomy-Saline (OVX-Saline), and Ovariectomy-PTH (OVX-PTH). The OVX-Saline group and the OVX-PTH were administered daily saline and Teriparatide injections for 8 weeks starting at 17 weeks of OVX. BMD of the humeral head was measured, the ISP tendon failure load was tested and the failure stress was calculated. One specimen from each group was used for histological analysis. Linear regression analysis was used to derive equations for the BMD and failure stress. Results Significant differences were observed in the measured humeral head BMD of the Control and OVX-PTH groups compared to the OVX-Saline group (P = 0.0004 and P = 0.0024, respectively). No significant difference was found in failure stress among the three groups, but an expected trend with the control group and OVX-PTH group presenting higher failure strength compared to the OVX-Saline group. BMD at the humeral head showed a positive linear correlation with stress (r2 = 0.54). Histology results showed the superiority in OVX-PTH group ISP enthesis compared to the OVX-Saline group. Conclusion Bone loss of the humeral head leads to decreased tendon/bone insertion strength of the infraspinatus tendon enthesis. Teriparatide administration can increase bone

  7. Bone mineral density, bone mineral content, gingival crevicular fluid (matrix metalloproteinases, cathepsin K, osteocalcin), and salivary and serum osteocalcin levels in human mandible and alveolar bone under conditions of simulated microgravity.

    PubMed

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    2010-09-01

    In astronauts and cosmonauts, exposure to microgravity has been associated with several physiological changes, including an osteoporosis like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in space flights. There has been no study of the effects of mandibular bone and alveolar bone loss in both sexes under conditions of simulated microgravity. This study was designed to investigate bone mineral density; bone mineral content; matrix metalloproteinase (MMP)-8, MMP-9, cathepsin K, and osteocalcin levels in gingival crevicular fluid (GCF); and salivary and serum osteocalcin levels in normal healthy men and women under conditions of simulated microgravity, namely, -6° head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers who were exposed to 3 weeks of -6° HDT bed rest. Dual-energy X-ray absorptiometry was used to measure bone density and bone mineral content in alveolar bone from the mandibular canine to the third molar, as well as in the mandibular ramus, before, during, and after exposure to conditions of simulated microgravity. GCF (ie, MMP-8, MMP-9, cathepsin K, and osteocalcin) and salivary and serum osteocalcin levels were measured by enzyme-linked immunosorbent assays. Bone mineral density and bone mineral content were significantly lower under conditions of simulated microgravity in both sexes. The decreases were greater in women than in men, but the differences between sexes were not significant. Cathepsin, osteocalcin, MMP-8, and MMP-9 levels were significantly higher under conditions of simulated microgravity than under normal conditions; the increases were greater in women than in men, but the differences were not significant. Additional, more comprehensive, studies with larger sample sizes are now necessary for the investigation of simulated microgravity and microgravity. PMID:20881330

  8. Long-term Bone Mineral Density Changes in Antiretroviral-Treated HIV-Infected Individuals.

    PubMed

    Grant, Philip M; Kitch, Douglas; McComsey, Grace A; Collier, Ann C; Koletar, Susan L; Erlandson, Kristine M; Yin, Michael T; Bartali, Benedetta; Ha, Belinda; Melbourne, Kathy; Brown, Todd T

    2016-08-15

    We compared adjusted bone mineral density (BMD) changes between human immunodeficiency virus (HIV)-infected individuals during the first approximately 7.5 years after antiretroviral therapy (ART) initiation and HIV-uninfected controls. HIV-infected individuals (n = 97) had significantly greater adjusted BMD decline than controls (n = 614) during the first 96 weeks of ART. Subsequently, the rate of BMD decline slowed in HIV-infected individuals but remained greater than the rate of decline in HIV-uninfected individuals at the lumbar spine but not at the hip. In HIV-infected individuals after 96 weeks, no HIV- or treatment-related characteristic was associated with BMD loss, but lower lean body mass was associated with greater BMD loss at both lumbar spine and hip. PMID:27330053

  9. Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM.

    PubMed

    Reid, S A; Boyde, A

    1987-02-01

    We report a study to test the feasibility of studying mineral density distributions in bone using the backscattered electron signal in scanning electron microscopy. Samples were human sixth ribs ranging in age from 8 weeks to 59 years, embedded in polymethylmethacrylate (PMMA), cut, polished, and carbon coated. The proportions of pixels falling in a uniform set of gray level slices of the BSE signal were determined using a microcomputer-based image analysis system interfaced directly to the SEM. The amount of high-density bone gradually increased with age at the expense of low-density bone, and there was an associated compression of the range of the mineral density distribution. Age-related differences were noted between the density distributions in the outer and inner rib cortices. The distribution in the inner cortex in neonates was influenced by the inclusion of densely mineralized endochondral bone and cartilage trabeculae formed at the growth cartilage zone. In adults it appeared that greater bone turnover occurred in the outer cortex, perhaps reflecting a differential mechanical loading across the rib. The technique enabled rapid, unbiased discrimination between the bone of neonates, children, and adults. PMID:3455153

  10. Vasomotor symptoms in infertile premenopausal women: a hitherto unappreciated risk for low bone mineral density

    PubMed Central

    Pal, Lubna; Norian, John; Zeitlian, Gohar; Bevilacqua, Kris; Freeman, Ruth; Santoro, Nanette

    2008-01-01

    Objective To identify the prevalence of vasomotor symptoms (VMS) in a population of premenopausal infertile women and to determine if VMS associate with enhanced bone turnover and low bone mineral density (BMD). Design Cross-sectional study. Setting Academic infertility practice. Patients 82 premenopausal infertile but otherwise healthy women attending for routine infertility care. Intervention BMD testing, general health and profile of mood state (POMS) questionnaires, serum samples (cycle days 1–3). Main Outcome Measures VMS, specifically hot flashes-HF and night sweats-NS; BMD-Z score, BMD categorized as “Low” (Z ≤ −1.0 ) or “Normal” (Z > −1.0); ovarian reserve assessment (biochemical and ovarian dimensions on transvaginal ultrasound); serum markers of bone turnover (NTX, TRAP, BSAP) and ovarian reserve (FSH, Estradiol and Inhibin B). Multivariable regression analyses determined the associations between VMS, BMD and bone turnover (individual markers and composite turnover score). Results The prevalence of VMS was 12% in this relatively young population (mean age 34.53 ± SD 4.32). Symptomatic women were significantly more likely to report sleep disturbances (p<0.01), exhibit evidence of low BMD (p<0.01), enhanced bone turnover and poorer ovarian reserve parameters. Multivariable logistic regression analyses confirmed HF (p<0.01) and NS (p<0.01) as independent correlates to low BMD after adjusting for age, BMI, smoking status, menstrual regularity and ovarian reserve status. Multivariable linear regression analyses demonstrated that NS, but not HF, predicted higher bone turnover (p= 0.02) after adjusting for age, smoking, menstrual regularity and ovarian reserve. Conclusions We demonstrate, in a premenopausal population of infertile women, evidence of morbid accompaniments to VMS, including sleep disturbances and evidence of low BMD. Our data further suggest a state of enhanced bone turnover in association with VMS, specifically in those

  11. Cathepsin K inhibitors increase distal femoral bone mineral density in rapidly growing rabbits

    PubMed Central

    2013-01-01

    Background Selective and reversible inhibitors of human Cathepsin K (CatK), including odanacatib (ODN), have been developed as potential therapeutics for the treatment of osteoporosis. Inhibitors of human CatK show significantly less potency for the rodent enzymes compared with that for the human or rabbit enzymes; thus the Schenk model in growing rabbit was developed as a screening assay for the in vivo activity of CatK inhibitors in blocking bone resorption. Methods In this study, the efficacy of the selective inhibitors L-833905, L-006235, L-873724, and L-1037536 (ODN) of human CatK in the rapidly growing rabbit ‘Schenk’ model (age seven weeks) was compared to vehicle, using the bisphosphonate, alendronate (ALN), as a positive control, to assess inhibition of bone resorption. An enzyme inhibition assay (EIA) and an in vitro bone resorption assay using rabbit osteoclasts on bovine cortical bone slices were performed to evaluate the potency of these CatK inhibitors. Bone mineral density of the distal femur (DFBMD) was measured after ten days of treatment using ex vivo DXA densitometry. Results Results of the EIA using rabbit CatK and the rabbit bone resorption assay showed that three of the four compounds (L-006235, L-873724, and ODN) had similar potencies in the reduction of collagen degradation. L-833905 appeared to be a weaker inhibitor of CatK. Taking into account the respective in vitro potencies and pharmacokinetic profiles via oral administration, the efficacy of these four CatK inhibitors was demonstrated in a dose-related manner in the growing rabbit. Significant increases in DFBMD in animals dosed with the CatK inhibitors compared to vehicle were seen. Conclusions Efficacy of the CatK inhibitors in the Schenk rabbit correlated well with that in the in vitro rabbit bone resorption assay and in the ovariectomized rabbit model as previously published. Hence, these studies validated the rabbit Schenk assay as a rapid and reliable in vivo model for

  12. Fibroblast growth factor 23 contributes to diminished bone mineral density in childhood inflammatory bowel disease

    PubMed Central

    2012-01-01

    Background Diminished bone mineral density (BMD) is of significant concern in pediatric inflammatory bowel disease (IBD). Exact etiology is debatable. The recognition of fibroblast growth factor 23 (FGF23), a phosphaturic hormone related to tumor necrosis factor alpha (TNF-α) makes it plausible to hypothesize its possible relation to this pathology. Methods In this follow up case control study, BMD as well as serum levels of FGF23, calcium, phosphorus, alkaline phosphatase, creatinine, parathyroid hormone, 25 hydroxy vitamin D3 and 1, 25 dihydroxy vitamin D3 were measured in 47 children with IBD during flare and reassessed in the next remission. Results Low BMD was frequent during IBD flare (87.2%) with significant improvement after remission (44.7%). During disease flare, only 21.3% of patients had vitamin D deficiency, which was severe in 12.8%. During remission, all patients had normal vitamin D except for two patients with Crohn’s disease (CD) who remained vitamin D deficient. Mean value of serum FGF23 was significantly higher among patients with IBD during flare compared to controls. It showed significant improvement during remission but not to the control values. 1, 25 dihydroxy vitamin D3, FGF23, serum calcium and urinary phosphorus were significant determinants of BMD in IBD patients. Conclusions We can conclude that diminished BMD in childhood IBD is a common multifactorial problem. Elevated FGF23 would be a novel addition to the list of factors affecting bone mineral density in this context. Further molecular studies are warranted to display the exact interplay of these factors. PMID:22551310

  13. Bone mineral density and factors influencing it in Asian Indian population with type 2 diabetes mellitus

    PubMed Central

    Kamalanathan, Sadishkumar; Nambiar, Vimal; Shivane, Vyankatesh; Bandgar, Tushar; Menon, Padmavathy; Shah, Nalini

    2014-01-01

    Objective: To assess bone mineral density (BMD) in type 2 diabetes mellitus (T2DM) patients and its relation, if any, to clinical, hormonal and metabolic factors. Materials and Methods: A prospective evaluation of 194 T2DM patients (97 men and 97 women) was carried out. BMD was done with dual energy X-ray absorptiometry (DXA) at the lumbar spine and total hip. Physical activity, nutritional intake and sunlight exposure were calculated. Biochemical and hormonal tests included serum 25 hydroxy vitamin D [25(OH) D], parathyroid hormone, estrogen, testosterone and urinary calcium-creatinine ratio. Glycosylated hemoglobin and complete lipid profiles were done in patients with diabetes. Five hundred and seventy one non-diabetic controls (262 males and 309 females) were evaluated for BMD alone. Results: BMD was normal (Z score > -2) in 156 (80.5%) and low (Z score ≤ -2) in 38 (19.5%) patients in the diabetes study group. BMD in the diabetes group was significantly higher than the control group in both sexes at the hip and spine. The difference was no longer significant on analysis of a BMI matched control subgroup. Weight and BMI showed significant correlation to BMD. Duration of T2DM, degree of glycemic control, use of drugs like statins and thiazolidinediones, 25(OH) D levels, calcium intake, sunlight exposure and physical activity did not significantly affect BMD in this cohort of individuals with diabetes. Conclusions: Bone mineral density of Asian Indian T2DM subjects was similar to that of healthy volunteers in this study. PMID:25364679

  14. Effects of cadmium, calcium, age and parity on bone mineral, density and strength in female rats

    SciTech Connect

    Hammond, B.F.

    1985-06-01

    Weanling female rats were fed diets containing one of three levels of calcium and one of four levels of cadmium in the drinking water. Approximately 10 animals from each group were sacrificed after the first pregnancy and the remaining animals after the fourth pregnancy. Reproductive performance, plasma and bone Ca and P and bone density and strength were measured. After the first pregnancy, offspring of dams treated with 5 or 10 ppM Cd were smaller at birth than offspring of dams treated with 0 or 1 ppM Cd. Offspring of dams fed 5 or 10 ppM Cd or the 0.3% Ca diet had decreased weaning weight regardless of parity. Cadmium treatment had no effect on the plasma Ca or the Ca-P ratio. At Cd levels of 5 or 10 ppM the plasma P was increased. The 0.3% Ca diet depressed the plasma Ca and the 0.9% Ca diet elevated the plasma Ca and depressed the plasma P when compared to the 0.6% diet. Parity did not affect plasma Ca but, after four pregnancies, plasma P was decreased. Plasma Ca of mature dams was higher than that of adolescent dams but plasma P was unaffected. Bone mineral, density and strength were decreased by the 0.3% Ca diet especially when Cd levels reached 10 ppM. Increasing dietary Ca above normal increased femur Ca of dams fed 1 ppM Cd but did not increase the Ca of the femur of dams given higher levels of Cd. After the first pregnancy, femur Ca of mature dams was greater than that of adolescent dams. After the fourth pregnancy, femurs of mature dams were less strong than those of adolescent dams; however, the density was the same. Increasing dietary Ca above 0.6% lessened the detrimental effects of 5 ppM Cd ingestion on bone density. Mature dams were less affected by the 0.3% Ca 10 ppM Cd treatment than were adolescent dams. 60 refs., 3 figs., 26 tabs.

  15. Cortical Bone Mineral Density in Patients with Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency

    PubMed Central

    El-Maouche, Diala; Collier, Suzanne; Prasad, Mala; Reynolds, James C; Merke, Deborah P.

    2014-01-01

    Background Prior studies reveal that bone mineral density (BMD) in congenital adrenal hyperplasia (CAH) is mostly in the osteopenic range and is associated with lifetime glucocorticoid dose. The forearm, a measure of cortical bone density, has not been evaluated. Objective We aimed to evaluate BMD at various sites, including the forearm, and the factors associated with low BMD in CAH patients. Methods Eighty CAH adults (47 classic, 33 nonclassic) underwent dual-energy-x-ray absorptiometry and laboratory and clinical evaluation. BMD Z-scores at the AP spine, total hip, femoral neck, forearm, and whole body were examined in relation to phenotype, body mass index, current glucocorticoid dose, average 5-year glucocorticoid dose, vitamin D, 17-hydroxyprogesterone, androstenedione, testosterone, dehydroepiandrosterone, and dehydroepiandrosterone sulfate (DHEAS). Results Reduced BMD (T-score < −1 at hip, spine, or forearm) was present in 52% and was more common in classic than nonclassic patients (P = .005), with the greatest difference observed at the forearm (P = .01). Patients with classic compared to nonclassic CAH, had higher 17-hydroxyprogesterone (P = .005), lower DHEAS (P = .0002), and higher non-traumatic fracture rate (P = .0005). In a multivariate analysis after adjusting for age, sex, height standard deviation, phenotype, and cumulative glucocorticoid exposure, higher DHEAS was independently associated with higher BMD at the spine, radius, and whole body. Conclusion Classic CAH patients have lower BMD than nonclassic patients, with the most affected area being the forearm. This first study of forearm BMD in CAH patients suggests that low DHEAS may be associated with weak cortical bone independent of glucocorticoid exposure. PMID:24862755

  16. Strontium ranelate effect on bone mineral density is modified by previous bisphosphonate treatment.

    PubMed

    Brun, Lucas R; Galich, Ana M; Vega, Eduardo; Salerni, Helena; Maffei, Laura; Premrou, Valeria; Costanzo, Pablo R; Sarli, Marcelo A; Rey, Paula; Larroudé, María S; Moggia, María S; Brance, María L; Sánchez, Ariel

    2014-01-01

    The aim of this study was to evaluate the effect of strontium ranelate (SrR) on bone mineral density (BMD) and bone turnover markers after 1 year of treatment. Additionally, the effect of SrR in bisphosphonate-naïve patients (BP-naïve) compared to patients previously treated with bisphosphonates (BP-prior) was analyzed. This retrospective study included 482 postmenopausal women treated with SrR (2 g/day) for 1 year in ten Argentine centers; 41 patients were excluded due to insufficient data, while 441 were included. Participants were divided according to previous bisphosphonate treatment in two groups: BP-naïve (n = 87) and BP-prior (n = 350). Data are expressed as mean ± SEM. After 1 year of treatment with SrR the bone formation markers total alkaline phosphatase and osteocalcin were increased (p < 0.0001), while the bone resorption marker s-CTX was decreased (p = 0.0579). Also increases in BMD at the lumbar spine (LS, 3.73%), femoral neck (FN, 2.00%) and total hip (TH, 1.54%) [p < 0.0001] were observed. These increments were significant (p < 0.0001) both among BP-naïve and BP-prior patients. Interestingly, the change in BMD after 1 year of SrR treatment was higher in BP-naïve patients: LS: BP-naïve = 4.58 ± 0.62%; BP-prior = 3.45 ± 0.28% (p = 0.078). FN: BP-naïve = 2.79 ± 0.56%; BP-prior = 2.13 ± 0.29% (p = 0.161). TH: BP-naïve = 3.01 ± 0.55%; BP-prior = 1.22 ± 0.27% (p = 0.0006). SrR treatment increased BMD and bone formation markers and decreased a bone resorption marker in the whole group, with better response in BP-naïve patients. PMID:25520906

  17. The Association between Metabolic Syndrome, Bone Mineral Density, Hip Bone Geometry and Fracture Risk: The Rotterdam Study

    PubMed Central

    Muka, Taulant; Trajanoska, Katerina; Kiefte-de Jong, Jessica C.; Oei, Ling; Uitterlinden, André G; Hofman, Albert; Dehghan, Abbas; Zillikens, M. Carola; Franco, Oscar H.; Rivadeneira, Fernando

    2015-01-01

    The association between metabolic syndrome (MS) and bone health remains unclear. We aimed to study the association between MS and hip bone geometry (HBG), femoral neck bone mineral density (FN-BMD), and the risk of osteoporosis and incident fractures. Data of 2040 women and 1510 men participants in the third visit (1997–1999) of the Rotterdam Study (RSI-3), a prospective population based cohort, were available (mean follow-up 6.7 years). MS was defined according to the recent harmonized definition. HBG parameters were measured at the third round visit whereas FN-BMD was assessed at the third round and 5 years later. Incident fractures were identified from medical registry data. After correcting for age, body mass index (BMI), lifestyle factors and medication use, individuals with MS had lower bone width (β = -0.054, P = 0.003), lower cortical buckling ratio (β = -0.81, P = 0.003) and lower odds of having osteoporosis (odds ratio =0.56, P = 0.007) in women but not in men. Similarly, MS was associated with higher FN-BMD only in women (β = 0.028, P=0.001). In the analyses of MS components, the glucose component (unrelated to diabetes status) was positively associated with FN-BMD in both genders (β = 0.016, P = 0.01 for women and β = 0.022, P = 0.004 for men). In men, waist circumference was inversely associated with FN-BMD (β = -0.03, P = 0.004). No association was observed with fracture risk in either sex. In conclusion, women with MS had higher FN-BMD independent of BMI. The glucose component of MS was associated with high FN-BMD in both genders, highlighting the need to preserve glycemic control to prevent skeletal complications. PMID:26066649

  18. Body composition and bone mineral density of national football league players.

    PubMed

    Dengel, Donald R; Bosch, Tyler A; Burruss, T Pepper; Fielding, Kurt A; Engel, Bryan E; Weir, Nate L; Weston, Todd D

    2014-01-01

    The purpose of the present study was to examine the body composition of National Football League (NFL) players before the start of the regular season. Four hundred eleven NFL players were measured for height, weight and lean, fat, and bone mass using dual-energy x-ray absorptiometry (DXA). Subjects were categorized by their offensive or defensive position for comparison. On average, positions that mirror each other (i.e., offensive lineman [OL] vs. defensive lineman [DL]) have very similar body composition. Although OL had more fat mass than DL, they were similar in total and upper and lower lean mass. Linebackers (LB) and running backs (RB) were similar for all measures of fat and lean mass. Tight ends were unique in that they were similar to RB and LB on measures of fat mass; however, they had greater lean mass than both RB and LB and upper-body lean mass that was similar to OL. Quarterbacks and punters/kickers were similar in fat and lean masses. All positions had normal levels of bone mineral density. The DXA allowed us to measure differences in lean mass between arms and legs for symmetry assessments. Although most individuals had similar totals of lean mass in each leg and or arms, there were outliers who may be at risk for injury. The data presented demonstrate not only differences in total body composition, but also show regional body composition differences that may provide positional templates. PMID:24149760

  19. Mandibular bone mineral density in patients with Behçet’s disease

    PubMed Central

    Asutay, Fatih; Atalay, Yusuf; Acar, Ahmet Hüseyin; Asutay, Hilal; Eroğlu, Selma; Burdurlu, Muammer Çağrı

    2015-01-01

    Objectives Behçet’s disease (BD) is a chronic, recurring vasculitis of unknown etiology. Patients with BD may use a lot of medications associated with the clinical symptoms. Drugs that are used in the treatment of BD may cause bone loss. The aims of the current study were to compare the bone mineral density (BMD) values between BD and healthy volunteers and describe the effect of disease duration on mandibular BMD. Materials and methods The study comprised 30 healthy volunteers (15 males and 15 females, mean age 35.50±6.80 years) and 45 patients with BD (24 males and 21 females, mean age 38.93±8.93 years). The BD group was subdivided according to disease duration (0–5, 6–10, and >10 years). The BMD value of the mandibular body was determined by the dual energy X-ray absorptiometry technique. Results The mean mandibular body BMD values were 1.294±0.21 g/cm2 in the control group and 1.216±0.22 g/cm2 in the BD patients, although there was no statistically significant difference. The BMD was observed to decrease with increased disease duration but not to a statistically significant degree. Conclusion The results of this study showed that although the BMD value decreased as the duration of the disease increased, no statistically significant difference was found between the BD patients and the healthy control group. PMID:26508868

  20. Bone mineral density reference range in Estonia: a comparison with the standard database (NHANES III).

    PubMed

    Kull, Mart; Kallikorm, Riina; Lember, Margus

    2009-01-01

    Dual-energy X-ray absorptiometry (DXA) is accepted as a standard for diagnosing osteoporosis. Several databases are available for T-score calculation worldwide. Our aim was to compare hip bone mineral density (BMD) in young Estonian adults with the mean BMD in the National Health and Nutrition Examination Survey (NHANES) femur database and to compare the performance of these 2 databases. A population sample of 304 subjects was analyzed with a Lunar DPX-IQ DXA machine (GE Lunar Co., Madison, WI). Seventy-seven healthy young individuals were selected based on their age (25-39 yr). Their femur neck, trochanter, and total hip mean standardized BMD was compared with the corresponding data from the NHANES III database. Diagnostic agreement was assessed in a population sample of adults and in a clinical convenience sample from the densitometry unit. The BMD in the proximal femur in healthy young Estonian adults did not differ from the mean BMD in the NHANES subjects (p > 0.05). Differences in diagnosing osteoporosis and osteopenia are present if the Estonian reference database is used instead of the US standard database. Prospective studies with fracture data for assessing the predictive capability of these reference databases and the additional benefit of adding the FRAX (World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK) tool to fracture prediction and osteoporosis diagnosis are needed in Estonia. PMID:19880053

  1. Relationship between Weight and Bone Mineral Density in Adolescents on Hormonal Contraception

    PubMed Central

    Bonny, Andrea E.; Secic, Michelle; Cromer, Barbara A.

    2010-01-01

    Study Objective Since bone loss has been observed among adolescents on depot medroxyprogesterone acetate (DMPA), a clinical population that commonly experiences weight gain, we were interested in examining the direct relationship between body weight and bone mineral density (BMD) in adolescents on DMPA as compared to those on oral contraceptive pills (OC) or on no hormonal contraception (control). Design Prospective, Longitudinal study. Setting Four urban adolescent health clinics in a large metropolitan area. Participants Post-menarcheal girls, age 12 – 18 years, selecting DMPA, OC or no hormonal contraception. Interventions At baseline, 6, 12, 18, and 24 months, all study participants underwent measurement of weight and BMD of the hip and spine. Main Outcome Measures The correlation between weight and BMD, and the correlation between change in weight and change in BMD were assessed at each time point. Results Body weight was significantly (p < .05) positively correlated with femoral neck BMD and spine BMD at each time point regardless of contraceptive method. Change in body weight at 12 and 24 months was highly correlated with change in femoral neck BMD (p < .0001) for all treatment groups. No statistically significant correlation between change in weight and change in spine BMD was seen in the DMPA, OC or control subjects at 12 or 24 months. Conclusion Weight gain on DMPA may mitigate loss of BMD among adolescent users. PMID:20709582

  2. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton.

    PubMed

    Heinonen, A; Oja, P; Kannus, P; Sievänen, H; Haapasalo, H; Mänttäri, A; Vuori, I

    1995-09-01

    To address the hypothesis that osteogenic effect of physical loading increases with increasing strain rates and peak forces, we examined 59 competitive Finnish female athletes (representing three sports with different skeletal loading characteristics), physically active referents (they reported an average of five various types of exercise sessions per week), and sedentary referents (two sessions per week) using dual energy X-ray absorptiometry. The measured anatomic sites were at the lumbar spine, femoral neck, distal femur, patella, proximal tibia, calcaneus, and distal radius. The athlete group consisted of aerobic dancers (N = 27), squash players (N = 18), and speed skaters (N = 14). The squash players had the highest values for weight-adjusted bone mineral density (BMD) at the lumbar spine (13.8% p < 0.001 as compared with the sedentary reference group), femoral neck (16.8%, p < 0.001), proximal tibia (12.6%, p < 0.001) and calcaneus (18.5%, p < 0.001). Aerobic dancers and speed skaters also had significantly higher BMD values at the loaded sites than the sedentary reference group, the difference ranging from 5.3% to 13.5%. The physically active referents' BMD values did not differ from those of the sedentary referents at any site. The results support the concept that training, including high strain rates in versatile movements and high peak forces, is more effective in bone formation than training with a large number of low-force repetitions. PMID:8541131

  3. Lack of Association between Pulse Steroid Therapy and Bone Mineral Density in Patients with Multiple Sclerosis

    PubMed Central

    Zengin Karahan, Serap; Boz, Cavit; Kilic, Sevgi; Can Usta, Nuray; Ozmenoglu, Mehmet; Altunayoglu Cakmak, Vildan; Gazioglu, Sibel

    2016-01-01

    Multiple sclerosis (MS) has been associated with reduced bone mineral density (BMD). The purpose of this study was to determine the possible factors affecting BMD in patients with MS. We included consecutive 155 patients with MS and 90 age- and sex-matched control subjects. Patients with MS exhibited significantly lower T-scores and Z-scores in the femoral neck and trochanter compared to the controls. Ninety-four (61%) patients had reduced bone mass in either the lumbar spine or the femoral neck; of these, 64 (41.3%) had osteopenia and 30 (19.4%) had osteoporosis. The main factors affecting BMD were disability, duration of MS, and smoking. There was a negative relationship between femoral BMD and EDSS and disease duration. No association with lumbar BMD was determined. There were no correlations between BMD at any anatomic region and cumulative corticosteroid dose. BMD is significantly lower in patients with MS than in healthy controls. Reduced BMD in MS is mainly associated with disability and duration of the disease. Short courses of high dose steroid therapy did not result in an obvious negative impact on BMD in the lumbar spine and femoral neck in patients with MS. PMID:26966578

  4. Genes influencing spinal bone mineral density in inbred F344, LEW, COP, and DA rats

    PubMed Central

    Alam, Imranul; Sun, Qiwei; Koller, Daniel L.; Liu, Lixiang; Liu, Yunlong; Edenberg, Howard J.; Foroud, Tatiana

    2009-01-01

    Previously, we identified the regions of chromosomes 10q12–q31 and 15p16–q21 harbor quantitative trait loci (QTLs) for lumbar volumetric bone mineral density (vBMD) in female F2 rats derived from Fischer 344 (F344) × Lewis (LEW) and Copenhagen 2331 (COP) × Dark Agouti (DA) crosses. The purpose of this study is to identify the candidate genes within these QTL regions contributing to the variation in lumbar vBMD. RNA was extracted from bone tissue of F344, LEW, COP, and DA rats. Microarray analysis was performed using Affymetrix Rat Genome 230 2.0 Arrays. Genes differentially expressed among the rat strains were then ranked based on the strength of the correlation with lumbar vBMD in F2 animals derived from these rats. Quantitative PCR (qPCR) analysis was performed to confirm the prioritized candidate genes. A total of 285 genes were differentially expressed among all strains of rats with a false discovery rate less than 10%. Among these genes, 18 candidate genes were prioritized based on their strong correlation (r2 > 0.90) with lumbar vBMD. Of these, 14 genes (Akap1, Asgr2, Esd, Fam101b, Irf1, Lcp1, Ltc4s, Mdp-1, Pdhb, Plxdc1, Rabep1, Rhot1, Slc2a4, Xpo4) were confirmed by qPCR. We identified several novel candidate genes influencing spinal vBMD in rats. PMID:19841953

  5. Integrating Epigenomic Elements and GWASs Identifies BDNF Gene Affecting Bone Mineral Density and Osteoporotic Fracture Risk

    PubMed Central

    Guo, Yan; Dong, Shan-Shan; Chen, Xiao-Feng; Jing, Ying-Aisha; Yang, Man; Yan, Han; Shen, Hui; Chen, Xiang-Ding; Tan, Li-Jun; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2016-01-01

    To identify susceptibility genes for osteoporosis, we conducted an integrative analysis that combined epigenomic elements and previous genome-wide association studies (GWASs) data, followed by validation at population and functional levels, which could identify common regulatory elements and predict new susceptibility genes that are biologically meaningful to osteoporosis. By this approach, we found a set of distinct epigenomic elements significantly enriched or depleted in the promoters of osteoporosis-associated genes, including 4 transcription factor binding sites, 27 histone marks, and 21 chromatin states segmentation types. Using these epigenomic marks, we performed reverse prediction analysis to prioritize the discovery of new candidate genes. Functional enrichment analysis of all the prioritized genes revealed several key osteoporosis related pathways, including Wnt signaling. Genes with high priority were further subjected to validation using available GWASs datasets. Three genes were significantly associated with spine bone mineral density, including BDNF, PDE4D, and SATB2, which all closely related to bone metabolism. The most significant gene BDNF was also associated with osteoporotic fractures. RNA interference revealed that BDNF knockdown can suppress osteoblast differentiation. Our results demonstrated that epigenomic data could be used to indicate common epigenomic marks to discover additional loci with biological functions for osteoporosis. PMID:27465306

  6. Integrating Epigenomic Elements and GWASs Identifies BDNF Gene Affecting Bone Mineral Density and Osteoporotic Fracture Risk.

    PubMed

    Guo, Yan; Dong, Shan-Shan; Chen, Xiao-Feng; Jing, Ying-Aisha; Yang, Man; Yan, Han; Shen, Hui; Chen, Xiang-Ding; Tan, Li-Jun; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2016-01-01

    To identify susceptibility genes for osteoporosis, we conducted an integrative analysis that combined epigenomic elements and previous genome-wide association studies (GWASs) data, followed by validation at population and functional levels, which could identify common regulatory elements and predict new susceptibility genes that are biologically meaningful to osteoporosis. By this approach, we found a set of distinct epigenomic elements significantly enriched or depleted in the promoters of osteoporosis-associated genes, including 4 transcription factor binding sites, 27 histone marks, and 21 chromatin states segmentation types. Using these epigenomic marks, we performed reverse prediction analysis to prioritize the discovery of new candidate genes. Functional enrichment analysis of all the prioritized genes revealed several key osteoporosis related pathways, including Wnt signaling. Genes with high priority were further subjected to validation using available GWASs datasets. Three genes were significantly associated with spine bone mineral density, including BDNF, PDE4D, and SATB2, which all closely related to bone metabolism. The most significant gene BDNF was also associated with osteoporotic fractures. RNA interference revealed that BDNF knockdown can suppress osteoblast differentiation. Our results demonstrated that epigenomic data could be used to indicate common epigenomic marks to discover additional loci with biological functions for osteoporosis. PMID:27465306

  7. Local variations in bone mineral density: a comparison of OCT versus x-ray micro-CT

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Stevens-Smith, Jenna; Scutt, Andrew; Matcher, Stephen J.

    2008-02-01

    We describe variations in the degree of mineralisation within the subchondral bone plate of the equine metacarpophalangeal joint. A comparison of Optical Coherence Tomography, Micro CT, and SEM techniques was performed. These data are compared between sites on a healthy sample and at points on an osteoarthritically degenerated sample. No significant correlation was found between the optical scattering coefficient and the micro-CT derived BMD for comparisons between different sites on the bone surface. Also OCT demonstrated a larger regional variation in scattering coefficient than did micro CT for bone mineral density. This suggests that the optical scattering coefficient of bone is not related solely to the volume-density of calcium-phosphate. Patches of lower optical scattering coefficient were found in the bone structure that was related to the osteoarthritic lesion area on the overlying cartilage. Areas of microcracking, as revealed by both SEM and micro CT produced distinctive granularity in the OCT images. In further experiments, OCT was compared with micro CT and mechanical strength testing (3-point bending) in a small animal model of cardiovascular disease (cholesterol overload in mice). In the cardiovascular diseased mice, micro-CT of the trabecular bone did not demonstrate a significant change in trabecular bone mineral density before and after administration of the high cholesterol diet. However mechanical testing demonstrated a decrease in mechanical strength and OCT demonstrated a corresponding statistically significant decrease in optical scattering of the bone.

  8. Vitamin D–Binding Protein Modifies the Vitamin D–Bone Mineral Density Relationship

    PubMed Central

    Powe, Camille E; Ricciardi, Catherine; Berg, Anders H; Erdenesanaa, Delger; Collerone, Gina; Ankers, Elizabeth; Wenger, Julia; Karumanchi, S Ananth; Thadhani, Ravi; Bhan, Ishir

    2011-01-01

    Studies examining the relationship between total circulating 25-hydroxyvitamin D [25(OH)D] levels and bone mineral density (BMD) have yielded mixed results. Vitamin D–binding protein (DBP), the major carrier protein for 25(OH)D, may alter the biologic activity of circulating vitamin D. We hypothesized that free and bioavailable 25(OH)D, calculated from total 25(OH)D, DBP, and serum albumin levels, would be more strongly associated with BMD than levels of total 25(OH)D. We measured total 25(OH)D, DBP, and serum albumin levels in 49 healthy young adults enrolled in the Metabolic Abnormalities in College-Aged Students (MACS) study. Lumbar spine BMD was measured in all subjects using dual-energy X-ray absorptiometry. Clinical, diet, and laboratory information also was gathered at this time. We determined free and bioavailable (free + albumin-bound) 25(OH)D using previously validated formulas and examined their associations with BMD. BMD was not associated with total 25(OH)D levels (r = 0.172, p = .236). In contrast, free and bioavailable 25(OH)D levels were positively correlated with BMD (r = 0.413, p = .003 for free, r = 0.441, p = .002 for bioavailable). Bioavailable 25(OH)D levels remained independently associated with BMD in multivariate regression models adjusting for age, sex, body mass index, and race (p = .03). It is concluded that free and bioavailable 25(OH)D are more strongly correlated with BMD than total 25(OH)D. These findings have important implications for vitamin D supplementation in vitamin D–deficient states. Future studies should continue to explore the relationship between free and bioavailable 25(OH)D and health outcomes. © 2011 American Society for Bone and Mineral Research. PMID:21416506

  9. Children with nephrotic syndrome have greater bone area but similar volumetric bone mineral density to healthy controls

    PubMed Central

    Moon, RJ; Gilbert, RD; Page, A; Murphy, L; Taylor, P; Cooper, C; Dennison, EM; Davies, JH

    2016-01-01

    Background Glucocorticoid use has been associated with an increased fracture risk and reduced bone mineral density (BMD), particularly in the trabecular compartment. However the contribution of the underlying inflammatory disease process to these outcomes is poorly understood. Childhood nephrotic syndrome (NS) typically follows a relapsing-remitting course often requiring recurrent courses of glucocorticoids, but with low systemic inflammation during remission. NS therefore represents a useful clinical model to investigate the effects of glucocorticoids on BMD and bone geometry in childhood. Methods Children with NS were compared to age and sex matched healthy controls. Body composition and areal BMD (whole body, lumbar spine and hip) were assessed by DXA. Peripheral quantitative computed tomography (pQCT) scans were obtained at metaphyseal (4%) and diaphyseal (66%) sites of the tibia to determine volumetric BMD and bone cross-sectional geometry. Lifetime cumulative glucocorticoid exposure was calculated from medical records. Results 29 children with NS (55% male, age 10.7±3.1years) were compared to 29 healthy controls (55% male, age 11.0±3.0years). The children with NS were of similar height SDS to controls (p=0.28), but were heavier (0.65±1.28SDS vs -0.04±0.89SDS, p=0.022) and had greater body fat percentage SDS (0.31±1.01 vs -0.52±1.10, p=0.008). Tibial trabecular and cortical vBMD were similar between the two groups but bone cross-sectional area (CSA) was significantly greater in children with NS at both the metaphysis (954±234 mm2 vs 817±197mm2, p=0.002) and diaphysis (534.9±162.7mm2 vs 463.2±155.5 mm2, p=0.014). Endosteal and periosteal circumferences were greater in children with NS than controls (both p<0.01), resulting in reduced cortical thickness (2.4±0.7mm vs 2.8±0.7mm, p=0.018), but similar cortical CSA (p=0.22). The differences in cortical geometry were not statistically significant when weight was included as a confounding factor. There

  10. Study of Different Involutive Changes in Bone Mineral Density Measured in Ward's Triangle and Trabecular Volume Measured in Iliac Crest in Relation to Age

    PubMed Central

    Castillo, RF; Gallegos, RF

    2015-01-01

    ABSTRACT Background: The ageing process causes changes in the bone structure, in bone mineral density, and musculoskeletal disorders. Aims: The purpose of this study is to evaluate and compare involutive changes in bone structure that occur in relation to age in men and women through the study of bone mineral density at the Ward's triangle and trabecular volume. Subjects and Methods: In this study, we analysed bone mineral density at Ward's triangle in 70 people (38 men and 32 women) and did a histomorphometric study of trabecular volume at the right iliac crest in 66 samples (42 males and 24 females) obtained from autopsies of court cases, aged between 13 and 83 years. Results: The results show significant correlations between measurements of bone mineral density, trabecular volume values and anthropometric measures of age, gender and body mass index. Conclusions: This study shows involutional changes that occur in the bone mineral density and Ward's triangle in the bone structure during the process of ageing. In addition, both weight and height have a great influence on bone mineral density and changes in bone that occur; and body mass index is a very important determinant of bone mineral density. PMID:26360671

  11. Associations Between Bone Mineral Density, Grip Strength, and Lead Body Burden Among Older Men

    PubMed Central

    Khalil, Naila; Faulkner, Kimberly A.; Greenspan, Susan L.; Cauley, Jane A.

    2013-01-01

    Objectives To study the association of blood lead concentration (BPb) to bone mineral density (BMD), physical, and cognitive function in non-institutionalized community dwelling older men. Design Cross sectional study. Setting University of Pittsburgh clinic, Pittsburgh, PA. Participants Non-Hispanic Caucasian men aged 65 or older (N=445) recruited as a subset of a prospective cohort Osteoporotic Fractures in Men (MrOS) study. Measurement BPb was measured in 2007-2008. From 2007-2009 BMD (g/cm2) was measured using dual energy x-ray absorptiometry (DXA). At the same time physical performance was measured with five tests: grip strength, leg extension power, walking speed, narrow-walk pace, and chair stands. Cognitive performance was assessed using the Modified Mini-Mental State Examination and the Trail Making Test Part B. Participants were categorized into quartiles of BPb. Multivariate regression analysis was used to evaluate independent relationship between BPb, BMD, cognitive and physical function. Results Mean ±sd BPb was 2.25±1.20 μg/dL (median =2 μg/dL, range 1-10). In multivariable adjusted models, men in higher BPb quartiles had lower BMD at femoral neck, and total hip (p-trend =<0.001 for both). Men with higher BPb had lower age adjusted score for grip strength (p-trend<0.001). However, this association was not significant in multivariate adjusted models (p-trend <0.148). BPb was not associated with lumbar spine BMD, cognition, leg extension power, walking speed, narrow-walk pace, and chair stands. Conclusion Environmental lead exposure may adversely affect bone health in older men. These findings support consideration of environmental exposures in age associated bone fragility. PMID:24383935

  12. Do Premenopausal Women with Major Depression Have Low Bone Mineral Density? A 36-Month Prospective Study

    PubMed Central

    Cizza, Giovanni; Mistry, Sima; Nguyen, Vi T.; Eskandari, Farideh; Martinez, Pedro; Torvik, Sara; Reynolds, James C.; Gold, Philip W.; Sinai, Ninet; Csako, Gyorgy

    2012-01-01

    Background An inverse relationship between major depressive disorder (MDD) and bone mineral density (BMD) has been suggested, but prospective evaluation in premenopausal women is lacking. Methods Participants of this prospective study were 21 to 45 year-old premenopausal women with MDD (n = 92) and healthy controls (n = 44). We measured BMD at the anteroposterior lumbar spine, femoral neck, total hip, mid-distal radius, trochanter, and Ward's triangle, as well as serum intact parathyroid hormone (iPTH), ionized calcium, plasma adrenocorticotropic hormone (ACTH), serum cortisol, and 24-hour urinary-free cortisol levels at 0, 6, 12, 24, and 36 months. 25-hydroxyvitamin D was measured at baseline. Results At baseline, BMD tended to be lower in women with MDD compared to controls and BMD remained stable over time in both groups. At baseline, 6, 12, and 24 months intact PTH levels were significantly higher in women with MDD vs. controls. At baseline, ionized calcium and 25-hydroxyvitamin D levels were significantly lower in women with MDD compared to controls. At baseline and 12 months, bone-specific alkaline phosphatase, a marker of bone formation, was significantly higher in women with MDD vs. controls. Plasma ACTH was also higher in women with MDD at baseline and 6 months. Serum osteocalcin, urinary N-telopeptide, serum cortisol, and urinary free cortisol levels were not different between the two groups throughout the study. Conclusion Women with MDD tended to have lower BMD than controls over time. Larger and longer studies are necessary to extend these observations with the possibility of prophylactic therapy for osteoporosis. Trial Registration ClinicalTrials.gov NCT 00006180 PMID:22848407

  13. Training-induced Increase in Bone Mineral Density between Growing Male and Female Rats.

    PubMed

    Joo, W; Singh, H; Ahles, C P; Lee, Y; Colazas, W; Lee, L C; Prakash, A; Jaque, S V; Sumida, K D

    2015-11-01

    The purpose of this study was to determine the existence of sex differences in the resistance training-induced elevation in bone mineral density (BMD) and bone strength (Fmax) during the growth period in rats. 16 male (M) and 16 female (F) rats (approx. 8 weeks old) were randomly divided into sedentary control (MC=8, FC=8), and resistance-trained (RT) groups (M-RT=8, F-RT=8). The RT groups were conditioned to climb a vertical ladder 4 consecutive times (per exercise session) with weights attached to their tail 3 days per week for a total of 6 weeks. After 6 weeks, there were no interaction effects (sex×exercise). The main effect of sex indicated no difference in tibial BMD (in g/cm(2)) for males (0.226±0.005) compared to females (0.221±0.004). However, Fmax (in Newtons) was significantly greater for males (131.3±5.3) compared to females (89.9±3.0). The main effect of exercise indicated that tibial BMD and Fmax were significantly greater for RT groups (0.234±0.004 g/cm(2) and 120.9±7.4 Newtons) compared to controls (0.212±0.003 g/cm(2) and 100.3±5.1 Newtons). The results indicate that during growth, there were no sex differences in the training-induced elevation in BMD and bone mechanical properties. PMID:26212247

  14. Bone mineral density predicts posttransplant survival among hepatocellular carcinoma liver transplant recipients.

    PubMed

    Sharma, Pratima; Parikh, Neehar D; Yu, Jessica; Barman, Pranab; Derstine, Brian A; Sonnenday, Christopher J; Wang, Stewart C; Su, Grace L

    2016-08-01

    Hepatocellular carcinoma (HCC) is a common indication for liver transplantation (LT). Recent data suggest that body composition features strongly affect post-LT mortality. We examined the impact of body composition on post-LT mortality in patients with HCC. Data on adult LT recipients who received Model for End-Stage Liver Disease exception for HCC between February 29, 2002, and December 31, 2013, and who had a computed tomography (CT) scan any time 6 months prior to LT were reviewed (n = 118). All available CT scan Digital Imaging and Communication in Medicine files were analyzed using a semiautomated high throughput methodology with algorithms programmed in MATLAB. Analytic morphomics measurements including dorsal muscle group (DMG) area, visceral and subcutaneous fat, and bone mineral density (BMD) were taken at the bottom of the eleventh thoracic vertebral level. Thirty-two (27%) patients died during the median follow-up of 4.4 years. The number of HCC lesions (hazard ratio [HR], 2.81; P < 0.001), BMD (HR = 0.90/Hounsfield units [HU]; P = 0.03), pre-LT locoregional therapy (HR = 0.14; P < 0.001), and donor age (HR = 1.05; P < 0.001) were the independent predictors of post-LT mortality. DMG area did not affect post-LT survival. In conclusion, in addition to number of HCC lesions and pre-LT locoregional therapy, low BMD, a surrogate for bone loss rather than DMG area, was independently associated with post-LT mortality in HCC patients. Bone loss may be an early marker of deconditioning that precedes sarcopenia and may affect transplant outcomes. Liver Transplantation 22 1092-1098 2016 AASLD. PMID:27064263

  15. Gene-dietary fat interaction, bone mineral density and bone speed of sound in Children: a twin study in China

    PubMed Central

    Huang, Tao; Liu, Huijuan; Zhao, Wei; Li, Ji; Wang, Youfa

    2015-01-01

    Scope Dietary fat correlates with bone mineral density (BMD). We tested the association between fat intake and BMD, and tested if fat intake modified the degree of genetic influence on BMD and bone speed of sound (SOS). Methods and results We included 622 twins aged 7–15 y from South China. Data on anthropometry, dietary intake, BMD, and SOS were collected. Quantitative genetic analyses of structural equation models were fit using the Mx statistical package. The within-pair intra-class correlations (ICC) for BMD in DZ twins were nearly half of that for MZ twins (ICC=0.39 vs 0.70). The heritability of BMD and SOS were 71% and 79%. Phenotypic correlation between fat intake and SOS was significant (r=−0.19, p=0.04). SOS was negatively correlated with fat intake in boys (r=−0.11, p=0.05), but not in girls. Full Cholesky decomposition models showed SOS has a strong genetic correlation with fat intake (rA =−0.88, 95% CI=−0.94, 0.01); the environmental correlation between fat intake and SOS was weak (rE =−0.04, 95% CI=−0.20, 0.13). Fat intake modified the additive genetic effects on BMD. Conclusion Genetic factors explained 71% and 79% of individual variance in BMD and SOS, respectively. Low fat intake counteracts genetic predisposition to low BMD. PMID:25546604

  16. Exposure to cadmium and persistent organochlorine pollutants and its association with bone mineral density and markers of bone metabolism on postmenopausal women

    SciTech Connect

    Rignell-Hydbom, A.; Skerfving, S.; Lundh, T.; Lindh, C.H.; Elmstahl, S.; Bjellerup, P.; Juensson, B.A.G.; Struemberg, U.; Akesson, A.

    2009-11-15

    Environmental contaminants such as cadmium and persistent organochlorine pollutants have been proposed as risk factors of osteoporosis, and women may be at an increased risk. To assess associations between exposure to cadmium and two different POPs (2,2',4,4',5,5'-hexachlorobiphenyl CB-153, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene p,p'-DDE), on one hand, and bone effects, on the other, in a population-based study among postmenopausal (60-70 years) Swedish women with biobanked blood samples. The study included 908 women and was designed to have a large contrast of bone mineral densities, measured with a single photon absorptiometry technique in the non-dominant forearm. Biochemical markers related to bone metabolism were analyzed in serum. Exposure assessment was based on cadmium concentrations in erythrocytes and serum concentrations of CB-153 and p,p'-DDE. Cadmium was negatively associated with bone mineral density and parathyroid hormone, positively with the marker of bone resorption. However, this association disappeared after adjustment for smoking. The major DDT metabolite (p,p'-DDE) was positively associated with bone mineral density, an association which remained after adjustment for confounders, but the effect was weak. There was no evidence that the estrogenic congener (CB-153) was associated with any of the bone markers. In conclusion, no convincing associations were observed between cadmium and POPs, on one hand, and bone metabolism markers and BMD, on the other.

  17. Bone Mineral Density and Respiratory Muscle Strength in Male Individuals with Mental Retardation (with and without Down Syndrome)

    ERIC Educational Resources Information Center

    da Silva, Vinicius Zacarias Maldaner; Barros, Jonatas de Franca; de Azevedo, Monique; de Godoy, Jose Roberto Pimenta; Arena, Ross; Cipriano, Gerson, Jr.

    2010-01-01

    The purpose of this study was to assess the respiratory muscle strength (RMS) in individuals with mental retardation (MR), with or without Down Syndrome (DS), and its association with bone mineral density (BMD). Forty-five male individuals (15 with DS, 15 with mental retardation (MR) and 15 apparently healthy controls), aged 20-35, participated in…

  18. Bone Mineral Density Changes after Physical Training and Calcium Intake in Students with Attention Deficit and Hyper Activity Disorders

    ERIC Educational Resources Information Center

    Arab ameri, Elahe; Dehkhoda, Mohammad Reza; Hemayattalab, Rasool

    2012-01-01

    In this study we investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with attention deficit and hyper activity (ADHD) disorder. For this reason 54 male students with ADHD (age 8-12 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…

  19. Bone Mineral Density Accrual in Students with Autism Spectrum Disorders: Effects of Calcium Intake and Physical Training

    ERIC Educational Resources Information Center

    Goodarzi, Mahmood; Hemayattalab, Rasool

    2012-01-01

    The purpose of this study was to investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with autism spectrum disorders. For this reason 60 boy students with autism disorder (age 8-10 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…

  20. Dietary calcium and serum 25-hydroxyvitamin D status in relation to bone mineral density among US adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A higher calcium intake is still the primary recommendation for the prevention of osteoporosis, while vitamin D deficiency is often not addressed. To study the relative importance of dietary calcium intake and serum 25-hydroxyvitamin D (25(OH)D) status in regard to hip bone mineral density (BMD) in ...

  1. Vitamin D Status, Bone Mineral Density and Mental Health in Young Australian Women: The Safe-D Study

    PubMed Central

    Reavley, Nicola; Garland, Suzanne M.; Gorelik, Alexandra; Wark, John D.

    2015-01-01

    Background. Vitamin D deficiency has been associated with both poor bone health and mental ill-health. More recently, a number of studies have found individuals with depressive symptoms tend to have reduced bone mineral density. To explore the interrelationships between vitamin D status, bone mineral density and mental-ill health we are assessing a range of clinical, behavioural and lifestyle factors in young women (Part A of the Safe-D study). Design and methods. Part A of the Safe-D study is a cross-sectional study aiming to recruit 468 young females aged 16-25 years living in Victoria, Australia, through Facebook advertising. Participants are required to complete an extensive, online questionnaire, wear an ultra-violet dosimeter for 14 consecutive days and attend a study site visit. Outcome measures include areal bone mineral measures at the lumbar spine, total hip and whole body, as well as soft tissue composition using dual energy x-ray absorptiometry. Trabecular and cortical volumetric bone density at the tibia is measured using peripheral quantitative computed tomography. Other tests include serum 25-hydroxyvitamin D, serum biochemistry and a range of health markers. Details of mood disorder/s and depressive and anxiety symptoms are obtained by self-report. Cutaneous melanin density is measured by spectrophotometry. Expected impact. The findings of this cross-sectional study will have implications for health promotion in young women and for clinical care of those with vitamin D deficiency and/or mental ill-health. Optimising both vitamin D status and mental health may protect against poor bone health and fractures in later life. Significance for public health Vitamin D deficiency, depression and osteoporosis are all major public health issues. Vitamin D deficiency has been associated with both reduced bone mineral density and depressive symptoms. Moreover, cohort studies have found that subjects with depression have lower bone mineral density when compared

  2. Mendelian randomization analysis to examine for a causal effect of urate on bone mineral density.

    PubMed

    Dalbeth, Nicola; Topless, Ruth; Flynn, Tanya; Cadzow, Murray; Bolland, Mark J; Merriman, Tony R

    2015-06-01

    In observational studies, serum urate concentrations are positively associated with bone mineral density (BMD) and reduced risk of fragility fractures, raising the possibility that urate is a direct mediator of bone density. We used Mendelian randomization analysis to examine whether urate has a causal effect on BMD. We analyzed data from the Generation 3 cohort in the Framingham Heart Study (FHS) (N = 2501 total; 1265 male, 1236 female). A weighted genetic urate score was calculated using the SLC2A9, ABCG2, SLC17A1, SLC22A11, and SLC22A12 single-nucleotide polymorphisms (SNPs) that explains 3.4% of the variance in serum urate. Mendelian randomization analysis was performed using the two-stage least squares method with >80% power at α = 0.05 to detect an effect size equivalent to that observed in the ordinary least squares analysis between serum urate and total femur BMD. A strong association between serum urate and BMD was observed in the crude ordinary least squares analysis (total femur crude beta = 0.47, p = 1.7E-51). In the two-stage least squares analysis using the weighted genetic urate score as the instrumental variable, no significant relationship was observed between serum urate and BMD (total femur crude beta =-0.36, p = 0.06). Similar findings were observed in both the male and female subgroups, and there was no evidence for causality when individual SNPs were analyzed. Serum urate is strongly associated with BMD. However, controlling for confounders by Mendelian randomization analysis does not provide evidence that increased urate has a causal effect on increasing BMD. PMID:25502344

  3. Genome-Wide Association Study of Bone Mineral Density in Korean Men

    PubMed Central

    Bae, Ye Seul; Im, Sun-Wha; Kang, Mi So; Kim, Jin Hee; Lee, Soon Hang; Cho, Be Long; Park, Jin Ho; Nam, You-Seon; Son, Ho-Young; Yang, San Deok; Sung, Joohon; Oh, Kwang Ho; Yun, Jae Moon; Kim, Jong Il

    2016-01-01

    Osteoporosis is a medical condition of global concern, with increasing incidence in both sexes. Bone mineral density (BMD), a highly heritable trait, has been proven a useful diagnostic factor in predicting fracture. Because medical information is lacking about male osteoporotic genetics, we conducted a genome-wide association study of BMD in Korean men. With 1,176 participants, we analyzed 4,414,664 single nucleotide polymorphisms (SNPs) after genomic imputation, and identified five SNPs and three loci correlated with bone density and strength. Multivariate linear regression models were applied to adjust for age and body mass index interference. Rs17124500 (p = 6.42 × 10-7), rs34594869 (p = 6.53 × 10-7) and rs17124504 (p = 6.53 × 10-7) in 14q31.3 and rs140155614 (p = 8.64 × 10-7) in 15q25.1 were significantly associated with lumbar spine BMD (LS-BMD), while rs111822233 (p = 6.35 × 10-7) was linked with the femur total BMD (FT-BMD). Additionally, we analyzed the relationship between BMD and five genes previously identified in Korean men. Rs61382873 (p = 0.0009) in LRP5, rs9567003 (p = 0.0033) in TNFSF11 and rs9935828 (p = 0.0248) in FOXL1 were observed for LS-BMD. Furthermore, rs33997547 (p = 0.0057) in ZBTB and rs1664496 (p = 0.0012) in MEF2C were found to influence FT-BMD and rs61769193 (p = 0.0114) in ZBTB to influence femur neck BMD. We identified five SNPs and three genomic regions, associated with BMD. The significance of our results lies in the discovery of new loci, while also affirming a previously significant locus, as potential osteoporotic factors in the Korean male population. PMID:27445649

  4. Influences of Endplate Removal and Bone Mineral Density on the Biomechanical Properties of Lumbar Spine

    PubMed Central

    Yuan, Wen; Liu, Yang

    2013-01-01

    Purpose To investigate (1) effects of endplate removal and bone mineral density (BMD) on biomechanical properties of lumbar vertebrae (2) whether the distributions of mechanical strength and stiffness of endplate are affected by BMD. Methods A total of thirty-one lumbar spines (L1-L5) collected from fresh cadavers were used in this study. Bone density was measured using lateral DEXA scans and parts of samples were performed with partial or entire endplate removal. All the specimens were divided into three BMD groups. According to endplate integrity of the lumbar vertebrae, each BMD group was then divided into three subgroups: subgroup A: intact endplate; subgroup B: central region of endplate removal; subgroup C: entire endplate removal. The axial compression test was conducted with material testing system at a speed of 2mm/min. The experimental results were statistically analyzed using SPSS 17.0. Results (1) Significant differences of biomechanical properties occurred among normal BMD, osteoporotic and serious osteoporotic group (P<0.05). (2) Spearman analysis showed that BMD was positively correlated with the failure load and stiffness of lumbar vertebrae. (3) For each BMD group, significant differences of biomechanical properties were found between subgroup A and C, and between subgroup B and C (P<0.05). (4) For each BMD group, there was no statistical difference of biomechanical properties between subgroup A and B (P>0.05). Conclusions Entire endplate removal can significantly decrease the structural properties of lumbar vertebrae with little change in biomechanical properties by preservation of peripheral region of the endplate. BMD is positively correlated to the structural properties of the lumbar vertebrae. PMID:24244269

  5. Predictors of Bone Mineral Density in African-American and Caucasian College-Aged Women

    PubMed Central

    Johnson, Andrea K.; Ford, M. Allison; Jones, Tamekia L.; Nahar, Vinayak K.; Hallam, Jeffrey S.

    2015-01-01

    Background: Research regarding risk factors and prevalence of low bone mineral density (BMD) among African-American and Caucasian college-aged women are limited. The objective of this cross-sectional study was to determine if selected predictors of BMD in African-American and Caucasian college-aged women differ by race. Methods: A total of 101 local African-American (n=50) and Caucasian (n=51) females, ages 18 to 30 years, were in this study. All data were collected in the Bone Density and Body Composition Laboratory. BMD was measured using DXA technology. Race, family history of osteoporosis, BMI, current physical activity, osteoporosis knowledge, length of time on oral contraceptives, age at menarche and calcium intake were included in the multiple regression analyses with spinal and femoral BMD as dependent variables. Results: Overall, 38.6% had low spinal BMD and 7.9% had low femoral BMD. BMI (β=0.073, R2 = .148, P = .001, 95% CI [0.030, 0.116]) and current physical activity (β=0.071, R2 = .148, P = .017, 95% CI [0.013, 0.129]) were the only variables that were statistically significant in predicting spinal BMD. BMI (β=0.056, R2 = .13, P = .010, 95% CI [0.014, 0.098]) and current physical activ-ity (β=0.078, R2 = .13, P = .007, 95% CI [0.022, 0.134]) were also the only varia-bles that were statistically significant in predicting femoral BMD. Race was not a significant predictor of spinal or femoral BMD. Conclusion: It is imperative for both African-American and Caucasian women to engage in osteoporosis-preventive behaviors. PMID:26000242

  6. Physical Activity Level of Post-menopausal Women with Low Bone Mineral Density.

    PubMed

    Dallanezi, Glauber; Freire, Beatriz Funayama Alvarenga; Nahás, Eliana Aguiar Petri; Nahás-Neto, Jorge; Corrente, José Eduardo; Mazeto, Gláucia Maria Ferreira da Silva

    2016-05-01

    Introduction Proper physical activity is related to the prevention and the treatment of osteoporosis. Purpose To assess the level of physical activity (PA) in post-menopausal women with low bone mineral density (BMD). Methods This cross-sectional clinical study included 123 post-menopausal women. The inclusion criteria were: age of ≥ 45 years with last menses at least 12 months prior to the initiation of the study, and bone density scan (BDS) values measured over the preceding 12 months. Women with severe osteoarthritis were excluded. Women were allocated into three groups, according to BMD measured by BDS [osteoporosis (OP; 54 women), osteopenia (35 women), and normal bone density (NBD; 35 women)], and compared for general, clinical, and anthropometric data, and for PA level. The latter was assessed using the International Physical Activity Questionnaire (IPAQ), in metabolic equivalent of task (MET) units. Participants were classified as sedentary, active or very active. Quantitative variables were compared using ANOVA followed by Tukey's test. Associations between qualitative variables were tested by Chi-square (χ2) or Fisher's exact test. In order to check for differences among groups and IPAQ domains, a generalized linear model with Gamma distribution was adjusted for values in METs. Results The OP group differed from the NBD group regarding age (61.8 ± 10.1 and 52.9 ± 5.4 years), percentage of participants with self-declared white ethnicity (43.9 and 28.0%), body mass index (BMI - 25.7 ± 5.4 and 30.9 ± 5.1 kg/m(2)), and time since menopause (15.5 ± 7.5 and 5.8 ± 4.5 years). Smoking rates were higher in the OP (55.6%) and NBD groups (33.3%) than in the osteopenia group (11.1%). Within the OP group, the rate of subjects with sedentary lifestyles was higher (42.6%), and time spent sitting was greater (344.3 ± 204.8 METs) than in the groups with osteopenia (20.0% and 300.9 ± 230.6 METs) and NBD (17.7% and 303

  7. Bone mineral density, microarchitectural and mechanical alterations of osteoporotic rat bone under long-term whole-body vibration therapy.

    PubMed

    Xie, Pengfei; Tang, Zhurong; Qing, Fangzhu; Chen, Xuening; Zhu, Xiangdong; Fan, Yujiang; Yang, Xiao; Zhang, Xingdong

    2016-01-01

    Low-magnitude, high-frequency whole body vibration (WBV) is receiving increasing interest as a non-pharmacological anti-osteoporosis approach. However, the long-term effect of WBV therapy is seldom studied. In this study, the efficacy of 16-week WBV (0.3g, 30 Hz) on bone mineral density (BMD), microarchitectural parameters and mechanical properties of ovariectomized rat femur were examined by in vivo peripheral quantitative computed tomography (pQCT), ex vivo micro-computed tomography (µCT), dynamic mechanical analysis (DMA) and fracture test. To the best of our knowledge, 16 weeks of WBV administration (20 min/day) is currently the longest duration on rodent. The longitudinal BMD change showed that positive effect of WBV on ovariectomized rat femoral neck diminished with prolonged administration duration. In addition, 16-week of WBV treatment was found to cause significantly reduction in the mean BMD, trabecular BMD (Tb.BMD), trabecular bone volume ration (BV/TV), trabecular number (Tb.N) and maximum load in femoral neck of ovariectomized rat. Metaphyseal Tb.BMD and BV/TV were also significantly decreased in WBV treated ovariectomized group than non-treated controls. Whole-femur DMA was demonstrated as a sensitive tool in distinguishing osteoporotic femur from healthy aged-matched controls, in terms of decreased storage modulus (E') and loss factor (tan δ). However, E' and tan δ are not enhanced by 16-week WBV treatment. Together, these findings indicate that administration duration played an important role in the effect of WBV. 16-week WBV may exacerbate trabecular bone loss in ovariectomized rat femur, especially in trabecular-rich femoral neck region. An optimal WBV protocol including administration duration should be established prior to long-term clinical practice. PMID:26398779

  8. Modulation of Vitamin D Status and Dietary Calcium Affects Bone Mineral Density and Mineral Metabolism in Göttingen Minipigs

    PubMed Central

    Scholz-Ahrens, Katharina E.; Glüer, Claus-Christian; Bronner, Felix; Delling, Günter; Açil, Yahya; Hahne, Hans-Jürgen; Hassenpflug, Joachim; Timm, Wolfram; Schrezenmeir, Jürgen

    2013-01-01

    Calcium and vitamin D deficiency impairs bone health and may cause rickets in children and osteomalacia in adults. Large animal models are useful to study experimental osteopathies and associated metabolic changes. We intended to modulate vitamin D status and induce nutritional osteomalacia in minipigs. The control group (n = 9) was fed a semisynthetic reference diet with 6 g calcium and 6,500 IU vitamin D3/kg and the experimental group (n = 10) the same diet but with only 2 g calcium/kg and without vitamin D. After 15 months, the deficient animals were in negative calcium balance, having lost bone mineral density significantly (means ± SEM) with −51.2 ± 14.7 mg/cm3 in contrast to controls (−2.3 ± 11.8 mg/cm3), whose calcium balance remained positive. Their osteoid surface was significantly higher, typical of osteomalacia. Their plasma 25(OH)D dropped significantly from 60.1 ± 11.4 nmol/L to 15.3 ± 3.4 nmol/L within 10 months, whereas that of the control group on the reference diet rose. Urinary phosphorus excretion and plasma 1,25-dihydroxyvitamin D concentrations were significantly higher and final plasma calcium significantly lower than in controls. We conclude that the minipig is a promising large animal model to induce nutritional osteomalacia and to study the time course of hypovitaminosis D and associated functional effects. PMID:24062955

  9. Serum 25 Hydroxyvitamin D, Bone Mineral Density and Fracture Risk Across the Menopause

    PubMed Central

    Greendale, Gail A.; Ruppert, Kristine; Lian, Yinjuan; Randolph, John F.; Lo, Joan C.; Burnett-Bowie, Sherri-Ann; Finkelstein, Joel S.

    2015-01-01

    Context: Low levels of serum 25 Hydroxyvitamin D [25(OH)D] have been linked to greater fracture risk in older women. Objective: This study aimed to determine whether higher 25(OH)D is associated with slower loss of bone mineral density (BMD) and lower fracture risk during the menopausal transition. Design, Setting, and Participants: This was a prospective cohort study at five clinical centers in the United States. Mean age was 48.5 ± 2.7 years. The fracture analysis included 124 women with an incident traumatic fracture, 88 with incident nontraumatic fracture, and 1532 women without incident fractures; average followup was 9.5 years. BMD analysis included 922 women with a documented final menstrual period. Main Outcome Measures: Serum 25(OH)D was measured by liquid chromatography tandem mass spectrometry at the third annual clinic visit. BMD was measured and incident fractures ascertained at each annual visit. Results: The mean 25(OH)D was 21.8 ng/mL; seven-hundred two (43%) of the women had 25(OH)D values <20 ng/mL. There was no significant association between 25(OH)D and traumatic fractures. In multivariate adjusted hazards models, the hazard ratio (HR) for nontraumatic fractures (95% confidence interval [CI]) was 0.72 (0.54–0.96) for each 10-ng/mL increase in 25(OH)D. Comparing women whose 25(OH)D was ≥20 vs <20 ng/mL, the HR (95% CI) for fracture was 0.54 (0.32–0.89). Changes in lumbar spine and femoral neck bone mineral density across menopause were not significantly associated with serum 25(OH)D level. Conclusion: Serum 25(OH)D levels are inversely associated with nontraumatic fracture in mid-life women. Vitamin D supplementation is warranted in midlife women with 25(OH)D levels <20 ng/mL. PMID:25719933

  10. Bone Fragility Beyond Strength and Mineral Density: Raman Spectroscopy Predicts Femoral Fracture Toughness in a Murine Model of Rheumatoid Arthritis

    PubMed Central

    Inzana, Jason A.; Maher, Jason R.; Takahata, Masahiko; Schwarz, Edward M.; Berger, Andrew J.; Awad, Hani A.

    2012-01-01

    Clinical prediction of bone fracture risk primarily relies on measures of bone mineral density (BMD). BMD is strongly correlated with bone strength, but strength is independent of fracture toughness, which refers to the bone’s resistance to crack initiation and propagation. In that sense, fracture toughness is more relevant to assessing fragility-related fracture risk, independent of trauma. We hypothesized that bone biochemistry, determined by Raman spectroscopy, predicts bone fracture toughness better than BMD. This hypothesis was tested in tumor necrosis factor-transgenic mice (TNF-tg), which develop inflammatory-erosive arthritis and osteoporosis. The left femurs of TNF-tg and wild type (WT) littermates were measured with Raman spectroscopy and micro-computed tomography. Fracture toughness was assessed by cutting a sharp notch into the anterior surface of the femoral mid-diaphysis and propagating the crack under 3 point bending. Femoral fracture toughness of TNF-tg mice was significantly reduced compared to WT controls (p=0.04). A Raman spectrum-based prediction model of fracture toughness was generated by partial least squares regression (PLSR). Raman spectrum PLSR analysis produced strong predictions of fracture toughness, while BMD was not significantly correlated and produced very weak predictions. Raman spectral components associated with mineralization quality and bone collagen were strongly leveraged in predicting fracture toughness, reiterating the limitations of mineralization density alone. PMID:23261243