Science.gov

Sample records for mineral electronic components

  1. Electron microprobe mineral analysis guide

    NASA Technical Reports Server (NTRS)

    Brown, R. W.

    1980-01-01

    Electron microprobe mineral analysis guide is a compilation of X-ray tables and spectra recorded from various mineral matrices. Spectra were obtained using electron microprobe, equipped with LiF geared, curved crystal X-ray spectrometers, utilizing typical analytical operating conditions: 15 Kv acceleration potential, 0.02 microampere sample current as measured on a clinopyroxene standard (CP19). Tables and spectra are presented for the majority of elements, fluorine through uranium, occurring in mineral samples from lunar, meteoritic and terrestrial sources. Tables for each element contain relevant analytical information, i.e., analyzing crystal, X-ray peak, background and relative intensity information, X-ray interferences and a section containing notes on the measurement. Originally intended to cover silicates and oxide minerals the tables and spectra have been expanded to cover other mineral phases. Electron microprobe mineral analysis guide is intended as a spectral base to which additional spectra can be added as the analyst encounters new mineral matrices.

  2. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  3. Cooling system for electronic components

    SciTech Connect

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  4. Advanced Power Electronics Components

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  5. Thermoluminescence of the mineral components in granite

    SciTech Connect

    Schwartzman, R.G.; Kierstead, J.A.; Levy, P.W.

    1982-01-01

    The thermoluminescence (TL) of the minerals in Climax Stock (Nevada, USA) granite has been studied. The principal mineral constituents are plagioclase, quartz, potassium feldspar and biotite. Pyrite, sphene apatite and zircon occur at one percent or less. All exhibit TL except biotite. The TL kinetics were determined for plagioclase, quartz, potassium feldspar and pyrite. Plagioclase and potassium feldspar exhibit second order and pyrite first orker kinetics. Natural TL of quartz follows second order and artificial TL first order kinetics. However, in these four minerals unrealistic kinetic parameters are often obtained; thus more general kinetics, e.g. interactive kinetics, may apply. 8 figures.

  6. Towards Prognostics for Electronics Components

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Celaya, Jose R.; Wysocki, Philip F.; Goebel, Kai F.

    2013-01-01

    Electronics components have an increasingly critical role in avionics systems and in the development of future aircraft systems. Prognostics of such components is becoming a very important research field as a result of the need to provide aircraft systems with system level health management information. This paper focuses on a prognostics application for electronics components within avionics systems, and in particular its application to an Isolated Gate Bipolar Transistor (IGBT). This application utilizes the remaining useful life prediction, accomplished by employing the particle filter framework, leveraging data from accelerated aging tests on IGBTs. These tests induced thermal-electrical overstresses by applying thermal cycling to the IGBT devices. In-situ state monitoring, including measurements of steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  7. Automated cleaning of electronic components

    SciTech Connect

    Drotning, W.; Meirans, L.; Wapman, W.; Hwang, Y.; Koenig, L.; Petterson, B.

    1994-07-01

    Environmental and operator safety concerns are leading to the elimination of trichloroethylene and chlorofluorocarbon solvents in cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates from electronic components. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations.

  8. Electronic Components Subsystems and Equipment: a Compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Developments in electronic components, subsystems, and equipment are summarized. Topics discussed include integrated circuit components and techniques, circuit components and techniques, and cables and connectors.

  9. Automated cleaning of electronic components

    SciTech Connect

    Drotning, W.

    1994-03-01

    Environmental and operator safety concerns are leading to the elimination of trichloroethylene (TCE) and chlorofluorocarbon (CFC) solvents in electronic component cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. In addition, the use of robotic and automated systems can reduce the manual handling of parts that necessitates additional cleaning. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations.

  10. [Study of ozonization effects on mineral water components].

    PubMed

    Zhao, Y; Yang, L; Chen, Y; Sha, X

    1998-03-01

    The disinfection effects of ozonization and its influences on chemical components of mineral water were investigated. The results showed that ozone at the level of 0.5 mg/L and with the exposure time of 5 minutes effectively destroyed bacteria in mineral water. High level ozone showed no strong influences on some beneficial components, such as strontium and metasilicate and on some main components, such as bicarbonate, hardness and alkalinity, but slightly elevated pH value. Ozonization reduced the contents of total dissolved solids and oxygen demand, and decomposed some reductive contaminants such as ammonia, cyanide and phenols. Ozonization will convert part of the bromide into hypobromite and bromate. PMID:10682614

  11. Mineral components and anti-oxidant activities of tropical seaweeds

    NASA Astrophysics Data System (ADS)

    Takeshi, Suzuki; Yumiko, Yoshie-Stark; Joko, Santoso

    2005-07-01

    Seaweeds are known to hold substances of high nutritional value; they are the richest resources of minerals important to the biochemical reactions in the human body. Seaweeds also hold non-nutrient compounds like dietary fiber and polyphenols. However, there is not enough information on the mineral compounds of tropical seaweeds. Also we are interested in the antioxidant activities of seaweeds, especially those in the tropical area. In this study, Indonesian green, brown and red algae were used as experimental materials with their mineral components analyzed by using an atomic absorption spectrophotometer. The catechins and flavonoids of these seaweeds were extracted with methanol and analyzed by high performance liquid chromatography (HPLC); the antioxidant activities of these seaweeds were evaluated in a fish oil emulsion system. The mineral components of tropical seaweeds are dominated by calcium, potassium and sodium, as well as small amounts of copper, iron and zinc. A green alga usually contains epigallocatechin, gallocatechin, epigallocatechin gallate and catechin. However, catechin and its isomers are not found in some green and red algae. In the presence of a ferrous ion catalyst, all the methanol extracts from the seaweeds show significantly lower peroxide values of the emulsion than the control, and that of a green alga shows the strongest antioxidant activity. The highest chelation on ferrous ions is also found in the extract of this alga, which is significantly different from the other methanol extracts in both 3 and 24 h incubations.

  12. Extracellular electron transfer mechanisms between microorganisms and minerals.

    PubMed

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K

    2016-10-01

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials. PMID:27573579

  13. Bacteriostatic conformal coating for electronic components

    NASA Technical Reports Server (NTRS)

    Bland, C.; Le Doux, F. N.

    1967-01-01

    Coating for electronic components used in space applications has bacteriostatic qualities capable of hindering bacterial reproduction, both vegetative and sporulative viable microorganisms. It exhibits high electrical resistivity, a low outgassing rate, and is capable of restraining electronic components when subjected to mechanical vibrations.

  14. Carbon Nanotubes: Molecular Electronic Components

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  15. Energetic electron components at geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Cayton, T. E.; Belian, R. D.; Gary, S. P.; Fritz, T. A.; Baker, D. N.

    1989-01-01

    Energy distribution functions have been derived from energetic (30-2000 keV) electron fluxes observed simultaneously by three geosynchronous orbit satellites throughout the year 1986. These distributions, as well as others derived from empirical models of outer magnetospheric electron fluxes, can be resolved into two distinct relativistic Maxwellian components which are each fully parameterized by a density and a temperature. A four-parameter characterization is presented which provides a new, simplified procedure for the interpretation of energetic electron data in the outer magnetosphere.

  16. Minerals in coal: a transmission electron microscopy study

    SciTech Connect

    Wert, C.A.; Hsieh, K.C.

    1983-01-01

    Techniques of electron microscopy have been applied to identification of minerals in coal and coal conversion products. The principal problem is making satisfactory thin-samples. Ion-milling has been used, but grinding and microtoming also show promise. Principal attention has been given to characterization of sulfides and clays, but many other minerals have been identified. Application of the technique to identification of the minerals in oil shale has been demonstrated. The great value of this method is the extraordinary detail with which mineral inclusions can be characterized. General topography, crystal type (including space group of complex crystalline forms), planar spacing and chemical composition can be determined using the large array of techniques available - bright and dark field imaging, electron diffraction, including convergent beam electron diffraction, x-ray emission spectroscopy and energy loss spectroscopy. 63 refences, 10 figures.

  17. Low-Temperature Electronic Components Being Developed

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammond, Ahmad

    1999-01-01

    In many future NASA missions, such as deep space planetary exploration and the Next Generation Space Telescope, electrical components and systems must operate reliably and efficiently in extremely low temperature environments. Most modern electronic components cannot operate below moderately low operating temperatures (-40 to -55 C). The low-temperature electronics program at the NASA Lewis Research Center is focusing on the development and characterization of low-temperature components and the integration of the developed devices into demonstrable very low-temperature (-200 C) power systems such as dc-dc converters. Such low-temperature electronics will not only tolerate hostile environments but also will reduce system size and weight by eliminating radioisotope heating units, thereby reducing launch cost, improving reliability and lifetime, and increasing energy densities. Low-temperature electronic components will also have a great influence on terrestrial applications such as medical instrumentation, magnetic levitation transportation systems, and arctic and antarctic exploration. Lewis researchers are now performing extensive evaluations of commercially available as well as custom-made devices. These include various types of energy storage and signal capacitors, power switching devices, magnetic and superconducting materials, and primary lithium batteries, to name a few.

  18. Prognostics for Electronics Components of Avionics Systems

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saha, Bhaskar; Wysocki, Philip F.; Goebel, Kai F.

    2009-01-01

    Electronics components have and increasingly critical role in avionics systems and for the development of future aircraft systems. Prognostics of such components is becoming a very important research filed as a result of the need to provide aircraft systems with system level health management. This paper reports on a prognostics application for electronics components of avionics systems, in particular, its application to the Isolated Gate Bipolar Transistor (IGBT). The remaining useful life prediction for the IGBT is based on the particle filter framework, leveraging data from an accelerated aging tests on IGBTs. The accelerated aging test provided thermal-electrical overstress by applying thermal cycling to the device. In-situ state monitoring, including measurements of the steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  19. Applications of scanning electron microscopy to the study of mineral matter in peat

    SciTech Connect

    Raymond, R. Jr.; Andrejko, M.J.; Bardin, S.W.

    1983-01-01

    Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) have been used for in situ analysis of minerals in peats by combining methods for producing oriented microtome sections of peat with methods for critical point drying. The combined technique allows SEM analysis of the inorganic components and their associated botanical constituents, along with petrographic identification of the botanical constituents. In peat deposits with abundant fluvial- or marine-derived minerals, one may use the above technique and/or medium- or low-temperature ashing followed by x-ray diffraction to readily identify the various mineral components. However, in some freshwater environments the scarcity of non-silica minerals makes the above techniques impractical. By separating the inorganic residues from the peat, one can isolate the non-silica mineral matter in the SEM for analysis by EDS. Furthermore, such separation allows SEM analysis of features and textures of both silica and non-silica mineral particles that might otherwise be unidentifiable. Results indicate the occurrence of detritial minerals in both Okefenokee and Snuggedy Swamp peats, the presence of authigenic or diagenetic minerals growing within peats, and dissolution features on freshwater sponge spicules that may account for the absence of spicules in Tertiary lignites.

  20. Electron Correlation in 4-Component Relativistic Calculations

    NASA Technical Reports Server (NTRS)

    Visscher, Luuk; Arnold, James O. (Technical Monitor)

    1994-01-01

    The full 4-component Dirac-Coulomb equation can nowadays be used in molecular calculations, The first step in solving this relativistic many-electron equation usually consists of solving the closed or open-shell Diarc-Fock equations. Like in non-relativistic calculations the outcome does not account for the effects of electron correlation. This can in principle be remedied by developing relativistic variants of electron correlation methods like Configuration Interaction or Coupled Cluster. In this talk the differences and similarities of such relativistic approaches as compared to non-relativistic methods will be reviewed. Results of Configuration Interaction calculations on the PtH molecule and on the MeF(sub 6, sup 2-) (Me= Co, Rh, Ir) complexes will be presented to give an impression of the kind of results that currently can be obtained.

  1. Cryogenic Applications of Commercial Electronic Components

    NASA Technical Reports Server (NTRS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.

    2012-01-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  2. Cryogenic applications of commercial electronic components

    NASA Astrophysics Data System (ADS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Harvey Moseley, S.; Wollack, Edward J.

    2012-10-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2 K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG [1] and in the GISMO [2] camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  3. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals.

    PubMed

    Wang, Xiaoli; Li, Yu

    2011-05-30

    Clay minerals in surficial sediment samples, collected from the Songhua River in China, were separated via sedimentation after removal of Fe/Mn oxides and organic materials; Cu and Zn adsorption onto the sediment components was then evaluated. Clay minerals were examined via X-ray diffraction and scanning electron microscopy. Clay minerals were found to consist mainly of illite, kaolinite, chlorite and an illite/smectite mixed layer. Non-clay minerals were dominated by quartz and orthoclase. The retention of Cu and Zn by clay minerals was 1.6 and 2.5 times, respectively, greater than that of the whole, untreated surficial sediment. Compared to the other critical components in sediments related to metal sorption (Mn oxides, Fe oxides and organic materials), the adsorption capacity of clay minerals was found to be relatively lower on a unit mass basis. These data suggest that, although clay minerals may be important in the adsorption of heavy metals to aquatic sediments, their role is less significant than Fe/Mn oxides and organic materials. PMID:21466918

  4. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Electronic signature components and controls. 11... SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Signatures § 11.200 Electronic signature components and controls. (a) Electronic signatures that are not based upon biometrics shall:...

  5. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Electronic signature components and controls. 11... SERVICES GENERAL ELECTRONIC RECORDS; ELECTRONIC SIGNATURES Electronic Signatures § 11.200 Electronic signature components and controls. (a) Electronic signatures that are not based upon biometrics shall:...

  6. Infrared extinction spectroscopy and micro-Raman spectroscopy of select components of mineral dust mixed with organic compounds

    NASA Astrophysics Data System (ADS)

    Laskina, Olga; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    2013-06-01

    Radiative transfer calculations as well as satellite and ground-based retrieval algorithms often use Mie theory to account for atmospheric mineral dust. However, the approximations used in Mie theory are often not appropriate for mineral dust and can lead to inaccuracies in modeling optical properties. Analytic models that are based on Rayleigh theory and account for particle shapes can offer significant advantages when used to model the IR extinction of mineral dust in the accumulation size mode. Here we extend our investigations of the IR optical properties of mineral dust to include samples that have been processed with organic acids. In particular, we aerosolize several individual components of mineral dust with organic compounds that are common in the atmosphere. Through online and offline analysis of the resulting aerosol particles combining Fourier transform infrared (FTIR) extinction spectroscopy, micro-Raman spectroscopy, and scanning electron microscopy, we have identified three distinct outcomes of the interactions, which depend on the nature of the mineral and the organic acid: reactions with segregation of the products within the particle, formation of a uniform coating on the particle, or a formation of external mixture when there is no significant chemical interaction. Analysis of FTIR extinction spectra of the different dust components that have undergone processing shows red shifts of the prominent IR resonance peaks. The extent of the red shift, which varies from 2 to 10 cm-1, depends on the mineral and the nature of the interaction. Spectral simulations showed that the deviation from Mie theory becomes even more pronounced for these processed mineral dust aerosol components.

  7. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems

    PubMed Central

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Piane, Claudio Delle; Raven, Mark; Mizaikoff, Boris

    2014-01-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis. PMID:25358261

  8. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems

    NASA Astrophysics Data System (ADS)

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Piane, Claudio Delle; Raven, Mark; Mizaikoff, Boris

    2014-10-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis.

  9. Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems.

    PubMed

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Delle Piane, Claudio; Raven, Mark; Mizaikoff, Boris

    2014-01-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis. PMID:25358261

  10. [The balneotherapeutic components of sulfide-containing mineral waters].

    PubMed

    Khutoryansky, V A; Gorshkov, A G

    2015-01-01

    It has been suggested in an early study that sulfanes may serve as a source of sulfur contained in hydrogen sulfide sources. We have performed derivatization of sulfanes, known to be present in the "Novonukutskaya" mineral water. The presence of polysulfanes in balneotherapeutic sulfide waters was confirmed by the HPLC-UV and chromato-mass spectrometric techniques. Derivatization of inorganic polysulfides was achieved by using the reaction with methyl iodide. It was shown that polysulfanes contained in the examined samples were metastable and disintegrated into So and H2S. Almost all molecular zero-valent sulfur was present in the form of S8. The application of HPLC allowed to determine the equilibrium concentration of molecular sulfur. The presence of the above compounds in therapeutic sulfide waters raises the question of the mechanism of their curative action. The authors hypothesize that it may be related to the high therapeutic potency of the substances obtained by steam distillation from the "Novonukutskaya" mineral water. PMID:26841531

  11. Imaging Cytoskeleton Components by Electron Microscopy

    PubMed Central

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers—actin filaments, microtubules, and intermediate filaments—are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:26498781

  12. Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation: a scanning electron microscopy study.

    PubMed

    Yoo, Jun Sang; Chang, Seok-Woo; Oh, So Ram; Perinpanayagam, Hiran; Lim, Sang-Min; Yoo, Yeon-Jee; Oh, Yeo-Rok; Woo, Sang-Bin; Han, Seung-Hyun; Zhu, Qiang; Kum, Kee-Yeon

    2014-12-01

    The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate (MTA) was studied by scanning electron microscopy (SEM). Single-rooted human premolars (n=60) were instrumented to an apical size #50/0.06 using ProFile and treated as follows: Group 1 (n=10) was filled with phosphate buffered saline (PBS); Group 2 (n=10) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3 (n=20) was obturated orthograde with a paste of OrthoMTA (BioMTA, Seoul, Korea) and PBS; and Group 4 (n=20) was incubated with E. faecalis for 3 weeks and then obturated with OrthoMTA-PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material (IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoMTA-filled roots (Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots (Group 4). Therefore, the orthograde obturation of root canals with OrthoMTA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization. PMID:25012869

  13. Pulmonary mineral dust. A study of ninety patients by electron microscopy, electron microanalysis, and electron microdiffraction.

    PubMed Central

    Berry, J. P.; Henoc, P.; Galle, P.; Pariente, R.

    1976-01-01

    The results of a study of 90 patients are presented. Intrapulmonary mineral deposits were characterized by electron diffraction and electron probe microanalysis. Using this method, pneumoconioses may be distinguidhed from other pneumopathies. In cases of pneumoconiosis, there exists a specific relationship between the etiology of the dust exposure and the crystallographic characteristics of the intrapulmonary deposits. The nature of the deposits may be indicative of a specific type of pneumoconiosis. This method is particularly useful in differentiating between asbestos bodies and ferruginous bodies. The value of the method in general and its importance in the study of pneumoconiosis are discussed. Images Figure 4 Figure 13 Figure 5 Figure 14 Figure 6 Figure 15 Figure 7 Figure 16 Figure 8 Figure 17 Figure 1 Figure 9 Figure 10 Figure 2 Figure 11 Figure 3 Figure 12 PMID:937507

  14. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including building bones, making ... regulating your heartbeat. There are two kinds of minerals: macrominerals and trace minerals. Macrominerals are minerals your ...

  15. Transmission electron microscopy (TEM) study of minerals in coal

    SciTech Connect

    Hsieh, Kuang-Chien

    1982-01-01

    Minerals in eight coals from different mines were characterized in the micron-size range by using analytical transmission electron microscopy. Specimens were thinned by ion-milling wafers cut from these coals; a cold stage cooled by liquid nitrogen was used to reduce thermal degradation of the minerals by the ion-beam. Different mineral compounds were observed in different coals. The major minerals are clays, sulfides, oxides, carbonates and some minor-element-bearing phosphates. Clays (kaolinite, illite and others) have been most commonly found as either flat sheets or round globules. Iron sulfide was mostly found in the No. 5 and No. 6 coals from Illinois, distributed as massive polycrystals, as clusters of single crystals (framboids) or as isolated single crystals with size range down to some 0.25 microns. Other sulfides and some oxides were found in other coals with particle size as small as some 200 angstroms. Quartz, titanium oxides and many other carbonates and phosphate compounds were also characterized. Brief TEM work in the organic mass of coal was also introduced to study the nature of the coal macerals.

  16. Electronic Surface Structures of Coal and Mineral Particles

    SciTech Connect

    M.K. Mazumder; D.A. Lindquist; K.B. Tennal; Steve Trigwell; Steve Farmer; Albert Nutsukpul; Alex Biris

    2001-04-01

    Surface science studies related to tribocharging and charge separation studies were performed on electrostatic beneficiation of coal. In contrast to other cleaning methods, electrostatic beneficiation is a dry cleaning process requiring no water or subsequent drying. Despite these advantages, there is still uncertainty in implementing large scale commercial electrostatic beneficiation of coal. The electronic surface states of coal macerals and minerals are difficult to describe due to their chemical complexity and variability [1]. The efficiency in separation of mineral particles from organic macerals depends upon these surface states. Therefore, to further understand and determine a reason for the bipolar charging observed in coal separation, surface analysis studies using Ultra-violet Photoelectron Spectroscopy (UPS) and X-ray Photoelectron Spectroscopy (XPS) were performed on coal samples and several materials that are used or considered for use in tribocharging. Electrostatic charging is a surface phenomenon, so the electronic surface states of the particles, which are influenced by the environmental conditions, determine both polarity and magnitude of tribocharging. UPS was used to measure the work function of the materials as typically used in ambient air. XPS was used to determine the surface chemistry in the form of contamination and degree of oxidation under the same environmental conditions. Mineral bearing coals are those amenable to electrostatic beneficiation. Three types of coal, Illinois No. 6, Pittsburgh No. 8, and Kentucky No. 9 were investigated in this study. Pulverized coal powder was tribocharged against copper. Pyritic and other ashes forming minerals in coal powders should charge with a negative polarity from triboelectrification, and organic macerals should acquire positive charge, according to the relative differences in the surface work functions between the material being charged and the charging medium. Different types of minerals

  17. 7 CFR 3201.80 - Electronic components cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Electronic components cleaners. 3201.80 Section 3201... PROCUREMENT Designated Items § 3201.80 Electronic components cleaners. (a) Definition. Products that are designed to wash or remove dirt or extraneous matter from electronic parts, devices, circuits, or...

  18. 7 CFR 3201.80 - Electronic components cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Electronic components cleaners. 3201.80 Section 3201... PROCUREMENT Designated Items § 3201.80 Electronic components cleaners. (a) Definition. Products that are designed to wash or remove dirt or extraneous matter from electronic parts, devices, circuits, or...

  19. JPL preferred parts list: Reliable electronic components

    NASA Technical Reports Server (NTRS)

    Covey, R. E.; Scott, W. R.; Hess, L. M.; Steffy, T. G.; Stott, F. R.

    1982-01-01

    The JPL Preferred Parts List was prepared to provide a basis for selection of electronic parts for JPL spacecraft programs. Supporting tests for the listed parts were designed to comply with specific spacecraft environmental requirements. The list tabulates the electronic, magnetic, and electromechanical parts applicable to all JPL electronic equipment wherein reliability is a major concern. The parts listed are revelant to equipment supplied by subcontractors as well as fabricated at the laboratory.

  20. Predicting electronic component lifetime using thermography

    NASA Astrophysics Data System (ADS)

    Moy, Richard Q.; Vargas, Raymund; Eubanks, Charles

    1991-03-01

    The concept of using IR imaging technology in locating failures in populated and unpopulated printed circuit boards (PCB) has been around since the mid 70's. However, the use of IR imaging technology in predicting component failure has been almost nonexistent. An IR workstation was developed to identify components that had become degraded as a result of aging, stress, or 'wear and tear'. Unlike previous work in IR diagnostic which uses a 'gold' image for comparison, the image history is developed on an individual board basis. The boards were subjected to both thermal and voltage stress to induce component degradation and failure. Preliminary results indicate that some components show a consisted thermal profile that may be used in predicating the lifetime of some components; other components exhibit no consisted thermal pattern change. Due to the varying statistical nature of stress to PCB modules during use in the field and the complexity of designing thermal simulations for each type of PCB module, designing a low cost IR workstation to predict component lifetime is not practical. However, a related application of the effort offers the means to significantly enhance the reliability of PCB modules which have large populations.

  1. Multilayer electronic component systems and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Thompson, Dane (Inventor); Wang, Guoan (Inventor); Kingsley, Nickolas D. (Inventor); Papapolymerou, Ioannis (Inventor); Tentzeris, Emmanouil M. (Inventor); Bairavasubramanian, Ramanan (Inventor); DeJean, Gerald (Inventor); Li, RongLin (Inventor)

    2010-01-01

    Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer.

  2. ELECTRONIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    SciTech Connect

    M.K.Mazumder; D.A. Linduist; K.B. Tennal

    2001-04-01

    Surface science studies related to tribocharging and charge separation studies were performed on electrostatic beneficiation of coal. In contrast to other cleaning methods, electrostatic beneficiation is a dry cleaning process requiring no water or subsequent drying. Despite these advantages, there is still uncertainty in implementing large-scale commercial electrostatic beneficiation of coal. The electronic surface states of coal macerals and minerals are difficult to describe due to their chemical complexity and variability. The efficiency in separation of mineral particles from organic macerals depends upon these surface states. Therefore, to further understand and determine a reason for the bipolar charging observed in coal separation, surface analysis studies using Ultra-violet Photoelectron Spectroscopy (UPS) and X-ray Photoelectron Spectroscopy (XPS) were performed on coal samples and several materials that are used or considered for use in tribocharging. Electrostatic charging is a surface phenomenon, so the electronic surface states of the particles, which are influenced by the environmental conditions, determine both polarity and magnitude of tribocharging. UPS was used to measure the work function of the materials as typically used in ambient air. XPS was used to determine the surface chemistry in the form of contamination and degree of oxidation under the same environmental conditions.

  3. [Principal component analysis of mineral elements and fatty acids composition in flaxseed from ten different regions].

    PubMed

    Xing, Li; Zhao, Feng-Min; Cao, You-Fu; Wang, Mei; Mei, Shuai; Li, Shao-Ping; Cai, Zhi-Yong

    2014-09-01

    Flaxseed is a kind of biomass with high edible and medical value. It is rich in many kinds of nutrients and mineral elements. China is one of the important producing places of flaxseed. In order to explore the main characteristic constituents of mineral elements and fatty acids in flaxseed, the study of analyzing the mineral elements and fatty acid composition from 10 different regions was carried out. The contents of seventeen kinds of mineral elements in flaxseed were determined by inductively coupled plasma mass spectrometry (ICP-MS). The contents of fatty acids of the flaxseed oil obtained under the same conditions were determined by gas chromatography-mass spectrometer (GC-MS). The principal component analysis (PCA) method was applied to the study of analyzing the mineral elements and fatty acid compositions in flaxseeds. The difference in mineral elements and fatty acids of flaxseed from different regions were discussed. The main characteristic constituents of mineral elements and fatty acids were analyzed. The results showed that K, Sr, Mg, Ni, Co, Cr, Cd, Se, Zn and Cu were the main characteristic constituents of the mineral elements. At the same time, C16:0, C18:0, C18: 2, C18:3, C20:0 and C20:1 were the main characteristic constituents of the fatty acids. The combination of ICP-MS, GS-MS and PCA can reveal the characteristics and difference of mineral elements and fatty acids from different regions. The results would provide important theoretical basis for the reasonable and effective utilization of flaxseed. PMID:25532360

  4. Electron probe microanalysis for high pressure minerals investigation

    NASA Astrophysics Data System (ADS)

    Lavrentiev, Y. G.; Sobolev, N. V.; Korolyuk, V. N.; Usova, L. V.

    2007-12-01

    In the early 1968 in Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, electron probe microanalyzer MS-46 was installed and started to operate for high pressure minerals EPMA investigation. In collaboration with Geophysical Laboratory of Carnegie Institution (Drs. F.R. Boyd, F. Schairer) a set of standards for silicates analysis was developed. Technique for quantitative analysis was developed (Lavrentiev et al., 1974, Zavodsk. Lab., v. 40, p. 657-661) and applied for the first in the USSR analyses of pyropes, associated with Siberian diamonds both as inclusions and xenoliths of diamondiferous peridotites (Sobolev et al., 1969, Dokl. Akad. Nauk SSSR, v. 188, p. 1141-1143; v. 189, p. 162-165). As a result of that research, unique Cr-rich subcalcic pyropes with high knorringite content were found in diamond-bearing kimberlites only and new mineralogical criteria for diamond exploration were developed (Sobolev 1971, Geol. Geofiz., v. 12, p. 70-80) which are still in use worldwide. Further development of electron probe instruments (JXA-5A, Camebax Micro, JXA-8100) and computers, as well as development of analysis technique led to creation of large analytical database. In another field of EPMA - determination of small concentrations of elements - for the first time importance of 0.01-0.3% Na2O admixtures in garnets (Sobolev, Lavrentiev, 1971, Contrib. Min. Petr., v. 31, p. 1-12) and K2O in clinopyroxenes (Sobolev et al., 1970, Dokl. Akad. Nauk SSSR, v. 192, p. 1349-1352) were demonstrated. Since then, determination of sodium content in EPMA of garnets and potassium in pyroxenes became a routine technique. Last generation analyzer (JXA-8100) provided record results down to 6 ppm in detection limit of Ni in pyropes (Lavrentiev et al., Rus. Geol. Geophys., 2006, v. 47, p. 1090-1093). As a result, application of EPMA for single mineral geothermometry (currently based mainly on PIXE method) becomes possible.

  5. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  6. Magnetic beneficiation of highland and hi-Ti mare soils - Rock, mineral, and glassy components

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Oder, Robin R.

    1990-01-01

    The exploitation of lunar soil can provide valuable raw materials for in situ resource utilization at a lunar base. A study of magnetic characterization was undertaken of three mare and two highland soils obtained from NASA. Beneficiation of mare and highland soils by sizing and magnetic separation can effectively concentrate the important components of the soils (e.g., ilmenite, native Fe, plagioclase, and aggluminates). As a soil matures and the impact melts consume additional minerals and rocks, the modal percentage of the minerals will decrease. The 'normative' percentage will become much greater than the modal percentage. Therefore, greater efficiency of separation can be realized with the proper selection of maturity of the soil, as well as by secondary grinding to further liberate specific minerals from lithic fragments (e.g., ilmenite and plagioclase).

  7. Extinction spectra of mineral dust aerosol components in an environmental aerosol chamber: IR resonance studies

    NASA Astrophysics Data System (ADS)

    Mogili, Praveen K.; Yang, K. H.; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    Mineral dust aerosol plays an important role in determining the physical and chemical equilibrium of the atmosphere. To better understand the impact that mineral dust aerosol may have on climate forcing and on remote sensing, we have initiated a study of the optical properties of important components of mineral dust aerosol including silicate clays (illite, kaolinite, and montmorillonite), quartz, anhydrite, and calcite. The extinction spectra are measured in an environmental simulation chamber over a broad wavelength range, which includes both the IR (650-5000 cm -1) and UV-vis (12,500-40,000 cm -1) spectral regions. In this paper, we focus on the IR region from 800 to 1500 cm -1, where many of these mineral dust constituents have characteristic vibrational resonance features. Experimental spectra are compared with Mie theory simulations based on published mineral optical constants. We find that Mie theory generally does a poor job in fitting the IR resonance peak positions and band profiles for nonspherical aerosols in the accumulation mode size range ( D˜0.1-2.5 μm). We explore particle shape effects on the IR resonance line profiles by considering analytic models for extinction of particles with characteristic shapes (i.e. disks, needles, and ellipsoids). Interestingly, Mie theory often appears to give more accurate results for the absorption line profiles of larger particles that fall in the coarse mode size range.

  8. The enabling technology for recovery of valued components from minerals in the upper and Mid Amur region

    SciTech Connect

    Sorokin, A.P.; Rimkevich, V.S.; Dem'yanova, L.P.; Artemenko, T.V.

    2009-05-15

    Based on the physico-technical operations involved in the mineral processing technologies, the optimal production conditions are found for refractory fiber materials, aluminium, silicium, their compounds and other valued components. Ecologically safe and efficient aggregate technologies are developed for recovery of valued components from nonmetallic minerals and anthracides (brown coals).

  9. Electrical and electronic devices and components: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Components and techniques which may be useful in the electronics industry are described. Topics discussed include transducer technology, printed-circuit technology, solid state devices, MOS transistors, Gunn device, microwave antennas, and position indicators.

  10. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  11. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  12. 21 CFR 11.200 - Electronic signature components and controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... signature components and controls. (a) Electronic signatures that are not based upon biometrics shall: (1... signatures based upon biometrics shall be designed to ensure that they cannot be used by anyone other...

  13. Electronic component documentation in a research-laboratory environment

    SciTech Connect

    Spencer, J.W.

    1982-08-01

    Documenting electronic components and assemblies used by design personnel at a scientific research laboratory is a challenge. Documentation must be both up-to-date and complete enough to provide designers the information they need for unusual applications. Yet, because of the relatively small quantities of components used, the documentation must be inexpensive to produce and distribute. Close interaction between technically-knowledgeable editor/writers and components engineers results in components documentation closely tailored to the needs of our design personnel. This paper discusses the philosophy underlying our efforts, as well as the organization, production, and distribution of our component documentation.

  14. Minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish require the same minerals or inorganic elements as terrestrial animals for tissue formation, osmoregulation and various metabolic functions. Those required in large quantities are termed macro- or major minerals and those required in small quantities are called micro- or trace minerals. Fish ca...

  15. Electronics speckle interferometry applications for NDE of spacecraft structural components

    NASA Astrophysics Data System (ADS)

    Rao, M. V.; Samuel, R.; Ananthan, A.; Dasgupta, S.; Nair, P. S.

    2008-09-01

    The spacecraft components viz., central cylinder, deck plates, solar panel substrates, antenna reflectors are made of aluminium/composite honeycomb sandwich construction. Detection of these defects spacecraft structural components is important to assess the integrity of the spacecraft structure. Electronic Speckle Interferometry (ESI) techniques identify the defects as anomalous regions in the interferometric fringe patterns of the specklegram while the component is suitably stressed to give rise to differential displacement/strain around the defective region. Calibration studies, different phase shifting methods associated with ESI and the development of a prototype Twin Head ESSI System (THESSIS) and its use for the NDE of a typical satellite structural component are presented.

  16. Airborne mineral components and trace metals in Paris region: spatial and temporal variability.

    PubMed

    Poulakis, E; Theodosi, C; Bressi, M; Sciare, J; Ghersi, V; Mihalopoulos, N

    2015-10-01

    A variety of mineral components (Al, Fe) and trace metals (V, Cr, Mn, Ni, Cu, Zn, Cd, Pb) were simultaneously measured in PM2.5 and PM10 fractions at three different locations (traffic, urban, and suburban) in the Greater Paris Area (GPA) on a daily basis throughout a year. Mineral species and trace metal levels measured in both fractions are in agreement with those reported in the literature and below the thresholds defined by the European guidelines for toxic metals (Cd, Ni, Pb). Size distribution between PM2.5 and PM10 fractions revealed that mineral components prevail in the coarse mode, while trace metals are mainly confined in the fine one. Enrichment factor analysis, statistical analysis, and seasonal variability suggest that elements such as Mn, Cr, Zn, Fe, and Cu are attributed to traffic, V and Ni to oil combustion while Cd and Pb to industrial activities with regional origin. Meteorological parameters such as rain, boundary layer height (BLH), and air mass origin were found to significantly influence element concentrations. Periods with high frequency of northern and eastern air masses (from high populated and industrialized areas) are characterized by high metal concentrations. Finally, inner city and traffic emissions were also evaluated in PM2.5 fraction. Significant contributions (>50 %) were measured in the traffic site for Mn, Fe, Cr, Zn, and Cu, confirming that vehicle emissions contribute significantly to their levels, while in the urban site, the lower contributions (18 to 33 %) for all measured metals highlight the influence of regional sources on their levels. PMID:25982986

  17. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M. V.

    2008-06-03

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  18. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M.

    2005-01-25

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  19. Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures

    NASA Astrophysics Data System (ADS)

    Laskina, Olga; Young, Mark A.; Kleiber, Paul D.; Grassian, Vicki H.

    2012-09-01

    Simultaneous Fourier transform infrared (FTIR) extinction spectra and aerosol size distributions have been measured for some components of mineral dust aerosol including feldspars (albite, oligoclase) and diatomaceous earth, as well as more complex authentic dust samples that include Iowa loess and Saharan sand. Spectral simulations for single-component samples, derived from Rayleigh-theory models for characteristic particle shapes, better reproduce the experimental spectra including the peak position and band shape compared to Mie theory. The mineralogy of the authentic dust samples was inferred using analysis of FTIR spectra. This approach allows for analysis of the mineralogy of complex multicomponent dust samples. Extinction spectra for the authentic dust samples were simulated from the derived sample mineralogy using published optical constant data for the individual mineral constituents and assuming an external mixture. Nonspherical particle shape effects were also included in the simulations and were shown to have a significant effect on the results. The results show that the position of the peak and the shape of the band of the IR characteristic features in the 800 to 1400 cm-1 spectral range are not well simulated by Mie theory. The resonance peaks are consistently shifted by more than +40 cm-1 relative to the experimental spectrum in the Mie simulation. Rayleigh model solutions for different particle shapes better predict the peak position and band shape of experimental spectra, even though the Rayleigh condition may not be strictly obeyed in these experiments.

  20. Current Space Station Experiments Investigating Component Level Electronics Repair

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.

    2010-01-01

    The Soldering in a Reduced Gravity Experiment (SoRGE) and Component Repair Experiment (CRE)-1 are tests performed on the International Space Station to determine the techniques, tools, and training necessary to allow future crews to perform manual electronics repairs at the component level. SoRGE provides information on the formation and internal structure of through-hole solder joints, illustrating the challenges and implications of soldering in reduced gravity. SoRGE showed a significant increase in internal void defects for joints formed in low gravity compared to normal gravity. Methods for mitigating these void defects were evaluated using a modified soldering process. CRE-1 demonstrated the removal, cleaning, and replacement of electronics components by manual means on functional circuit boards. The majority of components successful passed a post-repair functional test demonstrating the feasibility of component-level repair within the confines of a spacecraft. Together, these tasks provide information to recommend material and tool improvements, training improvements, and future work to help enable electronics repairs in future space missions.

  1. Screen printed passive components for flexible power electronics.

    PubMed

    Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C

    2015-01-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331

  2. Porphyrins as Molecular Electronic Components of Functional Devices

    PubMed Central

    Jurow, Matthew; Schuckman, Amanda E.; Batteas, James D.; Drain, Charles Michael

    2010-01-01

    The proposal that molecules can perform electronic functions in devices such as diodes, rectifiers, wires, capacitors, or serve as functional materials for electronic or magnetic memory, has stimulated intense research across physics, chemistry, and engineering for over 35 years. Because biology uses porphyrins and metalloporphyrins as catalysts, small molecule transporters, electrical conduits, and energy transducers in photosynthesis, porphyrins are an obvious class of molecules to investigate for molecular electronic functions. Of the numerous kinds of molecules under investigation for molecular electronics applications, porphyrins and their related macrocycles are of particular interest because they are robust and their electronic properties can be tuned by chelation of a metal ion and substitution on the macrocycle. The other porphyrinoids have equally variable and adjustable photophysical properties, thus photonic applications are potentiated. At least in the near term, realistic architectures for molecular electronics will require self-organization or nanoprinting on surfaces. This review concentrates on self-organized porphyrinoids as components of working electronic devices on electronically active substrates with particular emphasis on the effect of surface, molecular design, molecular orientation and matrix on the detailed electronic properties of single molecules. PMID:20936084

  3. Antenna with distributed strip and integrated electronic components

    SciTech Connect

    Rodenbeck, Christopher T.; Payne, Jason A.; Ottesen, Cory W.

    2008-08-05

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element can be in proximity to a ground conductor and/or arranged as a dipole. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. An antenna can comprise a distributed strip patterned on a printed wiring board, integrated with electronic components mounted on top of or below the distributed strip, and substantially within the extents of the distributed strip. Mounting of electronic components on top of or below the distributed strip has little effect on the performance of the antenna, and allows for realizing the combination of the antenna and integrated components in a compact form. An embodiment of the invention comprises an antenna including a distributed strip, integrated with a battery mounted on the distributed strip.

  4. Minerals

    MedlinePlus

    ... your body needs in larger amounts. They include calcium, phosphorus, magnesium, sodium, potassium, chloride and sulfur. Your body needs just small amounts of trace minerals. These include iron, manganese, copper, iodine, zinc, cobalt, fluoride and selenium. The best way to ...

  5. 77 FR 51572 - Certain Wireless Consumer Electronics Devices and Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... COMMISSION Certain Wireless Consumer Electronics Devices and Components Thereof; Institution of Investigation... United States after importation of certain wireless consumer electronics devices and components thereof... importation of certain wireless consumer electronics devices and components thereof that infringe one or...

  6. Electronic components and systems for cryogenic space applications

    NASA Astrophysics Data System (ADS)

    Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.

    2002-05-01

    Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about -183 °C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An on-going R&D program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving and operating in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house electronic component and small system testing will also be discussed. .

  7. Infrared electronic absorption in a single-component molecular metal.

    PubMed

    Kobayashi, Akiko; Sasa, Masaaki; Suzuki, Wakako; Fujiwara, Emiko; Tanaka, Hisashi; Tokumoto, Madoka; Okano, Yoshinori; Fujiwara, Hideki; Kobayashi, Hayao

    2004-01-21

    The infrared spectra of the crystal of transition metal complex molecules with extended-TTF ligands, Ni(tmdt)2, which is the first single-component molecular metal that has a stable metallic state even at low temperatures, exhibited an extremely low-energy electronic absorption around 2200 cm-1 (tmdt = trimethylenetetrathiafulvalenedithiolate). The systematic shift of the absorption peaks for molecules similar to Ni(tmdt)2, which range from metallic to semiconducting crystals, shows that the single-component molecular conductors are composed of molecules with unprecedentedly small HOMO-LUMO gaps. PMID:14719914

  8. Screen printed passive components for flexible power electronics

    PubMed Central

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-01-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331

  9. Screen printed passive components for flexible power electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-10-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  10. Analysis of minerals containing dissolved traces of the fluid phase components water and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    1991-01-01

    Substantial progress has been made towards a better understanding of the dissolution of common gas/fluid phase components, notably H2O and CO2, in minerals. It has been shown that the dissolution mechanisms are significantly more complex than currently believed. By judiciously combining various solid state analytical techniques, convincing evidence was obtained that traces of dissolved gas/fluid phase components undergo, at least in part, a redox conversion by which they split into reduced H2 and and reduced C on one hand and oxidized oxygen, O(-), on the other. Analysis for 2 and C as well as for any organic molecules which may form during the process of co-segregation are still impeded by the omnipresent danger of extraneous contamination. However, the presence of O(-), an unusual oxidized form of oxygen, has been proven beyond a reasonable doubt. The presence of O(-) testifies to the fact that a redox reaction must have taken place in the solid state involving the dissolved traces of gas/fluid phase components. Detailed information on the techniques used and the results obtained are given.

  11. Copper-diamond composite substrates for electronic components

    SciTech Connect

    Davidson, H.L.; Colella, N.J.; Kerns, J.A.; Makowiecki, D.

    1995-01-25

    High-power density electronic components such as fast microprocessors and power semiconductors are often limited by inability to keep the device junctions below their max rated operating temperature. Present high power multichip module and single chip package designs use substrate materials such as Si nitride or copper tungsten with thermal conductivity in the range of 200 W/m{center_dot}K. We have developed a copper-diamond composite (Dymalloy) with a thermal conductivity of 420 W/m{center_dot}K, better than Cu, and an adjustable thermal expansion coefficient (TCE=5.5 ppM/C at 25 C), compatible with Si and GaAs. Because of the matched TCE, it is possible to use low thermal resistance hard die attach methods. The mechanical properties of the composite also make it attractive as an electronic component substrate material.

  12. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  13. The Coulomb, exchange, and correlation components of the electron-electron repulsion in harmonium atoms.

    PubMed

    Cioslowski, Jerzy

    2015-03-21

    Highly accurate Coulomb, exchange, and correlation components of the electron-electron repulsion energies of the three-electron harmonium atoms in the (2)P- and (4)P+ states are obtained for 19 values of the confinement strength ω ranging from 10(-3) to 10(3). The computed data are consistent with their ω → 0 and ω → ∞ asymptotics that are given by closed-form algebraic expressions. Robust approximants that accurately reproduce the actual values of the energy components while strictly conforming to these limits are constructed, opening an avenue to stringent tests capable of predicting the performance of electronic structure methods for systems with varying extents of the dynamical and nondynamical electron correlation. The values of the correlation components, paired with the computed 1-matrices are expected to be particularly useful in the context of benchmarking of approximate density matrix functionals. PMID:25796229

  14. The Coulomb, exchange, and correlation components of the electron-electron repulsion in harmonium atoms

    SciTech Connect

    Cioslowski, Jerzy

    2015-03-21

    Highly accurate Coulomb, exchange, and correlation components of the electron-electron repulsion energies of the three-electron harmonium atoms in the {sup 2}P{sub −} and {sup 4}P{sub +} states are obtained for 19 values of the confinement strength ω ranging from 10{sup −3} to 10{sup 3}. The computed data are consistent with their ω → 0 and ω → ∞ asymptotics that are given by closed-form algebraic expressions. Robust approximants that accurately reproduce the actual values of the energy components while strictly conforming to these limits are constructed, opening an avenue to stringent tests capable of predicting the performance of electronic structure methods for systems with varying extents of the dynamical and nondynamical electron correlation. The values of the correlation components, paired with the computed 1-matrices are expected to be particularly useful in the context of benchmarking of approximate density matrix functionals.

  15. Electronic Components and Systems for Cryogenic Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.

    2001-01-01

    Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about - 183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.

  16. Low-energy electron scattering by cellulose and hemicellulose components.

    PubMed

    de Oliveira, Eliane M; da Costa, Romarly F; Sanchez, Sergio d'A; Natalense, Alexandra P P; Bettega, Márcio H F; Lima, Marco A P; Varella, Márcio T do N

    2013-02-01

    We report elastic integral, differential and momentum transfer cross sections for low-energy electron scattering by the cellulose components β-D-glucose and cellobiose (β(1 → 4) linked glucose dimer), and the hemicellulose component β-D-xylose. For comparison with the β forms, we also obtain results for the amylose subunits α-D-glucose and maltose (α(1 → 4) linked glucose dimer). The integral cross sections show double peaked broad structures between 8 eV and 20 eV similar to previously reported results for tetrahydrofuran and 2-deoxyribose, suggesting a general feature of molecules containing furanose and pyranose rings. These broad structures would reflect OH, CO and/or CC σ* resonances, where inspection of low-lying virtual orbitals suggests significant contribution from anion states. Though we do not examine dissociation pathways, these anion states could play a role in dissociative electron attachment mechanisms, in case they were coupled to the long-lived π* anions found in lignin subunits [de Oliveira et al., Phys. Rev. A, 2012, 86, 020701(R)]. Altogether, the resonance spectra of lignin, cellulose and hemicellulose components establish a physical-chemical basis for electron-induced biomass pretreatment that could be applied to biofuel production. PMID:23247550

  17. Electronic Components and Circuits for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott

    2003-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with

  18. Secondary Mineralization of Components in CV3 Chondrites: Nebular and Asteroidal Models

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; Krot, A. N.; Zolensky, M. E.

    1995-09-01

    Our review of mineralogical variations among CV3 chondrites suggests that all components, chondrules, matrices, and CAIs, were affected by various degrees of secondary mineralization. Chondrules and CAIs are rimmed with fayalitic olivine [1, 2]; metal in all components is oxidized and sulfidized to magnetite, Ni-rich metal and sulfides [3]; silicates in all components are aqueously altered to phyllosilicates [4]; and nepheline, sodalite, wollastonite, and hedenbergite replace primary minerals in CAIs [5]. In those CV3s with altered CAIs, nepheline etc. are also present in chondrule mesostases [6] and in matrices [7]. Correlated occurrences of secondary minerals indicate that they have related origins. CV3 chondrites can be divided into three kinds according to their secondary features. Reduced CV3s (e.g., Efremovka) lack magnetite [8] and show minimal secondary features. Oxidized CV3s [8] generally show all features: those like Mokoia contain minor fayalitic rims, nepheline, etc, whereas those like Allende lack phyllosilicates but contain well developed fayalite rims and abundant nepheline, etc. Allende-like CV3 chondrites also contain abundant plate-like matrix olivine (Fa(sub)45-55). Similarities in chemistry and O isotopic composition and petrographic observations suggest that fayalitic rims and plate-like matrix olivine have related origins [1, 9]. The presence of secondary minerals in all components implies that alteration postdated component formation. The absence of secondary minerals in reduced CV3s indicates that CV3 oxidized formed from CV3 reduced-like material. Oxidized and reduced materials coexist in some breccias indicating a common parent asteroid. Nebular origins are widely accepted for most secondary features. To form fayalitic rims and matrix , Palme and colleagues [10, 11] suggest that chondritic components were briefly exposed to a hot (>1500 K), highly oxidizing nebula with H2O/H2 to about 1. Such an environment could have resulted from

  19. Ice nucleation by soil dusts: relative importance of mineral and biological components

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Daniel; Murray, Ben; Webb, Michael; Whale, Thomas; Atkinson, James; Baustian, Kelly; Malkin, Tamsin

    2013-04-01

    Dusts emitted from agricultural soils may represent a significant source of atmospheric particulates at mid-latitudes. Such dusts, which can be aerosolised by anthropogenic agricultural activities, have previously been estimated to be present in the atmosphere at sufficient number densities that they could potentially compete with other known ice nuclei. In contrast to soils from arid regions, such as the Sahara, fertile soils contain a larger fraction of biological material, which can lead to an enhancement in the ice nucleating ability of their associated dusts. However, considerable uncertainties remain regarding the relative efficacy of soil dust particles from fertile soils as IN. In particular, the relative contribution to the overall ice nucleating activity from both the biological and mineral components present remains unclear. Using a novel experimental methodology designed to increase sensitivity to a wide range of ice nucleation efficiencies, we have characterised the immersion mode ice nucleating activities of PM10 extracted from soils collected in England. By controlling droplet sizes, which ranged in volume from 10-12 to 10-6L, we have been able to characterise the ice active site densities in soils (estimated using a time-independent framework) at temperatures ranging from -5° C down to the homogeneous limit of freezing at ~ -36° C. To distinguish between biological and mineral IN in the soil dusts, we examined the effects of heat treatment and organic matter digestion with hydrogen peroxide on the ice nucleating activities of the soils. Both heat and H2O2 treatment reduced the ice nucleating ability of the soil dust particles at low supercoolings (T >-15° C) by up to two orders of magnitude, suggesting that the ice nucleating active sites are primarily biological in nature within this regime. However, below -15° C, we find that the ice active site densities tend towards those expected from the mineral components in the soils, suggesting that the

  20. Transmission electron microscopic examination of phosphoric acid fuel cell components

    NASA Technical Reports Server (NTRS)

    Pebler, A.

    1986-01-01

    Transmission electron microscopy (TEM) was used to physically characterize tested and untested phosphoric acid fuel cell (PAFC) components. Those examined included carbon-supported platinum catalysts, carbon backing paper, and Teflon-bonded catalyst layers at various stages of fabrication and after testing in pressurized PAFC's. Applicability of electron diffraction and electron energy loss spectroscopy for identifying the various phases was explored. The discussion focuses on the morphology and size distribution of platinum, the morphology and structural aspects of Teflon in catalyst layers, and the structural evidence of carbon corrosion. Reference is made to other physical characterization techniques where appropriate. A qualitative model of the catalyst layer that emerged from the TEM studies is presented.

  1. Component Repair Experiment-1: An Experiment Evaluating Electronic Component-Level Repair During Spaceflight

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.

    2012-01-01

    The Component Repair Experiment-1 (CRE-1) examines the capability for astronauts to perform electronics repair tasks in space. The goal is to determine the current capabilities and limits for the crew, and to make recommendations to improve and expand the range of work that astronauts may perform. CRE-1 provided two-layer, functional circuit boards and replacement components, a small tool kit, written and video training materials, and 1 hr of hands on training for the crew slated to perform the experiment approximately 7 months prior to the mission. Astronauts Michael Fincke and Sandra Magnus performed the work aboard the International Space Station (ISS) in February and March 2009. The astronauts were able to remove and replace components successfully, demonstrating the feasibility of performing component-level electronics repairs within a spacecraft. Several unsuccessful tasks demonstrated areas in need of improvement. These include improved and longer training prior to a mission, an improved soldering iron with a higher operating temperature and steady power source, video training and practice boards for refresher work or practice before a repair, and improved and varied hand tools and containment system.

  2. Electronic Components for use in Extreme Temperature Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electrical power management and control systems designed for use in planetary exploration missions and deep space probes require electronics that are capable of efficient and reliable operation under extreme temperature conditions. Space-based infra-red satellites, all-electric ships, jet engines, electromagnetic launchers, magnetic levitation transport systems, and power facilities are also typical examples where the electronics are expected to be exposed to harsh temperatures and to operate under severe thermal swings. Most commercial-off-the-shelf (COTS) devices are not designed to function under such extreme conditions and, therefore, new parts must be developed or the conventional devices need to be modified. For example, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. At the other end, built-in radiators and coolers render the operation of electronics possible under hot conditions. These thermal measures lead to design complexity, affect development costs, and increase size and weight. Electronics capable of operation at extreme temperatures, thus, will not only tolerate the hostile operational environment, but also make the overall system efficient, more reliable, and less expensive. The Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electronics suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices, including COTS parts, for potential use under extreme temperatures. These components include semiconductor switching devices, passive devices, DC/DC converters, operational amplifiers, and oscillators. An overview of the program will be presented along with some experimental findings.

  3. 77 FR 34063 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... devices, including mobile phones and tablet computers, and components thereof by reason of infringement of... certain electronics devices, including mobile phones and tablet computers, and components thereof...

  4. Radiation accident dosimetry on electronic components by OSL.

    PubMed

    Bassinet, C; Trompier, F; Clairand, I

    2010-02-01

    In the event of large-scale radiation accidents and considering a growing terrorism concern, non-invasive and sufficiently accurate retrospective dosimetry methods are necessary to carry out a fast population triage in order to determine which radiation-exposed individuals need medical treatment. Retrospective dosimetry using different electronic components such as resistors, capacitors, and integrated circuits present on mobile phone circuit boards have been considered. Their response has been investigated with luminescence techniques (OSL, IRSL, and TL). The majority of these electronic components exhibit radiation-induced luminescence signals, and the OSL technique seems the most promising for these materials. Results concerning three types of components that present the most interesting OSL characteristics (in terms of signal annealing and sensitivity) and that are the most often present on mobile phone circuit boards are presented. Preheating effects on OSL signal, sensitization, and dose-response curves from 0.7 to 27 Gy for resistors and from 0.7 to 160 Gy for capacitors and integrated circuits, dose recovery tests, and signal stability 10 h after irradiation have been studied and interests and limits of their use evaluated. PMID:20065718

  5. The ‘porin–cytochrome’ model for microbe-to-mineral electron transfer

    SciTech Connect

    Richardson, David J.; Butt, Julea N.; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang; Edwards, Marcus J.; White, Gaye F.; Baiden, Nanakow; Gates, Andrew J.; Marritt, Sophie; Clarke, Thomas A.

    2012-05-30

    Many species of bacteria can couple anaerobic growth to the respiratory reduction of insoluble minerals containing Fe(III) or Mn(III/IV). It has been suggested that in Shewanella species electrons cross the outer membrane to extracellular substrates via 'porin-cytochrome' electron transport modules. The molecular structure of an outer-membrane extracellular-facing deca-haem terminus for such a module has recently been resolved. It is debated how, once outside the cells, electrons are transferred from outer-membrane cytochromes to insoluble electron sinks. This may occur directly or by assemblies of cytochromes, perhaps functioning as 'nanowires', or via electron shuttles. Here we review recent work in this field and explore whether it allows for unification of the electron transport mechanisms supporting extracellular mineral respiration in Shewanella that may extend into other genera of Gram-negative bacteria.

  6. 76 FR 22918 - In the Matter of Certain Handheld Electronic Computing Devices, Related Software, and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... COMMISSION In the Matter of Certain Handheld Electronic Computing Devices, Related Software, and Components... States after importation of certain handheld electronic computing devices, related software, and... importation of certain handheld electronic computing devices, related software, and components thereof...

  7. 77 FR 44671 - Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... COMMISSION Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Receipt of... received a complaint entitled Certain Wireless Consumer Electronics Devices and Components Thereof, DN 2904... within the United States after importation of certain wireless consumer electronics devices...

  8. 78 FR 56245 - Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... COMMISSION Certain Wireless Consumer Electronics Devices and Components Thereof; Notice of Request for... limited exclusion order against certain wireless consumer electronics devices and components thereof... Corporation of Kyoto, Japan; Kyocera Communications, Inc. of San Diego, California; LG Electronics, Inc....

  9. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... Trade Commission has received a complaint entitled Certain Electronic Devices, Including Mobile Phones... electronic devices, including mobile phones and tablet computers, and components thereof. The complaint...

  10. Optical-electronic system for express analysis of mineral raw materials dressability by color sorting method

    NASA Astrophysics Data System (ADS)

    Alekhin, Artem A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Petuhova, Darya B.

    2013-04-01

    Due to the depletion of solid minerals ore reserves and the involvement in the production of the poor and refractory ores a process of continuous appreciation of minerals is going. In present time at the market of enrichment equipment are well represented optical sorters of various firms. All these sorters are essentially different from each other by parameters of productivity, classes of particles sizes for processed raw, nuances of decision algorithm, as well as by color model (RGB, YUV, HSB, etc.) chosen to describe the color of separating mineral samples. At the same time there is no dressability estimation method for mineral raw materials without direct semi-industrial test on the existing type of optical sorter, as well as there is no equipment realizing mentioned dressability estimation method. It should also be note the lack of criteria for choosing of one or another manufacturer (or type) of optical sorter. A direct consequence of this situation is the "opacity" of the color sorting method and the rejection of its potential customers. The proposed solution of mentioned problems is to develop the dressability estimation method, and to create an optical-electronic system for express analysis of mineral raw materials dressability by color sorting method. This paper has the description of structure organization and operating principles of experimental model optical-electronic system for express analysis of mineral raw material. Also in this work are represented comparison results of the proposed optical-electronic system and the real color sorter.

  11. Microbial mineralization of VC and DCE under different terminal electron accepting conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1998-01-01

    Production of 14CO2 from [1,2-14C] dichloroethene (DCE) or [1,2-14C] vinyl chloride (VC) was quantified in aquifer and stream-bed sediment microcosms to evaluate the potential for microbial mineralization as a pathway for DCE and VC biodegradation under aerobic, Fe(III)-reducing, SO4-reducing, and methanogenic conditions. Mineralization of [1,2-14C] DCE and [1,2-14C] VC to 14CO2 decreased under increasingly reducing conditions, but significant mineralization was observed for both sediments even under anaerobic conditions. VC mineralization decreased in the order of aerobic > Fe(III)-reducing > SO4-reducing > methanogenic conditions. For both sediments, VC mineralization was greater than DCE mineralization under all electron-accepting conditions examined. For both sediments, DCE mineralization was at least two times greater under aerobic conditions than under anaerobic conditions. Although significant microbial mineralization of DCE was observed under anaerobic conditions, recovery of 14CO2 did not differ substantially between anaerobic treatments.

  12. Severe shock and vibration environments for electronic components

    SciTech Connect

    Martinez, D.R.

    1990-01-01

    Electronic components used in system applications must be qualified to mechanical shock and vibration environments. Often these environments are severe, requiring the development and use of special test techniques and procedures. Environmental specifications are based upon analytical model predictions and measured test data. Test specifications are determined after careful consideration of simulation techniques, input levels, dynamic behavior of the test fixturing, as well as an assessment of the degree of conservatism imposed by the specification and testing procedures. The process of determining component shock and vibration specifications is discussed, beginning with the initial description of system and subsystem level environments, and concluding with component level test specifications. Included is a discussion of the difference between environmental specifications and test specifications, and the instrumentation/measurement problems associated with obtaining valid field measurements for severe shock data. The role of finite element analysis in predicting the dynamic structural response of components is also explained. Shock data analysis techniques are described including both time-domain and frequency-domain characterizations of the data. The resonant plate shock testing technique for simulating severe shock environments is presented, including difficulties that arise in practical applications. 18 refs., 10 figs.

  13. HPM (high power microwave) testing of electronic components

    SciTech Connect

    Antinone, R.; Ng, W.C.

    1989-05-10

    This report documents the results of a study of high power microwave (HPM) vulnerability of electronic components commonly used in weapon systems. The study was carried out at the Lawrence Livermore National Laboratory from August through October 1988. The objective of this study was to determine the threshold levels for upset or disturbance and damage of the devices under test (DUT). In these tests pulsed microwave energy was directly injected into the terminal of the DUT and in most cases a 50-ohm microstrip test fixture was used to ensure that 50-ohm transmission was maintained as close to the DUT as possible. 3 refs., 41 figs., 10 tabs.

  14. A new active solder for joining electronic components

    SciTech Connect

    SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.; LUGSCHEIDER,E.; RASS,I.; HILLEN,F.

    2000-05-11

    Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

  15. High-temperature electronic components and circuit designs

    NASA Astrophysics Data System (ADS)

    Chang, H. T.

    Downhole logging instruments for geothermal application must have electronic circuits capable of operating from room temperature 250 C. A nondestructive evaluation instrument for geothermal wells requires a circuit that can be operated at high voltage and high current in order to provide high power output. In designing such a circuit, a high power, high speed, cold cathode switching tube was developed to be used as a substitute for SCRs or thyratrons. The possibility of using low leakage JFETs beyond their rated temperature in a circuit design is discussed. Commercial high temperature components are reviewed.

  16. Solder Reflow Failures in Electronic Components During Manual Soldering

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander; Greenwell, Chris; Felt, Frederick

    2008-01-01

    This viewgraph presentation reviews the solder reflow failures in electronic components that occur during manual soldering. It discusses the specifics of manual-soldering-induced failures in plastic devices with internal solder joints. The failure analysis turned up that molten solder had squeezed up to the die surface along the die molding compound interface, and the dice were not protected with glassivation allowing solder to short gate and source to the drain contact. The failure analysis concluded that the parts failed due to overheating during manual soldering.

  17. Dymalloy: A composite substrate for high power density electronic components

    SciTech Connect

    Kerns, J.A.; Colella, N.J.; Makowiecki, D.; Davidson, H.L.

    1995-06-29

    High power density electronic components such as fast microprocessors and power semiconductors must operate below the maximum rated device junction temperature to ensure reliability. function temperatures are determined by the amount of heat generated and the thermal resistance from junction to the ambient thermal environment. Two of the Largest contributions to this thermal resistance are the die attach interface and the package base. A decrease in these resistances can allow increased component packing density in MCMs, reduction of heat sink volume in tightly packed systems, enable the use of higher performance circuit components, and improve reliability. The substrate for high power density devices is the primary thermal link between the junctions and the heat sink. Present high power multichip modules and single chip packages use substrate materials such as silicon nitride or copper tungsten that have thermal conductivity in the range of 200 W/mK. We have developed Dymalloy, a copper-diamond composite, that has a thermal conductivity of 420 W/mK and an adjustable coefficient of thermal expansion, nominally 5.5 ppm/C at 25 C, compatible with silicon and gallium arsenide. Because of the matched coefficient of thermal expansion it is possible to use low thermal resistance hard die attach methods. Dymalloy is a composite material made using micron size Type I diamond powder that has a published thermal conductivity of 600 to 1000 W/mK in a metal matrix that has a thermal conductivity of 350 W/mK. The region of chemical bonding between the matrix material and diamond is limited to approximately 1000 A to maintain a high effective thermal conductivity for the composite. The material may be fabricated in near net shapes. Besides having exceptional thermal properties, the mechanical properties of this material also make it an attractive candidate as an electronic component substrate material.

  18. Two-component magnetic structure of iron oxide nanoparticles mineralized in Listeria innocua protein cages

    NASA Astrophysics Data System (ADS)

    Usselman, Robert J.; Klem, Michael T.; Russek, Stephen E.; Young, Mark; Douglas, Trevor; Goldfarb, Ron B.

    2010-06-01

    Magnetometry was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within Listeria innocua protein cage. The electron magnetic resonance spectrum shows the presence of at least two magnetization components. The magnetization curves are explained by a sum of two Langevin functions in which each filled protein cage contains both a large magnetic iron oxide core plus an amorphous surface consisting of small noncoupled iron oxide spin clusters. This model qualitatively explains the observed decrease in the temperature dependent saturation moment and removes an unrealistic temperature dependent increase in the particle moment often observed in nanoparticle magnetization measurements.

  19. Nanoanalytical Electron Microscopy Reveals a Sequential Mineralization Process Involving Carbonate-Containing Amorphous Precursors.

    PubMed

    Nitiputri, Kharissa; Ramasse, Quentin M; Autefage, Hélène; McGilvery, Catriona M; Boonrungsiman, Suwimon; Evans, Nicholas D; Stevens, Molly M; Porter, Alexandra E

    2016-07-26

    A direct observation and an in-depth characterization of the steps by which bone mineral nucleates and grows in the extracellular matrix during the earliest stages of maturation, using relevant biomineralization models as they grow into mature bone mineral, is an important research goal. To better understand the process of bone mineralization in the extracellular matrix, we used nanoanalytical electron microscopy techniques to examine an in vitro model of bone formation. This study demonstrates the presence of three dominant CaP structures in the mineralizing osteoblast cultures: <80 nm dense granules with a low calcium to phosphate ratio (Ca/P) and crystalline domains; calcium phosphate needles emanating from a focus: "needle-like globules" (100-300 nm in diameter) and mature mineral, both with statistically higher Ca/P compared to that of the dense granules. Many of the submicron granules and globules were interspersed around fibrillar structures containing nitrogen, which are most likely the signature of the organic phase. With high spatial resolution electron energy loss spectroscopy (EELS) mapping, spatially resolved maps were acquired showing the distribution of carbonate within each mineral structure. The carbonate was located in the middle of the granules, which suggested the nucleation of the younger mineral starts with a carbonate-containing precursor and that this precursor may act as seed for growth into larger, submicron-sized, needle-like globules of hydroxyapatite with a different stoichiometry. Application of analytical electron microscopy has important implications in deciphering both how normal bone forms and in understanding pathological mineralization. PMID:27383526

  20. The biological factors influence on the conversion of mineral components of Extremely Arid Desert Soils (Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Kutovaya, Olga; Vasilenko, Elena; Lebedeva, Marina; Tkhakakhova, Azida

    2013-04-01

    Extremely arid soils of stony deserts (hamadas) along the southern periphery of the Ili Depression are considered to be analogous to extremely arid soils of Mongolia, also named as "ultra-arid primitive gray-brown soils." In general, the morphology of extremely arid soils of hamadas in the Ili Depression is similar to that of the soils of stony deserts in other parts of the world, including the Gobi, Atacama, and Tarim deserts. The diagnostics of the active communities of microorganisms were performed according to the method of Rybalkina-Kononenko. The exact identification of the living forms of microorganisms to the species level is not always possible with the use of this method. However, it allows us to study the physiological role of the microorganisms and their ecological functions, including the relationships with the soil matrix and other organisms. In particular, it is possible to estimate the contribution of the microorganisms to the transformation of mineral soil components. The obtained materials allow us to conclude that the extremely arid desert soils are characterized by the very high biological activity during short periods of the increased soil moistening after rare and strong rains. The diversity of living forms is very considerable; both prokaryotes (cyanobacteria, actinomycetes, and iron bacteria) and protists (green algae, diatoms, and dinoflagellates) are developed in the soil. Thus, during a short period after the rains, these microorganisms pass from the stage of anabiosis to the stage of active growth and reproduction. Then, upon drying of the soil, the biotic activity of the soil slows down and, finally, terminates. The organisms remain in the state of anabiosis until the next rain. During the period of active growth, the microorganisms compose a specific consortium of different species and exert a profound impact on the soil properties. They participate in the transformation of the soil minerals with the formation of amorphous substances

  1. Electron transport at the microbe-mineral interface: a synthesis of current research challenges.

    PubMed

    Richardson, David J; Fredrickson, James K; Zachara, John M

    2012-12-01

    Many bacterial and archaeal species can couple growth to the respiratory reduction or oxidation of insoluble mineral oxides of transition metals. These solid substrates are abundant electron sinks and sources for life on Earth, but, since they are insoluble in water, they cannot enter the bacterial cells. So, to exploit these electron sinks and sources, specific respiratory electron-transfer mechanisms must overcome the physical limitations associated with electron transfer between a microbe and extracellular metal oxides. Recent microbiological, geochemical, biochemical, spectroscopic and structural work is beginning to shed light on the molecular mechanism and impacts of electron transfer at the microbe-mineral interface from a nanometre to kilometre scale. The research field is attracting attention in applied quarters from those with interests in nanowires, microbial fuel cells, bioremediation and microbial cell factories. PMID:23176448

  2. Electron Transport at the Microbe–Mineral Interface: A Synthesis of Current Research Challenges

    SciTech Connect

    Richardson, David; Fredrickson, Jim K.; Zachara, John M.

    2012-12-01

    Many bacterial and archaeal species can couple growth to the respiratory reduction or oxidation of insoluble mineral oxides of transition metals. These solid substrates are abundant electron sinks and sources for life on Earth, but, since they are insoluble in water, they cannot enter the bacterial cells. So, to exploit these electron sinks and sources, specific respiratory electron-transfer mechanisms must overcome the physical limitations associated with electron transfer between a microbe and extracellular metal oxides. Recent microbiological, geochemical, biochemical, spectroscopic and structural work is beginning to shed light on the molecular mechanism and impacts of electron transfer at themicrobe–mineral interface from a nanometre to kilometre scale. The research field is attracting attention in applied quarters from those with interests in nanowires, microbial fuel cells, bioremediation and microbial cell factories.

  3. Patterns of spatial distribution of mineral components of the complex of gray forest soils Vladimir opolye

    NASA Astrophysics Data System (ADS)

    Karpova, Dina; Chizhikova, Natalya; Starokozhko, Natalya; Hadyushina, Viktorya; Korotaeva, Valentina

    2014-05-01

    The aim of the work is the analysis of spatial distribution of soil fundamental characteristics - fine fractions content (less than 1, 1-5, 5-10 and more than 10 mkm) and their mineralogical composition. The experiments were carried out on the experimental field in Suzdal region in a trench (22 m length and 2 m depth) laid in upland, well-drained conditions. Soil samples from 5 different soil profiles were collected. Fractions were obtained by Gorbunov method. Mineralogical analysis were carried out by universal X-ray diffractometer (Carl Zeiss Jena, Germany). The dominant fraction is a coarse silt fraction, the sand fraction content is negligible. The soil is characterized by medium-textured loam composition from the above and a sandy loam composition in the bottom. Textural differentiation occured due to the distribution of clay fraction. The content of this fraction in plough horizons varies depending on addition of part of other horizons during plowing. The plogh-layer of the residual-carbonate agrogrey soil is characterized by higher (20-23 %) amount of fraction less than 1 mkm, in comparison with plough horizon above the second humus horizon (SHH ), where the amount of silt is 15-16 %. The main components of the fraction derived from the rock are complex mixed- lattice formations dominated by mica - smectite with a high proportion of smectite packages, mica - smectites with low content of smectite packages were in subordinate quantity. The next component is hydromica - a mixture of dioctahedral and trioctahedral varieties. Smectite phase and hydromica add up to 85-90 % of the silt component. The amount of kaolinite and chlorite usually range in 7-13 %. Kaolinite is generally imperfect, chlorite is magnesia-ferric. The presence of fine quartz and feldspars (less amount) is revealed. During the soil formation the redistribution of the above minerals whose behavior is caused by the type of soil is occurring. Agrogrey heavy-textured soils are characterized by

  4. Nanostructured component fabrication by electron beam-physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Singh, Jogender; Wolfe, Douglas E.

    2005-08-01

    Fabrication of cost-effective, nano-grained net-shaped components has brought considerable interest to Department of Defense, National Aeronautics and Space Administration, and Department of Energy. The objective of this paper is to demonstrate the versatility of electron beam-physical vapor deposition (EB-PVD) technology in engineering new nanostructured materials with controlled microstructure and microchemistry in the form of coatings and net-shaped components for many applications including the space, turbine, optical, biomedical, and auto industries. Coatings are often applied on components to extent their performance and life under severe environmental conditions including thermal, corrosion, wear, and oxidation. Performance and properties of the coatings depend upon their composition, microstructure, and deposition condition. Simultaneous co-evaporation of multiple ingots of different compositions in the high energy EB-PVD chamber has brought considerable interest in the architecture of functional graded coatings, nano-laminated coatings, and design of new structural materials that could not be produced economically by conventional methods. In addition, high evaporation and condensate rates allowed fabricating precision net-shaped components with nanograined microstructure for various applications. Using EB-PVD, nano-grained rhenium (Re) coatings and net-shaped components with tailored microstructure and properties were fabricated in the form of tubes, plates, and Re-coated spherical graphite cores. This paper will also present the results of various metallic and ceramic coatings including chromium, titanium carbide (TiC), titanium diboride (TiB2), hafnium nitride (HfN), titanium-boron-carbonitride (TiBCN), and partially yttria stabilized zirconia (YSZ) TBC coatings deposited by EB-PVD for various applications.

  5. Ice nucleation by soil dusts: relative importance of mineral dust and biogenic components

    NASA Astrophysics Data System (ADS)

    O'Sullivan, D.; Murray, B. J.; Malkin, T. L.; Whale, T.; Umo, N. S.; Atkinson, J. D.; Price, H. C.; Baustian, K. J.; Browse, J.; Webb, M. E.

    2013-08-01

    Agricultural dust emissions have been estimated to contribute around 20% to the global dust burden. In contrast to dusts from arid source regions, the ice-nucleating abilities of which have been relatively well studied, soil dusts from fertile sources often contain a substantial fraction of organic matter. Using an experimental methodology which is sensitive to a wide range of ice nucleation efficiencies, we have characterised the immersion mode ice-nucleating activities of dusts extracted from fertile soils collected at four locations around England. By controlling droplet sizes, which ranged in volume from 10-12 to 10-6 L, we have been able to determine the ice nucleation behaviour of soil dust particles at temperatures ranging from 267 K (-6 °C) down to the homogeneous limit of freezing at about 237 K (-36 °C). At temperatures above 258 K (-15 °C) we find that the ice-nucleating activity of soil dusts is diminished by heat treatment or digestion with hydrogen peroxide, suggesting that the ice nuclei stem from biogenic components in the soil. However, below 258 K, we find that the ice active site densities tend towards those expected from the mineral components in the soils, suggesting that the inorganic fraction of soil dusts, in particular the K-feldspar fraction, becomes increasingly important in the initiation of the ice phase at lower temperatures. We conclude that although only a relatively minor contributor to the global atmospheric dust burden, the enhanced IN activities of dusts generated from agricultural activities may play an important role in cloud glaciation, particularly at temperatures above 258 K.

  6. Ice Nucleation by Soil Dusts: Relative Importance of Mineral Dust and Biogenic Components

    NASA Astrophysics Data System (ADS)

    Murray, B. J.; O'Sullivan, D.; Malkin, T. L.; Whale, T.; Umo, N.; Atkinson, J.; Price, H.; Baustian, K. J.; Browse, J.; Webb, M. E.

    2013-12-01

    Agricultural dust emissions have been estimated to contribute around 20 % to the global dust burden. In contrast to dusts from arid source regions, the ice-nucleating abilities of which have been relatively well studied, soil dusts from fertile sources often contain a substantial fraction of organic matter. Using an experimental methodology which is sensitive to a wide range of ice nucleation efficiencies, we have characterised the immersion mode ice-nucleating activities of dusts extracted from fertile soils collected at four locations around England. By controlling droplet sizes, which ranged in volume from pico- to micro- Liter , we have been able to determine the ice nucleation behaviour of soil dust particles at temperatures ranging from 267 K (-6 °C) down to the homogeneous limit of freezing at about 237 K (-36 °C). At temperatures above 258 K (-15 °C) we find that the ice-nucleating activity of soil dusts is diminished by heat treatment or digestion with hydrogen peroxide, suggesting that the ice nuclei stem from biogenic components in the soil. However, below 258 K, we find that the ice active site densities tend towards those expected from the mineral components in the soils, suggesting that the inorganic fraction of soil dusts, in particular the K-feldspar fraction, becomes increasingly important in the initiation of the ice phase at lower temperatures. We conclude that although only a relatively minor contributor to the global atmospheric dust burden, the enhanced IN activities of dusts generated from agricultural activities may play an important role in cloud glaciation, particularly at temperatures above 258 K.

  7. Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components

    NASA Astrophysics Data System (ADS)

    O'Sullivan, D.; Murray, B. J.; Malkin, T. L.; Whale, T. F.; Umo, N. S.; Atkinson, J. D.; Price, H. C.; Baustian, K. J.; Browse, J.; Webb, M. E.

    2014-02-01

    Agricultural dust emissions have been estimated to contribute around 20% to the global dust burden. In contrast to dusts from arid source regions, the ice-nucleating abilities of which have been relatively well studied, soil dusts from fertile sources often contain a substantial fraction of organic matter. Using an experimental methodology which is sensitive to a wide range of ice nucleation efficiencies, we have characterised the immersion mode ice-nucleating activities of dusts (d < 11 µm) extracted from fertile soils collected at four locations around England. By controlling droplet sizes, which ranged in volume from 10-12 to 10-6 L (concentration = 0.02 to 0.1 st% dust), we have been able to determine the ice nucleation behaviour of soil dust particles at temperatures ranging from 267 K (-6° C) down to the homogeneous limit of freezing at about 237 K (-36° C). At temperatures above 258 K (-15° C) we find that the ice-nucleating activity of soil dusts is diminished by heat treatment or digestion with hydrogen peroxide, suggesting that a major fraction of the ice nuclei stems from biogenic components in the soil. However, below 258 K, we find that the ice active site densities tend towards those expected from the mineral components in the soils, suggesting that the inorganic fraction of soil dusts, in particular the K-feldspar fraction, becomes increasingly important in the initiation of the ice phase at lower temperatures. We conclude that dusts from agricultural activities could contribute significantly to atmospheric IN concentrations, if such dusts exhibit similar activities to those observed in the current laboratory study.

  8. Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept document was developed as a first step in developing the Component-Level Electronic-Assembly Repair (CLEAR) System Architecture (NASA/TM-2011-216956). The CLEAR operational concept defines how the system will be used by the Constellation Program and what needs it meets. The document creates scenarios for major elements of the CLEAR architecture. These scenarios are generic enough to apply to near-Earth, Moon, and Mars missions. The CLEAR operational concept involves basic assumptions about the overall program architecture and interactions with the CLEAR system architecture. The assumptions include spacecraft and operational constraints for near-Earth orbit, Moon, and Mars missions. This document addresses an incremental development strategy where capabilities evolve over time, but it is structured to prevent obsolescence. The approach minimizes flight hardware by exploiting Internet-like telecommunications that enables CLEAR capabilities to remain on Earth and to be uplinked as needed. To minimize crew time and operational cost, CLEAR exploits offline development and validation to support online teleoperations. Operational concept scenarios are developed for diagnostics, repair, and functional test operations. Many of the supporting functions defined in these operational scenarios are further defined as technologies in NASA/TM-2011-216956.

  9. Functional models of power electronic components for system studies

    NASA Technical Reports Server (NTRS)

    Tam, Kwa-Sur; Yang, Lifeng; Dravid, Narayan

    1991-01-01

    A novel approach to model power electronic circuits has been developed to facilitate simulation studies of system-level issues. The underlying concept for this approach is to develop an equivalent circuit, the functional model, that performs the same functions as the actual circuit but whose operation can be simulated by using larger time step size and the reduction in model complexity, the computation time required by a functional model is significantly shorter than that required by alternative approaches. The authors present this novel modeling approach and discuss the functional models of two major power electronic components, the DC/DC converter unit and the load converter, that are being considered by NASA for use in the Space Station Freedom electric power system. The validity of these models is established by comparing the simulation results with available experimental data and other simulation results obtained by using a more established modeling approach. The usefulness of this approach is demonstrated by incorporating these models into a power system model and simulating the system responses and interactions between components under various conditions.

  10. Component-Level Electronic-Assembly Repair (CLEAR) System Architecture

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.

    2011-01-01

    This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.

  11. EPR and electronic absorption spectra of copper bearing turquoise mineral

    NASA Astrophysics Data System (ADS)

    Sharma, K. B. N.; Moorthy, L. R.; Reddy, B. J.; Vedanand, S.

    1988-10-01

    Electron paramagnetic resonance and optical absorption spectra of turquoise have been studied both at room and low temperatures. It is concluded from the EPR spectra that the ground state of Cu 2+ ion in turquoise is 2A g(d x2- y2) and it is sited in an elongated rhombic octahedron (D 2π). The observed absorption bands at 14970 and 18354 cm -1 are assigned at 2A g→ 2B 1 g( dx2- y2→ xy) and 2A g→[ su2B 3g(d x 2-y 2→d yz) respectively assuming D 2π symmetry which are inconsistent with EPR studies. The three bands in the NIR region are attributed to combinations of fundamental modes of the H 2O molecule present in the sample.

  12. Atmospheric ice nucleation by fertile soil dusts particles: Relative importance of mineral and biological components

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Daniel; Murray, B. J.; Malkin, T. L.; Webb, M. E.; Whale, T. F.; Atkinson, J. D.; Baustian, K. J.

    2013-05-01

    Dusts emitted from agricultural soils may represent a significant source of atmospheric particulates at mid-latitudes. Such dusts, which can be aerosolised by anthropogenic agricultural activities, have previously been estimated to be present in the atmosphere at sufficient number densities that they could potentially compete with other known ice nuclei (IN). In contrast to soils from arid regions, such as the Sahara, fertile soils contain a larger fraction of biological material, which can lead to an enhancement in the ice nucleating ability of their associated dusts. However, considerable uncertainties remain regarding the relative efficacy of soil dust particles from fertile soils as IN. Using an experimental methodology designed to increase sensitivity to a wide range of ice nucleation efficiencies, we have characterized the immersion mode ice nucleating activities of sub 11 μm particles extracted from surface soils collected in four locations around England. By using a variety of droplet sizes, from pico-to micro-litre, we have been able to characterize the ice active site densities in soils (estimated using a time-independent framework) at temperatures ranging from -5°C down to the homogeneous limit of freezing at ˜ -36°C. At temperatures below -15°C, we find that the ice active site densities tend towards those expected from the mineral components in the soils, suggesting that the inorganic fraction of soil dusts becomes increasingly important in the initiation of the ice phase at large supercoolings. Conversely, above -15°C we find that the ice nucleating activity of the soils dusts was larger than expected from the mineral composition of the soils. The sites responsible for this high temperature ice nucleating activity were sensitive to heat treatment and digestion with hydrogen peroxide, suggesting that they are biological in origin. We conclude that although only being a relatively minor contributor to the global atmospheric dust burden, the

  13. The role of exogenous electron donors for accelerating 2,4,6-trichlorophenol biotransformation and mineralization.

    PubMed

    Yan, Ning; Li, Rongjie; Xu, Hua; Li, Ling; Yang, Lihui; Zhang, Yongming; Liu, Rui; Rittmann, Bruce E

    2016-06-01

    2,4,6-Trichlorophenol (TCP) is a biologically recalcitrant compound, but its biodegradation via reductive dechlorination can be accelerated by adding an exogenous electron donor. In this work, acetate and formate were evaluated for their ability to accelerate TCP reductive dechlorination, as well to accelerate mono-oxygenation of TCP's reduction product, phenol. Acetate and formate accelerated TCP reductive dechlorination, and the impact was proportional to the number of electron equivalents released by oxidation of the donor: 8 e(-) equivalents per mol for acetate, compared to 2 e(-) eq per mol for formate. The acceleration phenomenon was similar for phenol mono-oxygenation, and this increased the rate of TCP mineralization. Compared to endogenous electron equivalents generated by phenol mineralization, the impact of exogenous electron donor was stronger on a per-equivalent basis. PMID:27084768

  14. Arbitrary amplitude fast electron-acoustic solitons in three-electron component space plasmas

    NASA Astrophysics Data System (ADS)

    Mbuli, L. N.; Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2016-06-01

    We examine the characteristics of fast electron-acoustic solitons in a four-component unmagnetised plasma model consisting of cool, warm, and hot electrons, and cool ions. We retain the inertia and pressure for all the plasma species by assuming adiabatic fluid behaviour for all the species. By using the Sagdeev pseudo-potential technique, the allowable Mach number ranges for fast electron-acoustic solitary waves are explored and discussed. It is found that the cool and warm electron number densities determine the polarity switch of the fast electron-acoustic solitons which are limited by either the occurrence of fast electron-acoustic double layers or warm and hot electron number density becoming unreal. For the first time in the study of solitons, we report on the coexistence of fast electron-acoustic solitons, in addition to the regular fast electron-acoustic solitons and double layers in our multi-species plasma model. Our results are applied to the generation of broadband electrostatic noise in the dayside auroral region.

  15. High-temperature electronic components and circuit designs

    SciTech Connect

    Chang, H.T.

    1982-01-01

    Downhole logging instruments for geothermal application must have electronic circuits capable of operating from room temperature to 250/sup 0/C. Previous research was centered on low voltage/low current hybrid microcircuits. However, a nondestructive evaluation (NDE) instrument for geothermal wells requires a circuit that can be operated at high voltage and high current in order to provide high-power output. In designing such a circuit, Sandia Laboratories is developing a high-power, high-speed, cold-cathode switching tube to be used as a substitute for SCRs or thyratrons. The possibility of using low-leakage JFETs beyond their rated temperature in a circuit design will be discussed. Commercial high-temperature components will be reviewed.

  16. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-04-05

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  17. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-08-09

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  18. Emergency Dosimetry Using Ceramic Components in Personal Electronic Devices

    NASA Astrophysics Data System (ADS)

    Kouroukla, E. C.; Bailiff, I. K.; Terry, I.

    2014-02-01

    The rapid assessment of radiation dose to members of the public exposed to significant levels of ionizing radiation during a radiological incident presents a significant difficulty in the absence of planned radiation monitoring. However, within most personal electronic devices components such as resistors with alumina substrates can be found that have potentially suitable properties as solid state dosimeters using luminescence measurement techniques. The suitability of several types of ceramic-based components (e.g., resonators, inductors and resistors) has been previously examined using optically stimulated luminescence (OSL) and thermoluminescence (TL) techniques to establish their basic characteristics for the retrospective determination of absorbed dose. In this paper, we present results obtained with aluminum oxide surface mount resistors extracted from mobile phones that further extend this work. Very encouraging results have been obtained related to the measurement of luminescence sensitivity, dose response, reusability, limit of detection, signal reproducibility and known-dose recovery. However, the alumina exhibits a rapid loss of the latent luminescence signal with time following irradiation attributed to athermal (or anomalous) fading. The issues related to obtaining a reliable correction protocol for this loss and the detailed examinations required of the fading behavior are discussed.

  19. Effects of mineral dust on the semivolatile inorganic aerosol components in a polluted Megacity

    NASA Astrophysics Data System (ADS)

    Karydis, V. A.; Tsimpidi, A. P.; Fountoukis, C.; Nenes, A.; Zavala, M.; Lei, W.; Molina, L. T.; Pandis, S. N.

    2009-04-01

    Aerosols play a significant role in the atmosphere having adverse impacts on human health and directly affecting air quality, visibility and climate change. One of the most challenging tasks for models is the prediction of the partitioning of the semivolatile inorganic aerosol components (ammonia, nitric acid, hydrochloric acid, etc) between the gas and particulate phases. Moreover, the effects of mineral aerosols in the atmosphere remain largely uncertain. As a result, most current models have serious difficulties in reproducing the observed particulate nitrate and chloride concentrations. The improved aerosol thermodynamic model ISORROPIA II (Fountoukis and Nenes, 2007) simulating explicitly the chemistry of Ca, Mg, and K salts has been linked to the regional chemical transport model PMCAMx (Gaydos et al., 2007). PMCAMx also includes the CMU inorganic aerosol growth module (Gaydos et al., 2003; Koo et al., 2003a) and the VSRM aqueous-phase chemistry module (Fahey and Pandis, 2001). The hybrid approach (Koo et al., 2003b) for modeling aerosol dynamics is applied in order to accurately simulate the inorganic components in the coarse mode. This approach assumes that the smallest particles are in equilibrium, while the condensation/evaporation equation is solved for the larger ones. PMCAMx is applied to the Mexico City Metropolitan Area (MCMA). The emission inventory has been improved and now includes more accurate dust and NaCl emissions. The April 2003 (MCMA Campaign) and the March 2006 (MILAGRO campaign) datasets are used to evaluate the inorganic aerosol module of PMCAMx in order to test our understanding of inorganic aerosol. The results from the new modeling framework are also compared with the results from the previous version of PMCAMx in order to investigate the influence of each of the added features to the formation of the semivolatile inorganic components. References Fountoukis, C. and Nenes, A., (2007). ISORROPIA II: a computationally efficient

  20. Electron Microprobe Analyses of Lithic Fragments and Their Minerals from Luna 20 Fines

    NASA Technical Reports Server (NTRS)

    Conrad, G. H.; Hlava, P. F.; Green, J. A.; Moore, R. B.; Moreland, G.; Dowty, E.; Prinz, M.; Keil, K.; Nehru, C. E.; Bunch, T. E.

    1973-01-01

    The bulk analyses (determined with the broad beam electron microprobe technique) of lithic fragments are given in weight percentages and are arranged according to the rock classification. Within each rock group the analyses are arranged in order of increasing FeO content. Thin section and lithic fragment numbers are given at the top of each column of analysis and correspond to the numbers recorded on photo mosaics on file in the Institute of Meteoritics. CIPW molecular norms are given for each analysis. Electron microprobe mineral analyses (given in oxide weight percentages), structural formulae and molecular end member values are presented for plagioclase, olivine, pyroxene and K-feldspar. The minerals are selected mostly from lithic fragments that were also analyzed for bulk composition. Within each mineral group the analyses are presented according to the section number and lithic fragment number. Within each lithic fragment the mineral analyses are arranged as follows: Plagioclase in order of increasing CaO; olivine and pyroexene in order of increasing FeO; and K-feldspar in order of increasing K2O. The mineral grains are identified at the top of each column of analysis by grain number and lithic fragment number.

  1. 77 FR 32996 - Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Microsoft Corporation (``Microsoft'') of Redmond, Washington. 76 FR 22918. The complaint, as amended... COMMISSION Certain Handheld Electronic Computing Devices, Related Software, and Components Thereof... importation of certain handheld electronic computing devices, related software, and components thereof...

  2. Electron Transfer at the Microbe-Mineral Interface: A Grand Challenge in Biogeochemistry

    SciTech Connect

    Fredrickson, Jim K.; Zachara, John M.

    2008-06-01

    The interplay between microorganisms and minerals is a complex and dynamic process that has sculpted the geosphere for nearly the entire history of the Earth. The work of Dr. Terry Beveridge and colleagues provided some of the first insights into metal-microbe and mineral-microbe interactions and established a foundation for subsequent detailed investigations of interactions between microorganisms and minerals. Beveridge also envisioned that interdisciplinary approaches and teams would be required to explain how individual microbial cells interact with their immediate environment at nano- or sub-molecular scales and that through such approaches and using emerging technologies that the details of such interactions would be revealed at the molecular level. With this vision as incentive and inspiration, a multidisciplinary, collaborative team-based investigation was initiated to probe the process of electron transfer at the microbe-mineral interface. This grand challenge to this team was to address the hypothesis that multi-heme c-type cytochromes of dissimilatory metal reducing bacteria localized to the cell exterior function as the terminal reductases in electron transfer to Fe(III) and Mn(IV) oxides. This question has been the subject of extensive investigation for years yet the answer has remained elusive. The team involves an integrated group of experimental and computational capabilities at DOE’s Environmental Molecular Sciences Laboratory, a national scientific user facility, as the collaborative focal point. The approach involves a combination of in vitro and in vivo biologic and biogeochemical experiments and computational analyses that, when integrated, provide a conceptual model of the electron transfer process. The resulting conceptual model will be evaluated by integrating and comparing various experimental, i.e., in vitro and in vivo ET kinetics, and theoretical results. Collectively the grand challenge will provide a detailed view of how organisms

  3. Basic studies on the role of components of Bacillus megaterium as flotation biocollectors in sulphide mineral separation.

    PubMed

    Vasanthakumar, Balasubramanian; Ravishankar, Honnavar; Subramanian, Sankaran

    2014-03-01

    Studies were carried out to assess the utility of the cellular and extracellular constituents of Bacillus megaterium for the flotation of sphalerite and galena minerals. Based on the flotation results on the individual minerals, it was observed that sphalerite was preferentially floated compared to galena. A maximum selectivity index (SI) value of 11.7 was achieved in the presence of the soluble fraction of the thermolysed cells, which was higher than that obtained with the intact cells (SI of 6.5) and the insoluble fraction of the thermolysed cells (SI of 9.6). The results of the various enzymatic treatment tests revealed that extracellular DNA played a vital role in the selective flotation of sphalerite. A noteworthy finding was that the single-stranded DNA (ssDNA) had a higher biocollector capacity vis-à-vis the double-stranded DNA (dsDNA), leading to better flotation efficiency. About 95 % recovery of sphalerite could be achieved from the mineral mixture by the combined addition of the ssDNA with the non-DNA components of the bacterial cells, resulting in a maximum SI of 19.1. Calcium and phosphate components of the nutrient media were found to be essential for better selectivity of separation of sphalerite. The mechanisms of microbe-mineral interaction are discussed. PMID:24085394

  4. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    NASA Astrophysics Data System (ADS)

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice C.; Marshall, Matthew J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2013-04-01

    The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 103 times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 103 times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration.

  5. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    PubMed Central

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice C.; Marshall, Matthew J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2013-01-01

    The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 103 times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 103 times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration. PMID:23538304

  6. 78 FR 38361 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... COMMISSION Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof... States after importation of certain portable electronic ] communications devices, including mobile phones... importation of certain portable electronic communications devices, including mobile phones and...

  7. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    SciTech Connect

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice; Marshall, Matthew J.; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David; Clarke, Thomas A.

    2013-04-16

    The mineral respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes brought together inside a transmembrane porin to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system that contains methyl viologen as an internalised electron carrier has been used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally-located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, direct electron transfer from the interior through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The observed rates of conduction through the protein complex were 2 to 3 orders of magnitude higher than that observed in whole cells, demonstrating that direct electron exchange between MtrCAB and Fe(III) oxides is efficient enough to support in-vivo, anaerobic, solid phase iron respiration.

  8. In-situ high-pressure transmission electron microscopy of minerals

    NASA Astrophysics Data System (ADS)

    Wu, J.; Buseck, P. R.

    2010-12-01

    We show that high-resolution studies are possible at high pressure and temperature within a transmission electron microscope (TEM). To achieve this goal, which avoids the crystallographic and chemical changes that can occur upon quenching, we use the unusual structural properties of carbon nanotubes (CNTs) and fullerenes. These carbon materials, which are used as sample containers, contract under radiation by energetic electrons at elevated temperatures in a TEM. The result is compression of materials that have been encapsulated within these containers. We estimated pressures greater than 20 GPa from the Fourier transforms of high-resolution images of oxide particles such as ZnO and Sm2O3 under compression within CNTs. Using an arc-discharge technique, we recently also loaded olivine into fullerenes. Such ability to compress and then examine minerals in situ at high resolution opens up new possibilities for the high-pressure research of minerals.

  9. Recovery of precious metals from military electronic components

    SciTech Connect

    Gundiler, I.H.; Lutz, J.D.; Neiswander, P.G.

    1996-09-01

    Sandia National Laboratories developed a process to identify and remove the hazardous sub-components from dismantled weapons components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminium and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non- hazardous waste.

  10. Analysis of the mineral acid-base components of acid-neutralizing capacity in Adirondack Lakes

    NASA Astrophysics Data System (ADS)

    Munson, R. K.; Gherini, S. A.

    1993-04-01

    Mineral acids and bases influence pH largely through their effects on acid-neutralizing capacity (ANC). This influence becomes particularly significant as ANC approaches zero. Analysis of data collected by the Adirondack Lakes Survey Corporation (ALSC) from 1469 lakes throughout the Adirondack region indicates that variations in ANC in these lakes correlate well with base cation concentrations (CB), but not with the sum of mineral acid anion concentrations (CA). This is because (CA) is relatively constant across the Adirondacks, whereas CB varies widely. Processes that supply base cations to solution are ion-specific. Sodium and silica concentrations are well correlated, indicating a common source, mineral weathering. Calcium and magnesium also covary but do not correlate well with silica. This indicates that ion exchange is a significant source of these cations in the absence of carbonate minerals. Iron and manganese concentrations are elevated in the lower waters of some lakes due to reducing conditions. This leads to an ephemeral increase in CB and ANC. When the lakes mix and oxic conditions are restored, these ions largely precipitate from solution. Sulfate is the dominant mineral acid anion in ALSC lakes. Sulfate concentrations are lowest in seepage lakes, commonly about 40 μeq/L less than in drainage lakes. This is due in part to the longer hydraulic detention time in seepage lakes, which allows slow sulfate reduction reactions more time to decrease lake sulfate concentration. Nitrate typically influences ANC during events such as snowmelt. Chloride concentrations are generally low, except in lakes impacted by road salt.

  11. Electron transfer at the microbe-mineral interface: a grand challenge in biogeochemistry.

    PubMed

    Fredrickson, J K; Zachara, J M

    2008-06-01

    The interplay between microorganisms and minerals is a complex and dynamic process that has sculpted the geosphere for nearly the entire history of the Earth. The work of Dr Terry Beveridge and colleagues provided some of the first insights into metal-microbe and mineral-microbe interactions and established a foundation for subsequent detailed investigations of interactions between microorganisms and minerals. Beveridge also envisioned that interdisciplinary approaches and teams would be required to explain how individual microbial cells interact with their immediate environment at nano- or microscopic scales and that through such approaches and using emerging technologies that the details of such interactions would be revealed at the molecular level. With this vision as incentive and inspiration, a multidisciplinary, collaborative team-based investigation was initiated to probe the process of electron transfer (ET) at the microbe-mineral interface. The grand challenge to this team was to address the hypothesis that multiheme c-type cytochromes of dissimilatory metal-reducing bacteria localized to the cell exterior function as the terminal reductases in ET to Fe(III) and Mn(IV) oxides. This question has been the subject of extensive investigation for years, yet the answer has remained elusive. The team involves an integrated group of experimental and computational capabilities at US Department of Energy's Environmental Molecular Sciences Laboratory, a national scientific user facility, as the collaborative focal point. The approach involves a combination of in vitro and in vivo biologic and biogeochemical experiments and computational analyses that, when integrated, provide a conceptual model of the ET process. The resulting conceptual model will be evaluated by integrating and comparing various experimental, i.e. in vitro and in vivo ET kinetics, and theoretical results. Collectively, the grand challenge will provide a detailed view of how organisms engage with

  12. Seasonal contribution of mineral dust and other major components to particulate matter at two remote sites in Central Asia

    NASA Astrophysics Data System (ADS)

    Miller-Schulze, Justin P.; Shafer, Martin; Schauer, James J.; Heo, Jongbae; Solomon, Paul A.; Lantz, Jeffrey; Artamonova, Maria; Chen, Boris; Imashev, Sanjar; Sverdlik, Leonid; Carmichael, Greg; DeMinter, Jeff

    2015-10-01

    Dust storms are significant contributors to ambient levels of particulate matter (PM) in many areas of the world. Central Asia, an area that is relatively understudied in this regard, is anticipated to be affected by dust storms due to its proximity to several major deserts that are in and generally surround Central Asia (e.g., the Aral Sea region, the Taklimakan desert in Western China). To investigate the relative importance of mineral dust (dust specifically composed of soil related minerals and oxides) in Central Asia, PM10 and PM2.5, and by difference, coarse particles (particles with diameters between 2.5 and 10 μm) were measured at two sites, Bishkek and Lidar Station Teplokluchenka (Lidar), in the Kyrgyz Republic. Samples were collected every other day from July 2008 to July 2009. Daily samples were analyzed for mass and organic and elemental carbon. Samples were also composited on a bi-weekly basis and analyzed for elemental constituents and ionic components. In addition, samples collected on days with relatively high and low PM concentrations were analyzed before, and separately, from the biweekly composites to investigate the chemical differences between the episodic events. Data from the episodic samples were averaged into the composited averages. Using the elemental component data, several observational models were examined to estimate the contribution of mineral dust to ambient PM levels. A mass balance was also conducted. Results indicate that at both sites, mineral dust (as approximated by the "dust oxide" model) and organic matter (OM) were the dominant contributors to PM10 and PM2.5. Mineral dust was a more significant contributor to the coarse PM (PM10-2.5) during high event samples at both sites, although the relative contribution is greater at the Lidar site (average ± standard deviation = 42 ± 29%) as compared with the Bishkek site (26 ± 16%). Principal Components Analysis (PCA) was performed using data from both sites, and PCA indicated

  13. 75 FR 38118 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... COMMISSION In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof, and... importation, and the sale within the United States after importation of certain electronic devices with image... certain electronic devices with image processing systems, components thereof, and associated software...

  14. Abundance and distribution of mineral components associated with Moses Rock (kimberlite) diatreme

    NASA Technical Reports Server (NTRS)

    Mustard, J. F.; Pieters, C. M.

    1986-01-01

    The surface mineralogy in and around Moses Rock diatreme, a kimberlite-bearing dike in SW Utah, was examined using internally calibrated Airborne Imaging Spectrometer (AIS) data. Distinct near-infrared absorption characteristics of clays, gypsum, and serpentine (a key marker for kinberlite concentration) allowed the surface units containing these components to be identified spatially and the relative abundance of each component measured. Within the dike itself, channels and dispersed components of kimberlite and blocks of country rocks were accurately determined.

  15. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Arena, J.; Song, M. J.; McEwen, B. F.

    1996-01-01

    Aspects of the ultrastructural interaction between collagen and mineral crystals in embryonic chick bone have been examined by the novel technique of high voltage electron microscopic tomography to obtain three-dimensional information concerning extracellular calcification in this tissue. Newly mineralizing osteoid along periosteal surfaces of mid-diaphyseal regions from normal chick tibiae was embedded, cut into 0.25 microns thick sections, and documented at 1.0 MV in the Albany AEI-EM7 high voltage electron microscope. The areas of the tissue studied contained electron dense mineral crystals associated with collagen fibrils, some marked by crystals disposed along their cylindrically shaped lengths. Tomographic reconstructions of one site with two mineralizing fibrils were computed from a 5 degrees tilt series of micrographs over a +/- 60 degrees range. Reconstructions showed that the mineral crystals were platelets of irregular shape. Their sizes were variable, measured here up to 80 x 30 x 8 nm in length, width, and thickness, respectively. The longest crystal dimension, corresponding to the c-axis crystallographically, was generally parallel to the collagen fibril long axis. Individual crystals were oriented parallel to one another in each fibril examined. They were also parallel in the neighboring but apparently spatially separate fibrils. Crystals were periodically (approximately 67 nm repeat distance) arranged along the fibrils and their location appeared to correspond to collagen hole and overlap zones defined by geometrical imaging techniques. The crystals appeared to be continuously distributed along a fibril, their size and number increasing in a tapered fashion from a relatively narrow tip containing smaller and infrequent crystals to wider regions having more densely packed and larger crystals. Defined for the first time by direct visual 3D imaging, these data describe the size, shape, location, orientation, and development of early crystals in normal

  16. Electron Microprobe Analysis of Fe2+/Fe3+ in Minerals With low Total Iron Concentrations

    NASA Astrophysics Data System (ADS)

    Creighton, S. D.; Matveev, S.; Stachel, T.; Luth, R. W.

    2004-12-01

    The development of the `flank method' by Höfer et al. (1994) has made it possible to quantify ferrous and ferric iron concentrations in minerals using the electron microprobe. The flank method makes use of the changes in both the wavelength and intensity of soft Fe Lα and Fe Lβ X-ray emission lines of minerals containing Fe3+ and Fe2+.By measuring at energies off the peak maxima (on the peaksAƒAøAøâ_sA¬Aøâ_zAø flanks) the differences due to variable ferric iron ratios are maximized, thus making the flank method much more sensitive than methods relying on either peak shifts or peak area ratios. Using a correction for self-absorption, the Fe3+/Fe2+ ratio of minerals may be accurately and precisely determined. The original flank method was developed for minerals with high total iron concentration e.g. Fe-rich garnet end-members (almandine, andradite, and skiagite), and Fe-oxides (wüstite). To make it applicable to minerals with total iron concentrations of less than 10 wt.% as is common in mantle-derived minerals, we have modified, in three ways, the flank method to significantly improve the precision. Firstly, we have increased the number of analyses per mineral grain to 400 thereby providing a far more representative mean. Secondly, because it is necessary to accurately reproduce the exact position of the spectrometer crystal for each flank measurement, we have eliminated the need to reposition the spectrometer by serially measuring each flank position. Thirdly, we compensate for instrumental drift by measuring two 10 μ m by 10 μ m grids (1 μ m spot size and spacing) for both flank positions. Each mineral grain is measured sequentially, collecting 200 analyses on the first flank position. The procedure is identically repeated for measurements on the second flank position. The elapsed time between each grid measurement is the same for all samples and drift for either flank position is eliminated by averaging. Using these modifications to the flank

  17. Electron Probe Microanalysis of REE in Eudialyte Group Minerals: Challenges and Solutions.

    PubMed

    Atanasova, Petya; Krause, Joachim; Möckel, Robert; Osbahr, Inga; Gutzmer, Jens

    2015-10-01

    Accurate quantification of the chemical composition of eudialyte group minerals (EGM) with the electron probe microanalyzer is complicated by both mineralogical and X-ray-specific challenges. These include structural and chemical variability, mutual interferences of X-ray lines, in particular of the rare earth elements, diffusive volatility of light anions and cations, and instability of EGM under the electron beam. A novel analytical approach has been developed to overcome these analytical challenges. The effect of diffusive volatility and beam damage is shown to be minimal when a square of 20×20 µm is scanned with a beam diameter of 6 µm at the fastest possible speed, while measuring elements critical to electron beam exposure early in the measurement sequence. Appropriate reference materials are selected for calibration considering their volatile content and composition, and supplementary offline overlap correction is performed using individual calibration factors. Preliminary results indicate good agreement with data from laser ablation inductively coupled plasma mass spectrometry demonstrating that a quantitative mineral chemical analysis of EGM by electron probe microanalysis is possible once all the parameters mentioned above are accounted for. PMID:26313878

  18. ELECTRONIC COMPONENT COOLING ALTERNATIVES: COMPRESSED AIR & LIQUID NITROGEN

    EPA Science Inventory

    The goal of this study was to evaluate tools used to troubleshoot circuit boards with known or suspected thermally intermittent components. ailure modes for thermally intermittent components are typically mechanical defects, such as cracks in solder paths or joints, or broken bon...

  19. ELECTRONIC COMPONENT COOLING ALTERNATIVES: COMPRESSED AIR AND LIQUID NITROGEN

    EPA Science Inventory

    The goal of this study was to evaluate topics used to troubleshoot circuit boards with known or suspected thermally intermittent components. Failure modes for thermally intermittent components are typically mechanical defects, such as cracks in solder paths or joints, or broken b...

  20. Determination of mass attenuation coefficients, effective atomic and electron numbers for some natural minerals

    NASA Astrophysics Data System (ADS)

    Han, I.; Demir, L.; Şahin, M.

    2009-09-01

    The total mass attenuation coefficients ( μ m) for SiO 2 {Quartz (1 1 0 1), Quartz (1 1 0 0) and Quartz (0 0 0 1)}, KAlSi 3O 8 {Orthoclase (0 1 0), Orthoclase (1 0 0)}, CaSO 4·2H 2O (gypsum), FeS 2 (pyrite) and Mg 2Si 2O 6 (pyroxene) natural minerals were measured at 22.1, 25.0, 59.5 and 88.0 keV photon energies. The γ- and X-rays were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. Atomic and electronic cross sections ( σ t and σ e), the effective atomic and electron numbers or electron densities ( Z eff and N eff) were determined using the obtained μ m values for investigated samples.

  1. Investigation of Mineral Transformations in Wet Supercritical CO2 by Electron Microscopy

    SciTech Connect

    Arey, Bruce W.; Kovarik, Libor; Wang, Zheming; Felmy, Andrew R.

    2011-10-10

    The capture and storage of carbon dioxide and other greenhouse gases in deep geologic formations represents one of the most promising options for mitigating the impacts of greenhouse gases on global warming. In this regard, mineral-fluid interactions are of prime importance since such reactions can result in the long term sequestration of CO2 by trapping in mineral phases. Recently it has been recognized that interactions with neat to water-saturated non-aqueous fluids are of prime importance in understanding mineralization reactions since the introduced CO2 is likely to contain water initially or soon after injection and the supercritical CO2 (scCO2) is less dense than the aqueous phase which can result in a buoyant scCO2 plume contacting the isolating caprock. As a result, unraveling the molecular/microscopic mechanisms of mineral transformation in neat to water saturated scCO2 has taken on an added important. In this study, we are examining the interfacial reactions of the olivine mineral forsterite (Mg2SiO4) over a range of water contents up to and including complete water saturation in scCO2. The surface precipitates that form on the reacted forsterite grains are extremely fragile and difficult to experimentally characterize. In order to address this issue we have developed experimental protocols for preparing and imaging electron-transparent samples from fragile structures. These electron-transparent samples are then examined using a combination of STEM/EDX, FIB-TEM, and helium ion microscope (HIM) imaging (Figures 1-3). This combination of capabilities has provided unique insight into the geochemical processes that occur on scCO2 reacted mineral surfaces. The experimental procedures and protocols that have been developed also have useful applications for examining fragile structures on a wide variety of materials. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and

  2. 27 CFR 73.11 - What are the required components and controls for acceptable electronic signatures?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... components and controls for acceptable electronic signatures? 73.11 Section 73.11 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURES AND PRACTICES ELECTRONIC SIGNATURES; ELECTRONIC SUBMISSION OF FORMS Electronic Signatures §...

  3. Electronic switching circuit uses complementary non-linear components

    NASA Technical Reports Server (NTRS)

    Zucker, O. S.

    1972-01-01

    Inherent switching properties of saturable inductors and storage diodes are combined to perform large variety of electronic functions, such as pulse shaping, gating, and multiplexing. Passive elements replace active switching devices in generation of complex waveforms.

  4. Reproducible methods for calibrating the backscattered electron signal for quantitative assessment of mineral content in bone

    SciTech Connect

    Boyce, T.M.; Bloebaum, R.D.; Bachus, K.N.; Skedros, J.G. )

    1990-09-01

    Backscattered electron (BSE) imaging shows promise for orthopaedic and bone research. BSE images of bone may be captured on-line directly from the scanning electron microscope (SEM), and then analyzed to produce a backscattered electron profile (BSEP), a modified image graylevel histogram which is representative of the mineral content in bone. The goals of this work were (1) develop a reproducible graylevel calibration technique for bone specimens, and (2) determine a conservative time interval during which SEM operating conditions would remain stable. Calibration standards containing pure aluminum and pure magnesium wires were placed in the SEM with human cancellous bone. Baseline imaging conditions were first established by adjusting the SEM until the bone image displayed good resolution and graylevel separation between regions of different mineral content. Microscope brightness and contrast controls were randomly changed to initiate the new operating conditions of another imaging session, and graylevel values from the calibration metals were used to readjust the microscope back to baseline operating conditions. Weighted mean graylevel values of the BSEPs from calibration trials were compared to those of the baseline. Data showed that bone images could be reproduced within 1.2 percent. It was also concluded that our equipment required calibration checks at 20 minute intervals.

  5. Induced polarization of disseminated electronically conductive minerals: a semi-empirical model

    NASA Astrophysics Data System (ADS)

    Gurin, Grigory; Titov, Konstantin; Ilyin, Yuri; Tarasov, Andrey

    2015-03-01

    We studied artificial ore models that contained galena, pyrite, magnetite, graphite and cryptomelane with the time domain induced polarization technique. The models were mixtures of sand and metallic-type, electronically conductive mineral particles. We varied the volumetric content of the particles, their mineral composition and average grain size, as well as the pore water salinity. Based on the Debye decomposition approach, we obtained relaxation time distributions, which contained peaks. From these distributions, we obtained the total chargeability and the peak relaxation time. We correlated these parameters with the particle mineral composition, grain size, particle content and the pore solution resistivity. We also compared the experimental data with the Wong model prediction, which was unable to explain the entire data set. The above-mentioned correlations, in conjunction with some previously published data, allowed us to formulate a new, semi-empirical model that links (1) the total chargeability with the volumetric content of the particles and the total chargeability of the host matrix and (2) the time constant with the particle mineralogy, the particle radius and the pore solution resistivity.

  6. Radiation tests of CMS RPC muon trigger electronic components

    NASA Astrophysics Data System (ADS)

    Buńkowski, Karol; Kassamakov, Ivan; Królikowski, Jan; Kierzkowski, Krzysztof; Kudła, Maciej; Maenpaa, Teppo; Poźniak, Krzysztof; Rybka, Dominik; Tuominen, Eija; Ungaro, Donatella; Wrochna, Grzegorz; Zabołotny, Wojciech

    2005-02-01

    The results of proton irradiation test of electronic devices, selected for the RPC trigger electronic system of the CMS detector, will be presented. For Xilinx Spartan-IIE FPGA the cross-section for Single Event Upsets (SEUs) in configuration bits was measured. The dynamic SEUs in flip-flops were also investigated, but not observed. For the FLASH memories no single upsets were detected. Only after irradiating with a huge dose permanent damages of devices were observed. For Synchronous Dynamic Random Access Memory (SDRAM), the SEU cross-section was measured.

  7. A gyro-oriented 3-component borehole magnetometer for mineral prospecting, with examples of its application

    SciTech Connect

    Bosum, W.; Eberle, D.; Rehli, H.J.

    1988-11-01

    A triple axis borehole magnetometer is described that consists of a Foerster-probe (fluxgate) triplet (sensitivity 1 nT), a Foerster-probe gradiometer (sensitivity 2 nT/40 cm), a gyro unit (mean angular drift approx 0.5/sup 0//h) which is equipped with accelerometers (sensitivity 1/100/sup 0/), and a data transmission unit (with multiplexer and 16-bit AD converter). The sensitive fluxgate-magnetometer can detect weakly magnetic or small source bodies. Data from the gyro and the accelerometers allow the 3-component magnetic field values to be transformed to north, east and vertical components. Since they do not rely on magnetically-determined directional data, the results are not disturbed by local anomalies of the magnetic declination. Furthermore, the magnetometer can also be used in vertical boreholes. 3-component measurements are carried out at discrete points in the neighbourhood of a source body to locate its position, and within the source body to determine the direction of magnetization. The strength of magnetization and information on magnetic classification are obtained by continuous measurement of one or more components within the source body. Calculation algorithms and computer programs are available to simplify data processing and interpretation. Survey examples are discussed.

  8. Electronic Office Hours: A Component of Distance Learning.

    ERIC Educational Resources Information Center

    Wallace, F. Layne; Wallace, Susan R.

    2001-01-01

    Describes a technique to blend distance learning with traditional educational methods using electronic office hours to connect teachers and students outside the classroom. Explains the use of various existing computer mediated communication tools and techniques, including email, Usenet newsgroups, text-based conferences, video-based conferences,…

  9. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... COMMISSION Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof... published a notice (78 FR 12892, May 31, 2013) of receipt of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof, DN 2958; the Commission...

  10. New High Energy Electron Component of Earth Radiation Belt

    NASA Astrophysics Data System (ADS)

    Dmitrenko, V. V.; Galper, A. M.; Gratchev, V. M.; Kirillov-Ugryumov, V. G.; Ulin, S. E.; Voronov, S. A.

    The Earth Radiation Belt (ERB) was discovered in the course of the first flights of Russian and American satellites with conventional instruments (gas discharge and scintillation counters), which made it possible to investigate many characteristics of trapped particles and simulate adequate radiation belt models. However, the experimental and theoretical evidence accumulated over recent time, needs more elaborate measurements for its interpretation. These measurements became feasible after the development of devices based on more perfect detectors (solid and gas-filled Cherenkov detectors, magnetic spectrometer, scintillation time-of-flight systems). The evidence requiring new direct measurements in the ERB was obtained in the late 1960s in the course of balloon flights carried out by Cosmophysics Laboratory of the Moscow Engineering and Physics Institute. In these flights a correlation between the high energy electron flux in the upper atmosphere and perturbations ofthe Earth's magnetosphere was established. This phenomenon could be explained assuming there exist high energy electron fluxes in the ERB. High energy electron fluxes in the ERB were recorded for the first time in the direct experiments carried out on board orbital station 'Salyut-6' (orbit altitude - 350 km, inclination 51.6 deg). A scintillation-Cherenkov telescope 'Elena' controlled by cosmonauts was preset to different programmed positions. The measurements were made in the periphery of the ERB, namely, in the part which goes as low as several hundred km in the Brazil Anomaly Region (BRA). The flux of electrons with energies above 30 MeV was up to 104 (m2s sr)-1.

  11. Electron microscopic examination of wastewater biofilm formation and structural components.

    PubMed Central

    Eighmy, T T; Maratea, D; Bishop, P L

    1983-01-01

    This research documents in situ wastewater biofilm formation, structure, and physiochemical properties as revealed by scanning and transmission electron microscopy. Cationized ferritin was used to label anionic sites of the biofilm glycocalyx for viewing in thin section. Wastewater biofilm formation paralleled the processes involved in marine biofilm formation. Scanning electron microscopy revealed a dramatic increase in cell colonization and growth over a 144-h period. Constituents included a variety of actively dividing morphological types. Many of the colonizing bacteria were flagellated. Filaments were seen after primary colonization of the surface. Transmission electron microscopy revealed a dominant gram-negative cell wall structure in the biofilm constituents. At least three types of glycocalyces were observed. The predominant glycocalyx possessed interstices and was densely labeled with cationized ferritin. Two of the glycocalyces appeared to mediate biofilm adhesion to the substratum. The results suggest that the predominant glycocalyx of this thin wastewater biofilm serves, in part, to: (i) enclose the bacteria in a matrix and anchor the biofilm to the substratum and (ii) provide an extensive surface area with polyanionic properties. Images PMID:6881965

  12. 77 FR 11588 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... COMMISSION Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof AGENCY: U... capturing and transmitting images and components thereof by reason of infringement of certain claims of U.S... capturing and transmitting images and components thereof by reason of infringement of one or more of...

  13. 77 FR 4059 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... COMMISSION Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof; Receipt... Images, and Components Thereof, DN 2869; the Commission is soliciting comments on any public interest... for capturing and transmitting images, and components thereof. The complaint names Apple Inc....

  14. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.

    2002-01-01

    The invention is a combination of at least one dense phase fluid and at least one dense phase fluid modifier which can be used to contact substrates for electronic parts such as semiconductor wafers or chips to remove photoresist materials which are applied to the substrates during manufacture of the electronic parts. The dense phase fluid modifier is one selected from the group of cyclic, aliphatic or alicyclic compounds having the functional group: ##STR1## wherein Y is a carbon, oxygen, nitrogen, phosphorus or sulfur atom or a hydrocarbon group having from 1 to 10 carbon atoms, a halogen or halogenated hydrocarbon group having from 1 to 10 carbon atoms, silicon or a fluorinated silicon group; and wherein R.sub.1 and R.sub.2 can be the same or different substituents; and wherein, as in the case where X is nitrogen, R.sub.1 or R.sub.2 may not be present. The invention compositions generally are applied to the substrates in a pulsed fashion in order to remove the hard baked photoresist material remaining on the surface of the substrate after removal of soft baked photoresist material and etching of the barrier layer.

  15. Reflectance Spectra of Five-Component Mineral Mixtures: Implications for Mixture Modeling

    NASA Astrophysics Data System (ADS)

    Herzog, S. G.; Mustard, J. F.

    1996-03-01

    The surfaces of the terrestrial planets consist largely of particulate materials, or soils, whose compositions and particle size distributions are products of geologic processes. The reflectance spectrum of a particulate surface represents a systematic combination of the mineralogy and particle size distribution of the material. Both composition and grain size information are useful in geologic interpretation of a surface, but are convolved in a single reflectance spectrum. We used spectral mixture analysis to separate these parameters by modeling the reflectance of five-component laboratory soils which vary in grain size. We find that successful prediction of endmember compositions requires some knowledge of grain size distribution, and that the fine particles dominate the mixed spectrum in excess of volume fractions and intimate mixture model predictions.

  16. The Composition of Bovine Peritubular Dentin: Matching TOF-SIMS, Scanning Electron Microscopy and Biochemical Component Distributions

    PubMed Central

    Gotliv, Bat Ami; Veis, Arthur

    2008-01-01

    Peritubular dentin (PTD) is a hypermineralized phase within the dentinal tubules in some vertebrate teeth as an interface between the intertubular dentin (ITD) and the cell processes. Our aim has been to understand the composition, structure and role of PTD as a mineralized tissue. We have utilized the technique of time of flight secondary ion mass spectrometry (TOF-SIMS) to map the distribution of positive and negative inorganic ions as well as organic components in the fully mineralized, intact PTD structure in bovine tooth cross-sections, and correlated these with scanning electron microscopy (SEM) in standard and backscatter modes. In recent work, we developed a procedure to freeze fracture the teeth and separate PTD from the less dense ITD by the use of aqueous sodium phosphotungstate step density gradients, after degrading the ITD collagen with NaOCl. Here, PTD-containing fragments were characterized by SEM and TOF-SIMS surface structure analysis. The TOF-SIMS data show that the isolated PTD does not contain collagen, but its surface is rich in glutamic acid-containing protein(s). The TOF-SIMS spectra also indicated that the intact PTD fragments contain phospholipids, and chemical analyses showed phosphatidylserine, phosphatidylinositol and phosphatidylcholine as the principal lipid components. In SEM sections, untreated PTD shows as a smooth collar around the tubule, but after digestion with ethylenediamine to remove all organic components, the porous nature of the mineral phase of small, thin platy apatite crystals becomes evident. Thus, the organic matrix of PTD appears to be a proteolipid-phospholipid complex. PMID:18728348

  17. Application of CO2 laser for electronic components soldering

    NASA Astrophysics Data System (ADS)

    Mascorro-Pantoja, J.; Soto-Bernal, J. J.; Nieto-Pérez, M.; Gonzalez-Mota, R.; Rosales-Candelas, I.

    2011-10-01

    Laser provides a high controllable and localized spot for soldering joint formation and this is a valuable tool in Sn/Pb Soldering process on electronic industry, in recent years, laser beam welding has become an emerging welding technique, the use of laser in welding area is a high efficiency method. A 60 Watts CO2 continuous laser was used on this study, during welding experimental results indicated the laser could significantly improve speed and weld quality. In this work, the welding interactions of CO2 laser with Sn/Pb wire have been investigated in details through varying the energy ratios of laser. And at the same time, the effect of distance from laser spot to material.

  18. An overview of the NASA electronic components information management system

    NASA Technical Reports Server (NTRS)

    Kramer, G.; Waterbury, S.

    1991-01-01

    The NASA Parts Project Office (NPPO) comprehensive data system to support all NASA Electric, Electronic, and Electromechanical (EEE) parts management and technical data requirements is described. A phase delivery approach is adopted, comprising four principal phases. Phases 1 and 2 support Space Station Freedom (SSF) and use a centralized architecture with all data and processing kept on a mainframe computer. Phases 3 and 4 support all NASA centers and projects and implement a distributed system architecture, in which data and processing are shared among networked database servers. The Phase 1 system, which became operational in February of 1990, implements a core set of functions. Phase 2, scheduled for release in 1991, adds functions to the Phase 1 system. Phase 3, to be prototyped beginning in 1991 and delivered in 1992, introduces a distributed system, separate from the Phase 1 and 2 system, with a refined semantic data model. Phase 4 extends the data model and functionality of the Phase 3 system to provide support for the NASA design community, including integration with Computer Aided Design (CAD) environments. Phase 4 is scheduled for prototyping in 1992 to 93 and delivery in 1994.

  19. Ultrastructure of lamellae, mineral and matrix components of fish otolith twinned aragonite crystals: implications for estimating age in fish.

    PubMed

    Gauldie, R W

    1999-05-01

    Atomic force microscopy (AFM) of the crystalline ultrastructure of otoliths fromPagrus major(Sparidae),Macruronus novaezelandiae(Merlucciidae),Oncorhynchus tshawytscha(Salmonidae),Sebastes alutus(Scorpaenidae), andHoplostethus atlanticus(Trachichthyidae) showed regular deposition of lamellae in the size range 13-490 nm. The orientation of lamellae in the {010} plane was the same as lamellae in crystals of mineral aragonite. Lamellae in mineral aragonite were in the size range 15-45 nm. Lamellae observed in the otolith ofM. novaezelandiaeby transmission electron microscopy showed a range of widths (25-225 nm) similar to lamellae observed by AFM. The observed lamella widths were in the size range that has been described for sub-daily and daily microincrements in otoliths. Observed lamellae widths were also in the size range of alpha-recoil trajectories of(222)Rn and provide a potential diffusion sink correction for the(222)Rn losses in radionuclide method of ageing otoliths. Comparison of the orientations of lamellae to templates based on the Bragg unit cell structure of twinned aragonite indicated that the lamellae resulted from polysynthetic twinning on the {010} aragonite crystal face. Additional cyclic twinning occurred on the {110} face of the aragonite crystal and sometimes led to pseudohexagonal crystals, whose sizes were orders of magnitude larger than lamellae. The organic matrix of the otolith was visible by atomic force and transmission electron microscopy at the nanometer level of resolution, but the organic matrix was confined to the {110} twinning plane of symmetry of the otolith crystal. PMID:18627853

  20. Application of Quantitative Analytical Electron Microscopy to the Mineral Content of Insect Cuticle

    NASA Astrophysics Data System (ADS)

    Rasch, Ron; Cribb, Bronwen W.; Barry, John; Palmer, Christopher M.

    2003-04-01

    Quantification of calcium in the cuticle of the fly larva Exeretonevra angustifrons was undertaken at the micron scale using wavelength dispersive X-ray microanalysis, analytical standards, and a full matrix correction. Calcium and phosphorus were found to be present in the exoskeleton in a ratio that indicates amorphous calcium phosphate. This was confirmed through electron diffraction of the calcium-containing tissue. Due to the pragmatic difficulties of measuring light elements, it is not uncommon in the field of entomology to neglect the use of matrix corrections when performing microanalysis of bulk insect specimens. To determine, firstly, whether such a strategy affects the outcome and secondly, which matrix correction is preferable, phi-rho (z) and ZAF matrix corrections were contrasted with each other and without matrix correction. The best estimate of the mineral phase was found to be given by using the phi-rho (z) correction. When no correction was made, the ratio of Ca to P fell outside the range for amorphous calcium phosphate, possibly leading to flawed interpretation of the mineral form when used on its own.

  1. Apollo 15 rake sample microbreccias and non-mare rocks: Bulk rock, mineral and glass electron microprobe analyses

    NASA Technical Reports Server (NTRS)

    Hlava, P. F.; Green, J. A.; Prinz, M.; Nehru, C. E.; Keil, K.; Dowty, E.; Bunch, T. E.

    1972-01-01

    Quantitative electron microprobe data of Apollo 15 nonmare rake samples are presented. Bulk analyses of lithic fragments in the nomare rocks (expressed in oxide weight-percent) and the corresponding CIPW molecular norms are given. The mineralogy of the rocks and lithic fragments are also given; structural formulae for complete analyses and molecular end-members for all mineral analyses are included. The mineral analyses include pyroxene, olivine, plagioclase, barian K-feldspar, spinel and ilmenite, cobaltian metallic nickel-iron as well as SiO2-K2O-rich residual glass. Electron micropobe analyses (oxide weight percent) of glasses in loose fines and microbreccia samples and their CIPW molecular norms are presented along with electron microprobe data on bulk, mineral, and matrix glass from chondrules.

  2. Three component plasma electron distribution in the intermediate ionized coma of Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Zwickl, R. D.; Baker, D. N.; Bame, S. J.; Feldman, W. C.; Fuselier, S. A.; Huebner, W. F.; McComas, D. J.; Young, D. T.

    1986-04-01

    The observation of three distinct components of the electron distribution function measured in the intermediate ionized coma (IIC) and plasma tail of Comet Giacobini-Zinner is reported. It is believed that the cold component represents electrons produced close to the comet nucleus by ionization of cometary matter and subsequent cooling by Coulomb collisions. The second component also appears to be composed of electrons produced by photoionization of cometary neutrals, but sufficiently far from the nucleus that the distributions are largely unaffected by Coulomb interactions. The hot component is probably a population of electrons originating in the solar wind. Throughout the IIC, the electrostatic potential of the spacecraft was very low (less than 0.8 eV), implying that ICE generated very little impact-produced plasma during its passage.

  3. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade...

  4. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Song, M. J.; Leith, A.; McEwen, L.; McEwen, B. F.

    1993-01-01

    To define the ultrastructural accommodation of mineral crystals by collagen fibrils and other organic matrix components during vertebrate calcification, electron microscopic 3-D reconstructions were generated from the normally mineralizing leg tendons from the domestic turkey, Meleagris gallopavo. Embedded specimens containing initial collagen mineralizing sites were cut into 0.5-micron-thick sections and viewed and photographed at 1.0 MV in the Albany AEI-EM7 high-voltage electron microscope. Tomographic 3-D reconstructions were computed from a 2 degree tilt series of micrographs taken over a minimum angular range of +/- 60 degrees. Reconstructions of longitudinal tendon profiles confirm the presence of irregularly shaped mineral platelets, whose crystallographic c-axes are oriented generally parallel to one another and directed along the collagen long axes. The reconstructions also corroborate observations of a variable crystal length (up to 170 nm measured along crystallographic c-axes), the presence of crystals initially in either the hole or overlap zones of collagen, and crystal growth in the c-axis direction beyond these zones into adjacent overlap and other hole regions. Tomography shows for the first time that crystal width varies (30-45 nm) but crystal thickness is uniform (approximately 4-6 nm at the resolution limit of tomography); more crystals are located in the collagen hole zones than in the overlap regions at the earliest stages of tendon mineralization; the crystallographic c-axes of the platelets lie within +/- 15-20 degrees of one another rather than being perfectly parallel; adjacent platelets are spatially separated by a minimum of 4.2 +/- 1.0 nm; crystals apparently fuse in coplanar alignment to form larger platelets; development of crystals in width occurs to dimensions beyond single collagen hole zones; and a thin envelope of organic origin may be present along or just beneath the surfaces of individual mineral platelets. Implicit in the

  5. Effect of Three-year Multi-Component Exercise Training on Bone Mineral Density and Content in a Postmenopausal Woman with Osteoporosis: A Case Report

    PubMed Central

    MOVASEGHI, Farzaneh; SADEGHI, Heydar

    2015-01-01

    The purpose of the present study was to examine the effect of 3-years of moderate multi-component exercise training on bone mineral density and bone mineral content in a female subject with osteoporosis. A 57-year-old postmenopausal woman, a known case of osteoporosis following an accident, participated in this study. Bone mineral density and bone mineral content was measured in the femoral neck area and the lumbar spine by dual energy X-ray absorptiometry. The measurements lasted four years, first year without any exercise training and three succeeding years with exercise intervention. After three years of exercise training, bone mineral density and bone mineral content were improved in both regions, despite the increase in age and decrease in weight. This case highlights the importance of exercise training in maintaining and increasing bone mineral density and bone mineral content of the spine and hip in post-menopausal women. Considering its positive effects, regular and lifelong exercise training must be incorporated into peoples’ life due to the chronic nature of bone loss in aging process. PMID:26284213

  6. Radiation studies of optical and electronic components used in astronomical satellite studies

    NASA Technical Reports Server (NTRS)

    Becher, J.; Kernell, R. L.

    1981-01-01

    The synchronous orbit of the IUE carries the satellite through Earth's outer electron belt. A 40 mCi Sr90 source was used to simulate these electrons. A 5 mCi source of Co60 was used to simulate bremmstrahlung. A 10 MeV electron Linac and a 1.7 MeV electron Van de Graaf wer used to investigate the energy dependence of radiation effects and to perform radiations at a high flux rate. A 100 MeV proton cyclotron was used to simulate cosmic rays. Results are presented for three instrument systems of the IUE and measurements for specific components are reported. The three instrument systems were the ultraviolet converter, the fine error sensor (FES), and the SEC vidicon camera tube. The components were optical glasses, electronic components, silicon photodiodes, and UV window materials.

  7. Comparison of spatial resolutions obtained with different signal components in scanning electron microscopy.

    PubMed

    Merli, P G; Migliori, A; Nacucchi, M; Vittor Antisari, M

    1996-09-01

    Comparative studies on the ultimate spatial resolution of the Scanning Electron Microscope, using different components of the electron signal have been performed on specimens providing compositional contrast. By operating the microscope in conventional way as well as with a specifically designed set-up we have ascertained that the delocalized components of the signal provide a spatial resolution of the order of the beam size, even if the practical use can be limited by the noise. To amplify the contribution of the delocalized components of the signal, as backscattered electrons by a bulk specimen or forward scattered electrons by a thin specimen, we used a device consisting of a plate of a material with high secondary yield placed above or below the sample. An important practical implication arises from this study. A detecting system consisting of a standard Everhart-Thornley detector coupled with a converter of backscattered or transmitted electrons represents a high performance detecting device for low voltage observations. PMID:8961547

  8. Sequestered carbon on clay mineral probed by electron paramagnetic resonance and X-ray photoelectron spectroscopy.

    PubMed

    Lombardi, Kátia Cylene; Mangrich, Antonio Salvio; Wypych, Fernando; Rodrigues-Filho, Ubirajara Pereira; Guimarães, José L; Schreiner, Wido H

    2006-03-01

    This paper describes the interaction among soil organic matter components with kaolinite, an important clay mineral present in tropical soils, especially in Brazil. XPS data show that the soil organic matter adsorbed on kaolinite has aromatic and aliphatic structures, with phenolic and/or alcoholic functions and carbonyl carbons (CO) of amide and/or carboxylic groups. The N1s spectrum of the kaolinite shows an asymmetric peak that is assigned to amide and protonated ammines probably from humin. The interaction between them is strong enough to resist chemical oxidative or reductive attack besides loose amide functionalities. EPR data show that reductive treatment reduces some Fe3+ of the kaolinite structure, loosing organic components. A schematic representation of the reduction of structural Fe3+ in the concentrated domains and consequently increased concentration of Fe3+ ions in diluted domains of the spectrum is presented. This reinforces the hypothesis that humin is a stable carbon sink in soils when adsorbed to clays. PMID:16146633

  9. Redox Linked Flavin Sites in Extracellular Decaheme Proteins Involved in Microbe-Mineral Electron Transfer.

    PubMed Central

    Edwards, Marcus J.; White, Gaye F.; Norman, Michael; Tome-Fernandez, Alice; Ainsworth, Emma; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2015-01-01

    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX8C disulfide that, when substituted for AX8A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen. PMID:26126857

  10. Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer.

    DOE PAGESBeta

    Edwards, Marcus J.; White, Gaye F.; Norman, Michael; Tome-Fernandez, Alice; Ainsworth, Emma; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; et al

    2015-07-01

    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX₈C disulfide that, when substituted for AX₈A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation ofmore » a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen.« less

  11. Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer.

    SciTech Connect

    Edwards, Marcus J.; White, Gaye F.; Norman, Michael; Tome-Fernandez, Alice; Ainsworth, Emma; Shi, Liang; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2015-07-01

    Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 Å x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX₈C disulfide that, when substituted for AX₈A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen.

  12. 78 FR 16531 - Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Eastman Kodak Company of Rochester, New York. 77 FR 11588-89 (Feb. 27, 2012). The complaint alleges a... COMMISSION Certain Electronic Devices for Capturing and Transmitting Images, and Components Thereof... images, and components thereof. The complaint further alleges that an industry in the United...

  13. 76 FR 58841 - Certain Digital Televisions and Components Thereof, and Certain Electronic Devices Having a Blu...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... FR 12994-5 (Mar. 9, 2011). The complaints allege violations of section 337 of the Tariff Act of 1930...-Ray Disc Player and Components Thereof; Notice of Commission Determination Not To Review an Initial...; and 5,923,711, and of certain electronic devices having a Blu-Ray disc player and components...

  14. 76 FR 12994 - In the Matter of Certain Digital Televisions and Components Thereof, and Certain Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... Devices Having a Blu-Ray Disc Player and Components Thereof; Notice of Investigation AGENCY: U.S... within the United States after importation of certain electronic devices having a Blu-ray Disc player and... the sale within the United States after importation of certain electronic devices having a...

  15. Electron-acoustic solitary waves in the presence of a suprathermal electron component

    SciTech Connect

    Danehkar, Ashkbiz; Saini, Nareshpal Singh; Kourakis, Ioannis; Hellberg, Manfred A.

    2011-07-15

    The nonlinear dynamics of electron-acoustic localized structures in a collisionless and unmagnetized plasma consisting of ''cool'' inertial electrons, ''hot'' electrons having a kappa distribution, and stationary ions is studied. The inertialess hot electron distribution thus has a long-tailed suprathermal (non-Maxwellian) form. A dispersion relation is derived for linear electron-acoustic waves. They show a strong dependence of the charge screening mechanism on excess suprathermality (through {kappa}). A nonlinear pseudopotential technique is employed to investigate the occurrence of stationary-profile solitary waves, focusing on how their characteristics depend on the spectral index {kappa}, and the hot-to-cool electron temperature and density ratios. Only negative polarity solitary waves are found to exist, in a parameter region which becomes narrower as deviation from the Maxwellian (suprathermality) increases, while the soliton amplitude at fixed soliton speed increases. However, for a constant value of the true Mach number, the amplitude decreases for decreasing {kappa}.

  16. Reliability considerations of electronics components for the deep underwater muon and neutrino detection system

    SciTech Connect

    Leskovar, B.

    1980-02-01

    The reliability of some electronics components for the Deep Underwater Muon and Neutrino Detection (DUMAND) System is discussed. An introductory overview of engineering concepts and technique for reliability assessment is given. Component reliability is discussed in the contest of major factors causing failures, particularly with respect to physical and chemical causes, process technology and testing, and screening procedures. Failure rates are presented for discrete devices and for integrated circuits as well as for basic electronics components. Furthermore, the military reliability specifications and standards for semiconductor devices are reviewed.

  17. Critical density for Landau damping in a two-electron-component plasma

    SciTech Connect

    Rupp, Constantin F.; López, Rodrigo A.; Araneda, Jaime A.

    2015-10-15

    The asymptotic evolution of an initial perturbation in a collisionless two-electron-component plasma with different temperatures is studied numerically. The transition between linear and nonlinear damping regimes is determined by slowly varying the density of the secondary electron-component using high-resolution Vlasov-Poisson simulations. It is shown that, for fixed amplitude perturbations, this transition behaves as a critical phenomenon with time scales and field amplitudes exhibiting power-law dependencies on the threshold density, similar to the critical amplitude behavior in a single-component plasma.

  18. QEMSCAN° (Quantitative Evaluation of Minerals by Scanning Electron Microscopy): capability and application to fracture characterization in geothermal systems

    NASA Astrophysics Data System (ADS)

    Ayling, B.; Rose, P. E.; Zemach, E.; Drakos, P. S.; Petty, S.

    2011-12-01

    Fractures are important conduits for fluids in geothermal systems, and the creation and maintenance of fracture permeability is a fundamental aspect of EGS (Engineered Geothermal System) development. Hydraulic or chemical stimulation techniques are often employed to achieve this. In the case of chemical stimulation, an understanding of the minerals present in the fractures themselves is desirable to better design a stimulation effort (i.e. which chemical to use and how much). Borehole televiewer surveys provide important information about regional and local stress regimes and fracture characteristics (e.g. fracture aperture), and XRD is useful for examining bulk rock mineralogy, but neither technique is able to quantify the distribution of these minerals in fractures. QEMSCAN° is a fully-automated micro-analysis system that enables quantitative chemical analysis of materials and generation of high-resolution mineral maps and images as well as porosity structure. It uses a scanning electron microscopy platform (SEM) with an electron beam source in combination with four energy-dispersive X-ray spectrometers (EDS). The measured backscattered electron and electron-induced secondary X-ray emission spectra are used to classify sample mineralogy. Initial applications of QEMSCAN° technology were predominantly in the minerals industry and application to geothermal problems has remained limited to date. In this pilot study, the potential application of QEMSCAN° technology to fracture characterization was evaluated using samples of representative mineralized fractures in two geothermal systems (Newberry Volcano, Oregon and Brady's geothermal field, Nevada). QEMSCAN° results were compared with XRD and petrographic techniques. Nine samples were analyzed from each field, collected from the drill core in the 1000-1500 m depth range in two shallow wells (GEO-N2 at Newberry Volcano and BCH-3 at Brady's). The samples were prepared as polished thin sections for QEMSCAN° analysis

  19. Melt rock components in KREEPy breccia 15205: Petrography and mineral chemistry of KREEP basalts and quartz-normative mare basalts

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Vetter, Scott K.

    1993-01-01

    Many current models for the origin of lunar highland rocks feature as an essential component the assimilation of KREEPy material by primitive magmas parental to the Mg-rich suite and alkali suite plutonic rocks. Similar models have also been proposed for the origin of various mare basalt suites. However, any model which considers assimilation of KREEP an important petrologic process must sooner-or-later deal with the question: what is KREEP? Because pristine KREEP basalts are rare, and most known samples are small (e.g., 15382/15386), the geochemical variability of KREEP basalts is poorly known. Other KREEP compositions which are commonly used in these models include the hypothetical 'high-K KREEP' component of Warren and Wasson, which is derived from Apollo 14 soil data, and the 'superKREEP' quartz-monzodiorite 15405. Lunar breccia 15205 is a polymict regolith breccia that consists of approximately 20% KREEP basalt clasts and 20% quartz-normative basalt clasts in a KREEP-rich matrix. Bulk rock mixing calculations show that this sample comprises about 84% KREEP. The clasts range up to 1 cm in size, but most are considerably smaller. The primary aim is to characterize pristine KREEP basalts petrographically, to establish the range in chemical compositions of KREEP basalts, and to test models that were proposed for their origin. In addition, we may be able to extend the compositional range recognized in the quartz-normative basalt suite and cast some light on its origin as well. Preliminary whole rock geochemical data on the KREEP basalts are presented in a companion paper by M.M. Lindstrom and co-workers. Concentration is on petrography and mineral chemistry of these clasts, and the implications these data have for the origin of the different melt rock suites.

  20. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.

    PubMed

    Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki

    2011-10-01

    The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale. PMID:21899811

  1. The use of the scanning electron microscope in the determination of the mineral composition of Ballachulish slate

    SciTech Connect

    Walsh, Joan A.

    2007-11-15

    Slate is a fine-grained, low-grade metamorphic rock derived from argillaceous sediments or occasionally volcanic ash. Although most slates contain mainly quartz, chlorite and white mica, they vary considerably in their durability, some lasting centuries while others fail after a few years of service. A detailed characterisation of their mineralogy is required for the assessment of performance, and to establish the provenance of a used slate. A combination of methods was used to examine Ballachulish slates; XRD analysis to determine the principal minerals present, XRF analysis to determine the total chemical composition, and scanning electron microscopy to determine the chemical composition of individual minerals. It was found that the white mica in Ballachulish slate is phengite and the chlorite is ripidolite. Feldspar is present as albite and carbonate as ferroan dolomite. Several accessory minerals were also identified, including chloritoid, monzonite and zircon. There was considerable variation in the ratio of the principal minerals, making it impossible to identify used slates by this criterion. Instead, chemical composition of the individual minerals, and possibly key accessory minerals, should be used to determine the provenance of slates.

  2. Ulysses observations of electron and proton components in a magnetic cloud and related wave activity

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Fainberg, J.; Stone, R. G.; MacDowall, R. J.; Phillips, J. L.; Balogh, A.

    1995-01-01

    In addition to a smooth rotation of the magnetic field vector, magnetic clouds have a low proton temperature T(sub p). Their expansion in the solar wind leads to depletion and therefore the ion component cools down. It has been shown recently that the electron component in magnetic clouds behaves differently: when the cloud expands, electron temperature Te anti correlates with density and therefore Te increases in the cloud, creating favorable conditions for the rise of ion-acoustic waves. For the magnetic cloud observed by Ulysses on June 10 - 12, 1993 at 4.64 AU at S 32.5 deg, we present observations for both electron and proton components and related plasma wave activity. Our results confirm the anti correlation between T(sub e) and electron density and also exhibit a high ratio of T(sub e)/T(sub P) in the cloud. Since Landau damping is not effective for T(sub e)/T(sub p) much greater than 1, Doppler shifted ion acoustic waves are expected in the cloud. Calculation of ion acoustic wave frequencies in the cloud and comparison with observed wave activity confirm this expectation. As in our previous work, we show that the electron component in the cloud obeys a polytropic law with gamma is less than 1 (gamma approximately equals 0.3-0.4). The dynamics of the magnetic cloud are determined to a large degree by the dominating electron pressure.

  3. Spectroscopic analysis of Martian meteorite ALH 84001 powder and applications for spectral identification of minerals and other soil components on Mars

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Pieters, Carle M.; Hiroi, Takahiro; Mustard, John F.

    1998-07-01

    Spectroscopic measurement and analysis of Martian meteorites provide important information about the mineralogy of Mars, as well as necessary ground-truths for deconvolving remote sensing spectra of the Martian surface rocks. The spectroscopic properties of particulate ALH 84001 from 0.3 to 25 (m correctly identify low-Ca-pyroxene as the dominant mineralogy. Absorption bands due to electronic transitions of ferrous iron are observed at 0.94 and 1.97 (m that are typical for low-Ca-pyroxene. A strong, broad water band is observed near 3 (m that is characteristic of the water band typically associated with pyroxenes. Weaker features near 4.8, 5.2 and 6.2 (m are characteristic of particulate low-Ca-pyroxene, and can be readily distinguished from the features due to high-Ca-pyroxene and other silicate minerals. The reflectance minimum occurs near 8.6 (m for the ALH 84001 powder, which is more consistent with high-Ca-pyroxene and augite than low-Ca-pyroxene. The dominant mid-IR spectral features for the ALH 84001 powder are observed near 9 and 19.5 (m; however, there are multiple features in this region. These mid-IR features are generally characteristic of low-Ca-pyroxene, but cannot be explained by low-Ca-pyroxene alone. Spectral features from 2.5-5 (m are typically associated with water, organics and carbonates and have been studied in spectra of the ALH 84001, split 92 powder and ALH 84001, splits 92 and 271 chip surfaces. Weak features have been identified near 3.5 and 4 (m that are assigned to organic material and carbonates. Another feature is observed at 4.27 (m in many surface spots and in the powder, but has not yet been uniquely identified. Spectroscopic identification of minor organic and carbonate components in this probable piece of Mars suggests that detection of small amounts of organics and carbonates in the Martian surface regolith would also be possible using visible-infrared hyperspectral analyses. Laboratory spectroscopic analysis of Martian

  4. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    SciTech Connect

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-05-12

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  5. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOEpatents

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  6. Three-component Langmuir-Blodgett films consisting of surfactant, clay mineral, and lysozyme: construction and characterization.

    PubMed

    Miao, Shiding; Leeman, Hugo; De Feyter, Steven; Schoonheydt, Robert A

    2010-02-22

    The Langmuir-Blodgett (L-B) technique has been employed for the construction of hybrid films consisting of three components: surfactant, clay, and lysozyme (Lys). The surfactants are octadecylammonium chloride (ODAH) and octadecyl ester of rhodamine B (RhB18). The clays include saponite and laponite. Surface pressure versus area isotherms indicate that lysozyme is adsorbed by the surfactant-clay L-B film at the air-water interface without phase transition. The UV-visible spectra of the hybrid film ODAH-saponite-Lys show that the amount of immobilized lysozyme in the hybrid film is (1.3+/-0.2) ng mm(-2). The average surface area (Omega) per molecule of lysozyme is approximately 18.2 nm(2) in the saponite layer. For the multilayer film (ODAH-saponite-Lys)(n), the average amount of lysozyme per layer is (1.0+/-0.1) ng mm(-2). The amount of lysozyme found in the hybrid films of ODAH-laponite-Lys is at the detection limit of about 0.4 ng mm(-2). Attenuated total reflectance (ATR) FTIR spectra give evidence for clay layers, ODAH, lysozyme, and water in the hybrid film. The octadecylammonium cations are partially oxidized to the corresponding carbamate. A weak 1620 cm(-1) band of lysozyme in the hybrid films is reminiscent of the presence of lysozyme aggregates. AFM reveals evidence of randomly oriented saponite layers of various sizes and shapes. Individual lysozyme molecules are not resolved, but aggregates of about 20 nm in diameter are clearly seen. Some aggregates are in contact with the clay mineral layers, others are not. These aggregates are aligned in films deposited at a surface pressure of 20 mN m(-1). PMID:20104549

  7. [The evaluation of mineral crystallinity of mandibular bone tissue using electron paramagnetic resonance (EPR) in patients suffering from renal osteodystrophy].

    PubMed

    Wojtowicz, Andrzej; Dijakiewicz, Maciej; Wandzel, Barbara; Wesołowski, Piotr; Rutkowski, Bolesław; Fiedor, Piotr; Stachowicz, Wacław; Ostrowski, Kazimierz

    2006-01-01

    Mineral crystallinity of bone tissue is subject to changes during one's development, as well as in many systemic diseases, especially renal osteodystrophy. The aim of the study was qualitative evaluation of the mandibular bone tissue in patients suffering from renal osteodytrophy, treated with renal-replacement therapy: hemo-dialysis or allogeneic kidney transplantation. The mineral crystallinity coefficient was evaluated using electron paramagnetic resonance (EPR) based on the observation that ionizing radiation induces paramagnetic centers in hydroxyapatites. The concentration of these centers was used to establish an indicator of crystallinity rate which is a measure of the crystallinity of tissue mineral. On the basis of these results, it is possible to widen the indications for implantological treatment in specific clinical cases. PMID:17479865

  8. Mid-Infrared Spectroscopy Analysis of the Effects of Erbium, Chromium:Yattrium-Scandium-Gallium-Garnet (Er,Cr:YSGG) Laser Irradiation on Bone Mineral and Organic Components.

    PubMed

    Benetti, Carolina; Ana, Patricia Aparecida; Bachmann, Luciano; Zezell, Denise Maria

    2015-12-01

    The effects of varying the energy density of a high-intensity erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser on the mineral and organic components of bone tissue were evaluated using Fourier transform infrared spectroscopy. Bone samples obtained from the tibias of rabbits were irradiated with five energy densities (3, 6, 8, 12, and 15 J/cm(2)), and the effects on the carbonate to phosphate ratio and in the organic components were compared with those of nonirradiated samples. The increased temperature during the laser irradiation was also measured using infrared thermography to relate the observed spectral changes to the laser thermal effects. The analyses of the infrared spectra suggests that the irradiation with Er,Cr:YSGG promoted changes in bone tissue in both the mineral and organic components that depend on the laser energy density, pointing to the importance of using the proper energy density in clinical procedures. PMID:26555304

  9. Preparation of samples with both hard and soft phases for electron backscatter diffraction: examples from gold mineralization.

    PubMed

    Halfpenny, Angela; Hough, Robert M; Verrall, Michael

    2013-08-01

    Preparation of high-quality polished sample surfaces is an essential step in the collection of microanalytical data on the microstructures of minerals and alloys. Poorly prepared samples can yield insufficient or inconsistent results and, in the case of gold, potentially no data due to the "beilby" layer. Currently, preparation of ore samples is difficult as they commonly contain both hard and soft mineral phases. The aim of our research is to produce suitably polished sample surfaces, on all phases, for electron backscatter diffraction analysis. A combination of chemical-mechanical polishing (CMP) and broad ion-beam polishing (BIBP) was used to tackle the problem. Our results show that it is critical to perform CMP first, as it produces a suitable polish on the hard mineral phases but tends to introduce more damage to the soft mineral surfaces. BIBP is essential to produce a high-quality polish to the soft phases (gold). This is a highly efficient method of sample preparation and is important as it allows the complete quantification of ore textures and all constituent mineral phases, including soft alloys. PMID:23721665

  10. Marginal Adaptation of New Bioceramic Materials and Mineral Trioxide Aggregate: A Scanning Electron Microscopy Study

    PubMed Central

    Shokouhinejad, Noushin; Nekoofar, Mohmmad Hossein; Ashoftehyazdi, Kazem; Zahraee, Shohreh; Khoshkhounejad, Mehrfam

    2014-01-01

    Introduction: This study aimed to compare the marginal adaptation of new bioceramic materials, EndoSequence Root Repair Material (ERRM putty and ERRM paste), to that of mineral trioxide aggregate (MTA) as root-end filling materials. Materials and Methods: Thirty-six extracted human single-rooted teeth were prepared and obturated with gutta-percha and AH-26 sealer. The roots were resected 3 mm from the apex. Root-end cavities were then prepared with an ultrasonic retrotip. The specimens were divided into three groups (n=12) and filled with MTA, ERRM putty or ERRM paste. Epoxy resin replicas from the resected root-end surfaces and longitudinally sectioned roots were fabricated. The gaps at the material/dentin interface were measured using scanning electron microscope (SEM). Transversal, longitudinal, and overall gap sizes were measured for each specimen. The data were analyzed using the Kruskal-Wallis test. Results: In transversal sections, no significant difference was found between MTA, ERRM putty and ERRM paste (P=0.31). However, in longitudinal sections, larger gaps were evident between ERRM paste and dentinal walls compared to MTA and ERRM putty (P=0.002 and P=0.033, respectively). Considering the overall gap size values, the difference between three tested materials was not statistically significant (P=0.17). Conclusion: Within the limits of this study, the marginal adaptation of ERRM paste and putty was comparable to that of MTA. However, ERRM putty might be more suitable for filling the root-end cavities because of its superior adaptation compared to ERRM paste in longitudinal sections. PMID:24688585

  11. Linear electrostatic waves in a three-component electron-positron-ion plasma

    SciTech Connect

    Mugemana, A. Moolla, S.; Lazarus, I. J.

    2014-12-15

    Analytical linear electrostatic waves in a magnetized three-component electron-positron-ion plasma are studied in the low-frequency limit. By using the continuity and momentum equations with Poisson's equation, the dispersion relation for the electron-positron-ion plasma consisting of cool ions, and hot Boltzmann electrons and positrons is derived. In the linear regime, the propagation of two possible modes and their evolution are studied. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. The present investigation contributes to nonlinear propagation of electrostatic waves in space and the laboratory.

  12. Phenomenological characteristic of the electron component in gamma-quanta initiated showers

    NASA Technical Reports Server (NTRS)

    Nikolsky, S. I.; Stamenov, J. N.; Ushev, S. Z.

    1985-01-01

    The phenomenological characteristics of the electron component in showers initiated by primary gamma-quanta were analyzed on the basis of the Tien Shan experimental data. It is shown that the lateral distribution of the electrons ion gamma-quanta initiated showers can be described with NKG - function with age parameters bar S equals 0, 76 plus or minus 0, 02, different from the same parameter for normal showers with the same size bar S equals 0, 85 plus or minus 0, 01. The lateral distribution of the correspondent electron energy flux in gamma-quanta initiated showers is steeper as in normal cosmic ray showers.

  13. Linear electrostatic waves in a three-component electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Mugemana, A.; Lazarus, I. J.; Moolla, S.

    2014-12-01

    Analytical linear electrostatic waves in a magnetized three-component electron-positron-ion plasma are studied in the low-frequency limit. By using the continuity and momentum equations with Poisson's equation, the dispersion relation for the electron-positron-ion plasma consisting of cool ions, and hot Boltzmann electrons and positrons is derived. In the linear regime, the propagation of two possible modes and their evolution are studied. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. The present investigation contributes to nonlinear propagation of electrostatic waves in space and the laboratory.

  14. Suppression of electron scattering by the longitudinal components of tightly focused laser fields

    SciTech Connect

    Masuda, S.; Kando, M.; Kotaki, H.; Nakajima, K.

    2005-01-01

    Relativistic electron scattering by a high intensity linearly polarized Gaussian (TEM{sub 00} mode) laser beam is studied in detail using three-dimensional numerical simulations. It is observed that the longitudinal components of the electromagnetic field in a tight focus effectively suppress transverse electron scattering in the relativistic laser ponderomotive acceleration scheme. The simulations show that the relativistic ponderomotive acceleration can produce high quality electron bunches characterized by an extremely short bunch length of subfemtosecond, energy spread less than 1%, and normalized transverse emittance less than 10{pi} mm mrad.

  15. Thermoelectricity Generation and Electron-Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent.

    PubMed

    Ang, Ran; Khan, Atta Ullah; Tsujii, Naohito; Takai, Ken; Nakamura, Ryuhei; Mori, Takao

    2015-10-26

    Current high-performance thermoelectric materials require elaborate doping and synthesis procedures, particularly in regard to the artificial structure, and the underlying thermoelectric mechanisms are still poorly understood. Here, we report that a natural chalcopyrite mineral, Cu1+x Fe1-x S2 , obtained from a deep-sea hydrothermal vent can directly generate thermoelectricity. The resistivity displayed an excellent semiconducting character, and a large thermoelectric power and high power factor were found in the low x region. Notably, electron-magnon scattering and a large effective mass was detected in this region, thus suggesting that the strong coupling of doped carriers and antiferromagnetic spins resulted in the natural enhancement of thermoelectric properties during mineralization reactions. The present findings demonstrate the feasibility of thermoelectric energy generation and electron/hole carrier modulation with natural materials that are abundant in the Earth's crust. PMID:26332260

  16. Influence of humic substances on Co[sup 2+] sorption by a subsurface mineral separate and its mineralogic components

    SciTech Connect

    Zachara, J.M.; Resch, C.T.; Smith, S.C. )

    1994-01-01

    The sorption of Co[sup 2+] (10[sup [minus]6] mol/L) was measured on subsurface mineral materials in the absence and presence of a sorbed leonardite humic acid (LHA) to (1) evaluate the sorptive role of mineral-bound humic substances, and (2) establish approaches to model metal ion binding in composite materials. The subsurface materials were a <2.0 [mu]m size fraction of an ultisol saprolite (CP) and this same material treated with dithonite-citrate-bicarbonate (DCB) to remove Fe-oxides (DCP). Comparable experiments (with and without LHA) were also performed with mineral sorbents representing dominant phases in the CP separate (gibbsite, Al-geothite, and kalonite) to evaluate their potential contributions to Co sorption. The mineral-bound LHA ranged in concentration between 0.1-0.4 mg-C/m[sup 2], representing approximately 0.7% of the subsurface isolate by mass. In solid-free suspensions, the affinity of LHA for Co increased with pH and decreasing I (K[sub d] ranging 20-450 L/g). Mineral-bound LHA increased Co sorption on all the sorbents by factors of 10-60%, with the greatest augmentation noted at pH values (4.5-6.5) where (1) maximum LHA sorption occurred, and (2) Co sorption to the mineral phase was weak and dominated by ion exchange. The LHA appeared simply to augment, rather than to change the intrinsic adsorption behavior of the mineral sorbents. Accordingly, predictions of the K[sub d] for Co on the LHA-coated subsurface materials (DCP, CP) based on a linear additivity model agreed well with the experimental data, suggesting that the complex humic-mineral association acted as a noninterative sorbent mixture at low aqueous Co concentrations.

  17. 76 FR 55944 - In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... filed by S3 Graphics Co. Ltd. and S3 Graphics Inc. (collectively, ``S3G''). 75 FR 38118 (July 1, 2010... 21, 2005, 70 FR 43251 (July 26, 2005). During this period, the subject articles would be entitled to... COMMISSION In the Matter of Certain Electronic Devices With Image Processing Systems, Components Thereof,...

  18. A comparative study of the electron and photon components in photon-induced air showers

    NASA Astrophysics Data System (ADS)

    Di Sciascio, G.; D'Ettorre Piazzoli, B.; Iacovacci, M.

    1997-03-01

    A detailed simulation of the electromagnetic component of extensive air showers generated by 10 11-10 15 eV photons has been carried out by means of the EPAS code. We present and discuss the results concerning the longitudinal, lateral and temporal distributions of electrons and photons down to 1 MeV energy threshold.

  19. Analytical modeling of multi-layered Printed Circuit Board dedicated to electronic component thermal characterization

    NASA Astrophysics Data System (ADS)

    Monier-Vinard, Eric; Laraqi, Najib; Dia, Cheikh-Tidiane; Nguyen, Minh-Nhat; Bissuel, Valentin

    2015-01-01

    Electronic components are continuously getting smaller and embedding more and more powered functions which exacerbate the temperature rise in component/board interconnect areas. For still air conditions, the heat spreading of the component power is mainly done through the surrounding metallic planes of its electronic board. Their design optimization is henceforth mandatory to control the temperature and to preserve component reliability. To allow the electronic designer to early analyze the limits of the power dissipation of miniaturized devices, an analytical model of a multi-layered electronic board was established with the purpose to assess the validity of conventional board modeling approach. For decades, numerous authors have been promoting a homogenous single layer model that summed up the layers of the board using effective orthotropic thermal properties. The derived compact model depends on thermal properties approximation which is commonly based on parallel conduction model given a linear rule of mixture. The work presents the thermal behavior comparison of a detailed multi-layer representation to its deducted compact model for an extensive set of variable parameters, such as heat transfer coefficients, effective thermal conductivities calculation models, number of trace layers, trace coverage or source size. The results highlight the fact that the conventional practices for PCB modeling can dramatically underestimate source temperatures when their size is getting very small.

  20. 78 FR 71643 - Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... (collectively ``Complainants''). 77 FR 51572-573 (August 24, 2012). The complaint alleges violations of section... 21, 2005, 70 FR 43251 (July 26, 2005). During this period, the subject articles would be entitled to... COMMISSION Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination...

  1. 78 FR 32689 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof, DN 2958; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and......

  2. The Use of Backscattered Electron Imaging and Transmission Electron Microscopy to Assess Bone Architecture and Mineral Loci: Effect of Intermittent Slow-Release Sodium Fluoride Therapy

    NASA Astrophysics Data System (ADS)

    Zerwekh, Joseph E.; Bellotto, Dennis; Prostak, Kenneth S.; Hagler, Herbert K.; Pak, Charles Y. C.

    1996-04-01

    Backscattered electron imaging (BEI) and transmission electron microscopy (TEM) were used to examine the effects of treatment with intermittent slow-release sodium fluoride (SRNaF) and continuous calcium citrate on bone architecture and crystallinity. Examination was performed in nondecalcified biopsies obtained from patients following up to four years of therapy (placebo or SRNaF) and compared to pretreatment biopsies from each patient, as well as to bone from young, normal subjects. BEI images disclosed increased areas of recent bone formation following fluoride administration. There was no evidence of a mineralization defect in any biopsy and both cortical and trabecular architecture remained normal. TEM analysis demonstrated intrafibrillar platelike crystals and extrafibrillar needlelike crystals for both the pre- and post-treatment biopsies as well as for the bone from young normal subjects. There was no evidence of increased crystal size or of an increase in extrafibrillar mineral deposition. These observations suggest that intermittent SRNaF and continuous calcium therapy exerts an anabolic action on the skeleton not accompanied by a mineralization defect or an alteration of bone mineral deposition. The use of BEI and TEM holds promise for the study of the pathophysiology and treatment of metabolic bone diseases.

  3. Determination of mineral components in the cultivation substrates of edible mushrooms and their uptake into fruiting bodies.

    PubMed

    Lee, Chang-Yun; Park, Jeong-Eun; Kim, Bo-Bae; Kim, Sun-Mi; Ro, Hyeon-Su

    2009-06-01

    The mineral contents of the cultivation substrates, fruiting bodies of the mushrooms, and the postharvest cultivation substrates were determined in cultivated edible mushrooms Pleurotus eryngii, Flammulina velutipes, and Hypsizigus marmoreus. The major mineral elements both in the cultivation substrates and in the fruiting bodies were K, Mg, Ca, and Na. Potassium was particularly abundant ranging 10~13 g/kg in the cultivation substrates and 26~30 g/kg in the fruiting bodies. On the contrary, the calcium content in the fruiting bodies was very low despite high concentrations in the cultivation substrates, indicating Ca in the cultivation substrates is in a less bio-available form or the mushrooms do not have efficient Ca uptake channels. Among the minor mineral elements determined in this experiment, Cu, Zn, and Ni showed high percentage of transfer from the cultivation substrates to the fruiting bodies. It is noteworthy that the mineral contents in the postharvest cultivation substrates were not changed significantly which implies that the spent cultivation substrates are nutritionally intact in terms of mineral contents and thus can be recycled as mineral sources and animal feeds. PMID:23983518

  4. 75 FR 28651 - In the Matter of Certain Electronic Paper Towel Dispensing Devices and Components Thereof; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... COMMISSION In the Matter of Certain Electronic Paper Towel Dispensing Devices and Components Thereof; Notice... the sale within the United States after importation of certain electronic paper towel dispensing... electronic paper towel dispensing devices or components thereof that infringe one or more of claims 1-7 of...

  5. Influence of humic substances on Co 2+ sorption by a subsurface mineral separate and its mineralogic components

    NASA Astrophysics Data System (ADS)

    Zachara, J. M.; Resch, C. T.; Smith, S. C.

    1994-01-01

    The sorption of Co 2+ (10 -6 mol/L) was measured on subsurface mineral materials in the absence and presence of a sorbed leonardite humic acid (LHA) to (1) evaluate the sorptive role of mineral-bound humic substances, and (2) establish approaches to model metal ion binding in composite materials. The subsurface materials were a < 2.0 μm size fraction of an ultisol saprolite (CP) and this same material treated with dithionite-citrate-bicarbonate (DCB) to remove Fe-oxides (DCP). Comparable experiments (with and without LHA) were also performed with mineral sorbents representing dominant phases in the CP separate (gibbsite, Al-goethite, and kaolinite) to evaluate their potential contributions to Co sorption. The mineral-bound LHA ranged in concentration between 0.1-0.4 mg-C/m 2, representing approximately 0.7% of the subsurface isolate by mass. The sorption-desorption of LHA on the mineral surfaces, and its affinity for Co as a aqueous phase complexant were also determined. Batch measurements were employed (sorbents at 20-90 m 2/L; LHA-DOC at ≈11 mg-C/L) over a range in pH and ionic strength ( I) at I = 0.01 and 0.1 in NaClO 4. The LHA strongly sorbed to the subsurface mineral isolates (CP and DCP), and to all the specimen sorbents except kaolinite. Maximum sorption of LHA occurred at lower pH (≈4.5). In solid-free suspensions, the affinity of LHA for Co increased with pH and decreasing I ( Kd ranging 20-450 L/g). Mineral-bound LHA increased Co sorption on all the sorbents by factors of 10-60 %, with the greatest augmentation noted at pH values (4.5-6.5) where (1) maximum LHA sorption occurred, and (2) Co sorption to the mineral phase was weak and dominated by ion exchange. The LHA appeared simply to augment, rather than to change the intrinsic adsorption behavior of the mineral sorbents. Accordingly, predictions of the Kd for Co on the LHA-coated subsurface materials (DCP, CP) based on a linear additivity model agreed well with the experimental data, suggesting

  6. DEVELOPMENT OF MULTI-PHASE AND MULTI-COMPONENT FLOW MODEL WITH REACTION IN POROUS MEDIA FOR RISK ASSESSMENT ON SOIL CONTAMINATION DUE TO MINERAL OIL

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yasuhide; Nishiwaki, Junko; Hara, Junko; Kawabe, Yoshishige; Sugai, Yuichi; Komai, Takeshi

    In late years, soil contamination due to mineral oil in vacant lots of oil factory and oil field has become obvious. Measure for soil contamina tion and risk assessment are neces sary for sustainable development of industrial activity. Especially, in addition to contaminated sites, various exposure paths for human body such as well water, soil and farm crop are supposed. So it is very important to comprehend the transport phenomena of contaminated material under the environments of soil and ground water. In this study, mineral oil as c ontaminated material consisting of mu lti-component such as aliphatic and aromatic series was modeled. Then numerical mode l for transport phenomena in surface soil and aquifer was constructed. On the basis of modeling for mineral oil, our numerical model consists of three-phase (oil, water and gas) forty three-component. This numerical model becomes base program for risk assessment system on soil contamination due to mineral oil. Using this numerical model, we carried out some numerical simulation for a laboratory-scale experiment on oil-water multi-phase flow. Relative permeability that dominate flow behavior in multi-phase condition was formulated and the validity of the numerical model developed in this study was considered.

  7. A review of current and future components for electronic warfare receivers

    NASA Astrophysics Data System (ADS)

    Collins, J. H.; Grant, P. M.

    1981-05-01

    This paper addresses the role of conventional and new components in passive electronic warfare (EW) receivers. The various areas of EW are defined before restricting the discussion predominantly to the radar intercept problem at microwave frequencies. The operational parameters of conventional components are then reviewed including the multiplexer; crystal video, instantaneous frequency measurement (IFM), and scanning superheterodyne receivers. The significance of modularity, digital control, and hybrid combinations of components is highlighted. A brief description follows of the operational Cutlass EW equipment. New components based on surface-acoustic waves (SAW) and acoustooptic (AO) Bragg cells are then presented and their particular importance in channelized receivers, IFM's, and microscan receivers noted. Finally, a number of conclusions are drawn covering likely trends in EW receivers and the need for continuing development of large-scale integrated (LSI) circuits for signal sorting and overall digital management.

  8. Graphene radio frequency and microwave passive components for low cost wearable electronics

    NASA Astrophysics Data System (ADS)

    Huang, Xianjun; Leng, Ting; Hsin Chang, Kuo; Cing Chen, Jia; Novoselov, Kostya S.; Hu, Zhirun

    2016-06-01

    Graphene RF and microwave passive components such as coplanar waveguide transmission lines, open/short-circuited resonators and wideband antenna on paper substrate were designed, screen printed and characterized in this work. The experimental results demonstrate that the screen printed graphene passive components can be used for RF signal transmitting, processing and radiating/receiving; revealing that graphene ink can be a low cost alternative to much more expensive metal nanoparticle inks, such as silver nanoparticle ink. The screen printed graphene is processed at low temperature so that it is compatible with heat-sensitive flexible materials like papers, PTFE (Polytetrafluoroethylene) and textiles. The screen printed graphene passive components reported here are of high conductivity, high flexibility, light weight and low cost, making them ideal candidate for low cost wearable electronics. This work makes it prospective to manufacture RF and microwave passive components in mass production by screen printing in much lower cost to any other known techniques.

  9. Effects of particle shape, hematite content and semi-external mixing with carbonaceous components on the optical properties of accumulation mode mineral dust

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Tripathi, S. N.; Aggarwal, S. G.; Arola, A.

    2010-12-01

    The radiative forcing estimation of the polluted mineral dust is limited due to lack of morphological analysis, mixing state with the carbonaceous components and the hematite content in the pure dust. The accumulation mode mineral dust has been found to mix with anthropogenically produced black carbon, organic carbon and brown carbon during long range transport. The above features of the polluted dust are not well accounted in the optical models and lead the uncertainty in the numerical estimation of their radiative impact. The Semi-external mixing being a prominent mixing of dust and carbonaceous components has not been studied in details so for compared to core-shell, internal and external mixing studies. In present study, we consider the pure mineral dust composed of non-metallic components (such as Quartz, Feldspar, Mica and Calcite) and metalic component like hematite (Fe2O3). The hematite percentage in the pure mineral dust governs its absorbance. Based on this hematite variation, the hematite fraction in pure mineral dust has been constrained between 0-8%. The morphological and mineralogical characterization of the polluted dust led to consider the three sphere, two sphere and two spheroid model shapes for polluted dust particle system. The pollution gives rise to various light absorbing aerosol components like black carbon, brown carbon and organic carbon (comprising of HUmic-Like Substances, HULIS) in the atmosphere. The entire above discussed model shapes have been considered for the mineral dust getting polluted with (1) organic carbon (especially HULIS component) (2) Brown carbon and (3) black carbon by making a semi-external mixture with pure mineral dust. The optical properties (like Single Scattering Albedo, SSA; Asymmetry parameter, g and Extinction efficiency, Qext) of above model shapes for the polluted dust have been computed using Discrete Dipole Approximation, DDA code. For above model shapes, the SSA was found to vary depending on hematite

  10. Approach to In Situ Component Level Electronics Assembly Repair (CLEAR) for Constellation

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Oeftering, Richard C.

    2010-01-01

    Maintenance resupply is a significant issue for long duration space missions. Currently, the International Space Station (ISS) approaches maintenance primarily around replaceable modules called Orbital Replacement Units (ORU). While swapping out ORUs has served the ISS well keeping crew time for maintenance to a minimum, this approach assumes a substantial logistics capacity to provide replacement ORUs and return ORUs to Earth for repair. The ORUs used for ISS require relatively large blocks of replacement hardware even though the actual failed component may be several orders of magnitude smaller. The Component Level Electronics Assembly Repair (CLEAR) task was created to explore electronics repair down to the component level for future space missions. From 2006 to 2009, CLEAR was an activity under the Supportability project of the Exploration Technology Development Program. This paper describes the activities of CLEAR including making a case for component-level electronics repair, examination of current terrestrial repair hardware, and potential repair needs. Based on those needs, the CLEAR team proposes an architecture for an in-situ repair capability aboard a spacecraft or habitat. Additionally, this paper discusses recent progress toward developing in-space repair capabilities--including two spaceflight experiments-- and presents technology concepts which could help enable or benefit the same.

  11. Positron acoustic shock waves in four-component plasmas with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Mamun, A. A.; Alam, M. S.

    2014-06-01

    Positron acoustic shock waves (PASWs) in an unmagnetized four-component plasma system consisting of a cold mobile viscous positron fluid, hot positrons and electrons following the nonthermal distributions of Cairns et al. [Geophys. Res. Lett. 22, 2709 (1995)], and immobile positive ions are studied both analytically and numerically. The well-known reductive perturbation method is used to derive the Burgers equation. The basic features of the PASWs are significantly modified by the effects of the kinematic viscosity, the nonthermal electrons and hot positrons, the ratio of the electron temperature to the hot positron temperature σ, and the ratio of the hot positron (electron) number density to the cold positron number density μ 1 ( μ 2). The importance of our results to various astrophysical and laboratory plasmas are concisely discussed.

  12. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE PAGESBeta

    Scanza, R. A.; Mahowald, N.; Ghan, S.; Zender, C. S.; Kok, J. F.; Liu, X.; Zhang, Y.

    2014-07-02

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05 W m−2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 W m−2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 W m−2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  13. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE PAGESBeta

    Scanza, R. A.; Mahowald, N.; Ghan, S.; Zender, C. S.; Kok, J. F.; Liu, X.; Zhang, Y.; Albani, S.

    2015-01-15

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm−2 for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm−2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 Wm−2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  14. Sequential energy and electron transfer in a three-component system aligned on a clay nanosheet.

    PubMed

    Fujimura, Takuya; Ramasamy, Elamparuthi; Ishida, Yohei; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, Vaidhyanathan

    2016-02-21

    To achieve the goal of energy transfer and subsequent electron transfer across three molecules, a phenomenon often utilized in artificial light harvesting systems, we have assembled a light absorber (that also serves as an energy donor), an energy acceptor (that also serves as an electron donor) and an electron acceptor on the surface of an anionic clay nanosheet. Since neutral organic molecules have no tendency to adsorb onto the anionic surface of clay, a positively charged water-soluble organic capsule was used to hold neutral light absorbers on the above surface. A three-component assembly was prepared by the co-adsorption of a cationic bipyridinium derivative, cationic zinc porphyrin and cationic octaamine encapsulated 2-acetylanthracene on an exfoliated anionic clay surface in water. Energy and electron transfer phenomena were monitored by steady state fluorescence and picosecond time resolved fluorescence decay. The excitation of 2-acetylanthracene in the three-component system resulted in energy transfer from 2-acetylanthracene to zinc porphyrin with 71% efficiency. Very little loss due to electron transfer from 2-acetylanthracene in the cavitand to the bipyridinium derivative was noticed. Energy transfer was followed by electron transfer from the zinc porphyrin to the cationic bipyridinium derivative with 81% efficiency. Analyses of fluorescence decay profiles confirmed the occurrence of energy transfer and subsequent electron transfer. Merging the concepts of supramolecular chemistry and surface chemistry we realized sequential energy and electron transfer between three hydrophobic molecules in water. Exfoliated transparent saponite clay served as a matrix to align the three photoactive molecules at a close distance in aqueous solutions. PMID:26820105

  15. Radiation tolerance of opto-electronic components proposed for space-based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Tan, Yue Chuan; Chandrasekara, Rakhitha; Cheng, Cliff; Ling, Alexander

    2015-11-01

    Plasma in low earth orbit can damage electronic components and potentially jeopardize scientific missions in space. Predicting the accumulated damage and understanding components' radiation tolerance are important in mission planning. In this manuscript, we report on the observed radiation tolerance of single photon detectors and a liquid crystal polarization rotator. We conclude that an uncooled Si APD could continue to operate from more than a month up to beyond the lifetime of the satellite depending on the orbit. The liquid crystal polarization rotator was also unaffected by the exposed dosage.

  16. Electronically tunable quadrature oscillator using grounded components with current and voltage outputs.

    PubMed

    Chen, Hua-Pin

    2014-01-01

    The electronically tunable quadrature oscillator using a single multiple-output current controlled current differencing transconductance amplifier (MO-CCCDTA) and grounded passive components is presented. The proposed configuration uses a single MO-CCCDTA, two grounded capacitors and one grounded resistor. Two high-output impedance quadrature current signals and two quadrature voltage signals with 90° phase difference. The oscillation condition and oscillation frequency of the proposed quadrature oscillator are independently controllable. The use of only grounded passive components makes the proposed circuit ideal for integrated circuit implementation. PMID:25121124

  17. Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM.

    PubMed

    Reid, S A; Boyde, A

    1987-02-01

    We report a study to test the feasibility of studying mineral density distributions in bone using the backscattered electron signal in scanning electron microscopy. Samples were human sixth ribs ranging in age from 8 weeks to 59 years, embedded in polymethylmethacrylate (PMMA), cut, polished, and carbon coated. The proportions of pixels falling in a uniform set of gray level slices of the BSE signal were determined using a microcomputer-based image analysis system interfaced directly to the SEM. The amount of high-density bone gradually increased with age at the expense of low-density bone, and there was an associated compression of the range of the mineral density distribution. Age-related differences were noted between the density distributions in the outer and inner rib cortices. The distribution in the inner cortex in neonates was influenced by the inclusion of densely mineralized endochondral bone and cartilage trabeculae formed at the growth cartilage zone. In adults it appeared that greater bone turnover occurred in the outer cortex, perhaps reflecting a differential mechanical loading across the rib. The technique enabled rapid, unbiased discrimination between the bone of neonates, children, and adults. PMID:3455153

  18. Modeling of runaway electron damage for the design of tokamak plasma facing components

    NASA Astrophysics Data System (ADS)

    Niemer, K. A.; Gilligan, J. G.; Croessmann, C. D.; Bolt, H. H.

    1990-04-01

    Cracking, craters, spotty damage (discoloration), and missing chunks of material have been observed on limiters and along the midplane of tokamak inner walls. This damage is assumed to be due to runaway electron discharges. These runaway electrons have been predicted to range in energy from a few MeV to several hundred MeV. The energy density from the runaway electron discharges ranges from 10 to 500 MJ/sq m over pulse lengths of 5 to 50 msec. The PTA code package is a three dimensional, time dependent, computational code package used to predict energy deposition, temperature rise, and damage on tokamak first wall and limiter materials form runaway electron impact. Two experiments were modeled to validate the PTA code package. The first experiment tested the thermal and structural response from high energy electron impact on different fusion materials, and the second experiment simulated runaway electrons scattering through a plasma facing surface (graphite) into an internal structure (copper). The PTA calculations compared favorably with the experimental results. In particular, the PTA models identified gap conductance, thermal contact, x ray generation in materials, and the placement of high stopping power materials as key factors in the design of plasma facing components, resistant to runaway electron damage.

  19. Electron paramagnetic resonance, optical absorption and Raman spectral studies on a pyrite/chalcopyrite mineral

    NASA Astrophysics Data System (ADS)

    Udayabhaskar Reddy, G.; Seshamaheswaramma, K.; Nakamura, Yoshinobu; Lakshmi Reddy, S.; Frost, Ray L.; Endo, Tamio

    2012-10-01

    Pyrite and chalcopyrite mineral samples from Mangampet barite mine, Kadapa, Andhra Pradesh, India are used in the present study. XRD data indicate that the pyrite mineral has a face centered cubic lattice structure with lattice constant 5.4179 Å. Also it possesses an average particle size of 91.9 nm. An EPR study on the powdered samples confirms the presence of iron in pyrite and iron and Mn(II) in chalcopyrite. The optical absorption spectrum of chalcopyrite indicates presence of copper which is in a distorted octahedral environment. NIR results confirm the presence of water fundamentals and Raman spectrum reveals the presence of water and sulfate ions.

  20. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  1. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    SciTech Connect

    Schwarze, G.E. ); Niedra, J.M. ); Frasca, A.J. ); Wieserman, W.R. )

    1993-01-15

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare-earth permanent magnets.

  2. Radiation and temperature effects on electronic components investigated under the CSTI High Capacity Power Project

    SciTech Connect

    Shwarze, G.E.; Niedra, J.M.; Frasca, A.J.; Wieserman, W.R.

    1994-09-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the CSTI high capacity power project will be presented in this paper: (1) Neutron, gamma ray, and temperature effects on power semiconductor switches, (2) Temperature and frequency effects on soft magnetic materials; and (3) Temperature effects on rare earth permanent magnets.

  3. Calibration Telescope System of CWD NEVOD as a Detector of Electron and Muon Components of EAS

    NASA Astrophysics Data System (ADS)

    Amelchakov, M. B.; Bogdanov, A. G.; Zadeba, E. A.; Khokhlov, S. S.; Kokoulin, R. P.; Kompaniets, K. G.; Shulzhenko, I. A.; Shutenko, V. V.; Yashin, I. I.

    The paper describes the system of calibration telescopes as a part of the experimental complex NEVOD. The setup operation parameters were analysed during experimental series from 01/06/2013 to 21/01/2015. The technique of the charged particle local density spectrum reconstruction is described. The results of the local density spectrum measurements are presented for the EAS electron and muon components in different energy ranges of primary cosmic rays.

  4. Transmission Electron Microscopy of the Matrix Minerals in the Tagish Lake Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Kasama, T.; Zolensky, M. E.; Tachikawa, O.

    2001-01-01

    We studied the Tagish Lake matrix minerals by TEM. The result shows similarities to CIs (and CRs) and differences from CMs, but its heterogeneity (e.g., carbonate abundance, saponite/serpentine ratio) suggests its complex history. Additional information is contained in the original extended abstract.

  5. Recommendations for Enabling Manual Component Level Electronic Repair for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Easton, John W.; Funk, Gregory P.; Latta, Gary S.; Ganster, Andrew W.; Estes, Brett E.

    2011-01-01

    Long duration missions to the Moon and Mars pose a number of challenges to mission designers, controllers, and the crews. Among these challenges are planning for corrective maintenance actions which often require a repair. Current repair strategies on the International Space Station (ISS) rely primarily on the use of Orbital Replacement Units (ORUs), where a faulty unit is replaced with a spare, and the faulty unit typically returns to Earth for analysis and possible repair. The strategy of replace to repair has posed challenges even for the ISS program. Repairing faulty hardware at lower levels such as the component level can help maintain system availability in situations where no spares exist and potentially reduce logistic resupply mass.This report provides recommendations to help enable manual replacement of electronics at the component-level for future manned space missions. The recommendations include hardware, tools, containment options, and crew training. The recommendations are based on the work of the Component Level Electronics Assembly Repair (CLEAR) task of the Exploration Technology Development Program from 2006 to 2009. The recommendations are derived based on the experience of two experiments conducted by the CLEAR team aboard the International Space Station as well as a group of experienced Miniature/Microminiature (2M) electronics repair technicians and instructors from the U.S. Navy 2M Project Office. The emphasis of the recommendations is the physical repair. Fault diagnostics and post-repair functional test are discussed in other CLEAR reports.

  6. Microbial mineralization of cis-dichloroethene and vinyl chloride as a component of natural attenuation of chloroethene contaminants under conditions identified in the field as anoxic

    USGS Publications Warehouse

    Bradley, Paul M.

    2012-01-01

    Chlororespiration is a key component of remediation at many chloroethene-contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products may suggest that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene-contaminated shallow aquifer systems, however, non-conservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms, and is consistent with contaminant degradation to non-diagnostic mineralization products. An ongoing technical debate over the potential for mineralization of dichloroethene (DCE) and vinyl chloride (VC) to CO2 in the complete absence of diatomic oxygen has largely obscured the importance of microbial DCE/VC mineralization at dissolved oxygen (DO) concentrations below the current field standard (DO < 0.1-0.5 milligrams per liter) for nominally anoxic conditions. This study demonstrates that oxygen-based microbial mineralization of DCE and VC can be substantial under field conditions that are frequently characterized as "anoxic." Because mischaracterization of operant contaminant biodegradation processes can lead to expensive and ineffective remedial actions, a modified framework for assessing the potential importance of oxygen during chloroethene biodegradation was developed.

  7. The possibility of the formation of protocells and their structural components on the basis of the apatite matrix and cocrystallizing minerals.

    PubMed

    Kostetsky, Eduard Y

    2005-12-01

    This paper presents the author's theory on the possibility of simultaneous hard-phase synthesis of various organic molecules from gas-phase elements on the basis of the apatite matrix and cocrystallizing minerals (carbonate-apatite, calcite, mica). These molecules and their ensembles gave rise to living systems and protocells of the pro- and eukaryotic types. Synthesis might have occurred through gradual substitution of the mineral matrix by crystal organic matter. The structure and size of the molecules synthesized were determined by the structure, physical parameters, and arrangement of organizing centers in the crystal lattice. Apatite phosphates were embedded in a synthesized nucleic helix and their size and purine-pyrimidine complementarity were determined. Apatite and cocrystallizing minerals were seen to be involved in the synthesis of four basic classes of cell components: apatite-DNA and nucleoproteide complexes; carbonate-apatite-enzymes, other proteins involved in DNA replication, all RNA types and their complexes with the specific proteins and enzymes of transcription and translation; calcite-cytoskeletal proteins; and mica-membrane lipids and proteins. The evidence supporting this theory is presented. A possible mechanism to account for the transition from crystal through organo-mineral crystal to liquid crystal (protocell) and a model of the occurrence of the matrix mechanism of transcription and translation are proposed. Some principal problems in the biochemistry and molecular biology of the origin of life on the Earth are discussed. PMID:23345922

  8. A model for computing vibration induced stresses of electronic components in a general flexible mounting

    NASA Astrophysics Data System (ADS)

    Silva, Gustavo H. C.; Paupitz Gonçalves, Paulo J.

    2013-09-01

    This paper develops a novel full analytic model for vibration analysis of solid-state electronic components. The model is just as accurate as finite element models and numerically light enough to permit for quick design trade-offs and statistical analysis. The paper shows the development of the model, comparison to finite elements and an application to a common engineering problem. A gull-wing flat pack component was selected as the benchmark test case, although the presented methodology is applicable to a wide range of component packages. Results showed very good agreement between the presented method and finite elements and demonstrated the usefulness of the method in how to use standard test data for a general application. The properties E, G, A, I, J and κ need not be constants; they may all be functions of s.

  9. Principal component analysis of global maps of the total electronic content

    NASA Astrophysics Data System (ADS)

    Maslennikova, Yu. S.; Bochkarev, V. V.

    2014-03-01

    In this paper we present results of the spatial distribution analysis of the total electron content (TEC) performed by the Principal Component Analysis (PCA) with the use of global maps of TEC provided by the JPL laboratory (Jet Propulsion Laboratory, NASA, USA) for the period from 2004 to 2010. We show that the obtained components of the decomposition of TEC essentially depend on the representation of the initial data and the method of their preliminary processing. We propose a technique for data centering that allows us to take into account the influence of diurnal and seasonal factors. We establish a correlation between amplitudes of the first components of the decomposition of TEC (connected with the equatorial anomaly) and the solar activity index F10.7, as well as with the flow of high energy particles of the solar wind.

  10. Electron spin resonance characterization of radical components in irradiated black pepper skin and core

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2011-11-01

    Characteristics of free radical components of irradiated black pepper fruit (skin) and the pepper seed (core) were analyzed using electron spin resonance. A weak signal near g=2.005 was observed in black pepper before irradiation. Complex spectra near g=2.005 with three lines (the skin) or seven lines (the core) were observed in irradiated black pepper (both end line width; ca. 6.8 mT). The spectral intensities decreased considerably at 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of the content and the stability of radical components derived from plant constituents, including fiber, starch, polyphenol, mono- and disaccharide, were in good agreement with the observed spectra. Analysis showed that the signal intensities derived from fiber in the skin for an absorbed dose were higher, and the rates of decrease were lower, than that in the core. In particular, the cellulose radical component in the skin was highly stable.

  11. 78 FR 75336 - Notice of Intent To Grant an Exclusive License; Aviation Devices and Electronic Components, L.L.C.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of Navy Notice of Intent To Grant an Exclusive License; Aviation Devices and Electronic Components... hereby gives notice of its intent to grant to Aviation Devices and Electronic Components, L.L.C....

  12. Evaluation of Power Electronic Components and Systems at Cryogenic Temperatures For Space Missions

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2005-01-01

    Power electronic circuits and systems designed for deep space applications and outer planetary exploration are required to operate reliably and efficiently under extreme temperature conditions. This requirement is dictated by the fact that the operational environments associated with some of the space missions would encompass temperatures as low as -183 C. The development and utilization of electronics capable of low temperature operation would not only fulfill the advanced technology requirements, but also would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. These benefits are generally achieved by the improved intrinsic properties of some of the electronic materials at low temperature, reduced device losses, and the elimination of heating elements used in conventional systems at low temperatures. Power electronic circuits are widely used in space power systems in the areas of power management, conditioning, and control. In this work, the performance of certain power electronic components and systems was investigated under low temperature. These include inductors, capacitors, pulse-width-modulation (PWM) controllers, and advanced commercial DC/DC converter modules. Different properties were determined as a function of temperature in the range of 20 C to -140 C, at various current and voltages levels. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  13. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  14. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1997-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  15. Assessment of Selected CERES Electronic Component Survivability under Simulated Overvoltage Conditions

    NASA Technical Reports Server (NTRS)

    Chapman, John J.; Grant, M. S.; Bockman, J.; Clark, V. M.; Hess, P. C.

    1999-01-01

    In August, 1998 a Clouds and the Earth's Radiant Energy System (CERES) instrument telemetry housekeeping parameter generated a yellow warning message that indicated an on-board + 15V Data Acquisition Assembly (DAA) power converter deregulation anomaly. An exhaustive investigation was undertaken to understand this anomaly and the long-term consequences which have severely reduced CERES operations on the Tropical Rainfall Measuring Mission (TRMM) spacecraft. Among investigations performed were ground tests that approximated the on-board electronic circuitry using a small quantity of flight identical components exposed to maximum spacecraft bus over-voltage conditions. These components include monolithic integrated microcircuits that perform analog signal conditioning on instrument sensor signals and an analog- to-digital converter (ADC) for the entire DAA. All microcircuit packages have either a bipolar silicon design with internal current limiting protections or have a complementary metal oxide semiconductor (CMOS) design with bias protections. Ground tests that have been running for approximately 8 months have indicated that these components are capable of withstanding as much as twice their input supply voltage ratings without noticeable performance degradation. These data provide CERES operators with confidence of being able to continue science operations over the remaining life of the TRMM mission. This paper will discuss this anomaly and some possible causes, a simulator of affected electronics, test results, prognosis for future CERES operations, and conclusions.

  16. A world of minerals in your mobile device

    USGS Publications Warehouse

    Jenness, Jane E.; Ober, Joyce A.; Wilkins, Aleeza M.; Gambogi, Joseph

    2016-01-01

    Mobile phones and other high-technology communications devices could not exist without mineral commodities. More than one-half of all components in a mobile device—including its electronics, display, battery, speakers, and more—are made from mined and semiprocessed materials (mineral commodities). Some mineral commodities can be recovered as byproducts during the production and processing of other commodities. As an example, bauxite is mined for its aluminum content, but gallium is recovered during the aluminum production process. The images show the ore minerals (sources) of some mineral commodities that are used to make components of a mobile device. On the reverse side, the map and table depict the major source countries producing these mineral commodities along with how these commodities are used in mobile devices. For more information on minerals, visit http://minerals.usgs.gov.

  17. Effect of six-month hypokinesia in dogs on mineral component, reconstruction and mechanical properties of bone tissue

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Pavlova, M. P.; Muradov, I. S.; Stupakov, G. P.; Korzhenyants, V. A.

    1980-01-01

    Ca45 incorporation into the bones of the limbs, particularly in the area of the muscle attachment increased in dogs as a result of 6 month hypokinesia. There were no phenomena of osteoporosis in the cortical layer of the diaphyses; however, changes in the form of osteons, an increase in the number of anastomoses between the channels and the thinning of the subperiosteal layer pointed to disturbances of the bone tissue reconstruction. Mineral saturation of the bone microstructures of the experimental dogs had a tendency to rise. No changes in the mechanical properties of the long bones occurred as a result of hypokinesia in dogs.

  18. Quantitative determination of the mineral distribution in different collagen zones of calcifying tendon using high voltage electron microscopic tomography

    NASA Technical Reports Server (NTRS)

    McEwen, B. F.; Song, M. J.; Landis, W. J.

    1991-01-01

    High voltage electron microscopic tomography was used to make the first quantitative determination of the distribution of mineral between different regions of collagen fibrils undergoing early calcification in normal leg tendons of the domestic turkey, Meleagris gallopavo. The tomographic 3-D reconstruction was computed from a tilt series of 61 different views spanning an angular range of +/- 60 degrees in 2 degrees intervals. Successive applications of an interactive computer operation were used to mask the collagen banding pattern of either hole or overlap zones into separate versions of the reconstruction. In such 3-D volumes, regions specified by the mask retained their original image density while the remaining volume was set to background levels. This approach was also applied to the mineral crystals present in the same volumes to yield versions of the 3-D reconstructions that were masked for both the crystal mass and the respective collagen zones. Density profiles from these volumes contained a distinct peak corresponding only to the crystal mass. A comparison of the integrated density of this peak from each profile established that 64% of the crystals observed were located in the collagen hole zones and 36% were found in the overlap zones. If no changes in crystal stability occur once crystals are formed, this result suggests the possibilities that nucleation of mineral is preferentially and initially associated with the hole zones, nucleation occurs more frequently in the hole zones, the rate of crystal growth is more rapid in the hole zones, or a combination of these alternatives. All lead to the conclusion that the overall accumulation of mineral mass is predominant in the collagen hole zones compared to overlap zones during early collagen fibril calcification.

  19. Effect of Electrostatic Discharge on Electrical Characteristics of Discrete Electronic Components

    NASA Technical Reports Server (NTRS)

    Wysocki, Phil; Vashchenko, Vladislav; Celaya, Jose; Saha, Sankalita; Goebel, Kai

    2009-01-01

    This article reports on preliminary results of a study conducted to examine how temporary electrical overstress seed fault conditions in discrete power electronic components that cannot be detected with reliability tests but impact longevity of the device. These defects do not result in formal parametric failures per datasheet specifications, but result in substantial change in the electrical characteristics when compared with pristine device parameters. Tests were carried out on commercially available 600V IGBT devices using transmission line pulse (TLP) and system level ESD stress. It was hypothesized that the ESD causes local damage during the ESD discharge which may greatly accelerate degradation mechanisms and thus reduce the life of the components. This hypothesis was explored in simulation studies where different types of damage were imposed to different parts of the device. Experimental results agree qualitatively with the simulation for a number of tests which will motivate more in-depth modeling of the damage.

  20. Two-semiconductive-component hybrid coordination polymers with controllable photo-induced electron-transfer properties.

    PubMed

    Liu, Jian-Jun; Chen, Yong; Lin, Mei-Jin; Huang, Chang-Cang; Dai, Wen-Xin

    2016-04-12

    Two semiconductive inorganic-organic hybrid coordination polymers constructed from metal iodide clusters and naphthalene diimide semiconductive components, [Cu2I2(DPNDI)]n () and [PbI2(DPNDI)]n () (DPNDI = N,N'-di-(4-pyridyl)-1,4,5,8-naphthalene diimide), have been synthesized and characterized. Although possessing similar 2D heterostructures, hybrids exhibited different photo-induced electron-transfer properties. Due to the higher HOMO energy level of the [Cu2I2]n chain than that of the [PbI2]n cluster, only hybrid can easily undergo intramolecular electron transfer to form a long-lived charge separated state, which may be applied in artificial photosynthesis. PMID:26985714

  1. The study of ionization by electron impact of a substance simulating spent nuclear fuel components

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Bochkarev, E. I.; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P.

    2015-11-01

    Plasma sources of model substances are necessary to solve problems associated with development of the spent nuclear fuel (SNF) plasma separation method. Lead was chosen to simulate kinetic and dynamic properties of the heavy SNF components. In this paper we present the results of a study of a lead vapor discharge with a lead concentration of 1012-1013 cm-3. Ionization was carried out by an electron beam (with energy of up to 500 eV per electron) inside a centimeter gap between planar electrodes. The discharge was numerically modeled using the hydrodynamic and single-particle approximation. Current-voltage characteristics and single ionization efficiency were obtained as functions of the vapors concentration and thermoelectric current. An ion current of hundreds of microamperes at the ionization efficiency near tenths of a percent was experimentally obtained. These results are in good agreement with our model.

  2. Industrial process profiles for environmental use: Chapter 30. The electronic component manufacturing industry. Final report

    SciTech Connect

    Not Available

    1983-04-01

    This report is one of a series constituting the catalog of Industrial Process Profiles for Environmental Use. Each industry sector is addressed as a separate chapter of the study. The catalog was developed for the purpose of compiling relevant information concerning air, water, and solid waste emissions from industries which employ similar technologies, have common types of environmental impacts, and supply their products for further processing or consumption to the same general population of customers. This report addresses the following segments of the electronic component manufacturing industry: semiconductors, SIC 3674; capacitors, SIC 3675; resistors, SIC 3676; transformer and inductors, SIC 3677; printed circuit boards, SIC 3679052; electron tubes, SIC 36711, 36713; and cathode ray tubes, SIC 36712, 3671385.

  3. Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment

    NASA Technical Reports Server (NTRS)

    Fuchs, Jordan Robert

    2010-01-01

    The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.

  4. ATF (Advanced Toroidal Facility) ECH (Electron Cyclotron Heating) waveguide component development and testing

    SciTech Connect

    Bigelow, T.S.; White, T.L.; Kimrey, H.D.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Electron Cyclotron Heating (ECH) system presently under construction will consist of two 53.2-GHz, 200-kW continuous-wave (cw) gyrotrons with a mode-controlled waveguide system and polarized launcher optimized for maximum power in the ATF plasma. Several components, such as a waveguide mode-analyzing directional coupler, a TiO/sub 2/ mode absorber, miter bends, and a polarization-selectable beamed launcher, have been developed and tested. Laboratory results and initial high-power operation of the system are presented. 2 refs., 2 figs.

  5. Process development for electron beam joining of ceramic and glass components

    SciTech Connect

    Turman, B.N.; Glass, S.J.; Yang, P.; Gerstle, F.P.; Halbleib, J.A.; Voth, T.E.; McKenzie, B.; Clifford, J.R.; Habiger, K.

    1997-11-01

    The purpose of this project is to develop and extend the electron beam joining process to applications related to Mo/Al{sub 2}O{sub 3} cermets for neutron tube fabrication, glass seals for flat panel displays, and ceramics for structural applications. The key issue is the identification of the allowable operating ranges that produce thermal conditions favorable to robust joining and sealing. High strength, hermetic braze joints between ceramic components have been produced using high energy electron beams. With a penetration depth into a typical ceramic of {approximately} 1 cm for a 10 MeV electron beam, this method provides the capability for rapid, transient brazing operations where temperature control of heat sensitive components is essential. The method deposits energy directly into a buried joint, allowing otherwise inaccessible interfaces to be brazed. The combination of transient heating, with higher thermal conductivity, lower heat capacity, and lower melting temperature of braze metals relative to the ceramic materials, enables a pulsed high power beam to melt a braze metal without producing excessive ceramic temperatures. The authors have demonstrated the feasibility of this process related to ceramic coupons a well as ceramic and glass tubes and cylindrical shapes. The transient thermal response was predicted, using as input the energy absorption predicted from the coupled electron-photon and thermal transport analysis. The joining experiments were conducted with an RF linear accelerator at 10--13 MV. Joining experiments have provided high strength joints between alumina and alumina and between alumina and cermet joints in cylindrical geometry. These joints provided good hermetic seals.

  6. Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy

    SciTech Connect

    Gregerova, Miroslava; Vsiansky, Dalibor

    2009-07-15

    The deterioration of concrete represents one of the most serious problems of civil engineering worldwide. Besides other processes, deterioration of concrete consists of sulfate attack and carbonation. Sulfate attack results in the formation of gypsum, ettringite and thaumasite in hardened concrete. Products of sulfate attack may cause a loss of material strength and a risk of collapse of the concrete constructions. The authors focused especially on the microscopical research of sulfate attack. Concrete samples were taken from the Charles Bridge in Prague, Czech Republic. A succession of degrading mineral formation was suggested. Microscope methods represent a new approach to solving the deterioration problems. They enable evaluation of the state of concrete constructions and in cooperation with hydro-geochemistry, mathematics and statistics permit prediction of the durability of a structure. Considering the number of concrete constructions and their age, research of concrete deterioration has an increasing importance. The results obtained can also be useful for future construction, because they identify the risk factors associated with formation of minerals known to degrade structures.

  7. An ex-vivo comparative study of root-end marginal adaptation using grey mineral trioxide aggregate, white mineral trioxide aggregate, and Portland cement under scanning electron microscopy

    PubMed Central

    Baranwal, Akash Kumar; Paul, Mohan L.; Mazumdar, Dibyendu; Adhikari, Haridas Das; Vyavahare, Nishant K.; Jhajharia, Kapil

    2015-01-01

    Context: Where nonsurgical endodontic intervention is not possible, or it will not solve the problem, surgical endodontic treatment must be considered. A major cause of surgical endodontic failures is an inadequate apical seal, so the use of the suitable substance as root-end filling material that prevents egress of potential contaminants into periapical tissue is very critical. Aims: The aim of the present ex-vivo study was to compare and evaluate the three root-end filling materials of mineral trioxide aggregate (MTA) family (white MTA [WMTA], grey MTA [GMTA] and Portland cement [PC]) for their marginal adaptation at the root-end dentinal wall using scanning electron microscopy (SEM). Materials and Methods: Sixty human single-rooted teeth were decoronated, instrumented, and obturated with Gutta-percha. After the root-end resection and apical cavity preparation, the teeth were randomly divided into three-experimental groups (each containing 20 teeth) and each group was filled with their respective experimental materials. After longitudinal sectioning of root, SEM examination was done to determine the overall gap between retrograde materials and cavity walls in terms of length and width of the gap (maximum) at the interface. Descriptive statistical analysis was performed to calculate the means with corresponding standard errors, median and ranges along with an analysis of variance and Tukey's test. Results: The least overall gap was observed in GMTA followed by PC and WMTA. While after statistically analyzing the various data obtained from different groups, there was no significant difference among these three groups in terms of marginal adaptation. Conclusion: GMTA showed the best overall adaptation to root dentinal wall compared to PC and WMTA. Being biocompatible and cheaper, the PC may be an alternative but not a substitute for MTA. PMID:26430305

  8. A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China

    NASA Astrophysics Data System (ADS)

    Cheng, Qiuming; Bonham-Carter, Greame; Wang, Wenlei; Zhang, Shengyuan; Li, Wenchang; Qinglin, Xia

    2011-05-01

    Principal component analysis (PCA) is frequently used in geosciences for information extraction. In many applications, masking PCA has been used to create subsets of samples or sub-areas to enhance the effect of the main objects of interest. In this paper we suggest how the representativeness of samples or pixels can be quantified using a fuzzy membership function based on fuzzy set theory. In this new method, the relative importance of pixels or samples can be taken into account using a multivariate statistical method such as PCA. A Fuzzy Masking PCA is proposed and implemented in GeoDAS GIS on the basis of a spatially weighted PCA (SWPCA). This paper introduces the mathematical treatment of the fuzzy masking PCA and follows a case study of identifying the locations of intrusive bodies from geochemical data in the Gejiu mineral district in Yunnan, China. Power-law functions based on the inverse distance from mapped felsic intrusions are applied as weighting functions in FMPCA. The results indicate that fuzzy mask PCA increases the signal-noise ratio of the component representing igneous intrusions and decreases the influence of sedimentary rocks. The areas delineated as potential areas for new intrusions (including buried intrusions) are valuable guides for Sn mineral prospecting.

  9. [Mineralization of heart valves].

    PubMed

    Pawlikowski, M; Pfitzner, R

    1992-01-01

    Mineralization (calcification) of heart valves (mitral, aortic and aortic bioprosthesis) have been analyzed using; histology, x-ray diffraction, infrared spectroscopy, scanning microscopy, atomic absorption and electron microprobe. Obtained results showed the presence of two type of mineralization. First type is represented by grains composed of hydroxyapatite containing admixture of carbonates. This mineralization is seen macroscopically. Second type of mineralization is possible to determine only using chemical methods. It is represented by biological structures containing amount of Ca, P and other elements higher then normal heart valves. This second type of the mineralization conducts to the changes of physical features of the tissue. Both types of calcification develops because of the defects of atomic structure of biological components of heart valves (mainly collagen). These defects show the presence of free atomic bindings i.e. electric potential. Because of this, they are able to react with surrounding free joints, starting calcification. Defects of biological structures of heart valves are the results of infections, mechanical destruction of the valves etc. Calcification may be stopped on different stages of its development: or as secret calcification or may pass to the stage seen as apatite grains. PMID:1342999

  10. Clay Minerals

    SciTech Connect

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with specific sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  11. Electron Energy-Loss Spectroscopy: Fundamentals and applications in the characterization of minerals

    SciTech Connect

    Krishnan, K.M.

    1989-04-01

    The combined use of an energy-loss spectrometer and an analytical electron microscope with fine probe forming capabilities provides a wealth of information about the sample at high spatial resolution. Fundamental principles governing the physics of the interaction between the fast electron and a thin foil sample, to account for the fine structure in the inelastically scattered fast electron distribution (Electron-Energy Loss Spectroscopy, EELS), will be reviewed. General application of EELS is in the area of low atomic number elements (Z < 11) microanalysis, where it significantly complements the more widely used Energy Dispersive X-ray Spectroscopy (EDXS). However, a careful analysis of the low loss plasmon oscillations and the fine structure in the core-loss edges, can provide additional information related to the bonding and electronic structure of the sample. An illustration of this is presented from our study of Cdelta diamond residue from the Allende carbonaceous chondrite. Combination of EELS with channeling effects can provide specific site occupation/valence information in crystalline materials. Details of this novel crystallographic method will be outlined and illustrated with an example of the study of chromite spinels. Finally, some pertinent experimental details will be discussed. 7 figs.

  12. Role of soil mineral components in the stabilization of organic matter in Umbric Ferralsols of South Brazil

    NASA Astrophysics Data System (ADS)

    Velasco-Molina, Marta; Berns, Anne E.; Macias, Felipe; Knicker, Heike

    2013-04-01

    Climatic conditions of subtropical and tropical regions support fast carbon (C) mineralization, and thus an accelerated degradation of soil organic matter (SOM) if compared to temperate region (Sánchez & Logan, 1992). However, even in those regions, there are still soil horizons that show notable C accumulation. Examples for the latter are umbric horizons in typical tropical soils, such as Ferralsols. The occurrence of this soils with thick umbric epipedons (× 100 cm thickness) in areas of South Brazil is a paradox, that still needs a better understanding (Marques et al., 2011), in particular since the processes that are responsible for the thickness and darkness of the umbric horizons are of special interest with respect to the role of soils as carbon sink. One major contributor to SOM stabilization represents the soil mineral phase. Therefore the main goal of this work its to study the impact of this factor on the SOM sequestration in Umbric Ferralsols from Atibaia, Campinas (São Paulo State) and Chapecó (Santa Catarina State) developed under different environmental conditions. With this objective the mineral fractions have been isolated by selective extraction of iron and aluminium oxides with different extracting solutions (sodium pyrophosphate, ammonium oxalate and dithionite-citrate-bicarbonate solution) and related to SOM quality and quantity. The latter was studied by the use of solid-state cross polarisation (CPMAS) 13C NMR spectroscopy after demineralization with hydrofluoric acid (Gonçalves et al., 2003). Quantification of the NMR spectra was performed by integration of the respective chemical shift regions under consideration of the contribution of spinning side bands. For our study the following regions were distinguished (Knicker & Lüdemann, 1995): alkyl C (0-45 ppm), N-alkyl C (45-60ppm), O-alkyl C (60-110 ppm), aryl C (110-160 ppm), carbonyl C (160-245 ppm). Preliminary results show that, the minimum vertical variation of total Fe into the

  13. Optical coating performance for heat reflectors of JWST-ISIM electronic component

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; Bousquet, Robert; Garrison, Matt; Perrygo, Chuck; Threat, Felix; Rashford, Robert

    2008-07-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling reflector.

  14. Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components

    SciTech Connect

    Champion, Christophe

    2013-05-14

    Ionization of biomolecules remains still today rarely investigated on both the experimental and the theoretical sides. In this context, the present work appears as one of the first quantum mechanical approaches providing a multi-differential description of the electron-induced ionization process of the main DNA components for impact energies ranging from the target ionization threshold up to about 10 keV. The cross section calculations are here performed within the 1st Born approximation framework in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered electrons are both described by a plane wave. The biological targets of interest, namely, the DNA nucleobases and the sugar-phosphate backbone, are here described by means of the GAUSSIAN 09 system using the restricted Hartree-Fock method with geometry optimization. The theoretical predictions also obtained have shown a reasonable agreement with the experimental total ionization cross sections while huge discrepancies have been pointed out with existing theoretical models, mainly developed within a semi-classical framework.

  15. Development of Standardized Power Electronic Components, Subsystems, and Systems for Increased Modularity and Scalability

    SciTech Connect

    Chakraborty, S.; Pink, C.; Price, J.; Kroposki, B.; Kern, G.

    2007-11-01

    Power electronics devices hold substantial promise for making distributed energy applications more efficient and cost effective. This project is motivated towards developing and testing inverters that will allow distributed energy systems to provide ancillary services such as voltage and VAR regulation, and increased grid reliability by seamlessly transitioning between grid-tied and stand-alone operation modes. The objectives of this project are to identify system integration and optimization issues and technologies and to provide solutions through research, analysis, and testing of power electronic interfaces for distributed energy applications that are cost-competitive and have substantially faster response times than conventional technologies. In addition, the testing of power electronics interfaces will develop a technical basis for performance assessment for distributed energy systems, subsystems, and components that will finally create a foundation for standardized measurements and test procedures. The ultimate goal for this research is to advance the potential benefits of distributed energy to provide ancillary services, enhance power system reliability, and allow customer choice.

  16. Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material.

    PubMed

    Kwon, Man Jae; Finneran, Kevin T

    2010-11-01

    The potential for extracellular electron shuttles to stimulate RDX biodegradation was investigated with RDX-contaminated aquifer material. Electron shuttling compounds including anthraquinone-2,6-disulfonate (AQDS) and soluble humic substances stimulated RDX mineralization in aquifer sediment. RDX mass-loss was similar in electron shuttle amended and donor-alone treatments; however, the concentrations of nitroso metabolites, in particular TNX, and ring cleavage products (e.g., HCHO, MEDINA, NDAB, and NH(4) (+)) were different in shuttle-amended incubations. Nitroso metabolites accumulated in the absence of electron shuttles (i.e., acetate alone). Most notably, 40-50% of [(14)C]-RDX was mineralized to (14)CO(2) in shuttle-amended incubations. Mineralization in acetate amended or unamended incubations was less than 12% within the same time frame. The primary differences in the presence of electron shuttles were the increased production of NDAB and formaldehyde. NDAB did not further degrade, but formaldehyde was not present at final time points, suggesting that it was the mineralization precursor for Fe(III)-reducing microorganisms. RDX was reduced concurrently with Fe(III) reduction rather than nitrate or sulfate reduction. Amplified 16S rDNA restriction analysis (ARDRA) indicated that unique Fe(III)-reducing microbial communities (β- and γ-proteobacteria) predominated in shuttle-amended incubations. These results demonstrate that indigenous Fe(III)-reducing microorganisms in RDX-contaminated environments utilize extracellular electron shuttles to enhance RDX mineralization. Electron shuttle-mediated RDX mineralization may become an effective in situ option for contaminated environments. PMID:20424887

  17. Electron-transfer reactions of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath).

    PubMed

    Kopp, D A; Gassner, G T; Blazyk, J L; Lippard, S J

    2001-12-11

    Soluble methane monooxygenase (sMMO) catalyzes the hydroxylation of methane by dioxygen to afford methanol and water, the first step of carbon assimilation in methanotrophic bacteria. This enzyme comprises three protein components: a hydroxylase (MMOH) that contains a dinuclear nonheme iron active site; a reductase (MMOR) that facilitates electron transfer from NADH to the diiron site of MMOH; and a coupling protein (MMOB). MMOR uses a noncovalently bound FAD cofactor and a [2Fe-2S] cluster to mediate electron transfer. The gene encoding MMOR was cloned from Methylococcus capsulatus (Bath) and expressed in Escherichia coli in high yield. Purified recombinant MMOR was indistinguishable from the native protein in all aspects examined, including activity, mass, cofactor content, and EPR spectrum of the [2Fe-2S] cluster. Redox potentials for the FAD and [2Fe-2S] cofactors, determined by reductive titrations in the presence of indicator dyes, are FAD(ox/sq), -176 +/- 7 mV; FAD(sq/hq), -266 +/- 15 mV; and [2Fe-2S](ox/red), -209 +/- 14 mV. The midpoint potentials of MMOR are not altered by the addition of MMOH, MMOB, or both MMOH and MMOB. The reaction of MMOR with NADH was investigated by stopped-flow UV-visible spectroscopy, and the kinetic and spectral properties of intermediates are described. The effects of pH on the redox properties of MMOR are described and exploited in pH jump kinetic studies to measure the rate constant of 130 +/- 17 s(-)(1) for electron transfer between the FAD and [2Fe-2S] cofactors in two-electron-reduced MMOR. The thermodynamic and kinetic parameters determined significantly extend our understanding of the sMMO system. PMID:11732913

  18. 76 FR 32373 - In the Matter of Certain Electronic Devices Having a Digital Television Receiver and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... COMMISSION In the Matter of Certain Electronic Devices Having a Digital Television Receiver and Components... devices having a digital television receiver and components thereof by reason of infringement of certain... Practice and Procedure, 19 CFR 210.10 (2011). Scope of Investigation: Having considered the complaint,...

  19. Exploring the Relationships between the Electronic Health Record System Components and Patient Outcomes in an Acute Hospital Setting

    ERIC Educational Resources Information Center

    Wiggley, Shirley L.

    2011-01-01

    Purpose: The purpose of this study was to examine the relationship between the electronic health record system components and patient outcomes in an acute hospital setting, given that the current presidential administration has earmarked nearly $50 billion to the implementation of the electronic health record. The relationship between the…

  20. Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions.

    PubMed

    Kwon, Young-Yon; Choi, Kyung-Mi; Cho, ChangYeon; Lee, Cheol-Koo

    2015-12-31

    Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 (sdh1Δ, sdh2Δ, sdh4Δ, cor1Δ, cyt1Δ, qcr7Δ, qcr8Δ, rip1Δ, cox6Δ, cox7Δ, cox9Δ, atp4Δ, atp7Δ, and atp17Δ) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-F1F0-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency. PMID:26608359

  1. Single-Component Conductors: A Sturdy Electronic Structure Generated by Bulky Substituents.

    PubMed

    Filatre-Furcate, Agathe; Bellec, Nathalie; Jeannin, Olivier; Auban-Senzier, Pascale; Fourmigué, Marc; Íñiguez, Jorge; Canadell, Enric; Brière, Benjamin; Ta Phuoc, Vinh; Lorcy, Dominique

    2016-06-20

    While the introduction of large, bulky substituents such as tert-butyl, -SiMe3, or -Si(isopropyl)3 has been used recently to control the solid state structures and charge mobility of organic semiconductors, this crystal engineering strategy is usually avoided in molecular metals where a maximized overlap is sought. In order to investigate such steric effects in single component conductors, the ethyl group of the known [Au(Et-thiazdt)2] radical complex has been replaced by an isopropyl one to give a novel single component molecular conductor denoted [Au(iPr-thiazdt)2] (iPr-thiazdt: N-isopropyl-1,3-thiazoline-2-thione-4,5-dithiolate). It exhibits a very original stacked structure of crisscross molecules interacting laterally to give a truly three-dimensional network. This system is weakly conducting at ambient pressure (5 S·cm(-1)), and both transport and optical measurements evidence a slowly decreasing energy gap under applied pressure with a regime change around 1.5 GPa. In contrast with other conducting systems amenable to a metallic state under physical or chemical pressure, the Mott insulating state is stable here up to 4 GPa, a consequence of its peculiar electronic structure. PMID:27266960

  2. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Wang, Langping; Wang, Xiaofeng

    2016-08-01

    In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  3. The electronic structure of alkali aurides. A four-component Dirac-Kohn-Sham study.

    PubMed

    Belpassi, Leonardo; Tarantelli, Francesco; Sgamellotti, Antonio; Quiney, Harry M

    2006-04-01

    Spectroscopic constants, including dissociation energies, harmonic and anharmonic vibrational frequencies, and dipole moments, are calculated for the complete alkali auride series (LiAu, NaAu, KAu, RbAu, CsAu). The four-component formulation of relativistic density functional theory has been employed in this study, using the G-spinor basis sets implemented recently in the program BERTHA. The performance of four standard nonrelativistic density functionals employed is investigated by comparing the results with the best available theoretical and experimental data. The present work provides the first theoretical predictions on the molecular properties of RbAu. The intermetallic bond that occurs in the alkali auride series is highly polar and is characterized by a large charge transfer from the alkali metals to gold. The extent of this electron transfer has been investigated using several different charge analysis methods, enabling us to reach some general conclusions on their relative performance. We further report a detailed analysis of the topological properties of relativistic electron density in the bonding region, discussing the features of this approach which characterize the nature of the chemical bond. We have also computed the fully relativistic density for the alkali halides MBr and MI (M = Li, Na, K, Rb, and Cs). The comparative study shows that, on the basis of several topological properties and the variation in bond lengths, the gold atom behaves similarly to a halogen intermediate between Br and I. PMID:16571062

  4. Component-Level Electronic-Assembly Repair (CLEAR) Synthetic Instrument Capabilities Assessment and Test Report

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.

    2011-01-01

    The role of synthetic instruments (SIs) for Component-Level Electronic-Assembly Repair (CLEAR) is to provide an external lower-level diagnostic and functional test capability beyond the built-in-test capabilities of spacecraft electronics. Built-in diagnostics can report faults and symptoms, but isolating the root cause and performing corrective action requires specialized instruments. Often a fault can be revealed by emulating the operation of external hardware. This implies complex hardware that is too massive to be accommodated in spacecraft. The SI strategy is aimed at minimizing complexity and mass by employing highly reconfigurable instruments that perform diagnostics and emulate external functions. In effect, SI can synthesize an instrument on demand. The SI architecture section of this document summarizes the result of a recent program diagnostic and test needs assessment based on the International Space Station. The SI architecture addresses operational issues such as minimizing crew time and crew skill level, and the SI data transactions between the crew and supporting ground engineering searching for the root cause and formulating corrective actions. SI technology is described within a teleoperations framework. The remaining sections describe a lab demonstration intended to show that a single SI circuit could synthesize an instrument in hardware and subsequently clear the hardware and synthesize a completely different instrument on demand. An analysis of the capabilities and limitations of commercially available SI hardware and programming tools is included. Future work in SI technology is also described.

  5. Key components of anaphylaxis management plans: consensus findings from a national electronic Delphi study

    PubMed Central

    Worth, Allison; Nurmatov, Ulugbek; Sheikh, Aziz

    2010-01-01

    Objectives There is no international consensus on the components of anaphylaxis management plans and responsibility for their design and delivery is contested. We set out to establish consensus among relevant specialist and generalist clinicians on this issue to inform future randomized controlled trials. Design A two-round electronic Delphi study completed by a 25-person, multidisciplinary expert panel. Participants scored the importance of a range of statements on anaphylaxis management, identified from a systematic review of the literature, on a five-point scale ranging from ‘very important’ to ‘irrelevant’. Consensus was defined a priori as being achieved if 80% or more of panel members rated a statement as ‘important’ or ‘very important’ after Round 2. Setting Primary and secondary care and academic settings in the UK and Ireland. Participants Twenty-five medical, nursing and allied health professionals. Main outcome measures Consensus on the key components of anaphylaxis management plans. Results The response rate was 84% (n = 21) for Round 1 and 96% (n = 24) for Round 2. The key components of emergency care on which consensus was achieved included: awareness of trigger factors (100%); recognition and emergency management of reactions of different severity (100%); and clear information on adrenaline (epinephrine) use (100%). Consensus on longer-term management issues included: clear written guidelines on anaphylaxis management (96%); annual review of plans (87%); and plans that were tailored to individual needs (82%). Conclusions This national consensus-building exercise generated widespread agreement that emergency plans need to be simple, clear and generic, making them easy to implement in a crisis. In contrast, long-term plans need to be negotiated between patient/carers and professionals, and tailored to individual needs. The effectiveness of this expert-agreed long-term plan now needs to be evaluated rigorously. PMID:21103134

  6. Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral Surface

    NASA Technical Reports Server (NTRS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-01-01

    We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  7. Microfabrication of passive electronic components with printed graphene-oxide deposition

    NASA Astrophysics Data System (ADS)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas

    2014-03-01

    Flexible electronic circuitry is an emerging technology that will significantly impact the future of healthcare and medicine, food safety inspection, environmental monitoring, and public security. Recent advances in drop-on-demand printing technology and electrically conductive inks have enabled simple electronic circuits to be fabricated on mechanically flexible polymers, paper, and bioresorbable silk. Research has shown that graphene, and its derivative formulations, can be used to create low-cost electrically conductive inks. Graphene is a one atom thick two-dimensional layer composed of carbon atoms arranged in a hexagonal lattice forming a material with very high fracture strength, high Young's Modulus, and low electrical resistance. Non-conductive graphene-oxide (GO) inks can also be synthesized from inexpensive graphite powders. Once deposited on the flexible substrate the electrical conductivity of the printed GO microcircuit traces can be restored through thermal reduction. In this paper, a femtosecond laser with a wavelength of 775nm and pulse width of 120fs is used to transform the non-conductive printed GO film into electrically conductive oxygen reduced graphene-oxide (rGO) passive electronic components by the process of laser assisted thermal reduction. The heat affected zone produced during the process was minimized because of the femtosecond pulsed laser. The degree of conductivity exhibited by the microstructure is directly related to the laser power level and exposure time. Although rGO films have higher resistances than pristine graphene, the ability to inkjet print capacitive elements and modify local resistive properties provides for a new method of fabricating sensor microcircuits on a variety of substrate surfaces.

  8. Collaborative Research Centre 694 “Integration of electronic components into mobile systems”-Motivation and survey

    NASA Astrophysics Data System (ADS)

    Weckenmann, Albert; Schmidt, Lorenz-Peter; Bookjans, Martin

    Within the collaborative research centre 694 'Integration of electronic components into mobile systems' intelligent mechatronic systems are explored for application at the place of action. Especially in the automotive sector highest requirements on system safety are combined with an enormous importance of the production for the whole national economy. Therefore the collaborative research centre is led by the vision to integrate electronic components in sensors and actors of mobile systems. About 30 scientists at nine participating academic and non-academic institutions in Erlangen explore mechatronic solutions for the requirements on manufacturing processes, electronic systems and quality management techniques within the car of the future.

  9. In vitro mineral binding capacity of five fiber sources and their insoluble components for copper and zinc.

    PubMed

    Claye, S S; Idouraine, A; Weber, C W

    1996-06-01

    Five fiber-rich food sources, wheat bran (WB), rice bran (RB), oat fiber (OF), apple fiber (AF), and tomato fiber (TF) and their isolated insoluble fiber fractions were evaluated in vitro for their binding capacity for zinc (Zn) and copper (Cu). Endogenous Zn concentrations of the fibers varied from 11.0 micrograms/g for OF to 136.0 micrograms/g for WB, whereas Cu concentrations ranged from 1.0 microgram/g for OF to 14.0 micrograms/g for WB. In all the fibers, total Cu bound was significantly higher than Zn. Total Cu bound ranged from 3687 micrograms/g for OF to 8019 micrograms/g and 8073 micrograms/g for WB and AF, whereas, bound Zn levels varied from 1213 micrograms/g for OF to 7121 micrograms/g and 7166 micrograms/g for WB and RB, respectively. Significantly more Zn and Cu were bound by the fiber fractions than the whole fibers, probably due to the exposure of more binding sites on the polymers during the fractionation process. Generally, the fiber components of all five fibers showed Cu and Zn binding capacities decreasing in the order; hemicellulose A > lignocellulose > lignin > cellulose. A strong correlation was seen between the combined effects of protein, hemicellulose, and lignin contents of the fibers versus total Zn binding capacity and a lesser correlation with Cu. PMID:8983052

  10. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Song, M. J.; Arena, J.; Kiyonaga, S.; Marko, M.; Owen, C.; McEwen, B. F.

    1996-01-01

    The interaction between collagen and mineral crystals in the normally calcifying leg tendons from the domestic turkey, Meleagris gallopavo, has been investigated at an ultrastructural level with conventional and high-voltage electron microscopy, computed tomography, and three-dimensional image reconstruction methods. Specimens treated by either aqueous or anhydrous techniques and resin-embedded were appropriately sectioned and regions of early tendon mineralization were photographed. On the basis of individual photomicrographs, stereoscopic pairs of images, and tomographic three-dimensional image reconstructions, platelet-shaped crystals may be demonstrated for the first time in association with the surface of collagen fibrils. Mineral is also observed in closely parallel arrays within collagen hole and overlap zones. The mineral deposition at these spatially distinct locations in the tendon provides insight into possible means by which calcification is mediated by collagen as a fundamental event in skeletal and dental formation among vertebrates.

  11. Kingian Co-Evolution of the Water and Mineral/Rock Components for Earth and Mars: Implications for Planetary Habitability (Invited)

    NASA Astrophysics Data System (ADS)

    Baker, V. R.

    2013-12-01

    Planetary habitability may fluctuate episodically against a background provided by the co-evolution of a planet's mineral/rock (geosphere) components and its water (hydrosphere) in relation to its position in a circumstellar system. The water/rock (geosphere/hydrosphere) co-evolution can be inferred from the geological histories of the terrestrial planets of the solar system, particularly from the very extensive understanding of Earth and Mars. Habitability and water/rock co-evolution have components that are tychistic (i.e., driven by chance) and anancastic (i.e., dynamically driven largely by deterministic forces). They also have a final, end-directed (i.e., teleomatic) aspect that operates in accordance with natural laws. This is a larger perspective on the idea of planetary habitability than is generally associated with an astronomical approach, and it incorporates additional insights from a geological perspective on the issue. The geological histories of Mars and Earth are punctuated with critical, short-term epochs of extreme change, which for Earth are known to be associated with major disruptions of its biosphere. These catastrophic epochs can be described as a type of non-Darwinian evolution that was envisioned by the geologist Clarence King. In an 1877 paper King proposed that accelerated evolutionary change occurs during sudden environmental disruptions. Such Kingian disruptions in mineral/rock and water evolution mark the planetary histories of Mars and Earth, including the early formation and condensation of a steam atmosphere, an impacting cataclysm at about 3.9 to 4 Ga, episodes of concentrated volcanism and tectonism, and associated rapid changes in the linked atmosphere and hydrosphere. These disruptions are closely tied to migrations of water between different planetary reservoirs, the nature of planetary accretion, the origin of a physically coupled atmosphere and ocean, the prospects for initiating plate tectonics, and punctuated greenhouse

  12. Microwave remediation of emissions resulting from the treatment of electronic components

    SciTech Connect

    Schultz, R.L.

    2000-04-25

    The global community has become increasingly dependent on computer and other electronic technologies. As a result, society is faced with an increasing amount of obsolete equipment that is usually disposed of in landfills. While a convenient solution, this action causes a substantial loss of finite resources and poses a potential environmental threat as the various components breakdown and are exposed to the elements. Hazardous compounds such as lead, mercury, and cadmium may leach from the boards and find their way into the groundwater supply. In order to alleviate this potential problem, a microwave waste treatment system was developed that was capable of removing the organic compounds from the circuitry. Upon further heating in an industrial microwave, a glass and metal ingot were recovered. Analysis of the ingot revealed small concentrations of precious metals such as gold and silver. During treatment, gaseous organic and aromatic compounds were generated in the initial stages of processing. These emissions were successfully treated in a microwave off-gas system that reduced the concentration of the products emitted by several orders of magnitude and in some cases, completely destroyed components within the waste gas. In order to better understand the effects of processing parameters on the efficiency of the off-gas system, a parametric study was developed and undertaken. The study tested the microwave system at 3 incoming flow rates (10, 30, and 50 ft3/min) and 3 temperatures (400, 700, and 1000 degrees C). In order to determine the effects of microwave energy, some of the experiments were repeated using a conventional furnace in place of the microwave off-gas unit.

  13. 27 CFR 73.11 - What are the required components and controls for acceptable electronic signatures?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... signatures not based on biometrics. If you use electronic signatures that are not based upon biometrics you...) Electronic signatures based on biometrics. If you use electronic signatures based upon biometrics, they...

  14. 27 CFR 73.11 - What are the required components and controls for acceptable electronic signatures?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... signatures not based on biometrics. If you use electronic signatures that are not based upon biometrics you...) Electronic signatures based on biometrics. If you use electronic signatures based upon biometrics, they...

  15. 27 CFR 73.11 - What are the required components and controls for acceptable electronic signatures?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... signatures not based on biometrics. If you use electronic signatures that are not based upon biometrics you...) Electronic signatures based on biometrics. If you use electronic signatures based upon biometrics, they...

  16. 27 CFR 73.11 - What are the required components and controls for acceptable electronic signatures?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... signatures not based on biometrics. If you use electronic signatures that are not based upon biometrics you...) Electronic signatures based on biometrics. If you use electronic signatures based upon biometrics, they...

  17. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    NASA Astrophysics Data System (ADS)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  18. Real-Space Approach to Electronic Structure and Stability in Multi-Component Alloys.

    NASA Astrophysics Data System (ADS)

    Turchi, P. E. A.; Mayou, D.; Julien, J. P.

    1996-03-01

    A recently developed real-space approach based on the extended recursion technique and the coherent potential approximation is applied to solve a tight-binding Hamiltonian which describes chemical disorder in multi-component alloys. Effective interactions as defined in the embedded cluster method, and which describe ordering tendencies in alloys, are also obtained with this real-space approach combined with an "orbital peeling" technique. After a formal introduction, the results of this new approach in terms of densities of states, band-energies and effective interactions are presented for pseudo-binary and ternary transition metal alloys characterized by spd-electrons. The results compare extremely well with those obtained by a standard k-space method. Formal and practical advantages of this new approach, and in particular its application to the study of amorphous alloys will be discussed. Work performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48. Partial support from NATO under contract No. CRG-941028 is gratefully acknowledged.

  19. An environmentally friendly technology of disassembling electronic components from waste printed circuit boards.

    PubMed

    Wang, Jianbo; Guo, Jie; Xu, Zhenming

    2016-07-01

    Electronic components (ECs) disassembling from waste printed circuit boards (WPCBs) is the first and essential step in WPCBs recycling chain. Over the past decades, primitive methods like simply heating WPCBs on a coal-heated plate to melt solders are dominated in practice, causing serious environmental pollution and also putting a real threat to the human health. In order to solve this problem, in this article, an automatic system in pilot-scale for ECs disassembling from WPCBs is designed, manufactured, and investigated. This system contains two parts: ECs automatic disassembly and off-gas purification. Meanwhile, WPCBs from television (i.e., TV-WPCBs) and personal computer (i.e., PC-WPCBs) are used for disassembling tests, respectively. When the disassembling temperature, rotating speed, and incubation time are 265±5°C, 10rpm, and 8min, respectively, the solder can be completely removed from both TV-WPCBs and PC-WPCBs. No pollutant is discharged from this system. Finally, the disassembling procedures for ECs from both TV-WPCBs and PC-WPCBs are suggested to promote WPCBs disassembling in an environment-friendly way, without threaten the environment and human health. PMID:27026495

  20. Spatial and temporal variation of total electron content as revealed by principal component analysis

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Talaat, E. R.

    2010-12-01

    Eleven years of global total electron content (TEC) data are analyzed using empirical orthogonal function (EOF) decomposition and the corresponding principal component analysis (PCA) technique. For the daily averaged TEC field, the first EOF explains more than 89% and the first four EOFs explain more than 98% of the total variance of the TEC field, indicating an effective data compression and clear separation of different physical processes. The effectiveness of the PCA technique to TEC is nearly insensitive to the horizontal resolution and the length of the data records. When the PCA is applied to global TEC including local time variations, the rich spatial and temporal variations of field can be represented by the first three EOFs that explain 88% of the total variance. The spectral analysis of the time series of reveals how different mechanisms such as solar flux variation, change of the orbital declination, nonlinear mode coupling and geomagnetic activity are separated and expressed in different EOFs. This work demonstrates the usefulness of using PCA technique to assimilate and monitor the global TEC field.

  1. Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay

    NASA Astrophysics Data System (ADS)

    Charlet, L.; Scheinost, A. C.; Tournassat, C.; Greneche, J. M.; Géhin, A.; Fernández-Martínez, A.; Coudert, S.; Tisserand, D.; Brendle, J.

    2007-12-01

    The mobility and availability of the toxic metalloid selenium in the environment are largely controlled by sorption and redox reactions, which may proceed at temporal scales similar to that of subsurface water movement under saturated or unsaturated conditions. Since such waters are often anaerobic and rich in Fe 2+, we investigated the long-term (⩽1 month) kinetics of selenite (Se(IV)O3-) sorption to montmorillonite in the presence of Fe 2+ under anoxic conditions. A synthetic montmorillonite was used to eliminate the influence of structural Fe. In the absence of aqueous Fe 2+, selenite was sorbed as outer-sphere sorption complex, covering only part of the positive edge sites, as verified by a structure-based MUSIC model and Se K-edge XAS (X-ray absorption spectroscopy). When selenite was added to montmorillonite previously equilibrated with Fe 2+ solution however, slow reduction of Se and formation of a solid phase was observed with Se K-edge XANES (X-ray absorption near-edge spectroscopy) and EXAFS (extended X-ray absorption fine-structure) spectroscopy. Iterative transformation factor analysis of XANES and EXAFS spectra suggested that only one Se reaction product formed, which was identified as nano-particulate Se(0). Even after one month, only 75% of the initially sorbed Se(IV) was reduced to this solid species. Mössbauer spectrometry revealed that before and after addition and reduction of Se, 5% of total sorbed Fe occurred as Fe(III) species on edge sites of montmorillonite (≈2 mmol kg -1). The only change observed after addition of Se was the formation of a new Fe(II) species (15%) attributed to the formation of an outer-sphere Fe(II)-Se sorption complex. The combined Mössbauer and XAS results hence clearly suggest that the Se and Fe redox reactions are not directly coupled. Based on the results of a companion paper, we hypothesize that the electrons produced in the absence of Se by oxidation of sorbed Fe(II) are stored, for example by formation of

  2. Evaluation of the odd-even effect in limits of detection for electron microprobe analysis of natural minerals.

    PubMed

    Verma, Surendra P; Pandarinath, Kailasa; Velasco-Tapia, Fernando; Rodríguez-Ríos, Rodolfo

    2009-04-13

    Limit of detection (LOD), being a fundamental quality parameter for analytical techniques, has been recently investigated and a systematic behavior has been observed for most odd-even element pairs for many techniques. However, to the best of our knowledge very few LOD data are available in published literature for electron microprobe analysis; these consist of three papers, two being on rare-earth elements and the third covering a large number of elements of atomic number between 21 and 92. These data confirm the systematic behavior of LODs for many odd-even pairs. To initiate to full this gap, we determined LODs for several major rock-forming chemical elements from Na to Fe with atomic numbers between 11 and 26, during the microprobe analysis of common minerals (olivine, plagioclase, pyroxene, amphibole, quartz, and opaques) in volcanic rocks. The odd-even effect of nuclear stability seems to be present in LOD data for most odd-even pairs investigated. Nevertheless, the experimental strategy concerning the reference materials, calibration procedure, and blank measurements, should be substantially modified to better evaluate the systematic behavior of LOD values in microprobe analysis. PMID:19327450

  3. Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iwai, E.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-05-01

    The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters of ND280. The measured ratio between the observed electron neutrino beam component and the prediction is 1.01±0.10 providing a direct confirmation of the neutrino fluxes and neutrino cross section modeling used for T2K neutrino oscillation analyses. Electron neutrinos coming from muons and kaons decay are also separately measured, resulting in a ratio with respect to the prediction of 0.68±0.30 and 1.10±0.14, respectively.

  4. Space radiation shielding studies for astronaut and electronic component risk assessment

    NASA Astrophysics Data System (ADS)

    Fuchs, Jordan; Gersey, Brad; Wilkins, Richard

    The space radiation environment is comprised of a complex and variable mix of high energy charged particles, gamma rays and other exotic species. Elements of this radiation field may also interact with intervening matter (such as a spaceship wall) and create secondary radiation particles such as neutrons. Some of the components of the space radiation environment are highly penetrating and can cause adverse effects in humans and electronic components aboard spacecraft. Developing and testing materials capable of providing effective shielding against the space radiation environment presents special challenges to researchers. Researchers at the Cen-ter for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View AM University (PVAMU) perform accelerator based experiments testing the effectiveness of various materials for use as space radiation shields. These experiments take place at the NASA Space Radiation Laboratory at Brookhaven National Laboratory, the proton synchrotron at Loma Linda University Medical Center, and the Los Alamos Neutron Science Center at Los Alamos National Laboratory where charged particles and neutrons are produced at energies similar to those found in the space radiation environment. The work presented in this paper constitutes the beginning phase of an undergraduate research project created to contribute to this ongoing space radiation shielding project. Specifically, this student project entails devel-oping and maintaining a database of information concerning the historical data from shielding experiments along with a systematic categorization and storage system for the actual shielding materials. The shielding materials referred to here range in composition from standard materi-als such as high density polyethylene and aluminum to exotic multifunctional materials such as spectra-fiber infused composites. The categorization process for each material includes deter-mination of the density thickness of individual

  5. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shigeyoshi; Tatewaki, Hiroshi

    2015-03-01

    The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f9)(6s2)(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f10)(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T0 = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f9)(6s)(6p), but these configurations are not consistent with the large Re's (˜3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f10)(6p3/2,1/2), (4f10)(6p3/2,3/2), and (4f9)(6s)(6p3/2,1/2) at around 3 eV. The former two states have larger Re (3.88 a.u.) than the third, so that it is reasonable to assign (4f10)(6p3/2,1/2) to [19.3]8.5 and (4f10)(6p3/2,3/2) to [20.3]8.5.

  6. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods.

    PubMed

    Yamamoto, Shigeyoshi; Tatewaki, Hiroshi

    2015-03-01

    The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f(9))(6s(2))(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f(10))(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T0 = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f(9))(6s)(6p), but these configurations are not consistent with the large Re's (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f(10))(6p3/2,1/2), (4f(10))(6p3/2,3/2), and (4f(9))(6s)(6p3/2,1/2) at around 3 eV. The former two states have larger Re (3.88 a.u.) than the third, so that it is reasonable to assign (4f(10))(6p3/2,1/2) to [19.3]8.5 and (4f(10))(6p3/2,3/2) to [20.3]8.5. PMID:25747086

  7. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods

    SciTech Connect

    Yamamoto, Shigeyoshi; Tatewaki, Hiroshi

    2015-03-07

    The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f{sup 9})(6s{sup 2})(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f{sup 10})(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T{sub 0} = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f{sup 9})(6s)(6p), but these configurations are not consistent with the large R{sub e}’s (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f{sup 10})(6p{sub 3/2,1/2}), (4f{sup 10})(6p{sub 3/2,3/2}), and (4f{sup 9})(6s)(6p{sub 3/2,1/2}) at around 3 eV. The former two states have larger R{sub e} (3.88 a.u.) than the third, so that it is reasonable to assign (4f{sup 10})(6p{sub 3/2,1/2}) to [19.3]8.5 and (4f{sup 10})(6p{sub 3/2,3/2}) to [20.3]8.5.

  8. 77 FR 68829 - Certain Electronic Digital Media Devices and Components Thereof; Notice of Request for Statements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... by respondents Samsung Electronics Co, Ltd. of Korea; Samsung Electronics America, Inc. of Ridgefield Park, New Jersey; and Samsung Telecommunications America, LLC of Richardson, Texas (collectively ``Samsung''), and cease and desist orders against Samsung. FOR FURTHER INFORMATION CONTACT: Cathy...

  9. Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Presti, Massimo; Michalopoulos, Panagiotis

    2008-04-01

    Previous studies have shown how biogenic silica particles undergo conversion to aluminosilicate phases in large tropical deltaic systems, thus affecting the world ocean budget of major seawater cations. This study tackles the important question of the silica budget in the coastal zone of the Mississippi River Delta, providing evidence for the role of biogenic silica diagenesis in this subtropical system from direct examination of individual diatom particles, sediment leachates and pore-water composition. The estimated reactive silica stored in the study area (5990 km 2) is based on operational leaches that account for altered biogenic silica particles and other authigenic aluminosilicate phases in addition to fresh biogenic silica. Early diagenesis of silica in the delta front occurs mainly where more siliceous material is deposited. An inner-shelf area, where hypoxic conditions are found, significantly contributes to the formation of authigenic products of Si alteration. Data suggest that the limiting factor of silica alteration processes is the availability of detrital phases such as Al and Fe. The estimated total reactive silica accumulation in the study area is 1.45×10 10 mol Si year -1, representing ˜2.2% of the long-term bulk sediment accumulation. On the basis of a conservative appraisal, the authigenic mineral components account for ˜40% of the long-term reactive silica storage. This study shows that non-tropical deltaic systems are significantly more important sinks of silica than previously thought and that, where conditions are favourable, a consistent portion of reactive silica not leaving the shelf is stored within the delta in the form of authigenic components.

  10. Mass-specific optical absorption coefficients and imaginary part of the complex refractive indices of mineral dust components measured by a multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2015-01-01

    Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.

  11. 32 CFR 21.565 - Must DoD Components' electronic systems accept Data Universal Numbering System (DUNS) numbers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Must DoD Components' electronic systems accept Data Universal Numbering System (DUNS) numbers? 21.565 Section 21.565 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Information Reporting...

  12. 32 CFR 21.565 - Must DoD Components' electronic systems accept Data Universal Numbering System (DUNS) numbers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Must DoD Components' electronic systems accept Data Universal Numbering System (DUNS) numbers? 21.565 Section 21.565 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Information Reporting...

  13. 32 CFR 21.565 - Must DoD Components' electronic systems accept Data Universal Numbering System (DUNS) numbers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Must DoD Components' electronic systems accept Data Universal Numbering System (DUNS) numbers? 21.565 Section 21.565 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Information Reporting...

  14. 32 CFR 21.565 - Must DoD Components' electronic systems accept Data Universal Numbering System (DUNS) numbers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Must DoD Components' electronic systems accept Data Universal Numbering System (DUNS) numbers? 21.565 Section 21.565 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Information Reporting...

  15. 32 CFR 21.565 - Must DoD Components' electronic systems accept Data Universal Numbering System (DUNS) numbers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Must DoD Components' electronic systems accept Data Universal Numbering System (DUNS) numbers? 21.565 Section 21.565 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Information Reporting...

  16. Evaluation of temperatures attained by electronic components during various manual soldering operations

    NASA Astrophysics Data System (ADS)

    Dunn, B. D.; Hilbrands, G.; Nielsen, P. J.

    1983-03-01

    After component-failure analyses showed that defective spacecraft devices were overheated during soldering, it was verified that quality-assurance personnel omitted to control pretinning-bath and soldering iron temperatures, so data were acquired under controlled processing conditions. Component temperature rises were recorded during degolding, pretinning, soldering and the reworking of soldered joints. Results show that existing ESA specifications for manual soldering and repair ensure that the maximum temperature ratings ascribed to standard spacecraft components are not exceeded. Application of heat sinks to certain delicate components during degolding is essential, and it can be advantageous to apply them during pretinning and other soldering operations.

  17. Slowly moving test charge in two-electron component non-Maxwellian plasma

    SciTech Connect

    Ali, S.; Eliasson, B.

    2015-08-15

    Potential distributions around a slowly moving test charge are calculated by taking into account the electron-acoustic waves in an unmagnetized plasma. Considering a neutralizing background of static positive ions, the supra-thermal hot and cold electrons are described by the Vlasov equations to account for the Kappa (power-law in velocity space) and Maxwell equilibrium distributions. Fourier analysis further leads to the derivation of electrostatic potential showing the impact of supra-thermal hot electrons. The test charge moves slowly in comparison with the hot and cold electron thermal speeds and is therefore shielded by the electrons. This gives rise to a short-range Debye-Hückel potential decaying exponentially with distance and to a far field potential decaying as inverse third power of the distance from the test charge. The results are relevant for both laboratory and space plasmas, where supra-thermal hot electrons with power-law distributions have been observed.

  18. Electron Paramagnetic Resonance of Nitrogenase and Nitrogenase Components from Clostridium pasteurianum W5 and Azotobacter vinelandii OP

    PubMed Central

    Orme-Johnson, W. H.; Hamilton, W. D.; Jones, T. L.; Tso, M.-Y. W.; Burris, R. H.; Shah, V. K.; Brill, W. J.

    1972-01-01

    The electron paramagnetic resonance of nitrogenase components, separately and together with the other reactants in the nitrogenase system (namely, reductant and Mg·ATP), have been examined at low temperatures (<20°K). The MoFe protein, component I or molybdoferredoxin, in the oxidized (but not oxygen-inactivated) state yields signals with g-values of 4.3, 3.7, and 2.01, and when reduced has no observable electron paramagnetic resonance. The Fe protein, component II, or azoferredoxin, yields a signal with g-values of 2.05, 1.94, and 1.89 in the reduced state that is converted by Mg·ATP into an axial signal with g-values near 2.05 and 1.94, and a second split signal near g = 4.3. The Fe protein has no definite electron paramagnetic resonance in the oxidized (not oxygen-denatured) state under these conditions. The Mg·ATP complex of reduced Fe protein reduces the MoFe protein, whereas dithionite alone does not reduce the MoFe protein. Reoxidation of the system by substrate leads to disappearance of the Fe protein signal and the reappearance of the MoFe protein signal. Thus Mg·ATP, which is hydrolyzed during substrate reduction, converts the Fe protein to a reductant capable of transferring electrons to MoFe protein, after which substrate reduction occurs. PMID:4343957

  19. Component-Level Electronic-Assembly Repair (CLEAR) Spacecraft Circuit Diagnostics by Analog and Complex Signature Analysis

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Wade, Raymond P.; Izadnegahdar, Alain

    2011-01-01

    The Component-Level Electronic-Assembly Repair (CLEAR) project at the NASA Glenn Research Center is aimed at developing technologies that will enable space-flight crews to perform in situ component-level repair of electronics on Moon and Mars outposts, where there is no existing infrastructure for logistics spares. These technologies must provide effective repair capabilities yet meet the payload and operational constraints of space facilities. Effective repair depends on a diagnostic capability that is versatile but easy to use by crew members that have limited training in electronics. CLEAR studied two techniques that involve extensive precharacterization of "known good" circuits to produce graphical signatures that provide an easy-to-use comparison method to quickly identify faulty components. Analog Signature Analysis (ASA) allows relatively rapid diagnostics of complex electronics by technicians with limited experience. Because of frequency limits and the growing dependence on broadband technologies, ASA must be augmented with other capabilities. To meet this challenge while preserving ease of use, CLEAR proposed an alternative called Complex Signature Analysis (CSA). Tests of ASA and CSA were used to compare capabilities and to determine if the techniques provided an overlapping or complementary capability. The results showed that the methods are complementary.

  20. High Z effects in accounting for radiative component of the electron magnetic moment in hydrogen-like atoms

    NASA Astrophysics Data System (ADS)

    Sveshnikov, K. A.; Khomovskii, D. I.

    2013-03-01

    The behavior of electron energy levels in hydrogen-like atoms is studied while taking into account the nonperturbative interaction between the radiative component of the magnetic moment of a free electron Δ g free and the Coulomb field of an atomic nucleus with charge Z, including those with Z > 137. It is shown that for Zα ≪ 1 the energy-level shift is rather effectively determined through the matrix elements of the corresponding Dirac-Pauli operator with relativistic Coulomb wave functions. At the same time, for superheavy nuclei with Z ˜ 170, this shift, generated by Δ g free, is genuinely nonperturbative, behaves like ˜ Z 5 near the threshold of negative continuum, exceeds all the estimates of radiative corrections coming from vacuum polarization and electron self-energy known so far, and turns out to be at least of the same order as the effects of nuclear charge screening by filled electron shells.

  1. Finite-element-method study of stresses on simulated electronic components encapsulated in polystyrene-bead foam

    SciTech Connect

    Swanson, G.D.

    1981-03-01

    As part of an encapsulant evaluation for a high voltage electronic assembly, the linear elastic finite element method computer code SASL was used to calculate the stress distribution in an axisymmetric solder joint under load. A simulated electronic component in the form of a thumb tack was used as a physical model to calculate lead wire loads when encapsulated in 0.6 g/cm/sup 3/ polystyrene bead form. The calculated lead wire loads disagreed with previous experimental data. Reanalysis of those data revealed nonlinear effects which were not adequately modeled in the SASL calculation.

  2. Adaptation of components of systems for the computer-aided design of radio-electronic equipment (Review)

    NASA Astrophysics Data System (ADS)

    Anisimov, V. I.; Strel'Nikov, Iu. N.

    1989-01-01

    Current problems in the development of interactive CAD systems for radio-electronic equipment are examined, with emphasis on the general-system properties of the adaptive interaction between system components. A formal analysis of CAD processes is carried out with the aim of developing new concepts, architectural solutions, and system-organization requirements. The basic software and hardware elements of expert CAD systems are described, and examples of their realization are presented.

  3. First principles study on the electronic structures and stability of Cr 7C 3 type multi-component carbides

    NASA Astrophysics Data System (ADS)

    Xiao, B.; Feng, J.; Zhou, C. T.; Xing, J. D.; Xie, X. J.; Chen, Y. H.

    2008-06-01

    First principles calculations were conducted to investigate the stabilities of six multi-component carbides of Cr 7C 3 by calculating the cohesive energy and formation enthalpy of them. The theoretical predictions were compared with the experimental results and they were in agreement with each other. The electronic structures of the six carbides were also calculated in order to provide more information about the relationship between the stability and crystal compositions at atomic scale.

  4. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [examined with a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Campbell, J. E.

    1974-01-01

    The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.

  5. Some Aspects of the Implementation of Double Group Symmetry and Electron Correlation in Molecular 4-Component Calculations

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Arnold, James O. (Technical Monitor)

    1994-01-01

    The efficient implementation of method for electron correlation in molecular 4-component calculations demands that symmetry be exploited where possible. Algorithms for the construction of matrices and the transformation of integrals over symmetry-adapted basis functions, where the point group is restricted to D(sub 2h) and subgroups, will be presented. The merits of keeping the primitive integrals in the scalar basis will be compared with those of transforming them to the 2-spinor basis.

  6. Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere.

    PubMed

    Da Pieve, Fabiana; Stankowski, Martin; Hogan, Conor

    2014-09-15

    Mercury is a hazardous environmental pollutant mobilized from natural sources, and anthropogenically contaminated and disturbed areas. Current methods to assess mobility and environmental impact are mainly based on field measurements, soil monitoring, and kinetic modelling. In order to understand in detail the extent to which different mineral sources can give rise to mercury release it is necessary to investigate the complexity at the microscopic level and the possible degradation/dissolution processes. In this work, we investigated the potential for mobilization of mercury structurally trapped in three relevant minerals occurring in hot spring environments and mining areas, namely, cinnabar (α-HgS), corderoite (α-Hg3S2Cl2), and mercuric chloride (HgCl2). Quantum chemical methods based on density functional theory as well as more sophisticated approaches are used to assess the possibility of a) direct photoreduction and formation of elemental Hg at the surface of the minerals, providing a path for ready release in the environment; and b) reductive dissolution of the minerals in the presence of solutions containing halogens. Furthermore, we study the use of TiO2 as a potential photocatalyst for decontamination of polluted waters (mainly Hg(2+)-containing species) and air (atmospheric Hg(0)). Our results partially explain the observed pathways of Hg mobilization from relevant minerals and the microscopic mechanisms behind photocatalytic removal of Hg-based pollutants. Possible sources of disagreement with observations are discussed and further improvements to our approach are suggested. PMID:24982025

  7. The future of knowledge-based components in the electronic health record.

    PubMed

    Broverman, C A; Schlesinger, J M; Sperzel, W D; Kapusnik-Uner, J

    1998-01-01

    Traditional monolithic healthcare information systems (HIS) no longer meet the requirements of today's distributed enterprises and the rapidly changing healthcare environment. The ability of applications to communicate, interpret, and act intelligently upon complex healthcare information has assumed paramount importance. The future lies in the development of flexible component-based architectures that can operate seamlessly within the workflow of a healthcare environment. A key design goal is "graceful degradation," i.e., providing the best decision support possible within the context of available patient data. The First DataBank Drug Toolkit is used as a case study. Several technical challenges associated with building truly plug and play components are discussed. PMID:10384498

  8. Irradiation effects in electronic components of the RPC trigger for the CMS experiment

    NASA Astrophysics Data System (ADS)

    Bunkowski, Karol; Kassamakov, Ivan I.; Krolikowski, J.; Kierzkowski, Krzysztof; Kudla, Maciej I.; Maenpaa, Teppo; Pozniak, Krzysztof T.; Rybka, Dominik; Tuominen, Eija; Ungaro, Donatella; Zabolotny, Wojciech M.

    2004-07-01

    The results of proton radiation test of electronic devices for RPC trigger electronic system of CMS detector are presented. For Xilinx Spartan-IIE FPGA the cross section for Single Event Upsets (SEUs) in configuration bits was measured. The dynamic SEUs in flip-flops was also investigated, but not observed. For the FLASH memories no single upsets were detected, but after a huge dose permanent damages of devices were observed. For SDRAM memories, the SEU cross section was measured. A brief description of radiation inducted effects in FPGAs, SRAM and FLASH memories is also presented.

  9. Electronic structure of CeO studied by a four-component relativistic configuration interaction method.

    PubMed

    Moriyama, Hiroko; Tatewaki, Hiroshi; Yamamoto, Shigeyoshi

    2013-06-14

    We studied the ground and excited states of CeO using the restricted active space CI method in the energy range below 25,000 cm(-1). Energy levels are computed to within errors of 2700 cm(-1). Electron correlation effects arising from the ionic core composed of Ce5s, 5p, 4f(*), 5d(*), and O2s, 2p spinors play crucial role to CeO spectra, as well as correlation effects of electrons distributed in the valence Ce 4f, 5d, 6s, and 6p spinors. Here, 4f(*) and 5d(*) denote spinors expanded to describe electron polarization between Ce and O. A bonding mechanism is proposed for CeO. As the two separate atoms in their ground states, Ce(4f(1)5d(1)6s(2))(1)G4 and O(2s(2)2p(4))(3)P2, approach each other, a CeO(2+) core is formed by two-electron transfer from Ce5d, 6s to O2p. Inside this ellipsoidal ion, a valence bond between Ce5p and O2s and an ionic bond between O2p and Ce5p are formed with back-donation through Ce 4f(*) and 5d(*). PMID:23781798

  10. Electronic Components, Transducers, and Basic Circuits. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Mowery, Donald R.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed for the purpose of training technicians in the use of electronic instruments and their applications. The program integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and…

  11. Control of Vertebrate Skeletal Mineralization by Polyphosphates

    PubMed Central

    Omelon, Sidney; Georgiou, John; Henneman, Zachary J.; Wise, Lisa M.; Sukhu, Balram; Hunt, Tanya; Wynnyckyj, Chrystia; Holmyard, Douglas; Bielecki, Ryszard; Grynpas, Marc D.

    2009-01-01

    Background Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO3−)n) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. Principal Findings/Methodology The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO43−) concentration while permitting the accumulation of a high total PO43− concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO43− and free

  12. In-situ formation of multiphase electron beam physical vapor deposited barrier coatings for turbine components

    DOEpatents

    Subramanian, Ramesh

    2001-01-01

    A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32' or 34') covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.

  13. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1

    PubMed Central

    Althoff, Thorsten; Mills, Deryck J; Popot, Jean-Luc; Kühlbrandt, Werner

    2011-01-01

    The respiratory chain in the inner mitochondrial membrane contains three large multi-enzyme complexes that together establish the proton gradient for ATP synthesis, and assemble into a supercomplex. A 19-Å 3D map of the 1.7-MDa amphipol-solubilized supercomplex I1III2IV1 from bovine heart obtained by single-particle electron cryo-microscopy reveals an amphipol belt replacing the membrane lipid bilayer. A precise fit of the X-ray structures of complex I, the complex III dimer, and monomeric complex IV indicates distances of 13 nm between the ubiquinol-binding sites of complexes I and III, and of 10–11 nm between the cytochrome c binding sites of complexes III and IV. The arrangement of respiratory chain complexes suggests two possible pathways for efficient electron transfer through the supercomplex, of which the shorter branch through the complex III monomer proximal to complex I may be preferred. PMID:21909073

  14. Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component

    NASA Technical Reports Server (NTRS)

    Rashford, Robert A.; Perrygo, Charles M.; Garrison, Matthew B.; White, Bryant K.; Threat, Felix T.; Quijada, Manuel A.; Jeans, James W.; Huber, Frank K.; Bousquet, Robert R.; Shaw, Dave

    2011-01-01

    A document discusses a thermal radiator design consisting of lightweight composite materials and low-emittance metal coatings for use on the James Webb Space Telescope (JWST) structure. The structure will have a Thermal Subsystem unit to provide passive cooling to the Integrated Science Instrument Module (ISIM) control electronics. The ISIM, in the JWST observatory, is the platform that provides the mounting surfaces for the instrument control electronics. Dissipating the control electronic generated-heat away from JWST is of paramount importance so that the spacecraft s own heat does not interfere with the infrared-light gathering of distant cosmic sources. The need to have lateral control in the emission direction of the IEC (ISIM Electronics Compartment) radiators led to the development of a directional baffle design that uses multiple curved mirrorlike surfaces. This concept started out from the so-called Winston non-imaging optical concentrators that use opposing parabolic reflector surfaces, where each parabola has its focus at the opposite edge of the exit aperture. For this reason they are often known as compound parabolic concentrators or CPCs. This radiator system with the circular section was chosen for the IEC reflectors because it offers two advantages over other designs. The first is that the area of the reflector strips for a given radiator area is less, which results in a lower mass baffle assembly. Secondly, the fraction of energy emitted by the radiator strips and subsequently reflected by the baffle is less. These fewer reflections reduced the amount of energy that is absorbed and eventually re-emitted, typically in a direction outside the design emission range angle. A baffle frame holds the mirrors in position above a radiator panel on the IEC. Together, these will direct the majority of the heat from the IEC above the sunshield away towards empty space.

  15. Degradation of Silicone Oils Exposed to Geostationary Environment Components: Ultraviolet Radiations and Electron Flux

    NASA Astrophysics Data System (ADS)

    Jochem, H.; Rejsek-Riba, V.; Maerten, E.; Baceiredo, A.; Remaury, S.

    Degradation of polydimethylsiloxane and vinyl-terminated polydimethylsiloxane oils exposed to UV radiation or 1.25 MeV electron flux was investigated using EPR, GC Headspace, NMR, GPC and UV-vis-NIR spectroscopy. To examine the influence of synthetic method, these two oils were prepared by ring opening polymerization using either an inorganic initiator KOH or an organic catalyst N-Heterocyclic carbene. Under UV radiation, any chemical change is observed for polydimethylsiloxane, whereas vinyl-terminated polydimethylsiloxane presents a decrease of vinyl functions and an increase of chain length. Both polydimethylsiloxane and vinyl terminated polydimethylsiloxane demonstrated a degradation of thermo-optical properties, more significant for oils synthesized with organic catalyst. By improving oil purification, the degradation of thermo-optical properties can be reduced. Effects of electron flux are similar for each oil, thus independently of synthetic method and end functions. Electron flux generates important chemical damages initiated by homolytic chain scissions. Radical recombination produces gases (methane and ethane), new functions (Si-H) and bonds across silicone chains leading to a solid state material. Crosslinking of chains occurs by formation of R-Si-(O)3 and Si-CH2-Si groups. Silyl radicals are trapped in the polymer network and can be detected even 1 week after the end of irradiation.

  16. Anisotropy of the electron component in a cylindrical magnetron discharge. II. Application to real magnetron discharge.

    PubMed

    Porokhova, I A; Golubovskii, Yu B; Behnke, J F

    2005-06-01

    The physical processes occurring in electrode regions and the positive column of a cylindrical magnetron discharge in crossed electric and magnetic fields are investigated based on the solution of the Boltzmann kinetic equation by a multiterm decomposition of the electron phase space distribution function in terms of spherical tensors. The influence of the distribution function anisotropy on the absolute values and radial profiles of the electron density and rates of various transport and collision processes is analyzed. The spiral lines for the directed particle and energy transport are obtained to illustrate the anisotropy effects in dependence on the magnetic field. The electron equipressure surfaces are constructed in the form of ellipsoids of pressure and their transformation in the cathode and anode regions is studied. A strong anisotropy of the energy flux tensor in contrast to a weak anisotropy of the momentum flux density tensor is found. Particular results are obtained for the cylindrical magnetron discharge in argon at pressure 3 Pa, current 200 mA, and magnetic fields ranging within 100 and 400 G. PMID:16089880

  17. Homologous electron transport components fail to increase fatty acid hydroxylation in transgenic Arabidopsis thaliana

    PubMed Central

    Wayne, Laura L.; Browse, John

    2013-01-01

    Ricinoleic acid, a hydroxylated fatty acid (HFA) present in castor ( Ricinus communis) seeds, is an important industrial commodity used in products ranging from inks and paints to polymers and fuels. However, due to the deadly toxin ricin and allergens also present in castor, it would be advantageous to produce ricinoleic acid in a different agricultural crop. Unfortunately, repeated efforts at heterologous expression of the castor fatty acid hydroxylase (RcFAH12) in the model plant Arabidopsis thaliana have produced only 17-19% HFA in the seed triacylglycerols (TAG), whereas castor seeds accumulate up to 90% ricinoleic acid in the endosperm TAG. RcFAH12 requires an electron supply from NADH:cytochrome b5 reductase (CBR1) and cytochrome b5 (Cb5) to synthesize ricinoleic acid. Previously, our laboratory found a mutation in the Arabidopsis CBR1 gene, cbr1-1, that caused an 85% decrease in HFA levels in the RcFAH12 Arabidopsis line. These results raise the possibility that electron supply to the heterologous RcFAH12 may limit the production of HFA. Therefore, we hypothesized that by heterologously expressing RcCb5, the reductant supply to RcFAH12 would be improved and lead to increased HFA accumulation in Arabidopsis seeds. Contrary to this proposal, heterologous expression of the top three RcCb5 candidates did not increase HFA accumulation. Furthermore, coexpression of RcCBR1 and RcCb5 in RcFAH12 Arabidopsis also did not increase in HFA levels compared to the parental lines. These results demonstrate that the Arabidopsis electron transfer system is supplying sufficient reductant to RcFAH12 and that there must be other bottlenecks limiting the accumulation of HFA. PMID:24555099

  18. Extraction of mineral elements from inedible wastes of biological components of a life-support system and their utilization for plant nutrition.

    PubMed

    Gribovskaya, I V; Gladchenko, I A; Zinenko, G K

    1996-01-01

    Two methods of extracting mineral elements from otherwise deadlock products of a life-support system are presented. We describe first optimum conditions for recovering elements by water extraction from dry wastes of plants, biomass ash, and solid human wastes after passing them through the catalytic furnace; and, second, we describe acid extracts of biogenous elements by 1N and 2N HNO3 from these products. Ways to use the extracts of elements in plant nutrition are considered in order to increase the extent to which the mineral loop of a life-support system can be closed. PMID:11538819

  19. Extraction of mineral elements from inedible wastes of biological components of a life-support system and their utilization for plant nutrition

    NASA Astrophysics Data System (ADS)

    Gribovskaya, I. V.; Gladchenko, I. A.; Zinenko, G. K.

    Two methods of extracting mineral elements from otherwise deadlock products of a life-support system are presented. We describe first optimum conditions for recovering elements by water extraction from dry wastes of plants, biomass ash, and solid human wastes after passing them through the catalytic furnace; and, second, we describe acid extracts of biogenous elements by 1N and 2N HNO_3 from these products. Ways to use the extracts of elements in plant nutrition are considered in order to increase the extent to which the mineral loop of a life-support system can be closed.

  20. Decoloration and mineralization of reactive dyes using electron beam irradiation, Part I: Effect of the dye structure, concentration and absorbed dose (single, binary and ternary systems)

    NASA Astrophysics Data System (ADS)

    Vahdat, Ali; Bahrami, S. Hajir; Arami, M.; Bahjat, A.; Tabakh, F.; Khairkhah, M.

    2012-07-01

    In this study, three different reactive dyes (C.I. Reactive Red 4, C.I. Reactive Blue 2 and C.I. Reactive Yellow 4) and their blend solutions were irradiated with 10 MeV electron beam. Effect of absorbed dose, dye structure and primary solution concentrations on the pH value changes, degree of decoloration and chemical oxygen demand (COD) removal of solutions were investigated. Results show that this method is effective in decomposition and decoloration of the dyes solutions. This method can be applied in mineralization of wastewater containing different dyes.

  1. Elemental electron energy loss mapping of a precipitate in a multi-component aluminium alloy.

    PubMed

    Mørtsell, Eva A; Wenner, Sigurd; Longo, Paolo; Andersen, Sigmund J; Marioara, Calin D; Holmestad, Randi

    2016-07-01

    The elemental distribution of a precipitate cross section, situated in a lean Al-Mg-Si-Cu-Ag-Ge alloy, has been investigated in detail by electron energy loss spectroscopy (EELS) and aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). A correlative analysis of the EELS data is connected to the results and discussed in detail. The energy loss maps for all relevant elements were recorded simultaneously. The good spatial resolution allows elemental distribution to be evaluated, such as by correlation functions, in addition to being compared with the HAADF image. The fcc-Al lattice and the hexagonal Si-network within the precipitates were resolved by EELS. The combination of EELS and HAADF-STEM demonstrated that some atomic columns consist of mixed elements, a result that would be very uncertain based on one of the techniques alone. EELS elemental mapping combined with a correlative analysis have great potential for identification and quantification of small amounts of elements at the atomic scale. PMID:27124585

  2. Component Interactions and Electron Transfer in Toluene/o-Xylene Monooxygenase

    PubMed Central

    2015-01-01

    The multicomponent protein toluene/o-xylene monooxygenase (ToMO) activates molecular oxygen to oxidize aromatic hydrocarbons. Prior to dioxygen activation, two electrons are injected into each of two diiron(III) units of the hydroxylase, a process that involves three redox active proteins: the ToMO hydroxylase (ToMOH), Rieske protein (ToMOC), and an NADH oxidoreductase (ToMOF). In addition to these three proteins, a small regulatory protein is essential for catalysis (ToMOD). Through steady state and pre-steady state kinetics studies, we show that ToMOD attenuates electron transfer from ToMOC to ToMOH in a concentration-dependent manner. At substoichiometric concentrations, ToMOD increases the rate of turnover, which we interpret to be a consequence of opening a pathway for oxygen transport to the catalytic diiron center in ToMOH. Excess ToMOD inhibits steady state catalysis in a manner that depends on ToMOC concentration. Through rapid kinetic assays, we demonstrate that ToMOD attenuates formation of the ToMOC–ToMOH complex. These data, coupled with protein docking studies, support a competitive model in which ToMOD and ToMOC compete for the same binding site on the hydroxylase. These results are discussed in the context of other studies of additional proteins in the superfamily of bacterial multicomponent monooxygenases. PMID:25402597

  3. Designs for optical components related to the Los Alamos Free-Electron Laser

    SciTech Connect

    Byrd, D.A.; Bender, S.C.

    1993-07-01

    Several optomechanical tasks for the Los Alamos National Laboratory`s (LANL) Free-Electron Laser (FEL) were set by the envisioned project goals as early as 1988. Unfortunately, the FEL project has been set aside due to funding constraints. The tasks reported on here required extensive modeling for final adaptability into the FEL environment. The systems to be described are best identified as (1) a Brewster attenuation device, (2) an optical mode relay lens system, (3) a spectral harmonics band-filtering system, (4) a 25-nm micropulse spectrometer system, (5) a 12.5-nm micropulse spectrometer system, (6) a 0.6-nm micropulse spectrometer system, and (7) a reflective mode profile rotator. The Brewster attenuation device was successfully used inside the FEL resonator. The optical mode relay lens system, spectral harmonics band filtering system, and reflective mode profile rotator were completed but never used. The 25-nm micropulse spectrometer was optically and mechanically completed, but the detector electronics were never finished. The 12.5- and 0.6-nm micropulse spectrometers were never assembled, due to hardware that was common to the 25-nm system. These systems will be described in the order listed above. The nominal wavelength of operation for the listed systems is 3.0 {mu}m, except for the harmonics filtering which works on the subharmonics of 3.0 {mu}m. All of these systems were operated remotely due to the harsh radioactive/x-ray optical environment during FEL operation.

  4. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria

  5. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry.

    PubMed

    Fanood, Mohammad M Rafiee; Ram, N Bhargava; Lehmann, C Stefan; Powis, Ivan; Janssen, Maurice H M

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron-ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2-4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140

  6. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fanood, Mohammad M. Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-06-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron-ion coincidence imaging spectrometer. As proof of concept, vapours containing ~1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2-4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument.

  7. Ion-acoustic double layers in a five component cometary plasma with kappa described electrons and ions

    NASA Astrophysics Data System (ADS)

    Michael, Manesh; Venugopal, C.; Sreekala, G.; Willington, Neethu Theresa; Sebastian, Sijo

    2016-07-01

    We investigate the propagation characteristics of Ion-acoustic solitons and double layers in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdV and modified KdV equations are derived for the system and its solution is plotted for different kappa values and negatively charged oxygen ion densities. It is found that the strength of double layer increases with increasing spectral indices. It, however, decreases with increasing negatively charged oxygen ion densities. The parameter for the transition from compressive to rarefactive soliton is also specified. The presence of negatively charged oxygen ions can significantly affect the nonlinearity coefficients (both quadratic and cubic) of a double layer.

  8. Quantum diffraction and shielding effects on the low-energy electron-ion bremsstrahlung in two-component semiclassical plasmas

    SciTech Connect

    Lee, Myoung-Jae; Jung, Young-Dae

    2015-10-15

    The quantum diffraction and shielding effects on the low-energy bremsstrahlung process are investigated in two-component semiclassical plasmas. The impact-parameter analysis with the micropotential taking into account the quantum diffraction and shielding effects is employed to obtain the electron-ion bremsstrahlung radiation cross section as a function of the de Broglie wavelength, density parameter, impact parameter, photon energy, and projectile energy. The result shows that the influence of quantum diffraction and shielding strongly suppresses the bremsstrahlung radiation spectrum in semiclassical plasmas. It is found that the quantum diffraction and shielding effects have broaden the photon emission domain. It is also found that the photon emission domain is almost independent of the radiation photon energy. In addition, it is found that the influence of quantum diffraction and shielding on the bremsstrahlung spectrum decreases with an increase of the projectile energy. The density effect on the electron-ion bremsstrahlung cross section is also discussed.

  9. Application of Scanning Electron Microscopy/Energy-Dispersive X-Ray Spectroscopy for Characterization of Detrital Minerals in Karst Cave Speleothems.

    PubMed

    Zupančič, Nina; Miler, Miloš; Šebela, Stanka; Jarc, Simona

    2016-02-01

    Micro-scale observations in karst caves help to identify different processes that shaped local morphology. Scanning electron microscopy/energy-dispersive X-ray spectroscopy inspection of speleothems from two karst caves in Slovenia, Predjama and Črna Jama, confirmed the presence of sub-angular to sub-rounded detrital fragments of clay minerals, feldspars, quartz, Fe-oxides/hydroxides, rutile and Nb-rutile, xenotime, kassite, allanite, fluorapatite, epidote, ilmenite, monazite, sphene, and zircon, between 2 and 50 μm across. These occur in porous layers separating calcite laminae in the clayey coating on the layer below the surface of the speleothems, and are also incorporated within actual crystals. It is likely that they are derived from the weathered rocks of the Eocene flysch. Probably they were first transported into the caves by floodwaters forming cave sediments. Later, depending upon the climate conditions, they were moved by air currents or by water to the surface of active speleothems. They might also be redeposited from overlying soils enriched with wind-transported minerals from the flysch, or from higher passages filled with weathered flysch sediment, by drip water percolating through the fissured limestone. As some of the identified minerals are carriers of rare earth elements, Ti and Zr, their presence could affect any palaeoclimatic interpretations that are based upon the geochemical composition of the speleothems. PMID:26914996

  10. Electronic Nose Based on Independent Component Analysis Combined with Partial Least Squares and Artificial Neural Networks for Wine Prediction

    PubMed Central

    Aguilera, Teodoro; Lozano, Jesús; Paredes, José A.; Álvarez, Fernando J.; Suárez, José I.

    2012-01-01

    The aim of this work is to propose an alternative way for wine classification and prediction based on an electronic nose (e-nose) combined with Independent Component Analysis (ICA) as a dimensionality reduction technique, Partial Least Squares (PLS) to predict sensorial descriptors and Artificial Neural Networks (ANNs) for classification purpose. A total of 26 wines from different regions, varieties and elaboration processes have been analyzed with an e-nose and tasted by a sensory panel. Successful results have been obtained in most cases for prediction and classification. PMID:22969387

  11. Directed self-assembly of mesoscopic electronic components into sparse arrays with controlled orientation using diamagnetic levitation

    NASA Astrophysics Data System (ADS)

    Tkachenko, Anton; Lu, James J.-Q.

    2015-07-01

    This paper presents a directed self-assembly (DSA) approach for assembling small electronic components, such as semiconductor dies, into sparse 2D arrays using diamagnetic levitation. The dies attached to a diamagnetic layer can be levitated at a room temperature over a stage made of magnets arranged in a checkerboard pattern. By selecting a proper die design, levitation height, and vibration pattern of the magnetic stage we assemble the dies into a regular 2D array with a specific lateral and vertical orientation of the dies. The assembled dies are transferred to a receiving substrate using capillary force.

  12. Liquid on Paper: Rapid Prototyping of Soft Functional Components for Paper Electronics

    PubMed Central

    Long Han, Yu; Liu, Hao; Ouyang, Cheng; Jian Lu, Tian; Xu, Feng

    2015-01-01

    This paper describes a novel approach to fabricate paper-based electric circuits consisting of a paper matrix embedded with three-dimensional (3D) microchannels and liquid metal. Leveraging the high electric conductivity and good flowability of liquid metal, and metallophobic property of paper, it is possible to keep electric and mechanical functionality of the electric circuit even after a thousand cycles of deformation. Embedding liquid metal into paper matrix is a promising method to rapidly fabricate low-cost, disposable, and soft electric circuits for electronics. As a demonstration, we designed a programmable displacement transducer and applied it as variable resistors and pressure sensors. The unique metallophobic property, combined with softness, low cost and light weight, makes paper an attractive alternative to other materials in which liquid metal are currently embedded. PMID:26129723

  13. Pb-free surface-finishing on electronic components' terminals for Pb-free soldering assembly

    SciTech Connect

    Tanaka, Hitoshi; Tanimoto, Morimasa; Matsuda, Akira; Uno, Takeo; Kurihara, Masaaki; Shiga, Shoji

    1999-11-01

    Pb-free solderable surface finishing is essential to implement Pb-free solder assembly in order to meet with the growing demand of environmental consciousness to eliminate Pb from electronic products. Two types of widely applicable Pb-free surface finishing technologies are developed. One is the multilayer-system including Pd with Ni undercoat. Heat-resistance of Pd enables whole-surface-plating on to leadframe before IC-assembling process. The other is the double-layer-system with low-melting-point-materials, for example, thicker Sn underlayer and thinner Sn-Bi alloy overlayer, dilutes Sn-Bi alloy's defects of harmful reactivity along with substrate metal and mechanical brittleness with keeping its advantages of solder-wettability and no whisker.

  14. Anisotropy of the electron component in a cylindrical magnetron discharge. I. Theory of the multiterm analysis.

    PubMed

    Porokhova, I A; Golubovskii, Yu B; Behnke, J F

    2005-06-01

    A general multiterm representation of the phase space electron distribution function in terms of spherical tensors is used to solve the Boltzmann kinetic equation in crossed electric and magnetic fields. The problem is formulated for an axisymmetric cylindrical magnetron discharge with the homogeneous magnetic field being directed axially and the electric field between the coaxial cathode and anode varying in radius only. A spherical harmonic representation of the velocity distribution function in Cartesian coordinates becomes especially cumbersome in the presence of the magnetic field. In contrast, the employment of a spherical tensor representation leads to a compact hierarchy of equations that accurately take into account the spatial inhomogeneities and anisotropy of the plasma in crossed fields. To describe the spatially inhomogeneous plasma the hierarchy of the kinetic equations is formulated in terms of the total energy and the radial coordinate. Appropriate boundary conditions at the electrodes for the tensor expansion coefficients are obtained. PMID:16089879

  15. Specialty Task Force: A Strategic Component to Electronic Health Record (EHR) Optimization.

    PubMed

    Romero, Mary Rachel; Staub, Allison

    2016-01-01

    Post-implementation stage comes after an electronic health record (EHR) deployment. Analyst and end users deal with the reality that some of the concepts and designs initially planned and created may not be complementary to the workflow; creating anxiety, dissatisfaction, and failure with early adoption of system. Problems encountered during deployment are numerous and can vary from simple to complex. Redundant ticket submission creates backlog for Information Technology personnel resulting in delays in resolving concerns with EHR system. The process of optimization allows for evaluation of system and reassessment of users' needs. A solid and well executed optimization infrastructure can help minimize unexpected end-user disruptions and help tailor the system to meet regulatory agency goals and practice standards. A well device plan to resolve problems during post implementation is necessary for cost containment and to streamline communication efforts. Creating a specialty specific collaborative task force is efficacious and expedites resolution of users' concerns through a more structured process. PMID:27332478

  16. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy

    NASA Astrophysics Data System (ADS)

    Weinbruch, Stephan; Worringen, Annette; Ebert, Martin; Scheuvens, Dirk; Kandler, Konrad; Pfeffer, Ulrich; Bruckmann, Peter

    2014-12-01

    The contribution of the three traffic-related components exhaust, abrasion, and resuspension to kerbside and urban background PM10 and PM1 levels was quantified based on the analysis of individual particles by scanning electron microscopy. A total of 160 samples was collected on 38 days between February and September 2009 at a kerbside and an urban background station in the urban/industrial Ruhr area (Germany). Based on size, morphology, chemical composition and stability under electron bombardment, the 111,003 particles studied in detail were classified into the following 14 particle classes: traffic/exhaust, traffic/abrasion, traffic/resuspension, carbonaceous/organic, industry/metallurgy, industry/power plants, secondary particles, (aged) sea salt, silicates, Ca sulfates, carbonates, Fe oxides/hydroxides, biological particles, and other particles. The traffic/exhaust component consists predominantly of externally mixed soot particles and soot internally mixed with secondary particles. The traffic/abrasion component contains all particles with characteristic tracer elements (Fe, Cu, Ba, Sb, Zn) for brake and tire abrasion. The traffic/resuspension component is defined by the mixing state and comprises all internally mixed particles with a high proportion of silicates or Fe oxides/hydroxides which contain soot or abrasion particles as minor constituent. In addition, silicates and Fe oxides/hydroxides internally mixed with chlorine and sulphur containing particles were also assigned to the traffic/resuspension component. The total contribution of traffic to PM10 was found to be 27% at the urban background station and 48% at the kerbside station, the corresponding values for PM1 are 15% and 39%. These values lie within the range reported in previous literature. The relative share of the different traffic components for PM10 at the kerbside station was 27% exhaust, 15% abrasion, and 58% resuspension (38%, 8%, 54% for PM1). For the urban background, the following

  17. Effects of Odanacatib on bone mineralization density distribution in thoracic spine and femora of ovariectomized adult rhesus monkeys: a quantitative backscattered electron imaging study.

    PubMed

    Fratzl-Zelman, Nadja; Roschger, Paul; Fisher, John E; Duong, Le T; Klaushofer, Klaus

    2013-03-01

    Odanacatib (ODN) has been developed as a selective inhibitor of cathepsin K, the major cysteine protease in osteoclasts. In adult rhesus monkeys, treatment with ODN prevents ovariectomy-induced bone loss in lumbar vertebrae and hip. In this study, we evaluate the effects of ODN on bone mineralization density distribution (BMDD) by quantitative backscattered electron imaging in vertebral spongiosa, distal femoral metaphyseal and cortical shaft from monkeys (aged 16-23 years), treated with vehicle (n=5) or ODN (6 mg/kg, n=4 or 30 mg/kg, n=4, PO daily) for 21 months. Dual-energy X-ray absorptiometry was measured in a subset of distal femoral samples. In lumbar vertebrae there was a shift to higher mineralization in samples from ODN-treated groups, compared to vehicle: CaMean (+4%), CaPeak (+3%), CaWidth (-9%), CaLow (-28%) in the 6 mg/kg group and CaMean (+5.1%, p<0.023), CaPeak (+3.4%, p<0.046), CaWidth (-15.7%, p=0.06) and CaLow (-38.2%, p<0.034) in the 30 mg/kg group. In distal femoral metaphyseal cancellous bone, there was a clear tendency toward a dose-dependent increase in matrix mineralization, as in the spine. However, primary and osteonal bone of the distal cortical diaphyses showed no significant change in BMDD, whereas bone mineral density was significantly increased after treatment. In ovariectomized monkeys, this study shows that ODN treatment increased trabecular BMDD, consistent with its previously reported ability to reduce cancellous remodeling. Here, ODN also showed no changes in BMDD in cortical bone sites, consistent with its actions on maintaining endocortical and stimulating periosteal bone formation. PMID:23179105

  18. Suppression of electron transfer to dioxygen by charge transfer and electron transfer complexes in the FAD-dependent reductase component of toluene dioxygenase.

    PubMed

    Lin, Tzong-Yuan; Werther, Tobias; Jeoung, Jae-Hun; Dobbek, Holger

    2012-11-01

    The three-component toluene dioxygenase system consists of an FAD-containing reductase, a Rieske-type [2Fe-2S] ferredoxin, and a Rieske-type dioxygenase. The task of the FAD-containing reductase is to shuttle electrons from NADH to the ferredoxin, a reaction the enzyme has to catalyze in the presence of dioxygen. We investigated the kinetics of the reductase in the reductive and oxidative half-reaction and detected a stable charge transfer complex between the reduced reductase and NAD(+) at the end of the reductive half-reaction, which is substantially less reactive toward dioxygen than the reduced reductase in the absence of NAD(+). A plausible reason for the low reactivity toward dioxygen is revealed by the crystal structure of the complex between NAD(+) and reduced reductase, which shows that the nicotinamide ring and the protein matrix shield the reactive C4a position of the isoalloxazine ring and force the tricycle into an atypical planar conformation, both factors disfavoring the reaction of the reduced flavin with dioxygen. A rapid electron transfer from the charge transfer complex to electron acceptors further reduces the risk of unwanted side reactions, and the crystal structure of a complex between the reductase and its cognate ferredoxin shows a short distance between the electron-donating and -accepting cofactors. Attraction between the two proteins is likely mediated by opposite charges at one large patch of the complex interface. The stability, specificity, and reactivity of the observed charge transfer and electron transfer complexes are thought to prevent the reaction of reductase(TOL) with dioxygen and thus present a solution toward conflicting requirements. PMID:22992736

  19. Interpreting Al-in Hornblende and Hbl-Plag thermobarometry results from the Tuolumne batholith and magmatic lobes in conjunction with single mineral element distribution electron microprobe maps

    NASA Astrophysics Data System (ADS)

    Memeti, V.; Krause, J.; Anderson, J. L.; Paterson, S. R.

    2009-12-01

    Several recent thermobarometry studies have been conducted on the 95-85 Ma Tuolumne batholith, Sierra Nevada, CA, since Ague & Brimhall (1988) first reported ~2.5-3 kbar pressures and an emplacement depth of ~ 10 km from these sphene bearing granodioritic rocks. Average pressure estimates from more recent reports using the simultaneous solution of the plagioclase-amphibole thermometer by Holland & Blundy (1994), and the temperature corrected Al-in-hornblende barometer by Anderson & Smith (1995) are around 2 kbar, but vary in detail from 2 to 3 kbar. Further complications are revealed on temperature-pressure plots since some results fall below the granite and tonalite solidi and are thus subsolidus in nature. Many recent studies also indicate that single minerals in volcanic and plutonic rocks preserve complex magmatic growth histories, and in one sample or thin section can show heterogeneous mineral chemistries and multiple mineral populations, likely due to recycling and mixing processes occurring in large magma chambers. This implies that the pairing of minerals for thermobarometry calculations and thus the usage of these methods is complicated and requires the prior evaluation of the geochemistry of the individual minerals used for the analyses. We have done pressure and temperature estimates using the thermometer by Holland & Blundy (1994) and the Al-in-hornblende barometer by Anderson & Smith (1995) in conjunction with X-ray electron microprobe element distribution maps of the amphiboles and plagioclase grains used for the thermobarometry. With this approach, we attempt to better control the process of analyses pairing for the calculations since we establish a better awareness of the nature of individual mineral chemistry heterogeneities and the presence of multiple mineral populations. We selected a number of granodiorite samples from the peripheral magmatic lobes of the batholith, which have been determined to represent less complex and shorter lived, local

  20. Electron transport in plasmas with lithium-coated plasma-facing components

    NASA Astrophysics Data System (ADS)

    Jacobson, Craig Michael

    The Lithium Tokamak Experiment (LTX) is a spherical tokamak designed to study the lowrecycling regime through the use of lithium-coated shells conformal to the last closed flux surface (LCFS). A lowered recycling rate is expected to flatten core Te profiles, raise edge Te, strongly affect n e profiles, and enhance confinement. To study these unique plasmas, a Thomson scattering diagnostic uses a ≤ 20 J, 30 ns FWHM pulsed ruby laser to measure Te and ne at 11 radial points on the horizontal midplane, spaced from the magnetic axis to the outer edge at a single temporal point for each discharge. Scattered light is imaged through a spectrometer onto an intensified CCD. The diagnostic is absolutely calibrated using a precision light source and Raman scattering. Measurements of n e are compared with line integrated density measurements from a microwave interferometer. Adequate signal to noise is obtained with ne ≥ 2 x10 18 m--3. Thomson profiles of plasmas following evaporation of lithium onto room-temperature plasmafacing components (PFCs) are used in conjunction with magnetic equilibria as input for TRANSP modeling runs. Neoclassical calculations are used to determine Ti profiles, which have levels that agree with passive charge exchange recombination spectroscopy (CHERS) measurements. TRANSP results for confinement times and stored energies agree with diamagnetic loop measurements. Results of chie result in values as low as 7 m2/s near the core, which rise to around 100 m2/s near the edge. These are the first measurements of chie in LTX, or its predecessor, the Current Drive Experiment-Upgrade (CDX-U), with lithium PFCs.

  1. Investigation of the mineral components of porcelain raw material and their phase evolution during a firing process by using a Rietveld quantitative analysis

    NASA Astrophysics Data System (ADS)

    Kim, Jaegyeom; Heo, Eunae; Kim, Seung-Joo; Kim, Jong-Young

    2016-01-01

    A ceramic raw material for white porcelain and its phase evolution during a firing process were investigated by using Rietveld method based on powder X-ray diffraction data. The raw material was mainly composed of five mineral phases: quartz (SiO2), microcline (KAlSi3O8), albite (NaAlSi3O8), muscovite (KAl2(AlSi3O10)(OH)2), and kaolinite (Al2Si2O5(OH)4). The amount of each mineral phase could be determined by using Rietveld quantitative phase analyses. During the firing process, the microcline, albite, muscovite and kaolinite phases started to react with each other to produce the mullite phase embedded in an amorphous matrix. The amount of quartz remained nearly unchanged until a temperature above 1200 °C; then, it converted to an amorphous phase at higher temperatures.

  2. Hypermineralized whale rostrum as the exemplar for bone mineral.

    PubMed

    Li, Zhen; Pasteris, Jill D; Novack, Deborah

    2013-01-01

    Although bone is a nanocomposite of mineral and collagen, mineral has been the more elusive component of study. A standard for bone mineral is clearly needed. We hypothesized that the most natural, least-processed bone mineral could be retrieved from the most highly mineralized bone. We therefore studied the rostrum of the toothed whale Mesoplodon densirostris, which has the densest recognized bone. Essential to establishment of a standard for bone mineral is the documentation that the proposed tissue is bone-like in all properties except for its remarkably high concentration of mineral. Transmitted-light microscopy of unstained sections of rostral material shows normal bone morphology in osteon geometry, lacunae concentration, and vasculature development. Stained sections reveal extremely low density of thin collagen fibers in most of the bone, but enrichment of thicker collagen fibers around vascular holes and in a minority of osteons. Field-emission scanning electron microscopy shows the rostrum mostly consists of dense mineral prisms. Most rostral areas have the same chemical-structural features, i.e., Raman spectroscopically dominated by strong bands at ∼962 Δcm(-1) and weak bands at ∼2940 Δcm(-1). Spectral features indicate that the rostrum is composed mainly of the calcium phosphate mineral apatite and has only about 4 wt.% organic content. The degree of carbonate substitution (∼8.5 wt.% carbonate) in the apatite is in the upper range found in most types of bone. We conclude that, despite its enamel-like extraordinarily high degree of mineralization, the rostrum is in all other features bone-like. Its mineral component is the long-sought uncontaminated, unaltered exemplar of bone mineral. PMID:23586370

  3. The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis

    NASA Astrophysics Data System (ADS)

    Panfili, Frédéric; Manceau, Alain; Sarret, Géraldine; Spadini, Lorenzo; Kirpichtchikova, Tatiana; Bert, Valérie; Laboudigue, Agnès; Marcus, Matthew A.; Ahamdach, Noureddine; Libert, Marie-Françoise

    2005-05-01

    The maintenance of waterways generates large amounts of dredged sediments, which are deposited on adjacent land surfaces. These sediments are often rich in metal contaminants and present a risk to the local environment. Understanding how the metals are immobilized at the molecular level is critical for formulating effective metal containment strategies such as phytoremediation. In the present work, the mineralogical transformations of Zn-containing phases induced by two graminaceous plants (A grostis tenuis and Festuca rubra) in a contaminated sediment ([Zn] = 4700 mg kg -1, [P 2O 5] = 7000 mg kg -1, pH = 7.8), untreated or amended with hydroxylapatite (AP) or Thomas basic slag (TS), were investigated after two yr of pot experiment by scanning electron microscopy coupled with energy-dispersive spectrometry (SEM-EDS), synchrotron-based X-ray microfluorescence (μ-SXRF), and powder and laterally resolved extended X-ray absorption fine structure (μ-EXAFS) spectroscopy. The number and nature of Zn species were evaluated by principal component (PCA) and least-squares fitting (LSF) analysis of the entire set of μ-EXAFS spectra, which included up to 32 individual spectra from regions of interest varying in chemical composition. Seven Zn species were identified at the micrometer scale: sphalerite, gahnite, franklinite, Zn-containing ferrihydrite and phosphate, (Zn-Al)-hydrotalcite, and Zn-substituted kerolite-like trioctahedral phyllosilicate. Bulk fractions of each species were quantified by LSF of the powder EXAFS spectra to linear combinations of the identified Zn species spectra. In the untreated and unvegetated sediment, Zn was distributed as ˜50% (mole ratio of total Zn) sphalerite, ˜40% Zn-ferrihydrite, and ˜10 to 20% (Zn-Al)-hydrotalcite plus Zn-phyllosilicate. In unvegetated but amended sediments (AP and TS), ZnS and Zn-ferrihydrite each decreased by 10 to 20% and were replaced by Zn-phosphate (˜30˜40%). In the presence of plants, ZnS was almost completely

  4. Design and fabrication of circular and rectangular components for electron-cyclotron-resonant heating of tandem mirror experiment-upgrade

    SciTech Connect

    Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Lang, D.D.; Rubert, R.R.; Pedrotti, L.R.; Stallard, B.W.; Gallagher, N.C. Jr.; Sweeney, D.W.

    1983-11-18

    The electron-cyclotron-resonant heating (ECRH) systems of rectangular waveguides on Tandem Mirror Experiment-Upgrade (TMX-U) operated with a overall efficiency of 50%, each system using a 28-GHz, 200-kW pulsed gyrotron. We designed and built four circular-waveguide systems with greater efficiency and greater power-handling capabilities to replace the rectangular waveguides. Two of these circular systems, at the 5-kG second-harmonic heating locations, have a total transmission efficiency of >90%. The two systems at the 10-kG fundamental heating locations have a total transmission efficiency of 80%. The difference in efficiency is due to the additional components required to launch the microwaves in the desired orientation and polarization with respect to magnetic-field lines at the 10-kG points. These systems handle the total power available from each gyrotron but do not have the arcing limitation problem of the rectangular waveguide. Each system requires several complex components. The overall physical layout and the design considerations for the rectangular and circular waveguide components are described here.

  5. Conceptual Design of Vacuum Chamber for testing of high heat flux components using electron beam as a source

    NASA Astrophysics Data System (ADS)

    Khan, M. S.; Swamy, Rajamannar; Khirwadkar, S. S.; Divertors Division, Prototype

    2012-11-01

    A conceptual design of vacuum chamber is proposed to study the thermal response of high heat flux components under energy depositions of the magnitude and durations expected in plasma fusion devices. It is equipped with high power electron beam with maximum beam power of 200 KW mounted in a stationary horizontal position from back side of the chamber. The electron beam is used as a heat source to evaluate the heat removal capacity, material performance under thermal loads & stresses, thermal fatigue etc on actively cooled mock - ups which are mounted on a flange system which is the front side door of the chamber. The tests mock - ups are connected to a high pressure high temperature water circulation system (HPHT-WCS) operated over a wide range of conditions. The vacuum chamber consists of different ports at different angles to view the mock -up surface available for mock -up diagnostics. The vacuum chamber is pumped with different pumps mounted on side ports of the chamber. The chamber is shielded from X - rays which are generated inside the chamber when high-energy electrons are incident on the mock-up. The design includes development of a conceptual design with theoretical calculations and CAD modelling of the system using CATIA V5. These CAD models give an outline on the complete geometry of HHF test chamber, fabrication challenges and safety issues. FEA analysis of the system has been performed to check the structural integrity when the system is subjected to structural & thermal loads.

  6. Dependence on membrane components of methanogenesis from methyl-CoM with formaldehyde or molecular hydrogen as electron donors.

    PubMed

    Deppenmeier, U; Blaut, M; Gottschalk, G

    1989-12-01

    Methane formation from 2-(methylthio)-ethanesulfonate (methyl-CoM) and H2 by the soluble fraction from the methanogenic bacterium strain Gö1 was stimulated up to tenfold by the addition of the membrane fraction. This stimulation was observed with membranes from various methanogenic species belonging to different phylogenetic families, but not with membranes from Escherichia coli or Acetobacterium woodii. Treatment of the membranes with strong oxidants, i.e. O2 and K3[Fe(CN)6], or with SH reagents, i.e. Ag+, p-chloromercuribenzoate or iodoacetamide, caused an irreversible decrease or loss in stimulatory activity, as did heat treatment at temperatures above 78 degrees C. Methanogenesis from methyl-CoM with formaldehyde instead of H2 as electron donor depended similarly on the membrane fraction. With membranes, 1 mol HCHO was oxidized to 1 mol CO2 and allowed the formation of 2 mol CH4 from 2 mol CH3-CoM. Without membranes, per mol of HCHO oxidized 1 mol H2 was formed and 1 mol CH4 was produced from CH3-CoM; the rate was 10-20% of that in the presence of membranes. When methyl-CoM was replaced by an artificial electron acceptor system consisting of methylviologen and metronidazole, the formaldehyde-oxidizing activity was no longer stimulated by the membrane fraction. These results demonstrate for the first time an essential function of membrane components in methanogenic electron transfer. PMID:2513188

  7. Electronic and optical characteristics of an m-plane GaN single crystal grown by hydride vapor phase epitaxy on a GaN seed synthesized by the ammonothermal method using an acidic mineralizer

    NASA Astrophysics Data System (ADS)

    Kojima, Kazunobu; Tsukada, Yusuke; Furukawa, Erika; Saito, Makoto; Mikawa, Yutaka; Kubo, Shuichi; Ikeda, Hirotaka; Fujito, Kenji; Uedono, Akira; Chichibu, Shigefusa F.

    2016-05-01

    Fundamental electronic and optical properties of a low-resistivity m-plane GaN single crystal, which was grown by hydride vapor phase epitaxy on a bulk GaN seed crystal synthesized by the ammonothermal method in supercritical ammonia using an acidic mineralizer, were investigated. The threading dislocation and basal-plane staking-fault densities of the crystal were around 104 cm-2 and less than 100 cm-1, respectively. Oxygen doping achieved a high electron concentration of 4 × 1018 cm-3 at room temperature. Accordingly, a photoluminescence (PL) band originating from the recombination of hot carriers was observed at low temperatures, even under weak excitation conditions. The simultaneous realization of low-level incorporation of Ga vacancies (VGa) less than 1016 cm-3 was confirmed by using the positron annihilation technique. Consistent with our long-standing claim that VGa complexes are the major nonradiative recombination centers in GaN, the fast-component PL lifetime of the near-band-edge emission at room temperature longer than 2 ns was achieved.

  8. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  9. ePhenotyping for Abdominal Aortic Aneurysm in the Electronic Medical Records and Genomics (eMERGE) Network: Algorithm Development and Konstanz Information Miner Workflow

    PubMed Central

    Borthwick, Kenneth M; Smelser, Diane T; Bock, Jonathan A; Elmore, James R; Ryer, Evan J; Ye, Zi; Pacheco, Jennifer A.; Carrell, David S.; Michalkiewicz, Michael; Thompson, William K; Pathak, Jyotishman; Bielinski, Suzette J; Denny, Joshua C; Linneman, James G; Peissig, Peggy L; Kho, Abel N; Gottesman, Omri; Parmar, Harpreet; Kullo, Iftikhar J; McCarty, Catherine A; Böttinger, Erwin P; Larson, Eric B; Jarvik, Gail P; Harley, John B; Bajwa, Tanvir; Franklin, David P; Carey, David J; Kuivaniemi, Helena; Tromp, Gerard

    2015-01-01

    Background and objective We designed an algorithm to identify abdominal aortic aneurysm cases and controls from electronic health records to be shared and executed within the “electronic Medical Records and Genomics” (eMERGE) Network. Materials and methods Structured Query Language, was used to script the algorithm utilizing “Current Procedural Terminology” and “International Classification of Diseases” codes, with demographic and encounter data to classify individuals as case, control, or excluded. The algorithm was validated using blinded manual chart review at three eMERGE Network sites and one non-eMERGE Network site. Validation comprised evaluation of an equal number of predicted cases and controls selected at random from the algorithm predictions. After validation at the three eMERGE Network sites, the remaining eMERGE Network sites performed verification only. Finally, the algorithm was implemented as a workflow in the Konstanz Information Miner, which represented the logic graphically while retaining intermediate data for inspection at each node. The algorithm was configured to be independent of specific access to data and was exportable (without data) to other sites. Results The algorithm demonstrated positive predictive values (PPV) of 92.8% (CI: 86.8-96.7) and 100% (CI: 97.0-100) for cases and controls, respectively. It performed well also outside the eMERGE Network. Implementation of the transportable executable algorithm as a Konstanz Information Miner workflow required much less effort than implementation from pseudo code, and ensured that the logic was as intended. Discussion and conclusion This ePhenotyping algorithm identifies abdominal aortic aneurysm cases and controls from the electronic health record with high case and control PPV necessary for research purposes, can be disseminated easily, and applied to high-throughput genetic and other studies. PMID:27054044

  10. Non-rigid registration and non-local principle component analysis to improve electron microscopy spectrum images

    NASA Astrophysics Data System (ADS)

    Yankovich, Andrew B.; Zhang, Chenyu; Oh, Albert; Slater, Thomas J. A.; Azough, Feridoon; Freer, Robert; Haigh, Sarah J.; Willett, Rebecca; Voyles, Paul M.

    2016-09-01

    Image registration and non-local Poisson principal component analysis (PCA) denoising improve the quality of characteristic x-ray (EDS) spectrum imaging of Ca-stabilized Nd2/3TiO3 acquired at atomic resolution in a scanning transmission electron microscope. Image registration based on the simultaneously acquired high angle annular dark field image significantly outperforms acquisition with a long pixel dwell time or drift correction using a reference image. Non-local Poisson PCA denoising reduces noise more strongly than conventional weighted PCA while preserving atomic structure more faithfully. The reliability of and optimal internal parameters for non-local Poisson PCA denoising of EDS spectrum images is assessed using tests on phantom data.

  11. Electron microscopic study of a glass-forming water/oil pseudo-three-component microemulsion system

    SciTech Connect

    Green, J.L. )

    1990-07-26

    The development of microemulsion systems that do not break down during cooling and in which neither dispersed nor matrix phases crystallize during the cooling process opens the way to direct studies of the microemulsion structure and also the investigation of the dispersed liquid in unusual states. The authors report the first water-in-oil example of this type of system. It was obtained by partial replacement of water by glycerol and total replacement of normal paraffin by ethylcyclohexane, in the water/oil/didodecyldimethylammonium bromide three-component system. The phase diagram at 25{degree}C indicates a remarkably wide range of clear-phase compositions. A dispersed droplet structure for the water-rich range is unequivocally established by direct electron microscope imaging of the vitrified microemulsion, using the freeze-fracture technique.

  12. All-electron formalism for total energy strain derivatives and stress tensor components for numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Knuth, Franz; Carbogno, Christian; Atalla, Viktor; Blum, Volker; Scheffler, Matthias

    2015-05-01

    We derive and implement the strain derivatives of the total energy of solids, i.e., the analytic stress tensor components, in an all-electron, numeric atom-centered orbital based density-functional formalism. We account for contributions that arise in the semi-local approximation (LDA/GGA) as well as in the generalized Kohn-Sham case, in which a fraction of exact exchange (hybrid functionals) is included. In this work, we discuss the details of the implementation including the numerical corrections for sparse integrations grids which allow to produce accurate results. We validate the implementation for a variety of test cases by comparing to strain derivatives performed via finite differences. Additionally, we include the detailed definition of the overlapping atom-centered integration formalism used in this work to obtain total energies and their derivatives.

  13. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    NASA Astrophysics Data System (ADS)

    Smitka, Martin; Kolková, Z.; Nemec, Patrik; Malcho, M.

    2014-03-01

    One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP) is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980's. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT).

  14. An electron paramagnetic resonance spectroscopy investigation of the retention mechanisms of Mn and Cu in the nanopore channels of three zeolite minerals

    SciTech Connect

    Ferreira, Daniel R.; Schulthess, Cristian P.; Amonette, James E.; Walter, Eric D.

    2012-12-01

    The adsorption mechanisms of divalent cations in zeolite nanopore channels can vary as a function of their pore dimensions. The nanopore inner-sphere enhancement (NISE) theory predicts that ions may dehydrate inside small nanopore channels in order to adsorb more closely to the mineral surface if the nanopore channel is sufficiently small. The results of an electron paramagnetic resonance (EPR) spectroscopy study of Mn and Cu adsorption on the zeolite minerals zeolite Y (large nanopores), ZSM-5 (intermediate nanopores), and mordenite (small nanopores) are presented. The Cu and Mn cations both adsorbed via an outer-sphere mechanism on zeolite Y based on the similarity between the adsorbed spectra and the aqueous spectra. Conversely, Mn and Cu adsorbed via an inner-sphere mechanism on mordenite based on spectrum asymmetry and peak broadening of the adsorbed spectra. However, Mn adsorbed via an outer-sphere mechanism on ZSM-5, whereas Cu adsorbed on ZSM-5 shows a high degree of surface interaction that indicates that it is adsorbed closer to the mineral surface. Evidence of dehydration and immobility was more readily evident in the spectrum of mordenite than ZSM-5, indicating that Cu was not as close to the surface on ZSM-5 as it was when adsorbed on mordenite. Divalent Mn cations are strongly hydrated and are held strongly only in zeolites with small nanopore channels. Divalent Cu cations are also strongly hydrated, but can dehydrate more easily, presumably due to the Jahn-Teller effect, and are held strongly in zeolites with medium sized nanopore channels or smaller.

  15. Investigation of the mechanical performance of Siemens linacs components during arc: gantry, MLC, and electronic portal imaging device

    PubMed Central

    Rowshanfarzad, Pejman; Häring, Peter; Riis, Hans L; Zimmermann, Sune J; Ebert, Martin A

    2015-01-01

    Background In radiotherapy treatments, it is crucial to monitor the performance of linac components including gantry, collimation system, and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments. Methods The EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt, and the sag in leaf bank assembly due to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with five ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of image data. Three Siemens linacs were investigated. Results The average EPID sag was within 1 mm for all tested linacs. Two machines showed >1 mm gantry sag. Changes in the SDD values were within 7.5 mm. EPID skewness and tilt values were <1° in all machines. The maximum sag in leaf bank assembly was <1 mm. Conclusion The method and software developed in this study provide a simple tool for effective investigation of the behavior of Siemens linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Siemens machines. PMID:26604840

  16. Efficient Parallel All-Electron Four-Component Dirac-Kohn-Sham Program Using a Distributed Matrix Approach II.

    PubMed

    Storchi, Loriano; Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Quiney, Harry M

    2013-12-10

    We propose a new complete memory-distributed algorithm, which significantly improves the parallel implementation of the all-electron four-component Dirac-Kohn-Sham (DKS) module of BERTHA (J. Chem. Theory Comput. 2010, 6, 384). We devised an original procedure for mapping the DKS matrix between an efficient integral-driven distribution, guided by the structure of specific G-spinor basis sets and by density fitting algorithms, and the two-dimensional block-cyclic distribution scheme required by the ScaLAPACK library employed for the linear algebra operations. This implementation, because of the efficiency in the memory distribution, represents a leap forward in the applicability of the DKS procedure to arbitrarily large molecular systems and its porting on last-generation massively parallel systems. The performance of the code is illustrated by some test calculations on several gold clusters of increasing size. The DKS self-consistent procedure has been explicitly converged for two representative clusters, namely Au20 and Au34, for which the density of electronic states is reported and discussed. The largest gold cluster uses more than 39k basis functions and DKS matrices of the order of 23 GB. PMID:26592273

  17. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI

    SciTech Connect

    Mascali, D. Celona, L.; Castro, G.; Torrisi, G.; Neri, L.; Gammino, S.; Ciavola, G.; Maimone, F.; Maeder, J.; Tinschert, K.; Spaedtke, K. P.; Rossbach, J.; Lang, R.; Romano, F. P.; Musumarra, A.; Altana, C.; Caliri, C.

    2014-02-15

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source – operating at GSI, Darmstadt – has been carried out. Two different detectors (a SDD – Silicon Drift Detector and a HpGe – hyper-pure Germanium detector) have been used to characterize the warm (2–30 keV) and hot (30–500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  18. Mineral Chart

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Mineral Chart KidsHealth > For Teens > Mineral Chart Print A A A Text Size en ... sources of calcium. You'll also find this mineral in broccoli and dark green, leafy vegetables. Soy ...

  19. Mineral oils

    NASA Technical Reports Server (NTRS)

    Furby, N. W.

    1973-01-01

    The characteristics of lubricants made from mineral oils are discussed. Types and compositions of base stocks are reviewed and the product demands and compositions of typical products are outlined. Processes for commercial production of mineral oils are examined. Tables of data are included to show examples of product types and requirements. A chemical analysis of three types of mineral oils is reported.

  20. HYPER-FORM—A Hypercard® program for Macintosh® microcomputers to calculate mineral formulae from electron microprobe and wet chemical analysis

    NASA Astrophysics Data System (ADS)

    de Bjerg, Silvia C.; Mogessie, Aberra; Bjerg, Ernesto

    1992-07-01

    The program HYPER-FORM permits the input and calculation of a mineral formula from wet chemical and electron microprobe analysis. It includes autosaving of data, search routines, and other database functions. The calculated formula can be exported to wordprocessing programs such as MacWrite® or Microsoft Word® and can be edited as required. It also is possible to export the calculated data to graphic programs such as Cricket Graph® or Kaleidagraph® for a graphic representation of the data. HYPER-FORM is an interactive program written in HyperTalk™ (HyperCard® environment) and is designed to correspond to the Macintosh® interface.

  1. Effect of hydroxyapatite-coated tibial components on changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty: a prospective randomized study using dual-energy x-ray absorptiometry.

    PubMed

    Petersen, Michael M; Gehrchen, P Martin; Ostgaard, Svend E; Nielsen, Palle K; Lund, Bjarne

    2005-06-01

    Sixteen patients scheduled for an uncemented total knee arthroplasty (TKA) were randomized to receive a tibial component either with (n = 8) or without (n = 8) hydroxyapatite (HA) coating. In 4 regions of interest, prospective measurements of bone mineral density (BMD) using dual-energy x-ray absorptiometry were performed in the proximal tibia. Two years after the operation, the only significant change in BMD was in the lateral tibial condyle, where BMD had increased by 6.1% (95% confidence interval: 2.3%-9.9%) in patients with tibial components without HA. The intragroup changes (0-24 months) in the uncoated group and HA-coated group were significantly different (P = .003) in these regions of interest. There was no significant effect of HA coating on bone remodeling pattern of the proximal tibia. PMID:16124970

  2. Binding of Pseudomonas aeruginosa Apo-Bacterioferritin Associated Ferredoxin to Bacterioferritin B Promotes Heme Mediation of Electron Delivery and Mobilization of Core Mineral Iron†

    PubMed Central

    Weeratunga, Saroja K.; Gee, Casey E.; Lovell, Scott; Zeng, Yuhong; Woodin, Carrie L.; Rivera, Mario

    2009-01-01

    The bfrB gene from Pseudomonas aeruginosa was cloned and expressed in E. coli. The resultant protein (BfrB), which assembles into a 445.3 kDa complex0020from 24 identical subunits, binds 12 molecules of heme axially coordinated by two Met residues. BfrB, isolated with 5–10 iron atoms per protein molecule, was reconstituted with ferrous ions to prepare samples with a core mineral containing 600 ± 40 ferric ions per BfrB molecule and approximately one phosphate molecule per iron atom. In the presence of sodium dithionite or in the presence of P. aeruginosa ferredoxin NADP reductase (FPR) and NADPH the heme in BfrB remains oxidized and the core iron mineral is mobilized sluggishly. In stark contrast, addition of NADPH to a solution containing BfrB, FPR and the apo-form of P. aeruginosa bacterioferritin associated ferredoxin (apo-Bfd) results in rapid reduction of the heme in BfrB and in the efficient mobilization of the core iron mineral. Results from additional experimentation indicate that Bfd must bind to BfrB to promote heme mediation of electrons from the surface to the core to support the efficient mobilization of ferrous ions from BfrB. In this context, the thus far mysterious role of heme in bacterioferritins has been brought to the front by reconstituting BfrB with its physiological partner, apo-Bfd. These findings are discussed in the context of a model for the utilization of stored iron in which the significant upregulation of the bfd gene under low-iron conditions [Ochsner, U.A., Wilderman, P.J., Vasil, A.I., and Vasil, M.L. (2002) Mol. Microbiol. 45, 1277–1287] ensures sufficient concentrations of apo-Bfd to bind BfrB and unlock the iron stored in its core. Although these findings are in contrast to previous speculations suggesting redox mediation of electron transfer by holo-Bfd, the ability of apo-Bfd to promote iron mobilization is an economical strategy used by the cell because it obviates the need to further deplete cellular iron levels to

  3. Binding of Pseudomonas aeruginosa apobacterioferritin-associated ferredoxin to bacterioferritin B promotes heme mediation of electron delivery and mobilization of core mineral iron.

    PubMed

    Weeratunga, Saroja K; Gee, Casey E; Lovell, Scott; Zeng, Yuhong; Woodin, Carrie L; Rivera, Mario

    2009-08-11

    The bfrB gene from Pseudomonas aeruginosa was cloned and expressed in Escherichia coli. The resultant protein (BfrB), which assembles into a 445.3 kDa complex from 24 identical subunits, binds 12 molecules of heme axially coordinated by two Met residues. BfrB, isolated with 5-10 iron atoms per protein molecule, was reconstituted with ferrous ions to prepare samples with a core mineral containing 600 +/- 40 ferric ions per BfrB molecule and approximately one phosphate molecule per iron atom. In the presence of sodium dithionite or in the presence of P. aeruginosa ferredoxin NADP reductase (FPR) and NADPH, the heme in BfrB remains oxidized, and the core iron mineral is mobilized sluggishly. In stark contrast, addition of NADPH to a solution containing BfrB, FPR, and the apo form of P. aeruginosa bacterioferritin-associated ferredoxin (apo-Bfd) results in rapid reduction of the heme in BfrB and in the efficient mobilization of the core iron mineral. Results from additional experimentation indicate that Bfd must bind to BfrB to promote heme mediation of electrons from the surface to the core to support the efficient mobilization of ferrous ions from BfrB. In this context, the thus far mysterious role of heme in bacterioferritins has been brought to the front by reconstituting BfrB with its physiological partner, apo-Bfd. These findings are discussed in the context of a model for the utilization of stored iron in which the significant upregulation of the bfd gene under low-iron conditions [Ochsner, U. A., Wilderman, P. J., Vasil, A. I., and Vasil, M. L. (2002) Mol. Microbiol. 45, 1277-1287] ensures sufficient concentrations of apo-Bfd to bind BfrB and unlock the iron stored in its core. Although these findings are in contrast to previous speculations suggesting redox mediation of electron transfer by holo-Bfd, the ability of apo-Bfd to promote iron mobilization is an economical strategy used by the cell because it obviates the need to further deplete cellular iron

  4. Determination of trace element mineral/liquid partition coefficients in melilite and diopside by ion and electron microprobe techniques

    NASA Technical Reports Server (NTRS)

    Kuehner, S. M.; Laughlin, J. R.; Grossman, L.; Johnson, M. L.; Burnett, D. S.

    1989-01-01

    The applicability of ion microprobe (IMP) for quantitative analysis of minor elements (Sr, Y, Zr, La, Sm, and Yb) in the major phases present in natural Ca-, Al-rich inclusions (CAIs) was investigated by comparing IMP results with those of an electron microprobe (EMP). Results on three trace-element-doped glasses indicated that it is not possible to obtain precise quantitative analysis by using IMP if there are large differences in SiO2 content between the standards used to derive the ion yields and the unknowns.

  5. [Research on the mineral phase and component of non-crystalline and nano-crystalline corrosion products on bronzes unearthed from Shang Tomb in Xingan].

    PubMed

    Cheng, Xiao-lin; Pan, Lu

    2012-05-01

    The patinas on bronzes in Shang Tomb of Xingan were powdery, pale green, which were more like "bronze disease", but the mineral composition of patinas was not paratacamite or atacamite. Micro X-ray diffraction (XRD) and high performance transmission electroscope (HTEM) showed that the patinas were mainly composed of non-crystalline and nano-crystalline SnO2, and the size of nano-crystalline particle was in the range of 4-5.7 nm; Moreover, the energy-dispersive X-ray spectrometry showed that element tin is the primary ingredient of the sample, as well as little copper, silicon, lead and iron were detected. By studying the crystal lattice stripe image of the nanometer SnO2, it was deduced that the chemical formula of nano-crystalline SnO2 did not include other elements; The Raman spectrum of the sample showed that there were not any characteristic peaks of SnO2, the spectrum was more like non-crystalline SnO2, and the weak and broad peak of 973 cm(-1) indicated that the sample may contain silicate grains, It was inferred that little of copper, silicon, lead and iron should exist in the form of non-crystalline silicate particles. PMID:22827070

  6. Method of obtaining graphene and graphene-based electronic components and circuits with pencil directly on paper

    NASA Astrophysics Data System (ADS)

    Mailian, Aram; Mailian, Manvel; Shmavonyan, Gagik

    2014-03-01

    An easy method of obtaining graphene and graphene-based electronic components and circuits by drawing lines or repeatedly rubbing any type of graphite rod along the same path directly on paper and other insulating substrates is suggested. The structure containing rubbed-off layers behaves like a semiconducting material. The surface of the structure demonstrates ordered and oriented character containing few layer graphene. The carrier mobility is anisotropic through the thickness of the structure with the highest value of ~ 104 cm2/V .sec at the surface. Raman spectra of the structures in the near IR at excitation wavelength of 976 nm (1.27 eV) are registered. The observed phenomenon is universal, does not depend on the material of the substrate and could find a widespread application. For example, the junction between two rubbed off layers with different mobilities exhibits a non-Ohmic behavior. I-V characteristic of the junction is symmetrically curved with respect to 0 V. The greater is the difference between the carrier mobility, the higher is the curvature. The dynamic accumulation of the carriers in both sides of the junction creates a barrier responsible for non-Ohmic behavior.

  7. Management status of end-of-life vehicles and development strategies of used automotive electronic control components recycling industry in China.

    PubMed

    Wang, Junjun; Chen, Ming

    2012-11-01

    Recycling companies play a leading role in the system of end-of-life vehicles (ELVs) in China. Automotive manufacturers in China are rarely involved in recycling ELVs, and they seldom provide dismantling information for recycling companies. In addition, no professional shredding plant is available. The used automotive electronic control components recycling industry in China has yet to take shape because of the lack of supporting technology and profitable models. Given the rapid growth of the vehicle population and electronic control units in automotives in China, the used automotive electronic control components recycling industry requires immediate development. This paper analyses the current recycling system of ELVs in China and introduces the automotive product recycling technology roadmap as well as the recycling industry development goals. The strengths, weaknesses, opportunities and challenges of the current used automotive electronic control components recycling industry in China are analysed comprehensively based on the 'strengths, weaknesses, opportunities and threats' (SWOT) method. The results of the analysis indicate that this recycling industry responds well to all the factors and has good opportunities for development. Based on the analysis, new development strategies for the used automotive electronic control components recycling industry in accordance with the actual conditions of China are presented. PMID:22843351

  8. Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in Listeria innocua protein cages

    NASA Astrophysics Data System (ADS)

    Usselman, Robert J.; Russek, Stephen E.; Klem, Michael T.; Allen, Mark A.; Douglas, Trevor; Young, Mark; Idzerda, Yves U.; Singel, David J.

    2012-10-01

    Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from "anisotropy melting." The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves the unphysical

  9. Industrial Minerals.

    ERIC Educational Resources Information Center

    Brady, Lawrence L.

    1983-01-01

    Discusses trends in and factors related to the production of industrial minerals during 1982, indicating that, as 1981 marked a downturn in production of industrial minerals, 1982 continued the trend with temporary and permanent cutbacks in mine and plant production. Includes highlights of several conferences/conference papers in this field.…

  10. Mineral mining equipment

    SciTech Connect

    Monks, H.

    1980-11-25

    A mineral mining machine hauls itself along a working face by engaging a round link chain. The links of the chain are fed sequentially from link-retaining pockets in a track component arranged around the working face, around a driven sprocket assembly on the machine and returned to the pockets.

  11. Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach

    NASA Astrophysics Data System (ADS)

    Hartmann, Markus; Heim, Lars-Oliver; Ebert, Martin; Weinbruch, Stephan; Kandler, Konrad

    2015-04-01

    Hygroscopic properties of large aerosol particles using the example of aged Saharan mineral dust - a semi-automated electron microscopy approach Markus Hartmann(1), Lars-Oliver Heim(2), Martin Ebert(1), Stephan Weinbruch(1), Konrad Kandler(1) The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) took place at Barbados from June 10 to July 15 2013. During this period, dust was frequently transported from Africa across the Atlantic Ocean toward the Caribbean. In this study, we investigate the atmospheric aging of the dust aerosol based on its hygroscopicity. Aerosol samples were collected ground-based at Ragged Point (13°9'54.4"N, 59°25'55.7"W) with a single round jet cascade impactor on nickel-substrates. The particles from the stage with a 50% efficiency cutoff size of 1 µm were analyzed with an Environmental Scanning Electron Microscope (ESEM) equipped with an energy-dispersive X-ray detector (EDX) and a cooling stage. In an initial automated run, information on particle size and chemical composition for elements heavier than carbon were gathered. Afterwards, electron microscope images of the same sample areas as before were taken during a stepwise increase of relative humidities (between 50 % and 92%), so that the hygroscopic growth of the droplets could be directly observed. The observed hygroscopic growth can be correlated to the chemical composition of the respective particles. For the automated analysis of several hundred images of droplets an image processing algorithm in Python was developed. The algorithm is based on histogram equalization and watershed segmentation. Since SEM images can only deliver two-dimensional information, but the hygroscopic growth factor usually refers to the volume of a drop, Atomic Force Microscopy (AFM) was used to derive an empirical function for the drop volume depending on the apparent drop diameter in the electron images. Aside from the mineral dust, composed of mostly silicates and

  12. Organo-mineral interactions in Pseudomonas putida-birnessite assemblages: Impact on mineral reactivity

    NASA Astrophysics Data System (ADS)

    Simanova, Anna; Kroll, Alexandra; Pena, Jasquelin

    2016-04-01

    The ability of microorganisms to precipitate biogenic birnessite nanoparticles is widely spread in the bacterial and fungal trees of life, with this process accounting largely for the formation of birnessite in nature. Birnessite minerals occur typically as nanoparticles that exhibit significant chemical and structural disorder. Furthermore, the mineral is embedded within a biomass matrix composed of microbial cells and extracellular polymeric substances, where the biomass not only provides reactive surfaces but can mediate electron transfer reactions. The overarching question guiding our research is: How do nanoscale properties and admixing with microbial biomass modify the reactivity of Mn oxide minerals? In this study, we investigate the biomass-birnessite composites of Pseudomonas putida GB-1 biomass and δ-MnO2 nanoparticles. We characterized the structure and composition of the mineral fraction using X-ray diffraction, Mn K-edge X-ray absorption spectroscopy and wet-chemical methods. To characterize the biomass fraction, we employed FTIR spectroscopy and size-exclusion chromatography analysis of the extracellular polymeric substances. Finally, we measured Ni(II) sorption isotherms at pH 6 and Ni K-edge EXAFS spectra to determine the extent and mechanism of Ni sorption in the biomass-mineral composites and in biomass-only and mineral-only systems. This approach provided direct and indirect evidence for the extent of organo-mineral interactions in the composites, as well as a direct measure of sorption reactivity in the composites relative to biomass-only and mineral-only systems. We found that admixing of mineral nanoparticles with biomass reduced the reactivity of the edge sites of birnessite particles towards Ni(II) through the attachment of organic moieties to the mineral particles and/or modification of the assemblage surface charge properties. In addition, the interaction of biomass components with MnO2 particles leads to partial Mn(IV) reduction and

  13. Evaluation of sealing ability of Biodentine™ and mineral trioxide aggregate in primary molars using scanning electron microscope: A randomized controlled in vitro trial

    PubMed Central

    Samuel, Allwyn; Asokan, Sharath; Geetha Priya, P. R.; Thomas, Seby

    2016-01-01

    Objective: The aim of this study was to compare the sealing ability of mineral trioxide aggregate (MTA) and Biodentine™ when used to repair the furcal perforations in primary molars using scanning electron microscope (SEM). Study Design: The study sample comprised forty recently extracted primary molars. These teeth were placed in a 5.25% sodium hypochlorite solution for 24 h and washed with tap water. Access cavities were made using a round bur in high-speed handpiece. Perforations were made in the center of the floor of the pulpal chamber using a 0.5 mm round bur. The teeth were randomly assigned into two experimental groups based on the material used to seal the perforation: Group A – MTA and Group B – Biodentine™. The packed materials were allowed to set for 24 h. The samples were sectioned longitudinally and the extent of marginal adaptation was measured by SEM. Wilcoxon-signed rank test was used for statistical analysis using SPSS software. Results: All teeth exhibited microleakage, but Biodentine™ showed significantly less leakage (0.149) compared to MTA (0.583). Conclusion: Based on the results of this study, Biodentine™ showed lesser microleakage compared to MTA and thus may be a good alternative to MTA.

  14. Principal component analysis of electron beams generated in K-shell aluminum X-pinch plasma produced by a compact LC-generator

    NASA Astrophysics Data System (ADS)

    Yilmaz, M. F.; Danisman, Y.; Larour, J.; Aranchuk, L.

    2015-06-01

    Principal component analysis (PCA) method is applied and compared with the line ratios of H-like and He-like transitions, in order to investigate the effects of electron beam on the K-shell Aluminum synthetic spectra. It is also used as a diagnostics to estimate the plasma parameters of K-shell Al X-pinch plasma spectrum. This spectrum is produced by the explosion of two 25-μm Al wires on a compact LC (40 kV, 200 kA) generator. The database for the principal component extraction is created over a previously developed, non-LTE, collisional radiative K-shell Aluminum model. As a result, PCA shows an agreement with the line ratios which are sensitive to plasma electron temperatures, densities and beam fractions. Principal component analysis also illustrates that the addition to the non-LTE model of a fraction f of electrons in an energetic beam, generates the clusters in a three dimensional vector space which are translations of each other and follows reverse v-shaped cascade trajectories, except for the f = 0.0 case. Modeling of a typical shot by PCA gives the plasma electron temperature of Te = 100 eV, density of Ne = 1 × 1020 cm-3 and hot electron fraction of f = 0.2 (with a beam energy centered at 10 keV).

  15. Mineral Quantification.

    PubMed

    2016-01-01

    Optimal intakes of elements, such as sodium, potassium, magnesium, calcium, manganese, copper, zinc and iodine, can reduce individual risk factors including those related to cardiovascular diseases among humans and animals. In order to meet the need for vitamins, major minerals, trace minerals, fatty acids and amino acids, it is necessary to include a full spectrum programme that can deliver all of the nutrients in the right ratio. Minerals are required for normal growth, activities of muscles, skeletal development (such as calcium), cellular activity, oxygen transport (copper and iron), chemical reactions in the body, intestinal absorption (magnesium), fluid balance and nerve transmission (sodium and potassium), as well as the regulation of the acid base balance (phosphorus). The chapter discusses the chemical and instrumentation techniques used for estimation of minerals such as N, P, Ca, Mg, K, Na, Fe, Cu, Zn, B and Mb. PMID:26939263

  16. Microwave measurement test results of circular waveguide components for electron cyclotron resonant heating (ECRH) of the Tandem Mirror Experiment-Upgrade (TMX-U)

    SciTech Connect

    Williams, C.W.; Rubert, R.R.; Coffield, F.E.; Felker, B.; Stallard, B.W.; Taska, J.

    1983-12-01

    Development of high-power components for electron cyclotron resonant heating (ECRH) applications requires extensive testing. In this paper we describe the high-power testing of various circular waveguide components designed for application on the Tandem Mirror Experiment-Upgrade (TMX-U). These include a 2.5-in. vacuum valve, polarizing reflectors, directional couplers, mode converters, and flexible waveguides. All of these components were tested to 200 kW power level with 40-ms pulses. Cold tests were used to determine field distribution. The techniques used in these tests are illustrated. The new high-power test facility at Lawrence Livermore National Laboratory (LLNL) is described and test procedures are discussed. We discuss the following test results: efficiency at high power of mode converters, comparison of high power vs low power for waveguide components, and full power tests of the waveguide system. We also explain the reasons behind selection of these systems for use on TMX-U.

  17. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    NASA Astrophysics Data System (ADS)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2009-07-01

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence (μXRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  18. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    SciTech Connect

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  19. The Diesel Exhaust in Miners Study: III. Interrelations between Respirable Elemental Carbon and Gaseous and Particulate Components of Diesel Exhaust derived from Area Sampling in Underground Non-metal Mining Facilities

    PubMed Central

    Vermeulen, Roel; Coble, Joseph B.; Yereb, Daniel; Lubin, Jay H.; Blair, Aaron; Portengen, Lützen; Stewart, Patricia A.; Attfield, Michael; Silverman, Debra T.

    2010-01-01

    Diesel exhaust (DE) has been implicated as a potential lung carcinogen. However, the exact components of DE that might be involved have not been clearly identified. In the past, nitrogen oxides (NOx) and carbon oxides (COx) were measured most frequently to estimate DE, but since the 1990s, the most commonly accepted surrogate for DE has been elemental carbon (EC). We developed quantitative estimates of historical exposure levels of respirable elemental carbon (REC) for an epidemiologic study of mortality, particularly lung cancer, among diesel-exposed miners by back-extrapolating 1998–2001 REC exposure levels using historical measurements of carbon monoxide (CO). The choice of CO was based on the availability of historical measurement data. Here, we evaluated the relationship of REC with CO and other current and historical components of DE from side-by-side area measurements taken in underground operations of seven non-metal mining facilities. The Pearson correlation coefficient of the natural log-transformed (Ln)REC measurements with the Ln(CO) measurements was 0.4. The correlation of REC with the other gaseous, organic carbon (OC), and particulate measurements ranged from 0.3 to 0.8. Factor analyses indicated that the gaseous components, including CO, together with REC, loaded most strongly on a presumed ‘Diesel exhaust’ factor, while the OC and particulate agents loaded predominantly on other factors. In addition, the relationship between Ln(REC) and Ln(CO) was approximately linear over a wide range of REC concentrations. The fact that CO correlated with REC, loaded on the same factor, and increased linearly in log–log space supported the use of CO in estimating historical exposure levels to DE. PMID:20876234

  20. Comparing the Marginal Adaptation of Cold Ceramic and Mineral Trioxide Aggregate by Means of Scanning Electron Microscope: An In vitro Study

    PubMed Central

    Mokhtari, Fatemeh; Modaresi, Jalil; Javadi, Gholamreza; Davoudi, Amin; Badrian, Hamid

    2015-01-01

    Background: Long-term success of endodontic surgeries is often influenced by the type of root-end filling material (RFM). The aim of present study was to compare the marginal adaptation of two different RFM, cold ceramic (CC) and mineral trioxide aggregate (MTA), using scanning electron microscope (SEM). Materials and Methods: About 20 extracted human single-rooted teeth were collected and stored into sodium hypochlorite 5.25%. The teeth were decronated from the cemento-enamel junction to prepare 16 mm roots. The working length was measured, and 1/3 coronal of the canal was prepared by Gates-Glidden drills. Apical flaring was followed by K file size # 40-70 based on step back technique. After filling of the canals, 3 mm above the apex was cut at 90° to the long axis. Furthermore, 3 mm of the filling was removed from the apical part using the ultrasonic device. All of the prepared specimens were divided into two groups and were retro filled by MTA and CC. The roots were cut horizontally from 1 mm above the apical part, and dentin-filling material interface was observed by SEM. Finally, the collected data were analyzed by Mann-Whitney test and using SPSS software version 18 at a significant level of 0.05. Results: The mean interfacial adaptation was higher in CC group. However, no significant differences were observed by statistical test (P = 0.35). Conclusion: Both CC and MTA had similar marginal adaptation as RFM however in vivo studies are recommended for better determination. PMID:26435608

  1. Component-Level Electronic-Assembly Repair (CLEAR) Analysis of the Problem Reporting and Corrective Action (PRACA) Database of the International Space Station On-Orbit Electrical Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.

    2011-01-01

    The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing

  2. Mineralization (calcification) of coronary arteries.

    PubMed

    Pawlikowski, M; Pfitzner, R; Wachowiak, J

    1994-01-01

    Mineralogical investigations of calcifications located in coronary vessels were performed on the material obtained from the endarterectomized arteries of 18 patients (15 M, 3 F, aged 36-65) during surgical revascularization procedures consisting in coronary artery bypass grafting. The samples were tested using scanning microscopy, X-ray diffractometry, infrared spectroscopy, atomic absorption spectroscopy, electron microprobe and neutron activation spectroscopy. The results of analyses were calculated with the use of computer programmes. Two types of mineralization were determined: 1. secret mineralization identified as higher than normal content of elements in biological tissues, not demonstrating any mineral grains, and 2. apparent mineralization, appearing micro- and macroscopically as grains composed mainly of hydroxyapatite containing admixture of carbonate groups, i.e. a mineral identical with apatite present in bones, or as calcification of other tissues (heart valves, lungs etc.). The authors suggest that the phenomenon of mineralization should be taken into consideration in the preventive treatment of coronary atheriosclerosis. PMID:7808039

  3. Korteweg-deVries-Burgers (KdVB) equation in a five component cometary plasma with kappa described electrons and ions

    NASA Astrophysics Data System (ADS)

    Michael, Manesh; Willington, Neethu T.; Jayakumar, Neethu; Sebastian, Sijo; Sreekala, G.; Venugopal, Chandu

    2016-07-01

    We investigate the existence of ion-acoustic shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdVB equation has been derived for the system, and its solution plotted for different kappa values, oxygen ion densities, as well as the temperature ratios for the ions. It is found that the amplitude of the shock wave decreases with increasing kappa values. The strength of the shock profile decreases with increasing temperatures of the positively charged oxygen ions and densities of negatively charged oxygen ions.

  4. The effect of temperature and transmembrane potentials on the rates of electron transfer between membrane-bound biological redox components.

    PubMed

    Kuznetsov, A M; Ulstrup, J

    1981-06-12

    We have investigated rate data for the temperature and free energy dependence of the primary electron-transfer processes in bacterial photosynthesis. Rather than representing the whole electronic-nuclear coupling by a frequently applied discrete single-mode model, we have incorporated a continuum of modes characterized by a certain distribution function. In this way, we can illuminate the role of both a broad distribution of low-frequency modes representing the medium and a narrow distribution representing local nuclear modes. Furthermore, it emerges from the calculations that both sets are important in the overall scheme of primary photosynthetic electron-transfer processes. By means of this model and quantum-mechanical rate theory, we can reproduce a number of important features of the primary photosynthetic processes concerning in particular the temperature (tunnelling or thermally activated nuclear motion) and free energy dependence ('normal', 'activation-less', or 'inverted' regions) of the rate constants and estimate such parameters as nuclear-reorganization energy electron-exchange integrals and electron-transfer distances. We have finally considered some of the important factors which determine the potential drop across the membrane and estimated the extent to which variations in the potential drop affect the rate constants of the electron-transfer processes. PMID:7284345

  5. Resonant vibrational excitation of CO{sub 2} by electron impact: Nuclear dynamics on the coupled components of the {sup 2}{pi}{sub u} resonance

    SciTech Connect

    McCurdy, C.W.; Isaacs, W.A.; Meyer, H.-D.; Rescigno, T.N.

    2003-04-01

    We report the results of a fully ab initio study of resonant vibrational excitation of CO{sub 2} by electron impact via the 3.8 eV {sup 2}{pi}{sub u} shape resonance. First, we solve the fixed-nuclei, electronic scattering problem using the complex Kohn variational method to produce resonance parameters for both the {sup 2}A{sub 1} and {sup 2}B{sub 1} components of the resonance for a variety of symmetric-stretch geometries and for a range of bending angles. The nuclear dynamics associated with the two components of the resonance are coupled by Renner-Teller coupling. We carry out a two-mode treatment of the nuclear dynamics in a complex local potential model using the complex resonance energy surfaces derived from our calculated fixed-nuclei cross sections with Renner-Teller coupling.

  6. Higher-order contributions to ion-acoustic solitary waves in a multicomponent plasma consisting of warm ions and two-component nonisothermal electrons

    SciTech Connect

    Das, K.P.; Majumdar, S.R.; Paul, S.N. ||

    1995-05-01

    An integrated form of the governing equations in terms of pseudopotential higher-order nonlinear and dispersive effects is obtained by applying the reductive perturbation method for ion-acoustic solitary waves in a collisionless unmagnetized multicomponent plasma having warm ions and two-component nonisothermal electrons. The present method is advantageous because instead of solving an inhomogeneous second-order differential equation at each order, as in the standard procedure, we solve a first-order inhomogeneous equation at each order except at the lowest. The expressions of both Mach number and width of the solitary wave are obtained as a function of the amplitude of the wave for third-order nonlinear and dispersive effects. The variations of potential, width, and Mach number against soliton amplitude are shown graphically, taking into consideration the nonisothermality of two-component electrons in the plasma.

  7. Experimental and numerical investigation of flow field and heat transfer from electronic components in a rectangular channel with an impinging jet

    NASA Astrophysics Data System (ADS)

    Calisir, Tamer; Fevzi Koseoglu, M.; Kilic, Mustafa; Baskaya, Senol

    2015-05-01

    Thermal control of electronic components is a continuously emerging problem as power loads keep increasing. The present study is mainly focused on experimental and numerical investigation of impinging jet cooling of 18 (3 × 6 array) flash mounted electronic components under a constant heat flux condition inside a rectangular channel in which air, following impingement, is forced to exit in a single direction along the channel formed by the jet orifice plate and impingement plate. Copper blocks represent heat dissipating electronic components. Inlet flow velocities to the channel were measured by using a Laser Doppler Anemometer (LDA) system. Flow field observations were performed using a Particle Image Velocimetry (PIV) and thermocouples were used for temperature measurements. Experiments and simulations were conducted for Re = 4000 - 8000 at fixed value of H = 10 × Dh. Flow field results were presented and heat transfer results were interpreted using the flow measurement observations. Numerical results were validated with experimental data and it was observed that the results are in agreement with the experiments.

  8. Industrial Minerals

    ERIC Educational Resources Information Center

    Bradbury, James C.

    1978-01-01

    The past year is seen as not particularly good for industrial minerals and for industry in general. Environmental concerns continued to trouble the industry with unacceptable asbestos concentrations and chlorofluorocarbon effects on ozone. A halting U.S. economy also affected industrial progress. (MA)

  9. The Space Radiation Environment as it Relates to Electronic System Performance: Or Why Not to Fly Commercial Electronic Components in Space

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael A.; LaBel, Kenneth A.; Polvey, Christian

    2005-01-01

    This viewgraph presentation offers an overview of the space radiation environment, primarily in near-Earth environments such as Low Earth Orbit (LEO). The presentation describes the Halloween solar event of 2003 as an example of how solar activity can affect spacecraft electronic systems. The lunar radiation environment is also briefly summarized.

  10. Relativistic two-component geometric approximation of the electron-positron contribution to magnetic properties in terms of Breit-Pauli spinors

    NASA Astrophysics Data System (ADS)

    Zaccari, Daniel; Melo, Juan I.; Ruiz de Azúa, Martín C.; Giribet, Claudia G.

    2009-02-01

    An alternative approach for the calculation of the electron-positron (e-p) contribution to magnetic properties based on two-component Breit-Pauli spinors is presented. In it, the elimination of the small component scheme is applied to the inverse propagator matrix of e-p pairs. The effect of the positronic manifold is expressed as an operator acting on Breit-Pauli spinors. The operator form thus obtained sums up the relativistic correction as a geometric series and as a result a totally different behavior in the vicinity of a nucleus is obtained as compared to the one of the linear response approximation. This feature has deep influence in numerical values of the e-p contribution to the nuclear magnetic shielding of heavy atoms. Numerical calculations carried out for Kr, Xe, and I show that with this approach, the e-p contributions to this property are in good agreement with those of four-component methods.

  11. Formation and reactions of paramagnetic species in irradiated microheterogeneous copolymer systems with different electronic characteristics of components

    NASA Astrophysics Data System (ADS)

    Zezin, A. A.; Feldman, V. I.

    2002-01-01

    The formation of paramagnetic species in the radiolysis of styrene-butadiene block copolymers and interpolymers of polystyrene and polytrichlorobutadiene was studied at 77 K using ESR spectroscopy. The results obtained reveal substantial non-additive effects in the radical yields. In the case of interpolymers, the observed yields are higher than the expected additive values (sensitization), whereas in the case of block copolymers the effect has the opposite sign (protection). The analysis of paramagnetic species demonstrates that the observed peculiarities result from interphase migration of electrons followed by their reactions with chemical traps (chlorinated groups or neutral radicals). It was concluded that the long-range reactions of electrons were controlled by electronic characteristics of microphases.

  12. H I free-bound emission of planetary nebulae with large abundance discrepancies: Two-component models versus κ-distributed electrons

    SciTech Connect

    Zhang, Yong; Liu, Xiao-Wei; Zhang, Bing

    2014-01-01

    The 'abundance discrepancy' problem in the study of planetary nebulae (PNe), viz., the problem concerning systematically higher heavy-element abundances derived from optical recombination lines relative to those from collisionally excited lines, has been under discussion for decades, but no consensus on its solution has yet been reached. In this paper, we investigate the hydrogen free-bound emission near the Balmer jump region of four PNe that are among those with the largest abundance discrepancies, aiming to examine two recently proposed solutions to this problem: two-component models and κ electron energy distributions. We find that the Balmer jump intensities and the spectrum slopes cannot be simultaneously matched by the theoretical calculations based upon single Maxwell-Boltzmann electron-energy distributions, whereas the fitting can be equally improved by introducing κ electron energy distributions or an additional Maxwell-Boltzmann component. We show that although H I free-bound emission alone cannot distinguish between the two scenarios, it can provide important constraints on the electron energy distributions, especially for cold and low-κ plasmas.

  13. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components.

    DOE PAGESBeta

    Leung, Kevin; Lin, Yu -Xiao; Liu, Zhe; Chen, Long -Qing; Lu, Peng; Qi, Yue

    2016-01-01

    The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li2CO3, LiF and Li3PO4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tension and increases under compression.more » A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. As a result, the agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.« less

  14. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components.

    SciTech Connect

    Leung, Kevin; Lin, Yu -Xiao; Liu, Zhe; Chen, Long -Qing; Lu, Peng; Qi, Yue

    2016-01-01

    The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li2CO3, LiF and Li3PO4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tension and increases under compression. A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. As a result, the agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.

  15. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging–ion mass spectrometry

    PubMed Central

    Fanood, Mohammad M Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron–ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2–4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140

  16. Clinical Data Miner: An Electronic Case Report Form System With Integrated Data Preprocessing and Machine-Learning Libraries Supporting Clinical Diagnostic Model Research

    PubMed Central

    Van den Bosch, Thierry; De Moor, Bart; Timmerman, Dirk

    2014-01-01

    Background Using machine-learning techniques, clinical diagnostic model research extracts diagnostic models from patient data. Traditionally, patient data are often collected using electronic Case Report Form (eCRF) systems, while mathematical software is used for analyzing these data using machine-learning techniques. Due to the lack of integration between eCRF systems and mathematical software, extracting diagnostic models is a complex, error-prone process. Moreover, due to the complexity of this process, it is usually only performed once, after a predetermined number of data points have been collected, without insight into the predictive performance of the resulting models. Objective The objective of the study of Clinical Data Miner (CDM) software framework is to offer an eCRF system with integrated data preprocessing and machine-learning libraries, improving efficiency of the clinical diagnostic model research workflow, and to enable optimization of patient inclusion numbers through study performance monitoring. Methods The CDM software framework was developed using a test-driven development (TDD) approach, to ensure high software quality. Architecturally, CDM’s design is split over a number of modules, to ensure future extendability. Results The TDD approach has enabled us to deliver high software quality. CDM’s eCRF Web interface is in active use by the studies of the International Endometrial Tumor Analysis consortium, with over 4000 enrolled patients, and more studies planned. Additionally, a derived user interface has been used in six separate interrater agreement studies. CDM's integrated data preprocessing and machine-learning libraries simplify some otherwise manual and error-prone steps in the clinical diagnostic model research workflow. Furthermore, CDM's libraries provide study coordinators with a method to monitor a study's predictive performance as patient inclusions increase. Conclusions To our knowledge, CDM is the only eCRF system

  17. 76 FR 54496 - In the Matter of Certain Electronic Devices Having a Digital Television Receiver and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ..., SW., Washington, DC 20436, telephone (202) 708-2310. Copies of non- confidential documents filed in... instituted this investigation on June 6, 2011, based on a complaint filed by Zenith Electronics LLC of Lincolnshire, Illinois. 76 FR. 32373-74. The complaint alleges violations of section 337 of the Tariff Act...

  18. Spatial distribution of the electron component parameters in the nitrogen plasma of a low-pressure electrode microwave Discharge

    NASA Astrophysics Data System (ADS)

    Lebedev, Yu. A.; Krashevskaya, G. V.; Gogoleva, M. A.

    2016-01-01

    Spatial distributions of charged particle concentration, electron temperature, and DC potential in an electrode microwave discharge in nitrogen at a pressure of 1 Torr have been measured using the double electric probe method. It has been shown that, near the electrode/antenna, the charged particle concentration exceeds a critical value. The concentration and heterogeneity of the discharge increase with increasing microwave power.

  19. Efficiency and Loss Models for Key Electronic Components of Hybrid and Plug-in Hybrid Electric Vehicles' Electrical Propulsion Systems

    SciTech Connect

    Cao, J.; Bharathan, D.; Emadi, A.

    2007-01-01

    Isolated gate bipolar transistors (IGBTs) are widely used in power electronic applications including electric, hybrid electric, and plug-in hybrid electric vehicles (EVs, HEVs, and PHEVs). The trend towards more electric vehicles (MEVs) has demanded the need for power electronic devices capable of handling power in the range of 10-100 kW. However, the converter losses in this power range are of critical importance. Therefore, thermal management of the power electronic devices/converters is crucial for the reliability and longevity of the advanced vehicles. To aid the design of heat exchangers for the IGBT modules used in propulsion motor drives, a loss model for the IGBTs is necessary. The loss model of the IGBTs will help in the process of developing new heat exchangers and advanced thermal interface materials by reducing cost and time. This paper deals with the detailed loss modeling of IGBTs for advanced electrical propulsion systems. An experimental based loss model is proposed. The proposed loss calculation method utilizes the experimental data to reconstruct the loss surface of the power electronic devices by means of curve fitting and linear extrapolating. This enables the calculation of thermal losses in different voltage, current, and temperature conditions of operation. To verify the calculation method, an experimental test set-up was designed and built. The experimental set-up is an IGBT based bi-directional DC/DC converter. In addition, simulation results are presented to verify the proposed calculation method.

  20. Carboxymethyl cellulose/silica hybrids as templates for calcium phosphate biomimetic mineralization.

    PubMed

    Salama, Ahmed; Abou-Zeid, Ragab E; El-Sakhawy, Mohamed; El-Gendy, Ahmed

    2015-03-01

    Multiphase hybrid materials were synthesized using carboxymethyl cellulose (CMC) as bioactive polymer, silica gel as matrix assisted networks and calcium phosphate as inorganic mineral phase. These hybrids were investigated with infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. Biomimetic crystal growth nucleated from the CMC/silica hybrids was suggested as amorphous calcium phosphate with an evidence that hydroxyapatite, the mineralized component of bone, may be formed at high CMC content. This study provides an efficient approach toward bone-like hybrids with potential bone healing applications. PMID:25526694

  1. Mineral bioprocessing

    SciTech Connect

    Torma, A.E.

    1993-05-01

    In the last 25 years, the introduction of biotechnological methods in hydrometallurgy has created new opportunities and challenges for the mineral processing industry. This was especially true for the production of metal values from mining wastes and low-and-complex-grade mineral resources, which were considered economically not amenable for processing by conventional extraction methods. Using bio-assisted heap, dump and in-situ leaching technologies, copper and uranium extractions gained their first industrial applications. The precious metal industries were the next to adopt the bio-preoxidation technique in the extraction of gold from refractory sulfide-bearing ores and concentrates. A variety of other bioleaching opportunities exist for nickel, cobalt, cadmium and zinc sulfide leaching. Recently developed bioremediation methods and biosorption technologies have shown a good potential for industrial applications to remove trace heavy metal and radionuclide concentrations from contaminated soils, and mining and processing effluents.

  2. Higher order nonlinear effects on wave structures in a four-component dusty plasma with nonisothermal electrons

    SciTech Connect

    Singh Gill, Tarsem; Bedi, Chanchal; Saini, Nareshpal Singh

    2011-04-15

    The higher order solutions of dust acoustic wave in dusty plasma consisting of positively charged warm adiabatic dust, negatively charged cold dust, and nonisothermally distributed electrons are studied. The Schamel-KdV equation is derived using reductive perturbation method (RPM). RPM is further extended to include the contributions of higher order terms and a generalized KdV equation is derived to observe the deviation from isothermality. Effects of nonisothermal parameter, mass and charge ratio, ratio of ion to electron temperatures, and ratio of dust to ion temperatures have been thoroughly studied. By using the renormalization method of Kodama and Taniuti [J. Phys. Soc. Jpn. 45, 298 (1978)], authors have also discussed characteristics of the dressed solitons.

  3. Estimation of Electron Temperature and Frequency Components in a Dual Frequency Capacitively-Coupled Plasma Processing Reactor

    NASA Astrophysics Data System (ADS)

    Ito, Toru; Mo, Yun; Masahiro, Horigome

    2008-10-01

    The measurement of electron temperature in RF plasma sources with Langmuir probes is difficult because of the influence of rf noise. We attempted to estimate the electron temperature in a capacitively-coupled plasma processing reactor with a Surface Wave Probe [1] which employs microwaves. We also estimated the frequency spectrum with the sensitive PAP [1, 2]. We measured the harmonics which appeared in the bulk plasma for various experimental conditions in the dual-frequency [60 MHz and 2MHz] capacitively-coupled plasma processing reactor. We estimated RF power spectra for several experimental conditions like RF power [500-2000W], gas pressure [3-20Pa], and gas species [Ar, CF4]. The measurement results suggest the existence of energy transport among several frequency spectrum. [1ex] [1] K. Nakamura, M. Ohata, and H. Sugai: J. Vac. Sci. Technol. A 21, 325 (2003). [0pt] [2] T. Shirakawa and H. Sugai : Jpn. J. Appl. Phys. 32, 5129 (1993).

  4. Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies

    PubMed Central

    Dantas, Joana M.; Morgado, Leonor; Aklujkar, Muktak; Bruix, Marta; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2015-01-01

    Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e−/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e−/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of essential

  5. Rational engineering of Geobacter sulfurreducens electron transfer components: A foundation for building improved Geobacter-based bioelectrochemical technologies

    DOE PAGESBeta

    Dantas, Joana M.; Morgado, Leonor; Aklujkar, Muktak; Bruix, Marta; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2015-07-30

    Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Throughout the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. Inmore » previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e-/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e-/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of

  6. Shewanella oneidensis MR-1 Nanowires are Outer Membrane and Periplasmic Extensions of the Extracellular Electron Transport Components

    SciTech Connect

    Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, Rachida; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad; Shi, Liang; Gorby, Yuri A.; Golbeck, J. H.; El-Naggar, Mohamed Y.

    2014-08-20

    Bacterial nanowires offer an extracellular electron transport (EET) pathway for linking the respiratory chain of bacteria to external surfaces, including oxidized metals in the environment and engineered electrodes in renewable energy devices. Despite the global, environmental, and technological consequences of this biotic-abiotic interaction, the composition, physiological relevance, and electron transport mechanisms of bacterial nanowires remain unclear. We report the first in vivo observations of the formation and respiratory impact of nanowires in the model metal-reducing microbe Shewanella neidensis MR-1. Using live fluorescence measurements, immunolabeling, and quantitative gene expression analysis, we report that S. oneidensis MR-1 nanowires are extensions of the outer membrane and periplasm that include the multiheme cytochromes responsible for EET, rather than pilin-based structures, as previously thought. These bacterial nanowires were also associated with outer membrane vesicles and vesicle chains, structures ubiquitous in gram-negative bacteria. Redoxfunctionalized membrane and vesicular extensions may represent a general microbial strategy for electron transport and energy distribution.

  7. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  8. Feature extraction and fusion for protein structure identification in cryo-electron microscopic images using independent component analysis and the projection-slice synthetic filter

    NASA Astrophysics Data System (ADS)

    Riasati, Vahid R.; Braunreiter, Dennis

    2006-04-01

    In this paper we utilize the Projection-Slice Synthetic Discriminant Function Filters, PSDF, in concert with an Independent Component Analysis technique to simultaneously reduce the data set that represents each of the training images and to emphasize subtle differences in each of the training images. These differences are encoded into the PSDF in order to improve the filter sensitivity for the recognition and identification of protein images formed from a cryo-electron microscopic imaging process. The PSDF and Independent Component Analysis provide a premise not only for the identification of the class of structures under consideration, but also for detecting the orientation of the structures in these images. The protein structures found in cryo-electron microscopic imaging represent a class of objects that have low resolution and contrast and subtle variation. This poses a challenge in design of filters to recognize these structures due to false targets that often have similar characteristics as the protein structures. The incorporation of a component analysis and eigen values conditioning in forming the filter provides an enhanced approach of de-correlating images prior to their incorporation into the filter. We present our method of filter synthesis and the results of the application of this modified filter to a protein structure recognition problem.

  9. Experimental assessment of out-of-field dose components in high energy electron beams used in external beam radiotherapy.

    PubMed

    M Alabdoaburas, Mohamad; Mege, Jean-Pierre; Chavaudra, Jean; Vũ Bezin, Jérémi; Veres, Atilla; De Vathaire, Florent; Lefkopoulos, Dimitri; Diallo, Ibrahima

    2015-01-01

    The purpose of this work was to experimentally investigate the out-of-field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off-axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD-700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel-plane ionization chamber measurements. Also, out-of-field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12-15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10 × 10 cm(²) applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10 × 10 cm(²) applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out-of-field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long-term effects. PMID:26699572

  10. The effect of the random distribution of electronic components in the output characteristics of the Howland current source

    NASA Astrophysics Data System (ADS)

    Bertemes-Filho, P.; Felipe, A.

    2013-04-01

    When a Howland source is designed, the components are chosen so that the designed source has the desired characteristics. However, the operational amplifier limitations and resistor tolerances causes undesired behaviours. This work proposes to take in account the influence of the random distribution of the commercial resistors in the Howland circuit over the frequency range of 10 Hz to 10 MHz. The probability density function due to small changes over the resistors was calculated by using an analytical model. Results show that both output current and impedance are very sensitive to the resistor tolerances. It is shown that the output impedance is very dependent on the open-loop gain of the Opamp rather than the resistor tolerances, especially at higher frequencies. This might improve the implementations of real current source used in electrical bioimpedance.

  11. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by a component of tea (Camellia sinensis): a study by electron microscopy.

    PubMed

    Hamilton-Miller, J M; Shah, S

    1999-07-15

    A component of aqueous extracts of green tea (Camellia sinensis), known to reverse methicillin-resistance in staphylococci, causes extensive morphological changes in methicillin-resistant but not in methicillin-sensitive Staphylococcus aureus. Clumps of partly divided cocci, consisting of up to 14 individuals, with thickened internal but normal external cell walls were seen by electron microscopy in cultures of methicillin-resistant S. aureus grown in the presence of the active principle. The morphological changes observed were consistent with selective inhibition of penicillin-binding proteins. PMID:10427729

  12. A Discussion on Uncertainty Representation and Interpretation in Model-Based Prognostics Algorithms based on Kalman Filter Estimation Applied to Prognostics of Electronics Components

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saxen, Abhinav; Goebel, Kai

    2012-01-01

    This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process and how it relates to uncertainty representation, management, and the role of prognostics in decision-making. A distinction between the interpretations of estimated remaining useful life probability density function and the true remaining useful life probability density function is explained and a cautionary argument is provided against mixing interpretations for the two while considering prognostics in making critical decisions.

  13. Vitamins and Minerals

    MedlinePlus

    ... I Help a Friend Who Cuts? Vitamins and Minerals KidsHealth > For Teens > Vitamins and Minerals Print A ... of a good thing? What Are Vitamins and Minerals? Vitamins and minerals make people's bodies work properly. ...

  14. Temperature dependence of the electron spin resonance spectra of a coal-derived vacuum distillation residue and components

    SciTech Connect

    Castellano, S.M.; Chisholm, W.P.; Sprecher, R.F.; Retcofsky, H.L.

    1987-07-01

    Measurements of the intensities of the electron spin resonance (ESR) absorptions, in the g approx. 2 region of the spectrum, of the title materials were performed over a wide range of temperatures. Linear correlations of the measured intensities vs. the reciprocal of the absolute temperature were obtained. The regression lines have intercepts which are larger than the standard deviations of the measurements. This study shows that the intercepts arise from systematic errors in the measurements that introduce curvature into the plots. Two converging lines of research were followed: (a) a theoretical study of the effect of systematic errors on the outcome of ESR intensity measurements; and (b) repeated sets of measurements on two major fractions of the title materials. A complete analysis of all data shows conclusively that the materials of both fractions obey the Curie law exactly and that any observed deviation from this behavior lies within the range of systematic errors predicted by the theoretical study.

  15. Controlling Electron Transfer between the Two Cofactor Chains of Photosystem I by the Redox State of One of Their Components

    PubMed Central

    Santabarbara, Stefano; Bullock, Bradford; Rappaport, Fabrice; Redding, Kevin E.

    2015-01-01

    Two functional electron transfer (ET) chains, related by a pseudo-C2 symmetry, are present in the reaction center of photosystem I (PSI). Due to slight differences in the environment around the cofactors of the two branches, there are differences in both the kinetics of ET and the proportion of ET that occurs on the two branches. The strongest evidence that this is indeed the case relied on the observation that the oxidation rates of the reduced phylloquinone (PhQ) cofactor differ by an order of magnitude. Site-directed mutagenesis of residues involved in the respective PhQ-binding sites resulted in a specific alteration of the rates of semiquinone oxidation. Here, we show that the PsaA-F689N mutation results in an ∼100-fold decrease in the observed rate of PhQA− oxidation. This is the largest change of PhQA− oxidation kinetics observed so far for a single-point mutation, resulting in a lifetime that exceeds that of the terminal electron donor, P700+. This situation allows a second photochemical charge separation event to be initiated before PhQA− has decayed, thereby mimicking in PSI a situation that occurs in type II reaction centers. The results indicate that the presence of PhQA− does not impact the overall quantum yield and leads to an almost complete redistribution of the fractional utilization of the two functional ET chains, in favor of the one that does not bear the charged species. The evolutionary implications of these results are also briefly discussed. PMID:25809266

  16. Structural determination of carvone, a component of spearmint, by means of gas electron diffraction augmented by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Egawa, Toru; Kachi, Yukari; Takeshima, Tsuguhide; Takeuchi, Hiroshi; Konaka, Shigehiro

    2003-10-01

    The molecular structure and conformation of carvone, a compound with a minty odor, were investigated by means of gas electron diffraction supported by theoretical calculations. Electron diffraction patterns were recorded by heating the nozzle up to 128 °C to obtain enough scattering intensity. The infrared spectrum was also measured by using an absorption cell with a path length of 10 m. The obtained molecular scattering intensities were analyzed with the aid of theoretical calculations and infrared spectroscopy. It was revealed that the experimental data are well reproduced by assuming that carvone consists of a mixture of three conformers that have the isopropenyl group in the equatorial position and mutually differ in the torsional angle around the single bond connecting the ring and the isopropenyl group. It was also found that the puckering amplitude of the ring of carvone is close to those of menthol and isomenthol, a minty compound and its nonminty isomer. The determined structural parameters ( rg and ∠ α) of the most abundant conformer of carvone are as follows: < r(C-C)>=1.520(3) Å; < r(CC)>=1.360(5) Å; r(CO)=1.225(5) Å; < r(C-H)>=1.104(4)Å; <∠CC-C>=121.1(5)°; <∠C-C-C>=110.4(5)°; ∠C-CO-C=117.1(14)°; <∠C-C-H>=111.1(13)°. Angle brackets denote average values and parenthesized values are the estimated limits of error (3 σ) referring to the last significant digit.

  17. Controlling electron transfer between the two cofactor chains of photosystem I by the redox state of one of their components.

    PubMed

    Santabarbara, Stefano; Bullock, Bradford; Rappaport, Fabrice; Redding, Kevin E

    2015-03-24

    Two functional electron transfer (ET) chains, related by a pseudo-C2 symmetry, are present in the reaction center of photosystem I (PSI). Due to slight differences in the environment around the cofactors of the two branches, there are differences in both the kinetics of ET and the proportion of ET that occurs on the two branches. The strongest evidence that this is indeed the case relied on the observation that the oxidation rates of the reduced phylloquinone (PhQ) cofactor differ by an order of magnitude. Site-directed mutagenesis of residues involved in the respective PhQ-binding sites resulted in a specific alteration of the rates of semiquinone oxidation. Here, we show that the PsaA-F689N mutation results in an ∼100-fold decrease in the observed rate of PhQA(-) oxidation. This is the largest change of PhQA(-) oxidation kinetics observed so far for a single-point mutation, resulting in a lifetime that exceeds that of the terminal electron donor, P700(+). This situation allows a second photochemical charge separation event to be initiated before PhQA(-) has decayed, thereby mimicking in PSI a situation that occurs in type II reaction centers. The results indicate that the presence of PhQA(-) does not impact the overall quantum yield and leads to an almost complete redistribution of the fractional utilization of the two functional ET chains, in favor of the one that does not bear the charged species. The evolutionary implications of these results are also briefly discussed. PMID:25809266

  18. [Mineral water as a cure].

    PubMed

    Nocco, Priska Binz

    2008-01-01

    The treatment of diseases with mineral spring water belongs to the oldest medical therapies. The "remedy" mineral water is therefore of importance also within the pharmacy. The present pharmacy historical work examines the impact of the use of mineral waters, as well as of their dried components, as therapeutic agents in the 19th and early 20th centuries, i.e. from approx. 1810 to 1930, as well as the contributions given by pharmacists in the development and analysis of mineral water springs. Beside these aspects, the aim here is also to describe the role played by pharmacists in the production of artificial mineral water as well as in the sale and wholesale of natural and artificial mineral water. In the first part of this work the situation in Switzerland and its surrounding countries, such as Germany, France, Italy and Austria, is discussed. The second part contains a case-study of the particular situation in the Canton Tessin. It is known from the scientific literature published at that time that information on mineral water was frequently reported. Starting from the beginning of the 19th century the number of such publications increased tremendously. The major part of them were publications in scientific journals or contributions to medical and pharmaceutical manuals and reference books. In particular the spa-related literature, such as spa-guides, was of growing interest to a broad public. The inclusion of monographs into the Swiss, the Cantonal as well the foreign pharmacopoeias granted a legal frame for the mineral waters and their dried components. These works are of major importance from a pharmacy historical standpoint and represent a unique proof of historical evidence of the old medicinal drug heritage. The most frequently used therapies based on mineral waters were drinking and bath cures. Several diseases, particularly those of a chronic character, were treated with mineral waters. The positive influence of these cures on the recovery of the patients

  19. Micro and nano-size pores of clay minerals in shale reservoirs: Implication for the accumulation of shale gas

    NASA Astrophysics Data System (ADS)

    Chen, Shangbin; Han, Yufu; Fu, Changqin; Zhang, han; Zhu, Yanming; Zuo, Zhaoxi

    2016-08-01

    A pore is an essential component of shale gas reservoirs. Clay minerals are the adsorption carrier second only to organic matter. This paper uses the organic maturity test, Field-Emission Scanning Electron Microscopy (FE-SEM), and X-ray Diffraction (XRD) to study the structure and effect of clay minerals on storing gas in shales. Results show the depositional environment and organic maturity influence the content and types of clay minerals as well as their structure in the three types of sedimentary facies in China. Clay minerals develop multi-size pores which shrink to micro- and nano-size by close compaction during diagenesis. Micro- and nano-pores can be divided into six types: 1) interlayer, 2) intergranular, 3) pore and fracture in contact with organic matter, 4) pore and fracture in contact with other types of minerals, 5) dissolved and, 6) micro-cracks. The contribution of clay minerals to the presence of pores in shale is evident and the clay plane porosity can even reach 16%, close to the contribution of organic matter. The amount of clay minerals and pores displays a positive correlation. Clay minerals possess a strong adsorption which is affected by moisture and reservoir maturity. Different pore levels of clay minerals are mutually arranged, thus essentially producing distinct reservoir adsorption effects. Understanding the structural characteristics of micro- and nano-pores in clay minerals can provide a tool for the exploration and development of shale gas reservoirs.

  20. X-class Solar Flare Energy Partition into Radiative, Non-Thermal Acceleration of Electrons and Peak Thermal Plasma Components - Methodology and Results

    NASA Astrophysics Data System (ADS)

    Moore, Christopher S.; Chamberlin, Phillip; Dennis, Brian R.; Hock, Rachel

    2015-08-01

    Solar flares are among the most energetic processes in the solar system. X-class flares are the largest and can convert up to 1033 ergs of magnetic energy into the acceleration of charged particles and the heating of plasma. They are often accompanied by coronal mass ejections (CMEs). We discuss the methodology and results of the energy partition into three main components: (1) radiative energy, (2) non-thermal acceleration of electrons, and (3) the peak thermal energy content, for a subset of the largest eruptive events from Solar Cycle 23, as derived from satellite observations and empirical models. The bolometric energy content is on the order of 1031 - 1032 ergs and is extracted from Total Solar Irradiance (TSI) measurements by the Total Irradiance Monitor (TIM) onboard the SOlar Radiation and Climate Experiment (SORCE). The Vacuum Ultraviolet (VUV) contribution of the total radiative output is obtained by implementing the Flare Irradiance Spectral Model (FISM). Furthermore, we partition the radiative release into impulsive and gradual phases. X-ray spectra from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) are used to deduce the energy in the non-thermal accelerated electrons, generally found to be 1031 -1032 ergs, and the peak thermal energy content of around 1030 - 1031 ergs. Aside from the CME kinetic energy, these three components contain a substantial amount of the initial available magnetic energy.

  1. Electron cytochemical study of carbohydrate components in different types of cultured glial cells of snail Helix pomatia.

    PubMed

    Koval, L M; Kononenko, N I; Lutsik, M D; Yavorskaya, E N

    1994-01-01

    Using a variety of colloidal gold-labelled lectins with different sugar specificities, the structure and topography of carbohydrate determinants of the surface membrane of in vitro cultured glial and nerve cells of the snail Helix pomatia have been electron cytochemically studied. Heterogeneity of carbohydrate pools among different types of glial cells and between glial and nerve cells was established. It was found that satellite glial cells having the ultrastructural signs of cells with high metabolic level (type II cells) selectively bind GNA which is specific to terminal alpha-D-mannose residues and do not bind other mannose-specific lectins, Con A and LCA. GNA determinants are absent in satellite type I glial cells, fibrous glial cells, microglia and neurons. It has been found that glial cells (satellite type I and II glial cells, filamentous glial cells and microglial cells) do not bind PVA and LABA. LTA did not bind to any glial cells and binds weakly to neurons. Con A and WGA determinants which are abundant on the neurons are completely absent on satellite type II glial cells but present on satellite type I glial cells and filamentous glial cells. Microglial cells contain Con A and LCA determinants and the density of PNA determinants on these cells is the highest compared to other types of glial cells or neurons. It is concluded that some lectin determinants (for RCA-1, PNA, LPA) are present on all types of glial cells, while another determinant (GNA) is specific for a definite type of glial cells and can serve as a marker of these cells. The role of specific carbohydrate determinants in the functioning of a neuron-glial complex is discussed. PMID:7914854

  2. Manganese oxide minerals: Crystal structures and economic and environmental significance

    PubMed Central

    Post, Jeffrey E.

    1999-01-01

    Manganese oxide minerals have been used for thousands of years—by the ancients for pigments and to clarify glass, and today as ores of Mn metal, catalysts, and battery material. More than 30 Mn oxide minerals occur in a wide variety of geological settings. They are major components of Mn nodules that pave huge areas of the ocean floor and bottoms of many fresh-water lakes. Mn oxide minerals are ubiquitous in soils and sediments and participate in a variety of chemical reactions that affect groundwater and bulk soil composition. Their typical occurrence as fine-grained mixtures makes it difficult to study their atomic structures and crystal chemistries. In recent years, however, investigations using transmission electron microscopy and powder x-ray and neutron diffraction methods have provided important new insights into the structures and properties of these materials. The crystal structures for todorokite and birnessite, two of the more common Mn oxide minerals in terrestrial deposits and ocean nodules, were determined by using powder x-ray diffraction data and the Rietveld refinement method. Because of the large tunnels in todorokite and related structures there is considerable interest in the use of these materials and synthetic analogues as catalysts and cation exchange agents. Birnessite-group minerals have layer structures and readily undergo oxidation reduction and cation-exchange reactions and play a major role in controlling groundwater chemistry. PMID:10097056

  3. Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods.

    PubMed

    Mitin, Alexander V; van Wüllen, Christoph

    2006-02-14

    A two-component quasirelativistic Hamiltonian based on spin-dependent effective core potentials is used to calculate ionization energies and electron affinities of the heavy halogen atom bromine through the superheavy element 117 (eka-astatine) as well as spectroscopic constants of the homonuclear dimers of these atoms. We describe a two-component Hartree-Fock and density-functional program that treats spin-orbit coupling self-consistently within the orbital optimization procedure. A comparison with results from high-order Douglas-Kroll calculations--for the superheavy systems also with zeroth-order regular approximation and four-component Dirac results--demonstrates the validity of the pseudopotential approximation. The density-functional (but not the Hartree-Fock) results show very satisfactory agreement with theoretical coupled cluster as well as experimental data where available, such that the theoretical results can serve as an estimate for the hitherto unknown properties of astatine, element 117, and their dimers. PMID:16483205

  4. Cryopreservation and image enhancement of juvenile and adult dentine mineral.

    PubMed

    Carter, D H; Scully, A J; Hatton, P V; Davies, R M; Aaron, J E

    2000-04-01

    The inorganic component of bone and related hard tissues is generally described as sheets of uniform needle- and plate-like crystals. However, cryofixation has become the method of choice for ultrastructural studies of bone mineral when ladder-like arrangements of filaments contained within deformable microspheres about 1 microm in diameter are apparently the prime structural feature and are consistent with the optical image. The same methodology has now been applied to mature human dentine in caries-free juvenile and adult teeth. These were fixed, sliced, stained for mineral and examined optically or were snap frozen, fragmented under liquid nitrogen, freeze-substituted with methanol or acetone and embedded without thawing in Lowicryl K4M for electron microscopy. Others were processed by traditional transmission electron microscopy methods. To obtain maximum resolution, the electron micrographs were photographically printed as negatives and image-enhanced by digitisation using a Polaroid Sprint Scan 45 and laser printer. In both optical and cryopreparations of juvenile and adult dentine, mineral microspheres up to 1 microm in diameter, were present in the dentinal tubules and peritubular dentine. Within these objects, the mineral was primarily in the form of sinuous electron dense filaments, 5 nm thick, which had a characteristic periodicity. In these preparations needle-like and plate-like structures were rare. In contrast, after traditional transmission electron microscopy preparation although similar filamentous structures remained, the mineral more generally had the familiar form of needles measuring approximately 50 nm in the long axis. The cryopreserved calcified filaments were apparently particularly densely distributed in the intertubular dentine where their parallel ladder-like arrays often formed highly orientated struts and stays. It was concluded that early dentine mineral has the form of filamentous microspheres and as in bone (and other calcifying

  5. Development of a ferromagnetic component in the superconducting state of Fe-excess Fe1.12Te1-xSex by electronic charge redistribution

    NASA Astrophysics Data System (ADS)

    Li, Wen-Hsien; Karna, Sunil K.; Hsu, Han; Li, Chi-Yen; Lee, Chi-Hung; Sankar, Raman; Cheng Chou, Fang

    2015-06-01

    The general picture established so far for the links between superconductivity and magnetic ordering in iron chalcogenide Fe1+y(Te1-xSex) is that the substitution of Se for Te directly drives the system from the antiferromagnetic end into the superconducting regime. Here, we report on the observation of a ferromagnetic component that developed together with the superconducting transition in Fe-excess Fe1.12Te1-xSex crystals using neutron and x-ray diffractions, resistivity, magnetic susceptibility and magnetization measurements. The superconducting transition is accompanied by a negative thermal expansion of the crystalline unit cell and an electronic charge redistribution, where a small portion of the electronic charge flows from around the Fe sites toward the Te/Se sites. First-principles calculations show consistent results, revealing that the excess Fe ions play a more significant role in affecting the magnetic property in the superconducting state than in the normal state and the occurrence of an electronic charge redistribution through the superconducting transition.

  6. A New Approach to Energy Integral for Investigation of Dust—Ion Acoustic (DIA) Waves in Multi-Component Plasmas with Quantum Effects in Inertia Less Electrons

    NASA Astrophysics Data System (ADS)

    Kalita, B. C.; Kalita, R.

    2015-06-01

    Dust-ion acoustic waves are investigated in this model of plasma consisting of negatively charged dusts, cold ions and inertia less quantum effected electrons with the help of a typical energy integral. In this case, a new technique is applied formulating a differential equation to establish the energy integral in case of multi-component plasmas which is not possible in general. Dust-ion acoustic (DIA) compressive and rarefactive, supersonic and subsonic solitons of various amplitudes are established. The consideration of smaller order nonlinearity in support of the newly established quantum plasma model is observed to generate small amplitude solitons at the decrease of Mach number. The growths of soliton amplitudes and potential depths are found more sensitive to the density of quantum electrons. The small density ratio r(= 1 - f) with a little quantized electrons supplemented by the dust charges Zd and the in-deterministic new quantum parameter C2 are found responsible to finally support the generation of small amplitude solitons admissible for the model.

  7. Structure and chemical characteristics of natural mineral deposit Terbunskaya (Lipetsk region, Russia)

    SciTech Connect

    Motyleva, S. Mertvishcheva, M.; Shchuchka, R.; Gulidova, V.

    2015-07-22

    New knowledge about the mineralogical features Terbunsky mineral. Investigated 5 fractions isolated from the incision (2-2,5 m). Terbunskaya deposit belongs to minerals Santonian age. Scanning electron microscopy and energy dispersive analysis of fractions isolated studied in detail. In the coarse fractions found ancient organic remains of algae and micro-organisms that have been sedimented together with the mineral component during geological periods. The share of organic inclusions does not exceed 1.5%. Chemical composition confirms the presence of silicon and carbonate organisms. Advantageously proportion of minerals having a layered structure with a plurality of micro and nano pore size 600 - 80-nm and an average chemical composition (wt%): Na (0,64), Mg (0,54), Al (13.48), Si (27 57), K (2.39) Ca (0.75)

  8. Structure and chemical characteristics of natural mineral deposit Terbunskaya (Lipetsk region, Russia)

    NASA Astrophysics Data System (ADS)

    Motyleva, S.; Shchuchka, R.; Gulidova, V.; Mertvishcheva, M.

    2015-07-01

    New knowledge about the mineralogical features Terbunsky mineral. Investigated 5 fractions isolated from the incision (2-2,5 m). Terbunskaya deposit belongs to minerals Santonian age. Scanning electron microscopy and energy dispersive analysis of fractions isolated studied in detail. In the coarse fractions found ancient organic remains of algae and micro-organisms that have been sedimented together with the mineral component during geological periods. The share of organic inclusions does not exceed 1.5%. Chemical composition confirms the presence of silicon and carbonate organisms. Advantageously proportion of minerals having a layered structure with a plurality of micro and nano pore size 600 - 80-nm and an average chemical composition (wt%): Na (0,64), Mg (0,54), Al (13.48), Si (27 57), K (2.39) Ca (0.75).

  9. Molecular Characterization of Bacterial Respiration on Minerals

    SciTech Connect

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  10. Crystallization conditions and controls on trace element residence in the main minerals from the Pedra Branca Syenite, Brazil: An electron microprobe and LA-ICPMS study

    NASA Astrophysics Data System (ADS)

    Carvalho, Bruna Borges; Janasi, Valdecir de Assis

    2012-11-01

    Major and trace-element microanalyses of the main minerals from the 610 Ma Pedra Branca Syenite, southeast Brazil, allow inferences on intensive parameters of magmatic crystallization and on the partition of trace-elements among these minerals, with important implications for the petrogenetic evolution of the pluton. Two main syenite types make up the pluton, a quartz-free syenite with tabular alkali feldspar (laminated silica-saturated syenite, LSS, with Na-rich augite + phlogopite + hematite + magnetite + titanite + apatite) and a quartz-bearing syenite (laminated silica-oversaturated syenite, LSO, with scarce corroded plagioclase plus diopside + biotite ± hornblende + ilmenite ± magnetite + titanite + apatite). Both types share a remarkable enrichment in incompatible elements as K, Ba, Sr, P and LREE. Apatite saturation temperatures of ~ 1060-1090 °C are the best estimates of liquidus, whereas the pressure of emplacement, based on Al-in-hornblende barometry, is estimated as 3.3 to 4.8 kbar. Although both units crystallized under oxidizing conditions, oxygen fugacity was probably higher in LSS, as shown by higher mg# of the mafic minerals and higher hematite contents in Hem-Ilmss. In contrast with the Ca-bearing alkali-feldspar from LSO, which hosts most of the whole-rock Sr and Pb, virtually Ca-free alkali-feldspar from LSS hosts ~ 50% of whole-rock Sr and ~ 80% of Pb, the remainder of these elements being shared by apatite, pyroxene and titanite. This contrast reflects a strong crystal-chemical control, whereby a higher proportion of an element with similar ratio and charge (Ca2 +) enhances the residence of Sr and Pb in the M-site of alkali feldspar. The more alkaline character of the LSS magma is inferred to have inhibited zircon saturation; Zr + Hf remained in solution until late in the crystallization, and were mostly accommodated in the structure of Ca-Na pyroxene and titanite, which are one order of magnitude richer in these elements compared to the

  11. Microstructural architecture developed in the fabrication of solid and open-cellular copper components by additive manufacturing using electron beam melting

    NASA Astrophysics Data System (ADS)

    Ramirez, Diana Alejandra

    The fabrication of Cu components were first built by additive manufacturing using electron beam melting (EBM) from low-purity, atomized Cu powder containing a high density of Cu2O precipitates leading to a novel example of precipitate-dislocation architecture. These microstructures exhibit cell-like arrays (1-3microm) in the horizontal reference plane perpendicular to the build direction with columnar-like arrays extending from ~12 to >60 microm in length and corresponding spatial dimensions of 1-3 microm. These observations were observed by the use of optical metallography, and scanning and transmission electron microscopy. The hardness measurements were taken both on the atomized powder and the Cu components. The hardness for these architectures ranged from ~HV 83 to 88, in contrast to the original Cu powder microindentation hardness of HV 72 and the commercial Cu base plate hardness of HV 57. These observations were utilized for the fabrication of open-cellular copper structures by additive manufacturing using EBM and illustrated the ability to fabricate some form of controlled microstructural architecture by EBM parameter alteration or optimizing. The fabrication of these structures ranged in densities from 0.73g/cm3 to 6.67g/cm3. These structures correspond to four different articulated mesh arrays. While these components contained some porosity as a consequence of some unmelted regions, the Cu2O precipitates also contributed to a reduced density. Using X-ray Diffraction showed the approximate volume fraction estimated to be ~2%. The addition of precipitates created in the EBM melt scan formed microstructural arrays which contributed to hardening contributing to the strength of mesh struts and foam ligaments. The measurements of relative stiffness versus relative density plots for Cu compared very closely with Ti-6Al-4V open cellular structures - both mesh and foams. The Cu reticulated mesh structures exhibit a slope of n = 2 in contrast to a slope of n = 2

  12. Mineralization of Carbon Dioxide: Literature Review

    SciTech Connect

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O'Connor, W

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  13. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  14. An electron microscopy study of the microstructure and microarchitecture of the Strombus gigas shell

    SciTech Connect

    Rieke, P.C.; Laraia, V.J. ); Heuer, A.H. ); Aindow, M. )

    1989-11-01

    A scanning and transmission electron microscopy study is presented of the microstructure of the Strombus gigas shell. The hierarchical nature of this crossed-lamellar structure and the defect content of the mineral component are described. The mineral component consists of small single crystal grains of aragonite, the metastable orthorhombic polymorph of CaCO{sub 3}. The habit and morphology of the grains discussed here have not been determined previously. The observed habit and defect structure suggest that the organic matrix exerts a high degree of control over the crystal growth of the mineral phase and is responsible for the long range order in the microarhitecture. Electron beam heating of the mineral component leads to certain phase changes and these are discussed. 15 refs., 6 figs.

  15. Earth mineral resource of the month: asbestos

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article discusses the characteristics and feature of asbestos. According to the author, asbestos is a generic name for six needle-shaped minerals that possess high tensile strengths, flexibility, and resistance to chemical and thermal degradation. These minerals are actinolite, amosite, anthophyllite, chrysolite, crocilodite and tremolite. Asbestos is used for strengthening concrete pipe, plastic components, and gypsum plasters.

  16. Solution of the Dirac equation using the Rayleigh-Ritz method: Flexible basis coupling large and small components. Results for one-electron systems.

    PubMed

    Bağcı, A; Hoggan, P E

    2016-07-01

    An algebraic solution of the Dirac equation is reinvestigated. Slater-type spinor orbitals and their corresponding system of differential equations are defined in two- and four-component formalism. They describe the radial function in components of the wave function of the Dirac equation solution to high accuracy. They constitute the matrix elements arising in a generalized eigenvalue equation. These terms are evaluated through prolate spheroidal coordinates. The corresponding integrals are calculated by the numerical global-adaptive method taking into account the Gauss-Kronrod numerical integration extension. Sample calculations are performed using flexible basis sets generated with both signs of the relativistic angular momentum quantum number κ. Applications to one-electron atoms and diatomics are detailed. Variationally optimum values for orbital parameters are obtained at given nuclear separation. Methods discussed in this work are capable of yielding highly accurate relativistic two-center integrals for all ranges of orbital parameters. This work provides an efficient way to overcome the problems that arise in relativistic calculations. PMID:27575231

  17. Solution of the Dirac equation using the Rayleigh-Ritz method: Flexible basis coupling large and small components. Results for one-electron systems

    NASA Astrophysics Data System (ADS)

    Baǧcı, A.; Hoggan, P. E.

    2016-07-01

    An algebraic solution of the Dirac equation is reinvestigated. Slater-type spinor orbitals and their corresponding system of differential equations are defined in two- and four-component formalism. They describe the radial function in components of the wave function of the Dirac equation solution to high accuracy. They constitute the matrix elements arising in a generalized eigenvalue equation. These terms are evaluated through prolate spheroidal coordinates. The corresponding integrals are calculated by the numerical global-adaptive method taking into account the Gauss-Kronrod numerical integration extension. Sample calculations are performed using flexible basis sets generated with both signs of the relativistic angular momentum quantum number κ . Applications to one-electron atoms and diatomics are detailed. Variationally optimum values for orbital parameters are obtained at given nuclear separation. Methods discussed in this work are capable of yielding highly accurate relativistic two-center integrals for all ranges of orbital parameters. This work provides an efficient way to overcome the problems that arise in relativistic calculations.

  18. Potassium Solubilization in Fungal Degradation of Aluminosilicate Minerals

    NASA Astrophysics Data System (ADS)

    Teng, H.; Lian, B.

    2007-12-01

    Potassium is an essential soil nutrient that performs a multitude of important biological functions to maintain plant growth and health. However, plants cannot directly use mineralic potassium. Only those that are released by weathering or dissolved in soil water are available for plants' nutrient uptake. On the other hand, microorganisms and related biological activities often play critical roles in mineral weathering and hence participate heavily in the geochemical cycles of nutrient elements. Here, we study the microbial release of potassium from K-bearing minerals orthoclase and illite. A strain of thermophilic fungus A. fumigatus was cultured with a mixture of the minerals to determine if microbe-mineral interactions enhance the solubilization of mineralic potassium. Experiments were carried in two settings, one with the mineral grains and the fungal cells in direct contact, and the other employing a membrane (pore size 0.22 um) to separate the two. Measurements over a period of 30 days showed that, irrespective of the experimental setup, the concentration of free K in the culture was drastically higher than those in any of the control experiments where no living organism was present. Moreover, the occurrence of mineral-cell physical contact enhanced potassium release by an additional factor of 3 to 4 in comparison to the separation experiments. For contact experiments, Electron Probe Microanalysis revealed the formation of mycelium-mineral aggregates, and Atomic Force Microscopy imaging further indicated the possible ingestion of mineral particles by the fungus cells. Contrasting to what was observed and expected in control experiments, the potassium solubilization rate showed a positive dependence upon pH when fungi and minerals were mixed directly, and exhibited no correlations with solution acidity if cell-rock contact was restrained. These results appear to suggest that A. fumigatus promoted potassium release by means of at least three likely routes, one

  19. New Minerals and Science.

    ERIC Educational Resources Information Center

    Birch, William D.

    1997-01-01

    Defines geodiversity, compares it to biodiversity, and discusses the mineral classification system. Charts the discovery of new minerals in Australia over time and focuses on uses of these minerals in technological advances. (DDR)

  20. Mineral spirits poisoning

    MedlinePlus

    Mineral spirits are liquid chemicals used to thin paint and as a degreaser. Mineral spirits poisoning occurs ... be found in: Mineral spirits ( Stoddard solvent ) Some paints Some floor and furniture waxes and polishes Some ...

  1. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  2. The MINER$\

    SciTech Connect

    Perdue, G.N.; Bagby, L.; Baldin, B.; Gingu, C.; Olsen, J.; Rubinov, P.; Schulte, E.C.; Bradford, R.; Brooks, W.K.; Caicedo, D.A.M.; Castromonte, C.M.; /Rio de Janeiro, CBPF /Rochester U.

    2012-09-01

    MINERvA (Main INjector ExpeRiment v-A) is a new few-GeV neutrino cross-section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINERvA employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINERvA data acquisition system (DAQ) including the readout electronics, software, and computing architecture.

  3. Microorganisms meet solid minerals: interactions and biotechnological applications.

    PubMed

    Ng, Daphne H P; Kumar, Amit; Cao, Bin

    2016-08-01

    In natural and engineered environments, microorganisms often co-exist and interact with various minerals or mineral-containing solids. Microorganism-mineral interactions contribute significantly to environmental processes, including biogeochemical cycles in natural ecosystems and biodeterioration of materials in engineered environments. In this mini-review, we provide a summary of several key mechanisms involved in microorganism-mineral interactions, including the following: (i) solid minerals serve as substrata for biofilm development; (ii) solid minerals serve as an electron source or sink for microbial respiration; (iii) solid minerals provide microorganisms with macro or micronutrients for cell growth; and (iv) (semi)conductive solid minerals serve as extracellular electron conduits facilitating cell-to-cell interactions. We also highlight recent developments in harnessing microbe-mineral interactions for biotechnological applications. PMID:27338573

  4. Miner's rule revisited

    NASA Astrophysics Data System (ADS)

    Schuetz, W.; Heuler, P.

    1994-03-01

    In the first sections, the requirements to be met by hypotheses for fatigue life prediction (including those for the crack initiation and crack propagation phases) are discussed in detail. These requirements are shown to be different for 'scientific' and for 'industrial' fatigue life prediction. Aspects with regard to an assessment of fatigue life prediction hypotheses are discussed. The last section presents the results of a large cooperative program between IABG and several automobile manufacturers, in which Miner's Rule in several versions was assessed against spectrum tests with five different actual automobile components: forged steel stub axle; forged steel stub axle, induction hardened; sheet steel welded rear axle (front wheel drive car); cast aluminum wheel; and welded sheet steel wheel. Since up to 80 components each were available, and two different, but typical, automotive stress-time histories were employed, the assessment was very thorough, avoiding many of the drawbacks of previous assessments. It is shown that damage sums to failure were usually far below 1.0; they also depended on the component in question, the aluminum wheel resulting in the lowest damage sums to failure; the damage sums to failure where always lower for a mild spectrum than for a severe one; and the influence of spectrum variation was predicted best - among the hypotheses tested - by use of a recent proposal of Zenner and Liu.

  5. 21 CFR 177.2355 - Mineral reinforced nylon resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Mineral reinforced nylon resins. 177.2355 Section... as Components of Articles Intended for Repeated Use § 177.2355 Mineral reinforced nylon resins. Mineral reinforced nylon resins identified in paragraph (a) of this section may be safely used as...

  6. 21 CFR 177.2355 - Mineral reinforced nylon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Mineral reinforced nylon resins. 177.2355 Section... as Components of Articles Intended for Repeated Use § 177.2355 Mineral reinforced nylon resins. Mineral reinforced nylon resins identified in paragraph (a) of this section may be safely used as...

  7. 21 CFR 177.2355 - Mineral reinforced nylon resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Mineral reinforced nylon resins. 177.2355 Section... as Components of Articles Intended for Repeated Use § 177.2355 Mineral reinforced nylon resins. Mineral reinforced nylon resins identified in paragraph (a) of this section may be safely used as...

  8. 21 CFR 177.2355 - Mineral reinforced nylon resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Mineral reinforced nylon resins. 177.2355 Section... as Components of Articles Intended for Repeated Use § 177.2355 Mineral reinforced nylon resins. Mineral reinforced nylon resins identified in paragraph (a) of this section may be safely used as...

  9. Lunar highland rocks - Element partitioning among minerals. II - Electron microprobe analyses of Al, P, Ca, Ti, Cr, Mn and Fe in olivine

    NASA Technical Reports Server (NTRS)

    Smith, J. V.; Hansen, E. C.; Steele, I. M.

    1980-01-01

    Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.

  10. In Vitro Enzymatic Reduction Kinetics of Mineral Oxides by Membrane Fractions from Shewanella oneidensis MR-1

    SciTech Connect

    Ruebush,S.; Icopini, G.; Brantley, S.; Tien, M.

    2006-01-01

    This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite

  11. In vitro enzymatic reduction kinetics of mineral oxides by membrane fractions from Shewanella oneidensis MR-1

    NASA Astrophysics Data System (ADS)

    Ruebush, Shane S.; Icopini, Gary A.; Brantley, Susan L.; Tien, Ming

    2006-01-01

    This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite

  12. Bone mineralization pathways during the rapid growth of embryonic chicken long bones.

    PubMed

    Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Asscher, Yotam; Wagermaier, Wolfgang; Fratzl, Peter; Addadi, Lia; Weiner, Steve

    2016-07-01

    The uptake and transport of ions from the environment to the site of bone formation is only partially understood and, for the most part, based on disparate observations in different animals. Here we study different aspects of the biomineralization pathways in one system, the rapidly forming long bones of the chicken embryo. We mainly used cryo-fixation and cryo-electron imaging to preserve the often unstable mineral phases in the tissues. We show the presence of surprisingly large amounts of mineral particles located inside membrane-delineated vesicles in the bone forming tissue between the blood vessels and the forming bone surface. Some of these particles are also located inside mitochondrial networks. The surfaces of the forming bones in the extracellular space contain abundant aggregates of amorphous calcium phosphate particles, but these are not enveloped by vesicle membranes. In the bone resorbing region, osteoclasts also contain many particles in both mitochondrial networks and within vesicles. Some of these particles are present also between cells. These observations, together with the previously reported observation that CaP mineral particles inside membranes are present in blood vessels, leads us to the conclusion that important components of the bone mineralization pathways in rapidly forming chicken bone are dense phase mineral particles bound within membranes. It remains to be determined whether these mineral particles are transported to the site of bone formation in the solid state, fluid state or dissolve and re-precipitate. PMID:27108185

  13. Minerals in the Foods Eaten by Mountain Gorillas (Gorilla beringei)

    PubMed Central

    Cancelliere, Emma C.; DeAngelis, Nicole; Nkurunungi, John Bosco; Raubenheimer, David; Rothman, Jessica M.

    2014-01-01

    Minerals are critical to an individual’s health and fitness, and yet little is known about mineral nutrition and requirements in free-ranging primates. We estimated the mineral content of foods consumed by mountain gorillas (Gorilla beringei beringei) in the Bwindi Impenetrable National Park, Uganda. Mountain gorillas acquire the majority of their minerals from herbaceous leaves, which constitute the bulk of their diet. However, less commonly eaten foods were sometimes found to be higher in specific minerals, suggesting their potential importance. A principal component analysis demonstrated little correlation among minerals in food items, which further suggests that mountain gorillas might increase dietary diversity to obtain a full complement of minerals in their diet. Future work is needed to examine the bioavailability of minerals to mountain gorillas in order to better understand their intake in relation to estimated needs and the consequences of suboptimal mineral balance in gorilla foods. PMID:25372712

  14. Microbial Community Acquisition of Nutrients from Mineral Surfaces. Final Report

    SciTech Connect

    Hochella, M. F.

    2003-06-03

    Minerals and microbes undergo complex interactions in nature that impact broad aspects of near-surface Earth chemistry. Our primary objective in this project was to gain insight into how microbial species and communities acquire critical but tightly held nutrients residing on or within minerals common in rocks and soils, and to quantitatively study related microbe-mineral interactions including cell adhesion, electron transfer, and siderophore-mineral interaction processes.

  15. TUCS/phosphate mineralization of actinides

    SciTech Connect

    Nash, K.L.

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  16. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting

    SciTech Connect

    Tammas-Williams, S.; Zhao, H.; Léonard, F.; Derguti, F.; Todd, I.; Prangnell, P.B.

    2015-04-15

    Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (< 0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship was found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. - Graphical abstract: Display Omitted - Highlights: • Vast majority of defects detected were small spherical gas pores. • Gas bubbles trapped in the powder granules expand and coalesce in the melt pool. • Pores have been shown not to be randomly distributed. • Larger and deeper melt pools give more opportunity for gas to escape. • Minor changes to melt strategy result in significant reductions in pore population.

  17. Citrate bridges between mineral platelets in bone.

    PubMed

    Davies, Erika; Müller, Karin H; Wong, Wai Ching; Pickard, Chris J; Reid, David G; Skepper, Jeremy N; Duer, Melinda J

    2014-04-01

    We provide evidence that citrate anions bridge between mineral platelets in bone and hypothesize that their presence acts to maintain separate platelets with disordered regions between them rather than gradual transformations into larger, more ordered blocks of mineral. To assess this hypothesis, we take as a model for a citrate bridging between layers of calcium phosphate mineral a double salt octacalcium phosphate citrate (OCP-citrate). We use a combination of multinuclear solid-state NMR spectroscopy, powder X-ray diffraction, and first principles electronic structure calculations to propose a quantitative structure for this material, in which citrate anions reside in a hydrated layer, bridging between apatitic layers. To assess the relevance of such a structure in native bone mineral, we present for the first time, to our knowledge, (17)O NMR data on bone and compare them with (17)O NMR data for OCP-citrate and other calcium phosphate minerals relevant to bone. The proposed structural model that we deduce from this work for bone mineral is a layered structure with thin apatitic platelets sandwiched between OCP-citrate-like hydrated layers. Such a structure can explain a number of known structural features of bone mineral: the thin, plate-like morphology of mature bone mineral crystals, the presence of significant quantities of strongly bound water molecules, and the relatively high concentration of hydrogen phosphate as well as the maintenance of a disordered region between mineral platelets. PMID:24706850

  18. Influence of mineralization and microporosity on tissue elasticity: experimental and numerical investigation on mineralized turkey leg tendons.

    PubMed

    Spiesz, Ewa M; Roschger, Paul; Zysset, Philippe K

    2012-04-01

    A combined experimental and numerical study correlating indentation stiffness with mineralization and microporosity was performed on mineralized turkey leg tendon. Two distinct tissue morphologies were distinguished by quantitative backscattered electron imaging and called "circumferential" and "interstitial" zones. These two zones showed different tissue organization, microporosity, and mineralization. Stiffness, measured by microindentation, was also different in the two zones. The mean field method of modeling of mineralized collagen fibers was employed to explain the differences. PMID:22395487

  19. Bartering for Minerals.

    ERIC Educational Resources Information Center

    May, Kathie

    2002-01-01

    Presents an activity in which students are assigned occupations that rely on specific minerals. To obtain the needed minerals, students learn how to trade services and commodities. Includes details on preparation, modeling behaviors, and printed materials. (DDR)

  20. Sulfide Mineral Surfaces

    SciTech Connect

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by structure type

  1. Possible uranium mineralization, Mineral Mountains, Utah

    USGS Publications Warehouse

    Miller, W. Roger; McHugh, John B.; Ficklin, Walter H.

    1979-01-01

    The Mineral Mountains block in west-central Utah is a horst whose core stands structurally high relative to all nearby basin-and-range fault blocks. Rocks of the Mineral Mountains range from Precambrian to Quaternary in age, but mostly consist of Tertiary granitic rocks. The range lies with the Wah Wah-Tusher mineral belt. Lead, silver, gold, and tungsten have been mined commercially. During a geochemical survey conducted in the summer of 1978, 30 water samples and 29 stream-sediment samples were collected from the Mineral Mountains area. The interpretation of simple plots of uranium concentrations and the results of a Q-mode factor analysis indicate that potential exists for uranium mineral deposits within the Mineral Mountains. The most favorable areas are in the granitic pluton near its contacts with sedimentary and metamorphic rocks. The most likely source of the uranium anomalies is uraninite-bearing epigenic veins along faults and fractures within the pluton. Three hypothetical models are proposed to account for the uranium mineralization.

  2. Geochemical processes at mineral surfaces

    SciTech Connect

    Davis, J.A.; Hayes, K.F.

    1986-01-01

    This volume includes 32 papers which were presented at a symposium on geochemical processes at mineral-water interfaces in 1985 and which bring to bear on this area a very wide range of expertise. The discontinuities in properties which occur at the mineral-water interface have profound effects on the movement of naturally occurring ions. Weathering and precipitation processes control the concentrations and speciation of ions in natural waters and the movements of these within the hydrosphere; both classes of processes take place at mineral-water interfaces. After an introductory overview, the book is divided into seven major sections, each dealing with one of the aspects of the processes occurring at the mineral-water interface. Five papers deal with the physical properties of the mineral-water interface; these represent a well-balanced mix of experimental and theoretical (mathematical modeling) work. Adsorption phenomena are dealt with in another five papers; these are largely experimental in character. Ion-exchange processes are discussed in four papers, one of which addresses the use of relaxation methods to study ion exchange kinetics at the microscopic level. Spectroscopic techniques (including electron-spin resonance and Moessbauer spectroscopy) are utilized in four papers. Chemical reactions, mainly redox processes, at mineral-water interfaces are treated in four papers, one of which deals with non-biological organic reactions. Solid-solution formation and equilibria are the subjects of another set of four articles, and the last group of papers deals with the processes involved in precipitation and dissolution, including weathering.

  3. Application of singular value decomposition (SVD) in extraction of gravity components indicating the deeply and shallowly buried granitic complex associated with tin polymetallic mineralization in the Gejiu tin ore field, Southwestern China

    NASA Astrophysics Data System (ADS)

    Chen, Yongqing; Zhang, Lina; Zhao, Binbin

    2015-12-01

    The Gejiu tin polymetallic ore deposit, located at the westernmost end of the Cathaysia Block, is one of the largest tin polymetallic ore deposits in the world. It is associated with a magmatic-hydrothermal ore-forming system triggered by the deeply buried geological structures and concealed granites. A singular value decomposition (SVD) program on a MATLAB platform was effectively used to extract deeply buried geological information reflecting deep-seated geological structures and the concealed granites by decomposing gravity signals within the Gejiu tin polymetallic ore field. Firstly, the gravity signals were decomposed into a few components with different eigenvalues using a singular value decomposition (SVD) approach. Secondly, the thresholds between the eigenvalues of gravity components reflecting deeply and shallowly buried ore-controlling geological structures and/or geological bodies were established by a multifractal method. Finally, the images of gravity components reflecting deeply and shallowly buried ore-controlling geological structures and/or geological bodies were reconstituted. This yielded two layers of significant two dimensional singular value gravity component images that indicate deeply and shallowly buried ore-controlling geological structures and/or geological bodies, respectively. The deep layer of gravity component image reveals a negative gravity anomaly (I) which indicates that the granites exposed in the west ore field, bounded by the Gejiu Fault, may be extended to the east ore field at depth, forming concealed granites (Fig. 4). The shallow layer of gravity component image reveals a structural framework created by two groups of NW-trending and three groups of NE-trending positive gravity component images defining two negative gravity anomalies (I and II), which may reflect existence of the exposed granites in the western ore field (I) and the concealed granites in the eastern ore field (II) (Figs. 5 and 6). Almost all tin

  4. Comprehensive examination of large mineral and rock fragments in Stardust tracks: Mineralogy, analogous extraterrestrial materials, and source regions

    NASA Astrophysics Data System (ADS)

    Joswiak, David J.; Brownlee, Donald E.; Matrajt, Graciela; Westphal, Andrew J.; Snead, Christopher J.; Gainsforth, Zack

    2012-04-01

    Transmission electron microscopy examination of 87 large fragments from 16 carrot-shaped and bulbous Stardust (SD) tracks was performed to study the range and diversity of materials present in comet Wild 2. Olivines and low-Ca pyroxenes represent the largest proportions of fragments observed; however, a wide range of minerals and rocks were found including probable ferromagnesian, Al-rich and Si-rich chondrule fragments, a refractory inclusion, possible matrix mineral/lithic clasts, and probable condensate minerals. These materials, combined with fine-grained components in the tracks, are analogous to components in unequilibrated chondrite meteorites and cluster interplanetary dust particles (IDPs). Two unusual lithologies in the bulbous tracks are only observed in chondritic porous IDPs and may have direct links to IDPs. The absence of phyllosilicates indicates that comet Wild 2 may be a "dry" comet that did not accrete or form significant amounts of hydrated phases. Some large mineral fragments in the SD tracks are analogous to large mineral IDPs. The large variations of the coarse-grained components within and between all 16 tracks show that comet Wild 2 is mineralogically diverse and unequilibrated on nearly all scales and must have accreted materials from diverse source regions that were widely dispersed throughout the solar nebula.

  5. Authigenic minerals: Biologically influenced and induced organomineralization

    NASA Astrophysics Data System (ADS)

    Dupraz, Christophe

    2016-04-01

    Organominerals are minerals precipitated by interactions with organic matter without enzymatic control. Organomineralization of authigenic carbonate minerals depends on two key components: (1) the "carbonate alkalinity engine" impacting the calcium carbonate saturation index and (2) the organic matrix comprised of extracellular organic matter (EOM), which provides a template for carbonate nucleation. The alkalinity engine can be "intrinsic" when microbial metabolisms increase supersaturation or lower the kinetic barrier of precipitation, or "extrinsic" when the physicochemical environment creates the conditions for mineral formation. The organic matrix produced by various communities within the microbial mats is known to influence nucleation, morphology and mineralogy of minerals through binding of cations. By playing with these two key components, three types of authigenic minerals can be formed: (1) a purely physicochemical precipitation on an abiotic substrate, (2) a precipitation "influenced" by the presence of an organic matrix but resulting from a physicochemical forcing (environmentally driven), or (3) a "microbially-induced" precipitation, in which both supersaturation and organic matrix are resulting from microbial activity. In this keynote, we will review important processes involved in the precipitation of authigenic carbonate minerals in modern microbial mats and open the discussion on the potential use of authigenic carbonate minerals as biosignatures in the fossil record.

  6. Ceramic component for electrodes

    DOEpatents

    Marchant, David D.

    1979-01-01

    A ceramic component suitable for preparing MHD generator electrodes consists of HfO.sub.2 and sufficient Tb.sub.4 O.sub.7 to stabilize at least 60 volume percent of the HfO.sub.2 into the cubic structure. The ceramic component may also contain a small amount of PrO.sub.2, Yb.sub.2 O.sub.3 or a mixture of both to improve stability and electronic conductivity of the electrode. The component is highly resistant to corrosion by molten potassium seed and molten coal slag in the MHD fluid and exhibits both ionic and electronic conductivity.

  7. Age and disease-related changes in the mineral of bone.

    PubMed

    Grynpas, M

    1993-01-01

    Bone mineralization changes with age and disease. The distribution of mineral particles in a given bone (mineralization profile) has been studied using density fractionation as well as microradiography and electron backscattering imaging. The biological determinant of mineralization is the rate of turnover. During rapid growth and periods of high remodeling, mineralization is shifted towards lower mineral density (hypomineralization). During aging and periods of low remodeling, mineralization is shifted towards higher mineral densities (hypermineralization). Chemicals can also influence the mineralization profile of bone. Fluoride induces hypermineralization by stabilizing the apatite lattice and reducing bone mineral solubility, whereas strontium induces hypomineralization by loosening the apatite lattice and increasing bone mineral solubility. Drugs such as bisphosphonates induce hypermineralization by inhibiting resorption and acting as crystal poison. Finally, mineralization can be impaired by defects as in rickets and osteomalacia or made excessive by continuous accretion of mineral without resorption as in osteopetrosis. PMID:8275381

  8. UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components.

    PubMed

    Vass, I; Sass, L; Spetea, C; Bakou, A; Ghanotakis, D F; Petrouleas, V

    1996-07-01

    Inhibition of photosystem II electron transport by UV-B radiation has been studied in isolated spinach photosystem II membrane particles using low-temperature EPR spectroscopy and chlorophyll fluorescence measurements. UV-B irradiation results in the rapid inhibition of oxygen evolution and the decline of variable chlorophyll fluorescence. These effects are accompanied by the loss of the multiline EPR signal arising from the S2 state of the water-oxidizing complex and the induction of Signal IIfast originating from stabilized Try-Z+. The EPR signals from the QA-Fe2+ acceptor complex, Tyr-D+, and the oxidized non-heme iron (Fe3+) are also decreased during the course of UV-B irradiation, but at a significantly slower rate than oxygen evolution and the multiline signal. The decrease of the Fe3+ signal at high g values (g = 8.06, g = 5.6) is accompanied by the induction of another EPR signal at g = 4.26 that arises most likely from the same Fe3+ ion in a modified ligand environment. UV-B irradiation also affects cytochrome b-559. The g = 2.94 EPR signal that arises from the dark- oxidized form is enhanced, whereas the light inducible g = 3.04 signal that arises from the photo-oxidizable population of cytochrome b-559 is diminished. UV-B irradiation also induces the degradation of the D1 reaction center protein. The rate of the D1 protein loss is slower than the inhibition of oxygen evolution and of the multiline signal but follows closely the loss of Signal IIslow, the QA-Fe2+ and the Fe3+ EPR signals, as well as the release of protein-bound manganese. It is concluded from the results that UV-B radiation affects photosystem II redox components at both the donor and acceptor side. The primary damage occurs at the water-oxidizing complex. Modification and/or inactivation of tyrosine-D, cytochrome b-559, and the QAFe2+ acceptor complex are subsequent events that coincide more closely with the UV-B-induced damage to the protein structure of the photosystem II reaction

  9. Potential health risks from the use of fibrous mineral absorption granulates.

    PubMed

    Rödelsperger, K; Brückel, B; Manke, J; Woitowitz, H J; Pott, F

    1987-05-01

    Attapulgite (palygorskite) and sepiolite are fibrous clay minerals used commercially as components in a wide variety of products including oil and grease adsorbents, carriers for pharmaceuticals, cosmetics, and pesticides. They are also components of drilling muds and animal litter and they are used as paint thickeners. The current annual worldwide production of these minerals exceeds one million tons. Although fibrous in nature, the fibre length may vary greatly depending on the location of the geological deposits. American attapulgite is short (0.1-2.5 micron in length, median of 0.4 micron) but palygorskite from other parts of the world is much longer (30% longer than 5 micron). Several samples of these materials have been submitted to scanning transmission electron microscopy (STEM). This paper reports the results of microscopic evaluations and makes a comparison with the data from experimental carcinogenicity studies and it is concluded that fibre length is a most important carcinogenic property. PMID:2954581

  10. Potential health risks from the use of fibrous mineral absorption granulates.

    PubMed Central

    Rödelsperger, K; Brückel, B; Manke, J; Woitowitz, H J; Pott, F

    1987-01-01

    Attapulgite (palygorskite) and sepiolite are fibrous clay minerals used commercially as components in a wide variety of products including oil and grease adsorbents, carriers for pharmaceuticals, cosmetics, and pesticides. They are also components of drilling muds and animal litter and they are used as paint thickeners. The current annual worldwide production of these minerals exceeds one million tons. Although fibrous in nature, the fibre length may vary greatly depending on the location of the geological deposits. American attapulgite is short (0.1-2.5 micron in length, median of 0.4 micron) but palygorskite from other parts of the world is much longer (30% longer than 5 micron). Several samples of these materials have been submitted to scanning transmission electron microscopy (STEM). This paper reports the results of microscopic evaluations and makes a comparison with the data from experimental carcinogenicity studies and it is concluded that fibre length is a most important carcinogenic property. Images PMID:2954581

  11. Comparison of marginal adaptation of mineral trioxide aggregate, glass ionomer cement and intermediate restorative material as root-end filling materials, using scanning electron microscope: An in vitro study

    PubMed Central

    Gundam, Sirisha; Patil, Jayaprakash; Venigalla, Bhuvan Shome; Yadanaparti, Sravanthi; Maddu, Radhika; Gurram, Sindhura Reddy

    2014-01-01

    Aim: The present study compares the marginal adaption of Mineral Trioxide Aggregate (MTA), Glass Ionomer Cement (GIC) and Intermediate Restorative Material (IRM) as root-end filling materials in extracted human teeth using Scanning Electron Microscope (SEM). Materials and Methods: Thirty single rooted human teeth were obturated with Gutta-percha after cleaning and shaping. Apical 3 mm of roots were resected and retrofilled with MTA, GIC and IRM. One millimeter transverse section of the retrofilled area was used to study the marginal adaptation of the restorative material with the dentin. Mounted specimens were examined using SEM at approximately 15 Kv and 10-6 Torr under high vacuum condition. At 2000 X magnification, the gap size at the material-tooth interface was recorded at 2 points in microns. Statistical Analysis: One way ANOVA Analysis of the data from the experimental group was carried out with gap size as the dependent variable, and material as independent variable. Results: The lowest mean value of gap size was recorded in MTA group (0.722 ± 0.438 μm) and the largest mean gap in GIC group (1.778 ± 0.697 μm). Conclusion: MTA showed least gap size when compared to IRM and GIC suggesting a better marginal adaptation. PMID:25506146

  12. Mineral particles, mineral fibers, and lung cancer

    SciTech Connect

    Churg, A.; Wiggs, B.

    1985-08-01

    The total fibrous and nonfibrous mineral content of the lung has been analyzed in a series of 14 men with lung cancer but no history of occupational dust exposure, and in a series of 14 control men matched for age, smoking history, and general occupational class. The lung cancer patients had an average of 525 +/- 369 X 10(6) exogenous mineral particles and 17.4 +/- 19.6 X 10(6) exogenous mineral fibers/g dry lung, while the controls had averages of 261 +/- 175 mineral particles and 4.7 +/- 3.2 X 10(6) mineral fibers/g dry lung. These differences are statistically significant for both particles and fibers. Kaolinite, talc, mica, feldspars, and crystalline silica comprised the majority of particles of both groups. Approximately 90% of the particles were smaller than 2 micron in diameter and approximately 60% smaller than 1 micron. In both groups, patients who had smoked more than 35 pack years had greater numbers of particles than patients who had smoked less than 35 pack years. It is concluded that, in this study, lungs from patients with lung cancer had statistically greater numbers of mineral particles and fibers than lungs from controls, and that smoking influences total long-term retention of particles from all sources.

  13. Mineralization by nanobacteria

    NASA Astrophysics Data System (ADS)

    Kajander, E. Olavi; Bjorklund, Michael; Ciftcioglu, Neva

    1998-07-01

    Nanobacteria are the smallest cell-walled bacteria, only recently discovered in human and cow blood and in commercial cell culture serum. In this study, we identified with energy-dispersive x-ray microanalysis and chemical analysis that all growth phases of nanobacteria produce biogenic apatite on their cell envelope. Fourier transform IR spectroscopy revealed the mineral as carbonate apatite. Previous models for stone formation have lead to a hypothesis that an elevated pH due to urease and/or alkaline phosphatase activity are important lithogenic factors. Our results indicate that carbonate apatite can be formed without these factors at pH 7.4 at physiological phosphate and calcium concentrations. Due to their specific macromolecules, nanobacteria can produce apatite very efficiency in media mimicking tissue fluids and glomerular filtrate and rapidly mineralizing most of available calcium and phosphate. This can be also monitored by (superscript 85)Sr incorporation and provides a unique model for in vitro studies on calcification. Recently, bacteria have been implicated in the formation of carbonate (hydroxy)fluorapatite in marine sediments. Apatite grains are found so commonly in sedimentary rocks that apatite is omitted in naming the stone. To prove that apatite and other minerals are formed by bacteria would implicate that the bacteria could be observed and their actions followed in stones. We have started to approach this in two ways. Firstly, by the use of sensitive methods for detecting specific bacterial components, like antigens, muramic acid and nucleic acids, that allow for detecting the presence of bacteria and, secondly, by follow-up of volatile bacterial metabolites observed by continuous monitoring with ion mobility spectrometry, IMCELL, working like an artificial, educatable smelling nose. The latter method might allow for remote real time detection of bacterial metabolism, a signature of life, in rocks via fractures of drillholes with or without

  14. The organic-mineral interaction in mollusk shell

    NASA Astrophysics Data System (ADS)

    Metzler, Rebecca A.

    Macromolecules are a minority but important component of the minerals formed by living organisms, or biominerals. While many proteins from the nacre and prismatic layers of mollusk shells have been identified and sequenced, the molecular interaction, organization, and rearrangements of proteins upon organic-mineral bond formation, and the effect of this interaction on crystal formation, deformation, and orientation are poorly understood. To examine the organic-mineral interaction in mollusk shells, we prepared model systems consisting of calcium carbonate grown in the presence of synthetic mollusk shell polypeptides. X-ray absorption near-edge structure (XANES) spectroscopy and x-ray photoelectron emission microscopy (X-PEEM) were used to examine the electronic structure and bonding environment of both the surface and bulk of model biomineral crystals, thereby determining that the organic-mineral interaction is a series of events starting with bond formation and ending with the fully formed mineral. XANES spectra acquired from the model biomineral systems showed that upon organic-mineral bond formation both the crystal and the polypeptides exhibit bond and molecular structure alterations. We acquired XANES spectra from the surface of calcium carbonate crystals grown in the presence of six synthetic polypeptides sequenced after mollusk nacre proteins: AP7N, AP24N, N16N, asp1, asp2, and ACCN. All of these model biominerals gave similar results, namely the disruption of CO bonds in calcite and enhancement of the peaks associated with C-H bonds bonds in peptides, indicating disordering of the calcite crystal and ordering of the peptides upon binding. We also show that these changes do not occur when the acidic amino acids, Asp and Glu, are replaced in the N16N sequence with Asn and Gln, respectively, demonstrating the importance of carboxyl groups in organic-mineral bond formation. We examined the bulk crystal structure of crystals grown in the presence of N16N and asp

  15. Characterizing mineral dusts and other aerosols from the Middle East--Part 1: ambient sampling.

    PubMed

    Engelbrecht, Johann P; McDonald, Eric V; Gillies, John A; Jayanty, R K M; Casuccio, Gary; Gertler, Alan W

    2009-02-01

    The purpose of the Enhanced Particulate Matter Surveillance Program was to provide scientifically founded information on the chemical and physical properties of dust collected over a period of approximately 1 year in Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (northern, central, coastal, and southern regions). Three collocated low-volume particulate samplers, one each for the total suspended particulate matter, < 10 micro m in aerodynamic diameter (PM(10)) particulate matter, and < 2.5 micro m in aerodynamic diameter (PM(2.5)) particulate matter, were deployed at each of the 15 sites, operating on a '1 in 6' day sampling schedule. Trace-element analysis was performed to measure levels of potentially harmful metals, while major-element and ion-chemistry analyses provided an estimate of mineral components. Scanning electron microscopy with energy dispersive spectroscopy was used to analyze the chemical composition of small individual particles. Secondary electron images provided information on particle size and shape. This study shows the three main air pollutant types to be geological dust, smoke from burn pits, and heavy metal condensates (possibly from metals smelting and battery manufacturing facilities). Non-dust storm events resulted in elevated trace metal concentrations in Baghdad, Balad, and Taji in Iraq. Scanning-electron-microscopy secondary electron images of individual particles revealed no evidence of freshly fractured quartz grains. In all instances, quartz grains had rounded edges and mineral grains were generally coated by clay minerals and iron oxides. PMID:19235610

  16. Mineral commodity profiles: Germanium

    USGS Publications Warehouse

    Butterman, W.C.; Jorgenson, John D.

    2005-01-01

    Overview -- Germanium is a hard, brittle semimetal that first came into use a half-century ago as a semiconductor material in radar units and as the material from which the first transistor was made. Today it is used principally as a component of the glass in telecommunications fiber optics; as a polymerization catalyst for polyethylene terephthalate (PET), a commercially important plastic; in infrared (IR) night vision devices; and as a semiconductor and substrate in electronics circuitry. Most germanium is recovered as a byproduct of zinc smelting, although it also has been recovered at some copper smelters and from the fly ash of coal-burning industrial powerplants. It is a highly dispersed element, associated primarily with base-metal sulfide ores. In the United States, germanium is recovered from zinc smelter residues and manufacturing scrap and is refined by two companies at four germanium refineries. One of the four refineries is dedicated to processing scrap. In 2000, producers sold zone-refined (high-purity) germanium at about $1,250 per kilogram and electronic-grade germanium dioxide (GeO2) at $800 per kilogram. Domestic refined production was valued at $22 million. Germanium is a critical component in highly technical devices and processes. It is likely to remain in demand in the future at levels at least as high as those of 2000. U.S. resources of germanium are probably adequate to meet domestic needs for several decades.

  17. Application of decision tree algorithm for identification of rock forming minerals using energy dispersive spectrometry

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Çubukçu, H. Evren; Artuner, Harun

    2014-05-01

    Rapid and automated mineral identification is compulsory in certain applications concerning natural rocks. Among all microscopic and spectrometric methods, energy dispersive X-ray spectrometers (EDS) integrated with scanning electron microscopes produce rapid information with reliable chemical data. Although obtaining elemental data with EDS analyses is fast and easy by the help of improving technology, it is rather challenging to perform accurate and rapid identification considering the large quantity of minerals in a rock sample with varying dimensions ranging between nanometer to centimeter. Furthermore, the physical properties of the specimen (roughness, thickness, electrical conductivity, position in the instrument etc.) and the incident electron beam (accelerating voltage, beam current, spot size etc.) control the produced characteristic X-ray, which in turn affect the elemental analyses. In order to minimize the effects of these physical constraints and develop an automated mineral identification system, a rule induction paradigm has been applied to energy dispersive spectral data. Decision tree classifiers divide training data sets into subclasses using generated rules or decisions and thereby it produces classification or recognition associated with these data sets. A number of thinsections prepared from rock samples with suitable mineralogy have been investigated and a preliminary 12 distinct mineral groups (olivine, orthopyroxene, clinopyroxene, apatite, amphibole, plagioclase, K- feldspar, zircon, magnetite, titanomagnetite, biotite, quartz), comprised mostly of silicates and oxides, have been selected. Energy dispersive spectral data for each group, consisting of 240 reference and 200 test analyses, have been acquired under various, non-standard, physical and electrical conditions. The reference X-Ray data have been used to assign the spectral distribution of elements to the specified mineral groups. Consequently, the test data have been analyzed using

  18. Separation of the electron and proton cosmic-ray components by means of a calorimeter in the PAMELA satellite-borne experiment for the case of particle detection within a large aperture

    SciTech Connect

    Karelin, A. V. Borisov, S. V.; Voronov, S. A.; Malakhov, V. V.

    2013-06-15

    The PAMELA satellite-borne experiment is designed to study cosmic rays over a broad energy range. The apparatus has been in near-Earth cosmic space from June 2006 to the present time. It is equipped with a magnetic spectrometer for determining the sign of the particle charge and rigidity. In solving some problems, however, information from the magnetic spectrometer becomes inaccessible, so that it is necessary to employ a calorimeter to separate the electron and nuclear cosmic-ray components. A procedure for separating these components for particles arriving off the magnetic-spectrometer aperture is considered.

  19. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model

    SciTech Connect

    Hiatt, Jessica R.; Davis, Stephen D.; Rivard, Mark J.

    2015-06-15

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose

  20. Elastic Properties of Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.; Stan, C. V.

    2012-12-01

    The most direct information about the interior structure of the Earth comes from seismic wave velocities. Interpretation of seismic data requires an understanding of how sound velocities and elastic properties of minerals vary with pressure, temperature, crystal structure, and composition as well as the role of anelasticity, melts, etc. More generally, elastic moduli are important for understanding many solid-state phenomena including mechanical stability, interatomic interactions, material strength, compressibility, and phase transition mechanisms. The database of mineral elasticity measurements has been growing rapidly in recent years. In this work, we report initial results of an ongoing survey of our current knowledge of mineral elasticity at both ambient conditions and high pressures and temperatures. The analysis is selective, emphasizing single crystal measurements but also incorporating polycrystalline measurements and volume compression data as appropriate. The goal is to synthesize our current understanding of mineral elasticity in terms of structure and composition, and to identify the major remaining needs for experimental and theoretical work. Clinopyroxenes (Cpx) provide an example of our approach. A wide range of clinopyroxene compositions are found geologically and Mg-, Ca-, and Na-rich clinopyroxenes are expected to be important components in the upper mantle. The single-crystal elastic properties of a number of endmember Cpx compositions have been measured and these exhibit a range of ~25% in shear velocity. Those with monovalent cations (spodumene, jadeite) in the M2 site exhibit the highest velocities while Fe-rich (hendenbergit, acmite) compositions have the lowest velocities. The effects on velocity due to a wide range of chemical substitutions can be defined, but there are important discrepancies and omissions in the database. New measurements of omphacites, intermediate diopside-hedenbergite compositions, aegerine/acmite, augite, etc. are

  1. A Role for Antibiotics in Mineral Dissolution and Biofilm Physiology

    NASA Astrophysics Data System (ADS)

    Newman, D. K.

    2002-12-01

    Respiration by bacteria is remarkable due to their ability to use a variety of compounds, including insoluble minerals, as terminal electron acceptors. How bacteria solve the problem of breathing something that is solid is poorly understood, but recent evidence points to the role of redox active natural products in shuttling electrons between microbes and minerals. Given the ubiquity of these substances in natural waters and soils, we must now revisit previous conclusions about whether direct contact between microbes and minerals is necessary to promote reductive mineral dissolution. To explore the degree to which extracellular electron transfer catalyzes important biogeochemical processes, we are studying the types of molecules that function as electron shuttles, including redox active antibiotics. I will discuss my laboratory's current understanding of how interspecies exchange of these molecules promotes mineral dissolution, as well as our emerging hypotheses regarding their function in biofilms.

  2. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-01

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  3. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.

    PubMed

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-26

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum. PMID:27420635

  4. Reagan issues mineral policy

    NASA Astrophysics Data System (ADS)

    The National Materials and Minerals Program plan and report that President Reagan sent to Congress on April 5 aims to ‘decrease America's minerals vulnerability’ while reducing future dependence on potentially unstable foreign sources of minerals. These goals would be accomplished by taking inventory of federal lands to determine mineral potential; by meeting the stockpile goals set by the Strategic and Critical Material Stockpiling Act; and by establishing a business and political climate that would encourage private-sector research and development on minerals.Now that the Administration has issued its plan, the Subcommittee on Mines and Mining of the House Committee on Interior and Insular Affairs will consider the National Minerals Security Act (NMSA), which was introduced 1 year ago by subcommittee chairman Jim Santini (D-Nev.) [Eos, May 19, 1981, p. 497]. The bill calls for establishing a three-member White-House-level council to coordinate the development of a national minerals policy; amending tax laws to assist the mining industry to make capital investments to locate and produce strategic materials; and creating a revolving fund for the sale and purchase of strategic minerals. In addition, the NMSA bill would allow the secretary of the interior to make previously withdrawn public lands available for mineral development. The subcommittee will hold a hearing on the Administration's plan on May 11. Interior Secretary James Watt has been invited to testify.

  5. Skeletal biology: Where matrix meets mineral.

    PubMed

    Young, Marian F

    2016-01-01

    The skeleton is unique from all other tissues in the body because of its ability to mineralize. The incorporation of mineral into bones and teeth is essential to give them strength and structure for body support and function. For years, researchers have wondered how mineralized tissues form and repair. A major focus in this context has been on the role of the extracellular matrix, which harbors key regulators of the mineralization process. In this introductory minireview, we will review some key concepts of matrix biology as it related to mineralized tissues. Concurrently, we will highlight the subject of this special issue covering many aspects of mineralized tissues, including bones and teeth and their associated structures cartilage and tendon. Areas of emphasis are on the generation and analysis of new animal models with permutations of matrix components as well as the development of new approaches for tissue engineering for repair of damaged hard tissue. In assembling key topics on mineralized tissues written by leaders in our field, we hope the reader will get a broad view of the topic and all of its fascinating complexities. PMID:27131884

  6. Mineralization by Inhibitor Exclusion

    PubMed Central

    Price, Paul A.; Toroian, Damon; Lim, Joo Eun

    2009-01-01

    One of our goals is to understand the mechanisms that deposit mineral within collagen fibrils, and as a first step we recently determined the size exclusion characteristics of the fibril. This study revealed that apatite crystals up to 12 unit cells in size can access the water within the fibril, whereas molecules larger than a 40-kDa protein are excluded. Based on these observations, we proposed a novel mechanism for fibril mineralization: that macromolecular inhibitors of apatite growth favor fibril mineralization by selectively inhibiting crystal growth in the solution outside of the fibril. To test this mechanism, we developed a system in which crystal formation is driven by homogeneous nucleation at high calcium phosphate concentration and the only macromolecule in solution is fetuin, a 48-kDa inhibitor of apatite growth. Our experiments with this system demonstrated that fetuin determines the location of mineral growth; in the presence of fetuin mineral grows exclusively within the fibril, whereas in its absence mineral grows in solution outside the fibril. Additional experiments showed that fetuin is also able to localize calcification to the interior of synthetic matrices that have size exclusion characteristics similar to those of collagen and that it does so by selectively inhibiting mineral growth outside of these matrices. We termed this new calcification mechanism “mineralization by inhibitor exclusion,” the selective mineralization of a matrix using a macromolecular inhibitor of mineral growth that is excluded from that matrix. Future studies will be needed to evaluate the possible role of this mechanism in bone mineralization. PMID:19414589

  7. Nanowires, Capacitors, and Other Novel Outer-Surface Components Involved in Electron Transfer to Fe(III) Oxides in Geobacter Species

    SciTech Connect

    Lovley, Derek, R.

    2008-12-22

    The overall goal of this project was to better understand the mechanisms by which Geobacter species transfer electrons outside the cell onto Fe(III) oxides. The rationale for this study was that Geobacter species are often the predominant microorganisms involved in in situ uranium bioremediation and the growth and activity of the Geobacter species during bioremediation is primarily supported by electron transfer to Fe(III) oxides. These studies greatly expanded the understanding of electron transfer to Fe(III). Novel concepts developed included the potential role of microbial nanowires for long range electron transfer in Geobacter species and the importance of extracytoplasmic cytochromes functioning as capacitors to permit continued electron transfer during the hunt for Fe(III) oxide. Furthermore, these studies provided target sequences that were then used in other studies to tract the activity of Geobacter species in the subsurface through monitoring the abundance of gene transcripts of the target genes. A brief summary of the major accomplishments of the project is provided.

  8. Matrix Gla protein inhibition of tooth mineralization.

    PubMed

    Kaipatur, N R; Murshed, M; McKee, M D

    2008-09-01

    Extracellular matrix (ECM) mineralization is regulated by mineral ion availability, proteins, and other molecular determinants. To investigate protein regulation of mineralization in tooth dentin and cementum, and in alveolar bone, we expressed matrix Gla protein (MGP) ectopically in bones and teeth in mice, using an osteoblast/odontoblast-specific 2.3-kb Col1a1 promoter. Mandibles were analyzed by radiography, micro-computed tomography, light microscopy, histomorphometry, and transmission electron microscopy. While bone and tooth ECMs were established in the Col1a1-Mgp mice, extensive hypomineralization was observed, with values of unmineralized ECM from four- to eight-fold higher in dentin and alveolar bone when compared with that in wild-type tissues. Mineralization was virtually absent in tooth root dentin and cellular cementum, while crown dentin showed "breakthrough" areas of mineralization. Acellular cementum was lacking in Col1a1-Mgp teeth, and unmineralized osteodentin formed within the pulp. These results strengthen the view that bone and tooth mineralization is critically regulated by mineralization inhibitors. PMID:18719210

  9. Magnetic Resonance Microscopy of Collagen Mineralization

    PubMed Central

    Chesnick, Ingrid E.; Mason, Jeffrey T.; Giuseppetti, Anthony A.; Eidelman, Naomi; Potter, Kimberlee

    2008-01-01

    A model mineralizing system was subjected to magnetic resonance microscopy to investigate how water proton transverse (T2) relaxation times and magnetization transfer ratios can be applied to monitor collagen mineralization. In our model system, a collagen sponge was mineralized with polymer-stabilized amorphous calcium carbonate. The lower hydration and water proton T2 values of collagen sponges during the initial mineralization phase were attributed to the replacement of the water within the collagen fibrils by amorphous calcium carbonate. The significant reduction in T2 values by day 6 (p < 0.001) was attributed to the appearance of mineral crystallites, which were also detected by x-ray diffraction and scanning electron microscopy. In the second phase, between days 6 and 13, magnetic resonance microscopy properties appear to plateau as amorphous calcium carbonate droplets began to coalesce within the intrafibrillar space of collagen. In the third phase, after day 15, the amorphous mineral phase crystallized, resulting in a reduction in the absolute intensity of the collagen diffraction pattern. We speculate that magnetization transfer ratio values for collagen sponges, with similar collagen contents, increased from 0.25 ± 0.02 for control strips to a maximum value of 0.31 ± 0.04 at day 15 (p = 0.03) because mineral crystals greatly reduce the mobility of the collagen fibrils. PMID:18487295

  10. Infrared Extinction Spectra of Mineral Dust Aerosol

    NASA Astrophysics Data System (ADS)

    Kleiber, P.; Laskina, O.; Alexander, J. M.; Young, M.; Grassian, V. H.

    2012-12-01

    Mineral dust aerosol affects the atmosphere by absorbing and scattering radiation and plays an important role in the Earth's radiative budget. The effect of atmospheric dust on climate is studied by various remote sensing techniques that use measurements from narrow band IR channels of satellites to determine key atmospheric properties. Therefore, it is essential to take radiative effects of mineral dust aerosol into account to correctly process remote sensing data. As aerosols are transported through the atmosphere they undergo aging and heterogeneous chemistry. This leads to changes in their optical properties and their effects on climate. In this study we carried out spectral simulations using both Mie theory and solutions derived in the Rayleigh regime for authentic dust samples and several processed components of mineral dust. Simulations of the extinction based on Mie theory shows that it does not accurately reproduce the peak position and band shape of the prominent IR resonance features. Errors in the simulated peak position and the line shape associated with Mie theory can adversely affect determination of mineral composition based on IR satellite data. Analytic solutions for various shapes derived from Rayleigh theory offer a better fit to the major band features of the spectra, therefore the accuracy of modeling atmospheric dust properties can be improved by using these analytic solutions. It is also important to take aging of mineral dust into account. We investigated the effect of chemical processing on the optical properties. It was shown that interactions of components of mineral dust (calcite, quartz and kaolinite) with humic and organic acids cause a shift of the IR resonance bands of these minerals. It may indicate changes in shape of the particles as well as changes in hygroscopicity and, as the result, the water content in these samples. Therefore, care should be taken when modeling optical properties of aged mineral dust.

  11. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  12. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  13. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  14. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  15. 36 CFR 293.14 - Mineral leases and mineral permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Mineral leases and mineral... AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.14 Mineral leases and mineral permits. (a) All laws pertaining to mineral leasing shall extend to each National Forest Wilderness for the period specified in the...

  16. Mineral Wool Insulation Binders

    NASA Astrophysics Data System (ADS)

    Kowatsch, Stefan

    Mineral wool is considered the best known insulation type among the wide variety of insulation materials. There are three types of mineral wool, and these consist of glass, stone (rock), and slag wool. The overall manufacturing processes, along with features such as specifications and characteristics for each of these types, as well as the role of the binder within the process are described.

  17. Digging into Minnesota Minerals.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Natural Resources, St. Paul.

    This publication presents students with facts about geology and several learning activities. Topics covered include rocks and minerals, volcanoes and earthquakes, fossils, exploration geology, mining in Minnesota, environmental issues related to mining, mineral uses, mining history, and the geology of Minnesota's state parks. A geologic timetable…

  18. Mineral Commodity Summaries 2011

    USGS Publications Warehouse

    U.S. Geological Survey

    2011-01-01

    Each chapter of the 2011 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2010 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Mineral Commodity Summaries 2011 contains new chapters on iron oxide pigments, wollastonite, and zeolites. The chapters on mica (natural), scrap and flake and mica (natural), sheet have been combined into a single chapter - mica (natural). Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. "Appendix C - Reserves and Resources" has been divided into "Part A - Resource/Reserve Classification for Minerals" and "Part B - Sources of Reserves Data," including some information that was previously in this introduction. A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2011 are welcomed.

  19. Mineral Commodity Summaries 2003

    USGS Publications Warehouse

    U.S. Geological Survey

    2003-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.

  20. Mineral Commodity Summaries 2007

    USGS Publications Warehouse

    U.S. Geological Survey

    2007-01-01

    Published on an annual basis, this report is the earliest Government publication to furnish estimates covering nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for over 90 individual minerals and materials.