Science.gov

Sample records for miniature direct methanol

  1. Performance of miniaturized direct methanol fuel cell (DMFC) devices using micropump for fuel delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Qing-Ming

    A fuel cell is a device that can convert chemical energy into electricity directly. Among various types of fuel cells, both polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) can work at low temperature (<80 °C). Therefore, they can be used to supply power for commercial portable electronics such as laptop computers, digital cameras, PDAs and cell phones. The focus of this paper is to investigate the performance of a miniaturized DMFC device using a micropump to deliver fuel. The core of this micropump is a piezoelectric ring-type bending actuator and the associated nozzle/diffuser for directing fuel flow. Based on the experimental measurements, it is found that the performance of the fuel cell can be significantly improved if enough fuel flow is induced by the micropump at anode. Three factors may contribute to the performance enhancement including replenishment of methanol, decrease of diffusion resistance and removal of carbon dioxide. In comparison with conventional mini pumps, the size of the piezoelectric micropump is much smaller and the energy consumption is much lower. Thus, it is very viable and effective to use a piezoelectric valveless micropump for fuel delivery in miniaturized DMFC power systems.

  2. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  3. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  4. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  5. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  6. Methanol crossover in direct methanol fuel cell systems.

    SciTech Connect

    Pivovar, B. S.; Bender, G.; Davey, J. R.; Zelenay, P.

    2003-01-01

    Direct methanol fuel cells (DMFCs) are currently being investigated for a number of different applications from several milliwatts to near kilowatt size scales (cell phones, laptops, auxiliary power units, etc .). Because methanol has a very high energy density, over 6000 W hr/kg, a DMFC can possibly have greatly extended lifetimes compared to the batteries, doesn't present the storage problems associated with hydrogen fuel cells and can possibly operate more efficiently and cleanly than internal combustion engines.

  7. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  8. Miniature laser direct-detection radar

    NASA Astrophysics Data System (ADS)

    Acharekar, Madhu; Lebeau, Robert

    1992-06-01

    A miniature laser with a total volume less than 15 cu cm and weight less than 100 g has been designed, fabricated, and assembled. The laser uses a composite rod consisting of Nd:Cr:GSGG material rod cladded with an Er:Cr:YSGG tube. The laser provides output at 1 and 3 micron wavelengths. The size and weight reduction is obtained by chemical pumping which eliminates the prime power and the power supply. The laser is used as an illuminator in a direct detection radar.

  9. Development of methanol evaporation plate to reduce methanol crossover in a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiming

    This research focuses on methanol crossover reduction in direct methanol fuel cells (DMFC) through separating the methanol vapor from its liquid phase and feeding the vapor passively at low temperature range. Membrane electrode assemblies (MEAs) were fabricated by using commercial available membrane with different thickness at different anode catalyst loading levels, and tested under the operating conditions below 100°C in cell temperature and cathode exit open to ambient pressure. Liquid methanol transport from the anode through the membrane into cathode ("methanol crossover") is identified as one of the major efficiency losses in a DMFC. It is known that the methanol crossover rate in the vapor phase is much lower than in liquid phase. Vapor feed can be achieved by heating the liquid methanol to elevated temperatures (>100°C), but other issues limit the performance of the cell when operating above 100°C. High temperature membranes and much more active cathode catalyst structures are required, and a complex temperature control system must be employed. However, methanol vapor feed can also occur at a lower temperature range (<100°C) by separating its vapor from the liquid phase by evaporation through a porous body. The methanol crossover with this vapor feed mode is lower compared with the direct liquid methanol feed. A new method of using a methanol evaporation plate (MEP) to separate the vapor from its liquid phase to reduce the liquid methanol crossover at low temperature range is developed. A MEP plays the roles of liquid/vapor methanol phase separation and evaporation in a DMFC. The goal of this study is to develop a MEP with the proper properties to achieve high methanol phase separation efficiency and fast methanol evaporation rate over a wide range of temperature, i.e., from room temperature up to near boiling temperature (100°C). MEP materials were selected and characterized. MEPs made from three different types were tested extensively with different

  10. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  11. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  12. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure. PMID:27119198

  13. Controller design and experiment for autothermal reforming of methanol in miniature reactor.

    PubMed

    Lu, Jiangang; Zhuang, Hong; Yang, Qinmin; Wang, Xuefei; Zheng, Jianfeng; Chen, Jinshui; Sun, Youxian

    2014-09-01

    In this paper, a miniature methanol fuel processor and its controller design is introduced for onboard hydrogen production. The hydrogen is generated via autothermal reforming of methanol. The control scheme consists of a hydrogen flow rate controller and a reforming temperature controller. To deal with uncertain system dynamics and external disturbance, an adaptive sliding mode control algorithm is adopted as the hydrogen flow rate controller for regulating hydrogen flow rate by manipulating methanol flow rate. Additionally, a high-gain observer is implemented to estimate the unmeasurable system state. The stability of closed-loop system is guaranteed by standard Lyapunov analysis. Furthermore, a variable ratio control law is employed as the reforming temperature controller to achieve steady reforming temperature by adjusting the reforming air flow rate. Finally, the effectiveness of the entire system is testified by experimental means. PMID:24398056

  14. A self-sustained, complete and miniaturized methanol fuel processor for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Jiao, Fengjun; Li, Shulian; Li, Hengqiang; Chen, Guangwen

    2015-08-01

    A self-sustained, complete and miniaturized methanol fuel processor has been developed based on modular integration and microreactor technology. The fuel processor is comprised of one methanol oxidative reformer, one methanol combustor and one two-stage CO preferential oxidation unit. Microchannel heat exchanger is employed to recover heat from hot stream, miniaturize system size and thus achieve high energy utilization efficiency. By optimized thermal management and proper operation parameter control, the fuel processor can start up in 10 min at room temperature without external heating. A self-sustained state is achieved with H2 production rate of 0.99 Nm3 h-1 and extremely low CO content below 25 ppm. This amount of H2 is sufficient to supply a 1 kWe proton exchange membrane fuel cell. The corresponding thermal efficiency of whole processor is higher than 86%. The size and weight of the assembled reactors integrated with microchannel heat exchangers are 1.4 L and 5.3 kg, respectively, demonstrating a very compact construction of the fuel processor.

  15. Selectivity of Direct Methanol Fuel Cell Membranes

    PubMed Central

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  16. Lightweight Stacks of Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  17. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  18. Improved Direct Methanol Fuel Cell Stack

    DOEpatents

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  19. The degree and effect of methanol crossover in the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Cruickshank, John; Scott, Keith

    A simple model is presented to describe the permeation of methanol from the anode to the cathode in direct methanol fuel cell (DMFC). Measured permeation rates of water and methanol through Nafion ® 117 under varied pressure differentials across the membrane are used to determine key parameters in the model. This model is able to explain the effect of oxygen pressure at the cathode and methanol concentration at the anode on the measured cell voltage-current response of the DMFC.

  20. Direct methanol fuel cell and system

    DOEpatents

    Wilson, Mahlon S.

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  1. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    SciTech Connect

    Fletcher, James H.; Cox, Philip; Harrington, William J; Campbell, Joseph L

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel

  2. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2008-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  3. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2004-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  4. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2001-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  5. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    Improvements to non-acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.

  6. Evaluation of composite membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Li, X.; Roberts, E. P. L.; Holmes, S. M.

    The performance of direct methanol fuel cells (DMFCs) can be significantly affected by the transport of methanol through the membrane, depolarising the cathode. In this paper, the literature on composite membranes that have been developed for reduction of methanol crossover in DMFCs is reviewed. While such membranes can be effective in reducing methanol permeability, this is usually combined with a reduction in proton conductivity. Measurements of methanol permeability and proton conductivity are relatively straightforward, and these parameters (or a membrane 'selectivity' based on the ratio between them) are often used to characterize DMFC membranes. However, we have carried out one-dimensional simulations of DMFC performance for a wide range of membrane properties, and the results indicate that DMFC performance is normally either limited by methanol permeability or proton conductivity. Thus use of a 'selectivity' is not appropriate for comparison of membrane materials, and results from the model can be used to compare different membranes. The results also show that Nafion ® 117 has an optimum thickness, where DMFC performance is equally limited by both methanol permeability and proton conductivity. The model also indicates that new composite membranes based on Nafion ® can only offer significant improvement in DMFC performance by enabling operation with increased methanol concentration in the fuel. A number of composite membrane materials that have been reported in the literature are shown to deliver significant reduction in DMFC performance due to reduced proton conductivity, although improved performance at high methanol concentration may be possible.

  7. Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance

    SciTech Connect

    Ren, X.; Springer, T.E.; Gottesfeld, S.

    2000-01-01

    This paper compares direct methanol fuel cells (DMFCs) employing two types of Nafion{reg{underscore}sign} (E.I.DuPont de Nemours and Company) membranes of different equivalent weight (EW). Methanol and water uptakes in 1,100 and 1,200 EW Nafion membranes were determined by weighing P{sub 2}O{sub 5}-dried and methanol solution-equilibrated membranes. Both methanol and water uptakes in the 1,200 EW membrane were about 70--74% of those in the 1,100 EW membrane. The methanol crossover rate corresponding to that in a DMFC at open circuit was measured using a voltammetric method in the DMFC configuration and under the same cell operating conditions. After accounting for the thickness difference between the membrane samples, the methanol crossover rate through a 1,200 EW membrane was 52% of that through an 1,100 EW membrane. To resolve the cathode and anode performances in an operating DMFC, a dynamic hydrogen electrode was used as a reference electrode. Results show that in an operating DMFC the cathode can be easily flooded, as shown in a DMFC using 1,100 EW membrane. An increase in methanol crossover rate decreases the DMFC cathode potential at open circuit. At a high cell current density, the DMFC cathode potential can approach that of a H{sub 2}/air cell.

  8. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  9. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    SciTech Connect

    Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

    2013-12-31

    Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

  10. Towards operating direct methanol fuel cells with highly concentrated fuel

    NASA Astrophysics Data System (ADS)

    Zhao, T. S.; Yang, W. W.; Chen, R.; Wu, Q. X.

    A significant advantage of direct methanol fuel cells (DMFCs) is the high specific energy of the liquid fuel, making it particularly suitable for portable and mobile applications. Nevertheless, conventional DMFCs have to be operated with excessively diluted methanol solutions to limit methanol crossover and the detrimental consequences. Operation with diluted methanol solutions significantly reduces the specific energy of the power pack and thereby prevents it from competing with advanced batteries. In view of this fact, there exists a need to improve conventional DMFC system designs, including membrane electrode assemblies and the subsystems for supplying/removing reactants/products, so that both the cell performance and the specific energy can be simultaneously maximized. This article provides a comprehensive review of past efforts on the optimization of DMFC systems that operate with concentrated methanol. Based on the discussion of the key issues associated with transport of the reactants/products, the strategies to manage the supply/removal of the reactants/products in DMFC operating with highly concentrated methanol are identified. With these strategies, the possible approaches to achieving the goal of concentrated fuel operation are then proposed. Past efforts in the management of the reactants/products for implementing each of the approaches are also summarized and reviewed.

  11. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  12. DIRECT METHANOL FUEL CELLS AT REDUCED CATALYST LOADINGS

    SciTech Connect

    P. ZELENAY; F. GUYON; SM. GOTTESFELD

    2001-05-01

    We focus in this paper on the reduction of catalyst loading in direct methanol fuel cells currently under development at Los Alamos National Laboratory. Based on single-cell DMFC testing, we discuss performance vs. catalyst loading trade-offs and demonstrate optimization of the anode performance. We also show test data for a short five-cell DMFC stack with the average total platinum loading of 0.53 mg cm{sup {minus}2} and compare performance of this stack with the performance of a single direct methanol fuel cell using similar total amount of precious metal.

  13. Reactivity Descriptors for Direct Methanol Fuel Cell Anode Catalysts

    SciTech Connect

    Ferrin, Peter; Nilekar, Anand U.; Greeley, Jeffrey P.; Mavrikakis, Manos; Rossmeisl, Jan

    2008-11-01

    We have investigated the anode reaction in direct methanol fuel cells using a database of adsorption free energies for 16 intermediates on 12 close-packed transition metal surfaces calculated with periodic, selfconsistent, density functional theory (DFT–GGA). This database, combined with a simple electrokinetic model of the methanol electrooxidation reaction, yields mechanistic insights that are consistent with previous experimental and theoretical studies on Pt, and extends these insights to a broad spectrum of other transition metals. In addition, by using linear scaling relations between the adsorption free energies of various intermediates in the reaction network, we find that the results determined with the full database of adsorption energies can be estimated by knowing only two key descriptors for each metal surface: the free energies of OH and CO on the surface. Two mechanisms for methanol oxidation to CO₂ are investigated: an indirect mechanism that goes through a CO intermediate and a direct mechanism where methanol is oxidized to CO₂ without the formation of a CO intermediate. For the direct mechanism, we find that, because of CO poisoning, only a small current will result on all non-group 11 transition metals; of these metals, Pt is predicted to be the most active. For methanol decomposition via the indirect mechanism, we find that the onset potential is limited either by the ability to activate methanol, by the ability to activate water, or by surface poisoning by CO* or OH*/O*. Among pure metals, there is no obvious candidate for a good anode catalyst, and in order to design a better catalyst, one has to look for bi-functional surfaces such as the well-studied PtRu alloy.

  14. On direct and indirect methanol fuel cells for transportation applications

    SciTech Connect

    Gottesfield, S.

    1996-04-01

    Research on direct oxidation methanol fuel cells (DMFCs) and polymer electrolyte fuel cells (PEFCs) is discussed. Systems considered for transportation applications are addressed. The use of platinum/ruthenium anode electrocatalysts and platinum cathode electrocatalysts in polymer electrolyte DMFCs has resulted in significant performance enhancements.

  15. Micro-crack formation in direct methanol fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Li, Qing; Spernjak, Dusan; Zelenay, Piotr; Kim, Yu Seung

    2014-12-01

    This study focuses on the micro-crack formation of Nafion®-based membrane electrode assemblies (MEAs) after extended direct methanol fuel cell (DMFC) operation. All electrodes, both with metal-black and carbon-supported catalysts, contain some micro-cracks initially; the area covered by these cracks increases both in the anode and cathode after 100-hours of DMFC test. X-ray tomography shows an increase in the crack area in both anode and cathode that correlates with methanol feed concentration and methanol crossover. The MEAs with carbon-supported catalysts and thicker membrane are more resistant to the formation of micro-cracks compared to those with metal-black catalysts and thinner membrane, respectively. The impact of the micro-crack formation on cell performance and durability is limited over the 100-hour DMFC operation, with the long-term impact remaining unknown.

  16. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  17. Performance of direct methanol polymer electrolyte fuel cell

    SciTech Connect

    Shin, Dong Ryul; Jung, Doo Hwan; Lee, Chang Hyeong; Chun, Young Gab

    1996-12-31

    Direct methanol fuel cells (DMFC) using polymer electrolyte membrane are promising candidate for application of portable power sources and transportation applications because they do not require any fuel processing equipment and can be operated at low temperature of 60{degrees}C - 130{degrees}C. Elimination of the fuel processor results in simpler design, higher operation reliability, lower weight volume, and lower capital and operating cost. However, methanol as a fuel is relatively electrochemical inert, so that kinetics of the methanol oxidation is too slow. Platinum and Pt-based binary alloy electrodes have been extensively studied for methanol electro-oxidation in acid electrolyte at ambient and elevated temperatures. Particularly, unsupported carbon Pt-Ru catalyst was found to be superior to the anode of DMFC using a proton exchange membrane electrolyte (Nafion). The objective of this study is to develop the high performance DNTC. This paper summarizes the results from half cell and single cell tests, which focus on the electrode manufacturing process, catalyst selection, and operating conditions of single cell such as methanol concentration, temperature and pressure.

  18. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  19. Compact direct methanol fuel cells for portable application

    NASA Astrophysics Data System (ADS)

    Icardi, U. A.; Specchia, S.; Fontana, G. J. R.; Saracco, G.; Specchia, V.

    Consumers' demand for portable audio/video/ICT products has driven the development of advanced power technologies in recent years. Fuel cells are a clean technology with low emissions levels, suitable for operation with renewable fuels and capable, in a next future, of replacing conventional power systems meeting the targets of the Kyoto Protocol for a society based on sustainable energy systems. Within such a perspective, the objective of the European project MOREPOWER (compact direct methanol fuel cells for portable applications) is the development of a low-cost, low temperature, portable direct methanol fuel cell (DMFC; nominal power 250 W) with compact construction and modular design for the potential market area of weather stations, medical devices, signal units, gas sensors and security cameras. This investigation is focused on a conceptual study of the DMFC system carried out in the Matlab/Simulink ® platform: the proposed scheme arrangements lead to a simple equipment architecture and a efficient process.

  20. Direct methanol feed fuel cell with reduced catalyst loading

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    1999-01-01

    Improvements to direct feed methanol fuel cells include new protocols for component formation. Catalyst-water repellent material is applied in formation of electrodes and sintered before application of ionomer. A membrane used in formation of an electrode assembly is specially pre-treated to improve bonding between catalyst and membrane. The improved electrode and the pre-treated membrane are assembled into a membrane electrode assembly.

  1. Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen; Aricò, Antonino S.; Baglio, Vincenzo

    2016-07-01

    Highly active and durable non-platinum group metals (non-PGM) catalyst based on iron-nitrogen-carbon (Fe-N-C) for the oxygen reduction reaction (ORR) derived from pyrolyzed Fe-aminobenzimidazole (Fe-ABZIM) was synthesized by sacrificial support method (SSM), and characterized by several physical-chemical techniques: scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method and X-ray photoelectron spectroscopy. In half-cell electrochemical configuration, the Fe-ABZIM catalyst presented a significant improvement of ORR activity with respect to a recently reported non-PGM formulation based on Fe-aminoantipyrine, with an enhancement of half-wave potential of about 85 mV in O2-saturated sulfuric acid solution. To the moment, the gap with respect to a benchmark Pt/C catalyst was about 90 mV. The Fe-ABZIM catalyst showed a remarkably high tolerance to methanol, resulting in superior ORR performance compared to Pt/C at methanol concentrations higher than 0.02 M. In direct methanol fuel cell (DMFC) good performances were also obtained. A durability test (100 h) at 90 °C, feeding 5 M methanol, was carried out. A certain decrease of performance was recorded, amounting to -0.20 mW cm-2 h-1 at the very beginning of test and -0.05 mW cm-2 h-1 at the end. However, the Fe-ABZIM is more adequate than previously reported formulations in terms of both ORR activity and stability.

  2. Recent advances in high-performance direct methanol fuel cells

    SciTech Connect

    Narayanan, S.R.; Chun, W.; Valdez, T.I.

    1996-12-31

    Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant. Power densities as high as 320 mW/cm{sup 2} have been demonstrated. Demonstration of five-cell stack based on the liquid-feed concept have been successfully performed by Giner Inc. and the Jet Propulsion Laboratory. Over 2000 hours of life-testing have been completed on these stacks. These fuel cells have been also been demonstrated by USC to operate on alternate fuels such as trimethoxymethane, dimethoxymethane and trioxane. Reduction in the parasitic loss of fuel across the fuel cell, a phenomenon termed as {open_quotes}fuel crossover{close_quotes} has been achieved using polymer membranes developed at USC. As a result efficiencies as high as 40% is considered attainable with this type of fuel cell. The state-of-development has reached a point where it is now been actively considered for stationary, portable and transportation applications. The research and development issues have been the subject of several previous articles and the present article is an attempt to summarize the key advances in this technology.

  3. High specific power, direct methanol fuel cell stack

    DOEpatents

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  4. Ultrasonic radiation to enable improvement of direct methanol fuel cell.

    PubMed

    Wu, Chaoqun; Wu, Jiang; Luo, Hao; Wang, Sanwu; Chen, Tao

    2016-03-01

    To improve DMFC (direct methanol fuel cell) performance, a new method using ultrasonic radiation is proposed and a novel DMFC structure is designed and fabricated in the present paper. Three ultrasonic transducers (piezoelectric transducer, PZT) are integrated in the flow field plate to form the ultrasonic field in the liquid fuel. Ultrasonic frequency, acoustic power, and methanol concentration have been considered as variables in the experiments. With the help of ultrasonic radiation, the maximum output power and limiting current of cell can be independently increased by 30.73% and 40.54%, respectively. The best performance of DMFC is obtained at the condition of ultrasonic radiation (30 kHz and 4 W) fed with 2M methanol solution, because both its limiting current and output power reach their maximum value simultaneously (222 mA and 33.6 mW, respectively) under this condition. These results conclude that ultrasonic can be an alternative choice for improving the cell performance, and can facilitate a guideline for the optimization of DMFC. PMID:26585016

  5. New Catalysts for Direct Methanol Oxidation Fuel Cells

    SciTech Connect

    Adzic, Radoslav

    1998-08-01

    A new class of efficient electrocatalytic materials based on platinum - metal oxide systems has been synthetized and characterized by several techniques. Best activity was found with NiWO{sub 4}-, CoWO{sub 4}-, and RuO{sub 2}- sr¡pported platinum catalysts. A very similar activity at room temperature was observed with the electrodes prepared with the catalyst obtained from International Fuel Cells Inc. for the same Pt loading. Surprisingly, the two tungstates per se show a small activity for methanol oxidation without any Pt loading. Synthesis of NiWO{sub 4} and CoWO{sub 4} were carried out by solid-state reactions. FTIR spectroscopy shows that the tungstates contain a certain amount of physically adsorbed water even after heating samples at 200{degrees}C. A direct relationship between the activity for methanol oxidation and the amount of adsorbed water on those oxides has been found. The Ru(0001) single crystal shows a very small activity for CO adsorption and oxidation, in contrast to the behavior of polycrystalline Ru. In situ extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray absorption near edge spectroscopy (XANES) showed that the OH adsorption on Ru in the Pt-Ru alloy appears to be the limiting step in methanol oxidation. This does not occur for Pt-RuO{SUB 2} electrocatalyst, which explains its advantages over the Pt-Ru alloys. The IFCC electrocatalyst has the properties of the Pt-Ru alloy.

  6. Laser direct marking applied to rasterizing miniature Data Matrix Code on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Xia-Shuang; He, Wei-Ping; Lei, Lei; Wang, Jian; Guo, Gai-Fang; Zhang, Teng-Yun; Yue, Ting

    2016-03-01

    Precise miniaturization of 2D Data Matrix (DM) Codes on Aluminum alloy formed by raster mode laser direct part marking is demonstrated. The characteristic edge over-burn effects, which render vector mode laser direct part marking inadequate for producing precise and readable miniature codes, are minimized with raster mode laser marking. To obtain the control mechanism for the contrast and print growth of miniature DM code by raster laser marking process, the temperature field model of long pulse laser interaction with material is established. From the experimental results, laser average power and Q frequency have an important effect on the contrast and print growth of miniature DM code, and the threshold of laser average power and Q frequency for an identifiable miniature DM code are respectively 3.6 W and 110 kHz, which matches the model well within normal operating conditions. In addition, the empirical model of correlation occurring between laser marking parameters and module size is also obtained, and the optimal processing parameter values for an identifiable miniature DM code of different but certain data size are given. It is also found that an increase of the repeat scanning number effectively improves the surface finish of bore, the appearance consistency of modules, which has benefit to reading. The reading quality of miniature DM code is greatly improved using ultrasonic cleaning in water by avoiding the interference of color speckles surrounding modules.

  7. An algebraic model on the performance of a direct methanol fuel cell with consideration of methanol crossover

    NASA Astrophysics Data System (ADS)

    Yin, Ken-Ming

    An algebraic one-dimensional model on the membrane-electrode-assembly (MEA) of direct methanol fuel cell (DMFC) is proposed. Non-linear regression procedure was imposed on the model to retrieve important parameters: solid polymer electrolyte conductivity κ m, exchange current density of methanol electro-oxidation at anode catalyst surface i oM,ref, and mass diffusivity of methanol in aqueous phase within the porous electrode D a that correspond to the experimentally measured polarization curves. Although numerical iteration is required for a complete solution, the explicit relationships of methanol concentration, methanol crossover rate, oxygen concentration and cell discharge current density do provide a clear picture of the mass transport and electrochemical kinetics within the various porous media in the MEA. It is shown the cathode mixed potential induced by the parallel reactions of oxygen reduction and oxidation of crossover methanol elucidates the potential drop of the cathode and the decrease of the cell open circuit voltage (OCV). Methanol transport in the membrane is described by the diffusion, electro-osmosis, and pressure induced convection. Detailed accounts of the effects of anode methanol and cathode oxygen feed concentrations on the cell discharge performance are given with correlation to the physical structure and chemical compositions of the catalyst layers (CLs).

  8. Improved Anode for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the

  9. Improved fullerene nanofiber electrodes used in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhang, Y.; Miyazawa, K.; Kato, R.; Hotta, K.; Wakahara, T.

    2009-04-01

    Platinum supported on fullerene nanofibers as possible electrodes for direct methanol fuel cells (DMFC) were studied. Fullerene nanofiber with 20 wt% Pt loading was mixed with 5 wt% Nafion solution. The mixture paste was coated on Nafion 117 membrane and sandwiched with silicon plates. To increase the surface reaction area of catalyst, nanoimprint was used to fabricate micro-patterns in the Nafion proton exchange membrane. Nanoimprint pattern consisted of dots of 500 nm-in-diameter, 140 nm-in-depth and 1 μm-in-spacing. The nanoimprint of the treated proton exchange membrane (PEM) was carried out in a desktop thermal nanoimprint system (NI273, Nano Craft Tech. Corp., Japan) at the optimized conditions of 130 °C and pressure of 3 MPa for 6 min. Then the Pt-coated PEM was sandwiched with micro-channelled silicon plates to form a micro-DMFC. With passively feeding of 1 M methanol solution and air at room temperature, the as-prepared cell had the open circuit voltage of 0.34 V and the maximum power density of 0.30 mW/cm2. Compared with a fresh cell, the results shows that nanofibers used in nanoimprinted PEM have an improvement on the performance of micro fuel cells.

  10. Methanol

    Integrated Risk Information System (IRIS)

    Methanol ; CASRN 67 - 56 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  11. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    SciTech Connect

    Carlstrom, Charles, M., Jr.

    2009-07-07

    This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have

  12. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  13. Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells?

    NASA Astrophysics Data System (ADS)

    Wee, Jung-Ho

    The promise of fuel cell systems using liquid fuels, such as the direct methanol fuel cell (DMFC) and direct borohydride fuel cell (DBFC), to complement or substitute for existing batteries is becoming recognized, along with their potential as a future technology for mobile and portable power supplies. The key issue is which type of fuel cell is more competitive for such power supplies: DMFC or DBFC? To answer this question, the present study analyzes and discusses the relative competitiveness of these two systems given the current status of the technologies and assuming some generally accepted conditions. The findings confirm that the DBFC system is superior to the DMFC system in terms of cell size and fuel (or fuel solution) consumption. Thus, the DBFC system is better suited to applications that require small operational space. On the other hand, the total operating costs of DBFC systems are higher than those of DMFC systems. According to the total cost formulae derived in the analysis, the DBFC system becomes relatively uneconomic at higher power outputs and longer operation times, but may be more favourable in specific portable applications such as miniaturized or micro power systems with short operational time spans.

  14. Improved Cathode Structure for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  15. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  16. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  17. A passive fuel delivery system for portable direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Cao, Y.

    A passive device is utilized for transferring methanol into water through a wick material. The wick material preferentially has a higher wicking capability with respect to methanol than water, and operates in a siphon fashion with the intake end in contact with methanol and the discharge end in contact with water. Due to the difference of wicking capabilities, a net amount of methanol is pumped into water. The device described above is used as a fuel delivery component for a liquid-feed fuel cell system, such as a direct methanol fuel cell (DMFC), which directly utilizes a liquid fuel without an intermediate reforming process. In the present experimental study, methanol and water are stored separately in two containers and a wick is positioned between the containers as a siphon, with the aqueous methanol solution communicating with the anode of the DMFC. Methanol is siphoned from the methanol container to the water container in situ when the methanol in the water is consumed during the operation of the fuel cell. Through a proper selection of the wick and the containers, the methanol concentration near the anode of the DMFC was maintained within a preferred range.

  18. Hydrogenotitanates nanotubes supported platinum anode for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Abida, Bochra; Chirchi, Lotfi; Baranton, Stève; Napporn, Teko Wilhelmin; Morais, Cláudia; Léger, Jean-Michel; Ghorbel, Abdelhamid

    2013-11-01

    Hydrogenotitanates nanotubes (HTNs) are prepared from TiO2 powder via hydrothermal processing in 11.25 M NaOH aq. The reaction temperature is 130 °C for 20 h. Afterward a heat treatment is done during 2 h at 500 °C in air, to obtain calcined HTNs (HTNs-cal). The structural change on the molecular TiO2 during the hydrothermal treatment is investigated in detail by various analytic techniques such as XRD and TEM, which reveal that the crystal structure of the HTNs materials is similar to that of H2Ti2O5·H2O nanotubes with 160 nm in length and 10 nm in diameter. Nitrogen adsorption-desorption isotherms indicate that synthesized solids are mesoporous materials with a multiwalled nanotubular structure and high specific surface area. Platinum nanoparticles are deposited on the HTNs by the impregnation method for a total noble metal loading of 10 wt%. The electrocatalytic activity of these electrocatalysts is evaluated by cyclic voltammetry in acid medium. Typical CO stripping voltammetry in acidic solutions is investigated. The results demonstrate that the HTNs can greatly enhance the catalytic activity of Pt for methanol oxidation. The CO stripping test shows that the Pt/HTNs can shift the CO oxidation potential to lower direction than Pt/C (XC72) and Pt/HTNs-cal catalysts.

  19. SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS

    SciTech Connect

    Murph, S.

    2012-09-12

    While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

  20. Corrosion behaviour of austenitic stainless steel as a function of methanol concentration for direct methanol fuel cell bipolar plate

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Kang, Bin; Gao, Na; Du, Xiao; Jia, Linan; Sun, Juncai

    2014-05-01

    The corrosion behaviour of an AISI 304 stainless steel (304 SS) is investigated in aqueous acid methanol solutions (0.5 M H2SO4 + 2 ppm HF + x M CH3OH, x = 0, 1, 5, 10 and 20) at 50 °C to simulate the varied anodic operating conditions of direct methanol fuel cells. Electrochemical measurements including potentiodynamic polarisation, potentiostatic polarisation and electrochemical impedance spectroscopy tests, are employed to analyse the corrosion behaviour. The results reveal that the corrosion resistance of 304 SS is enhanced in solutions with higher methanol content. Scanning electron microscopy and inductively coupled plasma atomic emission spectrometry data indicate that the surface corrosion on 304 SS is alleviated when the methanol concentration is increased. According to the X-ray photoelectron spectroscopy and Mott-Schottky analyses, the passive films formed on the 304 SS after potentiostatic tests in all the test solutions are composed of a duplex electronic structure with an external n-type semiconductor layer and an internal p-type semiconductor layer. Further analyses of the surface conductivity conducted by measuring the interfacial contact resistance between the 304 SS and carbon paper reveal that the passive film formed in the solution with higher methanol content exhibits lower conductivity.

  1. Miniature Flow-Direction/Pitot-Static Pressure Probes

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr.; Coombs, David S.; Eves, John W.; Price, Howard E.; Vasquez, Peter

    1989-01-01

    Precision flow-direction/pitot-static pressure probes, ranging from 0.035 to 0.090 inch (0.89 to 2.29 mm) in outside diameter, successfully fabricated and calibrated for use in Langley 20-inch Mach 6 Tunnel. Probes simultaneously measure flow direction and static and pitot pressures in flow fields about configurations in hypersonic flow at temperatures up to 500 degree F (260 degree C).

  2. Bio-Inspired Miniature Direction Finding Acoustic Sensor

    PubMed Central

    Wilmott, Daniel; Alves, Fabio; Karunasiri, Gamani

    2016-01-01

    A narrowband MEMS direction finding sensor has been developed based on the mechanically coupled ears of the Ormia Ochracea fly. The sensor consists of two wings coupled at the middle and attached to a substrate using two legs. The sensor operates at its bending resonance frequency and has cosine directional characteristics similar to that of a pressure gradient microphone. Thus, the directional response of the sensor is symmetric about the normal axis making the determination of the direction ambiguous. To overcome this shortcoming two sensors were assembled with a canted angle similar to that employed in radar bearing locators. The outputs of two sensors were processed together allowing direction finding with no requirement of knowing the incident sound pressure level. At the bending resonant frequency of the sensors (1.69 kHz) an output voltage of about 25 V/Pa was measured. The angle uncertainty of the bearing of sound ranged from less than 0.3° close to the normal axis (0°) to 3.4° at the limits of coverage (±60°) based on the 30° canted angle used. These findings indicate the great potential to use dual MEMS direction finding sensor assemblies to locate sound sources with high accuracy. PMID:27440657

  3. Bio-Inspired Miniature Direction Finding Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Wilmott, Daniel; Alves, Fabio; Karunasiri, Gamani

    2016-07-01

    A narrowband MEMS direction finding sensor has been developed based on the mechanically coupled ears of the Ormia Ochracea fly. The sensor consists of two wings coupled at the middle and attached to a substrate using two legs. The sensor operates at its bending resonance frequency and has cosine directional characteristics similar to that of a pressure gradient microphone. Thus, the directional response of the sensor is symmetric about the normal axis making the determination of the direction ambiguous. To overcome this shortcoming two sensors were assembled with a canted angle similar to that employed in radar bearing locators. The outputs of two sensors were processed together allowing direction finding with no requirement of knowing the incident sound pressure level. At the bending resonant frequency of the sensors (1.69 kHz) an output voltage of about 25 V/Pa was measured. The angle uncertainty of the bearing of sound ranged from less than 0.3° close to the normal axis (0°) to 3.4° at the limits of coverage (±60°) based on the 30° canted angle used. These findings indicate the great potential to use dual MEMS direction finding sensor assemblies to locate sound sources with high accuracy.

  4. Bio-Inspired Miniature Direction Finding Acoustic Sensor.

    PubMed

    Wilmott, Daniel; Alves, Fabio; Karunasiri, Gamani

    2016-01-01

    A narrowband MEMS direction finding sensor has been developed based on the mechanically coupled ears of the Ormia Ochracea fly. The sensor consists of two wings coupled at the middle and attached to a substrate using two legs. The sensor operates at its bending resonance frequency and has cosine directional characteristics similar to that of a pressure gradient microphone. Thus, the directional response of the sensor is symmetric about the normal axis making the determination of the direction ambiguous. To overcome this shortcoming two sensors were assembled with a canted angle similar to that employed in radar bearing locators. The outputs of two sensors were processed together allowing direction finding with no requirement of knowing the incident sound pressure level. At the bending resonant frequency of the sensors (1.69 kHz) an output voltage of about 25 V/Pa was measured. The angle uncertainty of the bearing of sound ranged from less than 0.3° close to the normal axis (0°) to 3.4° at the limits of coverage (±60°) based on the 30° canted angle used. These findings indicate the great potential to use dual MEMS direction finding sensor assemblies to locate sound sources with high accuracy. PMID:27440657

  5. A monolayer graphene - Nafion sandwich membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yan, X. H.; Wu, Ruizhe; Xu, J. B.; Luo, Zhengtang; Zhao, T. S.

    2016-04-01

    Methanol crossover due to the low selectivity of proton exchange membranes is a long-standing issue in direct methanol fuel cell technology. Here we attempt to address this issue by designing a composite membrane fabricated by sandwiching a monolayer graphene between two thin Nafion membranes to take advantage of monolayer graphene's selective permeability to only protons. The methanol permeability of the present membrane is demonstrated to have a 68.6% decrease in comparison to that of the pristine Nafion membrane. The test in a passive direct methanol fuel cell (DMFC) shows that the designed membrane retains high proton conductivity while substantially suppressing methanol crossover. As a result, the present membrane enables the passive DMFC to exhibit a decent performance even at a methanol concentration as high as 10.0 M.

  6. Bifunctional Anode Catalysts for Direct Methanol Fuel Cells

    SciTech Connect

    Rossmeisl, Jan; Ferrin, Peter A.; Tritsaris, Georgios A.; Nilekar, Anand U.; Koh, Shirlaine; Bae, Sang Eun; Brankovic, Stanko R.; Strasser, Peter; Mavrikakis, Manos

    2012-06-13

    Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro-oxidation. Using these two reactivity descriptors, a surface PtCu3 alloy is proposed to have the best catalytic properties of the Pt–Cu model catalysts tested, similar to those of a Pt–Ru bulk alloy. To validate the model, experiments on a Pt(111) surface modified with different amounts of Cu adatoms are performed. Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts.

  7. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-11-01

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells.

  8. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design

    PubMed Central

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-01-01

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells. PMID:26578100

  9. Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: a DFT study.

    PubMed

    Sheng, Tian; Lin, Xiao; Chen, Zhao-Yang; Hu, P; Sun, Shi-Gang; Chu, You-Qun; Ma, Chun-An; Lin, Wen-Feng

    2015-10-14

    In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bare W-terminated WC(0001) substrate was employed. In the surface energy calculations of a series of Pt-modified WC models, we found that the feasible structures are mono- and bi-layer Pt-modified WCs. The tri-layer Pt-modified WC model is not thermodynamically stable where the top layer Pt atoms tend to accumulate and form particles or clusters rather than being dispersed as a layer. We further calculated the mechanisms of methanol oxidation on the feasible models via methanol dehydrogenation to CO involving C-H and O-H bonds dissociating subsequently, and further CO oxidation with the C-O bond association. The onset potentials for the oxidation reactions over the Pt-modified WC catalysts were determined thermodynamically by water dissociation to surface OH* species. The activities of these Pt-modified WC catalysts were estimated from the calculated kinetic data. It has been found that the bi-layer Pt-modified WC catalysts may provide a good reactivity and an onset oxidation potential comparable to pure Pt and serve as promising electrocatalysts for DMFCs with a significant decrease in Pt usage. PMID:26351805

  10. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design.

    PubMed

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-01-01

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells. PMID:26578100

  11. Compact bipolar plate-free direct methanol fuel cell stacks.

    PubMed

    Dong, Xue; Takahashi, Motohiro; Nagao, Masahiro; Hibino, Takashi

    2011-05-14

    Fuel cells with a PtAu/C anode and a Pr-doped Mn(2)O(3)/C cathode were stacked without using a bipolar plate, and their discharge properties were investigated in a methanol aqueous solution bubbled with air. A three-cell stack exhibited a stack voltage of 2330 mV and a power output of 21 mW. PMID:21451850

  12. Iridium-catalysed direct C-C coupling of methanol and allenes

    NASA Astrophysics Data System (ADS)

    Moran, Joseph; Preetz, Angelika; Mesch, Ryan A.; Krische, Michael J.

    2011-04-01

    Methanol is an abundant (35 million metric tons per year), renewable chemical feedstock, yet its use as a one-carbon building block in fine chemical synthesis is highly underdeveloped. Using a homogeneous iridium catalyst developed in our laboratory, methanol engages in a direct C-C coupling with allenes to furnish higher alcohols that incorporate all-carbon quaternary centres, free of stoichiometric by-products. A catalytic mechanism that involves turnover-limiting methanol oxidation, a consequence of the high energetic demand of methanol dehydrogenation, is corroborated through a series of competition kinetics experiments. This process represents the first catalytic C-C coupling of methanol to provide discrete products of hydrohydroxymethylation.

  13. Can methanol be synthesized from CO by direct hydrogenation over Cu/ZnO catalysts?

    NASA Astrophysics Data System (ADS)

    Zuo, Zhi-Jun; Han, Pei-De; Li, Zhe; Hu, Jian-Shui; Huang, Wei

    2012-11-01

    Methanol synthesis from CO by direct hydrogenation has been studied using the density-functional theory (DFT). The charge of Cu has been found to be transferred to the ZnO carrier having low Cu cover. Due to the electron-charge transfer between the metallic Cu and the ZnO carrier, the Cu valency is greater than zero and less than one. Consideration of the water-gas-shift reaction and hydrogenation of CO2 to CHOO and COOH, the result shows that the active sites for the synthesis of methanol from CO2 and CO are different. Methanol is synthesized from CO by direct hydrogenation over Cuδ+ (0 < δ < 1) species through the intermediates CHO, CH2O, and CH3O, and the rate-limiting step is the hydrogenation of CHO, indicating that the Cuδ+ (0 < δ < 1) species comprise the active sites for the synthesis of methanol from CO by direct hydrogenation.

  14. Novel anode structure for the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Allen, R. G.; Lim, Chan; Yang, L. X.; Scott, K.; Roy, S.

    Pt-Ru catalysts have been made by a thermal decomposition and electrodeposition method onto a titanium mesh for the electrooxidation of methanol. Galvanostatic polarisations were used to assess and compare the relative activities of the electrodes. SEM and XRD are employed to study the morphology and structure of the catalyst layers. The performance of the anodes in fuel cell assemblies is also discussed. We can see that the mesh perform well in half and full cell tests despite significant apparent physical differences, which are yet to be explored.

  15. Design of a stable and methanol resistant membrane with cross-linked multilayered polyelectrolyte complexes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhao, Chengji; Lin, Haidan; Zhang, Gang; Zhang, Yang; Ni, Jing; Ma, Wenjia; Na, Hui

    Sulfonated poly (arylene ether ketone) bearing carboxyl groups (SPAEK-C) membranes have been prepared as proton exchange membranes for applications in direct methanol fuel cells (DMFCs). Multilayered polyelectrolyte complexes (PECs) which applied as methanol barrier agents are prepared by alternate deposition of the oppositely charged amino-containing poly (ether ether ketone) (Am-PEEK) and the highly sulfonated SPAEK-C via a layer-by-layer method. The cross-linked PEC (c-PEC) is derived from a simple heat-induced cross-linking reaction between Am-PEEK and SPAEK-C. Fourier transform infrared spectroscopy confirms that Am-PEEK and SPAEK-C are assembled successfully in the multilayers. The morphology of the membranes is studied by scanning electron microscopy, which shows the presence of the thin layers coated on the SPAEK-C membrane. After PEC and c-PEC modification, the methanol permeability decreases obviously when compared to that of the pristine membrane. Notably, improved proton conductivities are obtained for the PEC modified membranes in comparison with the pristine membrane. Moreover, the selectivity of these modified membranes is one order of magnitude higher than that of Nafion 117. The thermal stability, oxidative stability, water uptake and swelling of PEC and c-PEC modified membranes are also investigated.

  16. Froghopper-inspired direction-changing concept for miniature jumping robots.

    PubMed

    Jung, Gwang-Pil; Cho, Kyu-Jin

    2016-01-01

    To improve the maneuverability and agility of jumping robots, several researchers have studied steerable jumping mechanisms. This steering ability enables robots to reach a particular target by controlling their jumping direction. To this end, we propose a novel direction-changing concept for miniature jumping robots. The proposed concept allows robots to be steerable while exerting minimal effects on jumping performance. The key design principles were adopted from the froghopper's power-producing hind legs and the moment cancellation accomplished by synchronized leg operation. These principles were applied via a pair of symmetrically positioned legs and conventional gears, which were modeled on the froghopper's anatomy. Each leg has its own thrusting energy, which improves jumping performance by allowing the mechanism to thrust itself with both power-producing legs. Conventional gears were utilized to simultaneously operate the legs and cancel out the moments that they induce, which minimizes body spin. A prototype to verify the concept was built and tested by varying the initial jumping posture. Three jumping postures (synchronous, asynchronous, and single-legged) were tested to investigate how synchronization and moment cancelling affect jumping performance. The results show that synchronous jumping allows the mechanism to change direction from -40° to 40°, with an improved take-off speed. The proposed concept can only be steered in a limited range of directions, but it has potential for use in miniature jumping robots that can change jumping direction with a minimal drop in jumping performance. PMID:27625411

  17. Nafion/PTFE/silicate composite membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ning; Chen, Li-Chun; Yu, T. Leon; Lin, Hsiu-Li

    Poly(tetrafluoro ethylene) (PTFE)/Nafion composite membranes (PN composite membranes) were prepared by impregnating micro-porous PTFE membranes in Nafion/2-propanol/water solutions. The PN composite membranes were then further impregnated with tetraethoxysilane (TEOS) solutions to prepare PTFE/Nafion/silicate (PNS) composite membranes. The influence of hybridizing silicate into the PN membranes on their direct methanol fuel cell (DMFC) performance and methanol crossover was investigated. Silicate in PN membranes causes reduction both in proton conductivity and methanol crossover of membranes. Thus PNS had a higher voltage than PN at low current densities due to the lower methanol crossover of PNS. However, at high current densities, PNS had a lower voltage than PN due to the higher resistance to proton transference of PNS. The range of lower current densities where PNS had a higher voltage than PN was i = 0-120 mA cm -2 when the methanol feed concentration was 2 M. This lower current density range became broader as the methanol feed concentration was increased, and it was broadened to i = 0-190 mA cm -2 as the methanol feed concentration was increased to 5 M. A comparison of the methanol crossover on the DMFC performance of PN and PNS with Nafion-112 was also studied. We showed that Nafion-112 exhibits higher methanol electro-osmosis than PN and PNS. Thus at a high current density, the higher methanol crossover via electro-osmosis caused Nafion-112 to have a lower voltage than PN and PNS.

  18. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum

    PubMed Central

    Yang, Zehui; Nakashima, Naotoshi

    2015-01-01

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2′-(2,6-pyridine)-5,5′-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance. PMID:26192397

  19. Nafion/PTFE composite membranes for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Li; Yu, T. Leon; Huang, Li-Ning; Chen, Li-Chung; Shen, Kun-Sheng; Jung, Guo-Bin

    Using dynamic light scattering and scanning electron microscope (SEM), it is shown that a high-carbon-number alcohol/water, i.e., 2-propanol/water, mixed solvent is more effective than low-carbon-number alcohol/water, i.e., ethanol/water and methanol/water, mixed solvents in dispersing Nafion molecules. Thus, it is a better solvent for the preparation of Nafion/PTFE (poly(tetrafluoroethylene)) composite membranes. The performance of direct methanol fuel cells (DMFCs) with a Nafion/PTFE composite membrane, which was prepared in-house, a commercial Nafion-117 membrane, or a commercial Nafion-112 membrane were investigated by feeding various concentrations, i.e., 2-5 M, of methanol to the anode. The Nafion/PTFE composite membrane gave a better DMFC performance than that obtained with Nafion-117 or Nafion-112 membranes. Using a DMFC model and varying the methanol concentration at the anode, cell voltage data were analyzed with respect to methanol concentration and cell current. The results indicate that inserting porous PTFE into Nafion polymer causes a reduction not only in methanol diffusion cross-over but also in the electro-osmosis of methanol cross-over in the membrane.

  20. Analysis of an active tubular liquid-feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Faghri, Amir

    2011-08-01

    A two-dimensional, two-phase, non-isothermal model was developed for an active, tubular, liquid-feed direct methanol fuel cell (DMFC). The liquid-gas, two-phase mass transport in the porous anode and cathode was formulated based on the multi-fluid approach in the porous media. The two-phase mass transport in the anode and cathode channels was modeled using the drift-flux and the homogeneous mist-flow models, respectively. Water and methanol crossovers through the membrane were considered due to the effects of diffusion, electro-osmotic drag, and convection. The model enabled a numerical investigation of the effects of various operating parameters, such as current density, methanol flow rate, and oxygen flow rate, on the mass and heat transport characteristics in the tubular DMFC. It was shown that by choosing a proper tube radius and distance between the adjacent cells, a tubular DMFC stack can achieve a much higher energy density compared to its planar counterpart. The results also showed that a large anode flow rate is needed in order to avoid severe blockage of liquid methanol to the anode electrode due to the gas accumulation in the channel. Besides, lowering the flow rate of either the methanol solution or air can lead to a temperature increase along the flow channel. The methanol and water crossovers are nearly independent of the methanol flow rate and the air flow rate.

  1. Sulfonated polyphosphazene-based membranes for use in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Carter, Roy Lee

    Novel crosslinked and sulfonated poly[bis(3-methylphenoxy)phosphazene] blended proton exchange membranes were fabricated for use as the solid polymer electrolyte in a direct methanol fuel cell. Three polymers, polybenzimidazole, polyacrylonitrile and polyvinylidene fluoride-co-polyhexafluoropropylene were found to be compatible for blending with sulfonated polyphosphazene. A combination of blending and crosslinking was shown to be an effective method of producing durable, low water swelling films with acceptable proton conductivity. A novel tracer-diffusion 1H NMR method was developed and used to measure the mutual diffusion of methanol in non-crosslinked and crosslinked membranes composed of sulfonated polyphosphazene. The technique measures the growth of a solute NMR signal in the bulk (external) solution as it diffuses out of a thin film membrane. The transient increase in methanol peak height during analyte (methanol) desorption was fitted to a simple theoretical diffusion model using the methanol diffusion coefficient as an adjustable parameter. This method was found to be fast, reproducible, and accurate to within about +/-20%. Diffusion coefficients at 25°C were in the range of 1.0 x 10-8 cm2/s to 4.0 x 10-7 cm2/s for methanol concentrations of 1.0--5.0 M and were significantly smaller than those reported for a NafionRTM perfluorosulfonic acid membrane. Direct liquid methanol fuel cell tests were performed with membrane electrode assemblies (MEAs) fabricated with polyphosphazene-based proton-exchange membranes. MEAs worked best when high ion-exchange capacity (high conductivity) polyphosphazene membrane contacted the electrodes, in which case the fuel cell power output was nearly the same as that with Nafion 117 (for current densities ≤0.15 A/cm2), but the methanol crossover was three times lower than that of Nafion. The electrochemical performance of single-membrane MEAs with low conductivity S-POP/PAN films was poor, although the methanol crossover was

  2. Development of direct methanol alkaline fuel cells using anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Yu, Eileen Hao; Scott, Keith

    Research into the development of direct methanol alkaline fuel cell (DMAFC) using an anion exchange polymer electrolyte membrane is described. The commercial membrane used had a higher electric resistance, but a lower methanol diffusion coefficient than Nafion ® membranes. Fuel cell tests were performed using carbon supported Pt catalyst, and the effect of temperature, methanol concentration, methanol flow rate, air pressure and Pt loading were investigated. It was found that the cell performance improved drastically with a membrane assembly electrode (MEA) which did not include the gas diffusion layer on the anode, because of lower reactant mass transfer resistance. To give suitable cathode performance, humidification of the air and a subtle balance between the air pressure and water transport is required.

  3. Polymeric nanocomposite proton exchange membranes prepared by radiation-induced polymerization for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seok; Seo, Kwang-Seok; Choi, Seong-Ho

    2016-01-01

    The vinyl group-modified montmorillonite clay (F-MMT), vinyl group-modified graphene oxide (F-GO), and vinyl group-modified multi-walled carbon nanotube (F-MWNT) were first prepared by ion exchange reaction of 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride in order to use the materials for protection against methanol cross-over in direct methanol fuel cell (DMFC) membrane. Then polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were prepared by the solvent casting method after radiation-induced polymerization of vinyl monomers in water-methanol mixture solvents. The proton conductivity, water uptake, ion-exchange capacity, methanol permeability, and DMFC performance of the polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were evaluated.

  4. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun

    2014-01-01

    Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode.

  5. Electrode and interconnect for miniature fuel cells using direct methanol feed

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor)

    2004-01-01

    An improved system for interconnects in a fuel cell. In one embodiment, the membranes are located in parallel with one another, and current flow between them is facilitated by interconnects. In another embodiment, all of the current flow is through the interconnects which are located on the membranes. The interconnects are located between two electrodes.

  6. Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996

    SciTech Connect

    Fuller, T.F.; Kunz, H.R.; Moore, R.

    1996-11-01

    The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

  7. Direct methanol fuel cells for transportation applications. Quarterly technical report, April--June 1997

    SciTech Connect

    Fuller, T.F.; Kunz, H.R.; Moore, R.

    1997-11-01

    The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in Phase 2 of the program. Progress in these areas is described.

  8. Ultra-miniature omni-directional camera for an autonomous flying micro-robot

    NASA Astrophysics Data System (ADS)

    Ferrat, Pascal; Gimkiewicz, Christiane; Neukom, Simon; Zha, Yingyun; Brenzikofer, Alain; Baechler, Thomas

    2008-04-01

    CSEM presents a highly integrated ultra-miniature camera module with omni-directional view dedicated to autonomous micro flying devices. Very tight design and integration requirements (related to size, weight, and power consumption) for the optical, microelectronic and electronic components are fulfilled. The presented ultra-miniature camera platform is based on two major components: a catadioptric lens system and a dedicated image sensor. The optical system consists of a hyperbolic mirror and an imaging lens. The vertical field of view is +10° to -35°.The CMOS image sensor provides a polar pixel field with 128 (horizontal) by 64 (vertical) pixels. Since the number of pixels for each circle is constant, the unwrapped panoramic image achieves a constant resolution in polar direction for all image regions. The whole camera module, delivering 40 frames per second, contains optical image preprocessing for effortless re-mapping of the acquired image into undistorted cylindrical coordinates. The total weight of the complete camera is less than 5 g. The system's outer dimensions are 14.4 mm in height, with a 11.4 mm x 11.4 mm foot print. Thanks to the innovative PROGLOGTM, a dynamic range of over 140 dB is achieved.

  9. Sol-gel based silica electrodes for inorganic membrane direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyea; Kohl, Paul A.

    Inorganic glass electrodes are of interest for use with inorganic proton exchange membranes for direct methanol fuel cells. Platinum-ruthenium glass electrodes (PtRu/C-SiO 2) have been prepared by incorporating the PtRu/C nanoparticles into a silica-based matrix. The SiO 2 matrix was synthesized through the sol-gel reaction of 3-(trihydroxysilyl)-1-propanesulfonic acid (3TPS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). The distribution of the PtRu/C particles can be controlled by changing the properties of the gel matrix. The effect of gelation time, mole fraction of reactants within the sol, curing temperature, and glass ionomer content were investigated. The adhesion of the catalyst layer on the membrane, catalytic activity for methanol oxidation, and inhibition of methanol permeation through the membrane have been characterized and optimized. The electroless deposition of PtRu onto the PtRu/C nanoparticles was performed to increase the sheet conductivity of the electrode. It was found that the electrolessly deposited metal improved the catalytic activity for methanol oxidation and decreased the methanol cross-over. The methanol fuel cell performance using the inorganic membrane electrode assembly was 236 μA cm -2 at 0.4 V and was stable for more than 10 days.

  10. Guanidinium based blend anion exchange membranes for direct methanol alkaline fuel cells (DMAFCs)

    NASA Astrophysics Data System (ADS)

    Sajjad, Syed D.; Liu, Dong; Wei, Zi; Sakri, Shambhavi; Shen, Yi; Hong, Yi; Liu, Fuqiang

    2015-12-01

    Guanidinium based blend anion exchange membranes (AEMs) for direct methanol alkaline fuel cells have been fabricated and studied. The guanidinium prepolymer is first synthesized through a simple polycondensation process with the ion exchange moieties incorporated directly into the polymer backbone, and then is used to make guanidinium - chitosan (Gu-Chi) blend membranes. Besides, a lipophilic guanidinium prepolymer, synthesized by means of a precipitation reaction between sodium stearate and guanidinium salt, is adopted to tune solubility and mechanical properties of the blend AEMs. Results show that both ionic conductivity and methanol permeability of the AEMs can be tuned by blend composition and chemistry of the guanidinium based prepolymer. The selectivity (ratio of ionic conductivity to methanol permeability) of the fabricated membranes is superior to that of commercial membranes. Under fuel cell tests using 3 M methanol, the open circuit voltage (OCV) value for the blend AEM with 72 wt% of the guanidinium polymer (0.69 V) is much higher than that of the commercial Tokuyama A201 (0.47 V) at room temperature, while the blend AEMs with 50 wt% guanidinium content still show comparable values. Overall, the developed membranes demonstrate superior performance and therefore pose great promise for direct methanol anion exchange fuel cell (DMAFC) applications.

  11. Low-Pt-Content Anode Catalyst for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, Jay

    2008-01-01

    Combinatorial experiments have led to the discovery that a nanophase alloy of Pt, Ru, Ni, and Zr is effective as an anode catalyst material for direct methanol fuel cells. This discovery has practical significance in that the electronic current densities achievable by use of this alloy are comparable or larger than those obtained by use of prior Pt/Ru catalyst alloys containing greater amounts of Pt. Heretofore, the high cost of Pt has impeded the commercialization of direct methanol fuel cells. By making it possible to obtain a given level of performance at reduced Pt content (and, hence, lower cost), the discovery may lead to reduction of the economic impediment to commercialization.

  12. Optimizing membrane electrode assembly of direct methanol fuel cells for portable power

    NASA Astrophysics Data System (ADS)

    Liu, Fuqiang

    Direct methanol fuel cells (DMFCs) for portable power applications require high power density, high-energy conversion efficiency and compactness. These requirements translate to fundamental properties of high methanol oxidation and oxygen reduction kinetics, as well as low methanol and water crossover. In this thesis a novel membrane electrode assembly (MEA) for direct methanol fuel cells has been developed, aiming to improve these fundamental properties. Firstly, methanol oxidation kinetics has been enhanced and methanol crossover has been minimized by proper control of ionomer crystallinity and its swelling in the anode catalyst layer through heat-treatment. Heat-treatment has a major impact on anode characteristics. The short-cured anode has low ionomer crystallinity, and thus swells easily when in contact with methanol solution to create a much denser anode structure, giving rise to higher methanol transport resistance than the long-cured anode. Variations in interfacial properties in the anode catalyst layer (CL) during cell conditioning were also characterized, and enhanced kinetics of methanol oxidation and severe limiting current phenomenon were found to be caused by a combination of interfacial property variations and swelling of ionomer over time. Secondly, much effort has been expended to develop a cathode CL suitable for operation under low air stoichiometry. The effects of fabrication procedure, ionomer content, and porosity distribution on the microstructure and cathode performance under low air stoichiometry are investigated using electrochemical and surface morphology characterizations to reveal the correlation between microstructure and electrochemical behavior. At the same time, computational fluid dynamics (CFD) models of DMFC cathodes have been developed to theoretically interpret the experimental results, to investigate two-phase transport, and to elucidate mechanism of cathode mixed potential due to methanol crossover. Thirdly, a MEA with low

  13. Preparation and performance of a Nafion ®/montmorillonite nanocomposite membrane for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Jung, D. H.; Cho, S. Y.; Peck, D. H.; Shin, D. R.; Kim, J. S.

    Direct methanol fuel cells (DMFC) have major technical problems, e.g. slow methanol oxidation kinetics and high methanol crossover, to use as power sources for several applications. To overcome these problems it has been proposed to increase the fuel cell operating temperature to over 100-150 °C and to reduce the methanol permeability. In this work, we made Nafion ®/montmorillonite (MMT) nanocomposite membranes and carried out diverse tests. The nanocomposite membranes were produced by direct melt intercalation of perfluorosulfonylfluoride copolymer resin (Nafion ® resin) into the montmorillonite and modified montmorillonite (m-MMT) which was organized by dodecylamine. The membrane-electrode assembly (MEA) has been made using a hot pressing method and the electrode prepared using PtRu black and Pt black catalysts for anode and cathode, respectively. The morphology of the nanocomposite membranes has been investigated using SEM and TEM. The nanocomposite membranes and MMT and m-MMT were analyzed using by FT-IR and X-ray diffraction (XRD). The thermal and mechanical properties of those membranes were also investigated and the methanol permeability was measured by gas chromatography (GC). The performance of the MEA using the nanocomposite membrane was evaluated by single cell test. The results show that the performance of the MEA using the nanocomposite membrane was higher than that of a commercial Nafion ® membrane at high operating temperature.

  14. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cells Stacks

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    This viewgraph presentation gives a detailed review of the Direct Methanol Based Fuel Cell (DMFC) stack and investigates the Ruthenium that was found at the exit of the stack. The topics include: 1) Motivation; 2) Pathways for Cell Degradation; 3) Cell Duration Testing; 4) Duration Testing, MEA Analysis; and 5) Stack Degradation Analysis.

  15. Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Aricò, A. S.; Baglio, V.; Cretı̀, P.; Di Blasi, A.; Antonucci, V.; Brunea, J.; Chapotot, A.; Bozzi, A.; Schoemans, J.

    Low cost ethylene-tetrafluoroethylene (ETFE)-based grafted membranes have been prepared by a process based on electron beam irradiation, subsequent grafting, cross-linking and sulfonation procedure. Two different grafted membranes varying by their grafting and cross-linking levels have been investigated for applications in direct methanol fuel cells (DMFCs) operating between 90 and 130 °C. DMFC assemblies based on these membranes showed cell resistance and performance values comparable to Nafion 117. Stable electrochemical performance was recorded during 1 month of cycled operation. Tailoring of grafting and cross-linking properties allows a significant reduction of methanol cross-over while maintaining suitable conductivity and performance levels.

  16. Direct Measurement of Atmospheric Ammonia from an Airborne Miniature Chemical Ionization Mass Spectrometer (miniCIMS)

    NASA Astrophysics Data System (ADS)

    Casados, K.; Schill, S.; Freeman, S.; Zoerb, M.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Ammonia is emitted into the atmosphere from a variety of sources such as trees, ocean, diary fields, biomass burning, and fuel emissions. Previous studies have investigated the environmental impacts of atmospheric ammonia which can include chemical reactivity, nucleation of fine particulate matter 2.5 (PM 2.5 ), and implications for human health, but its chemical nature and relatively short lifetime make direct measurement of atmospheric ammonia difficult. During the 2015 NASA Student Airborne Research Program (SARP) an airborne miniature Chemical Ionization Mass Spectrometer (miniCIMS) was deployed on the NASA DC-8 flying laboratory in the Southern California region. The spatial and temporal variability of measured atmospheric ammonia concentrations will be discussed.

  17. Direct synthesis of few-layer graphene supported platinum nanocatalyst for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Tan, Hong; Ma, Xiaohui; Sheng, Leimei; An, Kang; Yu, Liming; Zhao, Hongbin; Xu, Jiaqiang; Ren, Wei; Zhao, Xinluo

    2014-11-01

    High-crystalline few-layer graphene supported Pt nanoparticles have been synthesized by arc discharge evaporation of carbon electrodes containing Pt element. A high-temperature treatment under hydrogen atmosphere has been carried out to obtain a new type of Pt/graphene catalyst for methanol oxidation in direct methanol fuel cell. The morphology and structure characterizations of as-grown few-layer graphene supported Pt nanoparticles and Pt/graphene catalysts have been studied by Raman spectroscopy, scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy. Cyclic voltammograms and chronoamperometric curves show that our present Pt/graphene catalysts have larger current density for methanol oxidation, higher tolerance to carbon monoxide poisoning, and better stability during the operating procedure, compared to commercial Pt/C catalysts.

  18. On the actual cathode mixed potential in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Zago, M.; Bisello, A.; Baricci, A.; Rabissi, C.; Brightman, E.; Hinds, G.; Casalegno, A.

    2016-09-01

    Methanol crossover is one of the most critical issues hindering commercialization of direct methanol fuel cells since it leads to waste of fuel and significantly affects cathode potential, forming a so-called mixed potential. Unfortunately, due to the sluggish anode kinetics, it is not possible to obtain a reliable estimation of cathode potential by simply measuring the cell voltage. In this work we address this limitation, quantifying the mixed potential by means of innovative open circuit voltage (OCV) tests with a methanol-hydrogen mixture fed to the anode. Over a wide range of operating conditions, the resulting cathode overpotential is between 250 and 430 mV and is strongly influenced by methanol crossover. We show using combined experimental and modelling analysis of cathode impedance that the methanol oxidation at the cathode mainly follows an electrochemical pathway. Finally, reference electrode measurements at both cathode inlet and outlet provide a local measurement of cathode potential, confirming the reliability of the innovative OCV tests and permitting the evaluation of cathode potential up to typical operating current. At 0.25 A cm-2 the operating cathode potential is around 0.85 V and the Ohmic drop through the catalyst layer is almost 50 mV, which is comparable to that in the membrane.

  19. Two-dimensional two-phase thermal model for passive direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, R.; Zhao, T. S.; Yang, W. W.; Xu, C.

    A two-dimensional two-phase thermal model is presented for direct methanol fuel cells (DMFC), in which the fuel and oxidant are fed in a passive manner. The inherently coupled heat and mass transport, along with the electrochemical reactions occurring in the passive DMFC is modeled based on the unsaturated flow theory in porous media. The model is solved numerically using a home-written computer code to investigate the effects of various operating and geometric design parameters, including methanol concentration as well as the open ratio and channel and rib width of the current collectors, on cell performance. The numerical results show that the cell performance increases with increasing methanol concentration from 1.0 to 4.0 M, due primarily to the increased operating temperature resulting from the exothermic reaction between the permeated methanol and oxygen on the cathode and the increased mass transfer rate of methanol. It is also shown that the cell performance upgrades with increasing the open ratio and with decreasing the rib width as the result of the increased mass transfer rate on both the anode and cathode.

  20. Class I Methanol Maser Observations at 44 GHz in the Direction of some SNRs and SFRs.

    NASA Astrophysics Data System (ADS)

    Larionov, G. M.; Litovchenko, I. D.; Val'tts, I. E., Alakoz, A. V.

    2011-05-01

    The results of searching for class I methanol maser emission in the interstellar medium are presented. Observations at Onsala 20-m radio telescope at 44 GHz in methanol transition 7_0-6_1A has been conducted in the direction of different types of objects of the northern hemisphere: in a little-studied region of maser emission G27.4-0.2, in some supernova remnants, in high mass protostars regions, in the dust rings around HII regions and in protostellar candidates associated with powerful bipolar outflows. In the source G27.4-0.2, which is identified with two SNR well known G27.4 +0.0 (Kes73) and possible G27.3-0.2 - class I methanol maser emission was detected at the frequency of 44 GHz. In the vicinity of the maser a map of size (27 'x 27') has been obtained. It was shown that emission at 44 GHz is formed only within the previously known maser region at 95 GHz. In four supernova remnants class I methanol maser emission was not detected at the coordinates of satellite OH (1720) maser emission. In the direction of high mass star-forming regions 9 new class I methanol masers were detected at 44 GHz. These 9 new masers are from areas characterized by high density and lack of continuum radio emission. This fact indicates the absence of ultra-compact HII regions, hence the young age of star forming regions, which have not yet formed protostar to ensure the ionization of the environment. This conclusion confirms the hypothesis of a purely collisional pumping of class I methanol masers.

  1. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution

    PubMed Central

    2013-01-01

    Background Biodiesels are methyl esters of fatty acids that are usually produced by base catalyzed transesterification of triacylglyerol with methanol. Some lipase enzymes are effective catalysts for biodiesel synthesis and have many potential advantages over traditional base or acid catalyzed transesterification. Natural lipases are often rapidly inactivated by the high methanol concentrations used for biodiesel synthesis, however, limiting their practical use. The lipase from Proteus mirabilis is a particularly promising catalyst for biodiesel synthesis as it produces high yields of methyl esters even in the presence of large amounts of water and expresses very well in Escherichia coli. However, since the Proteus mirabilis lipase is only moderately stable and methanol tolerant, these properties need to be improved before the enzyme can be used industrially. Results We employed directed evolution, resulting in a Proteus mirabilis lipase variant with 13 mutations, which we call Dieselzyme 4. Dieselzyme 4 has greatly improved thermal stability, with a 30-fold increase in the half-inactivation time at 50°C relative to the wild-type enzyme. The evolved enzyme also has dramatically increased methanol tolerance, showing a 50-fold longer half-inactivation time in 50% aqueous methanol. The immobilized Dieselzyme 4 enzyme retains the ability to synthesize biodiesel and has improved longevity over wild-type or the industrially used Brukholderia cepacia lipase during many cycles of biodiesel synthesis. A crystal structure of Dieselzyme 4 reveals additional hydrogen bonds and salt bridges in Dieselzyme 4 compared to the wild-type enzyme, suggesting that polar interactions may become particularly stabilizing in the reduced dielectric environment of the oil and methanol mixture used for biodiesel synthesis. Conclusions Directed evolution was used to produce a stable lipase, Dieselzyme 4, which could be immobilized and re-used for biodiesel synthesis. Dieselzyme 4 outperforms

  2. Tungsten carbides as potential alternative direct methanol fuel cell anode electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zellner, Michael

    The reduction of precious metal loading and the improvement of sluggish kinetics at the anode electrocatalyst are two primary concerns for economical development of direct methanol fuel cells (DMFC). The purpose of this research is to examine the feasibility of using tungsten carbides as alternative fuel cell anode electrocatalysts. The anodic chemistry of the direct methanol fuel cell requires the oxidation of methanol and the decomposition of water to produce protons, electrons, and gas-phase CO2. Currently, the most effective anode electrocatalyst for DMFC is the Pt/Ru bimetallic catalyst, which efficiently oxidizes methanol, as well as decomposes water for the oxidation and removal of adsorbed CO species. Although the Pt/Ru bimetallic system exhibits desirable electrochemical activities, both Pt and Ru are expensive due to limited supplies. In addition, strong chemisorption of CO on Pt and Ru makes the electrocatalyst susceptible to CO poisoning, blocking the active sites for methanol oxidation. This work began by examining the reactions of methanol, water, and CO on carbide-modified tungsten (C/W) single crystal surfaces, with and without submonolayer coverages of Pt. These fundamental surface science results demonstrated the potential for tungsten carbides to be used as anode catalysts in DMFC, exhibiting decomposition of both methanol and water along with significantly lowered CO desorption temperatures. Additionally, submonolayer Pt-modification of the C/W surfaces resulted in a synergistic effect, eliminating the undesired reaction pathway on the C/W surface that produced gas-phase CH4. To bridge the materials gap between model single crystal surfaces and the more realistic thin film electrocatalysts, polycrystalline tungsten carbide thin films were created via physical vapor deposition (PVD) and carburization of polycrystalline tungsten foil. Fundamental surface science techniques were applied to the PVD films to examine the reaction pathways of DMFC

  3. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  4. (Non) formation of methanol by direct hydrogenation of formate on copper catalysts

    SciTech Connect

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.; Kwak, Ja Hun; Peden, Charles HF; Campbell, C. T.

    2010-10-14

    We have attempted to hydrogenate adsorbed formate species on copper catalysts to probe the importance of this postulated mechanistic step in methanol synthesis. Surface formate coverages up to 0.25 were produced at temperatures between 413K and 453K on supported (Cu/SiO2) copper and unsupported copper catalysts. The adlayers were produced by various methods including (1) steady state catalytic conditions in CO2-H2 (3:1, 6 bar) atmospheres, and (2) by exposure of the catalysts to formic acid. As reported in earlier work, the catalytic surface at steady state contains bidentate formate species with coverages up to saturation levels of ~ 0.25 at the low temperatures of this study. The reactivity of these formate adlayers was investigated at relevant reaction temperatures in atmospheres containing up to 6 bar H2 partial pressure by simultaneous mass spectrometry (MS) and infrared (IR) spectroscopy measurements. The yield of methanol during the attempted hydrogenation (“titration”) of these adlayers was insignificant (<0.2 mol % of the formate adlayer) even in dry hydrogen partial pressures up to 6 bar. Hydrogen titration of formate species produced from formic acid also failed to produce significant quantities of methanol, and attempted titration in gases consisting of CO-hydrogen mixtures or dry CO2 were also unproductive. The formate decomposition kinetics, measured by IR, were also unaffected by these changes in the gas composition. Similar experiments on unsupported copper also failed to show any methanol. From these results, we conclude that methanol synthesis on copper cannot result from the direct hydrogenation of (bidentate) formate species in simple steps involving adsorbed H species alone. Furthermore, experiments performed on both supported (Cu/SiO2) and unsupported copper catalysts gave similar results implying that the methanol synthesis reaction mechanism only involves metal surface chemistry. Pre-exposure of the bidentate formate adlayer to oxidation

  5. X-ray absorption and electrochemical studies of direct methanol fuel cell catalysts

    SciTech Connect

    Zurawski, D.J.; Aldykiewicz, A.J. Jr.; Baxter, S.F.; Krumpelt, M.

    1996-12-31

    In order for polymer electrolyte fuel cells to operate directly on methanol instead of hydrogen, a distinct advantage for portable applications, methanol oxidation must be catalyzed effectively in the acidic environment of the cell. Platinum-ruthenium and platinum-ruthenium oxide are generally considered to be the most active catalysts for this purpose. The presence of ruthenium significantly enhances the activity of platinum in these catalysts, for reasons not yet fully understood. We are using X-ray absorption spectroscopy (XAS) and electrochemical techniques to evaluate the mechanisms proposed to account for this enhancement in order to further improve the catalyst`s activity. We are considering three enhancement mechanisms. An intermediate in the oxidation of methanol on platinum is carbon monoxide and its oxidation is the rate-determining step in the overall oxidation mechanism. It has been proposed that ruthenium facilitates the removal of carbon monoxide from the platinum surface. First, it has been proposed that ruthenium decreases the strength of the platinum-carbon monoxide bond. Carbon monoxide bonds to the catalyst by interacting with the d-band of platinum, therefore a change in the d-band occupancy of platinum as a result of alloying may influence the bond strength of carbon monoxide. Another proposed enhancement mechanism involves lowering of the potential for the formation of the CO-oxidizing species. Finally, the binary catalysts may have a structure which is more conducive to the methanol dehydrogenation and carbon monoxide reactions. Based on these three proposed enhancement mechanisms, a goal of this study is to correlate catalyst electronic properties, structure, and oxidation state with the performance of proton-exchange membrane (Nafion) direct methanol fuel cells.

  6. Process analysis of a liquid-feed direct methanol fuel cell system

    NASA Astrophysics Data System (ADS)

    Andrian, Stefanie v.; Meusinger, Josefin

    Recently, a greatly increasing interest in solid polymer electrolyte fuel cells (PEFC) for a range of applications has been observed. The direct methanol fuel cell (DMFC) based on a PEFC uses methanol directly for electric power generation and promises technical advantages, for example, for power trains. This study analyses the interaction between a DMFC stack fed with a liquid aqueous methanol solution and the peripheral system equipment. A simulation model of a DMFC system for mobile applications (from methanol to net electricity) is presented to calculate system efficiencies on the basis of thermodynamic engineering calculations. Based on the simulation calculations, useful operating requirements can be specified. To optimise the performance of DMFC systems, it is necessary to consider the operational characteristics of all the components required in the system. There are worldwide activities to improve the performance of a DMFC stack, which depends on numerous operating parameters. But it is not sufficient to optimise only the current/potential curves of the fuel cell without taking all the consequences for the system into consideration. The results of the computer simulation presented here emphasise the difficulties in improving fuel cell performance without decreasing system efficiency and describes the consequences for the system's operation conditions. Priorities are additionally set concerning the heat management of the fuel cell stack. In the case of liquid fuel supply, the water crossover through the membrane and the ensuing vapourisation at the cathode side impairs the thermal balance. Key operating parameters, which influence these effects, are pressure, temperature, air flow and methanol permeation rate.

  7. Direct single-mode fibre-coupled miniature White cell for laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kühnreich, Benjamin; Höh, Matthias; Wagner, Steven; Ebert, Volker

    2016-02-01

    We present the design, setup, and characterization of a new lens-free fibre-coupled miniature White cell for extractive gas analysis using direct tunable diode laser absorption spectroscopy (dTDLAS). The construction of this cell is based on a modified White cell design and allows for an easy variation of the absorption length in the range from 29 cm to 146 cm. The design avoids parasitic absorption paths outside the cell by using direct, lensless fibre coupling and allows small physical cell dimensions and cell volumes. To characterize the cell performance, different H2O and CH4 concentration levels were measured using dTDLAS. Detection limits of 2.5 ppm ṡ m for CH4 (at 1.65 μm) and 1.3 ppm ṡ m for H2O (at 1.37 μm) were achieved. In addition, the gas exchange time and its flow-rate dependence were determined for both species and found to be less than 15 s for CH4 and up to a factor of thirteen longer for H2O.

  8. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell

    PubMed Central

    Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun

    2014-01-01

    Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode. PMID:24448514

  9. Development of Anodic Flux and Temperature Controlling System for Micro Direct Methanol Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Liu, C.; Liang, J. S.; Wu, C. B.; Xu, Z.

    2006-10-01

    Micro Direct Methanol Fuel Cell (μDMFC) is a kind of newly developed power sources, which effective apparatus for its performance evaluation is still in urgent need at present. In this study, a testing system was established for the purpose of testing the continuous working performance such as micro flux and temperature of μDMFC. In view of the temperature controlling for micro-flux liquid fuel, a heating block with labyrinth-like single pass channel inside for heating up the methanol solution was fabricated. A semiconductorrefrigerating chip was utilized to heat and cool the liquid flow during testing procedures. On the other hand, the two channels of a high accuracy double-channel syringe pump that can suck and pump in turn so as to transport methanol solution continuously was adopted. Based on the requirements of wide-ranged temperature and micro flux controlling, the solenoid valves and the correlative component were used. A hydraulic circuit, which can circulate the fed methanol cold to hot in turn, has also been constructed to test the fatigue life of the μDMFC. The automatic control was actualized by software module written with Visual C++. Experimental results show that the system is perfect in stability and it may provide an important and advanced evaluation apparatus to satisfy the needs for real time performance testing of μDMFC.

  10. Analysis on the design and property of flow field plates of innovative direct methanol fuel cell.

    PubMed

    Chang, Ho; Kao, Mu-Jung; Chen, Chih-Hao; Kuo, Chin-Guo; Lee, Kuang-Ying

    2014-10-01

    The paper uses technology of lithography process to etch flow fields on single side of a printed circuit board (PCB), and combines flow field plate with collector plate to make innovative anode flow field plates and cathode flow field plates required in direct methanol fuel cell (DMFC), and meanwhile makes membrane electrode assembly (MEA) and methanol fuel plate. The flow field plates are designed to be in the form of serpentine flow field. The paper measured the assembled DMFC to achieve the overall efficiency of DMFC under the conditions of different screw torques and different concentration, flow rate and temperature of methanol. Experimental results show that when the flow field width of flow field plate is 1 mm, the screw torque is 16 kgf/cm, and the concentration, flow rate and temperature of methanol-water are 1 M, 180 ml/h and 50 degrees C respectively, the prepared DMFC can have better power density of 5.5 mW/cm2, 5.4 mW/cm2, 11.2 mW/cm2 and 11.8 mW/cm2. Besides, the volume of the DMFC designed and assembled by the study is smaller than the generally existing DMFC by 40%. PMID:25942924

  11. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.

    PubMed

    Xiao, Yanxin; Xiang, Yan; Xiu, Ruijie; Lu, Shanfu

    2013-10-15

    A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3-xPW12O40 (0≤x≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x=2 and Cs2-PTA content of 5 wt%. The value is 6×10(-3) S cm(-1) and 1.75×10(-2) S cm(-1) at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6×10(-7), 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1×10(4)/Scm(-3)s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells. PMID:23987340

  12. Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology

    DOEpatents

    Cornelius, Christopher J.

    2006-04-04

    A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

  13. A direct methanol fuel cell system to power a humanoid robot

    NASA Astrophysics Data System (ADS)

    Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.

  14. Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Dingding; Zhu, Xun; Liao, Qiang; Li, Jun; Fu, Qian

    A two-dimensional two-phase mass transport model has been developed to predict methanol and water crossover in a semi-passive direct methanol fuel cell with an air-breathing cathode. The mass transport in the catalyst layer and the discontinuity in liquid saturation at the interface between the diffusion layer and catalyst layer are particularly considered. The modeling results agree well with the experimental data of a home-assembled cell. Further studies on the typical two-phase flow and mass transport distributions including species, pressure and liquid saturation in the membrane electrode assembly are investigated. Finally, the methanol crossover flux, the net water transport coefficient, the water crossover flux, and the total water flux at the cathode as well as their contributors are predicted with the present model. The numerical results indicate that diffusion predominates the methanol crossover at low current densities, while electro-osmosis is the dominator at high current densities. The total water flux at the cathode is originated primarily from the water generated by the oxidation reaction of the permeated methanol at low current densities, while the water crossover flux is the main source of the total water flux at high current densities.

  15. The effect of operation and design parameters on the performance of the direct methanol fuel cell

    SciTech Connect

    Simpson, S.F.; Cisar, A.; Franaszczuk, K.

    1996-12-31

    Fuel cell technology continues to receive considerable attention as a potential replacement for fossil fuels as a primary source of terrestrial power. Ideally, such power systems would operate at relatively low temperatures (< 100{degrees}C) which suggests strongly the use of cell technology based upon the proton exchange membrane (PEM). Without question, hydrogen is a very desirable fuel choice for these types of systems, because of its high energy density. However, the difficulties associated with the production and routine handling of hydrogen limit severely its commercial use at present. The direct methanol fuel cell (DMFC) is a particularly attractive alternative to the use of the hydrogen/oxygen cell. Although not as high as hydrogen, the energy density of methanol is the highest among the organic fuels. Furthermore, because of the similarity in liquid handling requirements between methanol and gasoline, a significant portion of the infrastructure necessary for the marketing and distribution of the fuel is already in place. Other inherent attributes of the DMFC which include rapid start-up and operation with little or no emission or noise signature have led to an intense DMFC research effort over the past twenty years and, indeed, the DMFC has even been referred to as {open_quotes}the electrochemist`s dream{close_quotes}.

  16. In situ measurements of water crossover through the membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, C.; Zhao, T. S.

    We show analytically that the water-crossover flux through the membrane used for direct methanol fuel cells (DMFCs) can be in situ determined by measuring the water flow rate at the exit of the cathode flow field. This measurement method enables investigating the effects of various design and geometric parameters as well as operating conditions, such as properties of cathode gas diffusion layer (GDL), membrane thickness, cell current density, cell temperature, methanol solution concentration, oxygen flow rate, etc., on water crossover through the membrane in situ in a DMFC. Water crossover through the membrane is generally due to electro-osmotic drag, diffusion and back convection. The experimental data showed that diffusion dominated the total water-crossover flux at low current densities due to the high water concentration difference across the membrane. With the increase in current density, the water flux by diffusion decreased, but the flux by back convection increased. The corresponding net water-transport coefficient was also found to decrease with current density. The experimental results also showed that the use of a hydrophobic cathode GDL with a hydrophobic MPL could substantially reduce water crossover through the membrane, and thereby significantly increasing the limiting current as the result of the improved oxygen transport. It was found that the cell operating temperature, oxygen flow rate and membrane thickness all had significant influences on water crossover, but the influence of methanol concentration was negligibly small.

  17. TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS

    SciTech Connect

    Murph, S.

    2011-04-20

    In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

  18. Ultrasonic synthesis and evaluation of non-platinum catalysts for alkaline direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Bunazawa, Hideaki; Yamazaki, Yohtaro

    Ultrasonic synthesis was investigated as a synthesis method of non-platinum catalysts for alkaline direct methanol fuel cells (alkaline DMFCs) such as 20% mass Pd/C, Au/C, and PdAu/C. Among four kinds of solvents, ethylene glycol was demonstrated to be the optimum solvent for the synthesis of those catalysts. When ethylene glycol was used, the synthesized metal nanoparticles were highly dispersed on carbon particles. The synthesized Pd/C and PdAu/C showed the high oxygen reduction reaction (ORR) activity in alkaline condition (0.5 M NaOH aqueous solution), which was comparable to conventional Pt/C. Moreover, they showed lower methanol oxidation reaction (MOR) activity. Membrane electrode assemblies (MEAs) containing the synthesized Pd/C cathode catalysts and alkaline ion exchange membranes were fabricated and evaluated by single cell tests. They showed high performance that was comparable to MEAs with Pt/C cathode. In addition, it was found that the synthesized Pd/C was relatively tolerant to methanol crossover.

  19. Miniaturized and direct spectrophotometric multi-sample analysis of trace metals in natural waters.

    PubMed

    Albendín, Gemma; López-López, José A; Pinto, Juan J

    2016-03-15

    Trends in the analysis of trace metals in natural waters are mainly based on the development of sample treatment methods to isolate and pre-concentrate the metal from the matrix in a simpler extract for further instrumental analysis. However, direct analysis is often possible using more accessible techniques such as spectrophotometry. In this case a proper ligand is required to form a complex that absorbs radiation in the ultraviolet-visible (UV-Vis) spectrum. In this sense, the hydrazone derivative, di-2-pyridylketone benzoylhydrazone (dPKBH), forms complexes with copper (Cu) and vanadium (V) that absorb light at 370 and 395 nm, respectively. Although spectrophotometric methods are considered as time- and reagent-consuming, this work focused on its miniaturization by reducing the volume of sample as well as time and cost of analysis. In both methods, a micro-amount of sample is placed into a microplate reader with a capacity for 96 samples, which can be analyzed in times ranging from 5 to 10 min. The proposed methods have been optimized using a Box-Behnken design of experiments. For Cu determination, concentration of phosphate buffer solution at pH 8.33, masking agents (ammonium fluoride and sodium citrate), and dPKBH were optimized. For V analysis, sample (pH 4.5) was obtained using acetic acid/sodium acetate buffer, and masking agents were ammonium fluoride and 1,2-cyclohexanediaminetetraacetic acid. Under optimal conditions, both methods were applied to the analysis of certified reference materials TMDA-62 (lake water), LGC-6016 (estuarine water), and LGC-6019 (river water). In all cases, results proved the accuracy of the method. PMID:26723494

  20. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    PubMed Central

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T.C. Mike

    2015-01-01

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications. PMID:26690232

  1. High Performance and Cost-Effective Direct Methanol Fuel Cells: Fe-N-C Methanol-Tolerant Oxygen Reduction Reaction Catalysts.

    PubMed

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Gordon, Jonathan; Atanassov, Plamen; Aricò, Antonino S; Baglio, Vincenzo

    2016-08-01

    Direct methanol fuel cells (DMFCs) offer great advantages for the supply of power with high efficiency and large energy density. The search for a cost-effective, active, stable and methanol-tolerant catalyst for the oxygen reduction reaction (ORR) is still a great challenge. In this work, platinum group metal-free (PGM-free) catalysts based on Fe-N-C are investigated in acidic medium. Post-treatment of the catalyst improves the ORR activity compared with previously published PGM-free formulations and shows an excellent tolerance to the presence of methanol. The feasibility for application in DMFC under a wide range of operating conditions is demonstrated, with a maximum power density of approximately 50 mW cm(-2) and a negligible methanol crossover effect on the performance. A review of the most recent PGM-free cathode formulations for DMFC indicates that this formulation leads to the highest performance at a low membrane-electrode assembly (MEA) cost. Moreover, a 100 h durability test in DMFC shows suitable applicability, with a similar performance-time behavior compared to common MEAs based on Pt cathodes. PMID:27376964

  2. Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lufrano, F.; Baglio, V.; Staiti, P.; Arico', A. S.; Antonucci, V.

    This paper reports the development and characterization of sulfonated polysulfone (SPSf) polymer electrolytes for direct methanol fuel cells. The synthesis of sulfonated polysulfone was performed by a post sulfonation method using trimethyl silyl chlorosulfonate as a mild sulfonating agent. Bare polysulfone membranes were prepared with two different sulfonation levels (60%, SPSf-60 and 70%, SPSf-70), whereas, a composite membrane of SPSf-60 was prepared with 5 wt% silica filler. These membranes were investigated in direct methanol fuel cells (DMFCs) operating at low (30-40 °C) and high temperatures (100-120 °C). DMFC power densities were about 140 mW cm -2 at 100 °C with the bare SPSf-60 membrane and 180 mW cm -2 at 120 °C with the SPSf-60-SiO2 composite membrane. The best performance achieved at ambient temperature using a membrane with high degree of sulfonation (70%, SPSf-70) was 20 mW cm -2 at atmospheric pressure. This makes the polysulfone-based DMFC suitable for application in portable devices.

  3. Characterization of direct methanol fuel cell (DMFC) applications with H 2SO 4 modified chitosan membrane

    NASA Astrophysics Data System (ADS)

    Osifo, Peter O.; Masala, Aluwani

    Chitosan (Chs) flakes were prepared from chitin materials that were extracted from the exoskeleton of Cape rock lobsters in South Africa. The Chs flakes were prepared into membranes and the Chs membranes were modified by cross-linking with H 2SO 4. The cross-linked Chs membranes were characterized for the application in direct methanol fuel cells. The Chs membrane characteristics such as water uptake, thermal stability, proton resistance and methanol permeability were compared to that of high performance conventional Nafion 117 membranes. Under the temperature range studied 20-60 °C, the membrane water uptake for Chs was found to be higher than that of Nafion. Thermal analysis revealed that Chs membranes could withstand temperature as high as 230 °C whereas Nafion 117 membranes were stable to 320 °C under nitrogen. Nafion 117 membranes were found to exhibit high proton resistance of 284 s cm -1 than Chs membranes of 204 s cm -1. The proton fluxes across the membranes were 2.73 mol cm -2 s -1 for Chs- and 1.12 mol cm -2 s -1 Nafion membranes. Methanol (MeOH) permeability through Chs membrane was less, 1.4 × 10 -6 cm 2 s -1 for Chs membranes and 3.9 × 10 -6 cm 2 s -1 for Nafion 117 membranes at 20 °C. Chs and Nafion membranes were fabricated into membrane electrode assemblies (MAE) and their performances measure in a free-breathing commercial single cell DMFC. The Nafion membranes showed a better performance as the power density determined for Nafion membranes of 0.0075 W cm -2 was 2.7 times higher than in the case of Chs MEA.

  4. Performance improvement of passive direct methanol fuel cells with surface-patterned Nafion® membranes

    NASA Astrophysics Data System (ADS)

    Pu, Longjuan; Jiang, Jingjing; Yuan, Ting; Chai, Jieshi; Zhang, Haifeng; Zou, Zhiqing; Li, Xue-Mei; Yang, Hui

    2015-02-01

    Nafion® 115 membrane, patterned by thermal imprint lithography on the anode side, is used for passive direct methanol fuel cells (DMFCs). The membrane roughness factor, defined as the ratio between the actual and projected membrane surface area, was investigated for its effects on the performance of the DMFCs. When the anode Pt-Ru (1:1) catalyst loading is 1.0 mg cm-2, the maximum power density of the DMFC with a surface-patterned membrane (roughness factor: 5.4) using 3.0 M methanol as the fuel at 25 ± 1 °C reaches 27.2 ± 0.3 mW cm-2, an increase of ∼57.2% in comparison to DMFC using the pristine membrane (roughness factor: ∼1.0). Further, electrochemical characterization indicates that increased roughness factor of the membrane results in increased electrochemically active surface area and reduced charge transfer resistance in the cell. These performance improvements are ascribed to the increased surface roughness which enlarges the membrane/catalyst interface, possibly facilitating mass transport of the fuel and improving anode catalyst utilization. Thus, patterned membranes have great potential in improving the performance of fuel cells and reducing catalyst loading.

  5. Improvement in direct methanol fuel cell performance by treating the anode at high anodic potential

    NASA Astrophysics Data System (ADS)

    Joghee, Prabhuram; Pylypenko, Svitlana; Wood, Kevin; Corpuz, April; Bender, Guido; Dinh, Huyen N.; O'Hayre, Ryan

    2014-01-01

    This work investigates the effect of a high anodic potential treatment protocol on the performance of a direct methanol fuel cell (DMFC). DMFC membrane electrode assemblies (MEAs) with PtRu/C (Hi-spec 5000) anode catalyst are subjected to anodic treatment (AT) at 0.8 V vs. DHE using potentiostatic method. Despite causing a slight decrease in the electrochemical surface area (ECSA) of the anode, associated with ruthenium dissolution, AT results in significant improvement in DMFC performance in the ohmic and mass transfer regions and increases the maximum power density by ∼15%. Furthermore, AT improves the long-term DMFC stability by reducing the degradation of the anode catalyst. From XPS investigation, it is hypothesized that the improved performance of AT-treated MEAs is related to an improved interface between the catalyst and Nafion ionomer. Among potential explanations, this improvement may be caused by incorporation of the ionomer within the secondary pores of PtRu/C agglomerates, which generates a percolating network of ionomer between PtRu/C agglomerates in the catalyst layer. Furthermore, the decreased concentration of hydrophobic CF2 groups may help to enhance the hydrophilicity of the catalyst layer, thereby increasing the accessibility of methanol and resulting in better performance in the high current density region.

  6. Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kruusenberg, Ivar; Ratso, Sander; Vikkisk, Merilin; Kanninen, Petri; Kallio, Tanja; Kannan, Arunachala M.; Tammeveski, Kaido

    2015-05-01

    Direct methanol fuel cells are assembled and evaluated using Fumatech FAA3 alkaline anion exchange membrane. Two novel metal-free cathode catalysts are synthesised, investigated and compared with the commercial Pt-based catalyst. In this work nitrogen-doped few-layer graphene/multi-walled carbon nanotube (N-FLG/MWCNT) composite and nitrogen-doped MWCNT (N-MWCNT) catalyst are prepared by pyrolysing the mixture of dicyandiamide (DCDA) and carbon nanomaterials at 800 °C. The resulting cathode catalyst material shows a remarkable electrocatalytic activity for oxygen reduction reaction (ORR) in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Fuel cell tests are performed by using 1 M methanol as anode and pure oxygen gas cathode feed. The maximum power density obtained with the N-FLG/MWCNT material (0.72 mW cm-2) is similar to that of the Pt/C catalyst (0.72 mW cm-2), whereas the N-MWCNT material shows higher peak power density (0.92 mW cm-2) than the commercial Pt/C catalyst.

  7. Artificial Intelligence Techniques for the Estimation of Direct Methanol Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Hasiloglu, Abdulsamet; Aras, Ömür; Bayramoglu, Mahmut

    2016-04-01

    Artificial neural networks and neuro-fuzzy inference systems are well known artificial intelligence techniques used for black-box modelling of complex systems. In this study, Feed-forward artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used for modelling the performance of direct methanol fuel cell (DMFC). Current density (I), fuel cell temperature (T), methanol concentration (C), liquid flow-rate (q) and air flow-rate (Q) are selected as input variables to predict the cell voltage. Polarization curves are obtained for 35 different operating conditions according to a statistically designed experimental plan. In modelling study, various subsets of input variables and various types of membership function are considered. A feed -forward architecture with one hidden layer is used in ANN modelling. The optimum performance is obtained with the input set (I, T, C, q) using twelve hidden neurons and sigmoidal activation function. On the other hand, first order Sugeno inference system is applied in ANFIS modelling and the optimum performance is obtained with the input set (I, T, C, q) using sixteen fuzzy rules and triangular membership function. The test results show that ANN model estimates the polarization curve of DMFC more accurately than ANFIS model.

  8. Gold nanoparticles: novel catalyst for the preparation of direct methanol fuel cell.

    PubMed

    Kuralkar, Mayuri; Ingle, Avinash; Gaikwad, Swapnil; Gade, Aniket; Rai, Mahendra

    2015-04-01

    The authors report the biosynthesis of gold nanoparticles (Au-NPs) using plant pathogenic Phoma glomerata (MTCC 2210). The synthesis of nanoparticles was characterised by visual observation followed UV-visible spectrophotometric analysis, Fourier transform infrared spectroscopy and nanoparticle tracking analysis. Later, direct methanol fuel cell (DMFC) was constructed using two chambers (anodic chamber and cathodic chamber). These Au-NPs as catalysts have various advantages over the other catalysts that are used in the DMFC. Most importantly, it is cheaper as compared with other catalysts like platinum, and showed higher catalytic activity because of its effective surface structure. Being nano in size, it provides more surface area for the attachment of reactant molecules (methanol molecules). The DMFC catalysed by Au-NPs are found to be suitable to replace lithium ion battery technology in consumer electronics like cell phones, laptops and so on due to the fact that they can produce a high amount of energy in a small space. As long as fuel and air are supplied to the DMFC, it will continue to produce power, so it does not need to be recharged. The use of Au-NPs as catalyst in DMFC has not been reported in the past; it is reported here the first time. PMID:25829171

  9. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  10. Cell performance of Pd-Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Kim, Jandee; Momma, Toshiyuki; Osaka, Tetsuya

    Direct methanol alkaline fuel cell (DMAFC) using anion exchange membrane (AEM) was operated in passive condition. Cell with AEM exhibits a higher open circuit voltage (OCV) and superior cell performance than those in cell using Nafion. From the concentration dependences of methanol, KOH in fuel and ionomer in anode catalyst layer, it is found that the key factors are to improve the ionic conductivity at the anode and to form a favorable ion conductive path in catalyst layer in order to enhance the cell performance. In addition, by using home-made Pd-Sn/C catalyst as a cathode catalyst on DMAFC, the membrane electrode assembly (MEA) using Pd-Sn/C catalyst as cathode exhibits the higher performance than the usual commercially available Pt/C catalyst in high methanol concentration. Therefore, the Pd-Sn/C catalyst with high tolerance for methanol is expected as the promising oxygen reduction reaction (ORR) catalyst in DMAFC.

  11. Catalyst inks and method of application for direct methanol fuel cells

    DOEpatents

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  12. Highly-optimized membrane electrode assembly for direct methanol fuel cell prepared by sedimentation method

    NASA Astrophysics Data System (ADS)

    Liu, Jing Hua; Jeon, Min Ku; Choi, Won Choon; Woo, Seong Ihl

    An electrode for a direct methanol fuel cell (DMFC) is prepared by means of the sedimentation method. A suspension containing Pt black, PTFE and water was filtered through a polycarbonate film and a thin catalyst layer remains on this film. This catalyst layer is then transferred to a gas-diffusion layer by applying a pressure to the assembly and then peeling off the filter film. For the anode catalyst layer, the suspension contained Pt-Ru black and water. The preparation process is optimized and single-cell performance is examined under different operating conditions. Operated at 60 °C, the output power density of the membrane electrode assembly (MEA) fabricated by the sedimentation method is 70% higher than that for an assembly prepared by the conventional brushing technique.

  13. Influence of electrode structure on the performance of a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Wei, Zhaobin; Wang, Suli; Yi, Baolian; Liu, Jianguo; Chen, Likang; Zhou, WeiJiang; Li, Wenzheng; Xin, Qin

    Direct methanol fuel cells (DMFCs) consisting of multi-layer electrodes provide higher performance than those with the traditional electrode. The new electrode structure includes a hydrophilic thin film and a traditional catalyst layer. A decal transfer method was used to apply the thin film to the Nafion ® membrane. Results show that the performance of a cell with the hydrophilic thin film is obviously enhanced. A cell with the optimal thin film electrode structure operating at 1 M CH 3OH, 2 atm oxygen and 90 °C yields a current density of 100 mA/cm 2 at 0.53 V cell voltage. The peak power density is 120 mW/cm 2. The performance stability of a cell in a short-term life operation was also increased when the hydrophilic thin film was employed.

  14. SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS

    SciTech Connect

    Murph, S.

    2010-06-16

    A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

  15. Dually cross-linked polymer electrolyte membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Won Hyo; Lee, Kang Hyuck; Shin, Dong Won; Hwang, Doo Sung; Kang, Na Rae; Cho, Doo Hee; Kim, Ji Hoon; Lee, Young Moo

    2015-05-01

    End-group crosslinkable sulfonated poly(arylene ether sulfone) copolymer (ESPAES) and imidazolium poly(arylene ether sulfone) copolymer (IPAES) are synthesized as a proton exchange membrane and ionic crosslinker, respectively. A novel dually cross-linked membrane (DCM) based on ESPAES is similar to an inter-penetrating network and is prepared via blending IPAES and thermal treatment for direct methanol fuel cell (DMFC) applications. The synergistic effects of end-group crosslinking and ionic crosslinking improve chemical and thermal stability and mechanical properties. In addition, the DMFC performance of the DCM outperforms that of the end-group cross-linked SPAES and Nafion® 212 due to its excellent fuel barrier property in spite of relatively low proton conductivity, which is derived from the content of the non-proton conducting IPAES copolymer. Consequently, the DCM has great potential as an electrolyte membrane for DMFC applications.

  16. Polybenzimidazole membranes for direct methanol fuel cell: Acid-doped or alkali-doped?

    NASA Astrophysics Data System (ADS)

    Li, Long-Yun; Yu, Bor-Chern; Shih, Chao-Ming; Lue, Shingjiang Jessie

    2015-08-01

    Polybenzimidazole (PBI) films immersed in 2 M phosphoric acid (H3PO4) or 6 M potassium hydroxide (KOH) solution form electrolytes for conducting proton or hydroxide, respectively. A direct methanol fuel cell (DMFC) with the alkali-KOH doped PBI gives 117.9 mW cm-2 of power output which is more than 2 times greater than the power density of 46.5 mW cm-2 with the H3PO4-doped PBI (vs.) when both of the DMFCs use a micro porous layer (MPL) in a gas-fed cathode and a MPL-free anode and are operated at 90 °C. When the MPL-free anode and cathode are used and the fuel flow rate is tripled, the peak power density of alkaline DMFC reaches 158.9 mW cm-2.

  17. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Zelenay, Piotr; Thomas, Sharon; Davey, John; Gottesfeld, Shimshon

    This paper describes recent advances in the science and technology of direct methanol fuel cells (DMFCs) made at Los Alamos National Laboratory (LANL). The effort on DMFCs at LANL includes work devoted to portable power applications, funded by the Defense Advanced Research Project Agency (DARPA), and work devoted to potential transport applications, funded by the US DOE. We describe recent results with a new type of DMFC stack hardware that allows to lower the pitch per cell to 2 mm while allowing low air flow and air pressure drops. Such stack technology lends itself to both portable power and potential transport applications. Power densities of 300 W/l and 1 kW/l seem achievable under conditions applicable to portable power and transport applications, respectively. DMFC power system analysis based on the performance of this stack, under conditions applying to transport applications (joint effort with U.C. Davis), has shown that, in terms of overall system efficiency and system packaging requirements, a power source for a passenger vehicle based on a DMFC could compete favorably with a hydrogen-fueled fuel cell system, as well as with fuel cell systems based on fuel processing on board. As part of more fundamental studies performed, we describe optimization of anode catalyst layers in terms of PtRu catalyst nature, loading and catalyst layer composition and structure. We specifically show that, optimized content of recast ionic conductor added to the catalyst layer is a sensitive function of the nature of the catalyst. Other elements of membrane/electrode assembly (MEA) optimization efforts are also described, highlighting our ability to resolve, to a large degree, a well-documented problem of polymer electrolyte DMFCs, namely "methanol crossover". This was achieved by appropriate cell design, enabling fuel utilization as high as 90% in highly performing DMFCs.

  18. Study of catalysis for solid oxide fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Xirong

    Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a

  19. Novel sulfonated poly(ether ether ketone ketone)s for direct methanol fuel cells usage: Synthesis, water uptake, methanol diffusion coefficient and proton conductivity

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Fu, Tiezhu; Shao, Ke; Li, Xianfeng; Zhao, Chengji; Na, Hui; Zhang, Hong

    A novel series of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) with different degrees of sulfonation (Ds) were synthesized from 1,3-bis(3-sodium sulfonate-4-fluorobenzoyl)benzene (1,3-SFBB-Na), 1,3-bis(4-fluorobenzoyl)benzene (1,3-FBB) and 3,3‧,5,5‧-tetramethyl-4,4‧-biphenol (TMBP) by aromatic nucleophilic polycondensation. The chemical structures of SPEEKKs were confirmed by FT-IR spectroscopy and the Ds values of the polymers were calculated by 1H NMR and titration methods, respectively. The thermal stabilities of the SPEEKKs in acid and sodium forms were characterized by thermogravimetric analysis (TGA), which showed that SPEEKKs had excellent thermal properties at high temperatures. All the SPEEKK polymers were easily solution cast into tough membranes. Water uptakes, proton conductivities and methanol diffusion coefficients of the SPEEKK membranes were measured. Water uptake increased with Ds and temperature. Compared to Nafion, the SPEEKK-60, -70 and -80 membranes showed higher proton conductivities at 80 °C, while the other SPEEKK membranes showed relatively lower proton conductivities. This may be due to the different distribution of ion-conducting domains in membrane. However, these membranes showed lower methanol diffusions in the range of 8.32 × 10 -9 to 1.14 × 10 -7 cm 2 s -1 compared with that of Nafion (2 × 10 -6 cm 2 s -1) at the same temperature. The membranes also showed excellent mechanical properties (with a Young's modulus > 1 GPa and a tensile strength > 40 MPa). These results indicate that the SPEEKK membranes are promising materials for use in direct methanol fuel cell (DMFC) applications.

  20. Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker

    NASA Astrophysics Data System (ADS)

    Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui

    2014-06-01

    A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.

  1. Intermolecular ionic cross-linked sulfonated poly(ether ether ketone) membranes containing diazafluorene for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Gong, Chenliang; Qi, Zhigang; Li, Hui; Wu, Zhongying; Zhang, Yakui; Zhang, Shujiang; Li, Yanfeng

    2015-06-01

    A series of novel ionic cross-linking sulfonated poly(ether ether ketone) (SPEEK) membranes containing the diazafluorene functional group are synthesized to reduce the swelling ratio and methanol permeability for direct methanol fuel cell (DMFC) applications. The ionic cross-linking is realized by the interaction between sulfonic acid groups and pyridyl in diazafluorene. The prepared membranes exhibit good mechanical properties, adequate thermal stability, good oxidative stability, appropriate water uptake and low swelling ratio. Moreover, the ionic cross-linked membranes exhibit lower methanol permeability in the range between 0.56 × 10-7 cm2 s-1 and 1.8 × 10-7 cm2 s-1, which is lower than Nafion 117, and they exhibit higher selectivity than Nafion 117 at 30 °C on the basis of applicable proton conductivity.

  2. PtRu/Ti anodes with varying Pt ratio: Ru ratio prepared by electrodeposition for the direct methanol fuel cell.

    PubMed

    Shao, Zhi-Gang; Zhu, Fuyun; Lin, Wen-Feng; Christensen, Paul A; Zhang, Huamin

    2006-06-21

    PtRu/Ti anodes with varying Pt ratio Ru ratio were prepared by electrodeposition of a thin PtRu catalyst layer onto Ti mesh for a direct methanol fuel cell (DMFC). The morphology and structure of the catalyst layers were analyzed by SEM, EDX and XRD. The catalyst coating layer shows an alloy character. The relative activities of the PtRu/Ti electrodes were assessed and compared in half cell and single DMFC experiments. The results show that these electrodes are very active for the methanol oxidation and that the optimum Ru surface coverage was ca. 9 at.% for DMFC operating at 20 degrees C and 11 at.% at 60 degrees C. The PtRu/Ti anode shows a performance comparable to that of the conventional carbon-based anode in a DMFC operating with 0.25 M or 0.5 M methanol solution and atmosphere oxygen gas at 90 degrees C. PMID:16763704

  3. Modeling the effect of anisotropy of gas diffusion layer on transport phenomena in a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Miao, Zheng; He, Ya-Ling; Zou, Jin-Qiang

    Transport phenomena in the gas diffusion layer (GDL) are of vital importance for the operation of direct methanol fuel cells (DMFCs). In this work, a two-phase mass transport model is developed to investigate the effects of anisotropic characteristics of a GDL, including the inherent anisotropy, deformation, and electrical and thermal contact resistances, on the coupled species, charges and thermal transport processes in a DMFC. In this model, methanol crossover and non-equilibrium evaporation/condensation of water and methanol are considered. The multistep electrochemical mechanisms are used to obtain a detailed description of the kinetics of methanol oxidization reaction (MOR) in both the anode and cathode catalyst layers (CLs). The numerical results show that the anisotropy of the GDL has a great effect on the distribution of species concentration, overpotential, local current density, and temperature. The deformation of the GDL depresses the transport of species through the GDL, particularly methanol diffusion in anode GDL, but facilitates the transport of electron and the removal of heat. The electrical contact resistance plays an important role in determining the cell performance.

  4. Detection of explosives as negative ions directly from surfaces using a miniature mass spectrometer.

    PubMed

    Sanders, Nathaniel L; Kothari, Sameer; Huang, Guangming; Salazar, Gary; Cooks, R Graham

    2010-06-15

    A miniature mass spectrometer was modified by incorporating a conversion dynode detector system and the appropriate electronics to allow the detection of negatively charged ions. The system was fitted with a discontinuous atmospheric pressure interface to allow external ionization by desorption electrospray ionization (DESI). It was used to identify the explosives 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenyl-N-methylnitramine (Tetryl), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) present in trace amounts on surfaces (500 pg/cm(2) to 1 microg/cm(2)) both individually and as components of mixtures. Detection of explosives was demonstrated in the presence of an interfering matrix. A large surface (5 cm x15 cm) on which 1 microg/cm(2) samples of TNT, Tetryl, and HMX had been spotted randomly was interrogated in 22 s in the full scan mode, and signals characteristic of each of the explosives were observed in the DESI mass spectrum. PMID:20496904

  5. Quantitative study of ruthenium cross-over in direct methanol fuel cells during early operation hours

    NASA Astrophysics Data System (ADS)

    Schoekel, A.; Melke, J.; Bruns, M.; Wippermann, K.; Kuppler, F.; Roth, C.

    2016-01-01

    In direct methanol fuel cells (DMFC), ruthenium cross-over is an important degradation phenomenon. The loss of ruthenium from the anode, its transport through the membrane and its deposition onto the cathode are detrimental to the fuel cell performance and limit the fuel cell's lifetime. Here we present a quantitative study on the fraction of ruthenium being transferred from the anode to the cathode during early operation hours (0-100 h) of a DMFC. Already during fabrication of the MEA ruthenium is transferred to the cathode. In our pristine MEAs about 0.024 wt% Ru could be found in the cathode catalyst. The cell potential during operation seems to have only a minor influence on the dissolution process. In contrast, the operation time appears to be much more important. Our data hint at two dissolution processes: a fast process dominating the first hours of operation and a slower process, which is responsible for the ongoing ruthenium transfer during the fuel cell lifetime. After 2 h held at open circuit conditions the Ru content of the cathode side was 10 times higher than in the pristine MEA. In contrast, the slower process increased that amount only by a factor of two over the course of another 100 h.

  6. Passive cathodic water/air management device for micro-direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Peng, Hsien-Chih; Chen, Po-Hon; Chen, Hung-Wen; Chieng, Ching-Chang; Yeh, Tsung-Kuang; Pan, Chin; Tseng, Fan-Gang

    A high efficient passive water/air management device (WAMD) is proposed and successfully demonstrated in this paper. The apparatus consists of cornered micro-channels and air-breathing windows with hydrophobicity arrangement to regulate liquids and gases to flow on their predetermined pathways. A high performance water/air separation with water removal rate of about 5.1 μl s -1 cm -2 is demonstrated. The performance of the proposed WAMD is sufficient to manage a cathode-generated water flux of 0.26 μl s -1 cm -2 in the micro-direct methanol fuel cells (μDMFCs) which are operated at 100 mW cm -2 or 400 mA cm -2. Furthermore, the condensed vapors can also be collected and recirculated with the existing micro-channels which act as a passive water recycling system for μDMFCs. The durability testing shows that the fuel cells equipped with WAMD exhibit improved stability and higher current density.

  7. Reliability and availability analysis of low power portable direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sisworahardjo, N. S.; Alam, M. S.; Aydinli, G.

    This paper presents a methodology for modeling and calculating the reliability and availability of low power portable direct methanol fuel cells (DMFCs). System reliability and availability are critical factors for improving market acceptance and for determining the competitiveness of the low power DMFC. Two techniques have been used for analyzing the system reliability and availability requirements for various system components. Reliability block diagram (RBD) is formed based on the failure rates of irreparable system components. A state-space method is developed to calculate system availability using the Markov model (MM). The state-space method incorporates three different states-operational, derated, and fully faulted states. Since most system components spend their lifetime in performing normal functional task, this research is focused mainly on this operational period. The failure and repair rates for repairable DMFC systems are estimated on the basis of a homogeneous Poisson process (HPP) and exponential distribution. Extensive analytical modeling and simulation study has been performed to verify the effectiveness of the proposed technique.

  8. Chemically tuned anode with tailored aqueous hydrocarbon binder for direct methanol fuel cells.

    PubMed

    Lee, Chang Hyun; Lee, So Young; Lee, Young Moo; McGrath, James E

    2009-07-21

    An anode for direct methanol fuel cells was chemically tuned by tailoring an aqueous hydrocarbon catalyst (SPI-BT) binder instead of using a conventional perfluorinated sulfonic acid ionomer (PFSI). SPI-BT designed in triethylamine salt form showed lower proton conductivity than PFSI, but it was stable in the catalyst ink forming the aqueous colloids. The aqueous colloidal particle size of SPI-BT was much smaller than that of PFSI. The small SPI-BT colloidal particles contributed to forming small catalyst agglomerates and simultaneously reducing their pore volume. Consequently, the high filling level of binders in the pores, where Pt-Ru catalysts are mainly located on the wall and physically interconnected, resulted in increased electrochemical active surface area of the anode, leading to high catalyst utilization. In addition, the chemical affinity between the SPI-BT binder and the membrane material derived from their similar chemical structure induced a stable interface on the membrane-electrode assembly (MEA) and showed low electric resistance. Upon adding SPI-BT, the synergistic effect of high catalyst utilization, improved mass transfer behavior to Pt-Ru catalyst, and low interfacial resistance of MEA became greater than the influence of reduced proton conductivity in the electrochemical performance of single cells. The electrochemical performance of MEAs with SPI-BT anode was enhanced to almost the same degree or somewhat higher than that with PFSI at 90 degrees C. PMID:19485372

  9. Energy storage characterization for a direct methanol fuel cell hybrid system

    NASA Astrophysics Data System (ADS)

    Wilhelm, J.; Janßen, H.; Mergel, J.; Stolten, D.

    This paper describes the energy storage characterization for a direct methanol fuel cell (DMFC) hybrid system for light traction applications. In a first step, the DMFC stack and the energy storage were dimensioned. To dimension the energy storage, the required energy density and power density were calculated. These are influenced by the operating states of the vehicle as well as the highly fluctuating load profile. For this kind of application a high energy density as well as a high power density is needed. Therefore, super capacitors are not the energy storage of choice. As an alternative, suitable batteries were analyzed in terms of their behavior in the DMFC hybrid system. Therefore, a characterization procedure was developed consisting of five different tests. These tests were developed adapted to the requirements of the application. They help to characterize the battery in terms of energy content, high power capability during charge and discharge, thermal behavior and lifetime. The tests showed that all batteries have to be operated on a partial state of charge (pSOC) and a thermal management is very important. Especially lead-acid battery show an decrease in lifetime under a pSOC operation. Therefore, a lithium battery was identified as the suitable energy storage for the considered application.

  10. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.

    PubMed

    Yu, Kai Man Kerry; Tong, Weiyi; West, Adam; Cheung, Kevin; Li, Tong; Smith, George; Guo, Yanglong; Tsang, Shik Chi Edman

    2012-01-01

    A non-syngas direct steam reforming route is investigated for the conversion of methanol to hydrogen and carbon dioxide over a CuZnGaO(x) catalyst at 150-200 °C. This route is in marked contrast with the conventional complex route involving steam reformation to syngas (CO/H2) at high temperature, followed by water gas shift and CO cleanup stages for hydrogen production. Here we report that high quality hydrogen and carbon dioxide can be produced in a single-step reaction over the catalyst, with no detectable CO (below detection limit of 1 ppm). This can be used to supply proton exchange membrane fuel cells for mobile applications without invoking any CO shift and cleanup stages. The working catalyst contains, on average, 3-4 nm copper particles, alongside extremely small size of copper clusters stabilized on a defective ZnGa2O4 spinel oxide surface, providing hydrogen productivity of 393.6 ml g(-1)-cat h(-1) at 150 °C. PMID:23187630

  11. Direct use of methanol as an alternative to formaldehyde for the synthesis of 3,3'-bisindolylmethanes (3,3'-BIMs).

    PubMed

    Sun, Chunlou; Zou, Xiaoyuan; Li, Feng

    2013-10-11

    Red card for formaldehyde: The direct coupling of indoles with methanol to 3,3'-bisindolylmethanes with good to excellent yields was accomplished by using a commercially available iridium complex. This study demonstrates the potential of direct use of methanol as an alternative to formaldehyde for synthetic transformations. PMID:24108592

  12. Fabrication of low-methanol-permeability sulfonated poly(phenylene oxide) membranes with hollow glass microspheres for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ahn, Kisang; Kim, Myeongjin; Kim, Kiho; Ju, Hyun; Oh, Ilgeun; Kim, Jooheon

    2015-02-01

    Organic/inorganic composite membranes, based on sulfonated poly(phenylene oxide) (SPPO) and hollow glass microspheres (HGMs), with various compositions are prepared for use as proton exchange membranes in direct methanol fuel cells (DMFCs). Reaction time between chlorosulfonic acid solution and PPO is controlled to improve proton conductivity of the SPPO membrane. As a result, SPPO at 38.2% sulfonation is selected as the optimum degree of sulfonation. Afterwards, SPPO is successfully introduced onto the surfaces of HGMs to increase their dispersion in the SPPO matrix. The ion exchange capacities (IEC) and proton conductivities of the membranes decrease with increasing amounts of the SPPO-HGMs, because of the decrease of ionic sites with increasing HGM content. The SPPO-HGM composite membranes exhibit proton conductivities ranging from 0.0350 to 0.0212 S cm-1 and low methanol permeability ranging from 1.02 × 10-6 to 3.41 × 10-7 cm2 s-1 at 20 °C. Furthermore, the SPPO-HGM 9 wt%/SPPO membrane presents a maximum power density of 81.5 mW cm-2 and open circuit voltage of 0.70 V.

  13. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  14. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    PubMed Central

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-01-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs. PMID:26876468

  15. Direct identification of prohibited substances in cosmetics and foodstuffs using ambient ionization on a miniature mass spectrometry system.

    PubMed

    Ma, Qiang; Bai, Hua; Li, Wentao; Wang, Chao; Li, Xinshi; Cooks, R Graham; Ouyang, Zheng

    2016-03-17

    Significantly simplified work flows were developed for rapid analysis of various types of cosmetic and foodstuff samples by employing a miniature mass spectrometry system and ambient ionization methods. A desktop Mini 12 ion trap mass spectrometer was coupled with paper spray ionization, extraction spray ionization and slug-flow microextraction for direct analysis of Sudan Reds, parabens, antibiotics, steroids, bisphenol and plasticizer from raw samples with complex matrices. Limits of detection as low as 5 μg/kg were obtained for target analytes. On-line derivatization was also implemented for analysis of steroid in cosmetics. The developed methods provide potential analytical possibility for outside-the-lab screening of cosmetics and foodstuff products for the presence of illegal substances. PMID:26920774

  16. Novel Integration Approach for In situ Monitoring of Temperature in Micro-direct Methanol Fuel Cell

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Yuan; Huang, Ren-De; Chuang, Chih-Wei

    2007-10-01

    In this work, a porous silicon layer is fabricated as the gas diffusion layer (GDL) of a micro-direct methanol fuel cell (μDMFC) using micro-electro-mechanical-systems (MEMS) technology. Platinum is deposited on surface of the porous silicon layer to improve the electrical conductivity of the μDMFC. Physical vapor deposition (PVD) was utilized to deposit Pt metal and wet etching was adopted to form the conductive layer and micro-thermal sensors. The Pt acted both as a current collector and a micro-thermal sensor. We fabricated a resistance temperature detector (RTD) sensor for integration with the gas diffusion layer on the bipolar plate to measure the temperature inside the μDMFC. GDLs with pores of various sizes (10, 30, and 50 μm) were considered to test the performance of the μDMFC. A silicon wafer (500 μm) was etched using KOH wet etching to yield fuel channels with a depth of 450 μm and a width of 200 μm. Then, a porous silicon layer was formed by deep reactive ion etching (DRIE) to act as the GDL of the μDMFC. The experimental results obtained at various fuel flow rates, pore sizes and other operating conditions demonstrate that the maximum power density of the μDMFC is 1.784 mW/cm2, which was reached at 203 mV with 50-μm-diameter holes. The microsensor temperature was determined to be in the range from 20 to 46 °C and the resistance of the microsensor was in the range from 7.524 to 7.677 kΩ. Experimental results demonstrate that temperature is almost linearly related to resistance and that accuracy and sensitivity are 0.3 °C and 7.82× 10-4/°C, respectively.

  17. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Zheng, Bin; Zheng, Xiaohong; Wang, Jingtao; Yuan, Weikang; Jiang, Zhongyi

    Hybrid membranes composed of chitosan (CS) as organic matrix and surface-modified Y zeolite as inorganic filler are prepared and their applicability for DMFC is demonstrated by methanol permeability, proton conductivity and swelling property. Y zeolite is modified using silane coupling agents, 3-aminopropyl-triethoxysilane (APTES) and 3-mercaptopropyl-trimethoxysilane (MPTMS), to improve the organic-inorganic interfacial morphology. The mercapto group on MPTMS-modified Y zeolite is further oxidized into sulfonic group. Then, the resultant surface-modified Y zeolites with either aminopropyl groups or sulfonicpropyl groups are mixed with chitosan in acetic acid solution and cast into membranes. The transitional phase generated between chitosan matrix and zeolite filler reduces or even eliminates the nonselective voids commonly exist at the interface. The hybrid membranes exhibit a significant reduction in methanol permeability compared with pure chitosan and Nafion117 membranes, and this reduction extent becomes more pronounced with the increase of methanol concentration. By introducing -SO 3H groups onto zeolite surface, the conductivity of hybrid membranes is increased up to 2.58 × 10 -2 S cm -1. In terms of the overall selectivity index (β = σ/ P), the hybrid membrane is comparable with Nafion117 at low methanol concentration (2 mol L -1) and much better (three times) at high methanol concentration (12 mol L -1).

  18. Preparation and characterization of novel nickel-palladium electrodes supported by silicon microchannel plates for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Miao, Fengjuan; Tao, Bairui; Sun, Li; Liu, Tao; You, Jinchuan; Wang, Lianwei; Chu, Paul K.

    A novel anode structure based on the three-dimensional silicon microchannel plates (Si-MCP) is proposed for direct methanol fuel cells (DMFCs). Ni-Pd nanoparticles produced by electroless plating onto the Si-MCP inner sidewalls and followed by annealing at 300 °C under argon serve as the catalyst. In order to evaluate the electroactivity of the nanocomposites, Ni-Pd/silicon composites synthesized by the same method are compared. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrochemical methods are employed to investigate the Ni-Pd/Si-MCP anode materials. As a result of the synergetic effects rendered by the MCP and Ni-Pd nanoparticles, the Ni-Pd/Si-MCP nanocomposites exhibit superior electrocatalytic properties towards methanol electro-oxidation in alkaline solutions, as manifested by the negative onset potential and strong current response to methanol even during long-term cyclical oxidation of methanol. This new structure possesses unique and significant advantages such as low cost and integratability with silicon-based devices.

  19. Facile synthesis of Pt-Pd@Silicon nanostructure as an advanced electrocatalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Jafari-Asl, M.; Rezaei, B.; Abarghoui, M. Mokhtari; Farrokhpour, H.

    2015-05-01

    In this work, platinum-palladium (Pt-Pd) is assembled in-situ on the surface of porous silicon flour (PSiF) through chemical reduction of PtCl62-/PdCl42- and oxidation of the precursor solution SiF64-. The components and the morphological properties of the Pt-Pd on PSiF is investigated by means of transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction techniques. In the next stage, screen printed graphene electrode (SPGE) is prepared by electro-reduction of exfoliated graphene oxide at the surface of a screen printed carbon electrode (SPCE), which is subsequently characterized by FT-IR, Raman spectroscopy, FE-SEM, and electrochemical methods. Finally, a combination of Pt-Pd@PSi nanostructure and SPGE is used for the electro-oxidation of methanol in direct methanol fuel cell. The electrochemical results demonstrate that the Pt-Pd@PSiF-SPGE exhibits an excellent electrocatalytic activity for methanol oxidation. In addition, the electron transfer kinetic of methanol oxidation on Pt-Pd@PSiF-SPGE is investigated by electrochemical impedance spectroscopy. The results showed that the surface of Pt-Pd@PSiF-SPGE is not affected (poisoned) by intermediate products such as CO.

  20. Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix

    NASA Astrophysics Data System (ADS)

    Wang, Jingtao; Zhang, Han; Jiang, Zhongyi; Yang, Xinlin; Xiao, Lulu

    A series of surface functionalized silica submicrospheres by distillation-precipitation polymerization were embedded into chitosan (CS) matrix to fabricate the hybrid membranes for direct methanol fuel cell (DMFC). SEM characterization indicated that the submicrospheres could disperse homogenously within the CS matrix via tuning the polymer/particle and particle/particle interfacial interactions. The incorporation of sulfonated silica and carboxylated silica led to the reduced fractional free volume (FFV), whereas the incorporation of quaternary aminated silica resulted in increased FFV in the hybrid membranes, which was confirmed by the free volume characteristics analysis using positron annihilation lifetime spectroscopy (PALS). The correlation between methanol crossover and FFV was established: the hybrid membranes with lower FFV displayed higher methanol resistance. Meanwhile, the correlation between the proton acceptor/donor capability and proton conductivity in the hybrid membranes was established. Compared with sulfonated silica and quaternary aminated silica, carboxylated silica possessed the optimum matching in proton acceptor and donor capabilities. Therefore, the membrane embedded with carboxylated silica displayed the highest proton conductivity. In particular, embedding carboxylated silica simultaneously reduced the methanol permeability by 63% and increased the proton conductivity by 40% in comparison with pure CS membrane.

  1. A miniature class V flextensional cymbal transducer with directional beam patterns: the double-driver.

    PubMed

    Zhang, J; Hladky-Hennion, A C; Hughes, W J; Newnham, R E

    2001-03-01

    The "double-driver" cymbal, a directional class V flextensional transducer, is described in this paper. Its basic structure is a bilaminar piezoelectric disk with metal caps as mechanical transformers and amplifiers. The directivity was accomplished by exciting the double-driver in a combined flexural and bending mode causing the sound pressure to add in one direction and cancel in the opposite direction. The cardioid beam pattern predicted by finite element modeling agreed well with the experimental measurements. A 3 x 3 double-driver array was constructed to demonstrate that under optimal conditions the array can provide a directional beam pattern with a front-to-back ratio of more than 20 dB. PMID:11270634

  2. Direct photolysis of MeO-PBDEs in water and methanol: focusing on cyclization product MeO-PBDFs.

    PubMed

    Xue, Weifeng; Chen, Jingwen; Xie, Qing; Zhao, Hongxia

    2015-11-01

    Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs can transform into polybrominated dibenzofurans (PBDFs) via photocyclization. However, it is unclear whether methoxylated PBDEs (MeO-PBDEs) can photocyclize to form MeO-PBDFs. In this study, 5-MeO-BDE-47, 5'-MeO-BDE-99 and 6-MeO-BDE-85 were selected as models to investigate their direct photolysis, especially photocyclization in two solvent environments (water and methanol) using simulated photochemical experiments and density functional theory (DFT) calculations. The experimental results showed that MeO-PBDEs had faster direct photolysis reactions and higher quantum yields in methanol, and MeO-PBDFs could only be formed in a methanol solution of 5-MeO-BDE-47. The DFT results indicated that the lowest excited triplet state MeO-PBDEs can form dibenzofurans via direct cyclization pathways. Intra-annular H-elimination was found to be the rate-determining step for most cyclization pathways with high reaction barriers (⩾19.7kcal/mol), while 5-MeO-BDE-47 was found to have a distinct pathway for which the rate-determining step is ring closure with a low barrier (13.8kcal/mol) in a methanol environment. For this pathway, H-elimination assisted by Br cleaved from an ortho-C-Br bond was observed with a 2.0kcal/mol barrier. Thus, the DFT results reasonably explained the experimental findings, and the photocyclization of MeO-PBDEs depended on the specific Br-substitution patterns and specific effects of the environmental media. PMID:26298690

  3. Direct methane conversion to methanol. Final report, April 13, 1995--September 30, 1996

    SciTech Connect

    Noble, R.D.; Falconer, J.L.

    1998-01-01

    We proposed to demonstrate the effectiveness of a catalytic membrane reactor (a ceramic membrane combined with a catalyst) to selectively produce methanol by partial oxidation of methane. Methanol is used as a chemical feed stock, gasoline additive, and turbine fuel. Methane partial oxidation using a catalytic membrane reactor has been determined as one of the promising approaches for methanol synthesis from methane. Methanol synthesis and separation in one step would also make methane more valuable for producing chemicals and fuels. Another valuable fuel product is H{sub 2}. Its separation from other gasification products would make it very valuable as a chemical feedstock and clean fuel for fuel cells. Gasification of coal or other organic fuels as a source of H{sub 2} produces compounds (CO, CO{sub 2}, and H{sub 2}O) that require high temperature (1000-1500 degrees F) and high pressure (600-1000 psia) separations. A zeolite membrane layer on a mechanically stable ceramic or stainless steel support would have ideal applications for this type of separation.

  4. A new approach to tackle noise issue in miniature directional microphones: bio-inspired mechanical coupling

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Yu, Miao

    2010-04-01

    When using microphone array for sound source localization, the most fundamental step is to estimate the time difference of arrival (TDOA) between different microphones. Since TDOA is proportional to the microphone separation, the localization performance degrades with decreasing size relative to the sound wavelength. To address the size constraint of conventional directional microphones, a new approach is sought by utilizing the mechanical coupling mechanism found in the superacute ears of the parasitic fly Ormia ochracea. Previously, we have presented a novel bio-inspired directional microphone consisting of two circular clamped membranes structurally coupled by a center pivoted bridge, and demonstrated both theoretically and experimentally that the fly ear mechanism is replicable in a man-made structure. The emphasis of this article is on theoretical analysis of the thermal noise floor of the bio-inspired directional microphones. Using an equivalent two degrees-of-freedom model, the mechanical-thermal noise limit of the structurally coupled microphone is estimated and compared with those obtained for a single omni-directional microphone and a conventional microphone pair. Parametric studies are also conducted to investigate the effects of key normalized parameters on the noise floor and the signal-to-noise ratio (SNR).

  5. Investigation of nano Pt and Pt-based alloys electrocatalysts for direct methanol fuel cells and their properties

    NASA Astrophysics Data System (ADS)

    Suo, Chunguang; Zhang, Wenbin; Shi, Xinghua; Ma, Chuxia

    2014-03-01

    The electrocatalysts used in micro direct methanol fuel cell (μDMFC), such as Pt/C and Pt alloy/C, prepared by liquid-phase NaBH4 reduction method have been investigated. XC-72 (Cobalt corp. Company, U.S.A) is chosen as the activated carrier for the electrocatalysts to keep the catalysts powder in the range of several nanometers. The XRD, SEM, EDX analyses indicated that the catalysts had small particle size in several nanometers, in excellent dispersed phase and the molar ratio of the precious metals was found to be optimal. The performances of the DMFCs using cathodic catalyst with Pt percentage of 30wt% and different anodic catalysts (Pt-Ru, Pt-Ru-Mo) were tested. The polarization curves and power density curves of the cells were measured to determine the optimal alloy composition and condition for the electrocatalysts. The results showed that the micro direct methanol fuel cell with 30wt% Pt/C as the cathodic catalyst and n(Pt):n(Ru):n(Mo) = 3:2:2 PtRuMo/C as the anodic catalyst at room temperature using 2.0mol/L methanol solution has the best performances.

  6. Analysis of the electrochemical characteristics of a direct methanol fuel cell based on a Pt-Ru/C anode catalyst

    SciTech Connect

    Arico, A.S.; Creti, P.; Mantegna, R.

    1996-12-31

    This paper deals with a vapour-feed direct methanol fuel cell (DMFC) based on a Nafion 117{reg_sign} solid polymer electrolyte. Pt-Ru/C and Pt/C catalysts were employed for methanol oxidation and oxygen reduction, respectively. Structure and surface chemistry of catalysts were investigated by X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Membrane/electrode assembly (M&E) was prepared by using a {open_quotes}paste process{close_quotes} method. Electrical power densities of about 150 mW cm{sup -2} were obtained at 95{degrees} C with Pt loadings of 0.8 and 0.5 mg cm{sup -2} at anode and cathode respectively.

  7. PtRuO 2/Ti anodes with a varying Pt:Ru ratio for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Shao, Zhi-Gang; Zhu, Fuyun; Lin, Wen-Feng; Christensen, Paul A.; Zhang, Huamin

    PtRuO 2/Ti anodes with a varying Pt:Ru ratio were prepared by thermal deposition of a PtRuO 2 catalyst layer onto a Ti mesh for the direct methanol fuel cell (DMFC). The morphology and structure of the catalyst layers were analyzed by SEM, EDX, and XRD. The catalyst coating layers became porous with increase of the Ru content, and showed oxide and alloy characteristics. The relative activities of the PtRuO 2/Ti electrodes were assessed and compared using half-cell tests and single DMFC experiments. The results showed that these electrodes were very active for the methanol oxidation and that the optimum Ru surface coverage was ca. 38% for a DMFC operating at 20-60 °C.

  8. Heterogeneous catalysts for the direct, Halide-free carbonylation of methanol

    SciTech Connect

    Ellis, B.; Smith, W.J.; Howard, M.J.

    1996-12-31

    Copper containing mordenite catalysts (Cu-MOR) have been shown to be active and selective for the carbonylation of methanol under moderate conditions in the vapour phase and in the absence of any halide promoter. This paper describes the preparation, performance and in particular the characterization of this class of catalyst, comparing its performance with H-mordenite, which is also shown to be active in the carbonylation reaction. Initially both Cu-MOR and H-MOR catalyst methanol to gasoline (MTG) chemistry, but after about 6 hours on stream under typical conditions, (T = 623 K, p = 10 bar, CO: methanol ratio ca 10:1) acetic acid becomes the main product over Cu-MOR. Selectivity to acetyls (acetic acid + methyl acetate) remains at > 70% for ca 12 hours but gradually declines, giving way to the formation of dimethyl ether. H-MOR shows similar trends, but the period when MTG chemistry is observed is longer and that where acetyls are formed is shorter. Initially Cu(II) ions are distributed throughout the mordenite pore structure, but by the time activity to acetyls is observed the pore structure has largely become blocked by polymethyl benzenes, and much of the copper has become aggregated into large metal particles (d > 120 {Angstrom}). However FTIR studies using carbon monoxide as a probe molecule show that some non-zerovalent copper ions are still accessible. Structure - function relationships for these interesting materials are discussed briefly.

  9. Sulfonated poly(ether ether ketone)/clay-SO 3H hybrid proton exchange membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Fu, Tiezhu; Cui, Zhiming; Zhong, Shuangling; Shi, Yuhua; Zhao, Chengji; Zhang, Gang; Shao, Ke; Na, Hui; Xing, Wei

    A new type of sulfonated clay (clay-SO 3H) was prepared by the ion exchange method with the sulfanilic acid as the surfactant agent. The grafted amount of sulfanilic acid in clay-SO 3H was 51.8 mequiv. (100 g) -1, which was measured by thermogravimetric analysis (TGA). Sulfonated poly(ether ether ketone) (SPEEK)/clay-SO 3H hybrid membranes which composed of SPEEK and different weight contents of clay-SO 3H, were prepared by a solution casting and evaporation method. For comparison, the SPEEK/clay hybrid membranes were produced with the same method. The performances of hybrid membranes for direct methanol fuel cells (DMFCs) in terms of mechanical and thermal properties, water uptake, water retention, methanol permeability and proton conductivity were investigated. The mechanical and thermal properties of the SPEEK membranes had been improved by introduction of clay and clay-SO 3H, obviously. The water desorption coefficients of the SPEEK and hybrid membranes were studied at 80 °C. The results showed that the addition of the inorganic part into SPEEK membrane enhanced the water retention of the membrane. Both methanol permeability and proton conductivity of the hybrid membranes decreased in comparison to the pristine SPEEK membrane. However, it was worth noting that higher selectivity defined as ratio of proton conductivity to methanol permeability of the SPEEK/clay-SO 3H-1 hybrid membrane with 1 wt.% clay-SO 3H was obtained than that of the pristine SPEEK membrane. These results showed that the SPEEK/clay-SO 3H hybrid membrane with 1 wt.% clay-SO 3H had potential usage of a proton exchange membrane (PEM) for DMFCs.

  10. Studies on PVA based nanocomposite Proton Exchange Membrane for Direct methanol fuel cell (DMFC) applications

    NASA Astrophysics Data System (ADS)

    Bahavan Palani, P.; Kannan, R.; Rajashabala, S.; Rajendran, S.; Velraj, G.

    2015-02-01

    Different concentrations of Poly (vinyl alcohol)/Montmorillonite (PVA/MMT) based proton exchange membranes (PEMs) have been prepared by solution casting method. The structural and electrical properties of these composite membranes have been characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopic (FTIR) and AC impedance spectroscopic methods. The conductivity of the PEMs has been estimated for the different concentration of MMT. Water/Methanol uptake measurement were also analyzed for the prepared PEMs and presented. The proton conductivity studies were carried out at room temperature with 100% of humidity.

  11. Electrochemical Reduction of Carbon Dioxide to Methanol by Direct Injection of Electrons into Immobilized Enzymes on a Modified Electrode.

    PubMed

    Schlager, Stefanie; Dumitru, Liviu Mihai; Haberbauer, Marianne; Fuchsbauer, Anita; Neugebauer, Helmut; Hiemetsberger, Daniela; Wagner, Annika; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar

    2016-03-21

    We present results for direct bio-electrocatalytic reduction of CO2 to C1 products using electrodes with immobilized enzymes. Enzymatic reduction reactions are well known from biological systems where CO2 is selectively reduced to formate, formaldehyde, or methanol at room temperature and ambient pressure. In the past, the use of such enzymatic reductions for CO2 was limited due to the necessity of a sacrificial co-enzyme, such as nicotinamide adenine dinucleotide (NADH), to supply electrons and the hydrogen equivalent. The method reported here in this paper operates without the co-enzyme NADH by directly injecting electrons from electrodes into immobilized enzymes. We demonstrate the immobilization of formate, formaldehyde, and alcohol dehydrogenases on one-and-the-same electrode for direct CO2 reduction. Carbon felt is used as working electrode material. An alginate-silicate hybrid gel matrix is used for the immobilization of the enzymes on the electrode. Generation of methanol is observed for the six-electron reduction with Faradaic efficiencies of around 10%. This method of immobilization of enzymes on electrodes offers the opportunity for electrochemical application of enzymatic electrodes to many reactions in which a substitution of the expensive sacrificial co-enzyme NADH is desired. PMID:26890322

  12. Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Neelakandan, S.; Kanagaraj, P.; Sabarathinam, R. M.; Nagendran, A.

    2015-12-01

    Hybrid membranes based on sulfonated poly(1,4-phenylene ether ether sulfone) (SPEES)/tungstophosphoric acid (TPA) were prepared. SPEES/TPA membrane surfaces were modified with polypyrrole (Ppy) by in situ polymerization method to reduce the TPA leaching. The morphology and electrochemical property of the surface coated membranes were studied by SEM, AFM, water uptake, ion exchange capacity, proton conductivity, methanol permeability and tensile strength. The water uptake and the swelling ratio of the surface coated membranes decreased with increasing the Ppy layer. The surface roughness of the hybrid membrane was decreased with an increase in Ppy layer on the membrane surface. The methanol permeability of SPEES/TPA-Ppy4 hybrid membrane was significantly suppressed and found to be 2.1 × 10-7 cm2 s-1, which is 1.9 times lower than pristine SPEES membrane. The SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity (2.86 × 104 S cm-3 s) than the other membrane with low TPA leaching. The tensile strength of hybrid membranes was improved with the introduction of Ppy layer. Combining their lower swelling ratio, high thermal stability and selectivity, SPEES/TPA-Ppy4 membranes could be a promising material as PEM for DMFC applications.

  13. Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing

    SciTech Connect

    Brian Wells

    2008-11-30

    PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means of accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.

  14. Microspheres assembled by KMn8O16 nanorods and their catalytic oxygen reduction activity in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Yang, Xiaodong; Wang, Li; Liu, Yongning

    2014-12-01

    Microspheres assembled using cryptomelane-type KMn8O16 nanorods are synthesized via a facile template-free, single-step hydrothermal technique. The synthesized KMn8O16 generates nanorods 10-20 nm in diameter and approximately 300-1000 nm long. The rods self-assemble to form microspheres of 2-6 μm in diameters. The electron transfer number for KMn8O16 during the ORR is approximately 3.98 at 0.5 V vs. Hg/HgO, and the H2O2 percentage is 0.66%. Moreover, a direct methanol fuel cell (DMFC) is built using KMn8O16 as cathodic catalyst, PtRu/C alloy as the anodic catalyst and a polymer fiber membrane (PFM) instead of a conventional polymer electrolyte membrane (PEM). The peak power densities (43.3 mW cm-2 and 153.9 mW cm-2) have been achieved at 25 °C and 70 °C, respectively. KMn8O16 shows good electrocatalytic activity and stability during oxygen reduction in alkaline solutions and demonstrates tolerance toward methanol poisoning.

  15. Pt/Carbon Nanofiber Nanocomposites as Electrocatalysts for Direct Methanol Fuel Cells: Prominent Effects of Carbon Nanofiber Nanostructures

    SciTech Connect

    Li, Zhizhou; Cui, Xiaoli; Zhang, Xinsheng; Wang, Qingfei; Shao, Yuyan; Lin, Yuehe

    2009-04-01

    Carbon nanofibers (CNFs) with different microstructures, including platelet-CNFs (PCNFs), fish-bone-CNFs, and tube-CNFs, were synthesized, characterized and evaluated toward methanol oxidation reaction (MOR). The CNFs studied here showed several structures in which various stacked morphologies as well as the ordering of their size and graphite layers can be well controlled. Platinum nanoparticles have been electrodeposited on CNFs surfaces, and their electrocatalytic activities toward MOR have been studied by using cyclic voltammetry, chronoamperometry, and linear sweep voltammograms. Morphologies, textural properties, and the crystalline structure of the CNFs supports and catalysts have been characterized with transmission electron microscopy and scanning electron microscopy. The comparative tests conclude that Pt/PCNFs have the best electrocatalytic performance and good stability at room temperature. The high electrocatalytic activity and stability can be attributed to the specific microstructure of PCNFs, which have large numbers of edge-active carbon atoms on the surface of the CNFs as well as synergistic effects between CNFs and the platinum nanoparticles. The results suggest that PCNFs are excellent potential candidates as catalyst supports in direct methanol fuel cells.

  16. Highly active nanoporous Pt-based alloy as anode and cathode catalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoting; Jiang, Yingying; Sun, Junzhe; Jin, Chuanhong; Zhang, Zhonghua

    2014-12-01

    In this paper, we explore nanoporous PtPdAlCu (np-PtPdAlCu) quaternary alloy through ball-milling with the subsequent two-step dealloying strategy. The microstructure and catalytic performance of the np-PtPdAlCu catalyst have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. The np-PtPdAlCu catalyst exhibits an open bi-continuous interpenetrating ligament/channel structure with a length scale of 2.3 ± 0.5 nm. The np-PtPdAlCu catalyst shows 2 and 3.5 times enhancement in the mass activity and area specific activity towards methanol oxidation at anode respectively, compared to the Johnson Matthey (JM) Pt/C (40 wt.%) catalyst. Moreover, the CO stripping peak of np-PtPdAlCu is 0.49 V (vs. SCE), indicating a 180 mV negative shift in comparison with the Pt/C catalyst (0.67 V vs. SCE). In addition, the np-PtPdAlCu catalyst also shows an enhanced oxygen reduction reaction (ORR) activity at cathode compared to Pt/C. The present study provides a facile and effective route to design high-performance catalysts for direct methanol fuel cells (DMFCs).

  17. Functionalized carbon nanotube-poly(arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance

    NASA Astrophysics Data System (ADS)

    Joo, Sang Hoon; Pak, Chanho; Kim, Eun Ah; Lee, Yoon Hoi; Chang, Hyuk; Seung, Doyoung; Choi, Yeong Suk; Park, Jong-Bong; Kim, Tae Kyoung

    A new type of composite membrane, consisting of functionalized carbon nanotubes (CNTs) and sulfonated poly(arylene sulfone) (sPAS), is prepared for direct methanol fuel cell (DMFC) applications. The CNTs modified with sulfonic acid or PtRu nanopaticles are dispersed within the sPAS matrix by a solution casting method to afford SO 3CNT-sPAS or PtRu/CNT-sPAS composite membranes, respectively. Characterization of the composite membranes reveals that the functionalized CNTs are homogeneously distributed within the sPAS matrix and the composite membranes contain smaller ion clusters than the neat sPAS. The composite membranes exhibit enhanced mechanical properties in terms of tensile strength, strain and toughness, which leads to improvements in ion conductivity and methanol permeability compared with the neat sPAS membrane. In DMFC performance tests, the use of a PtRu/CNT-sPAS membrane yields high power density compared with the neat sPAS membrane, which demonstrates that the improved properties of the composite membranes induce an increase in power density. The strategy for CNT-sPAS composite membranes presented in this work can potentially be extended to other CNT-polymer composite systems.

  18. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cell Stacks

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    Dissolution of ruthenium was observed in the 80-cell stack. Duration testing was performed in single cell MEAs to determine the pathway of cell degradation. EDAX analysis on each of the single cell MEAs has shown that the Johnson Matthey commercial catalyst is stable in DMFC operation for 250 hours, no ruthenium dissolution was observed. Changes in the hydrophobicity of the cathode backing papers was minimum. Electrode polarization analysis revealed that the MEA performance loss is attributed to changes in the cathode catalyst layer. Ruthenium migration does not seem to occur during cell operation but can occur when methanol is absent from the anode compartment, the cathode compartment has access to air, and the cells in the stack are electrically connected to a load (Shunt Currents). The open-to-air cathode stack design allowed for: a) The MEAs to have continual access to oxygen; and b) The stack to sustain shunt currents. Ruthenium dissolution in a DMFC stack can be prevented by: a) Developing an internally manifolded stacks that seal reactant compartments when not in operation; b) Bringing the cell voltages to zero quickly when not in operation; and c) Limiting the total number of cells to 25 in an effort to limit shunt currents.

  19. Throw a Miniature Vase

    ERIC Educational Resources Information Center

    Sapiro, Maurice

    1977-01-01

    A direct correlation exists between the acquisition of skills on the potter's wheel and the vertical dimension of the finished pot. Ability equals height. Overlooked somewhere in the search for acquiring technical facility and a means of demonstrating it, is the fascinating world of miniature pottery. Describes the mechanics peculiar to small…

  20. All-solid-state supercapacitor using a Nafion ® polymer membrane and its hybridization with a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Won; Ahn, Hyo-Jin; Sung, Yung-Eun

    An all-solid-state supercapacitor is fabricated and optimized using a Nafion ® membrane and an ionomer. The device shows good capacitance (ca. 200 F g -1) as demonstrated by cyclic voltammograms (CVs) and charge-discharge curves. The supercapacitor exhibits a relatively stable capacitance during l0,000 cycles of operation. A hybrid system comprising a direct methanol fuel cell (DMFC) and an all-solid-state supercapacitor has been designed and tested. It is confirmed that the power discharged by the supercapacitor is transferred effectively to the DMFC. The power of the hybrid is immediately improved by 30% compared with that of a DMFC alone operating at 25 °C. The possibilities of using this system for high energy and high instantaneous power devices and integrated fabrication processes are discussed.

  1. Investigation of methanol oxidation on a highly active and stable Pt–Sn electrocatalyst supported on carbon–polyaniline composite for application in a passive direct methanol fuel cell

    SciTech Connect

    Amani, Mitra; Kazemeini, Mohammad; Hamedanian, Mahboobeh; Pahlavanzadeh, Hassan; Gharibi, Hussein

    2015-08-15

    Highlights: • PtSn/C-PANI performed superior in the MOR compared with a commercial PtRu/C. • Catalytic activity of PtRu/C was highly reduced during the accelerated durability test. • Anode of the PtSn/C-PANI in a passive DMFC lowered methanol crossover by 30%. - Abstract: Polyaniline fiber (PANI) was synthesized and utilized to fabricate a vulcan–polyaniline (C-PANI) composite. Pt/C-PANI and PtSn/C-PANI electro-catalysts with different Pt:Sn atomic ratios were prepared by the impregnation method. These electro-catalysts, along with commercial PtRu/C (Electrochem), were characterized with respect to their structural and electrochemical properties in methanol oxidation reaction (MOR). PtSn(70:30)/C-PANI showed excellent performance in MOR, the obtained maximum current density being about 40% and 50% higher than that for PtRu/C and Pt/C-PANI, respectively. It was also found that the CO tolerance and stability of PtSn(70:30)/C-PANI was considerably higher than that of PtRu/C. Finally, the performance of these two materials was compared in a passive direct methanol fuel cell (DMFC). The DMFC test results demonstrated that the membrane electrode assembly (MEA) prepared using PtSn(70:30)/C-PANI anode catalyst performed more satisfactorily in terms of maximum power density and lower methanol crossover.

  2. Miniature Earthmover

    NASA Technical Reports Server (NTRS)

    1996-01-01

    International Machinery Corporation (IMC) developed a miniature earthmover, the 1/8 scale Caterpillar D11N Track-type Tractor, with trademark product approval and manufacturing/marketing license from Caterpillar, Inc. Through Marshall Space Flight Center assistance, the company has acquired infrared remote control technology, originally developed for space exploration. The technology is necessary for exports because of varying restrictions on radio frequency in foreign countries. The Cat D11N weighs only 340 pounds and has the world's first miniature industrial internal combustion engine. The earthmover's uses include mining, construction and demolition work, and hazardous environment work. IMC also has designs of various products for military use and other Caterpillar replicas.

  3. Undoped and boron doped diamond nanoparticles as platinum and platinum-ruthenium catalyst support for direct methanol fuel cell application

    NASA Astrophysics Data System (ADS)

    La Torre Riveros, Lyda

    electron microscopy (SEM), energy dispersive analysis (EDX), infrared spectroscopy (IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), prompt gamma neutron activation analysis (PGNAA), and X-ray photoelectron spectroscopy (XPS). In order to demonstrate the utility of the catalyst obtained, the samples were tested in an electrochemical cell using methanol as a probe solution. As was performed with the undoped DNPs and BDDNPs, the ink paste method was used to prepare the electrodes with Pt/DNP, Pt-Ru/DNP, Pt/BDDNP and Pt-Ru/BDDNP catalytic systems, to perform the electrochemical experiments. The Pt and Pt-Ru modified diamond electrodes were tested with cyclic voltammetry in 0.5 M H2SO4 as electrolyte support showing hydrogen adsorption/desorption at platinum surfaces. CO gas adsorption/desorption experiments were also performed to determine the active surface area of Pt when Ru is present. Methanol oxidation current peaks were obtained when the electrodes were tested in a 1.0 M methanol/0.5 M H2SO4 solution. The experimental results demonstrated that diamond nanoparticles are useful as an electrode material. A fuel cell is a device which transforms the chemical energy of a fuel directly into electrical energy. As previously mentioned, the aim of this research is to demonstrate the utility of undoped DNPs and BDDNPs as catalytic supports, which was performed by testing the catalytic systems obtained in a single fuel cell station at different temperatures to observe the cell performance.

  4. The Methanol Economy Project

    SciTech Connect

    Olah, George; Prakash, G. K.

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  5. A review on durability issues and restoration techniques in long-term operations of direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Mehmood, Asad; Scibioh, M. Aulice; Prabhuram, Joghee; An, Myung-Gi; Ha, Heung Yong

    2015-11-01

    Direct methanol fuel cells (DMFCs) remain attractive among advanced energy conversion technologies due to their high energy density and simple system configuration. Although they made an early market entry but failed to attain a large-scale commercialization mainly because of their inferior performance sustainment in lifetime operations and high production costs. There have been lots of R&D efforts made to upgrade the long-term durability of DMFCs to a commercially acceptable standard. These rigorous efforts have been useful in gaining insights about various degradation mechanisms and their origins. This review first briefly describes the recent progress in lifetime enhancement of DMFC technology reported by various groups in academia and industry. Then, it is followed by comprehensive discussions on the major performance degradation routes and associated physico-chemical origins, and influence of operational parameters, together with the methods which have been employed to alleviate and restore the performance losses. Finally, a brief summary of the presented literature survey is provided in conjunction with some possible future research directions.

  6. Short term changes in methanol emission and pectin methylesterase activity are not directly affected by light in Lycopersicon esculentum

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Li, L.; Timko, M. P.; Mak, J. E.; Lerdau, M. T.

    2011-04-01

    Plants are an important source of atmospheric methanol (MeOH), the second most abundant organic gas after methane. Factors regulating phytogenic MeOH production are not well constrained in current MeOH emission models. Previous studies have indicated that light may have a direct influence on MeOH production. As light is known to regulate cell wall expansion, it was predicted that light would stimulate MeOH production through the pectin methylesterase (PME) pathway. MeOH emissions normalized for stomatal conductance (gs) did not, however, increase with light over short time scales (20-30 min). After experimentally controlling for gs and temperature, no light activation of PME activity or MeOH emission was observed. The results clearly demonstrate that light does not directly influence short-term changes in MeOH production and emission. Our data suggest that substrate limitation may be important in regulating MeOH production over short time scales. Future investigation of the long-term impacts of light on MeOH production may increase understanding of MeOH emission dynamics at the seasonal time scale.

  7. Short term changes in methanol emission and pectin methylesterase activity are not directly affected by light in Lycopersicon esculentum

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Li, L.; Timko, M. P.; Mak, J. E.; Lerdau, M. T.

    2011-01-01

    Plants are an important source of atmospheric methanol (MeOH), the second most abundant organic gas after methane. Factors regulating phytogenic MeOH production are not well constrained in current MeOH emission models. Previous studies have indicated that light may have a direct influence on MeOH production. As light is known to regulate cell wall expansion, it was predicted that light would stimulate MeOH production through the pectin methylesterase (PME) pathway. MeOH emissions normalized for stomatal conductance (gs) did not, however, increase with light over short time scales (20-30 min). After experimentally controlling for gs and temperature, no light activation of PME activity or MeOH emission was observed. The results clearly demonstrate that light does not directly influence short-term changes in MeOH production and emission. Our data suggest that substrate limitation may be important in regulating MeOH production over short time scales. Future investigation of the long-term impacts of light on MeOH production may increase understanding of MeOH emission dynamics at the seasonal time scale.

  8. Molecular modeling of the morphology and transport properties of two direct methanol fuel cell membranes: phenylated sulfonated poly(ether ether ketone ketone) versus Nafion

    SciTech Connect

    Devanathan, Ramaswami; Idupulapati, Nagesh B.; Dupuis, Michel

    2012-08-14

    We have used molecular dynamics simulations to examine membrane morphology and the transport of water, methanol and hydronium in phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) and Nafion membranes at 360 K for a range of hydration levels. At comparable hydration levels, the pore diameter is smaller, the sulfonate groups are more closely packed, the hydronium ions are more strongly bound to sulfonate groups, and the diffusion of water and hydronium is slower in Ph-SPEEKK relative to the corresponding properties in Nafion. The aromatic carbon backbone of Ph-SPEEKK is less hydrophobic than the fluorocarbon backbone of Nafion. Water network percolation occurs at a hydration level ({lambda}) of {approx}8 H{sub 2}O/SO{sub 3}{sup -}. At {lambda} = 20, water, methanol and hydronium diffusion coefficients were 1.4 x 10{sup -5}, 0.6 x 10{sup -5} and 0.2 x 10{sup -5} cm{sup 2}/s, respectively. The pore network in Ph-SPEEKK evolves dynamically and develops wide pores for {lambda} > 20, which leads to a jump in methanol crossover and ion transport. This study demonstrates the potential of aromatic membranes as low-cost challengers to Nafion for direct methanol fuel cell applications and the need to develop innovative strategies to combat methanol crossover at high hydration levels.

  9. Human Pulp Response to Direct Pulp Capping and Miniature Pulpotomy with MTA after Application of Topical Dexamethasone: A Randomized Clinical Trial

    PubMed Central

    Mousavi, Seyed Amir; Ghoddusi, Jamileh; Mohtasham, Nooshin; Shahnaseri, Shirin; Paymanpour, Payam; Kinoshita, Jun-Ichiro

    2016-01-01

    Introduction: The aim of this randomized clinical trial was to compare the histologic pulp tissue response to one-step direct pulp capping (DPC) and miniature pulpotomy (MP) with mineral trioxide aggregate (MTA) after application of dexamethasone in healthy human premolars. Methods and Materials: Forty intact premolars from 10 orthodontic patients, were randomly chosen for DPC (n=20) or MP (n=20). In 10 teeth from each group, after exposure of the buccal pulp horn, topical dexamethasone was applied over the pulp. In all teeth the exposed/miniaturely resected pulp tissue was covered with MTA and cavities were restored with glass ionomer. Teeth vitality was evaluated during the next 7, 21, 42, and 60 days. Signs and/or symptoms of irreversible pulpitis or pulp necrosis were considered as failure. According to the orthodontic schedule, after 60 days the teeth were extracted and submitted for histological examination. The Kruskal-Wallis and Fisher’s exact tests were used for statistical analysis of the data (P=0.05). Results: Although dexamethasone specimens showed less inflammation, calcified bridge, pulpal blood vasculature, collagen fibers and granulation tissue formation were not significantly different between the groups (P>0.05). Conclusion: Topical dexamethasone did not hindered pulp healing but reduced the amount of underlying pulpal tissue inflammation after DPC and MP in healthy human premolars. PMID:27141213

  10. A combined in-situ and post-mortem investigation on local permanent degradation in a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Bresciani, F.; Rabissi, C.; Zago, M.; Gazdzicki, P.; Schulze, M.; Guétaz, L.; Escribano, S.; Bonde, J. L.; Marchesi, R.; Casalegno, A.

    2016-02-01

    Performance degradation is one of the key issues hindering direct methanol fuel cell commercialization, caused by different mechanisms interplaying locally and resulting in both temporary and permanent contributions. This work proposes a systematic experimental investigation, coupling in-situ diagnostics (electrochemical and mass transport investigation) with ex-situ analyses of pristine, activated and aged components (X-ray photoelectron spectroscopy and transmission electron microscopy), with an in-plane and through-plane local resolution. Such a combined approach allows to identify on one hand the degradation mechanisms, the affected components and the presence of heterogeneities; on the other hand, it allows to quantify the effect of the major mechanisms on performance decay. Thanks to a novel procedure, temporary (21 μV h-1) and permanent degradation (59 μV h-1) are separated, distinguishing the latter in different contributions: the effects of active area loss at both at anode (9 μV h-1) and cathode (31 μV h-1), mass transport issue (15 μV h-1) and membrane decay (4 μV h-1). The post-mortem analysis highlights the effect of degradation mechanisms consistent with the in-situ analysis and reveals the presence of considerable in plane and through plane heterogeneities in: particle size growth in catalyst layers, Pt/Ru and polymer content in catalyst and diffusion layers, Pt/Ru precipitates in the membrane.

  11. Summary of Miniature NMR Development

    SciTech Connect

    Friedman, Gennady; Feinerman, Alan

    2000-12-31

    The effort in this project has been in 3 distinct directions: (1) First, they focused on development of miniature microfabricated micro-coil NMR detectors with maximum Signal-to-Noise (SNR) ratio. (2) Secondly, they focused on design of miniature micro-coil NMR detectors that have minimal effect on the NMR spectrum distortions. (3) Lastly they focused on the development of a permanent magnet capable of generating fields on the order of 1 Tesla with better than 10 ppm uniformity.

  12. Direct analysis of volatile organic compounds in human breath using a miniaturized cylindrical ion trap mass spectrometer with a membrane inlet.

    PubMed

    Riter, Leah S; Laughlin, Brian C; Nikolaev, Eugene; Cooks, R Graham

    2002-01-01

    Membrane introduction mass spectrometry (MIMS) coupled to a miniature mass spectrometer equipped with a cylindrical ion trap (CIT) analyzer was used to monitor the flavor components, 3-phenyl-2-propenal and methyl salicylate, found in cinnamon and wintergreen candies, respectively, directly from human breath. The poly(dimethylsiloxane) (PDMS) membrane was operated in a trap-and-release mode, where the temperature of the membrane was cycled during the experiments, which permitted temporal resolution of the two compounds of interest, facilitating their observation in the complex sample. Under these thermally driven conditions, the 10-90% rise times for both compounds are similar (15 s for methyl salicylate, 17 s for 3-phenyl-2-propenal), but the difference in diffusivity means that the signal for 3-phenyl-2-propenal is delayed and the 10% point occurs 6 s later than that for wintergreen. Additional specificity needed for complex samples was gained by using tandem mass spectrometry. PMID:12478583

  13. Miniaturizing RFID for magnamosis.

    PubMed

    Jiang, Hao; Chen, Shijie; Kish, Shad; Loh, Lokkee; Zhang, Junmin; Zhang, Xiaorong; Kwiat, Dillon; Harrison, Michael; Roy, Shuvo

    2014-01-01

    Anastomosis is a common surgical procedure using staples or sutures in an open or laparoscopic surgery. A more effective and much less invasive alternative is to apply the mechanical pressure on the tissue over a few days [1]. Since the pressure is produced by the attractive force between two permanent magnets, the procedure is called magnamosis[1]. To ensure the two magnets are perfectly aligned during the surgery, a miniaturized batteryless Radio Frequency IDentification (RFID) tag is developed to wirelessly telemeter the status of a pressure sensitive mechanical switch. Using the multi-layer circular spiral coil design, the diameter of the RFID tag is shrunk to 10, 15, 19 and 27 mm to support the magnamosis for children as well as adults. With the impedance matching network, the operating distance of these four RFID tags are longer than 10 cm in a 20 × 22 cm(2) area, even when the tag's normal direction is 45° off the antenna's normal direction. Measurement results also indicate that there is no noticeable degradation on the operating distance when the tag is immersed in saline or placed next to the rare-earth magnet. The miniaturized RFID tag presented in this paper is able to support the magnamosis and other medical applications that require the miniaturized RFID tag. PMID:25570040

  14. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    SciTech Connect

    West, B.; Green, J.B.

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  15. Comparison of Pt-based binary and ternary alloy anode catalysts for polymer electrolyte direct methanol fuel cells

    SciTech Connect

    Liu, R.; Ley, K.L.; Pu, C.

    1996-12-31

    As an anode catalyst, Pt is highly active for the adsorption and dehydrogenation of methanol, however, the surface is poisoned by CO. To oxidize CO to CO{sub 2}, a second oxygen atom is required from an adjacent adsorbed water molecule. Bifunctional alloys composed of Pt and a second metal M, able to activate H{sub 2}O (forming -OH{sub ads}) at low potentials, are candidate materials for methanol electro-oxidation catalysts A proposed mechanism is: Figure 2 shows that metals which enhance methanol oxidation activity when alloyed with Pt have similar M-O bond strengths (see bold print), suggesting that the best binary alloy catalysts have second metals that are optimized with respect to the ability to oxidatively adsorb water. and the ability to dissociate M-O bonds to yield CO{sub 2}.

  16. Office Chromatography: Precise printing of sample solutions on miniaturized thin-layer phases and utilization for scanning Direct Analysis in Real Time mass spectrometry.

    PubMed

    Häbe, Tim T; Morlock, Gertrud E

    2015-09-25

    Office Chromatography combines achievements in office technologies with miniaturized planar chromatography. In the life sciences, printing of materials became an accepted technique, whereas in separation science, the use of printers for chromatography is at its infancy. A bubble-jet printer was modified for exact application on miniaturized plates. Technical modifications included the removal of all unnecessary parts and the improvement of the positioning system, purge unit and sample supply system. Evaluation was performed via a slide scanner and image evaluation software. Printing of a food dye mixture solution (n=5) led to a calculated mean deposition volume of 13±1nL/mm(2) per print-cycle. A mean determination coefficient (R(2); n=5) of 0.9990 was obtained for application of increasing volumes, executed via increasing band widths of 50-200μm (corresponding to 2-8nL). Using larger band widths and multiple print jobs, deposition volumes of up to the microliter scale represented an alternative to cost-intensive standard equipment. After print, separation, detection and digital evaluation of five food dyes, mean R(2) (n=5) were obtained between 0.9977 and 0.9995. The accuracy of printing was proven by mean recovery rates of 101-105% with repeatabilities of 3-7% (%RSD, n=5). The transfer to nanostructured ultrathin-layer plates proved the synergetic potential of these fields of research. First, this modified printer was suited for printing of finely graduated scales of three preservatives for determination of the spatial resolution of scanning Direct Analysis in Real Time mass spectrometry. PMID:26303254

  17. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling.

    PubMed

    Cheng, Kang; Gu, Bang; Liu, Xiaoliang; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-04-01

    The direct synthesis of lower (C2 to C4) olefins, key building-block chemicals, from syngas (H2/CO), which can be derived from various nonpetroleum carbon resources, is highly attractive, but the selectivity for lower olefins is low because of the limitation of the Anderson-Schulz-Flory distribution. We report that the coupling of methanol-synthesis and methanol-to-olefins reactions with a bifunctional catalyst can realize the direct conversion of syngas to lower olefins with exceptionally high selectivity. We demonstrate that the choice of two active components and the integration manner of the components are crucial to lower olefin selectivity. The combination of a Zr-Zn binary oxide, which alone shows higher selectivity for methanol and dimethyl ether even at 673 K, and SAPO-34 with decreased acidity offers around 70% selectivity for C2-C4 olefins at about 10% CO conversion. The micro- to nanoscale proximity of the components favors the lower olefin selectivity. PMID:26961855

  18. Preparation and characterization of high performance sulfonated poly(p-phenylene-co-aryl ether ketone) membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    He, Qingyi; Zheng, Jifu; Zhang, Suobo

    2014-08-01

    A series of sulfonated poly(p-phenylene-co-aryl ether ketone)s (SPP-co-PAEK) have been designed as membrane materials for direct methanol fuel cell (DMFC) applications. The materials for such membranes have been prepared via the nickel (0) catalyzed coupling copolymerization of 2,5-dichloro-3-sulfobenzophenone and 2,6-bis(4-(4-chlorobenzoyl)phenoxy)benzonitrile. The SPP-co-PAEK membranes show the desired characteristics such as excellent thermal and mechanical properties, good oxidative stability, low methanol permeability and well-defined micro-phase separation. With an ion exchange capacity (IEC) ranging from 1.90 to 2.59 mequiv g-1, these membranes display comparable proton conductivity (0.085-0.170 S cm-1) to Nafion@117 when fully hydrated at 80 °C. In addition, the passive direct methanol fuel cell with SPP-co-PAEK CN 1.86 (IEC = 1.90 mequiv g-1) membrane presents a maximum power density of 24.5 mW cm-2 at 25 °C, which is comparable to the value of Nafion@117 (24.3 mW cm-2).

  19. Pt loaded two-dimensional TaC-nanosheet/graphene hybrid as an efficient and durable electrocatalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    He, Chunyong; Tao, Juzhou

    2016-08-01

    Poor electrocatalytic activity, insufficient operation durability and low carbon monoxide (CO) tolerance of the Pt-based catalysts are key challenges facing the direct methanol fuel cells (DMFCs) as promising electrochemical energy conversion device. We here present a new effort to catalyst designed by depositing Pt nanoparticles on two-dimensional (2D) TaC-nanosheet/graphene hybird (Pt/TaC-G) to obtain notable improvement in electrocatalytic performance over the commercial Pt/C. Experiment results from both X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) support that a strong synergetic chemical coupling interaction between the Pt nanoparticles and the 2D TaC-G significantly enhanced electrocatalytic activity for methanol oxidation reaction (MOR). This process can improve the CO tolerance as well as durability of MOR catalysts simultaneously, making it a promising general approach to design and optimize the next generation electrocatalysts in DMFCs.

  20. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    PubMed

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-01

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells. PMID:26885678

  1. Where do poly(vinyl alcohol) based membranes stand in relation to Nafion® for direct methanol fuel cell applications?

    NASA Astrophysics Data System (ADS)

    Maiti, Jatindranath; Kakati, Nitul; Lee, Seok Hee; Jee, Seung Hyun; Viswanathan, Balasubramanian; Yoon, Young Soo

    2012-10-01

    Though fuel cells have been considered as a viable energy conversion device, their adaptation for practical applications has been facing certain challenging issues regarding the availability of appropriate materials and components. For low temperature fuel cells, membranes that are cost effective and also competitive to Nafion® are the major requirements especially for Direct Methanol Fuel Cells (DMFC). Proton conductivity and methanol crossover are the two main characteristics that are of great concern for the development of suitable, alternate, and viable membranes for DMFC applications, though other factors including environmental acceptability are also important. In this regard, in recent time's poly (vinyl alcohol) based membranes have been developed as a viable alternative. This presentation therefore assesses the technological advances that have been made and the impediments that are faced in this development. This critical assessment exercise, it is presumed, may contribute toward a speedy development of this critical component for a viable fuel cell based energy economy.

  2. Effects of environmental factors on corrosion behaviors of metal-fiber porous components in a simulated direct methanol fuel cell environment

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Zhou, Bo; Tang, Yong; Zhang, Zhao-chun; Deng, Jun

    2014-09-01

    To enable the use of metallic components in direct methanol fuel cells (DMFCs), issues related to corrosion resistance must be considered because of an acid environment induced by the solid electrolyte. In this study, we report the electrochemical behaviors of metal-fiber-based porous sintered components in a simulated corrosive environment of DMFCs. Three materials were evaluated: pure copper, AISI304, and AISI316L. The environmental factors and related mechanisms affecting the corrosion behaviors were analyzed. The results demonstrated that AISI316L exhibits the best performance. A higher SO{4/2-} concentration increases the risk of material corrosion, whereas an increase in methanol concentration inhibits corrosion. The morphological features of the corroded samples were also characterized in this study.

  3. Miniature biaxial strain transducer

    NASA Technical Reports Server (NTRS)

    Hoffman, I. S. (Inventor)

    1976-01-01

    A reusable miniature strain transducer for use in the measurement of static or quasi-static, high level, biaxial strain on the surface of test specimens or structures was studied. Two cantilever arms, constructed by machining the material to appropriate flexibility, are self-aligning and constitute the transducing elements of the device. Used in conjunction with strain gages, the device enables testing beyond normal gage limits for high strains and number of load cycles. The device does not require conversion computations since the electrical output of the strain gages is directly proportional to the strain measured.

  4. Preparation and properties of crosslinked sulphonated poly(arylene ether sulphone) blend s for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Tsai, Jie-Cheng; Lin, Chien-Kung; Kuo, Jen-Feng; Chen, Chuh-Yung

    HMS-based sulphonated poly(arylene ether sulphone) (HMSSH) is synthesised using 4,4‧-dihydroxy-α-methylstilbene (HMS) monomer to introduce an interesting stilbene core as crosslinkable group. Crosslinked blend membranes are obtained by blending the BPA-based sulphonated poly(arylene ether sulphone) (BPASH) with crosslinkable HMS-based sulphonated poly(arylene ether sulphone) by UV irradiation of the blend membrane. Compared to the native BPASH with crosslinked BPASH/HMSSH blend membranes, the crosslinked blend membranes greatly reduce the water uptake and methanol permeability with only a slight reduction in proton conductivity. The crosslinked blend membrane, which has a 6% HMSSH content, has a water uptake of 59%, methanol permeability of 0.75 × 10 -6 cm 2 s -1, and proton conductivity of 0.08 S cm -1. A membrane-electrode assembly is used to investigate single-cell performance and durability test for DMFC applications. Both the power density and open circuit voltage are higher than those of Nafion ® 117. A maximum power density of 32 mW cm -2 at 0.2 V is obtained at 80 °C, which is higher than that of Nafion ® 117 (25 mW cm -2).

  5. Transient and steady-state analysis of catalyst poisoning and mixed potential formation in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Gerteisen, Dietmar

    The present dynamic model is developed to investigate the coupled reaction mechanisms in a DMFC and therein associated voltage losses in the catalyst layers. The model describes a complete five-layer membrane electrode assembly (MEA), with gas diffusion layers, catalyst layers and membrane. The analysis of the performance losses are mainly focused on the electrochemical processes. The model accounts for the crossover of both, methanol from anode to cathode and oxygen from cathode to anode. The reactant crossover results in parasitic internal currents that are finally responsible for high overpotentials in both electrodes, so-called mixed potentials. A simplified and general reaction mechanism for the methanol oxidation reaction (MOR) was selected, that accounts for the coverage of active sites by intermediate species occurring during the MOR. The simulation of the anode potential relaxation after current interruption shows an undershoot behavior like it was measured in the experiment [1]. The model gives an explanation of this phenomenon by the transients of reactant crossover in combination with the change of CO and OH coverages on Pt and Ru, respectively.

  6. Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation.

    PubMed

    Qian, Lei; Gu, Li; Yang, Li; Yuan, Hongyan; Xiao, Dan

    2013-08-21

    In this report, NiCo2O4 nanostructures with different morphologies were directly grown on conductive substrates (stainless steel and ITO) by a facile electrodeposition method in addition to a post-annealing process. The morphology changes on different conductive substrates are discussed in detail. The NiCo2O4 on stainless steel (SS) had a high surface area (119 m(2) g(-1)) and was successfully used in the electrocatalytic oxidation of methanol. The electrocatalytic performance was investigated by cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS) measurements. Impressively, the NiCo2O4 showed much higher electrocatalytic activity, lower overpotential and greater stability compared to that of only NiO or Co3O4 synthesized by the same method. The higher electrocatalytic activity is due to the high electron conductivity, large surface area of NiCo2O4 and the fast ion/electron transport in the electrode and at the electrolyte-electrode interface. This is important for further development of high performance non-platinum electrocatalysts for application in direct methanol fuel cells. PMID:23828628

  7. NiO/CeO2-ZnO nano-catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide.

    PubMed

    Kang, Ki Hyuk; Lee, Chang Hoon; Kim, Dong Baek; Jang, Boknam; Song, In Kyu

    2014-11-01

    XNiO/CeO2(0.7)-ZnO(0.3) (X = 0, 1, 5, 10, and 15) nano-catalysts were prepared by a wet impregnation method with a variation of NiO content (X, wt%). The prepared catalysts were then applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Successful formation of XNiO/CeO2(0.7)-ZnO(0.3) nano-catalysts was confirmed by XRD and ICP-AES analyses. Acidity and basicity of XNiO/CeO2-ZnO were measured by NH3-TPD (temperature-programmed desorption) and CO2-TPD experiments, respectively, with an aim of elucidating the effect of acidity and basicity of the catalysts on the catalytic performance in the reaction. It was revealed that the catalytic activity of XNiO/CeO2(0.7)-ZnO(0.3) was closely related to both acidity and basicity of the catalysts. The amount of dimethyl carbonate produced over XNiO/CeO2(0.7)-ZnO(0.3) increased with increasing acidity and basicity of the catalysts. Thus, both acidity and basicity of the catalysts played important roles in determining the catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. PMID:25958586

  8. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over CeO2(X)-ZnO(1-X) nano-catalysts.

    PubMed

    Kang, Ki Hyuk; Joe, Wangrae; Lee, Chang Hoon; Kim, Mieock; Kim, Dong Baek; Jang, Boknam; Song, In Kyu

    2013-12-01

    CeO2(X)-ZnO(1-X) (X = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0) nano-catalysts were prepared by a co-precipitation method with a variation of CeO2 content (X, mol%), and they were applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Successful formation of CeO2(X)-ZnO(1-X) nano-catalysts was well confirmed by XRD analysis. The amount of DMC produced over CeO2(X)-ZnO(1-X) catalysts exhibited a volcano-shaped curve with respect to CeO2 content. Acidity and basicity of CeO2(X)-ZnO(1-X) nano-catalysts were measured by NH3-TPD and CO2-TPD experiments, respectively, to elucidate the effect of acidity and basicity on the catalytic performance in the reaction. It was revealed that the catalytic performance of CeO2(X)-ZnO(1-X) nano-catalysts was closely related to the acidity and basicity of the catalysts. Amount of dimethyl carbonate increased with increasing both acidity and basicity of the catalysts. Among the catalysts tested, CeO2(0.7)-ZnO(0.3) with the largest acidity and basicity showed the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. PMID:24266202

  9. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    PubMed

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis. PMID:27467199

  10. Activity and stability studies of titanates and titanate-carbon nanotubes supported Ag anode catalysts for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Mokhtar; Khairy, M.; Eid, Salah

    2016-02-01

    Titanate-SWCNT; synthesized via exploiting the interaction between TiO2 anatase with oxygen functionalized SWCNT, supported Ag nanoparticles and Ag/titanate are characterized using XRD, TEM-EDX-SAED, N2 adsorption, Photoluminescence, Raman and FTIR spectroscopy. These samples are tested for methanol electrooxidation via using cyclic voltammetry (CV) and impedance measurements. It is shown that Ag/titanate nanotubes exhibited superior electrocatalytic performance for methanol oxidation (4.2 mA cm-2) than titanate-SWCNT, Ag/titanate-SWCNT and titanate. This study reveals the existence of a strong metal-support interaction in Ag/titanate as explored via formation of Ti-O-Ag bond at 896 cm-1 and increasing surface area and pore volume (103 m2 g-1, 0.21 cm3 g-1) compared to Ag/titanate-SWCNT (71 m2 g-1, 0.175 cm3 g-1) that suffers perturbation and defects following incorporation of SWCNT and Ag. Embedding Ag preferably in SWCNT rather than titanate in Ag/titanate-SWCNT disturbs the electron transfer compared to Ag/titanate. Charge transfer resistance depicted from Nyquist impedance plots is found in the order of titanate > Ag/titanate-SWCNT > titanate-SWCNT > Ag/titanate. Accordingly, Ag/titanate indicates a slower current degradation over time compared to rest of catalysts. Conductivity measurements indicate that it follows the order Ag/titanate > Ag/titanate-SWCNT > titanate > titanate-SWCNT declaring that SWCNT affects seriously the conductivity of Ag(titanate) due to perturbations caused in titanate and sinking of electrons committed by Ago through SWCNT.

  11. Sn-doped TiO2 modified carbon to support Pt anode catalysts for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Yabei; Liu, Chuntao; Liu, Yanying; Feng, Bo; Li, Li; Pan, Hengyu; Kellogg, Williams; Higgins, Drew; Wu, Gang

    2015-07-01

    Catalyst supports are known to play important role in governing overall catalyst activity and durability. Here, a new type of SnO2-TiO2 solid solution (TixSn1-xO2) support was prepared via a solvothermal method with substitution of Ti4+ by Sn4+ in the TiO2 lattice. Furthermore, the TixSn1-xO2 was combined with conventional carbon black (Vulcan XC-72) to prepare a hybrid support (TixSn1-xO2-C) for depositing Pt nanoparticles. The ratios of Sn vs. Ti in the solid-solution and TixSn1-xO2vs. XC-72 were systematically optimized in terms of their performance as supports for methanol oxidation. Compared to Pt/TiO2-C and commercial Pt/C catalysts, the best performing Pt/Ti0.9Sn0.1O2-C catalyst exhibited the highest activity, evidenced by methanol oxidation and CO stripping experiments. The well-dispersed Pt nanoparticles (2-3 nm) are mostly deposited on the boundaries of Ti0.9Sn0.1O2 and carbon blacks. Formation of the special triple junction structure can play an important role in improving Pt utilization with increased electrochemical active surface areas (ESA) of Pt. In addition, the enhanced activity for Pt supported on Ti0.9Sn0.1O2-C is due to high content of OH group on Ti0.9Sn0.1O2 along with the strengthened metal-supports interactions. Both promote the oxidation of poisoning CO absorbed on Pt active sites.

  12. Miniature drag force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1977-01-01

    A miniature drag force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilevered beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like that of a second order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.

  13. High performance anode based on a partially fluorinated sulfonated polyether for direct methanol fuel cells operating at 130 °C

    NASA Astrophysics Data System (ADS)

    Mack, Florian; Gogel, Viktor; Jörissen, Ludwig; Kerres, Jochen

    2014-06-01

    Due to the disadvantages of the Nafion polymer for the application in the direct methanol fuel cell (DMFC) especial at temperatures above 100 °C several polymers of the hydrocarbon type have already been investigated as membranes and ionomers in the DMFC. Among them were nonfluorinated and partially fluorinated arylene main-chain hydrocarbon polymers. In previous work, sulfonated polysulfone (sPSU) has been applied as the proton-conductive binder in the anode of a DMFC, ending up in good and stable performance. In continuation of this work, in the study presented here a polymer was prepared by polycondensation of decafluorobiphenyl and bisphenol AF. The formed polymer was sulfonated after polycondensation by oleum and the obtained partially fluorinated sulfonated polyether (SFS) was used as the binder and proton conductor in a DMFC anode operating at a temperature of 130 °C. The SFS based anode with 5% as ionomer showed comparable performance for the methanol oxidation to Nafion based anodes and significant reduced performance degradation versus Nafion and sPSU based anodes on the Nafion 115 membrane. Membrane electrode assemblies (MEAs) with the SFS based anode showed drastically improved performance compared to MEAs with Nafion based anodes during operation with lower air pressure at the cathode.

  14. Characterisation of zirconium and titanium phosphates and direct methanol fuel cell (DMFC) performance of functionally graded Nafion(R) composite membranes prepared out of them

    NASA Astrophysics Data System (ADS)

    Bauer, F.; Willert-Porada, M.

    Pure layered phosphates of varying crystalline phases and crystallinity and composites of gradient layers of zirconium phosphate in Nafion 117-membranes have been prepared. The proton conductivity and, in case of the composites, also the dynamic mechanical properties of these materials were measured under different conditions of temperature and humidity. Membrane-electrode assemblies with low platinum catalyst loading of 0.4 mg cm -2 Pt at the cathode and 1.9 mg cm -2 Pt-Ru at the anode were examined in a direct methanol fuel cell (DMFC) at medium temperatures (130 °C). The conductivity of the layered zirconium phosphates is superior to the titanium phosphates and increases with decreasing crystallite size. The electrical performance of the composites in a DMFC-environment is slightly decreased as compared to the unmodified membrane but taking the reduced methanol crossover into account, higher efficiencies can be reached with the zirconium phosphate modified membrane. Furthermore, the mechanical properties are significantly improved by the presence of the inorganic compound.

  15. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell.

    PubMed

    Huang, Junchao; Liu, Zhaolin; He, Chaobin; Gan, Leong Ming

    2005-09-01

    Nanosized Pt, PtRu, and Ru particles were prepared by a novel process, the hydrosilylation reaction. The hydrosilylation reaction is an effective method of preparation not only for Pt particles but also for other metal colloids, such as Ru. Vulcan XC-72 was selected as catalyst support for Pt, PtRu, and Ru colloids, and TEM investigations showed nanoscale particles and narrow size distribution for both supported and unsupported metals. All Pt and Pt-rich catalysts showed the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Ru and Ru-rich alloys were more typical of a hexagonal close-packed (hcp) structure. As evidenced by XPS, most Pt and Ru atoms in the nanoparticles were zerovalent, except a trace of oxidation-state metals. The electrooxidation of liquid methanol on these catalysts was investigated at room temperature by cyclic voltammetry and chronoamperometry. The results concluded that some alloy catalysts showed higher catalytic activities and better CO tolerance than the Pt-only catalyst; Pt56Ru44/C have displayed the best electrocatalytic performance among all carbon-supported catalysts. PMID:16853117

  16. Lamellar crystals as proton conductors to enhance the performance of proton exchange membrane for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Zhao, Yuning; Jiang, Zhongyi; Xiao, Lulu; Xu, Tao; Wu, Hong

    2011-08-01

    Zirconium glyphosate (ZrG) is a solid proton conductor with layered crystal structure. The inorganic veneer sheets of ZrG are covalently intercalated by glyphosate molecules with carboxylic acid end groups (-COOH). The existence of abundant -COOH groups both inside and on the surface of ZrG provides additional proton-conducting channels facilitating the proton conduction through and around the inorganic crystals. ZrG is incorporated into the sulfonated polyether ether ketone (SPEEK) matrices to prepare proton-conducting hybrid membranes. The conductivity of the hybrid membranes is higher than the pristine SPEEK membrane, and increases with increasing ZrG content. Furthermore, the enhancement of the proton conductivity is more obvious at elevated temperatures. At 25 °C, the proton conductivity of the hybrid membrane with 16 wt% ZrG is 1.4 times higher than that of the pristine membrane. When the temperature increases to 55 °C, the conductivity of the hybrid membrane with 8 wt% ZrG is more than twice that of the pristine SPEEK membrane. The prolonged and tortuous pathways originated from the incorporation of inorganic crystals lead to reduced methanol permeability. The selectivity of the hybrid membrane is increased by as much as 72% compared to the pristine SPEEK membrane.

  17. Multiple Miniature Avionic Displays

    NASA Technical Reports Server (NTRS)

    Rye, Jeffrey M. (Inventor); Dorneich, Michael C. (Inventor); Gannon, Aaron J. (Inventor)

    2008-01-01

    A display screen for displaying multiple sets of information is provided. In one embodiment, an aviation display screen includes a main window and a plurality of miniature windows. The main window is adapted to illustrate one set of information. Each miniature window is adapted to display a set of avionic information. The avionic display is further adapted to toggle a select set of avionic information in one of the miniature windows into the main window.

  18. Miniature propulsion systems

    NASA Astrophysics Data System (ADS)

    Campbell, John G.

    1992-07-01

    Miniature solenoid valves, check valves and a hydrazine gas generator typify the miniaturization used in the liquid propulsion system for the Army Light Weight Exo-Atmospheric Projectile (LEAP). The pressure control subsystem uses a solenoid valve weighing 24 grams to control flow of helium to pressurize the propellant tanks. The attitude control subsystem uses a gas generator weighing 71 grams to produce decomposed hydrazine as the gaseous propellant for miniature 1 lbf ACS thrusters weighing 5.4 grams. The successful use of these miniature components in development tests and a hover test of the LEAP is described.

  19. New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Branco, Carolina Musse; Sharma, Surbhi; de Camargo Forte, Maria Madalena; Steinberger-Wilckens, Robert

    2016-06-01

    This review analyses the current and existing literature on novel composite and multilayer membranes for Polymer Electrolyte Fuel Cell applications, including intermediate temperature polymer electrolyte fuel cell (IT-PEFC) and direct methanol fuel cell (DMFC) systems. It provides a concise scrutiny of the vast body of literature available on organic and inorganic filler based polymer membranes and links it to the new emerging trend towards novel combinations of multilayered polymer membranes for applications in DMFC and IT-PEFC. The paper carefully explores the advantages and disadvantages of the most common preparation techniques reported for multilayered membranes such as hot-pressing, casting and dip-coating and also summarises various other fresh and unique techniques employed for multilayer membrane preparation.

  20. The use of a dynamic hydrogen electrode as an electrochemical tool to evaluate plasma activated carbon as electrocatalyst support for direct methanol fuel cell

    SciTech Connect

    Carmo, Marcelo Roepke, Thorsten; Scheiba, Frieder; Roth, Christina; Moeller, Stephan; Fuess, Hartmut; Poco, Joao G.R.; Linardi, Marcelo

    2009-01-08

    The objectives of this study were to functionalize the carbon black surface by chemically introducing oxygenated groups using plasma technology. This should enable a better interaction of the carbon support with the metallic catalyst nanoparticles, hindering posterior support particle agglomeration and preventing loss of active surface. PtRu/C nanoparticles were anchored on the carbon supports by the impregnation method and direct reduction with hydrazine. Physical characterization of the materials was carried out using energy dispersive X-ray analysis and transmission electron microscopy. The screen printing technique was used to produce membrane electrode assemblies for single cell tests in methanol/air (DMFC). Tests were carried out using the dynamic hydrogen electrode as an electrochemical tool to evaluate the anode and cathode behavior separately.

  1. Reduction of carbon dioxide gas formation at the anode of a direct methanol fuel cell using chemically enhanced solubility

    NASA Astrophysics Data System (ADS)

    Lundin, Michael D.; McCready, Mark J.

    The production of CO 2 gas at the DMFC anode leads to dramatic increases in pumping power requirements and reduced power output because of mass transfer limitations as bubble trains form in the channels of larger stacks. Experimental observations taken in a 5 cm 2 DMFC test cell operated at 60 °C, 1 atm, and with a methanol/water fuel flow rates of 5-10 cm 3 min -1 indicate that the rate of bubble formation can be reduced by increasing the fuel flow because more liquid is available for the CO 2 to dissolve in. Further observations indicate that KOH and LiOH added to the fuel eliminates CO 2 gas formation in situ at low concentrations because of the greatly increased solubility that results. A mathematical model for the volumetric rate of CO 2 gas production that includes effects of temperature and solubility is developed and extended to include the effects of hydroxide ions in solution. The model is used to predict the onset location of gas formation in the flow field as well as the void fraction at any point in the flow field. Predictions from the model agree very well with our experiments. Model predictions explain differences in the initial location of bubble formation for fuel solutions pre-saturated with CO 2 as opposed to CO 2-free solutions. Experiments with KOH and LiOH added to fuel solutions confirm the validity of the model extension that includes solubility that is enhanced by chemical reaction. Experiments with LiOH, KOH, and ammonium hydroxide show that the long-term durability of standard Pt-Ru/Nafion ®/Pt membrane electrode assemblies is compromised because of the presence of lithium, potassium, and ammonium cations that interact with the Nafion ® membrane and result in increasing the ohmic limitations of the polymer electrolyte membrane. Experiments with Ca(OH) 2, while reducing gas formation, precipitate the product CaCO 3 out of solution too rapidly for downstream filtering, blocking channels in the flow field.

  2. Investigating the direct and indirect influences of light on short-term changes in methanol production and emission in Lycopersicon esculentum

    NASA Astrophysics Data System (ADS)

    Oikawa, P.; Li, L.; Timko, M.; Mak, J. E.; Lerdau, M.

    2010-12-01

    Plant-produced methanol (MeOH) is the largest source of MeOH to the atmosphere where it is the second most abundant organic gas after methane. Current MeOH emission models are limited by their inability to predict changes in MeOH production in plants, a process still not well understood. Previous modeling studies indicated that light may have a direct influence on phytogenic MeOH production. As light is known to regulate cell wall expansion, we predicted light to stimulate MeOH production through the pectin methylesterase (PME) pathway. After normalizing MeOH emissions for stomatal conductance, we were unable to detect a MeOH emission response to light over short time scales (20-30min). After experimentally controlling for stomatal conductance and temperature, no light activation of PME activity or MeOH emission was observed. Our results clearly demonstrate the lack of a direct influence of light on short-term changes in MeOH production and emission. Future investigation of the long-term impacts of light on MeOH production is needed as light history may be an important factor for predicting MeOH emission over diurnal and seasonal time scales.

  3. Development of tunable miniature piezoelectric-based scanners validated by the combination of two scanners in a direct image relay technique

    NASA Astrophysics Data System (ADS)

    Shadfan, Adam Harbi; Pawlowski, Michal Emanuel; Tkaczyk, Tomasz S.

    2016-01-01

    Miniature piezoelectric actuators are commonly used as a compact means to relay images for numerous endoscopic applications. These scanners normally consist of an electrically driven lead zirconate titanate (PZT) tube that oscillates an optical fiber at its resonant frequency. The diameter and length of the PZT and fiber, the attachment of the fiber to the PZT, as well as the driving signal determine the main characteristics of the scan-frequency and amplitude of vibration. We present a new, robust, and repeatable method for producing miniature PZT actuators. The described technology allows for continuous tuning of the scanner mechanical properties during the assembly stage, enabling adjustment of resonant frequency and subsequent amplitude of vibration without a priori knowledge of the fiber's mechanical properties. The method consists of manufacturing high-precision fiber-holding plastic inserts with diamond turning lathes that allow for the fiber length to be quickly varied and locked during operation in order to meet the preferred performance. This concept of tuned PZTs was demonstrated with an imaging technique that combined two scanners oscillating in unison at the ends of a single optical fiber to relay images without the need to correlate the driving signal with a detector.

  4. Miniature oxygen resuscitator

    NASA Technical Reports Server (NTRS)

    Johnson, G.; Teegen, J. T.; Waddell, H.

    1969-01-01

    Miniature, portable resuscitation system is used during evacuation of patients to medical facilities. A carrying case contains a modified resuscitator head, cylinder of oxygen, two-stage oxygen regulator, low pressure tube, and a mask for mouth and nose.

  5. Reflections on Miniature Golf.

    ERIC Educational Resources Information Center

    Powell, Nancy Norem; And Others

    1994-01-01

    Describes a transformational geometry project in which groups of students explore symmetry, reflections, translations, rotations, and dilations to design and create one hole of miniature golf large enough to play on. Includes unit plan for transformational geometry. (MKR)

  6. Miniature TV Camera

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Originally devised to observe Saturn stage separation during Apollo flights, Marshall Space Flight Center's Miniature Television Camera, measuring only 4 x 3 x 1 1/2 inches, quickly made its way to the commercial telecommunications market.

  7. Method of steam reforming methanol to hydrogen

    DOEpatents

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  8. Handheld interface for miniature sensors

    NASA Astrophysics Data System (ADS)

    Kedia, Sunny; Samson, Scott A.; Farmer, Andrew; Smith, Matthew C.; Fries, David; Bhansali, Shekhar

    2005-02-01

    Miniaturization of laboratory sensors has been enabled by continued evolution of technology. Field portable systems are often desired, because they reduce sample handling, provide rapid feedback capability, and enhance convenience. Fieldable sensor systems should include a method for initiating the analysis, storing and displaying the results, while consuming minimal power and being compact and portable. Low cost will allow widespread usage of these systems. In this paper, we discuss a reconfigurable Personal Data Assistant (PDA) based control and data collection system for use with miniature sensors. The system is based on the Handspring visor PDA and a custom designed motherboard, which connects directly to the PDA microprocessor. The PDA provides a convenient and low cost graphical user interface, moderate processing capability, and integrated battery power. The low power motherboard provides the voltage levels, data collection, and input/output (I/O) capabilities required by many MEMS and miniature sensors. These capabilities are relayed to connectors, where an application specific daughterboard is attached. In this paper, two applications are demonstrated. First, a handheld nucleic acid sequence-based amplification (NASBA) detection sensor consisting of a heated and optical fluorescence detection system is discussed. Second, an electrostatically actuated MEMS micro mirror controller is realized.

  9. Effect of the nanosized TiO2 particles in Pd/C catalysts as cathode materials in direct methanol fuel cells.

    PubMed

    Choi, Mahnsoo; Han, Choonsoo; Kim, In-Tae; Lee, Ji-Jung; Lee, Hong-Ki; Shim, Joongpyo

    2011-07-01

    Pd-TiO2/C catalysts were prepared by impregnating titanium dioxide (TiO2) on carbon-supported Pd (Pd/C) for use as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells (DMFCs). Transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were carried to confirm the distribution, morphology and structure of Pd and TiO2 on the carbon support. In fuel cell test, we confirmed that the addition of TiO2 nanoparticles make the improved catalytic activity of oxygen reduction. The electrochemical characterization of the Pd-TiO2/C catalyst for the ORR was carried out by cyclic voltammetry (CV) in the voltage window of 0.04 V to 1.2 V with scan rate of 25 mV/s. With the increase in the crystallite size of TiO2, the peak potential for OH(ads) desorption on the surface of Pd particle shifted to higher potential. This implies that TiO2 might affect the adsorption and desorption of oxygen molecules on Pd catalyst. The performance of Pd-TiO2/C as a cathode material was found to be similar to or better performance than that of Pt/C. PMID:22121727

  10. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1981-01-01

    A miniature drag-force anemometer is described which is capable of measuring unsteady as well as steady-state velocity head and flow direction. It consists of a cantilevered beam with strain gages located at the base of the beam as the force measuring element. The dynamics of the beam are like those of a lightly damped second-order system with a natural frequency as high as 40 kilohertz depending on beam geometry and material. The anemometer can be used in both forward and reversed flow. Anemometer characteristics and several designs are presented along with discussions of several applications.

  11. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1981-01-01

    A miniature drag force anemometer is described which is capable of measuring unsteady as well as steady state velocity head and flow direction. It consists of a cantilevered beam with strain gages located at the base of the beam as the force measuring element. The dynamics of the beam are like those of lightly damped second order system with a natural frequency as high as 40 kilohertz depending on beam geometry and material. The anemometer is used in both forward and reversed flow. Anemometer characteristics and several designs are presented along with discussions of several applications.

  12. Miniature spinning as a fiber quality assessment tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Miniature spinning has long been used to assess cotton varieties in a timely manner. It has been an accepted fact that the quality of miniature spinning is less than optimal, but that it allows a direct comparison between cottons during varietal studies. Recently, researchers have made processing ...

  13. Miniaturized handheld hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Wu, Huawen; Haibach, Frederick G.; Bergles, Eric; Qian, Jack; Zhang, Charlie; Yang, William

    2014-05-01

    A miniaturized hyperspectral imager is enabled with image sensor integrated with dispersing elements in a very compact form factor, removing the need for expensive, moving, bulky and complex optics that have been used in conventional hyperspectral imagers for decades. The result is a handheld spectral imager that can be installed on miniature UAV drones or conveyor belts in production lines. Eventually, small handhelds can be adapted for use in outpatient medical clinics for point-of-care diagnostics and other in-field applications.

  14. A spin-orbit coupling study on the spin inversion processes in the direct methane-to-methanol conversion by FeO+

    NASA Astrophysics Data System (ADS)

    Shiota, Yoshihito; Yoshizawa, Kazunari

    2003-04-01

    Possible spin inversion processes in the direct conversion of methane to methanol by the bare FeO+ complex are discussed by means of spin-orbit coupling (SOC) calculations. This reaction proceeds via two transition states (TSs) in the following way; FeO++CH4→FeO+(CH4)→[TS1]→HO-Fe+-CH3→[TS2]→Fe+(CH3OH)→Fe++CH3OH. B3LYP density functional theory calculations show that the potential energies in the quartet and sextet states lie close and involve three crossing seams that can provide a chance of spin-forbidden transition. The spin-forbidden transition leads to a significant decrease in the barrier heights of TS1 and TS2 that correspond to the hydrogen atom abstraction and the methyl shift, respectively. To evaluate the spin-forbidden transition in the reaction pathway, the SOC matrix elements are calculated along the intrinsic reaction coordinate of the reaction. The SOC analysis along the IRC is useful to look at how the FeO+/CH4 reacting system changes its spin multiplicity between the sextet and quartet surfaces. The strength of the SOC between the low-lying quartet state and the sextet state is 133.6 cm-1 in the reactant complex FeO+(CH4), 21.4 cm-1 in the hydroxo intermediate HO-Fe+-CH3, and 0.3 cm-1 in the product complex Fe+(CH3OH). Since the SOC value decreases along the oxidation process, the ease of spin inversion probability is the first crossing seam, the second crossing seam, and the third crossing seam, in this order.

  15. Rapid starting methanol reactor system

    DOEpatents

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  16. Miniature Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Sixsmith, Herbert

    1989-01-01

    Miniature turbocompressor designed for reliability and long life. Cryogenic system includes compressor, turboexpander, and heat exchanger provides 5 W of refrigeration at 70 K from 150 W input power. Design speed of machine 510,000 rpm. Compressor has gas-lubricated journal bearings and magnetic thrust bearing. When compressor runs no bearing contact and no wear.

  17. Evaluation of different dielectric barrier discharge plasma configurations as an alternative technology for green C1 chemistry in the carbon dioxide reforming of methane and the direct decomposition of methanol.

    PubMed

    Rico, Víctor J; Hueso, José L; Cotrino, José; González-Elipe, Agustín R

    2010-03-25

    Carbon dioxide reforming of methane and direct decomposition of methanol have been investigated using dielectric barrier discharges (DBD) at atmospheric pressure and reduced working temperatures. Two different plasma reactor configurations are compared and special attention is paid to the influence of the surface roughness of the electrodes on the conversion yields in the first plasma device. The influence of different filling gap dielectric materials (i.e., Al(2)O(3) or BaTiO(3)) in the second packed configuration has been also evaluated. Depending on the experimental conditions of applied voltage, residence time of reactants, feed ratios, or reactor configuration, different conversion yields are achieved ranging from 20 to 80% in the case of methane and 7-45% for the carbon dioxide. The direct decomposition of methanol reaches 60-100% under similar experimental conditions. Interestingly, the selectivity toward the production of hydrogen and carbon monoxide is kept almost constant under all the experimental conditions, and the formation of longer hydrocarbon chains or coke as a byproduct is not detected. The maximum efficiency yields are observed for the packed-bed reactor configuration containing alumina for both reaction processes (approximately 1 mol H(2) per kilowatt hour for dry reforming of methane and approximately 4.5 mol H(2) per kilowatt hour for direct decomposition of methanol). PMID:20184329

  18. Methanol poisoning

    MedlinePlus

    ... with has an exposure, call your local emergency number (such as 911), or your local poison center can be reached directly by calling the national toll-free Poison Help hotline (1-800-222-1222) from anywhere in the United States.

  19. A novel inorganic/organic composite membrane tailored by various organic silane coupling agents for use in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Tao; Yang, Yong

    A series of organic silica/Nafion composite membranes has been prepared by using organic silane coupling agents (SCA) bearing different hydrophilic functional groups. The physico-chemical properties of the composite membranes have been characterized by electrochemical techniques, scanning electron microscopy (SEM), diffuse-reflection Fourier-transform infrared spectroscopy (DRFTIR), wide-angle X-ray diffraction (WAXRD), thermogravimetric analysis (TGA), and thermogravimetric mass spectrometry (TG-MS). It has been found that some organic silica/Nafion composite membranes modified by organic silane agents bearing amino groups exhibit extremely low methanol crossover and proton conductivity values, e.g., a composite membrane shows a proton conductivity that is about five orders of magnitude lower and a methanol permeability that is about three orders of magnitude lower than those of a Nafion117 membrane. However, under optimized conditions for controlling the basicity of the amino groups, we also obtained a composite membrane with 89% lower methanol permeability and 49% lower proton conductivity compared with Nafion117 membrane. The results clearly demonstrate that the diffusion of methanol and protons through the membrane can be controlled by adjusting the functional groups on the organic silica.

  20. Miniature multimode monolithic flextensional transducers.

    PubMed

    Hladky-Hennion, Anne-Christine; Uzgur, A Erman; Markley, Douglas C; Safari, Ahmad; Cochran, Joe K; Newnham, Robert E

    2007-10-01

    Traditional flextensional transducers classified in seven groups based on their designs have been used extensively in 1-100 kHz range for mine hunting, fish finding, oil explorations, and biomedical applications. In this study, a new family of small, low cost underwater, and biomedical transducers has been developed. After the fabrication of transducers, finite-elements analysis (FEA) was used extensively in order to optimize these miniature versions of high-power, low-frequency flextensional transducer designs to achieve broad bandwidth for both transmitting and receiving, engineered vibration modes, and optimized acoustic directivity patterns. Transducer topologies with various shapes, cross sections, and symmetries can be fabricated through high-volume, low-cost ceramic and metal extrusion processes. Miniaturized transducers posses resonance frequencies in the range of above 1 MHz to below 10 kHz. Symmetry and design of the transducer, polling patterns, driving and receiving electrode geometries, and driving conditions have a strong effect on the vibration modes, resonance frequencies, and radiation patterns. This paper is devoted to small, multimode flextensional transducers with active shells, which combine the advantages of small size and low-cost manufacturing with control of the shape of the acoustic radiation/receive pattern. The performance of the transducers is emphasized. PMID:18019236

  1. Miniaturization in Biocatalysis

    PubMed Central

    Fernandes, Pedro

    2010-01-01

    The use of biocatalysts for the production of both consumer goods and building blocks for chemical synthesis is consistently gaining relevance. A significant contribution for recent advances towards further implementation of enzymes and whole cells is related to the developments in miniature reactor technology and insights into flow behavior. Due to the high level of parallelization and reduced requirements of chemicals, intensive screening of biocatalysts and process variables has become more feasible and reproducibility of the bioconversion processes has been substantially improved. The present work aims to provide an overview of the applications of miniaturized reactors in bioconversion processes, considering multi-well plates and microfluidic devices, update information on the engineering characterization of the hardware used, and present perspective developments in this area of research. PMID:20479988

  2. Miniaturized Environmental Monitoring Instrumentation

    SciTech Connect

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensor would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.

  3. A miniaturized applanation tonometer.

    PubMed

    Ma, J G; Xu, D Z

    1999-08-01

    A miniaturized hand-held applanation tonometer is introduced, in which a special cone prism is employed to be an applanation probe to flatten the eye vertically. The self-weight of the probe is just the applanation force, and the applanation area of the ocular cornea is monitored by the optoelectronic signal. The preliminary test demonstrates its good clinical acceptance and its accuracy meeting clinical needs. PMID:10431459

  4. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  5. Miniature implantable ultrasonic echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K. (Inventor)

    1978-01-01

    A miniature echosonometer adapted for implantation in the interior of an animal for imaging the internal structure of a organ, tissue or vessel is presented. The echosonometer includes a receiver/transmitter circuit which is coupled to an ultrasonic transducer. Power is coupled to the echosonometer by electromagnetic induction through the animal's skin. Imaging signals from the echosonometer are electromagnetically transmitted through the animal's skin to an external readout apparatus.

  6. Miniature multichannel biotelemeter system

    NASA Technical Reports Server (NTRS)

    Carraway, J. B.; Sumida, J. T. (Inventor)

    1974-01-01

    A miniature multichannel biotelemeter system is described. The system includes a transmitter where signals from different sources are sampled to produce a wavetrain of pulses. The transmitter also separates signals by sync pulses. The pulses amplitude modulate a radio frequency carrier which is received at a receiver unit. There the sync pulses are detected by a demultiplexer which routes the pulses from each different source to a separate output channel where the pulses are used to reconstruct the signals from the particular source.

  7. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1977-01-01

    A miniature drag-force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilever beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain-gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like those of a second-order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.

  8. Miniaturized flow injection analysis system

    DOEpatents

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  9. Miniaturized flow injection analysis system

    DOEpatents

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  10. Compact Fuel-Cell System Would Consume Neat Methanol

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Kindler, Andrew; Valdez, Thomas

    2007-01-01

    In a proposed direct methanol fuel-cell electric-power-generating system, the fuel cells would consume neat methanol, in contradistinction to the dilute aqueous methanol solutions consumed in prior direct methanol fuel-cell systems. The design concept of the proposed fuel-cell system takes advantage of (1) electro-osmotic drag and diffusion processes to manage the flows of hydrogen and water between the anode and the cathode and (2) evaporative cooling for regulating temperature. The design concept provides for supplying enough water to the anodes to enable the use of neat methanol while ensuring conservation of water for the whole fuel-cell system.